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Abstract

The aim of this study is to devise a sector restructuring model in which all the

decision making units (DMUs) satisfy a predefined global efficiency level. The

proposal makes several realistic assumptions regarding the merging of DMUs

under specific circumstances. The model computes the global efficiency target

by giving preference to merging DMUs over saving inputs, hence considering

that the affected stakeholders may be resistant to restructuring, and this re-

sistance may have overall negative effects on the image and reputation of the

companies and organizations. In addition, the number of constituents in the

new entities can be limited by the decision maker after the restructuring pro-

cess, so that the model also considers a constraint on cardinality. The proposal

combines the inverse data envelopment analysis (InvDEA), which computes the

merger’s input savings, and the genetic algorithm (GA), which solves the com-

binatorial problem of identifying the merging units. The proposal is illustrated

by two examples from banking and higher education.
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1. Introduction

The business environment is often characterized by conditions that offer op-

portunities for synergies through mergers and acquisitions (M&As). Restructur-

ing refers to the reorganization of the ownership, operational or other structures5

of a private company or public organization. The aim of restructuring is to make

the organization more profitable and efficient, which can primarily be addressed

by two approaches. The first is by merging two or more firms and combining

their activities to create a new entity with the aim of improve global perfor-

mance through the synergy of its constituents. The second alternative consists10

of splitting the firm into a larger number of new and independent entities (Amin

et al., 2017b).

Mergers can lead the joint entity to improving its long-run productivity, sav-

ing money, freeing up resources or boosting profits (Amin et al., 2019) and can

even lead to the receipt of explicit support from governments. For example, dur-15

ing the Japanese economic crisis that erupted in the early 1990s, the Japanese

government encouraged the healthier banks to merge with financially distressed

banks (Halkos et al., 2016). A similar situation occurred with Spanish banks

after their financial crisis (Garćıa et al., 2010). Conversely, academics have

reported that merging may imply a negative effect on employment, as shown20

by Beckmann and Forbes (2004); Gugler and Yurtoglu (2004); Kubo and Saito

(2012).

The negative effect of mergers on employment generates distrust among

employees and other stakeholders concerned by the economic and social impli-

cations of mergers. Furthermore, merging public institutions can be constrained25

The following abbreviations are used in this manuscript: DMU: Decision Making Unit;

DEA: Data Envelopment Analysis; InvDEA: Inverse Data Envelopment Analysis; GA: Genetic

Algorithm; M&As: Mergers and Acquisitions; VRS: Variable Returns to Scale; BBC: Banker-

Charnes-Cooper; CCR: Charnes-Cooper-Rhodes; GCC: Gulf Cooperation Council.
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by government legislation on employees’ rights. In some countries, reducing the

public labour force is not permitted, hence limiting the theoretical economic

benefits of restructuring on efficiency.

Data envelopment analysis (DEA) measures the relative efficiency score of

Decision Making Units (DMUs) (Charnes et al., 1978; Banker et al., 1984). DEA30

is an analytical method which has been widely used for the merger performance

evaluation of DMUs. As an example, Kohers et al. (2000) examine the influence

of bank efficiencies on the market assessment of bank holding company mergers;

Also in the banking sector Halkos and Tzeremes (2013) evaluate the operating

efficiency gains of a potential bank merger or acquisition. Lozano and Villa35

(2010) use DEA as a pre-merger planning tool to estimate expected cost and

profit efficiency gains. The proposed model explicitly considers the possibility

of closing existing units, which is especially apt for in-market horizontal mergers

according to the authors. More recently, Amin et al. (2017a) use an InvDEA

model to analyze the impact of mergers on the efficient frontier, Amin and Al-40

Muharrami (2018) introduce a model to deal with mergers in DEA allowing for

negative data, and Amin et al. (2017b) apply the inverse DEA (InvDEA) model

in a firm restructuring context.

In contrast to the DEA approach, the InvDEA model determines the re-

quired inputs and outputs for a given efficiency target θ (Gattoufi et al., 2014;45

Amin et al., 2019). Ahuja and Orlin (2001) differentiate between optimisation

problems and inverse optimisation problems: ”A typical optimisation problem

is a forward problem since it identifies the values of observable parameters (de-

cision variables) given the values of the model parameters (cost coefficients,

right-hand side vector, and the constraint matrix). An inverse optimisation50

problem consists of inferring the values of the model parameters (cost coeffi-

cients, right-hand side vector, and the constraint matrix) given the values of

observable parameters (decision variables)”. Emrouznejad et al. (2019) state

that ”unlike the standard DEA whose objective is to find the efficiency score,

the InvDEA assumes the efficiency given and aims to find the levels of inputs55

and outputs that are required to realise the desired efficiency score.” The inverse
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optimisation approach we use in this paper is aligned with the problem we are

addressing.

As has been pointed out by Wei et al. (2000), ”we have a given feasible

solution which is not necessarily an optimal solution, and we wish to adjust60

these parameter values, inputs, and outputs, as little as possible so that the

feasible solution becomes the optimal one under the adjusted parameter values”.

Gattoufi et al. (2014) was the first InvDEA merger application on a real data

set. The authors illustrate the methodology by using the examples of 42 banking

units in Gulf Corporation Council countries.65

Most of the authors’ practical examples are focused on merging two DMUs

to generate a new entity. Restructuring a whole sector (all DMUs) when the

minimum global degree of efficiency is required has not been covered in the

literature. In this context, our aim was to contribute to filling this gap by

introducing several realistic assumptions regarding the merging of DMUs under70

specific circumstances:

1. our proposal seeks a global improvement of efficiency thus all the resulting

new entities must guarantee a minimum level of efficiency: the global

efficiency target;

2. for non-efficient DMUs, the efficiency target θ is obtained by a) merging75

with other DMUs, b) reducing the inputs of the original DMU, or c)

simultaneously considering both approaches;

3. whenever possible, the efficiency target should be achieved by merging

DMUs instead of reducing inputs;

4. the procedure should consider cardinality constraints regarding the num-80

ber of constituents of the new entities.

