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Selective attention is a fundamental cognitive function that uses top-down signals to orient and prioritize information processing in the
brain. Single-cell recordings from behaving monkeys have revealed a number of attention-induced effects on sensory neurons, and have
given rise to contrasting viewpoints about the neural underpinning of attentive processing. Moreover, there is evidence that attentional
signals originate from the prefrontoparietal working memory network, but precisely how a source area of attention interacts with a
sensory system remains unclear. To address these questions, we investigated a biophysically based network model of spiking neurons
composed of a reciprocally connected loop of two (sensory and working memory) networks. We found that a wide variety of physiological
phenomena induced by selective attention arise naturally in such a system. In particular, our work demonstrates a neural circuit that
instantiates the “feature-similarity gain modulation principle,” according to which the attentional gain effect on sensory neuronal
responses is a graded function of the difference between the attended feature and the preferred feature of the neuron, independent of the
stimulus. Furthermore, our model identifies key circuit mechanisms that underlie feature-similarity gain modulation, multiplicative
scaling of tuning curve, and biased competition, and provide specific testable predictions. These results offer a synthetic account of the
diverse attentional effects, suggesting a canonical neural circuit for feature-based attentional processing in the cortex.
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Introduction
In cluttered environments, efficient vision depends critically on
appropriate allocation and deployment of voluntary attention
(Desimone and Duncan, 1995; Colby and Goldberg, 1999; Itti
and Koch, 2001). Neurobiologists have identified different forms
of attentional modulation of neuronal responses in the sensory
cortex, notably in visual areas V4 and visual middle-temporal
area (MT), and this has led to the formulation of different con-
ceptual models for the physiological action of attention.

Biased competition (BC) (Desimone and Duncan, 1995)
holds that attention biases the competition between the represen-
tations of stimuli within the receptive field (RF) of the neuron.
This is based on experiments showing that neural responses to
simultaneous presentation of preferred and nonpreferred stimuli
in the RF are intermediate between responses elicited by either
stimulus alone, and attention focused onto one of the stimuli
leads to responses determined by the attended stimulus, as if the

unattended stimulus was absent (Moran and Desimone, 1985;
Desimone and Duncan, 1995; Treue and Maunsell, 1996; Reyn-
olds et al., 1999).

Other researchers have proposed the multiplicative gain mod-
ulation interpretation (MGM). This is based on experiments
showing how the gain of neuronal responses to a single stimulus
is enhanced both when attention is focused inside the RF of the
neuron (McAdams and Maunsell, 1999) or onto the preferred
feature of the neuron (Treue and Martinez-Trujillo, 1999), with-
out affecting the selectivity of the cell.

And, recently, it has been observed in MT that attention mod-
ulates population activity by enhancing it at the attentional focus
and suppressing it in its surround (Martinez-Trujillo and Treue,
2004). This finding can be understood within the feature-
similarity gain principle (FSGP) (Treue and Martinez-Trujillo,
1999; Martinez-Trujillo and Treue, 2004; Boynton, 2005; Maun-
sell and Treue, 2006), which posits that selective attention to a
given feature modulates the firing rate of a neuron by a gain
factor, which depends on the parametrical similarity between the
attended feature (spatial location, orientation, direction. . . ) and
the preference of the neuron for that feature. Neurons multiply
their firing whenever their preferences are parametrically close to
the attended feature; otherwise, neural responses are divided,
resulting in a population selectivity enhancement. In contrast
with BC, this principle emphasizes that attention modifies neural
responses multiplicatively, with the same factor regardless of sen-
sory inputs (Maunsell and Treue, 2006). Physiologically based
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computational models have been proposed for BC (Deco and
Rolls, 2005); in contrast, FSGP has been considered only concep-
tually (Boynton, 2005). How the precise algorithmic formulation
of attentional modulation in FSGP could be instantiated neuro-
physiologically remains unclear.

Because these conceptual models emphasize contrasting com-
putational algorithms that apply to both spatial and featural at-
tention, it remains unclear whether a unified mechanistic frame-
work can account for all of these experimental results. We
addressed this question using a biophysically plausible computa-
tional model of two interacting cortical networks of spiking neu-
rons that integrates the source area of the attentional top-down
signal. We modeled the visual area MT, selective to direction of
motion, and we assumed that it received a top-down attentional
signal originating in a working memory area (Desimone and
Duncan, 1995; Barceló et al., 2000; Hopfinger et al., 2000; Miller
and Cohen, 2001; Corbetta and Shulman, 2002; Lebedev et al.,
2004; Hagler and Sereno, 2006; Grent-t Jong and Woldorff,
2007). Note that the hypothesized role of a working memory
circuit as a source area of attentional signals still awaits explicit
experimental validation in attention-to-motion tasks. In this
work, we tested the idea that the interactions between these two
areas are sufficient to explain the above-described attentional
effects.

In addition to reproducing the experimental observations,
our model is the first explicit neurophysiological implementation
of FSGP. And, together, it proves the compatibility between
FSGP and BC (Boynton, 2005; Deco and Rolls, 2005), assigning
them, for the first time, specific (and dissectable) mechanisms
within the cortical circuitry. Such a comprehensive account of
neurophysiological data of attention in a biophysical network
model leads us to suggest that it constitutes the backbone of a
“canonical” neural circuit for feature-based attentional
processing.

