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Resumen

Uno de los temas mas destacados del drea de vision artificial se deriva del
andlisis facial automéatico. En particular, la deteccién precisa de caras humanas
y el analisis biométrico de las mismas son problemas que han generado especial
interés debido a la gran cantidad de aplicaciones que actualmente hacen uso de
estos mecanismos.

En esta Tesis Doctoral se analizan por separado los problemas relaciona-
dos con deteccién precisa de caras basada en la localizacién de los ojos y el
reconocimiento facial a partir de la extraccién de caracteristicas locales de tex-
tura. Los algoritmos desarrollados abordan el problema de la extraccién de la
identidad a partir de una imagen de cara (en vista frontal o semi-frontal), para
escenarios parcialmente controlados. El objetivo es desarrollar algoritmos ro-
bustos y que puedan incorporarse ficilmente a aplicaciones reales, tales como
seguridad avanzada en banca o la definicién de estrategias comerciales aplicadas
al sector de retail.

Respecto a la extraccién de texturas locales, se ha realizado un andlisis
exhaustivo de los descriptores méas extendidos; se ha puesto especial énfasis en
el estudio de los Histogramas de Gradientes Orientados (HOG features). En
representaciones normalizadas de la cara, estos descriptores ofrecen informacion
discriminativa de los elementos faciales (ojos, boca, etc.), siendo robustas a
variaciones en la iluminacién y pequenios desplazamientos.

Se han elegido diferentes algoritmos de clasificacién para realizar la detec-
cién y el reconocimiento de caras, todos basados en una estrategia de sistemas
supervisados. En particular, para la localizacién de ojos se ha utilizado clasi-
ficadores boosting y Maquinas de Soporte Vectorial (SVM) sobre descriptores
HOG. En el caso de reconocimiento de caras, se ha desarrollado un nuevo al-
goritmo, HOG-EBGM (HOG sobre Elastic Bunch Graph Matching). Dada la
imagen de una cara, el esquema seguido por este algoritmo se puede resumir en
pocos pasos: en una primera etapa se extrae un grafo facial ubicando automati-
camente los puntos mas significativos de la cara; de cada uno de estos puntos,
se extrae un descriptor local HOG y se concatenan. Finalmente, el vector de
caracteristicas biométricas pasa por una etapa de reducciéon de dimensionalidad.
Al vector resultante se le aplica una clasificacién basada en vecino més préximo
(Nearest Neighbor) para asignarle una etiqueta (identidad de la persona).

Usando las base de datos de FRGC, se consiguié localizar ojos con una
precision del 92.3% con un error menor al 5% de la distancia inter-ocular, mejo-
rando los resultados obtenidos por otros autores marcados como referentes. En
reconocimiento de caras, usando la base de datos de FERET se ha demostrado
que el uso de descriptores locales HOG proporciona mayor informacién bio-



metrica que otros descriptores cldsicos como los coeficientes Gabor (en algunos
casos mejorando hasta un 40% la tasa de reconocimiento). En la localizacién de
puntos faciales caracteristicos, el uso nuestro propio algoritmo proporcioné re-
sultados comparables con el uso de otros grafos como Active Appearance Models
(AAM). Por ltimo, se ha demostrado que la inclusién de informacién de color
en los descriptores HOG anade informacién 1til para el reconocimiento, mejo-
rando en la base de datos de FRGC hasta un 11% la tasa de reconocimiento
frente a los descriptores trabajando con la intensidad de las imagenes.

Para evaluar el sistema totalmente automatico de HOG-EBGM para re-
conocimiento de caras, se ha participado en el concurso internacional MOBIO
sobre el desarrollo de nuevos algoritmos. MOBIO proporcion6 una base de datos
en formato de video grabado en escenarios realistas con un dispositivo mévil.
Este concurso nos ha aportado un excelente contexto para comparar nuestra
solucién con la de otros participantes. En la evaluacion de los resultados del
concurso, HOG-EBGM se posicioné como la cuarta mejor solucién.



Abstract

One of the most prominent topics today in the field of computer vision is
that of facial analysis. In particular, the detection and location of human faces
in images and the biometric analysis of them are topics that have raised great
interest due to the number of industrial applications that make use of them.

This doctoral dissertation carries out an independent study of the problems
derived from two topics: face detection with eye location and face recognition
using a local texture feature-based approach. The algorithms developed are
focused on overcoming the problem of extracting the identity from a face image
(in frontal or semi-frontal views) in semi-controlled scenarios. The goal was
to develop robust algorithms readily applicable to real applications, such as
advanced banking security and the definition of marketing strategies based on
client statistics.

Regarding the extraction of local textures, an in-depth study is performed
on some of the most extended features, taking into special consideration the
Histograms of Oriented Gradients (HOG descriptors). Working with normalized
face representations, these descriptors offer discriminative information about key
facial landmarks (such as the eyes, the mouth, etc.), being robust to illumination
variations and small displacements.

Various classification algorithms have been considered for face detection
and recognition, all following a supervised learning strategy. Specifically, some
boosting and Support Vector Machines (SVM) classifiers have been used to
classify local textures extracted from the eyes (i.e. HOG descriptors), for eye
location. In the case of face recognition, a novel feature-based algorithm has
been developed, HOG-EBGM (HOG on Elastic Bunch Graph Matching). Given
a face, the main steps of HOG-EBGM can be summarized in the following: first,
a facial graph is automatically built, locating some facial keypoints; from each
of these points, a HOG local descriptor is extracted and all of them concate-
nated; the final biometric face vector is obtained applying dimensionality reduc-
tion techniques; finally, the samples are matched to a database using a Nearest
Neighbor approach.

Performing on the database of FRGC, the eyes were localized with a preci-
sion of 92.3% with an error lower than 5% of the inter-ocular distance, overpass-
ing the results obtained by some referent authors. Regarding face recognition,
using the FERET database, it has been proved that our use of HOG local
descriptors provides more biometric information than other classical descrip-
tors, such as Gabor coefficients (improving the recognition rate up to a 40%
in some cases). Using the HOG-EBGM algorithm for the localization of facial
landmarks produced simmilar results to other extended algorithms, such as the



Active Appearance Models (AAM). Finally, the experiments have shown that
the inclusion of color cues in HOG features provides with more information use-
ful for face recognition, improving the recognition rates when using FRGC up
to a 11% compared to the use of the descriptors with gray-scale images.

To evaluate the automatized HOG-EBGM for face recognition we also par-
ticipated in the international MOBIO contest. MOBIO provided a database of
video samples in realistic scenarios (recorded with a mobile device), and offered
an excellent context to compare our solutions with those of the different par-
ticipants. In the evalution of the MOBIO results, HOG-EBGM ranked as the
fourth best solution among all participants.



Resum

Un tema destacat del camp de la visi6 artificial és el derivat de I’analisi facial
automatica. En particular, la deteccié precisa de cares i 'analisi biométrica de
les mateixes, son problemes que han generat especial interes a causa de la gran
quantitat d’aplicacions que actualment fan s d’aquests mecanismes.

En aquesta tesi doctoral s’analitzen per separat els problemes derivats de
dos temes: la deteccié precisa de cares basada en la localitzacié dels ulls, i el
reconeixement facial a partir de 'extraccié de caractaristiques locals de textura.
Els algorismes desenvolupats se centren en resoldre el problema de I'extraccié de
la identitat a partir d’una imatge de cara (en vista frontal o quasi-frontal), per
escenaris parcialment controlats. L’objectiu d’aquest treball és desenvolupar
algorismes robusts i que puguen incorporar-se facilment en aplicacions reals,
tals com a seguretat avangada en banca o la definicié6 d’estrategies comercials
aplicades al sector de ’retail’.

Respecte a l'extraccid de textures locals, s’ha portat a terme una analisi
exhaustiva d’alguns dels descriptors més estesos; especialment, s’han estudidat
amb més deteniment els Histogrames de Gradients Orientats (HOG features).
Fent servir representacions normalitzades de la cara, aquests descriptors ofer-
eixen informacié discriminativa dels elements facials (ulls, boca, etc.), mostrant
robustesa a variacions en la iluminacié i petits desplagaments.

Aixi doncs, per realitzar la deteccio i el reconeixement de cares s’han triat
diferents algorismes de classificacié han estat triats per realitzar la deteccid i
el reconeixement de cares, tots ells basats en una estratégia de sistemes super-
visats. En particular, per la localitzacié d’ulls s’han emprat classificadors boost-
ing i SVM (Support Vector Machines) treballant amb descriptors HOG. En el
cas de reconeixement de cares, s’ha desenvolupat un nou algorisme, 'HOG-
EBGM (HOG on Elastic Bunch Graph Matching). Donada la imatge d’una
cara, I’esquema seguit per aquest algorisme es pot resumir en diferents passos:
de primer s’extrau un graf facial situant automaticament els punts més signifi-
catius de la cara; de cadascun d’aquests punts, s’extrau un descriptor local HOG
i es concatenen. Finalment, el vector de caracteristiques biométriques passa per
una etapa de reduccié de dimensionalitat. Al vector resultant se li aplica una
classificacié basada en vei més proper (Nearest Neighbor) per assignar-li una
etiqueta (la identitat de la persona).

Usando las base de datos de FRGC, se consiguié localizar ojos con una
precision del 92.3% con un error menor al 5% de la distancia inter-ocular, mejo-
rando los resultados obtenidos por otros autores marcados como referentes. En
reconocimiento, usando la base de datos de FERET se ha demostrado que el
uso de descriptores locales HOG proporciona mayor informacién biometrica que



otros descriptores cldsicos como los coeficientes Gabor (en algunos casos mejo-
rando hasta un 40% la tasa de reconocimiento). En la localizacién de puntos
faciales caracteristicos, el uso nuestro propio algoritmo proporcioné resultados
comparables comparables con el uso de otros grafos como Active Appearance
Models (AAM). Por tltimo, se ha demostrado que la inclusién de informacién
de color en los descriptores HOG afiade informacion 1til para el reconocimiento,
mejorando en la base de datos de FRGC hasta un 11% la tasa de reconocimiento
frente a los descriptores trabajando con la intensidad de las imagenes.

Fent ts de la base de dades de FRGC, s’han localitzat ulls amb una precissié
del 92.3%, amb un error menor al 5% de la distancia inter-ocular, millorant els
resultats obtinguts per altres autors considerats referents. En reconeixment de
cares, fent s de la base de dades de FERET s’ha demonstrat que l'utilitzacié de
descriptors locals HOG dona major informacié biometrica que altres descriptors
més classics, com els coeficientes de Gabor (millorant en alguns casos fins al 40%
la tasa de reconeixement). En la localitzacié de punts caracteristics facials, fent
as del nostre algoritme va donar resultats comparables als obtinguts amb altres
algoritmes, com I’ Active Appearance Models (AAM). Per ultim, s’ha demonstrat
que la inclusié d’informaci6é de color en els descriptors HOG afegeix 1til per al
reconeixement, millorant en la base de dades FRGC fins a un 11% la tasa de
reconeixment comparat en 1'is de descriptors treballant en imatges de intensitat.

Per avaluar el sistema totalment automatic de HOG-EBGM de reconeix-
ement de cares, s’ha participat en el concurs internacional MOBIO sobre el
desenvolupament de nous algorismes. El MOBIO ens ha proporcionat una base
de dades en format de video gravat en escenaris realistes amb un dispositiu mé-
bil. Aquest concurs ens ha proporcionat un excel-lent context per comparar la
nostra solucié amb la d’altres participants. En la avaluacié dels resultats del
concurs, HOG-EBGM es va possicionar com a la quarta millor solucié.
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Chapter 1

Introduction to the Facial
Analysis Problem

1.1 Introduction

Most biological mechanisms are continuously repeated even without noticing.
This is the case of the brain processes associated to the sensing and understand-
ing the world that surrounds us. The information perceived through our senses
is internally processed to give meaning to a complex context. This way, we are
able to detect all kind of objects and also to recognize different instances of
them, even on adverse external conditions. Although we are familiar with the
object analysis mechanisms from the biological perspective at a subconscious
level, it is still a central problem to develop them in computer vision.

Facial analysis is a subcase of the more general object analysis, in which the
understanding processes are focused on a specific object class, human faces. This
issue is of high relevance for the human reasoning and therefore the brain has
developed specific cells to perform it. Each human brain is specifically trained in
detecting and recognizing great quantities of different individuals, performing
these tasks in very efficient ways. However, computer vision solutions to the
facial analysis problem are far away from the results obtained by the brain,
both in accuracy and speed.

Two facial analysis topics, face detection and face recognition, have attracted
the attention of the scientific community, and are still target of many studies.

This thesis intends an approach to the facial analysis problem in computer
vision, providing a joint face detection and face recognition approach. For that
purpose, this work relies on the use of local texture features to extract descriptive
information of the facial elements.

The primary goals of this work are to address two different problems:

1. To go beyond the current state of the art face detection methods,
producing new ones whit a higher level of location accuracy: to
achieve this goal, an accurate approach based on the automatic detection
of the eyes is studied.

2. Study and design face recognition methods to deal with partially
uncontrolled scenarios: the input of such systems will be automatically
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linked to the output of the face detection with eye location method.

Finally, let’s notice that the human brain is a blank page when we are
born. Only through a thorough learning process, our brain cells are trained
to detect and recognize different objects and faces by extension. The learning
process takes months and even years for the baby, as it needs time to gather a
significant quantity of models.

The analogue way of emulating the learning process of the brain in com-
puter vision is using supervised algorithms. In machine learning, supervised
algorithms are tasks that use datasets of labelled samples to train a system.
During the training, the system learns the properties of the elements that have
to be detected or recognized.

In this work, supervised algorithms are used in both, eye location and face
recognition tasks. In the first case, the models represent eyes as opposed to
non-eyes —being the latter the facial elements that are not eyes. In the case of
face recognition, two kind of training models can be used. One, to describe the
different facial elements, so that they can be located. Another, to learn how
to deal with the variations between different individuals. These are called the
inter-personal variations.

The rest of this chapter is organized as follows: it first starts reviewing some
neurological facts in relation with facial analysis; next it goes with a definition
of the problems of face detection and face recognition. After this, the chapter
describes the philosophy of supervised learning algorithms and finally an outline
of the organization of this thesis work is presented.

1.2 Neurological base of the Facial Analysis

Face detection and face recognition have been two topics widely studied by
neuroscientists from a biological point of view. Physiological researches [102]
have indicated that in the human brain we posses specific cells for facial analysis.
These cells are placed in the inferotemporal cortex and also spread over the
frontal right hemisphere.

Engineers have found that the prior knowledge acquired on psychophysics
and neurophysiologic may sometimes become relevant when trying to implement
an automatic face detection or recognition system. From the study carried by
Zhang et al. [126] some interesting points related on this prior knowledge can
be highlighted:

e Human recognition system does not only use visual perception. Instead, it
uses a broad spectrum of stimuli, specially those that come from auditory
and olfactory senses, besides the visual sense.

e The process of face perception combines both holistic and feature analysis.
The adult brain starts with an holistic approach, followed by a refinement
carried out taking on account the individual facial features [75]. In the
case of children, their brain pay attention mainly to isolated features of
the face, as they still have not learned to focus on big objects [88], 26].

e Spatial frequency analysis plays an important role in face detection. Low
frequencies contribute to detect global features while high frequencies con-
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tribute to differentiate the finer details. Also the localization of features,
like borders and edges, has an important contribution in the process.

Thanks to these mechanisms, the human brain can detect and recognize
faces even if they appear in different locations, with different sizes, rotations
or poses. Also the brain can deal with other external factors such as marked
illumination variances or even partial occlusions.

On the contrary, two factors may contribute to a deterioration of the human
face perception: the fatigue and dealing with an elevated order of faces to be
recognized. These two factors can easily be overcome by computers.

In this thesis, the biological base of some of the facial analysis algorithms
used is remarked, specially in relation with the extraction of texture features.