The cardinality constraint is used to model situations in which the deci-

sion maker wants to limit the number of constituents in the new entities, with

political or social aspects in mind.

The third assumption refers to the adverse impact on the social image of85

companies and organisations that prioritise reducing labour costs during the re-
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structuring process. However, governments and trade unions are often averse to

downsizing, divestment and reallocation strategies, and this has overall negative

effects on company reputations (Dentchev and Heene, 2004).

A final consideration is related to the concept of a major consolidation in-90

troduced by Amin et al. (2017a). Our proposal excludes major consolidations

by assuming the abovementioned arguments of Amin et al. (2017a), hence pro-

moting any mergers that do not affect the original efficiency frontier.

The following question then arises: what are the optimal combinations of

DMUs that guarantee the minimum overall efficiency target, satisfying both95

the cardinality constraint and prioritisation? For example, if 30 DMUs were

arranged in groups where the cardinality was limited to 2, the model would

translate into 5.12e+17 potential solutions as shown in Section 2.4. The number

of potential solutions makes the brute-force approach intractable in practice.

We propose the use of a genetic algorithm (GA) model to deal with the search100

for units to be potentially merged. GA is then useful for the performance of an

intelligent exploitation to direct the search into the region of better performance

in solution space, avoiding the analysis of all possible solutions and thus reducing

the search time. Hence, we used GA in our research to deal with the intractable

problem of analyzing all potential solutions. The combinatorial problem of105

identifying the units to be merged is solved by a genetic algorithm (GA), so that

the GA combinatorial search effectiveness is combined with the InvDEA model

to obtain near-optimal solutions. The GA fitness function and how it deals with

the aforementioned assumptions are discussed below. Despite the merge of units

through DEA having been extensively addressed by the literature, the sector110

restructuring under the abovementioned realistic assumptions considered in our

paper has not been covered. As stated by Amin et al. (2017a), ”unlike other

inverse optimization researches, there is a gap between theoretical developments

and real world application of InvDEA”. This paper also aims to fill this gap by

addressing the realistic restructuring problem with two case studies.115

The paper is organised as follows: Section 2 describes the InvDEA model,

the GA model and describes how both models are combined to address the
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problem. In Section 3, two case studies from banking and higher education are

given to illustrate the proposal. Finally, Section 4 summarizes the conclusions

drawn from the study.120

2. A combined inverse data envelopment analysis and genetic algo-

rithm merging model

This section describes the basics of DEA (Section 2.1), the InvDEA model

(Section 2.2), the GA model (Section 2.3) and how both are combined to solve

the problem (Section 2.4). The latter describes the implemented fitness function125

and the mutation and crossover operators of GA optimization.

2.1. The DEA model

The first DEA model was proposed by Charnes et al. (1978). DEA was

designed to evaluate the performance of a DMU in the presence of competitors,

i.e. other DMUs. Subsequently, Banker et al. (1984) extended the model by130

assuming variable returns to scale (VRS), the so-called BBC Model (1). Suppose

we have n DMUs and we have gathered information regarding m inputs, xij

(i = 1, . . . ,m), and s outputs, yrj (r = 1, . . . , s). The input-oriented BCC

Model 1 evaluates the efficiency of DMUo (o = 1 . . . n), where θo is a scalar

reporting the technical efficiency of DMUo (Cooper et al., 2006).135

According to Charnes et al. (1994) the BCC model ”distinguishes between

technical and scale inefficiencies by (i) estimating pure technical efficiency at

the given scale of operation and (ii) identifying whether increasing decreasing,

or constant returns to scale possibilities are present for further exploitation”.

We follow the approach of Gattoufi et al. (2014); Amin et al. (2017a,b); Amin140

and Al-Muharrami (2018) in the application of DEA, so that model 1 serves

to determine which DMUs are (weak) efficient, θ = 1. If Pareto-Koopmans

efficiency was required, we should add slack variables to model 1 so that only

those DMUs with θ = 1 and zero value in slacks would be considered as Pareto-

Koopmans efficient.145
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min θo

s.t. ∑n
j=1 xijλj − θoxio ≤ 0 i = 1 . . .m∑n
j=1 yrjλj − yro ≥ 0 r = 1 . . . s∑n
j=1 λj = 1

λj ≥ 0 j = 1 . . . n

(1)

2.2. The inverse DEA model

Wei et al. (2000) introduced the InvDEA model by discussing the following

problem: if among a group of decision making units we increase certain inputs

to a particular unit and assume that the DMU maintains its current efficiency

level with respect to other units, how many more outputs could the unit pro-150

duce? Later, Pendharkar (2002) and Amin and Emrouznejad (2007) extended

the analysis of the original invDEA model by proposing inverse linear program-

ming as an alternative to speeding up the computation of the Additive DEA

model. Gattoufi et al. (2014) propose an InvDEA model for setting merger

targets from both the input and output-oriented perspectives. Following the155

input-oriented approach, the model allows the merged entity to reach a given

efficiency score, keeping all the outputs and maintaining the minimum input

levels from each merging DMU. The input-oriented InvDEA model proposed by

Gattoufi et al. (2014) is shown in Model 2:

min
∑m

i=1 (αik + αil)

s.t. ∑
j∈F xijλj + (αik + αil)λM − θ (αik + αil) ≤ 0 i = 1 . . .m∑
j∈F yrjλj + (yrk + yrl)λM ≥ (yrk + yrl) r = 1 . . . s∑
j∈F λj + λM = 1

0 ≤ αij ≤ xij j = k, l; i = 1 . . .m

λj ≥ 0 ∀j ∈ F ∪ {M}
(2)
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where k and l refer to the DMUs to be merged and M to the resulting DMU;160

αik and αil are the levels of the ith input from the merging DMUk and DMUl,

respectively, which is maintained by the new merged DMUM ; λj is the intensity

variable, θ is the given efficiency target for the merged DMUM , and F is the

set of available peers in the post-merger evaluation process.