Materials and Methods
The model network. Each of the two network modules represents a local
circuit of the cortex. The sensory network represents a local circuit of the
MT, and we refer to the working memory module as a local circuit of the
prefrontal cortex (PFC) for the sake of simplicity, although working
memory and selective attention are likely to be subserved by both pre-
frontal and parietal cortices (Colby and Goldberg, 1999; Hopfinger et al.,
2000; Corbetta and Shulman, 2002; Lebedev et al., 2004; Moore, 2006;
Grent-t Jong and Woldorff, 2007). In addition, there is anatomical evi-
dence of reciprocal connections between PFC and MT (Barbas, 1988;
Schall et al., 1995; Burman et al., 2006). The MT and PFC circuits had
exactly the same wiring structure; they only differed in the strength of the
synaptic connectivity within each module: the PFC module had strong
recurrent excitatory connections to sustain persistent activity, whereas
MT was dominated by inhibition. A detailed account of the local circuit
model can also be found in the study by Compte et al. (2000). For each
circuit, pyramidal cells (NE � 1024) and interneurons (NI � 256) were
spatially distributed on a ring simulating the cortical columnar organi-
zation, labeled by their preferred direction of motion (�pref, from 0 to
360°). Their axonal collaterals differentially targeted neighboring (isodi-
rectional) and distant (crossdirectional) neurons. This was implemented
by taking the synaptic conductance between neuron i and neuron j to be
gsyn,ij � W(�i � �j)Gsyn, where W(�i � �j) was either a constant for
unstructured connections (W(�i � �j) � 1), or the sum of a constant
term plus a Gaussian: W(�i � �j) � J � � (J � � J �) exp(�(�i � �j)

2/
2� 2). In both networks, only the excitatory-to-excitatory connectivity
was structured with �EE � 14.4° and JEE

� � 1.62 (Compte et al., 2000).
The excitatory-to-inhibitory, inhibitory-to-excitatory, and inhibitory-
to-inhibitory connections were unstructured (i.e., the cross-directional
and isodirectional components of feedback inhibitory connections were

equally strong). Following the notations in the study by Compte et al.
(2000), the parameters defining the strengths of local connections in the
two networks were as follows: in PFC, GEE,AMPA � 0.391 nS, GEE,NMDA �
0.732 nS (pyramid-to-pyramid); GEI,AMPA � 0.293 nS, GEI,NMDA �
0.566 nS (pyramid-to-interneuron); GIE � 3.74 nS (interneuron-to-pyr-
amid); GII � 2.87 nS (interneuron-to- interneuron); in MT: GEE,AMPA �
0.005 nS, GEE,NMDA � 0.093 nS (pyramid-to-pyramid); GEI,AMPA �
0.005 nS, GEI,NMDA � 0.195 nS (pyramid-to-interneuron); GIE � 1.47 nS
(interneuron-to-pyramid); GII � 0.391 nS (interneuron-to-
interneuron). Thus, recurrent excitation was between 1 and 2 orders of
magnitude stronger in PFC than in MT, and synaptic inhibition was very
strong in both modules.

Both pyramidal cells and interneurons were modeled as leaky
integrate-and-fire neurons, with the same parameters as for neurons in
the network model of Compte et al. (2000). Specifically, each type of cell
was characterized by six intrinsic parameters: the total capacitance, Cm;
the total leak conductance, gL; the leak reversal potential, EL; the thresh-
old potential, Vth; the reset potential, Vres; and the refractory time, �ref.
The values used were as follows: Cm � 0.5 nF, gL � 25 nS, EL � �70 mV,
Vth � �50 mV, Vres � �60 mV, and �ref � 2 ms for pyramidal cells; and
Cm � 0.2 nF, gL � 20 nS, EL � �70 mV, Vth � �50 mV, Vres � �60 mV,
and �ref � 1 ms for interneurons. All cells received random background
excitatory inputs. This unspecific external input was modeled as uncor-
related Poisson spike trains to each neuron at a rate of vext � 1800 Hz per
cell (or equivalently, 1000 presynaptic Poisson spike trains at 1.8 Hz).
This input was exclusively mediated by AMPA receptors (AMPARs),
with the maximum conductances gext,E � 3.1 nS on pyramidal cells and
gext,I � 2.38 nS on interneurons in PFC; and gext,E � 15 nS and gext,I � 4.5
nS in MT.

Neurons received their recurrent excitatory inputs through AMPAR-
and NMDA receptor (NMDAR)-mediated transmission and their inhib-
itory inputs through GABAA receptors (GABAARs). These conductance-
based synaptic responses were calibrated by the experimentally measured
dynamics of synaptic currents. Thus, postsynaptic currents were mod-
eled according to Isyn � gsyns(V � Vsyn), where gsyn is a synaptic conduc-
tance, s is a synaptic gating variable, and Vsyn is the synaptic reversal
potential (Vsyn � 0 for excitatory synapses; Vsyn � �70 mV for inhibi-
tory synapses). AMPAR and GABAAR synaptic gating variables were
modeled as an instantaneous jump of magnitude 1 when a spike occurred
in the presynaptic neuron followed by an exponential decay with time
constant 2 ms for AMPA and 10 ms for GABAA. The NMDA conduc-
tance was voltage dependent, with gsyn multiplied by 1/(1 � [Mg 2�]
exp(�0.062 Vm)/3.57), [Mg 2�] � 1.0 mM. The channel kinetics was
modeled by the following equations:

ds

dt
� �

1

�s
s � �sx�1 � s�

dx

dt
� �

1

�x
x � �

i

��t � ti�,

where s is the gating variable, x is a synaptic variable proportional to the
neurotransmitter concentration in the synapse, ti are the presynaptic
spike times, �s � 100 ms is the decay time of NMDA currents, �x � 2 ms
controls the rise time of NMDAR channels, and �s � 0.5 kHz controls the
saturation properties of NMDAR channels at high presynaptic firing
frequencies. Parameters for synaptic transmission were taken from the
study by Compte et al. (2000).