1.3 Facial Analysis in Computer Vision

The topic of facial analysis in Computer Vision is still an open issue: the ap-
proaches that have been developed produce results not comparable to the ones
obtained by humans.

This section addresses the problems that arise when performing automatic
face detection and face recognition algorithms. It is highly important to learn
from the difficulties that are associated to the facial analysis, as they constitute
the base from which the systems are designed. To achieve this goal, first a more
formal definition on face detection and face recognition is given and then the
section tackles the main challenges that are derived from them.

1.3.1 Face Detection: Definition and Applications

Face detection is known as the process to extract all faces in an image, regardless
from the scenario where they are located. The result in this process is a bounding
box which roughly locates the face. Additionally, some information related to
the bounding box is also provided, such as the coordinates of its central point
or its extent.

The influence of the scenarios on face detection algorithms has been studied
in depth. Torres et al. [I05] concluded that in general, scenarios can be classified
into two large groups:

e Simple scenarios: constituted by images with a controlled number of faces
—usually a single face per image— and semi-controlled conditions. Usually,
faces are presented in frontal view, without occlusions and good illumina-
tion.

Also in this group, the background is mainly static, usually with plain
colors that facilitates the differentiation between the faces and their sur-
roundings.

The detection of faces in this group tends to be simple for static images
and video sequences. Most of the public face datasets present people in

simple scenarios. Figure [[.I] shows an example of this, extracted from the
FERET database [93].

o Complex scenarios: constituted by difficult images to perform reliable de-
tections. This is the case of images with partially or totally occluded faces,
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Figure 1.1: Face images from FERET database in simple scenario.

several face orientations (i.e. profiles, mid-profiles, etc.), with dynamic
backgrounds or with sharp shadows and illumination variances, among
others.

Face detection systems working with difficult scenarios are more sensi-
tive to make errors, not only when finding out the position of the faces
but also when tracking them along video sequences. Robust methods be-
come necessary in these cases, sometimes reinforced with additional image
preprocessing steps.

Figure[1.2] shows a few examples from Labeled Faces in the Wild [45)], one
of the few datasets that present people in complex scenarios.

Regarding its applications, several fields benefit from face detection. Next,
some examples are summarized:

e Face Recognition prior step: a proper face detection stage is consid-
ered key to obtain good recognition performances. This issue is directly
related to the purposes of the current work.

e Video Indexing: it is one of the features included in MPEG-7. A great
quantity of details may be specified along with the video information,
such as the number of individuals on each frame, in order to allow fast
and efficient searching for material that is of interest to the user. In that
sense, face detection has become a powerful tool for people indexing [5].

e Entertainment: more and more, the video-game industry allows the
users to interact with the system by automatically detecting the face of
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Figure 1.2: Face images from Labeled Faces in the Wild database in complex
scenario.

the player [I15]. In that sense, video-games like FIFA Soccer 12 let the
player upload a face picture, which is detected and analyzed to create a
soccer player avatar from it.

e People Counting: a simple scenario for this application could be count-
ing the number of customers entering a shop during the day by attaching
a camera at the entrance [129].

e Noise Elimination and Image Compression: sometimes, when en-
coding an image it is useful to keep better quality when compressing the
face area rather than on the background. For these cases, the detection
of the face is a necessary first step [124].

e Camera Autofocus: Some recent digital cameras and mobile phones use
face detection for autofocus [96], making sure that all faces in the image are
properly exposed. Also, face detection has been used for selecting regions
of interest in photo slideshows, using Ken Burns effects for panning and

zooming [I§].

1.3.2 Face Recognition: Definition and Applications

Face recognition is the process through which, given a face image, an identity
label is automatically assigned to it after matching it against a database of
known people. If no matching is possible, an unknown person label is given.
Face recognition is a complex task, as people can easily modify their facial
appearance. One may change in a short period of time the color and length of the
hair; people have also the possibility of wearing beard, moustache, glasses, cap
or helmet. Also, as the people gets older their appearance varies considerably.
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The classification of simple and complex scenarios exposed for face detection
is also valid for face recognition. The simplest recognition methods are designed
to detect individuals who usually look in frontal view without any elements
occluding facial features. More complex systems deal with problems such as
multiple-angle views, individuals wearing garments like a scarf, sunglasses, etc.
Also, it is quite common to perform recognition tasks on single images, rather
than videos. Usually, the techniques working with videos, the perform a low-
level analysis frame by frame (or at least in some key images) and then the
spatial and time redundancies of faces in the sequences are used to fuse all this
information]

Finally, let us notice that face recognition is not only a theoretical methodol-
ogy but its applications have spread over a number of different fields. Nowadays,
it is considered to be one of the most prolific research fields in computer vision
and so it has merged with advanced technologies. Some possible applications
are proposed next:

e Surveillance: most face recognition applications are aimed to reinforce
the security, mainly due to its versatility [23, B5]. The most common
applications are advanced video surveillance or CCTV systems in pub-
lic cluttered places where suspect people have to be localized, detected
and tracked; other surveillance applications cover the issue of avoiding
potential robberies (i.e. in banks or other commerces) by tracking suspect
people.

e Information security: face recognition is a non-intrusive biometric,
compared to other biometrics like the fingerprint analysis or the iris recog-
nition [I19]. Therefore, it is suitable for accessing personal data, such as
Internet, bank accounts or medical records. Also, it is useful to validate
control systems at the entrance of a restricted area by only showing the
face to a camera.

e Robotics: as it has been studied in some works [76], face detection and
recognition makes possible an improvement of the features in human ma-
chine interfaces (HMI), specially when working with robots. With a simple
decision mechanism a robot can decide whether it is interacting with the
right person or not.

e Assisted Living: the care of elder and impaired people can be made eas-
ier incorporating elements of computer vision. For example, a recognition
system could be installed at the main entrance of a home to help the elder
that is living alone to recognize incoming visitors.

Due to its great versatility and the currentness of the computer face analysis
technologies, a number of enterprisesﬂ are specifically aimed to cover the neces-
sities produced in this field, being an economically profitable area that should
not be ignored.

n Chapter@we develop our own face recognition algorithms oriented to work with single
images, but in Chapter [T.I] we extend them to take advantage of the information in video
sequencies

2Some of the most outstanding are Argus Solutions, DigiSensory Technologies, Neurotech-
nolojiya and Cognitec Systems Gmbh
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1.3.3 Challenges of Facial Analysis

Even for the human brain and depending on the context, faces corresponding to
the same individual may look completely different. Detect and recognize faces
in complex scenarios depends on a high number of uncontrollable factors. These
factors, can be related to the faces themselves (we call them intrinsic factors)
or can come from external agents (we call them extrinsic factors).
Regarding the intrinsic factors, the main sources of variation are the follow-
ing:
e Interpersonal Variations: although all faces are structured following
a common biological pattern (of its elements and their distributions) the
difference among faces of different people can be quite significant. These
variances are mainly due to factors such as the identity, sex, ethnicity, skin
or hair color. These variations can make people look very different from
one another. Taking as many of these factors as possible into consideration
leads to considerably enhance a recognition system.

e Intrapersonal Variations: these are the factors that make that even
on the same scenario, a unique face of a person may be presented quite
different aspects. We can summarize the main intrapersonal variations
in the following: different face expressions and gestures, ageing, wearing
complements (usually glasses, caps or scarves) or changes in hair-styles.

Regarding the extrinsic factors that most affect to faces, the following can
be found:

e Physical Geometry: the three-dimensional nature of the head affects
directly to the representation of the face. Depending on the angle of the
camera that is recording the faces and the orientation of the face itself,
the pose may change completely. Slight changes in the pose lead to high
differences in the representation.

e Scenario set-up: the external conditions derived from the scenario set-
up are an important source of variance. Basically, these conditions are
provoked by two factors: variations in illumination and occlusions that
may add noise to the extraction of the facial features.

Regarding the illumination, strong variances can make the task of facial
analysis really hard to perform, as great changes in shade and color are
registered. Also, the position of the focus of light might affect on the
casting of not desired shadows in the face. Typically, indoor illumination
can be controlled better than outdoors.

Regarding the occlusions, external objects placed in front of the faces may
partially or fully interfere on the information that can be retrieved. The
higher the occlusion, the more difficult to perform any facial analysis.

e Camera set-up: the parameters of the camera also affect to the perfor-
mance of face detection and face recognition. The most significant factor
related to the camera is the resolution, which has an influence on the scale
of the faces in the image. The greater the size of a face, the higher amount
of information that can be retrieved from it. Other parameters, such as
the focus or the acquisition noise may also have an influence on the facial
analysis process.
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The main challenge in facial analysis is after all to come up with a solution
that tackles the greatest number of intrinsic and extrinsic factors.

1.4 Supervised Algorithms

In machine learning, supervised algorithms are used to tackle with classification
problems. Supervised algorithms are structured into three different phases: the
supervised learning phase, which is also called training phase, the wvalidation
phase, in which the set-up parameters are defined and the classification phase,
which is usually called test phase:

e During the training phase, a classification function is inferred from the
information contained in a set of samples, called the training dataset (also,
the training database).

In supervised tasks, the training samples are labelled, so that their actual
class is always known. Also, the training sample should be representative
of the real context of the classification

e During the validation phase, a set of labelled samples is tested, so that
the internal set-up parameters of the system can be adjusted to fit the
current problem.

e During the test phase, the inferred classification function is applied to a
test set to predict the label of each of the samples.

Figure [[.3]summarizes the main steps of the supervised learning process and
the interactions among them.

: - e Parameters
I i w - Set-
| Training | . [ Build et-up
' Set \ Model /
Nt N ._.»'//\.\ Partial
Labeled ~ N\ Mode
Data \ N\ § \
/ Wa \/ “ ,), .. \
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Learned
Model
New ' . ‘
Testin
Data B

"y

Figure 1.3: Diagram of a Supervised Learning process.

Both, face detection and face recognition processes, can be seen as clas-
sification problems. In face detection, the classification is typically a binary
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problem: faces against non-faces. In face recognition, the classification com-
plexity is higher, as in this case each identity (different person) constitutes its
own classification class.

Also, other sub-processes related to the facial analysis, such as the location
of specific face elements, like the eyes, can be approached in terms of a two-class
classification.

To achieve this goal, this thesis relies on the use of local texture descriptors,
which are present along the different stages of the systems. The goal of extract-
ing local features is to provide a highly discriminative context for the supervised
classification processes. Thus, the local features have to be as invariant to the
extrinsic factors as possible (so that they do not affect the results), while highly
descriptive so that they can take advantage on the intrinsic variations.

To learn the classification function provided by the local features, this thesis
has mainly used two widespread off-the-shelve supervised classifiers: the Ad-
aboost classifier [113] and the Support Vector Machines [29)].

More specifications on these approaches and the algorithms that have been
employed are detailed through the different chapters of this work.

1.5 Summary of Contributions
The main contributions of this work are summarized in the following:

e We have developed a fully automatic system for recognizing people from
images, based in a two-stage solution: face detection and face recognition.
The system is aimed to overcome this challenge for stand-alone images
of faces in frontal view, at any scale, with in-plane rotations and in par-
tially uncontrolled scenario set-ups. Both stages are based on the use of
supervised algorithms.

e We have developed a face detection with eye location stage, based on a
hierarchical framework in which first two boosting classifiers detect the
face regions and some eye candidates, and next a SVM classifier uses
texture features based on the local gradients (HOG descriptors) to select
the best eye candidates.

The boosting and the SVM classifier have been used and train specifically
for the purposes of this thesis. This stage has been extensively tested on
a set of face databases and compared to other state of the art eye location
algorithms.

e We have developed a novel face recognition algorithm in the category of
Face Graph Algorithms (FGAs), which locates specific facial landmarks
using an EBGM approach and extracts HOG features to locally describe
each of them. The biometric signature of each face is the concatenation
of the descriptor for each facial landmark that integrates the Face Graph.

The experimentation of this stage has been carried out using different
face datasets. To perform a fair comparative, other HOG-based Face
Graph algorithms, such as the HOG-Grids and the HOG-AAM, have been
developed. Also, an study of the inclusion of color cues in the face stage
is done.



10

Chapter 1- Introduction to the Facial Analysis Problem

In all cases, a brief study on dimensionality reduction algorithms is carried
out to determine the best techniques to reduce the descriptive information
of faces.

We have assembled a fully automatic face recognition system. This system
has been tested in realistic and uncontrolled scenarios: it has been proved
on video-sequences of people video-calling with a mobile phone. The sys-
tem in this scenario has been compared to other current approaches in the
framework of the MOBIO international competition. In this competition,
we show that the fusion of our detection and recognition stages works and
the results are quite competitive with other approaches.

1.6 Outline of the Dissertation

The remaining chapters of this work are organized as follows:

Chapter [2| reviews the concepts of face representation and the necessity of
normalizing the faces to establish a common context of analysis.

Chapter [3| analyzes the techniques used to evaluate supervised classifica-
tion algorithms, specifically applied on face detection and face recognition

Chapter []studies and selects the local texture descriptors that can be used
for the facial analysis and their applicability to facial analysis processes.

Chapter [f] presents the design of face detection with eye location algo-
rithms and the experimentation derived from such developments. .

Chapter [] presents the design and comparative of some feature-based face
recognition approaches using local textures, and the experiments that are
carried out to validate them.

Chapter [7] presents a fusion of the face detection and face recognition
algorithms developed in the previous chapters, in the context of MOBIO,
an international research competition.

Chapter [§ summarizes our approach and provides a discussion of the ad-
vantage, disadvantages and applications derived from it. It also suggests
some directions for future research on this area.

Also with this work two appendices are given to complement the informa-
tion regarding work-related topics that are not the goal of this work but help
to understand the development and results that are obtained. Specifically, Ap-
pendix [A] deals with the topic of dimension reduction algorithms while Ap-
pendix [B| briefly describes the contents of the face databases used to test all the
system designs.



Chapter 2

Facial Representation and
Normalization

Prior to processing a face, the tasks performing facial analysis, like face detec-
tion and face recognition, need to work on a set of images with homogeneous
representation. Inevitably, one question arises when considering this problem:
what is the optimal way of representing faces for such tasks?

The goal of the current chapter is to provide an answer to this question. The
methods here exposed will determine the normalization (preprocessing) stage
that all the images will need to undergo before any processing in this thesisﬂ

We can overcome the problem of facial representation from two distinct
approaches:

1. Studying the properties of the spatial projection of a 3D object (the face)
in a 2D world (the image).

2. Studying the representation of the faces once in the image world, which is
related to the intensity and color information of the objects.

The rest of this chapter is structured as follows: first the problem of the spa-
tial representation of the face as 3D objects is introduced, followed by a study
of the intensity and color representation of the objects in the image. Regarding
the latter topic different color spaces useful for the task of recognition are ana-
lyzed closely. The final section is dedicated to describing the face normalization
stage, derived from the procedures outlined in the aforementioned sections.

2.1 Spatial Representation of Faces

Most of the time, the biological approach employed by the human brain to solve
cognitive problems related to the visual system can provide practical clues to
tackling the same issues in computer vision. In this vein, the previous ques-
tion can be reformulated more generally: how does the human visual system
represents objects for later recognition?

Since the decade the 1980s, many researchers have attempted to address
this question [66] [T08, 104]. In these works, a 3D object (a face), needed to

n page Figure there is a detailed diagram of this process.
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be recognized from its 2D representation. The decision criterion for recognition
in [66] can be stated in the following simplified form:

[PTX3P — X2P|| <0, (2.1)

where T is an aligning transformation, P is a projection operator from 3D to
2D; the norm | - || measures the dissimilarity between the projection of the
transformed 3D model X3P and the input image X2P. A recognition decision
is then made based on a comparison between the measured dissimilarity and
the threshold 6.