Model (2) is a nonlinear programming model, but can easily be transformed165

into the linear Model (3) by relaxing M from the set of its peers.

min
∑m

i=1 (αik + αil)

s.t. ∑
j∈F xijλj − θ (αik + αil) ≤ 0 i = 1 . . .m∑
j∈F yrjλj ≥ (yrk + yrl) r = 1 . . . s∑
j∈F λj = 1

0 ≤ αij ≤ xij j = k, l; i = 1 . . .m

λj ≥ 0 ∀j ∈ F

(3)

The output-oriented approach can be found in Gattoufi et al. (2014). In

Section 3 we explain in detail why we opted for the input-orientation approach

in our proposal.

2.3. Genetic algorithm170

The GA is defined as an optimisation technique based on a heuristic search

for solutions. GA models were originally proposed by Holland (1975) and are

currently considered a subset of the evolutionary algorithms based on the nat-

ural evolutionary processes that enable species to adapt to their environment.

Unlike other classic optimisation systems, GAs iterate by examining a set of175

possible solutions known as the population. These candidate solutions are en-

coded as strings or chromosomes. The chromosomes compete with each other

for survival, but only the strongest can survive. Each iteration selects the best

individuals in the current population to be part of the next population. The

new generations inherit information from their parents and after a number of180

reproduced generations involving crossovers and mutations, the process eventu-
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ally reaches convergence. The iterative process finishes when either all of the

individuals in the population are essentially the same or the maximum number

of iterations is reached.

Implementing the GA involves defining several concepts closely linked to the185

problem characteristics. Below, we describe in detail chromosome representa-

tion, the fitness function and the mutation and crossover operators.

2.3.1. The chromosome representation

The representation of each individual (chromosome) is called the genotype.

Finding the appropriate genotype to represent an individual in the population190

is key to specifying the genetic algorithm. In the current study the genotype

design aims to specify how DMUs are organized, i.e. to distinguish the DMUs

that merge into new entities from those that remain unmerged.

Chromosomes are coded to contain a potential solution to the problem. In

our approach, we represent chromosomes as integer strings. The length of these195

strings equals the number of DMUs to be merged. Each bit in the chromosome

defines the group to which the DMU is assigned.

Figure 1 gives an example of chromosome representation, where 8 DMUs

are arranged in 5 different mergers. As can be seen at the top of the figure,

the decision process has merged DMUs 1, 3 and 8 in a new entity. Another200

merger contains DMUs 5 and 6, while DMUs 2, 4 and 7 remain unmerged.

The genotype design of the merger example can be seen at the bottom. Each

merged or unmerged DMU is assigned to a group in the vector representation,

e.g. Group 1 is composed of DMUs 1, 3 and 8, DMUs 5 and 6 are joined in

Group 4 and DMUs 2, 4 and 7 are labelled as Groups 2, 3 and 5, respectively.205

2.3.2. The fitness function

In a given a merger configuration the fitness function computes the input

savings that DMUs must accomplish to fulfil the predefined global efficiency

target (Algorithm 1).

The first input (chromosome) of the algorithm contains the merging struc-210
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Figure 1: Example of chromosome representation.

ture of the DMUs as represented in Figure 1. The length of this vector coincides

with the number of non-efficient DMUs, or those that can potentially be merged.

The second parameter of the fitness function is the global efficiency target (θ)

defined by the decision maker.

The algorithm iterates through the groups identified by the chromosome.215

The function which takes the chromosome as input and identifies those DMUs

belonging to each group. These DMUs are saved in merge variable. The function

iterates through each group and computes the corresponding inputs saving by

using the invDEA function. The invDEA function computes the input savings to

be achieved by both merged and unmerged DMUs in order to meet the efficiency220

target θ. The output is zero, indicating no savings when the efficiency score of

the merged constituents is above the target, and thus there is no need to reduce

the inputs. A zero is also obtained when dealing with an unmerged unit whose

efficiency score is above the target.

As stated by Amin et al. (2017b), ”identifying major consolidations in a225

market will help regulating and anti-trust authorities identifying those consoli-

dations that potentially threaten the competitiveness in the market and hence

thoroughly analyze those cases before any approbation. Moreover, business

intelligence units in a firm may use what we propose to identify the possible

threats in their business environment. One way of doing it is to use the scenario230

approach to identify, among all possible consolidations, those that are major in

the market and hence represents the potential threat for the competitiveness
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of the firm.” Considering that consolidations can potentially threaten compet-

itiveness and in order to exclude major consolidation mergers, the computed

input savings are penalized with a large positive penalty constant, big, if the235

new entity reaches the efficiency frontier. The while loop ends when the last

group of DMUs has been computed. We use the length function to calculate

the size of the merge variable. If length is positive, then there are DMUs in the

group. A zero length indicates that the process has finished and all groups have

been examined.240

Once the while loop is finished, the algorithm returns the difference between

the total input savings and the number of groups. We subtract the number

of groups to get rid of unnecessary mergers, as happens when two or more

DMUs are merged when all the individual efficiency scores are above the tar-

get. According to our assumptions, this undesirable behaviour is penalised by245

maximising the number of groups, thus promoting non-merging except where

necessary.

2.3.3. The mutation operator

The mutation operator randomly selects a DMU to change its current merger.

This is done by the sample function in Algorithm 2. Then, the DMU can be250

added to a pre-existing merger or isolated as an individual DMU. In the first

case, the algorithm guarantees that the cardinality constraint is not violated;

i.e. the DMU is not added to a saturated group regarding the maximum cardi-

nality constraint. The mutation operator therefore generates feasible solutions

and avoids any repair mechanism.255

2.3.4. The crossover operator

The goal of the crossover operator is to obtain better chromosomes to im-

prove the result by exchanging the information contained in the current good

chromosomes (Zhang et al., 2011). The proposed crossover operator takes two

parents and creates two children containing some of the genetic material from260

the parents. The function outlined in Algorithm 3 extracts those common merg-
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Algorithm 1 Pseudo code for the fitness function.