The MT and PFC network modules were interconnected through
bottom-up and top-down AMPAR-mediated connections (see scheme
in Fig. 1). Both bottom-up and top-down connectivities were topo-
graphic, so that for both the bottom-up and top-down pathways neurons
sharing the same preference were more strongly coupled than neurons
with disparate preferences. This connectivity was described by a Gaussian
function: gsyn � Gsyn exp(�(�i � �j)

2/2� 2)/��2	. We used for the
bottom-up connection onto PFC pyramids, GEE

MT3PFC � 0.005 nS and
� � 36°; for the bottom-up connection onto PFC interneurons,
GEI

MT3PFC � 0; for the top-down connection onto MT pyramids,
GEE

PFC3MT � 0.146 nS and � � 72°; and for the top-down connection
onto MT interneurons, GEI

PFC3MT � 0.039 nS and � � 72°.
The simulations. The simulation protocol was chosen to resemble the

behavioral protocol used in the experiment of Martinez-Trujillo and
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Treue (2004). There, monkeys were trained to fixate a central spot during
a brief presentation of a peripheral random-dot pattern in coherent mo-
tion, which was the stimulus to be attended. Subsequently, an additional
random-dot pattern in coherent motion was added in the receptive field
of the neuron (test stimulus), which was behaviorally irrelevant but could
share or not the direction of motion of the attended stimulus. The mon-
key had to report a direction or speed change in the attended stimulus
and ignore changes in the test stimulus. The experiment revealed atten-
tional modulation on the neuronal responses to the unattended test stim-
ulus that depends on the attended direction of motion (feature-based
attention). Here, motion stimulus presentation to the network was mod-
eled through selective transient current injection to MT cells (see below,
Task-related extrinsic inputs). We included a delay period or D-period
(see D in Figs. 2 A, 4 A), between the presentation of an attended feature
(cue period or C-period) (see C in Figs. 2 A, 4 A) and the presentation of
the test stimulus (test period or T-period) (see T in Figs. 2 A, 4 A). During
the D-period, the visual stimulus was absent. By including this period, we
were able to evaluate the effect of an attentional bias on the MT network
baseline activity (see Fig. 4C).

Task-related extrinsic inputs. Cells in area MT received external inputs
from primary visual area V1, which were selective to the direction of
motion of the visually presented stimulus (Born and Bradley, 2005). We
thus modeled motion stimuli presentation by injecting external currents
to MT neurons that mimicked outputs from V1 to MT. We tried with
Poisson-triggered synaptic inputs and our conclusions remained unaf-
fected. When there was a single motion direction (�S), the current in-
jected to a neuron labeled by �i was I(�i) � I0 � I1exp(
(cos(�i � �S) �
1)); for MT pyramids, we used I0

E � 1 nA and I1
E � 0.9 nA; for MT

interneurons, we used I0
I � 0.2 nA and I1

I � 0.18 nA; and for both cell
types, 
 � 2.53 (this choice of 
 gives a connectivity profile very close to
a Gaussian with a constant baseline, with the same width as MT-to-PFC
connections). When two overlapping directions of motion were visually
presented, the current impinging on MT neurons was the sum of the
currents corresponding to the two single stimuli, normalized so that the
maximal current was still I0 � I1 (supplemental Fig. 1 A, available at
www.jneurosci.org as supplemental material).

This normalization was derived from the observation that the maxi-
mal response of a direction-selective V1 neuron remains the same for
either single motion or transparent motion stimuli (Snowden et al.,
1991). More abstract models of V1 neurons selective to motion direction
typically include a similar normalizing factor (Simoncelli and Heeger,
1998; Rust et al., 2006). PFC model neurons received motion-specific
sensory inputs only through the MT-to-PFC pathway.

In all our simulation trials and during the attentional C-period, all PFC
neurons also received a constant current injection of 0.025 nA. This
current was not selective, and thus it did not carry any direction of
motion information. It was too weak to trigger by itself a persistent
activity pattern in the PFC network (see Fig. 2 A, left), but strong enough
so that, when presented coincidentally with a visual stimulus, the PFC
was able to store the directional information from MT (see Fig. 2 A,
right). Such a “gating input” allows our model to differentiate an atten-
tional cue from a visual stimulus presented during the T-period in Figure
2 A, left.

The integration method used was a second-order Runge–Kutta algo-
rithm with a time step of �t � 0.02 ms. The custom code for the simu-
lations was written in C��.

Results
The network model architecture
We built a network model of spiking neurons composed of two
interacting areas, a sensory area selective for motion direction
(MT) and a working memory area that selectively stored this
information. The internal structure in each of the two local net-
works is in accordance with the known anatomical and physio-
logical characteristics of cortical microcircuitry. The interareal
reciprocal connections followed some simple rules, based also on
biological plausibility: neurons with similar preferred directions
were more strongly connected (following a Gaussian function),

and synapses were all excitatory, but could target both pyramidal
cells and interneurons. For explicit details, see Materials and
Methods.

Our model was constrained based on a number of specific
experimental results in area MT. On the one hand, neural re-
sponses to a motion stimulus in the receptive field have been
quantitatively characterized (Maunsell and Van Essen, 1983;
Snowden et al., 1992). On the other hand, there is evidence that
the circuits in area MT are endowed with competition mecha-
nisms, because the spiking response of an MT cell (but not a V1
cell) is suppressed when two superimposed moving random dot
patterns are presented (Snowden et al., 1991; Treue et al., 2000)
(see scheme of these stimuli in Fig. 1). We used this data to
constrain our MT network model. To this end, we used both
full-scale simulations (see Materials and Methods) and a mean-
field approximation (Renart et al., 2003) of the MT network to
allow for extensive parameter space exploration. We found that
the appropriate competitive responses could be realized (supple-
mental Fig. 1, available at www.jneurosci.org as supplemental
material) if bottom-up inputs into MT targeted also local-circuit
inhibitory neurons. Interneurons project onto excitatory cells
strongly to provide inhibition commensurate with the overall
feedforward drive, thereby instantiating a circuit mechanism for
normalization (Simoncelli and Heeger, 1998; Rust et al., 2006).
The downstream working memory area was modeled as by
Compte et al. (2000). This module will be referred to as prefrontal
cortex (PFC) module for the sake of simplicity, although working
memory and selective attention are likely to be subserved by both
prefrontal and parietal cortices (Colby and Goldberg, 1999; Hop-
finger and Mangun, 2000; Corbetta and Shulman, 2002; Lebedev
et al., 2004; Moore, 2006; Grent-t Jong and Woldorff, 2007). In
this model, working memory of a directional cue is achieved
through reverberatory interactions between spiking neurons in
the local network. Thus, the two networks in our model share the
same qualitative internal architecture, but the PFC module is
endowed with strong recurrent excitation, whereas the MT net-
work is dominated by inhibition. Both cortical network modules
are reciprocally connected with topographically specific
bottom-up and top-down synaptic connections (Fig. 1) to ex-
plore the orienting effects of a selective firing pattern in the PFC