The first conclusion to be drawn from the cited works is the necessity of
aligning the projection of the 3D face and the actual image. A normalization
procedure must be performed that considers the location, scale and in-plane
rotation of the 2D image projection of the face.

We know from experience that the shape and features of a face vary consid-
erably when the images compared correspond to different views. For example,
it is very difficult even for the human brain to recognize a face when it has to
match images in frontal view with images in profile (i.e. faces with a rotation
of a =90°).

This work tackles the solution to this issue based in two assumptions:

1. A 3D model of the face will not be employed, as this thesis limits itself
to using only 2D specific view-related face representations. The use of
2D computer vision algorithms is mainly motivated by the fact that from
a practical point of view, the major use of video devices corresponds to
classical cameras, usually in fixed positions. The use of specific devices for
extracting 3D information, like the extraction of depth-maps with stereo-
vision or infrared grids, is not spread, restricting the scope of applications
where the algorithms could run and considerably increasing the overall
costs of the final systems. Moreover, working with 3D models of the face
considerably increases the complexity of the representation; the use of 3D
models is incompatible with the algorithms studied herein.

2. A single-view approach will be used, with frontal view as a reference model,
in opposition to the multi-view approach [112], in which a face model is
represented by several 2D views (such as frontal, mid-profile, profile, etc.).
The single-view approach is the most common found in the literature; all
the works mentioned in this thesis are single-view.

The use of specific algorithms (such as the feature-based approaches pro-
posed in Chapter@ for face recognition) offers the opportunity to deal with
frontal face images as well as a range of image views close to the frontal
representation.

2.2 Importance of the Intensity-based Facial Rep-
resentation

Once the issue of spatial representation of the faces has been addressed, a second
point arises relating to illumination information. The human brain is very adept
at recognizing faces based only on the light intensity received. Recent research
on face recognition in humans [123] indicates that color information can be very
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helpful in certain contexts (e.g. when images have an extremely low resolution).
It is worth asking whether including color when representing faces might provide
a better context for facial analysis. The objective of this section is to review the
fundamentals of intensity-based representation of faces in order to understand
the discriminating properties that can be considered when using color cues.

With digital images, the intensity (or luminance) of objects in a scene is the
most elemental information to describe them. This information is given as a set
of values I(x,y), unique for each pixel of the image. Usually, each pixel value
is quantized with 8-bits to designate the intensity (also known as gray-scale
values), so that I(z,y) € [0,255]. The intensity values can be considered as raw
data used to describe the objects. As such, two types of descriptive algorithms
can be derived:

1. Algorithms that base their descriptions directly on this raw data. In these
algorithms, only the pixel information is used.

2. Algorithms that include some intelligence to extract more complex infor-
mation after processing the intensities.

The holistic facial analysis methods, that consider the face as a whole, typi-
cally belong to the first group [13, [107, 12]. They work with features extracted
from the intensity values of the face image, usually vectorized. As part of these
methods the vector of intensities undergoes some post-processing such as di-
mensionality reduction methods, which is the case of the PCA analysis [I07] or
the LDA technique [12]ﬂ

Nevertheless, intensity representation is also the basis for more complex
means to describe objects. This is the case of the so called feature-based meth-
ods, which are aimed at extracting descriptive features to describe specific el-
ements of the face, such as local textures. This will be examined in detail in
further chapters.

The study of intensity methods to represent facial images provides a baseline
useful to compare with more advanced feature-based extraction techniques.

2.3 Study of Color Spaces for Face Representa-
tion

Although the majority of works use exclusively the intensity information from
images, color is still considered an important cue in object recognition. Some
authors [123], 121 [44] have even shown that working on color can yield more
distinctive features useful for classifying face images. Given that variations
in illumination may be highly detrimental to recognition rates, the additional
information provided by color features could mitigate these effects.

Unlike intensity, there are a variety of ways to represent the color information
of an image, depending on the models that describe it. One of the most rele-
vant aspects to be considered when using color information to extract biometric
features is the selection of the color model that best suits the problem. These
models represent the color information reflected in each of the pixels, commonly
described by three channels: C7, Co and C5. Each color model represents the

2Further details on both techniques can be seen in Appendix
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information in a different format, depending on the channel. Sometimes, these
channels are referred to as color coordinates; hence, the color models can be
treated as a geometrical representation and discussed in terms of color spaces.

The geometrical distribution of the color samples in an object depends on
the color space that is used to represent it. A specific distribution may favor or
detract from a better description of the object in question. For this reason, this
work devotes a detailed study on the issue of color spaces in order to discern
which models provide higher discriminative power.

To date, a number of color models have been developed to represent the
various data images. The present work reviews those models known to retain
more discriminative information useful in subsequent separability by classes,
using as a reference the research work done by Van de Sande et al. [109] and
Yang et al. [I20] respectively. However, the issue of discovering the optimal
color subspace for face recognition is still open. To tackle this topic we have
followed a strategy where we combine a study of three baseline conventional
color spaces (RGB, HSV and Opponent Color), motivated by the study of Van
de Sande et al. [I09], with a particular solution proposed by Yang and Liu
in [120], called Discriminant Color Space (DCS). The latter adapts the problem
of the color space to the specific problem that is intended to solve; in this case,
face recognition.

The rest of this section is dedicated to describing the characteristics of each
of the aforementioned color models.

2.3.1 RGB Model

The RGB model is the most common color representation used in images as
the acquisition systems are based on it. In this model, the three color channels
of the image correspond to the red (R), green (G) and blue (B) components of
light: C7 = R,Cy = G,(C3 = B. It is therefore an additive model based on
the primary colors that follows the biological mechanism of the eye to perceive
colors. The geometry of the color space generated by this model is commonly
represented by a cube, as seen in Figure 2.1
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Figure 2.1: Representation of the color space generated with the RGB model.

The RGB model offers no remarkable discriminative properties for describing
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objects in recognition problems. Nevertheless, it is considered a fundamental
model: it constitutes not only the reference against which other methods are
compared, but also the base from which the vast majority of the other classic
color models are derived.

Despite its simplicity, the quantity of information provided by the RGB
model is much higher than that extracted directly from a gray-scale image.
Actually, it is worth mentioning that the intensity value of a pixel can be directly
inferred from the RGB components in that pixel. One of the most common
methods to solve this conversion is given by the equation [95]:

I(z,y) ~03%*R+0.59%*G+0.1%B (2.2)

2.3.2 HSV Model

This model represents colors based on three channels: hue (H), saturation (S)
and value (V): Cy = H,Cy = S,C3 = V. These three components are commonly
represented into a cylindrical coordinate system, which is obtained through a
non-lineal transformation of the RGB color space. If Cprax and Cyyny are
defined as the maximum and minimum values of the RGB components, then
the transformation from the RGB space to the HSV space can be expressed as:

G—B :

0+m XGO, lfR:CMAX

_ B—R s _
H = 2+m x 60, if G=Cpax

R—G : _
4+m ><60, lfB—CMAX

B 0 it G =Cunax

§= {1 - gM*“X, rest of the cases (2:3)
MIN

V =Cumax,

where Cprax = max(R,G, B) and Cyrn = min(R, G, B). Figure displays
the color space generated by the HSV model.
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Figure 2.2: Color space generated by the HSV model.
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One known problem of the HSV color space is that the hue component, H,
becomes potentially unstable when the points approach the gray lineﬂ This
fact can have significant implications when extracting discriminative features.
As a solution, Van de Weijer et al. [I10] analyzes the error propagation for
the transformation of the Hue component, H. Their analysis reveals that the
certainty of the hue component is inversely proportional to the value of the
saturation component, S. Thus, Van de Weijer et al. demonstrates that the
model can achieve higher levels of robustness by multiplying each hue sample
by the value of the saturation. Accordingly, this solution will be applied when
using an HSV color space.

Some authors, such as Bosch et al. [I9], have used the color space generated
by the HSV model to extract discriminative features. Specifically, they used
it in the context of scene classification, as a basis for extracting local features,
including the SIFT descriptors [65].

In the HSV color model, the channel of the Value is the one that suffers
greater variation when the intensity of the light changes. The channels of Hue
and Saturation tend to remain stable with regard to the variations in light
intensity.

2.3.3 Opponent Color Model

The Opponent Color Model is based on the theory proposed by Hering (1885)
and concerns the natural ability of the eye to detect opponent colors. According
to this theory, the visual experience is produced in the eye by three opponent
processes: green-red, yellow-blue and black-white. This model proposes a color
space generated by two chromatic axes (green-red and yellow-blue), and a lu-
minance axis. Figure [2.3|renders the geometric representation of this model for
a constant value of intensity. Hering used his opponent color theory to explain
why it is not possible for our eye to perceive an object that is simultaneously
red and green, while it is possible to see, for example, an orange object, that is
red and yellow.

Based on Hering’s theory, Hurvich and Jameson [48] have shown that in the
opponent color model there is a cancellation of the Hue component produced
in the HSV model. As described earlier, Hue is an unstable component of the
HSV model; thus, the opponent color model becomes a more robust option and
one suited for tasks involving feature extraction. Numerous studies have been
carried out following these guidelines [109] [1T0].

This color space is derived from the linear combination of RGB-model com-
ponents. Therefore, the color space can be defined as:

C A
C; _ R+§§2B (2 4)
6 ) :
R+G+B
Cs V3

where the channels C7 and C5 contain the chrominance information of the red-
green and yellow-blue axes respectively, and the component Cj is the intensity.
The two chrominance components C; and Cs remain invariant to displacements
in both location and light intensity.

3As it can be seen from Figure
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Figure 2.3: Color space generated by the Opponent Color Mode with a constant
value of intensity

2.3.4 Discriminant Color Space - DCS

Discriminant Color Space is a color model proposed by Yang et al. in [120], with
the aim of creating a space completely adapted to the needs of face recognition.
The principal idea behind this model is that a specific color space can be trained
to adapt a set of sample images, using an optimal combination of the RGB
components from the color image:

Cy guR + q2G + qi3B
Cy | = | @R+ q22G + q23B | = QT[R, G, B] (2.5)
Cs g1 R + q32G + q33B

where R € RN*1 G € RNX!1 B € RVN*1, are the vectorized color components
of the original image X € R™*", with dimension N =m x n, and Q € R3*3 is
the matrix of coefficients to perform the transformation.

To calculate the optimal weights ¢;;, this model stipulates minimizing the
intra-class scatter matrix of the samples, while the inter-class scatter matrix is
maximized. In other words, this method essentially consists of applying a LDA
algorithm to the original RGB samplesﬂ

As in all LDA-based algorithms, this model adopts the Fisher Criterion
which makes use of the traces of two scatter matrices. From the analysis per-
formed in [120], the inter-class scatter matrix, Sy, and the intra-class scatter
matrix, S, are defined from a set of training samples. A total of n samples are
divided into ¢ distinct classes, such that:

Sp=Y P(Xi = X)"(X; - X) (2.6)
i=1
c N;
1 . _ _
Sw=2_P N —1 D (X = X)T (X - Xa), (2.7)
i=1 v j=1

4For further information about basics of the LDA algorithm, see Appendix
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where X;; € R™*" is the j-th sample corresponding to an image labeled as it
belongs to class i, X is the mean image from all the training samples, X; and
N; are the mean image and the number of samples in class i, respectively, and
P = % is the a priori probability of class 1.

The solution to the maximization of the Fisher Criterion can be obtained
from the solution of a generalized eigenproblem (Equation . Therefore, the
transformation matrix from the RGB original color space to the Discriminant
Color Space can be obtained from the eigenvectors corresponding to the three
eigenvalues that result from S, = A\S,,®.

Note that in this method only three eigenvectors are available, as they rep-
resent the three color components C'1, C2 and C3 from the new color subspace.

2.4 Face Image Normalization

Before processing, all face images need to be homogenized as part of a pre-
processing normalization stage. The goal of this homogenization is to preserve
a common set of properties for all images. The basic block diagram of this
normalization stage can be observed in Figure and will be used for the
face detection and recognition algorithms detailed in Chapter [5]and Chapter [6]
respectively.

Geometrical
Alignment
+

Cropping

Contrast
Enhancement

Figure 2.4: Steps in the face normalization stage.

The representation information given in the previous sections of this chap-
ter leads to the definition a geometric normalization. This normalization is in
alignment, scale and in-plane rotation of the face. An intensity-based normal-
ization is likewise obtained by stretching the histogram, with an extension to
color-based images. Finally, the normalization generated for the experiments
carried out in the present work is presented.
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2.4.1 Geometrical Normalization

To achieve a complete homogenization of facial images, we need to assume that
they represent the same view. The faces also need to be aligned in terms of
location, scale and in-plane rotation. With this geometrical normalization, the
limits of the normalized face can then be defined by cropping the original image.
This eliminates noisy background information that does not belongs to the face.

The problem of geometrical normalization can be summarized in the follow-
ing question: given a set of faces, is it possible to align them? To answer this,
first a set of criteria must be established for what an aligned face should look
like:

e A face is considered aligned in rotation when the line that links the eye-
centers is completely parallel to the horizontal axis.

e A face is considered aligned in location when all its facial features (e.g. the
eyes, nose or mouth) are symmetrically places with regard to the central
vertical axis of the image.

e A face is considered aligned in scale when at least two of the facial features
are always placed in the same coordinates.

As part of this process, a two-dimensional representation of a face is treated
as a matrix of pixels. To meet the normalization criteria established above,
an affine transformation is applied. Given the intensity of a pixel I(z,y) (with
coordinates z and y) from a source image, a linear affine transformation is
obtained by multiplying it with a transformation matrix, T, such that:

Inorm = TI(x,y), (2.8)

where Iyorm belongs to the normalized and cropped face. One of the most
important properties of the linear transformation matrix is that it can be de-
fined as the concatenation of any number of affine transformations, such as the
translation (T%), rotation (7)) and scale (Ts). In our case, the transformation
matrix can be expressed as:

1 0 t, cos(@) sin(@) 0\ [sy 0 O
T=T,T,T,=[0 1 t, —sin(f) cos(f) 0 0 s, O
0 0 1 0 0 1 0 1

0 (2.9)
sgcos(0)  sysin(0) tp\ .
0)

= | —sgsin(0) sycos(0) ty
0 0 1

where ¢ = [t,,1,] is the translation in pixels to be applied, ¢ represents the angle
of rotation and s, s, is the scaling in both axes, respectively.

Thus, given any two fixed points in the transformed image, if their corre-
spondence in the original image is known and both main axes are assumed to
be equally scaled, s = s, = s,, then the matrix (2.9) can be completely solved.

In the case of faces, the two points selected to solve the transform matrix
could correspond to any of the facial features. The two eye-centers were cho-
sen in our case, as they are the most characteristic and potentially able to be
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detected with computer vision algorithms. The eyes provide direct information
about the rotation angle 6 (corresponding to the angle between the eyes and
the horizontal), the scaling factor s (proportional to the inter-ocular distance),
and the displacements t,, and ¢, (when the eyes at the transformed image are
placed in known coordinates).

Nevertheless, this normalization requires knowing the exact location of the
eyes, which is not a trivial question. In fact, this issue constitutes one of the
principal motivations for developing an accurate face detection algorithm, such
as that proposed in Chapter

As a final remark, the properties of transformation matrices can be utilized
so that given any of the affine transformations proposed in the present work,
the inverse transformation can always be calculated by directly inverting the
transformation matrix, T:

Tin'uerse = Til (210)

This is useful for extracting the normalized facial image, since the process
consists of running the inverse transformation pixel-by-pixel (via linear inter-
polation) on the original image. The entire transformation is delineated in

Figure

2.4.2 Intensity-based Normalization and application to Color
Images

As mentioned previously, a geometric alignment of the faces is insufficient given
that variances in illumination may lead to other types of misalignments. One of
the most direct ways of providing robustness in the illumination is to homogenize
the histograms of the various face samples. In this sense, the stretching of the
histogram, which is essentially an increase in image contrast, becomes a useful
tool. The fundamentals of this procedure are described here.