1: Input: chromosome, θ ∈ [0, 1]

2: Output: fit.value ∈ R

3: Begin

4: inputs.saving = 0

5: i = 0

6: merge = which(chromosome == i+1)

7: n.merge = length(merge)

8: while n.merge ≥ 1 do

9: inputs.saving = inputs.saving + invDEA(merge, θ) + big ×

major(merge)

10: i = i+1

11: merge = which(chromosome == i+1)

12: n.merge = length(merge)

13: end while

14: return(inputs.saving - i)

15: End begin

ers pertaining to both parents. This common information is inherited by both

children (Step 1 in Algorithm 3). The rest of the DMUs not involved in these

groups are randomly merged, but observing the cardinality constraint (Step 2).

Figure 2 illustrates how the crossover operator works. Let us suppose we are265

dealing with 8 DMUs; the maximum merger cardinality is 2, and parents p1 and

p2 represent possible solutions to the problem. Unlike other DMUs, we can see

that DMU 4 is isolated in both parents, and DMUs 5 and 6 are joined in both

parents. This common information is inherited by children c1 and c2. DMUs 1,

2, 3, 7 and 8 are merged randomly while observing the cardinality constraint.270

In this way, child c1 joins DMUs 2 and 3, and leaves DMUs 1, 7 and 8 isolated.

Child c2 merges DMUs 1 and 2, and 3 and 7, while DMU 8 remains on its own.

In the following we explain Algorithm 3 in detail. We include as inputs the

chromosomes of both parents, parent1 and parent2, and the maximum cardinal-
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Algorithm 2 Pseudo code for the mutation operator

1: Input: chromosome; max.card ∈ Z

2: Output: chromosome ∈ F f

3: Begin

4: n.chromosome = length(chromosome)

5: i = sample(n.chromosome, 1)

6: feasible.merge = which.j(length(chromosome == j) ≤ max.card, j 6= i)

7: chromosome[i] = sample(feasible.merge, 1)

8: return(chromosome)

9: End begin

Figure 2: Example of crossover.

ity of the groups, max.card. The crossover operator returns the chromosomes of275

both children, child1 and child2. The code is structured into two steps. Chil-

dren inherit the common information from their parents in Step 1. The uncom-

mon information is merged randomly, while observing the maximum number of

groups max.card in Step 2.

Firstly, we initialise the variable child1 with zeros. The function com-280

mon.groups identifies which DMUs are sharing common groups in both parents.

Regarding the example of Figure 2, common.groups would return DMUs in po-

sitions 4, 5 and 6 as an inherited merge. Then, this merge along with any other

merge is inherited by child1 and eventually transferred to child2. This way both

children share the same common groups of DMUs.285

Step 2 develops the merging of uncommon DMUs in parents. The for loop

iterates for both children. First, we identify which positions have not been as-
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Algorithm 3 Pseudo code for the crossover operator

1: Input: parent1, parent2; max.card ∈ Z

2: Output: child1, child2

3: Begin

4: # STEP 1: children inherit common groups in parents

5: child1 = rep(0, length(parent1))

6: common.merges = common.groups(parent1, parent2)

7: i = 0

8: merge = which(common.merges == i+1)

9: n.merge = length(merge)

10: while n.merge ≥ 1 do

11: child1[merge] = i+1

12: i = i+1

13: merge = which(common.merges == i+1)

14: n.merge = length(merge)

15: end while

16: child2 = child1

17: # STEP 2: uncommon elements are merged randomly but observing the

cardinality constraint

18: for child ∈ {child1 ∪ child2} do

19: which.zero = which(child == 0)

20: j = i

21: while length(which.zero) ≥ 1 do

22: merge = sample(which.zero,min(sample(max.card,1)),length(which.zero))

23: child[merge] = j+1

24: j = j+1

25: which.zero = which(child == 0)

26: end while

27: end for

28: return(child1, child2)

29: End begin

14



signed to any merge in Step 1. We save this information in variable which.zero.

In the while loop, we use the sample function to randomly determine which

DMUs are going to be assigned for the next merge, while observing the max-290

imum cardinality for the mergers. Once those DMUs are assigned to a new

group (child[merge] = j+1), then we search for the remaining unassigned DMUs

(which.zero = which(child == 0)) and iterate until the stopping criterion is met.

Once we have proceeded through both children, the crossover operator returns

the chromosomes.295

2.4. The InvDEA-GA model

A broad spectrum of papers has explored the benefits of combining data

envelopment analysis with genetic algorithms in different areas. Some of the

DEA-GA models proposed in the literature focus on stochastic scenarios by

complementing the analysis of efficiency with the GA heuristic approach. For300

example, Kuah et al. (2012) evaluate the knowledge management performance in

higher education. The accuracy of the efficiency scores is improved by proposing

a framework which combines a Monte Carlo DEA version with GA. Udhayaku-

mar et al. (2011) develop a stochastic simulation-based GA for solving chance

constrained data envelopment analysis problems. In contrast to conventional305

models, which focus on deriving deterministic equivalents, the authors propose

that the stochastic objective function and chance constraints be directly han-

dled by the genetic process. Jain et al. (2015) introduce a GA-based approach

to estimate weight restrictions in DEA, incorporating Decision Makers’ prefer-

ences into weight restrictions. GA is used to find a set of weights which are at a310

minimum distance from all these preferences. Some recent developments using

DEA and GA include: Lin et al. (2013); Hsu (2014); Kao et al. (2014); González

et al. (2015); Fallahpour et al. (2016); Pendharkar (2018).

Despite its potential synergy, no framework integrating invDEA and GA has

so far been proposed, to the best of our knowledge. This paper proposes a model315

combining both methodologies for a generic restructuring context when several

realistic conditions have to be met. The aim is to find optimal or quasi-optimal
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merging solutions in a timely manner.

The number of potential solutions makes the brute-force approach intractable

in practice. For example, let us suppose that the decision maker limits the cardi-320

nality of the new entities to 2. The number of possible solutions in this context

is obtained through the expression C(n) = C(n−1)+(n−1)×C(n−2), where n

represents the number of non-efficient DMUs involved in the analysis, C(1) = 1

and C(2) = 2. A system composed of 30 DMUs would translate into 5.12e+17

potential solutions. In addition, this figure can be dramatically increased if the325

cardinality constraint is relaxed. For example, if up to 3 entities are considered

in the merging process, this would entail adding new potential solutions to those

in the previous case, thus increasing the number of potential solutions. This is

why we propose using a heuristic approach to address the restructuring prob-

lem. Due to its simplicity, GA is a popular alternative that suits the problem330

we are dealing with, but other approaches from Evolutionary algorithms may

apply.