Figure 1. Scheme of the loop architecture (red is excitation, and blue is inhibition). Two
kinds of motion stimuli are considered (random-dot patterns; yellow arrows indicate signal
motion directions): single (left) and transparent (right) motion. WM, Working memory.
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network over the population activity and single neuron responses
in the MT network. The bottom-up connection parameters were
tuned to allow the transmission of visual information from the
MT to the PFC module.

The parameters of the top-down connection were tuned to
produce selectivity enhancement of MT neural population re-
sponses (Fig. 2C) in agreement with experimental data
(Martinez-Trujillo and Treue, 2004). We will call this selective
enhancement with inhibitory surround of population responses,
where by inhibitory surround we mean that peak responses are
enhanced and surround responses are suppressed. Such an inhib-
itory ring around the attentional focus has been recently vali-
dated in imaging studies in humans as well (Hopf et al., 2006).
The selectivity enhancement of population profiles is a relevant
finding, because what matters functionally are instantaneous
population activity patterns rather than neuronal tuning curves
obtained from multiple trials.

The rest of the phenomenology reported here (see Figs. 3–5)
emerged from the model constrained this way, without any fur-
ther parameter tuning.

Attentional enhancement of population selectivity
A single-trial simulation (Fig. 2A, right) consisted of three task
epochs. In a cue period (C), a transient input about attended
motion direction (�A) triggered a self-sustained persistent activ-
ity (peaked at the attended directional angle �A) in the PFC net-
work. In simulations, it was done by a combination of a direc-
tional stimulus (�A) to the MT network, whose activity was

projected through weak bottom-up con-
nections to PFC, and a transient nonspe-
cific input to the PFC module (see Materi-
als and Methods). This “gating input” was
weak enough so it did not trigger by itself
persistent activity in the PFC module (Fig.
2A, left), but it allowed this activity to de-
velop in case a stimulus was simulta-
neously presented to the MT network (Fig.
2A, right). A plausible physiological sub-
strate for this input could be found in the
phasic alertness circuits recently identified
in the superior temporal gyrus or in the
thalamus (Sturm and Wilmes, 2001; Fan et
al., 2005; Thiel and Fink, 2007). We thus
assume that projections from these areas
generate a slightly net increase of unspe-
cific external input to PFC neurons during
the C-period of our task. The C-period was
followed by a delay period (D), where in
the absence of all external inputs PFC
maintained the information of the at-
tended feature, if presented. Finally, in a
test period (T), a test stimulus �S was pre-
sented to the MT network.

For comparison, when no attentional
cue was shown in a stimulation trial (Fig.
2A, left), no persistent activity was pro-
duced in the PFC network, nor was there
top-down signal to modulate the MT net-
work response during the T-period. In this
example, the attended direction and the
stimulus were the same (�A � �S � 0°).

As can be seen in Figure 2B, the spiking
response of a neuron with �pref � 0° was

enhanced by the attentional signal (red) compared with control
(black). The population activity pattern (the average firing rate
during the T-period plotted for all neurons) exhibits sharpened
selectivity, similar to that observed experimentally (Martinez-
Trujillo and Treue, 2004): neural activity was increased at the
focus of attention but suppressed on the surrounds (Fig. 2C, red)
compared with the unattended case (black) (selective enhance-
ment with inhibitory surround). Such sharpening of population
activity occurred because the top-down projection from PFC not
only provided local excitation, but also targeted MT interneurons
that then projected unspecifically onto MT excitatory neurons
and suppressed firing on the flanks (supplemental Fig. 2, avail-
able at www.jneurosci.org as supplemental material). Indeed, at-
tention strongly increased peak inhibitory firing rate (�25 Hz).
When computed as a perecentage increase from baseline firing,
this represents the same modulation (35%) as for excitatory neu-
rons (Mitchell et al., 2007).

We confirmed that this enhanced selectivity was robust to
parameter variations in the top-down projection, especially if
changes of top-down synapses onto excitatory neurons and those
onto inhibitory cells were approximately balanced (supplemental
Fig. 3A,C, available at www.jneurosci.org as supplemental mate-
rial). The selectivity enhancement is quantified by the ratio of
firing rates with and without attention (Fig. 2C), called modula-
tion ratio (Martinez-Trujillo and Treue, 2004), plotted as a func-
tion of the difference between the attended direction �A and the
preference of the neuron �pref. The modulation ratio curve of the

Figure 2. Feature-based attention in model simulations for single motion stimulus. A, Network activity for an unattended
(left) and an attended trial (right). x-Axis, Time; y-axis, neurons labeled by preferred direction �pref. Activity is color-coded. C, Cue
period; D, delay period; T, test period. Calibration, 1 s. B, Activity of a neuron with �pref � �S. Top, Sample membrane potential;
middle, spike trains in several trials; bottom, trial-averaged activity (red, attended; black, unattended trials) (calibration: time, 1 s;
voltage, 50 mV; rate, 40 Hz). C, Selective enhancement of MT population activity. The scheme (top) depicts how the curves
(attended in red; unattended in black) were generated: for fixed test stimulus �S and attended feature �A, the activity of all
neurons (blue arrows) were measured. D, Smoothed modulation ratio (firing rate with attention divided by that without atten-
tion) plotted against the distance between attended feature and neuronal preference.
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model (Fig. 2D) was quantitatively similar
to that reported experimentally
(Martinez-Trujillo and Treue, 2004).