Given a gray-scale image, represented by an intensity matrix where its pixels
are I(z,y) (being x and y the pixel coordinates), an increase in contrast is
defined as an stretching of the intensity histogram, such that every output pixel,

~

I(x,y) is:

I(x,y) = (I(x,y)c)(Z:Z) +a (2.11)

where a and b are the upper and lower limit values for the normalization, and
¢, d are the minimum and maximum intensity values in the image, respectively.
In 8-bits gray-scale images, the values of a and b are typically a = 0 and b = 255,
while the values of ¢ and d are relative to the content of each image.

Figure [2.6] presents the increments of the contrast for a typical face recog-
nition image, as well as their histograms. It is worth noticing how the image
with stretched contrast actually stretches its histogram to the full extent of its
range.

Given the importance and simplicity of the normalization techniques used
here, the remainder of this thesis will assume hypothetically that for every in-
tensity image used in any algorithms, a previous normalization step has already
been applied. So as to avoid confusion, normalized images will be formulated
as I, rather than I , unless otherwise noted.
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Figure 2.5: Phases of the geometrical normalization given two initial points and
their correspondent location in the transformed image (i.e. the eyes). We have
marked in red the horizontal reference and in green the inter-ocular segment.
a) Original image, b) rotation of the image, ¢) image scaling and d) translation
and cropping of the image.

On the other hand, when working with color images, normalizing in inten-
sity does not make much sense. Instead, the individual stretching of the color
channels could be of greater utility. To this end, the same steps used to stretch
the intensity histogram are instead applied to the histograms from channels C'1,
C?2 and C3. This normalization process remains independent of the color model
used for representation. Henceforth, it will be remarked when the proposed
color solution has been pre-processed in this fashion.

2.4.3 Normalization for Experiments

Having presented the geometric and intensity normalizations that comprise the
face normalization stage, this final section details how faces for all experiments
will be normalized.

Figure presents the order of the various normalizations, beginning with
spatial normalization and followed by the contrast enhancement. This order
must be maintained, as contrast enhancement is only effective when applied
to the cropped sub-image of the face, thereby avoiding noise in the intensity
histogram due to background measures.
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Contrast Adjustment

Original Histogram Enhanced Histogram

Figure 2.6: Example of the effects of normalization (contrast stretching) over
images for face recognition.

As mentioned above, for all experiments where face normalization is required,
the exact location of both eyes is assumed to be known a priori. This simplifies
the solution for the transformation matrix since only then it deals with scale
and rotation variations. Chapter [§] presents a novel technique to locate the eyes
based on the extraction of local features. Notice that small variations on the
localization of the eyes would produce deformations on normalized faces, similar
to those shown in Figure of the aforementioned chapter. Some experiments
in face recognition performed in Chapter [6] show that minor displacements on
the position of the eyes (with a subsequent bad normalization stage) produces
great variance in recognition ratesﬂ

The normalized face selected for the experiments will thus correspond to a
cropped image of size 120 x 160 pixels, in which the left and right eyes are located
at the pixel coordinates ¢+ = (40,80) and cpignt = (80, 80) respectively.

The normalized faces showed in Figure[2.4)are a example of a face normalized
using the aforesaid normalization process.

As it will be detailed in future chapters, this normalization stage not only
resolves the problem of representation, but it can be of particular importance
for extracting reliable local features.

5The experiment mentioned can be found in Section



Chapter 3

Evaluation Methodology in
Facial Analysis

The foremost aim of this work is to study a novel set of theoretical methods
that address the topics of of face detection and face recognition. Moreover, it is
important to implement these methods and then assess their impact compared
to other state-of-the-art algorithms within the same field of research.

To this end, this chapter provides an overview of the evaluation methodology
that will be employed in the experiments carried out throughout the rest of the
work. Furthermore, the tools required in the practical analysis of the proposed
algorithms will also be defined.

The current chapter is structured in three blocks. It starts with a brief
introduction concerning the generic problem of classifying objects, followed by
the evaluation methods needed for the two tasks of this work: eye location for
precise face detection and feature-based face recognition.

Finally, a detailed explanation of each of these topics is presented, including
a technical description of the tools used in each case.

3.1 Introduction

The development of new algorithms is always the confluence of a good theoretical
base and a valuable context for experimentation; together, they enable us to
discover the principal properties of a new approach. From an experimental point
of view, developing a technique necessarily entails evaluating its performance
and establishing a framework wherein the technique can be compared to that
of other approaches.

The selection of appropriate evaluation methods provides greater under-
standing of the developments under examination. In this work, two different
fields of facial analysis are studied: the precise detection of faces performing eye
location (discussed in Chapter [5) and the recognition of faces, for both identi-
fication and verification purposes (presented in Chapter @) One might think
that two different evaluation methodologies are required —one for each of the
problems proposed— but this is not. In this work, solutions are offered that

23
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rely on supervised learning classification approacheﬂ but focused differently.
In the case of face detection, the task of classification is framed to address a
binary problem, separating faces from non-faces. This problem can be adapted
to detect any other facial feature, such as the eyes. In face recognition, the
classification stage is more complex, as it has to solve a multiple-class problem
(i.e. to differentiate all subjects in a database).

In the following sections, the general problem of object classification is re-
viewed from a perspective useful for both binary and multiple-class problems.
An additional problem-specific methodology applicable to face detection and
face recognition tasks will also be presented and evaluated.

e In face detection algorithms, the problem-specific methodology proposed
is aimed at defining an accuracy measure of the locations of the eyes.

e In face recognition algorithms, we have to emphasize the different needs for
the problems of face identification and face validation. Then we propose
some tools that can be specifically used for each case.

3.2 Methodology for Classification Algorithms

All the facial analysis algorithms studied herein can be regarded as super-
vised classification methods and are treated as such. Therefore, the evaluation
methodologies derived from the field of object recognition can also be applied.
To evaluate a classifier, this works subscribes the evaluation methodology pro-
posed for the database of FERET [93], where the validation and the test sample
sets are each organized in two subsets:

e target set: A collection of labelled samples, where each label refers to the
class L to which each sample belongs. In face recognition, the target set is
composed of images of all known individuals against which testing images
are subsequently matched. In this case, each subject contains at least one
image in the target set. The literature frequently refers to a gallery set
as a subset of the target set. In this work, both terms will be henceforth
used interchangeably.

e query set: A collection of unlabelled test samples whose class is not
known a priori. In supervised algorithms (with a training set), the test
set does not include any of the samples used during the training. In face
recognition, the query set is made up of images of unknown individuals to
be recognized. A probe set is often referred to as a subset of the query set.
In this work, both terms will be employed interchangeably throughout.

When a classifier is evaluated, the query set samples must match up with
the samples belonging to the target set. To achieve a complete and method-
ical process for matching, the following important issues must be taken into
consideration:

1. Selection of similarity distances: With appropriately selected dis-
tances, one can measure the degree of resemblance between any two matched
samples (one each from the target and query sets). Note that this issue is
related to a stage preceding classification.

1As detailed in Chapter
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2. Organization of the samples: Samples are organized so as to extract
subsets for the training, validation and test phases of the supervised algo-
rithmsﬂ Sample organization and the application of a similarity measure
to the matches together yield the so-called distance matrices. These ma-
trices align all samples from the target set (typically, the columns of the
matrix) against all samples from the query set (typically, the rows of the
matrix).

3. Methodology to interpret the results: With this, one can extract
from the distance matrices the information needed for classification . To
do this, all possible classification cases summarized in the confusion matriz
must first be reviewed.

4. Study of the performance evaluators: These evaluators are directly
derived from the classification cases presented in the confusion matrix.
The measures extracted will serve as tools to understand and determine
the performance of the classifiers presented in this work.

The remainder of this section focuses on addressing the four aforementioned
topics in greater depth.

3.2.1 Similarity Measures

For every classification problem, the matching step is usually reduced to an
evaluation of a distance matrix, M, based most of the times on the nearest
neighbor approach, although other techniques are also possible. In the distance
matrix, the element M;; corresponds to the similarity (the distance) between a
query sample i, represented by the i-th row of the matrix, and a target sample
j, represented by the j-th column of the matrix.

In the specific case of facial analysis, matching is performed to assess the
recognition results from identification and validation. The similarities are calcu-
lated in what is called the feature space. This space contains all of the vectorized
target and query samples. They represent the face feature vectors obtained fol-
lowing post-processing (such as normalization or dimension reduction). Given
a feature space, there is no unique similarity measure that optimizes all clas-
sification problems. Therefore, for every new approach, the most appropriate
measure must be evaluated and selected with care from amongst various op-
tions. Given two final feature vectors belonging to the query and target sets,
wp=[x},a?, . xf, . xN]andy; = [yf,y5, ., u), -,y ] respectively, where
N is the dimension of the feature space, the following similarity measures be-
come available:

e Euclidean distance - The shortest distance between two points, per
Pythagorean geometry. Also, the most commonly used distance measure.

dEuC(xivyj) = (31)

The Euclidean distance measures the range Rpy. = [0, o0].

2See Chapter
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e Cosine similarity - Measure based on the calculation of the angle formed

by the two feature vectors, ©;;. Instead of a raw angle, this similarity uses
the cosine as more general measure. The cosine distance is commonly used
as a cohesion measure within clusters, which is especially useful in tasks
such as classification or data mining. It is defined as:

N k, k
TiYj > k=0 %3 Y
doon(@1013) = e0s(O) = g = o = ()
e \/Zk:o (z; )2\/Zk:0 (y5)?
The cosine distance measures in the range R.,s = [—1, 1], where 1 and —1

indicates the same direction, while 0 indicates an orthogonal direction.

Manhattan distance - Suitable for discrete data measurements, as it
represents the rectilinear distance between two points measured along axes
at right angles. The expression of the Manhattan distance is:

N
dain (@i, y;) = Y |2 — o] (3.3)
k=0

The Manhattan distance measures in the range Rz, = [0, ool.

Chebyshev distance - The longest distance between the vector elements.
This measure is particularly useful when computation time is absolutely
imperative:

den(xi,y;) = maar:ﬂsci»c — yf| (3.4)

The Chebyshev distance measures in the range Rop = [0, 00l

Minkowski distance (of order m) - A generalized metric, commonly
used with ratio scales (i.e. when an absolute zero is present). The general
expression of this distance is:

dari(xi,yj) =

Regarding this expression, note that the Manhattan, the Euclidean and
the Chebyshev distances are specific cases of the Minkowsky distance for
values of m equal to m = 1, m = 2 and m — oo, respectively. This
distance additionally measures in the range Ry;; = [0, oo[, independent of
the value of m.

Mahalanobis distance - A measure of the divergence between groups in
a feature space, in terms of the variation along each of the dimensions. In
other words, the Mahalanobis distance can be expressed as the distance
between two N dimensional points, scaled by the statistical variation in
each point component. Thus, this similarity measure takes into account
the covariance matrix ¥ of the distribution of samples:

N
darn (i) = Aij = (| Y (@b —y5) TS 12k —yb) (3.6)
k=0
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It can be seen that since ¥ is a non-singular covariance matrix, it is
positive-definite and hence A;; is a metric, in the range Ry, = [0, c0]. Tt
is likewise worth remarking that if the variables in the distribution were
completely uncorrelated and normalized, then ¥ would be the identity
matrix and the Mahalanobis distance would correspond to the Euclidean
distance.

The Mahalanobis distance has played a fundamental and important role
in statistics and data analysis, specifically in the fields of classification,
numerical taxonomy and statistical pattern recognition.

Depending on the specific problem, different similarity measures provide
different results. After evaluating several of these measures as part of the present
work, we decided to use FEuclidean distance, cosine distance and Mahalanobis
distance. This selection was motivated by the fact that these distances have
become a de facto standard to compare different approaches for facial analysis,
specifically for face recogntion.

3.2.2 Distribution of the sample datasets

In supervised approaches, sample classification is performed as a three-step pro-
cess: the training phase, where the algorithm learns various classification rules,
the walidation phase, where these learned rules are verified and tuned, and the
test phase where the rules are applied to a novel set to extract the performance
results.

Each step necessitates different sets of samples, with specific features and
requirements in each set:

e As part of the training phase, the set of training samples is organized so as
to retain information useful for learning discrimination rules. Depending
on its implementation, this set of samples can be gallery images or an
independent set.

e During validation and test, sets are perused for one large and varied
enough to extract useful performance information. As explained earlier,
the validation and test sets are both divided into target and query subsets.

When evaluating and testing a classifier, it is sometimes more appropriate
to employ numerous, smaller sets rather than one large set. However, given
a sufficiently large set of samples, some techniques can be applied to obtain a
methodical division into multiple subsets. Two classical examples of these tech-
niques are the Holdout Approach, in which the sample set is randomly split [87],
and the Cross Validation (CV) [56], which splits the sample set according to a
predefined criterion.

Cross-Validation offers a means of obtaining a more reliable evaluation when
faced with scarce data. As part of the k-fold C'V approach, the database is
randomly divided into k£ disjoint blocks of samples, usually of equal size. The
classifier is trained using k& — 1 blocks (training set), with the remaining block
serving as the test set. In the training set, at least one representative sample
from the test classes must be included. This process is iteratively repeated
for each of the k& blocks, and the final results obtained from each iteration are
subsequently averaged. A useful variant of the k-fold CV is the leave-one-out
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C'V, which selects the number of blocks, &, equal to the number of samples in
the original set. This approach leaves just one sample in the test set, thereby
maximizing the number of iterations.

The classification process for a dataset using a 3-fold Cross Validation ap-

proach is depicted in Figure 3.1}
Training {

Test

Training {

Initial sample set Iteration 1 Iteration 2 Iteration 3

with k =3 CV blocks

hd

Average Performance '

Figure 3.1: Evaluation of £ = 3 blocks using 3-fold Cross Validation. Initial
sample dataset organized in n classes.

3.2.3 Binary Classification Cases

Prior to classifying test samples, a precise set of terminologies must first be
defined for all potential classification cases. Specifically, the true class of a
sample (given by the actual label) must match the class assigned to it after
processing (i.e. classification label). To this end, a dichotomous classification
problem will be employed where a sample can belong to only two different
classes: class C' = 1 if the sample is in a specific group we are looking for (e.g.
the group faces), and class C' = 0 if the sample belongs to any other group
(e.g. the group non-faces). For simplicity, C = 1 is labelled as Positive, and
C = 0 as Negative. This terminology can be easily extended to the multiple-
class problem, where C' = 1 if the sample belongs to our target group and C' = 0
when it belongs to any of the remaining classes.

The cases associated with the binary classification problem can be summa-
rized in the so-called confusion matriz, shown in Table[3.2.3] From the confusion
matrix, four possible matching cases are derived:

e True Positives (TP): All samples belonging to the target class and are
correctly classified by the detector. In face detection, this corresponds to
a real face labeled as such. In face recognition, a true positive is given
when the classified identity of an image corresponds to its real identity.

e True Negatives (TIN): All samples which do not belong to the target
class (non-objects) and are correctly classified as non-objects by the de-
tector. In face detection, this corresponds to a non-face labelled as such.
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CLASSIFIED
Positive Negative
> . True Positive False Negative
a
g z Positive (TP) (FN)
o -
> 3 . .
Q< _ False Positive True Negative
a = [Negative
(FP) (TN)

Table 3.1: Terminology of the classification problem.