This is why we propose using a heuristic approach to address the restruc-

turing problem. Due to its simplicity, GA is a popular alternative that fits

the problem we are dealing with, but other approaches from Evolutionary algo-335

rithms may apply.

The GA is initialized by randomly selecting the initial population of chromo-

somes. The selection of the best individuals is performed by the fitness function

proposed in Algorithm 1 to account for the input savings of each temporary

solution. When two solutions reach the same input savings the algorithm gives340

preference to the case with the larger number of groups (less merging), according

to the assumption given in the Introduction. The mutation operation generates

offspring by randomly changing one merger, so that the mutation prevents lo-

cal searches of the search space and increases the probability of finding global

optima. The crossover operation generates offspring from two chosen individu-345

als in the population (parents). The offspring inherit some characteristics from

each parent. The specified maximum number of generations is considered as the

termination condition.
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3. Two practical applications

The efficiency of Banking and Higher Education has traditionally received350

considerable attention from research groups (Abbott and Doucouliagos, 2003;

Nazarko and Šaparauskas, 2014; Wanke and Barros, 2014; Tsolas and Charles,

2015; Radojicic et al., 2018; Zhou et al., 2018).

This section illustrates the proposed model using two datasets as case stud-

ies. The first is composed of 46 banks in Gulf Cooperation Council (GCC)355

countries (Bahrain, Kuwait, Oman, Qatar, Saudi Arabia and United Arab Emi-

rates). This dataset has previously been used by the invDEA literature (Gat-

toufi et al., 2014; Amin and Al-Muharrami, 2018; Amin et al., 2017a,b, 2019).

However, we opted to include a second dataset to illustrate our proposal, so

that future research can use both to compare different models and approaches.360

This dataset includes information on 32 Colombian state universities and

extends the information reported in Visbal-Cadavid et al. (2017). The two

datasets, along with the technical efficiency scores under the VRS assumption

are provided in Appendix A and Appendix B.

The invDEA model with the input-orientation approach is considered in365

both cases. We argue that reducing inputs makes more sense than increasing

outputs in both the banking and higher education sectors. In the case of bank

restructuring, improving the efficiency of the sector by gaining new customers is

not a realistic assumption for the banking sector as a whole. In other words, in

an output-oriented approach a bank can improve its efficiency only by attract-370

ing new customers from other banks. However, it is not advisable to improve

overall efficiency by increasing the number of customers if we are dealing with

restructuring the whole sector, and the same applies to higher education. In

the Colombian educational system, increasing the number of students at state

Universities may not be feasible due to budget constraints. Efficiency must be375

improved either by reducing the university inputs or by simply merging the

DMUs as prioritised in the present proposal.

Table 1 shows the GA parameters used in both examples. These values were

17



Table 1: The parameters of the GA

Population size Number of generations Crossover ratio Mutation ratio

150 1,000 0.3 0.5

determined by reviewing the literature on GA applications, although there is no

specific rule about choosing the optimal parameters. Similar results have been380

obtained for other values not reported in this paper.

3.1. Banking mergers

The banking dataset is composed of 42 banks, 32 of which are non-efficient.

Following Gattoufi et al. (2014), we used two inputs (Interest expenses, non-

interest expenses) and two outputs (Interest income, non-interest income).385

We considered 4 different values for the efficiency target in the banking

dataset: 0.70, 0.75, 0.80 and 0.85 to study how banks merge according to the

required level of efficiency. The second parameter is the maximum cardinality

of the new entities. The simulation encompasses 3 scenarios: up to 2, 3 and 4

banks for each new entity.390

We have run the algorithm 200 times to account for the standard deviation

of the results. The results of one of these solutions are reported in Table 2. The

DMU code and its efficiency score are shown in the first two columns. The other

columns indicate the merging group assigned to each DMU for the considered

scenarios. Shaded cells indicate that the DMU efficiency score is below the395

required efficiency target θ. A circled number indicates that the DMU has

been merged, and a non-circled number that the DMU remains unmerged. For

example, DMUs B002 and B027 are joined in Group 1 for max.card = 2 and

θ = 0.70, shown with a circle. DMU B004 belongs to Group 3, and is not circled.

This means that DMU B004 has not been merged for θ = 0.70. The merging400

summary is highlighted in the last rows in the table. The ”Input Saving” row

indicates the input reduction that DMUs must accomplish in order to meet the

efficiency target requirement. A zero value indicates that global efficiency can
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be reached by merging DMUs and that no input reduction is needed in the new

entities. For max.card = 2 and θ = 0.70, the efficiency target is achieved by405

simply merging the DMUs, so that no input saving is reported. The case of

max.card = 2 and θ = 0.85 is the only one in which global efficiency cannot be

reached by solely merging units. The ”Alternative Solutions” row shows whether

the model has returned a unique solution (No) or more than one (Yes). It can be

seen that in cases where no input saving is reported, the GA finds alternative410

solutions. We reported only one of these solutions in each experiment. The

remaining rows indicate how many groups have been designed according to the

cardinality property.

The global efficiency target was reached by simply merging units in all but

one case. This exemplifies the benefits of merging banks to improve the overall415

efficiency of the sector, excluding the input reduction imposition. The model

promotes the merging of the DMUs whose efficiency is below the required level,

while DMUs over the efficiency target are more likely to remain unmerged.

Thus, even though Table 2 only shows one solution in the cases with multiple

solutions, the decision maker can analyse the alternatives not reported in the420

table, and can select the specific solution that best fits any additional economic,

political or social requirements.