The curve can be well fitted by G(�pref

� �A) � 1.05 � 0.3cos(�pref � �A). In par-
ticular, note that, for large �pref � �A, the
modulation ratio was smaller than 1, indi-
cating the suppression of responses away
from the attentional focus (selective en-
hancement with inhibitory surround).

Multiplicative gain modulation of
tuning curves
We next examined whether the modula-
tion ratio of a given neuron remained con-
stant regardless of the stimulus direction
�S. We ran a series of simulations with a
fixed attended direction while varying
from trial to trial the stimulus �S presented
during the T-period (Fig. 3A). We ob-
served that the tuning curve of a neuron was multiplicatively
scaled by attention from the unattended tuning curve, whether
the attended direction was the preferred (“att pref,” �A � 0°) or
nonpreferred (“att null,” �A � 180°) (Fig. 3B). This MGM of
tuning curves was robust to modifications in the top-down input
(supplemental Fig. 3B,D, available at www.jneurosci.org as sup-
plemental material) and concurred with experimental data ob-
tained for spatial attention (McAdams and Maunsell, 1999; Treue
and Martinez-Trujillo, 1999). Several neurophysiological mech-
anisms for multiplicative neuronal responses have been proposed
(Salinas and Abbott, 1996; Chance et al., 2002; Hansel and van
Vreeswijk, 2002; Murphy and Miller, 2003), but none has been
explicitly tested in a biophysical, recurrent network model con-
strained by multiple neurophysiological data of attentionally
modulated sensory responses. We found that the relationship
between the firing rate R and the total external input current (the
sum of bottom-up and top-down inputs, IS � IA) in our MT
excitatory cells was very well described by a power law r � a(IS �
IA � C)b (Fig. 3C). This supports the scenario described by Han-
sel and van Vreeswijk (2002) and Murphy and Miller (2003),
namely a power-law input– output relationship that transforms
additive inputs into approximately multiplicative outputs. The fit
parameters a and b are the same in all task conditions (no atten-
tion, attention to preferred motion, and attention to null mo-
tion), but the parameter c differed for attentional and nonatten-
tional conditions. This can be readily understood as follows: c
incorporates all of the rest of currents impinging on the neurons
apart from IS and IA, and in particular it contains an important
contribution from nonspecific inhibitory inputs from local cir-
cuit interneurons. Because inhibitory neurons in the MT network
also receive top-down input, the inhibitory population average
activity increases in attention trials and c decreases for those tri-
als, as shown in Figure 3C. An explicit mathematical description
of how this power-law input– output relationship accounts for
our simulation results can be found in the supplemental Methods
and supplemental Figure 5 (available at www.jneurosci.org as
supplemental material).

Consistent with this multiplicative scaling of neural tuning
curves, the neural firing response can be expressed as follows:
R(�pref, �A, �S) � G(�pref � �A)R0(�pref � �S), where R0(�pref �
�S) is the neural activity in the unattended condition, and G(�pref

� �A) is the attention-induced multiplicative factor. Note that
this equation can be used to describe both population activity

(with a fixed �S while �pref is varied) and tuning curve of a single
neuron (with a fixed �pref while varying �S). In particular, it can be
seen from this equation why single-neuron data of Martinez-
Trujillo and Treue (2004) represent population activity. In that
experiment, �A and �S were covaried while keeping �A � �S con-
stant in all trials so that R(�pref, �A, �S) only depended on �pref �
�S. Therefore, under this special condition, single-neuron re-
sponses (fixed �pref, across �S) are equivalent to the activity pat-
tern of the neural population (fixed �S, across �pref).

Biased competition phenomenology and feature-similarity
gain principle
Our model therefore reproduces salient experimentally observed
effects: competition between stimuli in the sensory cortex (sup-
plemental Fig. 1, available at www.jneurosci.org as supplemental
material) (Snowden et al., 1991; Treue et al., 2000), attentional
enhancement of population response selectivity (Fig. 2C)
(Martinez-Trujillo and Treue, 2004), and attentional modulation
of the neuronal gain (Fig. 3) (Treue and Martinez-Trujillo, 1999).

How closely does our model behavior adhere to either BC or
FSGP? According to BC phenomenology, attention focused on
one of two simultaneously presented stimuli should bring the
activity of a neuron toward its firing rate when the attended stim-
ulus is presented alone. FSGP, however, predicts that the atten-
tional modulation factor of a neuron, deduced using a given
stimulus, should be applicable to neural responses to other, arbi-
trary stimuli. We tested both of these predictions by looking at
how a top-down input from the PFC network affected the pro-
cessing of two stimuli presented simultaneously to the MT net-
work during the T-period (Fig. 4A). In MT, this would corre-
spond to two superimposed random dot patterns moving in
different directions (transparent motion) (see right stimulus in
Fig. 1) (Snowden et al., 1991; Treue et al., 2000), just one of them
being behaviorally relevant (attended stimulus). Thus, FSGP re-
quires that the modulation-ratio curve (Fig. 2D) should predict
the population response to attended transparent motion from
the corresponding activity in the unattended condition. This is
indeed the case as shown in the full model simulation (Fig. 4B).
The impressive agreement with the prediction demonstrates that
FSGP naturally emerges in our microcircuit model. To
strengthen further this point, we looked at the network response
during the delay period, when no stimulus was being presented
and only the baseline MT activity was affected by the top-down