In face recognition, a true negative is given when a person is verified as
not corresponding to a certain identity, corroborated by the real data.

e False Positives (FP) or False Alarms (FA): All samples which do not
belong to the desired class (non-objects) but are classified as belonging to
the target class. In face detection, this corresponds to a non-face labelled
as a face, producing a false alarm. In face recognition, a false alarm is
given when a person is verified as belonging to a certain identity, when
in fact, it does not. This specific error is called false acceptance. This
case is quite common, especially in detection tasks, and pre-processing is
generally aimed to avoid them.

e False negatives (FIN): All samples which do belong to the target class
but are classified as non-objects. In face detection, this corresponds to a
face labelled as a non-face, which is considered a miss. In face recognition,
a false negative is given when a person is verified as not belonging to
a certain identity, when it does. This specific error is also called false
rejection. The aforementioned error types represent the least desirable
cases as they diminish the performance of the algorithm. Therefore, the
different techniques in face recognition attempt to minimize them.

This nomenclature also remains valid for classification in multiple-class prob-
lems, as these definitions are directly applicable. In the next point, various
elemental measures that can be derived from these four matching cases are
defined.

3.2.4 Basic Classification Measures

From the parameters presented in the confusion matrix, some fundamental per-
formance evaluators can be defined, which help determine the correctness of a
resultant classification:

e True Positive Rate (TPR) - Also known as Recall, Sensitivity or simply
the Hit Rate. The expression of the TPR is:

TP

TPR=R= itivity = ——————
R = R = sensitivity TP+ FN

(3.7)
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e False Positive Rate (FPR) - Also known as False Acceptance Rate. It
is a measure usually combined with the True Positive Rate:

FpP

e True Negative Rate (TNR) - Also known as Specificity, this measure-
ment is combined with Sensitivity:

TNR = Specificity =1 — FPR (3.9)

e Precision (P) - Commonly combined with Recall:

TP
P=—— 3.10
TP+ FP ( )
e False Rejection Rate (FRR) - The measurement of the probability a
biometric system will fail to identify an individual who is properly enrolled.
This measure is combined with the False Acceptance Rate:

FN

FRR= ——
RR=Tp N

(3.11)

Defining these basic measures offers sufficient information to evaluate a clas-
sifier. However, sometimes the validation of face detection and face recognition
processes needs more specific and complex information. Hence, the remainder
of this chapter is devoted to presenting some problem-specific evaluation tools
frequently found in face detection and face recognition literature.

3.3 Evaluation Methodology for Face Detection
with Eye Location

The need for developing effective and reliable evaluation methodologies for face
detection has led to increased interest in discovering suitable tools for measuring
the accuracy of the location of the eyes. Those face detection methods based on
the precision of the location of the eyes become suitable for a general approach to
the majority of the algorithms developed. Jesorsky et al. [51] propose measuring
the error generated when the located coordinates of the eyes are compared with
the actual coordinates in the ground-truth data’]

Jesorsky’s definition is valid and quite simple, but before using it some clar-
ifications must be made. The error measure is performed independently of the
location algorithm used, and this measure is quantified in reference to the inter-
ocular distance, tod, which is the Euclidean distance between the eye centers, in
pixels.

The error of the location, Ne,ror, is defined for each of the eyes indepen-
dently, as delineated in the following expression:

31t should be noted that the studies pertaining to eye detection aim to fully automatize their
location; consequently, to set the ground-truth data still requires marking all eye positions by
hand.
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Eg — E
Nerror = | —d t. d gt| X 1007 (312)
10

where Eg4.¢ is the automatic position of the eyes generated by the locating algo-
rithm under evaluation, and E,; is the actual location of the sample eyes in the
ground-truth. In the literature, there is common agreement [511 68 [130] that
an eye is considered to be correctly located if the error is Neppror < 25%. This
error corresponds approximately to a distance smaller than the eye socket, as
shown in Figure 3.2l However, this level of precision might be insufficient for
some tasks (as is often the case in face recognition), so authors have worked
with precisions of 15%, 10% or even 5% of the inter-ocular distance.

iod
(inter—ocular distance)

r=0.1 x1iod

0.1iod |0.25 iod

Figure 3.2: Error distance for the location of the eyes, based on the inter-ocular
distance, iod.

Recent works have developed more accurate methodologies to measure the
eye location errors. In [98], the authors propose breaking down the location
error into four different error types: horizontal, vertical, scale and rotation.
Based on the configuration shown in Figure these errors are defined as:

dx . dy .
A, = m(homzontal), Ay = m(vertzcal), (3.13)
and
A, = M(Scal‘% A, = C,C,.C,C,(orientation), (3.14)
I — Lrp

where all the variables in the expressions, dz,dy, Cy, Cy, Cy, Cy, refer to their
homonyms in Figure [3.3
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Figure 3.3: Measures for calculating errors in eye location.

These error measures can be of immense utility if, for example, it is reckoned
that some location algorithms might perform reasonably well for some of the
errors, but not as well for others. Despite their clear advantages, few studies
have been found that make use of them and therefore they are not useful to
compare different approaches.

3.4 Evaluation Tools for Face Recognition

Face recognition is a specific case in the more general object classification prob-
lem. This means that all the evaluation tools described at the beginning of this
chapter apply to this context. However, a number of problem-specific tools can
also be employed efficaciously, as will be addressed in this section.

To start, it should be taken into account that face recognition can actually
be presented as two-facet problem: face identification and face verification. The
tools that optimize the evaluation process of a face recognition system depend
on which of the two problems we are attempting to solve.

This section is divided into a description of the differences between face
identification and face verification, the definition of some classification error
measures and the presentation of three relevant tools for performance evalu-
ation: rank curves, ROC curves and DET curves. All of these operators are
incorporated into the various experiments carried out throughout this work.

3.4.1 Distinction between Face Identification and Face Ver-
ification

It has already been mentioned that all face recognition systems can be evaluated
as two different cases: face identification and face verification. Each of these
topics is described in greater detail below:

e Face Identification: Given a test face image belonging to the query sub-
set, the recognition system assigns it the most probable class, comparing
it to each of the target images. To illustrate this scenario, let T represent
a target set of individuals, with N classes, T = [Z1,Zs,...,Zn], where
each class Z; represents a different individual. Then, given a query image
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¢i, and a matching evaluator between two samples dist(g;,Z;), the class
of the test sample can be defined by:

class(g;) = min;(dist(g;, Z;)),1 < j < N. (3.15)

Satisfactory results in face identification are achieved when the distance
between the predicted and the actual classes is less than that of the re-
mainder of the classes.

e Face Verification: Given a claimed identity from the target set and face
image belonging to the probe set, the recognition system has to determine
whether the probe sample belongs to such identity or not. Verification
experiments entail greater complexity than pure identification tests. This
is due to the fact that identification tests determine the best match by
evaluating each query face, but using the information from the whole
gallery; whereas in verification experiments, each match is performed using
only the information from the images belonging to the claimed identity.

In verification, a good result is given when there is a true match of the
query sample with the claimed identity, and also there is a true neg-
ative match for the resting labels in the target set. To illustrate this
case, let T represent a target set of individuals, with N different labels,
T =[Z1,Zs,...,Zn], where each label Z; belongs to a different individual.
Then, given a query image ¢;, which actually belongs to the class Z;, one
would expect the verification algorithm to exhibit the following behavior:

1 i=j

veri fication(g;,Z;) { 0 i (3.16)

3.4.2 Error Measures for Verification Problems

With a verification system, two situations can occur with the person being
verified: the identity claimed corresponds to the individual true identity, or, the
identity claimed by the person is not the true identity. In the first case, the
verified person is called a client, while in the second, the individual shall be
known as an impostor.

Thus, the system may generate two types of errors:

e False Acceptance: When the system accepts an impostor. The False
Acceptance Rate is defined as the number of false acceptances over the
number of impostor accessed. This rate yields the percentage of impostors
that are considered clients.

false acceptances

FAR = (3.17)

number of impostors

e False Rejection: When the system rejects a client. The False Rejection
Rate is defined as the number of false rejections over the number of client
accessed. This rate yields the percentage of clients that are considered as

impostors.

FRR — false rejections

1
number of clients (3.18)
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Note that both errors depend on the threshold used to separate clients and
impostors. To evaluate the performance of a face recognition system performing
verification tasks, two operators derived from these errors are commonly used.
One is the Half Total Error Rate (HTER), which is an evaluation methodology
that combines the two types of error rates: the Fulse Rejection Rate (FRR) and
the False Acceptance Rate (FAR). The HTER operator is defined as:

HTER(r, x) = TARTY) ; FRR(T, X) o). (3.19)
where X denotes the dataset of samples that is used, and 7 is an arbitrary
threshold. Since both the FAR and the FRR depend on the threshold 7, they
are closely related to each other: increasing the FAR will reduce the FRR, and
vice-versa. Due to the complexity of choosing the optimal threshold, a variant
of the HTER operator is employed in this work, the Equal Error Rate (EER).
This operator is the HTER defined at the threshold 7 that generates the same
value for both errors, FRR and FAR.

Both operators are related to DET curves (explained below). Specifically,
the EER operator corresponds to the point of the DET curve which intersects
with the line FRR = FAR. This can be seen in Figure

3.4.3 Rank Curves

Rank Curves, also known in literature as Cumulative Match Scores [93], con-
stitute a basic tool for classification problems. These curves are useful for de-
termining not only the best match (i.e. the predicted class) of a test sample,
but also the top n matches (i.e. the n classes closest to the sample). In this
work, rank curves become of particular interest when validating face recognition
problems related to identification.

Given a classification problem such as facial identification, every testing
sample is compared with the class models, in accordance with Equation .
From this equation, it is assumed that a smaller similarity score implies a closer
match of the predicted label.

In this case, a true positive is given if the actual class of the test sample
corresponds to the class j that has the closest distance dist(g;,Z;). Rank curves
can broaden this concept. If the distances in Equation are sorted in
increasing order, and then plotted in the form of a vector of distances,

D = [distmin(q, Gallery), distmint1(q, Gallery), dist,int2(q, Gallery), . . .]
(3.20)
A true positive with rank k£ = 1 can then be defined if the actual class of
the sample is contained in the unitary set,

R1 = {distmin(q, Gallery)} (3.21)

The same occurs for a true positive with rank & = 2 if it is contained in the
binary set,

Ro = {distmin(q, Gallery), distmin+1(q, Gallery)} (3.22)

4In page
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And more generally, a true positive with rank & = n will occur if the actual
class of the test sample is contained in the set,

Ry = {distmin(q, Gallery), dist,,iny1(q, Gallery), . .., dist int (n—1)(q, Gallery)}

(3.23)
which means that the probe sample ¢ is one of the nth smallest scores for the
Gallery.

The rank curve plots the hit rate obtained from true positives with rank
k=1,2,...,n. In other words, it measures the cumulative percentage accuracy
that can be attained by a classification system when the first £ matches of the
test image are considered relative to all gallery images (which correspond to the
identities in face recognition problems). Due to its cumulative nature, a rank
curve is, by definition, monotonically increasing. It starts in the null value for
rank k = 0 (null distance set, Rg), increases through the standard classification
hit rate for £ = 1 and tends towards an accuracy of hitrate = 1 as the rank
k = n approaches the total number of gallery images.

Rank is a reliability measure and it is held to be very important to video-
surveillance applications in uncontrolled environments. In indexed video se-
quences, rank helps reduce the amount of information needed to be retrieved
when performing specific queries. A clear example of this is a scenario wherein
a video sequence contains labels for the identities of all the people prior to per-
forming a search. If only one rank is considered, & = 1, the probability of finding
that specific person (meaning the matched person is exactly the one searched
for) is always lower than if a higher rank, e.g. rank k = 5, is selected (meaning
the person does not necessarily need to be found in the first match, but rather
within the top five matches).

Figure shows an example of a Cummulative Matching Score. Note that
the rates corresponding to some of the first ranks (i.e. r =1,r =2,r =5,r =
10) have been also indicated.
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Figure 3.4: Example of a Rank Curve indicating the cummulative rate on some
of its first ranks.
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3.4.4 Receiver Operating Characteristic - ROC curves

The Receiver Operating Characteristic (ROC) analysis [I16] has become one of
the most powerful tools in the field of statistical decision theory in recent years.
Originally applied to radar-image analysis around the 1940s, its versatility soon
inspired its application to a number of disparate fields: medical test diagnosis,
particularly in radiology and imaging; classifier assistance in machine-learning
applications; and discriminate effects evaluation for different procedures.

The ROC of a classifier represents a trade-off between its specificity and its
sensitivity, measured by the True Positive Rate (TPR) and the False Positive
Rate (FPR). In other words, the ROC may be considered a measure of the
hit and false alarm rates of the systems evaluated. In parametric classification
systems, the TPR and the FPR vary as a function of a tolerance threshold that
separates positive from negative samples (clients and impostors, in the case of
face verification).

The performance of each system varying this threshold is represented by a
(FPR,TPR) pair. The ROC curve is the graph generated when these pairs are
concatenated. The study and subsequent analysis of the ROC curves provides
the information necessary to determine the effectiveness of a system.

Therefore, a ROC curve essentially plots the FPR (i.e. 1 — specificity)
values on the X axis and the TPR (i.e. sensitivity) values on the Y axis, thus
combining the most relevant information from the confusion matrix. In ROC
curves, three (FPR,TPR) pairs become particularly relevant:

e (FPR,TPR) = (0,0): Implies that all the objects of the database are
classified as negatives, independent of their actual class.

This means that the threshold was extremely stringent, and therefore no
alarms are detected.

e (FPR,TPR) = (1,1): Opposite to the (0,0), this point is achieved when
all the samples are classified as positive, raising false alarms for all negative
samples. This indicates that the threshold was extremely imprecise.

e (FPR,TPR) = (0,1): The ideal classification performance. All the
positives are successfully classified, while all the negatives are rejected.

All the points in an ROC curve are bounded by these special cases. The
worst scenarios —a detector that randomly classifies the objects as positive or
negatives— is displayed on the ROC curve as a straight line running from (0, 0)
to (1,1). Every system differing from that of a random classification has an
ROC curve that consistently falls above this line. The curve of the optimal
classifier would be that which has TPR = 1 for all FPR values, while the worst
case would be the random classifier. A classifier performing worse than random
guessing (i.e. with an ROC curve below the random classifier line), would simple
swap positives for negatives, thereby reversing the ROC curve of such a classifier
and turning it into a regular one.

In its left-hand image, Figure [3.5] reveals an example of three significant
ROC curves: the best case, a standard case and the worst case.

When different classification systems are compared, ROC curves become
quite useful. From an examination of an ROC curve, we know that the upper
areas of the graph indicate greater discrimination power, and therefore greater
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Figure 3.5: Examples of the most significant ROC Curves and the measure of
the area under the curve (AUC) for three ROC implementations.

effectiveness. A system with higher values in its ROC curve indicates better
performance. Figure [3.5] compares two detection systems and their respective
performance relative to the worst and ideal cases.

In addition to the previously mentioned visual analysis of graphs, it is worth
mentioning that researchers have established some analytical methods for mea-
suring the goodness of a system based on its ROC curve.

Essentially then, two methods gain importance. The first consists of mea-
suring the shortest distance between the points of a curve and the (FPR,TPR)
point equal to (0,1). The shorter this distance, the better the performance of
the system under evaluation.

The second method was proposed by [41] and consists of measuring the
accuracy of the detector using the area under its ROC curve (AUC method).
The area of the ROC curve of a standard classifier will achieve values between
0.5 (corresponding to the random classifier) and 1 (the area reached by ideal
classifiers).

Those detectors whose area approaches that of the ideal value will logically
perform better. In the right-hand image in Figure an example of three ROC
curves can be observed where the different areas are colored in grayscale. An
"X’ also marks the optimal operation point for each curve (i.e., the point closest
to the (0,1)).

Regarding the goals of this work, ROC curves are utilized to evaluate face
recognition problems, specifically those related to face verification. Also, re-
searchers agree that measuring the performance of an algorithm with a false
acceptance rate value of 10~3 usually constitutes a good working point for the
algorithm.