Table 3 shows two cases in depth: max.card = 2 and θ = 0.85, and

max.card = 4 and θ = 0.80. In the first case, the efficiency target is achieved

both by merging banks and reducing inputs, while in the second case the target425

is reached by simply merging banks. Inter-bank synergy enables the new entities

to reach the corresponding efficiency target. For example, DMUs 2 and 4 are

merged in Group 1 for max.card = 2 and θ = 0.85. DMU 2 and DMU 4 have

an efficiency score of 0.677 and 0.892, respectively. The new merged entity is

shown to have an efficiency level of 0.881. When both the cardinality and the430

efficiency target are relaxed (max.card = 4 and θ = 0.80), the system merges

DMUs whose efficiency score is furthest below the required level. For example,

DMUs 2 and 12 have an efficiency score of 0.677 and 0.669, respectively. They

are joined with DMU 38 (0.876) to reach an efficiency score of 0.853. Since
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non-merging is avoided unless really necessary, groups with a high cardinality435

are only designed in cases where the efficiency target cannot be obtained by

forming smaller groups, as in the case of max.card = 4 and θ = 0.80: no merger

is reported with 4 DMUs.

Another interesting point in Table 3 refers to the characteristics of the un-

merged units. In max.card = 2 and θ = 0.85, the model leaves DMUs 7, 8, 25440

and 29 unmerged due to the low input saving needed to achieve the efficiency

target: 0.290, 4.355, 2.196 and 2.872, respectively.

These figures are very low in comparison with the input saving required for

some new entities, so that the GA tends to sacrifice smaller DMUs for bigger

ones in terms of inputs.445

Table 4 shows the summary statistics of the input savings for the 200 sim-

ulations performed in our analysis. We have only run a case where parameters

are max.card = 2 and θ = 0.85, because in other cases the solution obtained

was optimal (i.e. saving inputs were 0) -there was no dispersion in the results

of the simulations-. We can see that saving ranges from 229.8 to 403.8, with450

a standard deviation of 37.8. Many solutions are located around 297.4, which

is not far from the best solution found by the algorithm (229.8). The solution

reported in Table 2 (318.613) is also close to the best solution in Table 4.
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Table 3: Two examples on merging banks and the corresponding efficiency scores and input

savings obtained for the new entities

max.card = 2, θ = 0.85 max.card = 4, θ = 0.80

Merge DMUs
Inputs Efficiency

Merge DMUs
Inputs Efficiency

saving score saving score

1 {2,4} 0 0.881 1 {2,12,38} 0 0.853

2 {3,23} 0 0.906 2 {3,29,34} 0 0.827

3 {7} 0.290 0.829 3 {4,27} 0 0.883

4 {8} 4.355 0.738 4 {7} 0 0.829

5 {9,16} 1.461 0.823 5 {8,28} 0 0.878

6 {11,37} 0 0.930 6 {9,35} 0 0.871

7 {12,28} 0 0.887 7 {11,42} 0 0.936

8 {13,33} 0 0.891 8 {13} 0 0.970

9 {14,27} 112.587 0.794 9 {14} 0 0.813

10 {15,30} 0 0.948 10 {15,17} 0 0.864

11 {17,35} 0 0.867 11 {16,25} 0 0.843

12 {18,42} 54.601 0.835 12 {18,19} 0 0.865

13 {19,38} 0 0.879 13 {23} 0 0.910

14 {25} 2.196 0.756 14 {26} 0 0.826

15 {26,34} 140.251 0.842 15 {30} 0 0.815

16 {29} 2.872 0.687 16 {33} 0 0.838

- - - - 17 {37} 0 0.838

Table 4: Summary statistics for the 200 simulations performed on the banks’ case study

Parameters Min. 1st Qu. Median Mean 3rd Qu. Max. Sd. Dev.

max.card = 2
229.8 297.4 297.4 324.0 356.6 403.8 37.8

θ = 0.85
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3.2. Mergers in higher education

The higher education dataset is composed of 32 Colombian state universities,455

20 of which are considered as non-efficient by the VRS model. We considered

3 inputs (Administrative Expenses, Full Time Equivalent Teachers, Research

Staff) and 3 outputs (Number of Students, Employed Graduates, Research Pa-

pers) from the year 2018. It is worth mentioning that the Colombian Higher

Education system computes some of these variables after making certain amend-460

ments. Students and teachers are measured in a different way by each Univer-

sity. The weighting takes into account the knowledge area, the level of training

(professional, technical or technological) and the teaching methodology used

(traditional learning or distance learning). For example, a student enrolled in

the Open University weights 0.6 times a student attending in person. It also465

takes into account the development level of Colombian regions and the educa-

tional level of its population. The ”Research Papers” variable is also measured

through a weighting scheme. Under Colombian Law 1279, the weighted number

of research papers is calculated according to the quality level of the journal.

As in the case of the banks, we have run the algorithm 200 times. The exper-470

iments were carried out using the same parameters as in the case of the banks

(Cardinality and Efficiency Target) and the results for one of the experiments

(which serves as example) are reported in Table 5. Although we found some sce-

narios in which a reduction of inputs was needed to reach the required efficiency

level, a similar pattern of behaviour to the banks can be seen. As in the previous475

case, small universities are more likely to remain unmerged, despite the input

reduction they need to reach the efficiency target. More interestingly, we can see

that the GA returns the same solution as for experiments with max.card = 3

and θ = 0.85, and max.card = 4 and θ = 0.85. It can thus be inferred that once

this solution is obtained, no cardinality relaxation can improve the solution.480

Any additional merger may involve a change in the efficiency frontier, which is

not allowed in our model, following Amin et al. (2017a).

Finally, it should be noted that the input savings required in some cases is

not as large as the level of total inputs and the efficiency gain. In the most
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conservative scenario (max.card = 2 and θ = 0.85) the system needs to reduce485

61,572.2 input units to reach the efficiency target. However, the total inputs for

the 20 non-efficient DMUs is 641,987.4 so that the input saving represents 9.6%

of the total in the most extreme scenario.