Figure 3. Multiplicative modulation of tuning curves. A, Tuning curve of an MT neuron (blue arrow in top scheme) computed
from responses to the distributed range of test stimuli �S (black solid arrows) as attention is focused onto the preferred direction
(att pref, squares) or diametrically opposed (att null, circles) or is not presented (no att, diamonds). B, Rescaling of tuning curves
(factors, 0.73 for att pref, 1.28 for att null) reveals multiplicative scaling. C, Power-law relationship between the response R and
the external input (sum of bottom-up IS and top-down IA). Data for the three cases (no att, att pref, att null) were fitted with r �
a(IS � IA � c)b (blue curves); a and b were found to be independent of the attentional condition (a � 1.11 Hz/nAb, b � 3.97),
whereas c was smaller for attention than for nonattention conditions (0.42 and 0.59 nA, respectively).
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biasing input. Indeed, there is experimental evidence for the at-
tentional modulation of baseline activity in extrastriate visual
cortex (Chelazzi et al., 1993; Luck et al., 1993; Ferrera et al., 1994;
Luck et al., 1997; Kastner et al., 1999; Bisley et al., 2004). Remark-
ably, even for the baseline delay responses in the MT network,

which are significantly lower than evoked
responses, attentional effects are extremely
well predicted by the modulation ratios
evaluated from the single motion stimulus
presentation (Fig. 4C). All of this could be
synthetically represented by plotting to-
gether the modulation ratio curves for
each of the three types of stimulations that
we used: no stimulus, single motion, and
transparent motion. The three curves are
indistinguishable from each other (Fig.
4D), confirming that our network model
is a neurophysiologically plausible imple-
mentation of the FSGP (Treue and
Martinez-Trujillo, 1999).

However, BC should manifest at the
level of single neuron responses. As we
mentioned before, we constrained the MT
module network to reproduce competi-
tion in the presence of transparent motion
stimuli (supplemental Fig. 1, available at
www.jneurosci.org as supplemental mate-
rial). As shown in Figure 5, A and C (dark
gray), the response of a neuron to trans-
parent motion, one at its preferred direc-
tion and the other at the null, is halfway
between the responses when either motion
component is presented alone (Fig. 5A,C,
black and light gray). When attention is
directed at either of the two simulta-
neously presented motion directions, the
firing rate of neuronal response is pulled

toward the condition when the attended stimulus is presented
alone (Fig. 5B,D, dark and light green). Therefore, our model
reproduces the BC and proves its consistency with MGM at the
neuronal level (Fig. 3).

Dissecting circuit mechanisms
The neurophysiologically explicit model allowed us to dissect the
circuit requirements for each of the multiple forms of attentional
effects: selective enhancement with inhibitory surround of pop-
ulation responses, neuronal multiplicative scaling, and biased
competition phenomenology. To this end, we differentially dis-
abled certain synaptic pathways in the model. Such manipula-
tions led to modifications in the three qualitative behaviors of the
model that underlie the implementation of the attentional effects
(Fig. 6A, data replotted from previous figures): sensory compe-
tition between stimuli (left), selective enhancement with inhibi-
tory surround of population responses (middle), and neural gain
modulation (right). When background Poisson inputs to MT
neurons (see Materials and Methods) were reduced, rendering
linear the input– output relationship of network neurons (Fig.
6B, right), the model still showed a suppressed maximal response
to two stimuli with respect to isolated stimuli (competition; left
panel) and attention still enhanced the selectivity of population
activity by increasing activity at the peak and suppressing it at the
flanks (selective enhancement with inhibitory surround; middle
panel). However, neuronal multiplicative scaling no longer held
as rescaled neuronal tuning curves for different attentional con-
ditions did not overlap (right panel). Consequently, the modula-
tion ratio depended on the stimulus presented and was different
for single motion and transparent motion (right, left inset). Thus,

Figure 5. Neural responses to attended transparent motion: the model shows biased com-
petition phenomenology. A, Dynamics of the activity of a cell at the onset of unattended test
stimuli (black, preferred single motion; light gray, nonpreferred single motion; dark gray, pre-
ferred plus nonpreferred transparent motion). B, Same for responses to transparent motion in
the unattended case (dark gray, same as in A) and in the attended cases (dark green, attention
on preferred; light green, attention on nonpreferred). C, Mean activity during the test period for
the cell under the conditions in A shows sensory competition. D, Same for the conditions in B
reveals attentional bias of competitive responses.

Figure 4. Attentional processing with transparent motion: the model conforms with the feature-similarity gain principle. A,
MT population activity for trials with transparent motion presented during the test period. B, Test period MT activity in the
attended condition (green) is well predicted by the product of the unattended activity (gray) and the modulation ratio (Fig. 2 D).
C, Same as B for baseline activity in the delay period (no sensory stimulus). D, Modulation ratio for single motion (red), transparent
motion (green), and lack of sensory stimulation (orange).
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strong unspecific and independent back-
ground synaptic inputs were necessary in
our model to satisfy the FSGP.

When the inputs to MT interneurons
(from both the bottom-up afferents and
MT excitatory neurons) were blocked
(Fig. 6C), competition was abolished (left
panel), because the response of a neuron to
superimposed preferred and nonpreferred
stimuli exceeded the response to the pre-
ferred stimulus alone (left panel, inset). In
contrast, selective enhancement with in-
hibitory surround of population activity
(middle panel) and multiplicative gain of
tuning curves (right panel) remained in-
tact. However, when the top-down and re-
current inputs to MT interneurons were
blocked (Fig. 6D), competition (left
panel) and multiplicative scaling of tuning
curve (right panel) were not affected qual-
itatively but the selectivity of population
activity was no longer sharpened through
off-focus suppression, abolishing both se-
lective enhancement with inhibitory sur-
round (middle panel) and correct atten-
tional biasing of stimuli competition
(middle panel, inset). Blocking only one of
the pathways, rather than a pair simulta-
neously, was not sufficient to induce the ob-
served qualitative changes (supplemental
Fig. 4, available at www.jneurosci.org as
supplemental material). These manipula-
tions showed that BC was generated
through an interplay of sensory competi-
tion (Fig. 6C) and selective enhancement
with inhibitory surround of population
activity (Fig. 6D), whereas FSGP relied es-
sentially on the neuronal multiplicative
mechanism (Fig. 6A). Thus, the two con-
ceptual principles, BC and FSGP, can be
mechanistically dissociable.