3.4.5 Detection Error Trade-off — DET curves

The Detection Error Trade-off curves are a common tool used to represent the
performance of any classification algorithm. This family of curves is a variant
of ROC curves and its use has become more extensive in the field of biometric
analysis due to its efficacy in identity validation. DET summarizes the verifica-
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tion performance of the biometric algorithm on the sample population for which
it is calculated. Also, DET curves are related to such error measures as HTER
and EER, explained in Section [3.4.2]

Given two sample subsets containing images of matching (client) and non-
matching (impostor) identities, for every image pair a match score is obtained,
t. This score is then used to estimate the match score distributions for the
client, ¢(t), and the impostor, i(t). From these score distributions, the DET
curve typically plots error rates on both axes, uniformly treating both types
of error. The errors represented are the False Acceptance Rate (FAR) on the
x-axis, against the False Rejection Rate (FRR) on the y-axis. In some face
detection systems, one of the errors may have greater or lesser importance than
the other.

In this sense, the DET curves help set the optimal working point. An ex-
ample of a DET curve can be seen in Figure (3.6

00 01 02 03 04 05 06 07 08 08 10
FAR

Figure 3.6: Example of various DET curves, with the Equal Error Rate Point
marked.

The points on a DET curve are generated by varying a threshold, 7, and
calculating the FAR and FRR rates from the match score distributions. As both
axes of the DET represent errors, the optimal working point of the biometric
system corresponds to that which minimizes them. That is, the closer the
distance of an operating point to the (0,0), the better the system performance.

When comparing two DET curves that correspond to different systems, one
can opt to compare only the difference in detection rates obtained for each of the
systems, given a specific pair of errors. Alternatively, one can also evaluate them
more globally by considering the area between curves. The greater the DET
area between two curves, the greater the difference in system performance. The
curve that delimits the bottom portion of this area is always the best performing.



Chapter 4

Texture Feature Analysis
for Biometric
Characterization

The process necessary to analyze, recognize or classify people with the informa-
tion generated from their facial images is quite complex. Since individual faces
are specific realizations of an object, they are subject to be described using
specific features.

This chapter is focused on the study and analysis of the extraction of local
texture features in order to perform face recognition tasks, specifically emphasiz-
ing our main contributions in this area. More in detail, the chapter exposes our
motivation for the use of local texture features, specifically those based on local
gradients, as is the case of the Histograms of Oriented Gradients (HOG) fea-
tures. Then, the chapter makes an introduction to the texture features followed
by a short state of the art of the current works on this topic. The following
sections are aimed to describe some specific techniques, such as the Gabor Fil-
ters, and the HOG features, as a derivation of the the Scale Invariant Feature
Transform (SIFT). The chapter ends with some experiments performed to set
and validate the HOG features for facial analysis.

4.1 Motivation and Contributions

The study of local texture features has been an active topic for the last years
and is still the target of several works. Depending on each specific classification
challenge a different set of features may fit better. This thesis takes into con-
sideration the works developed for other computer vision problems, to extract
useful features that could be extrapolated to be used in facial analysis.

The main goal in this chapter is to study some relevant local texture features,
some already extended and also new ones. Our goal is to adapt their use for the
specific problem of the description of faces. Along the work developed in this
thesis, local textures are used to describe facial elements, such as the eyes, the
nose or the mouth.

This chapter has focused on the study of two local texture features, which

39
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in the text are also referred as local descriptors :

1. Gabor Filters: a classical feature descriptor, extended by Daugman in
the late 80s [34]. This descriptor is based on the application of two-
dimensional Wavelets and it is worth of study as it is related with the
behavior of the human vision system. Due to its assessed good results
in facial analysis, these features are a good baseline to compare to other
approaches.

2. Histograms of Oriented Gradients (HOG Features): a novel fea-
ture descriptor, based in Lowe’s SIFT [65]. This approach makes use of
histograms to extract and store the information relative to a region of an
image. SIFT descriptors have been widespread for the last years, aris-
ing as a powerful tool that combines a structured approach with an more
statistical point of view.

The novelty of the HOG features applied as local texture descriptors for
facial analysis makes them an important topic of this thesis. The analysis of
the HOG features for face description is a major goal in this work.

The motivation to study the local texture features can be summarized in the
following points:

e Perform a theoretical study of the two widespread algorithms proposed:
Gabor Filters and SIFT Transform (as the precursor of the HOG features).

e Perform a theoretical study of the HOG features as a novel descriptor. It
is also important to analyze its relation and differences with the rest of
the texture features.

e To validate the HOG descriptor and set the best configuration of its pa-
rameters in facial analysis. These experiments are described in the chap-
ters dedicated to face detection and face recognition (Chapterand Chap-
ter [6] respectively).

This chapter is focused on the theoretical description of the Gabor Filters,
the SIFT Transform and the HOG features.

4.2 Introduction and biological context of the
texture features

In Computer Vision, some common elements such as faces have a complex na-
ture, difficult to describe. To relieve this problem, it is good to examine the
mechanisms and processes that enable us to extract descriptive information
about such elements. A good approach is to understand how the biology deals
with this task. Specifically, this work has addressed this issue studying with
great interest the basic mechanisms of the human visual system.

In humans, the process to describe the objects using the visual system starts
at the eye. The eyes sense the information provided by the light to build images
using specialized cells in the brain. However, the light information alone is not
enough as the brain is unable to directly infer the qualities of the objects or other
contents that compose such images. Therefore, the impulses that contain the
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visual information are sent to specialized neurons, organized in what is called
the primary visual cortex (area V1). The response of the neurons in V1 is
activated when some low level characteristics of the visual stimuli are detected,
such as lines, angles or edges. Making use of oriented patterns, spatial frequency
or colors, among others, the rest of the layers in the brain dedicated to the visual
sense function (also called visual areas V2, V3, V/ and V35, respectively) are
then able to interpret the contents of the image in higher level. Thus, after
going through the visual area V1, the brain would be able to distinguish object,
such as faces, in an specific image. Figure shows the brain areas that are
involved with the process of visual learning.

Visual Cortices

Parietal Lobe

LGN
» Occipital Lobe

V7 ]
V3a (Motion)
V3 (Form) Extrastriate Cortex

V2 (Relays signals)

V1 (Catalogs Input)  Striate Cortex
VP (Relays signals)

Visual \ V4 (Color and Form) Extrastriate Cortex

V8

Sagittal Section

Figure 4.1: Global Scheme of the visual learning process and the brain areas
that are involved with it. This image is taken from the book of R. Joseph [53].

In an analogue way to the process of visual understanding produced in the
brain, when a computer describes an object from an image, the bare information
contained at a pixel level is usually not enough; a processing of the intensities
or even the color cues is a better source of data to describe complex objects.
Following the ideas exposed in Chapter 2] human faces are 3D objects but the
images captured are a 2D projection of them. The complexity of describing a
face comes from the variability of the representation of such projections. De-
pending on the acquisition conditions and the context, a face can offer very
different aspects.

The intensity levels directly represent a measure of the light that is reflected
over the object without taking in account intrinsic characteristics such as its lo-
calization, scale or orientation. Despite the light is not a consistent descriptor,
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the problem of object description can be converted into one where the infor-
mation is inferred from the intensity levels of the pixels. Such conversion is
performed using algorithms that generate image descriptors (also called visual
descriptors) and they become the link between pixel-based information and the
intrinsic information of the object described.

As it can be seen from Figure feature extraction is always an interme-
diate step between the image acquisition and the classification. Comparing the
scheme the biological vision model, it can be observed a clear relationship be-
tween the functionality of the descriptors with the neurons present in the visual
area of the cortex V1. A number of local descriptors can be defined, providing
information about color, shape, movement or texture, among others.

In computer vision, the most extended features for facial analysis are those
that provide information on the texture of the face. Local texture descriptors
provide information of the objects at specific regions of the image. But, what do
we understand by texture? Different definitions of texture based on the human
perception are given: Haralick [42] analyzes it from an structural approach,
defining a texture as an organised area which can be decomposed into primitives
having specific spatial distributions; Cross et al. [33] studies it from a stochastic
approach, defining a texture as a stochastic, possibly periodic, two-dimensional
image field.

In this thesis, we understand that the texture information is defined by the
repeating patterns of pixel intensities. Plain regions of an image (e.g. a plain
wall) show few repetitive patterns and therefore low texture information (inho-
mogeneous texture). On the other hand, areas containing more shape repetitive
patterns, produce more discriminative information (homogeneous and weakly-
homogeneous textures). In Figure an example of two images sorted regarding
their texture information are shown.

< >

- Texture Information +

Figure 4.2: Example of three images with different degrees of texture informa-
tion.

In this work, the analysis of descriptive features has focused on thoroughly
studying local texture descriptors, used to describe faces in detection and recog-
nition tasks.

4.3 State of the Art of Texture Descriptors

The description of image objects using texture features has been a vivid topic
during the last years, and thus our research is directly related to some relevant
works. In [I06], Tuceryan et al. provide a classification of the texture feature

1See page m
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extraction algorithms in four groups: statistical, geometrical, model-based and
stgnal processing.

In facial analysis, the statistical and the signal processing methods can be
unified. Both involve transforming original images using filters and calculating
the energy of the transformed images. The local texture features can be consid-
ered as a part of these methods, as opposed to the holistic features. The main
difference between the holistic and the local approaches is that the first ones
consider the faces as a whole, while the second group uses information from
local regions or keypoints within the face. Some typical landmarks are the eyes,
the eyebrows, the nose, the mouth or the chin.

Initially, holistic features received more attention from the scientific commu-
nity, mainly due to the fact that they are more easily computed. In the methods
that extract global features, images are represented by a high-dimensionality
vector containing all the values associated to the individual pixels (like the in-
tensities or the color channels). Many of the holistic methods are focused on
just simply reducing the dimensionality of this vector, trying to reject correlated
or redundant information. Example of holistic methods are the Principal Com-
ponent Analysis (PCA) [107], or the Linear Discriminant Analysis (LDA) [12].
As both methods are a specification of two general reductive methods, their
implementation can be seen in Appendix [A]

Texture analysis based in local descriptors has attracted more attention dur-
ing the last years in the field of facial analysis. Local descriptors are more robust
against localized distortions of the face, due to changes in expression, to occlu-
sions or changes in illumination.

For the tasks involving the detection and recognition of faces, some of
the most extended local texture features are, for example the Haar-like fea-
tures [90} [TT3], which simply contrast regions of the face by adding and sub-
tracting pixels, the Local Binary Patterns (LBP) [6] features, which compare
a pixel with its neighborhood to create some relation histograms, Gabor fil-
ters [34], which describe the variations at different spatial frequencies and ori-
entations, and the Scale Invariant Feature Transform (SIFT) [65] and more
recently Histograms of Oriented Gradients (HOG) [14] features, that make use
of local histograms of orientations from the gradients of the image.

Even though HOG features (deriving from the SIFT features) have proved
to be of great interest in other computer vision tasks, this is the first work in
which they have been used for the description of facial elements. The rest of
this chapter is aimed to describe the theoretical bases of the main local texture
descriptors used in this work.

4.4 Gabor Filters

During the decade of the 1980s Daugman modelled the specialized cells in the
visual cortex of the human brain using Gabor functions [34]. Specifically, these
functions emulate some of the functionalities of the neurons in the V1 layer
of the human brain, offering information related to the orientation and the
spatial frequency of the local textures. The Gabor Filters are related to the
wavelets functions, which are a set of mathematical operators that apply on
two-dimensional matrices; the Gabor filters are self-similar as all of them are
generated from one mother wavelet by rotation and stretching.
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It is because of their biologically-inspired origin and due to the high robust-
ness this operator achieves that have put the Gabor Filters in the fore of many
researches aimed to the development of techniques which include the extraction
of local features in image objects.

The two-dimensional Gabor Filters are mathematically defined as a set of
harmonic functions, modulated by a Gaussian enveloping function. These har-
monic operators are actually kernel functions of sinusoidal flat waves that are
directly convolved with the image I(x,y) in a certain region centered at coor-
dinates & = (z,y). More in detail we have that:

Tieg) = [ 165 )0s(a = o'y = )iy (41)

In this case, ¥; represents the a family of Gabor kernel functions defined as
]22 ’3]2-52 . -2

Yi(,y) = e 2T [0 — %] (42)

where the flat waves Ej (v, ) are a function of the actual number of spatial
frequencies, v, and the actual number of orientations, y. Let’s remark that the
total numbeg of orientations is IN,, such that 0 < u < N, — 1. The definition of
a flat wave k; (v, u) is given by:
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T (4.4)

In Figure some realizations of a set of Gabor Filters are shown. All
the realizations use the same spatial frequency in N, = 8 different orientations
(notice that the first and the last filters in the picture are the same one).

Figure 4.3: Example of a bunch of Gabor Filters with N, = 8 different orienta-
tions.

The Gabor Filter results can be expressed in the imaginary and the real
plane, as they define the two directions of the space that are mutually orthog-
onal. They achieve invariance to the light bright eliminating the continuous
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component (implicit in the algorithm) while the invariance regarding the con-
trast is achieved using a descriptor normalization. Other invariant properties
are directly derived from the limitations in space and frequency. Given that the
Gabor Filters offer information of the texture on a region centered in a point
Z, one of the most important issues that has to be taken into account is not to
select border areas where the texture of the background might be mixed with
the actual information of the object.

In this thesis the implementation of the Gabor Filters used is that defined
by Wiskot et al. in [I17], maintaining the same configuration of the parameters.
In the work of Wiskot et al., the local features are defined by concatenating
the results obtained when a specific region of the image, centered in a point
Z = (x,y), undergoes a total of 40 Gabor Filters which are obtained varying
the parameters p and v. Specifically, they use N, = 8 orientations equidistantly
distributed, 4 =0...7, and 5 different spatial frequencies, v =0...4.

Figure [£.4] displays a bunch of Gabor Filters producing results when applied
on a specific landmark of a face, the eye.

Figure 4.4: Real example of a bunch of Gabor Filters centered on an eye.

4.5 Histograms of Oriented Gradients

The Histograms of Oriented Gradients [I4], also known as HOG features are
a set of descriptors derived from the SIFT [113] local texture features. Both
families of descriptors extract texture information from the orientation of the
gradients at a level pixel. However, the main difference between them is in the
location and preprocessing of the keypoints that are described.

This section summarizes the main properties of the SIFT and HOG features.
The two different approaches used for the location of the keypoints are empha-
sized and the better suitability of using the HOG features instead of the SIFT
for face recognition tasks is remarked.

4.5.1 SIFT Features

The Scale Invariant Feature Transform, also known as SIFT features, are de-
scribed in the work of Lowe [65]. Initially, these features were designed to solve
the problem of the spatial matching of an object. Given two views of the same
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object on different perspectives, the SIFT transform is able to match specific
points between the images, regardless of the differences in scale, angle or 3D
rotation. This makes the SIFT transform suitable for applications related with
movement trackers, stereo cameras or the identification of 3D deformable ob-
jects.

Among the advantages of using the SIFT Transform with regard to other lo-
cal texture descriptors, some should be remarked: their high robustness against
in-plane rotations and scale variations of an object in different views and their
ability to achieve partial invariance for three-dimensional rotations of the camera
and changes in illumination. The algorithm used to locate the SIF'T descriptors
grants them high discrimination between textures, making them suitable for
recognition tasks of objects and scenes.

The process developed by Lowe to extract the SIFT descriptors of an object
(aimed to match an object in two views) can be summarized in the following
stages:

e Location of SIFT keypoints: the system locates relevant points with
invariant properties for different views of the object.

e Extraction of the Histograms of Oriented Gradients: aimed to
extract local texture features at the SIFT keypoints.

o Matching: the SIFT features extracted for the object in the two images
are matched.

In Figure [£.5 we can see an example of the matching of a deformable object
(a hand) in two images using the SIFT Transform.

Figure 4.5: Example of the location and matching of the SIFT features corre-
sponding to a pair of images of the same object.