Table 7 shows the summary statistics of the input savings for the 200 simu-

lations performed on 5 different scenarios. Results show that input savings can490

change because of the randomness of the GA algorithm. In order to reduce this

uncertainty, the decision maker can increase the number of iterations or just to

run several experiments -as we did- to search for the most accurate sub-optimal

solution. However, we can observe that in all cases the median and the first

quantile produce the same result. This gives an idea on how consistent the GA495

algorithm is as regards the solutions obtained.
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Table 6: Two examples on merging universities and the corresponding efficiency scores and

input savings obtained for the new entities

max.card = 3, θ = 0.70 max.card = 3, θ = 0.85

Merge DMUs
Inputs Efficiency

Merge DMUs
Inputs Efficiency

saving score saving score

1 {2,13,31} 0 0.963 1 {2,22,31} 0 0.861

2 {3,6} 0 0.718 2 {3,6,12} 4,193.9 0.797

3 {4} 0 0.849 3 {4,7,17} 0 0.890

4 {5} 0 0.833 4 {5,9,20} 0 0.865

5 {7} 0 0.803 5 {10,13,23} 0 0.857

6 {9} 0 0.715 6 {18,21,30} 0 0.893

7 {10} 0 0.913 7 {28} 0 0.889

8 {12,23} 0 0.733 8 {29} 0 0.995

9 {17} 0 0.817

10 {18,22} 0 0.860

11 {20,30} 0 0.773

12 {21} 0 0.796

13 {28} 0 0.889

14 {29} 0 0.995

Table 7: Summary statistics for the 200 simulations performed on the universities’ case study

Parameters Min. 1st Qu. Median Mean 3rd Qu. Max. Sd. Dev.

max.card = 2
12,417 13,034 13,034 13,955 13,888 17,442 1,589.6

θ = 0.75

max.card = 2
19,790 19,790 19,790 21,106 20,633 26,882 2,358.8

θ = 0.80

max.card = 2
60,439 61,641 61,641 65,146 66,733 76,388 5,395.2

θ = 0.85

max.card = 3
4,194 10,451 10,451 14,037 17,935 25,407 5,103.9

θ = 0.85
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max.card = 4
3,050 9,196 9,196 13,511 19,004 24,888 5,901.0

θ = 0.85

4. Concluding remarks

Inverse data envelopment analysis (InvDEA) aims to change the level of in-

puts and/or outputs of a decision making unit (DMU) to obtain a predefined

efficiency target. In a merger and acquisition context, InvDEA has been applied500

to two or more DMUs in order to find the required levels of inputs and outputs

needed from the merging entities. Unlike other optimisation models, there is a

gap between theoretical developments and realistic InvDEA applications. Al-

though the literature offers some real-world examples in which two units are

merged with the aim of improving the efficiency score, there is no real-world505

application where InvDEA has been proposed to improve the efficiency of an

entire economic sector.

This paper proposes a model that combines the InvDEA model with a genetic

algorithm to deal with sector restructuring. The proposal forces all the resulting

units to reach a minimum predefined efficiency level, which can be achieved by510

reducing the input consumption of the original DMUs and/or by merging some

original DMUs into a new entity.

The proposal considers some realistic assumptions. First, we constrain the

cardinality of the new entities and, secondly, we prioritise merging DMUs rather

than reducing their inputs. As the former assumption may involve a very large515

solution space, in which it is unrealistic to expect to find the optimal solution by

a brute-force approach, a genetic algorithm is proposed to solve this problem.

Regarding the latter assumption, reducing employment and public services in

massive restructuring processes can have a negative impact on corporate image

and public organisations. Our model gives preference to solutions in which520

global efficiency is improved by merging DMUs with each other instead of simply

reducing the input level.
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We applied the proposal to two real world datasets: the first was composed

of 42 banks and the second included information from 32 Colombian state uni-

versities. In most experiments global efficiency was improved by simply merging525

units. We also found that the genetic algorithm finds multiple solutions in many

cases, which can supply the decision maker with various alternatives. In the case

of universities, he can merge universities according to their degree of proximity

or similar syllabi. The experiment carried out on the universities is especially

interesting due to the appearance of mergers in some of the experiments.530

Our proposal can help political representatives in some decision making pro-

cesses. They can decide to merge some inefficient universities with outstanding

ones, improving the overall efficiency but limiting negative effects such as re-

dundancies for workers and budget cuts. In the case of Colombia, when many

Universities receive funds from the Government, this would translate into a535

more homogeneous development of higher education progress, thus improving

both professional skills and job opportunities for people living in depressed ar-

eas. By constraining mergers to minor consolidations, we prevent consolidations

that potentially threaten competitiveness in the market. In some cases, when

the solution involves no inputs reduction, the decision maker can handle dif-540

ferent scenarios. The possibility of merging universities without worsening the

solution allows for further discussion between those who are responsible for the

restructuring process, and maybe the consideration of additional variables be-

fore making the final decision.

This approach can be extended to other variations in the fitness function of545

the genetic algorithm, e.g. the minimum global efficiency target can be substi-

tuted by the mean efficiency target. Another option is to maintain the mini-

mum level of efficiency for the whole sector while minimizing the dispersion of

the efficiency scores. Alternative research directions could include extending an

epsilon-based approach (Toloo, 2014a,b), and considering robust optimization550

in those situations where variables can be subjected to uncertainty (Toloo and

Mensah, 2019).

31



Acknowledgement

The authors would like to thank the anonymous reviewers for their insightful

comments and suggestions that have contributed to improve this paper.555

Appendix A.