Discussion
We present here a biophysically detailed
microcircuit model of two interacting cor-
tical areas that integrates top-down input
generation in a working memory module and the ensuing atten-
tional modulations in a sensory module. We show that such a
network is able to account for most experimental evidence of
feature-based attentional modulations of neural and population
responses in area MT.

The biophysical detail of our model allows us to formulate the
plausible mechanistic bases of current conceptual interpretations
of attentional processing at the microcircuit level. In particular,
we provide the first biophysical instantiation of the feature-
similarity gain principle (Treue and Martinez-Trujillo, 1999) in a
cortical network, which is also compatible with the biased com-
petition principle. Notice that we proved the consistency between
FSGP and BC in a model that can only represent a single feature of
the stimulus. To make explicit the interactions between these two
principles in the context of mixed featural and spatial attention
tasks would require a significantly more complex computational

model that incorporates two continuous dimensions of the
stimulus.

We want to emphasize here that, although there is general
agreement on the significance of biased competition phenome-
nology for attention, there is a diversity of views on how this
might be mechanistically implemented (Desimone, 1992). In-
deed, although the original formulation of the biased competi-
tion interpretation (Desimone and Duncan, 1995) did not pro-
vide a specific mechanistic framework, some later schematical
mathematical implementations (Reynolds et al., 1999; Reynolds
and Chelazzi, 2004) suggested that attentional modulations
could alter feedforward inputs to extrastriate cortex to generate
BC phenomenology. This mechanism underlies a number of
computational network models of BC (Hamker, 2004, 2005).
Other mechanistic models of biased competition, instead, at-
tribute attentional modulations to local inhibitory interactions
between neurons activated both by bottom-up and top-down

Figure 6. Mechanisms of the feature-similarity gain principle and biased competition in the model. Left, MT population
activity for single and transparent motion in unattended condition (inset, activity of a single neuron; colors are as in Fig. 5C).
Middle, MT population activity for single motion in attended and unattended conditions (inset, single neuron responses to
transparent motion; colors are as in Fig. 5D). Right, Rescaled MT tuning curves as in Figure 3B. Modulation ratios for single (red),
and transparent (green) motion in left inset. A, Control data (from Figs. 2–5). B, Reduced external Poisson input (right inset, f–I
curves turn linear). Parameter modifications were GEE

PFC3MT � 0.012 nS, GEI
PFC3MT � 0.005 nS, I0

E � 2 nA, I1
E � 0.05 nA, I0

I � 0,
I1
I � 0, gext,E � 1 nS, and gext,I � 1 nS. C, Blockade of bottom-up and local excitatory inputs to MT interneurons. Parameter

modifications were GEEPFC3MT � 0.134 nS, I0
E � 0.225 nA, I0

I � 0, I1
I � 0, GEI,AMPA

MT � 0, GEI,NMDA
MT � 0, and gext,I � 7.12 nS. D,

Blockade of top-down and local excitatory inputs to MT interneurons. Parameter modifications were GEE
PFC3MT � 0.061 nS,

GEI
PFC3MT � 0, I0

E � 0.9 nA, I1
E � 0.18 nA, GEI,AMPA

MT � 0, GEI,NMDA
MT � 0, and gext,I � 7.12 nS. When not indicated, axis scales are as

in corresponding control case (A). Framed graphs show departure from these qualitative behaviors.
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inputs (Deco and Rolls, 2005). Our model is also a BC model and
is in line with this last family of models, and it shows how they can
also manifest the feature-similarity gain principle. Note that
other BC models (Reynolds et al., 1999, 2000; Reynolds and
Chelazzi, 2004; Deco and Rolls, 2005) have also shown the capa-
bility to integrate consistently other neurophysiological effects of
attention (biasing of baseline activity, modulation of responses to
single stimuli) but not FSGP, and not with the mechanistic detail
of the model reported here.

An important ingredient in our network is the normalization of in-
puts in area MT (supplemental Fig. 1, available at www.jneurosci.org
as supplemental material). Normalization of responses to combined
stimuli is a common characteristic of many visual areas (Snow-
den et al., 1991; Qian and Andersen, 1994; Carandini et al., 1997;
Britten and Heuer, 1999).

This has been incorporated in various mathematical models,
typically using some phenomenological construct such as divisive
inhibition (Heeger, 1992; Carandini et al., 1997; Simoncelli and
Heeger, 1998; Reynolds et al., 1999; Rust et al., 2006). In our
biophysical network, normalization does not emerge from
shunting inhibition (Holt and Koch, 1997) but from divergent
feedforward inhibition, and it underlies the competition of stim-
uli in BC phenomenology (Fig. 6C).

Although our work suggests a unified and biophysically based
model for feature-similarity gain principle and biased competi-
tion, we also identified dissociable circuit components that are
critical to each of the two attentional effects. This is in contrast to
a previous conceptual model suggesting that feature-similarity
gain principle necessarily implies biased competition and vice
versa (Boynton, 2005). Indeed, by selectively inactivating various
pathways in our model, we found that our circuit model could
implement either effect independently of the other (Fig. 6), thus
proving that these conceptual models are not necessarily associ-
ated. Because experimental evidence indicates that attentional
systems comply with both biased competition and with the
feature-similarity gain principle, this imposes severe constraints
on viable mechanistic schemes of neural circuits for attentional
selection. We have presented here the first physiological model
that accounts for both explicitly.