Regarding the first stage of the algorithm, Lowe proposes a transformation
of the image following a cascade filtering (the scale-space transform), such that
the operations with higher cost are computed only in specific locations and not
in the whole image. Therefore, the stage of the location of keypoints for the
SIFT transform can be split in the following steps:

1. Extraction of candidates: a detection of the extrema of the scale-space
transform of the image is performed to extract candidates of invariant key-
points. Using Difference of Gaussians (DoG), points potentially invariant
to changes in scale and rotations are located.
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2. Location of the keypoints: each mazima of the scale-space transform
is matched with a model to determine its precise position and scale. The
candidates with higher stability are selected to be keypoints where the
descriptors will be extracted.

3. Estimation of the orientation: additionally with the location of the
landmarks, the algorithm estimates the main orientation of the keypoints,
based on local gradients information. This step is aimed to achieve higher
invariance against rotations.

At the end of the SIFT location stage, the SIF'T keypoints finally extracted
are defined by an specific scale, location an orientation. However, the location
of such keypoints is not controlled by the user as the location of the maxima on
the local-space transform is particular for each object.

After the location, the local features based on Histograms of Oriented Gra-
dients are extracted. In this thesis, we have studied and worked independently
on the local descriptor used by the SIFT transform. Henceforth, the descriptors
of the SIFT Transform will be referred as HOG features.

The last step of the SIFT Transform, the matching step, is skipped in this
work as in our different implementations our own matching methodologies are
applied.

4.5.2 HOG features

The location method of the SIFT keypoints above explained does not fit com-
pletely with the problem of face description due to its uncontrollable nature.
However, the use of the Histograms of Oriented Gradients is still quite promising
for the tasks of face description. This drives us to define a new set of descriptors
based on the SIFT Transform but with an independent location method. This
section explains the necessity of using the HOG features and details its main
properties.

The necessity of a different set of features

To solve the problem of face description based on local features a robust loca-
tion of facial keypoints hast to be performed. To extract a determined set of
keypoints to describe a face it is advisable to follow some guidelines:

e The keypoints should be related to the local areas of the face with more
information. The most remarkable features of a face, considering local
textures, are obtained from the facial elements: the eyes, the nose or the
mouth, among others. Therefore, the location stage of the SIFT Trans-
form, based on the space-scale transform is not suitable.

e To compare features between different faces, it is necessary to find a com-
mon set of keypoints describing exactly the same elements. That is, given
a new face, a fixed set of keypoints should be automatically located and
extracted. This consistency on the location cannot be achieved using the
SIFT Transform, in which for different samples of an object (e.g. a face),
different keypoints are located.
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The uncontrolled and partially random results on the location of the SIFT
features has driven us to skip its first stage, maintaining the use of the HOG
descriptors.

However, the need of skipping the SIFT location stage produces new needs.
Without the SIFT location stage, the keypoints lose their properties regarding
their invariance to scale, location and orientation. With the aim to cover this
lack, it will be necessary to perform an image normalization process before
extracting the HOG features. This normalization will focus on homogenize the
representation of the face elements, as described in Chapter

Properties of the HOG features

The HOG descriptors are derived from the second step of the SIFT Transform:
extraction of the Histograms of Oriented Gradients. The study of the properties
of the HOG descriptors presented in this work is based on the original definition
of this stage detailed by Lowe [65].

Lowe proposes a mathematical operator to describe local textures, able to
achieve robustness against variations not solved during the previous stages, such
as the illumination variance and affine transformations.

For simplicity, henceforth in this work there is a distinction between the
SIFT descriptor and the HOG descriptor; when the former is referred it will
be assumed that the location, scale and orientation of the descriptors has been
obtained using the SIFT location stage; when the latter is referred it will be as-
sumed that the location, scale and orientation of the features has to be obtained
by any other means.

The HOG features belong to the family of the local texture descriptors, and
they represent specific keypoints of an image through the values of the gradients
of the pixels in an area surrounding that point. An image gradient is defined
as the first order derivative of it in = and in y directions. Therefore, it gives
information on the directional change in the intensity of each pixel on the image.
As it is a vectorial measure, it can be represented by its modulus (representing
the magnitude of the local variations) and a phase (representing the direction
of such variations).

The goal of the HOG descriptor is to define a series of histograms repre-
senting the patterns of the orientations in some areas (subregions) around that
central point.

Basically, the extraction of the HOG features can be summarized in a few
steps:

1. Determination of the feature window. This window represents the
area described by the HOG feature. Given an image element to be de-
scribe, its HOG descriptor is generated defining a square window of size
p X p pixels centered at its central point. The size of the window has to
be adapted to the size of the described element.

2. Division of the descriptor area in cells. Each of these cells, here re-
ferred as N, (i, j), will be further described by a histogram of orientations.
More in detail, the descriptor is organized into a square grid embedded
in the feature window. In some studies [I4] the authors have proposed
different shapes for the grid, such as circular instead of square. Our moti-
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vation in this work was to follow Lowe’s original work, which uses square
uniform grids of size N, x Np.

An example of square cells or subregions of a HOG descriptor can be seen
in Figure [£.6]
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Figure 4.6: Example of HOG feature window, divided in a square grid of N, = 4
bins along each side. Also there is the histograms of orientations corresponding
to each of the cells.

3. Calculus of the local orientations. For each pixel in the feature win-
dow, its orientation is estimated based in its gradient V(x,y). Once the de-
scriptor area is organized, there is a need to extract the module |V (z, y)||
and the phase V(z,y)|phase Of the image gradient at each pixel of the
feature window.

However, the HOG describes an area around a specific keypoint. The
information provided by the pixels near the borders of the window should
be of less relevance than the information provided by the pixels closer to
the central point. To achieve this fact, the HOG descriptor uses a two-
dimensional Gaussian envelope function that weights the module of the
gradients at each pixel of the feature window:

V(,y) = Gopoc (2,y)V (2, ), (4.5)

where G, 00 (%, y) is a Gaussian function centered at the keypoint, and
with standard deviation ogog, for both the x and y axis. Also in Fig-
ure [£.6] we can observe the Gaussian envelope applied over the local gra-
dients.

4. Generation of the orientation histograms. A histogram per cell is
defined assigning the contribution of each pixel gradient to their corre-
sponding histogram. This contribution is weighted by different factors
which are combined in a trilinear interpolation (which corresponds to a
bilineal spatial interpolation and a lineal orientation interpolation, as ex-
plained next in this section).
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The underlying idea on the HOG descriptors is that the information on
each of the cells of the N, x N, square grid, may be condensed in a
single histogram of directions. All histograms are structured into N,
possible bins, which correspond to the same number of possible local
orientations. The set of local orientations in a histogram is defined as
@HOG = [@17 @23 tey GNO]‘

The HOG histograms represent the pattern of orientations at a determined
cell of the grid; the histogram belonging to the cell N, (4, j) is denoted as
H(i,j). Figure displays an example of a HOG descriptor with four cell
histograms.

Inside the HOG window, each pixel has a tri-linear contribution up to
its four closest cell histograms. Let’s consider a pixel I(z,y) (with spa-
tial coordinates  and y), with a local gradient such that its modulus is
|V(z,9)|| and its orientation is az, = V(2,9)|phase- Then, the tri-linear
contribution of the local gradient to the histograms can be broken down
in the following:

e Bilinear interpolation for the spatial location: this interpo-
lation grants the descriptor robustness against small displacements.
Each pixel orientation contributes to the orientation histogram of
the cell where it is located and also to three histograms of the closest
cells.

Let’s consider a pixel p(z, y), belonging to the grid cell N} = N, (i, j),
and surrounded by the closest cells Ng = Np(i+1,7), Ny = Np(i,j+
1) and N = Ny(i + 1,7 + 1), with orientation histograms H1 =
H(i,j), H2=H(i+1,j), H3=H(i,j+1) and H4=H(i+ 1,5 +
1), respectively. An example of this configuration can be seen in
Figure [£.7]

Assuming and square grid, the distance between the central point of
the grid cells in both axes can be normalized, such that D, =1 and
D, = 1. Then, the distance between p(x,y) and the central point of
NZ} is defined as d = (d,d,). Following the scheme in Figure
the bilinear contribution based on the pixel gradient is as follows:

IVii(z,y)ll = (1 - do)(1 = )1V (2, 9)]

A [ 40— d)IV@ )l >0
Va2 (2, y)|| = { 0 otherwise

|V as(z,y)l 0 otherwise

{U%MﬂWmMIH%>0
- | dydy||V(z,y)|| ifdy>0andd, >0

IV (. y)ll = { 0 otherwise

where ||V g1 (2, ) || represents the contribution of pixel gradient I(x, y)

to each of its surrounding orientation histograms, based on the rela-

tive position of the pixel (z and y) regarding the grid cells centers (as

it can be seen from the right side of the expressions in Equation .
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e Linear interpolation for the orientation: this interpolation grants

the descriptor robustness against small rotations, dividing the con-
tribution of each pixel orientation between two bins of the cell his-
togram.
Let’s assume a pixel p(x,y) with a gradient orientation a,. If
o, corresponds to an orientation ©% in Ogo¢ then, the module
|A(z,y)|| is added to the k-th bin of the orientation cell histogram.
In a more general case, the phase of the pixel gradient is in the mid-
dle between two orientations. In that case, a single pixel contributes
to each of the bins as follows:

|0¢z,y_@k71

oL |[V(z,y)l| to the (k-1)-th bin

k
[©F —aw ]

If 0F1 < Oy < @k, we add X
gt X IV(z,y)| to the k-th bin

where Ag = O — k1,
For a better understanding of this interpolation, see Figure [L.7]
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Figure 4.7: Scheme of the parameters involved in the a) spatial contribution
and b) orientation contribution of a pixel to the cell histograms .

5. Generation of the HOG feature vector. The extraction of the HOG
feature is done concatenating into a single vector the N, x N,, orientation
cell histograms extracted from the descriptor window. That is,
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HOG(z,y) = [H(0,0)", ..., H(i, /)", ..., H(Np, Np)"", 0 <, 5 < Np, (4.7)

which is a column vector of dimensionality dimpog = Np X Np x N,.
Henceforth, the HOG descriptor will be characterized always as vector.

6. Normalization of the feature vector. This step was introduced by
Lowe to remove light dependences. More in detail, the last step of the ex-
traction of the HOG descriptor consists on reducing the noise introduced
by the changes in illumination over the histograms of orientations. In the
original work of Lowe, the final descriptor undergoes a two-step normaliza-
tion step: first the feature vector HOG(z,y) is normalized in magnitude
and then the resulting vector is trunk so that the maximum value of each
of the components cannot be greater that 0.2. With the firs step of this
normalization stage we remove the effects produced by affine changes in
illumination, while with the second step we reduce the influence of sharp
edges.

The following section describes the experiments performed to determine the
optimal parameters of the HOG descriptors when used for face analysis. More
specifically, our interest lies on exploiting its potential to describe some of the
facial elements such as the eyes, the nose or the mouth.

4.6 Study of the HOG features to describe Fa-
cial Elements

The use of HOG descriptors to describe specific facial elements is completely
novel. In consequence, before performing any facial analysis it is important to
set some of their intrinsic parameters. These parameters can be summarized in
the following:

o The shape of the feature window and the number of cells it contains, N,
that determines the number of histograms, H .

e The number of bins of the orientation histograms, N,.

e The parameters of the Gaussian envelope function, specifically its standard
deviation, ocgoq

e The total size of the HOG window (which determines the number of pixels
contributing to each of the histograms), p (also called Pyog).

For almost all the parameters, a generic solution is selected. These solutions
have already proved to be valid in other works. However, for some specific
cases additional experiments should be performed to determine their optimal
values. Next, the generic solution adopted for the parameters IN,, N, and
ogoc is described. The experiments performed to determine the size of the
HOG window, Pgog, are included in Section which addresses the set-up
of the face recognition subsystem.

2p. 119
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4.6.1 Selection of generic values

The HOG descriptors have been tested in a number of scenarios in other works.
In that sense, Lowe [65] carries out a thorough analysis of the internal parame-
ters of the descriptor. Its conclusions are useful for the research community.

In order to study the HOG descriptors for facial analysis, in this thesis some
of the original values from Lowe for the SIFT Transform have been directly
adopted:

e Shape of the feature window and number of cells: We decided to
use square regions organized as coarse grids. This configuration is the most
simple of the ones presented by the authors and also the most effective due
to its generic nature. This is an advantage for our work as we intend to
describe different facial elements, each of them having its own properties
(e.g. shape, texture and spatial configuration). A generic shape for the
descriptor is the best option to adapt the particularities of each of them.

Regarding the grid, a spatial layout of IV, = 4 cells in both axis, horizontal
and vertical, was selected. This configures a total of Hy, = N, x N, = 16
histograms corresponding to the 16 cells of the grid. Figure [6.11] displays
a real example of the shape of the feature window and its grid for a HOG
describing an eye.

e Number of orientations: It is important to determine the number of

orientations (bins) of the histograms that are extracted at each subregion.
A low number of bins produces very simple patterns, reducing the dis-
criminative power of the descriptor, while a high number of bins increases
the complexity of the feature and may lead to the owverfitting problem,
in which the local descriptor contains too much information to generalize
common features for a family of elements (e.g., features generic for all the
eyes).
Lowe also determined after his experimentations that for the description of
objects the optimum number of orientations is N, = 8. This corresponds
to the set of gradient angles © yoe = {0, 45, 90, 135, 180, 225,270, 325} de-
grees. This work selects the same configuration. In Figure [1.6]an example
of four cell histograms with N, = 8 orientations can be seen.

e Parameters of the Gaussian envelope: To localize the information
produced by the HOG descriptor, the information closer to the central
keypoint needs to be enhanced. This is performed using a Gaussian en-
velope function, centered in such point, weighting the module of the gra-
dients at each pixel. These weights are related to the standard deviation
of the Gaussian, cgog. Lowe considered it appropriate to make the stan-
dard deviation proportional to the size of the area that is described. In
this work the value of the standard deviation of the Gaussian has been set
to be half the size of the described area. That is, ocgog = £ oG where
Proc is the size in pixels of the region that is described.

Using all these generic parameters in our work the dimension of the final
feature vector, HOG(z,y), is Dyoc = Np2 x N, = 128. Once again, this is the
original length of the descriptor proposed by Lowe.

Table summarizes the most important values of the parameters of the
HOG descriptor used in our work.
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HOG Feature Symbol Value
Window Shape Proc X Phoc Square
Window Size (pixels per direction) | Pyoa 20
Grid Shape N, x N, Square
Nr. Cells (per direction) N, 4
Cell Pixels P 5
Nr. of Histograms Ny 16
Histogram Orientations N, 8
Standard Deviation of Envelope ocgoa = PH%G 10
Feature Vector Dimension Dyoa 128

Table 4.1: Summary of the HOG descriptor parameter values in this work.



Chapter 5

Precise Face Detection
using Eye Location

5.1 Introduction

In biometric face analysis, most of the times it is necessary to include a face
location stage. The faces on an image are first detected and then some spatial
cues are given to facilitate their normalization. However, the location stage has
been avoided in many works; this has made the development of face detection
algorithms as an interesting topic for this research.

This chapter is aimed to study fully automatic face detection algorithms to
perform eye location. In this thesis, the precision of the location algorithms
is achieved using a intermediate stage of eye pairs location. The detection
algorithms are important to be used as a previous stage for face recognition, as
it is shown in Chapter[7] In the text, the term detection is referred the process
of determining if an object of an specific class is in an image. However, when
the term location is used, in most cases it implies that the output of the process
is a set of coordinates referred to the image.

5.1.1 The necessity of automatic eye location

First of all, it is necessary to explain the necessity of introducing an eye location
step to provide more precision to the face detection algorithms. The location of
the facial elements provides information for different face analysis tasks, such
as the classification of facial gestures, eye tracking or, most commonly, for face
recognition. In this work, an eye location step is used to provide the desired
accuracy to the face detection algorithm.