Table A.8: GCC banks data and efficiency scores under the VRS assumption (Gattoufi et al.,

2014)

Bank
Interest

expenses

Non-interest

expenses

Interest

incomes

Non-interest

incomes

Technical efficiency

scores under VRS

B001 3,956.796054 1,894.4259 9,001.0036 8,701.496886 1

B002 481.2388026 319.9764807 974.8543974 597.7262586 0.677

B003 305.2 138.6 479.8 252.2 0.640

B004 4,710.680232 3,996.258941 12,920.33718 6,060.767712 0.892

B005 1.0179 1.2818 3.0537 0.377 1

B006 954.4368435 1,208.703319 1,991.004009 7,278.09659 1

B007 3.9653867 5.0818548 13.3591183 3.0029142 0.829

B008 14.629582 16.8625182 44.658724 14.9375732 0.738

B009 11.7710586 6.5788122 22.9520892 15.1342182 0.727

B010 364.9204497 244.7502714 923.5096577 1,942.934962 1

B011 4,897.442334 2,787.180598 11,294.60684 9,363.231698 0.939

B012 14.6653 8.9726 28.1242 10.9707 0.669

B013 6.0772884 14.2491762 26.993781 10.2074844 0.970

B014 397.6273178 371.5353219 894.8452115 1,902.878236 0.813

B015 661.1197271 830.1664611 2,325.127578 1,748.531218 0.953

B016 12.1250754 7.3458486 33.5725932 19.5299268 0.962

B017 1,222.026218 1,049.479174 2,959.509429 2,651.545717 0.784

B018 931.1716014 838.3456599 2,460.797508 2,765.48501 0.866

B019 4,070.35136 2,845.497525 8,377.368148 7,726.905715 0.770

B020 3,721.233105 858.4634144 6,953.700654 2,779.716296 1

B021 16.1372658 7.080336 40.7709348 22.12605 1

B022 150.7056462 132.5044812 538.754484 129.9563181 1

B023 3,857.940464 2,894.37408 7,439.526268 10,239.08718 0.910

B024 7,994.80804 2,286.908317 14,156.194 11,261.81992 1

B025 9.6889 6.9745 22.4315 6.032 0.756

B026 3,292.736384 1,953.592256 7,041.163964 3,323.973281 0.826
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Table A.8 continued from previous page

Bank
Interest

expenses

Non-interest

expenses

Interest

incomes

Non-interest

incomes

Technical efficiency

scores under VRS

B027 402.7722184 321.1887946 906.2374914 775.7775119 0.678

B028 32.8350582 21.536022 97.6791354 26.55126 0.980

B029 6.7373075 7.8537756 18.4024742 4.5043713 0.687

B030 531.3947334 922.0396861 1,672.092695 1,185.164603 0.815

B031 152.5095535 190.3613222 685.3742585 769.8976255 1

B032 1.924945 4.5813691 9.1627382 5.2743493 1

B033 4.8893603 6.7373075 17.4015028 5.0818548 0.838

B034 3,233.618974 2,527.413772 7,959.733478 4,684.615848 0.837

B035 5,169.709976 5,405.975285 15,189.60922 9,830.136952 0.871

B036 6,802.565778 5,608.863431 19,958.0432 15,716.89339 1

B037 3,111.951641 2,126.012757 6,895.571804 4,869.315511 0.811

B038 3,600.983329 1,319.710512 6,547.924278 5,116.081501 0.876

B039 7,781.754225 8,486.424885 27,514.03279 14,335.67889 1

B040 4,488.665847 4,531.418617 12,157.91278 12,380.67722 1

B041 3,188.735893 1,106.153629 5,727.009354 6,194.460322 1

B042 650.8299259 307.9590502 1,265.645548 441.3589729 0.779

Appendix B.

Table B.9: State Colombian Universities data and efficiency scores under the VRS assumption

(Visbal-Cadavid et al., 2017)

Uni
Admin

expenses

FTE

teachers

Research

staff

Number

of students

Employed

graduates

Research

papers

TE scores

under VRS

U01 426,514 2,754.5 2,547 73,312.3 65,812.4 11,277,250 1

U02 13,939 608.5 135 12,888.5 11,139.5 137,550 0.430

U03 29,439 1,325.25 175 36,317.7 28,327.8 554,800 0.682

U04 52,514 862.5 144 21,816.3 16,892.4 647,300 0.849

U05 42,950 649.5 210 24,152.5 14,460.1 771,750 0.833

U06 14,295 695 198 18,621.3 14,995.73 498,100 0.642

U07 24,261 454.4 140 16,402.7 12,984.4 470,250 0.803

U08 11,192 395.5 73 15,355.5 9,697.0 373,200 1

U09 12,186 360.5 37 11,215.5 9,575.8 75,100 0.715

U10 16,127 744.25 126 20,966.7 14,427.2 618,700 0.913
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Table B.9 continued from previous page

Uni
Admin

expenses

FTE

teachers

Research

staff

Number

of students

Employed

graduates

Research

papers

TE scores

under VRS

U11 17 438.5 18 11,411.1 8,778.5 108,750 1

U12 13,568 284 49 6,629 4,027.1 123,400 0.651

U13 7,325 616.75 42 16,268.7 12,043.7 60,350 0.617

U14 8,698 330 17 5,375.5 4,319.7 190,100 1

U15 3,872 146.25 4 2,974.8 2,152.0 8,750 1

U16 91,401 3,251.5 1,354 46,377 21,486.5 6,967,200 1

U17 87,456 657 120 21,876.2 18,185.7 430,950 0.817

U18 107,499 1,227.5 716 36,249.6 28,771.3 3,013,500 0.909

U19 34,116 855.75 454 23,863 19,140.5 2,250,100 1

U20 58,687 609.5 241 18,870.7 16,636.4 1,060,000 0.930

U21 46,389 406.5 106 13,909.1 10,895.0 360,650 0.796

U22 32,805 662.25 166 22,751.2 13,641.6 417,500 0.662

U23 17,331 626.75 113 21,280.2 16,802.8 430,800 0.834

U24 9,174 308.5 54 20,762.4 17,002.3 55,250 1

U25 5,755 143.75 14 7,811.4 6,067.9 6,800 1

U26 9,864 1,146 94 28,848.6 24,680.0 362,350 1

U27 7,685 441.5 107 23,787.6 21,477.8 356,350 1

U28 15,660 701.25 15 15,812.7 12,569.5 26,900 0.889

U29 4,641 255.25 42 6,742.8 4,649.8 147,500 0.995

U30 10,661 579 79 16,615.8 13,884.2 45,150 0.578

U31 17,872 975.75 227 30,854.5 24,902.7 583,350 0.687

U32 17,513 1,291.5 44 79,302.8 48,200.2 68,300 1
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