Anatomically, it is known that PFC and MT are reciprocally
connected (Barbas, 1988; Schall et al., 1995; Burman et al., 2006).
In a recent paper, Zaksas and Pasternak (2006) have examined
neurons in MT and dorsolateral PFC in a delayed match-to-
sample task using random-dot motion patterns. It was found that
neurons in the dorsolateral PFC showed decaying selectivity for
the cue stimulus through the delay period of the task, suggesting
that they were not responsible for the memory maintenance, al-
though they did retain information for a longer time than MT
neurons during the delay period. Therefore, information storage
for motion direction in working memory might reside in a frontal
(or parietal) area that is different from dorsolateral PFC. Alter-
natively, working memory might implicate coding strategies
other than sustained activation of neuronal firing (Zaksas and
Pasternak, 2006), in contrast to the recurrent network model of
working memory (Durstewitz et al., 2000; Wang, 2001; Constan-
tinidis and Wang, 2004; Compte, 2006). However, the selectivity
of MT neurons during the delay of a working memory task has
not been detected in some studies (Ferrera et al., 1994) or has
been found not to be stable over time (Bisley et al., 2004; Zaksas
and Pasternak, 2006), possibly in relation to the matching-to-
sample task design. In any event, the interaction between MT and
PFC has not yet been analyzed physiologically in attention tasks,
and will be needed to directly test our model predictions.

Our model can be extended in future research in several im-
portant ways. In particular, it has been reported that selective
attention modulates sensory responses in a manner consistent
with a contrast enhancement of the attended stimulus (Reynolds
et al., 2000; Martinez-Trujillo and Treue, 2002) (but see Williford
and Maunsell, 2006). It will be interesting to incorporate in our
model contrast dependence and contrast adaptation that inter-
acts with attentional signaling. Another recent finding that is
capturing great interest is the attentional modulation of gamma
band coherency of neural activity in sensory cortices (Fries et al.,
2001; Bichot et al., 2005; Womelsdorf et al., 2006). Our model
network does show attention-induced oscillatory activity in the
gamma band, which emerges from the interplay of AMPA-type
excitation and slower GABAA inhibition in the microcircuit
(Compte et al., 2000). Preliminary data (data not shown) indicate
that gamma oscillations do not affect the findings reported here
qualitatively; but a thorough exploration of this issue will be un-
dertaken in a separate work. Note that our model of spiking
networks for both the sensory and the attentional source circuits
is particularly well suited for elucidating the role of oscillation
and synchronicity in attentional processing.

The consistent integration in a single physiological model of a
significant amount of experimental data from MT, which is also
shared by other extrastriate areas selective to different stimulus
features, leads us to hypothesize that it contains the fundamental
mechanistic backbone of a canonical attentional circuit. Indeed,
key electrophysiological observations that are accounted for by
our network model, sensory competition (Snowden et al., 1991;
Treue et al., 2000), biased competition phenomenology (Treue
and Maunsell, 1996), population activity selectivity enhancement
(Martinez-Trujillo and Treue, 2004), and tuning curve multipli-
cative scaling (Treue and Martinez-Trujillo, 1999), have also
been observed in other extrastriate cortical areas (notably V4),
but all of these observations have not been conjointly reported in
one same visual area apart from MT with a consistent attentional
protocol. We propose that this basic architecture is a canonical
model for attentional selection in the cortex that is replicated for
each relevant attendable parametric feature of the stimulus, in-
cluding orientation, spatial location, etc. (Maunsell and Treue,
2006).

Our hypothesis that the network architecture that we put for-
ward here constitutes a canonical model that applies to all stim-
ulus features coded by different neural systems along the visual
pathway generates some specific predictions. First, the model
suggests that population selectivity enhancement holds valid for
other systems, such as modulation of receptive fields of neurons
in V4 by spatial attention. This can be tested with neural record-
ings, by testing the RF of a neuron with an optimal stimulus
positioned at different locations in the RF, once while the monkey
passively fixates (unattended condition) and again while the
monkey attends to the stimulus so that the attended location and
stimulus location covary from trial to trial (attended condition)
[paralleling the experiment in MT by Martinez-Trujillo and
Treue (2004)]. Alternatively, the enhancement of population re-
sponse selectivity could be explored directly using imaging tech-
niques. Our model predicts that the attended response pattern
will have sharpened selectivity with respect to the unattended
profile, through the enhancement of activity in the center and
suppression of activity in the periphery. Second, a clear distinc-
tion between selectivity enhancement for population activity and
multiplicative scaling of single neural tuning curve should help
disambiguate seemingly contrasting experimental results, such as
previously reported selectivity modulation (Spitzer et al., 1988)
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and gain change (McAdams and Maunsell, 1999) of orientation
selectivity in V4 neurons. Although McAdams and Maunsell
(1999) gave a reasonable explanation of this discrepancy based on
the different way in which selectivity measurements were taken in
either study, our model suggests that selectivity enhancement at
the level of population activity could have been an additional
source of confounds. Our prediction is that appropriate experi-
ments designed specifically to compare modulations of single
neuron and population activity by attention to orientation, when
decoupled from spatial attention, should disambiguate the con-
trasting reports and reveal the neurophysiological fingerprints of
our canonical attentional model: competition, population selec-
tivity enhancement, and single neuron multiplicative scaling.
Third, the feature-similarity gain principle has so far been tested
only with one stimulus (Martinez-Trujillo and Treue, 2004); our
model predicts that the modulation ratio thus obtained can be
used to predict MT population response to other stimuli, such as
transparent motion (Fig. 4B). This is a critical test for the feature-
similarity gain principle. An analogous prediction applies to V4
neural responses when attention selects one of the orientations in
a plaid pattern. More generally, it would be intriguing to see
whether the attentional modulation ratio can predict neural re-
sponses when attention is directed to one of an arbitrary number
of stimuli in a cluttered visual scene, in visual search tasks. Fi-
nally, our model suggests that distinct synaptic pathways are crit-
ical to different aspects of attentional modulation (Fig. 6); exper-
imental progress in this direction would represent a major step
toward a mechanistic understanding of selective attention at the
microcircuit level.
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