In the literature, the majority of the developments avoid this location step,
performing a manual marking of the facial landmarks of all the faces in the
training and validation images. This information is considered the groundtruth
data of the datasets.

The manual marking of facial landmarks is a non-scalable process. It cannot
be tackled when the number of sample images increases. This has pushed the
researchers to develop automatic techniques, to the detriment of reducing the
degree of precision in the location of these landmarks.

%)
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Figure 5.1: Diagram of the most common stages between coarse face detection
and any facial analysis processing.

On the other hand, it is important to achieve as much precision as possible in
face recognition; small variations in the facial representation information, such
as spatial displacements, rotations or scale variations can have an adverse effect.

Many authors [97, 100} 25 58] have studied the impact that the degrading
of the location of a detected face has on a face recognition system. It has
been proved that for the majority of face recognition algorithms, the worse the
location of the detected faces, the lower the recognition rates achieved. Even
small displacements may lead to a significant decrease in the face recognition
rate. In [97], the authors prove that perturbations of a 5% deviation in the
eye location may induce an increase in the recognition errors of up to 20% for
baseline algorithms such as PCA [107] or EBGM [I17].

Figure shows some of the most common steps that help link coarse de-
tection with the final analysis. In the last few years, a number of algorithms
to locate facial landmarks have been studied. The most common landmarks to
locate are the eyes, the eye brows, the mouth or the nose-tip, as they provide
useful information for a precise location of the face.

Precise location is essential to ensure the effectiveness of the normalization
step. A necessary requirement for normalizing faces is to locate at least two
points from the original image and their correspondence in the normalized im-
age. For further details, see Section [2.4]

The eyes fulfil these requirements, as demonstrated in works such as [25].
The use of the eyes as keypoints for normalization is motivated by some of their
properties:

e The eyes mark the horizontal line of the face and are also symmetric to
the central vertical axis. Using the eye information, the center of the face
can be set in the middle point between them. Also, the angle of the head



5.2- Contribution 57

can be directly inferred. If we set a constant inter-ocular distance, the
scale uncertainty can also be solved during normalization.

e The symmetric resemblance between the two eyes makes it possible to
develop a unique algorithm to detect both the left and right. This is much
more efficient than locating two completely different landmarks, as this
would entail developing independent algorithms, probably with different
performances.

e The location of the eyes is a good starting point for many feature-based
algorithms that extract the position of other relevant landmarks from
them [61]. In Chapter@, all the feature-based algorithms analyzed use the
eyes as starting points.

e The eyes can be easily located using special cameras working on wave-
lengths of near-infra-red light (NIR) [84]. The detection with these cam-
eras can be combined with the detection of images working on the visible
part of the spectrum, making the results much more consistent as many
false alarms may be avoided during the process.

The location of eyes entails some additional benefits for recognition tasks. For
example, it is a powerful mechanism to validate the Coarse Face Detection
step (see Figure . In face detection, the positive samples used to train the
algorithms are face images that usually have very low resolution. For example,
sometimes the samples have resolutions of 24 x 24 pixels or smaller, as is the case
for the samples used in the OpenCV library classiﬁerﬂ widely used in computer
vision.

Figure offers an example from the FERET databasdﬂ of a face image
extracted at low resolution. Logically, these sample images provide a very lim-
ited quantity of information, which sometimes leads to a greater number of false
detections. In a system without facial landmarks detection, the false alarms are
also reduced by decreasing the number of hits (i.e. increasing the permissibil-
ity). However, the eyes can be used as an additional mechanism to validate
the faces that are detected: if the eyes are not detected in a face, it can be
considered a false alarm. Thus, the location of the eyes helps reduce the rates
of false detections, keeping the number of hits at reasonable levels.

5.2 Motivation and Contributions

The present focus on the topic of face detection with eye location was mainly
motivated by the lack of sufficient literature addressing the problem of unifying
face detection and face recognition. Many works have done research on isolated
approaches for both issues, but it is still challenging to integrate them in a single
system.

In this chapter, a novel solution for face detection with eye location is de-
veloped. One of the novelties of the proposed approach is the use of a multi-
resolution eye location system trained with a set of local descriptors never previ-
ously used for this task. In our case, the study is based on an approach focused

10penCV is a C++4 image processing public library developed by Intel:
http://opencv.willowgarage.com /wiki
2See Appendix
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Figure 5.2: Extraction of a low resolution face image (24 x 24 pixels) from a
FERET face image. a) Original Image, b) Low Resolution Image.

on the extraction of HOG featuresﬂ to describe the eyes. This choice is moti-
vated by the positive response of the HOG features versus some illumination
problems and small spatial variations.

The hypothesis behind our approach can be summarized in the following:

e Hypothesis 1: The location of the eyes performed with a multi-resolution
design can provide the system with more precision than a monolithic ap-
proach.

This hypothesis is supported by some of the results in the literature, as
explained in further sections. The eye location algorithm proposed in this
thesis works at three levels of resolution. First, a coarse face detection
algorithm is performed, giving the position of faces as a bounding box.
Second, some eye candidates are extracted from the face area with a fast
and efficient classification approach. Finally, high-level descriptors are
used to determine the optimal pair of eye candidates. This last step is
quite exhaustive and thus needs to be performed on a limited number of
samples.

e Hypothesis 2: The use of HOG descriptors as local features for eye
location can lead to a precise set of coordinates.

The use of local descriptors with high descriptive power, such as the HOG
features, is expected to lead to an increase in eye location accuracy. The
HOG descriptors have been proved to be robust when the illumination
conditions change, or when there are small variations in the position of
the landmark, in rotation or even in scaling. This flexibility reduces the
complexity of the requirements in the extraction of the eye candidates.

From these hypothesis, three goals arise:

1. Analyze automatized and precise face detection systems. This analysis is
focused on obtaining information for the face representation stage, prior
to the recognition stage.

3See Sectionm for further details
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2. Design a fully automatic solution to the accurate face detection problem.
Our design has to be able to generate input data for any of the feature-
based algorithms studied in Chapter [6]

3. Establish a comparative study between the eye location approach proposed
here and other state-of-the-art-works. A set of experiments has been de-
signed specifically to achieve this goal, using a workbench of datasets.

5.3 State of the Art

The necessity of precise eye location has encouraged the design of several dif-
ferent strategies. This section reviews some of the most salient works in the
literature.

The section starts with a brief explanation of the most significant research
in eye location developed recently. Then, a selected group of these algorithms
are described in detail; these algorithms will be used in this work as referents
for the comparative analysis.

5.3.1 Algorithms for Face Detection with Eye Location

Jesorsky et al. [51] were pioneers in the development of a metric to quantify the
precision of eye location systems. They studied an approach based on contour
models that starts with a coarse tuning, followed by a fine tuning of the position
of the eyes. As explained below, the technique of doing the eye location in two
steps, from rough location to a fine solution, has become widespread. The
algorithm designed in the current thesis follows the same strategy: locating
a bounding box around face areas, then preselecting eye candidates and then
locating the best eye pair.

With time, new eye location methods have tended to use more and more
complex features and classifiers. The use of classifiers discriminates between
eye and non-eye areas. Inspired by the results in face detection, authors such as
[69] and [67] include some boosting classification stages, based on the AdaBoost
classification performed by Viola and Jones [I13]. One of the main features
of the boosting is its high efficiency with low computational loads. In [69],
three boosting classifiers are used: one for the Coarse Face Detection stage
and two more to detect each of the eyes, with a vertical division of the face
into two different regions. In this work, the eyes are then paired up using
probabilistic methods. In [67], the authors also make use of a boosting classifier
as a preliminary stage for coarse eye location.

In the framework of this thesis, the boosting classifiers are used to preselect
eye candidates from which some local features are extracted. Further details
are given in Section [5.6]

The evolution of the algorithms for eye location has proved that the systems
based just on boosting classifiers do not achieve the precision that is required
for the majority of the facial analysis techniques. Therefore, many prominent
approaches perform the extraction with other kinds of supervised classifiers, the
most common being those based on linear discrimination. In such approaches,
the data extracted to locate the eyes is vectorized; then, these eye feature vec-
tors are projected into spaces of a lower dimensionality than that of the original
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space, making it easy to separate positive samples (eyes) from negative sam-
ples (non-eyes). There is also a branch of approaches based on kernels that
achieve non-linear discrimination by projecting the samples to spaces of higher
dimensions.

One of the most successful and widespread classifiers is the Support Vector
Machine (SVM) [29], a kernel-based algorithm. A clear example of one approach
using this classifier is found in [103]. In this work, a mix of classifiers is per-
formed: in the first stage, a boosting classifier extracts some candidates, and
then a SVM is applied to achieve the final location. In this case, the SVM works
on geometrical features of the eyes. In [52], the authors use SVM integrating
features from the eye-pair, building a hybrid classifier. The features extracted
from the eyes are selected using a filtering and clustering method based on a
simplification of the maximum likelihood theory. After the extraction of the
features, they are verified using Template Matching techniques to reject the
false detections. The SVM classifier has also been proposed in other referenced
works, such as in [24].

In our work, SVM classifiers are used to classify eye candidates. The features
used to train such classifiers are HOG descriptors. In Sections and
a detailed explanation of the SVM for its training and validation phases is
provided.

Another key topic relevant to eye location has been the study of the local
features used to discriminate the eyes from the rest of facial elements. Some
works try to make use of our a priori knowledge of the biological disposition
of the eyes and their physiognomy. Omne exponent of this tendency can be
found in [39], where the author exploits the fact that the eyes have distinctive
horizontal-like borders and also the fact that the area of the pupil is much darker
than its surroundings. Other works use other mathematical backgrounds to
extract complex descriptors,. For example, in [40], the authors perform some
Gabor-wavelets filtering to look for different facial landmarks (not only eyes),
and then end up using a SVM classifier to determine valid triplets of these
landmarks. In [I14], for example, the authors design an AdaBoost-like classifier,
substituting the Haar-like wavelets with more advanced features, extracted after
applying an Recursive Non-parametric Discriminant Analysis (NRDA).

One of our main interests in the development of this thesis has been to
go through a set of mathematical features that could deal with the regular
conditions after a coarse eye location, such as small variations in the position,
in the rotation or the scale. The HOG features before mentioned are a good
candidate to be studied, as they perform well for these variations. More details
on this issue are given in Section [5.7.3

Finally, it is also remarkable to note the number of works that have solved the
topic of eye location from completely different perspectives. Some works perform
a holistic approach, using templates, both predefined [38] and adaptive [3].
More recently, the work performed by Behnke [I1] is worth mentioning. The
author proposes the use of Neural Networks (NN), trying to emulate the work
of a human brain. The location of the eyes is achieved using hierarchical and
multi-resolution Neural Networks with local recurrent connectivity. Another
noteworthy work is that presented by Cristinace y Cootes [32], in which some
face modeling algorithms are adapted to the eye location task. Specifically,
they use a variant of the AAM method [30)], called the Constrained Local Models
(CLM), in which N,, = 17 facial landmarks are located (including eyes, eyebrows,
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or the nose tip). These approaches are quite ambitious and also significantly
increase the complexity of the systems, but also usually offer higher accuracy in
the location of the landmarks. However, one of the targets of this work is the
search for simplicity.

Some of the works mentioned before are used in this work as benchmarks
for establishing a comparative analysis with our solutions in the experimental
analysis performed in Section [5.8.2] Thus, an extensive analysis of these works
is given below.

5.3.2 Selection of relevant Eye Location algorithms

In order to evaluate the eye location algorithm developed here, some reference
works are needed. Thus, three outstanding works [52] [24] [IT4] have been se-
lected. This selection has been based on three aspects:

1. The three algorithms are highly innovative, having a big impact on the
field of eye location research. Currently, these algorithms have become a
reference not only for this work but for many other authors.

2. These works provide a full set of information about the implementation
and the results obtained. Specifically, the results are given in a common
evaluating framework, making them accessible and quite easy to compare.

3. One feature relevant to this thesis is how to measure the time efficiency of
our solution. Thus, some algorithms that provide additional information
about real computational costs (i.e., execution times) have been selected.

Selecting algorithms with such features ensures that any new approach (as
is the case of ours) can be directly validated under a common evaluation ref-
erence. To complete the comparative study, the results are analyzed against a
commercial eye location system. The system we selected for this purpose was
VeriLook [73], developed by Neurotechnologija.

Next, a brief description of the reference algorithms selected is given, noting
the main similarities and differences with regard to our proposal. However, the
goal of this section is only to provide an informative insight into the algorithms;
for a complete understanding of them, the reader is referred to the original
works in [52, 24, [114].

A hybrid classifier for precise and robust eye detection (Jin et al. [52])

In the work developed by Jin et al., the eye location algorithm designed is based
on the use of a hybrid classifier that combines the extraction of features directly
from the two eyes and also from the eye-pair. This hybrid classifier effectively
combines the use of a SVM classifier with one of maximum likelihood, both with
supervised training stages. The goal of these classifiers is to detect areas with
eye-like geometries. By concatenating the two classifiers in a cascade, some eye
candidates are selected and then they are validated using template matching
techniques for eye-pairs. The steps of the eye location (candidates extraction
and validation) are similar to our algorithms. Figure shows a diagram of
the methodology used in [52].



62 CHAPTER 5- Precise Face Detection using Eye Location

PCA Classifier

4 $
Right Eye Left Eye
Candidate Candidate

hd L 4

Filtering
(Maximum Likelihood)

4 4
SVM Classifier
4
Blob Ranking

Figure 5.3: Block diagram of the algorithm proposed by Jin et al.. in [52].

The evaluation of the performance of Jin et al. has been done using the
FERET databasd]

Precise eye localization through a general-to-specific model definition
(Campadelli et al. [24])

Campadelli et al. explore the precise location of the eyes using a two-step
approach: first a coarse eye detection, followed by a fine location. Starting
from the results of a coarse face detection stage, the first step of this approach
extracts some low-level sample features which also help to validate the output
from the previous stage. The second step does a fine eye location using a SVM
classifier trained with the samples extracted before. Figure shows a diagram
of the methodology used in [24].

The multi-resolution approach of this work is similar to that proposed in
this thesis. It starts with a model with some low-level features that extracts
general information about the eyes, and then uses specific classifiers for the fine
location.

The results of Campadelli et al. have been validated using images from the
FERET and the FRGC databased’|

Automatic Eye Detection and its validation (Wang et al. [114])

The algorithm proposed by Wang et al. uses a boosting classifier, although its
main contribution is that it is trained with a set of features different from the
Haar-like ones used in [IT13]. The authors propose extracting Recursive Non-
parametric Discriminant Analysis (RNDA) features, simplifying the boosting

4See Appendix
B

5See Appendix
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Figure 5.4: Block diagram of the algorithm proposed by Campadelli et al..
Courtesy picture, extracted from [24].

classifier into two stages: a cascade of two steps, followed by a fine location
using less than a hundred features (compared to the thousands usually used
with AdaBoost). This simplification reduces computational costs, allowing the
system to perform faster than other algorithms, but with almost the same high
efficiency. Figure shows a diagram of the methodology used in [IT4].

The evaluation of this solution has been done using the FRGC dataset and,
similar to the system developed by us, it studies the use of a complex set of
features for the description of the eyes, which contributes to higher achieved
accuracy in the location.

5.4 Overview of our Eye Location approach

To fulfil the main goals cited earlier, a multi-resolution face detection algorithm
with eye location has been developed. It is structured in a low number of stages
that combine low-resolution and high-resolution feature extraction, combined
with supervised classifiers. This structure looks for an effective way of mixing
stages that are efficient in terms of computing time with stages that are efficient
in terms of feature description power.

The general process of the eye location stages can be found in Figure As
we can see from the figure above, the multi-resolution philosophy is embedded in
our design, as we start extracting some generic information that, stage by stage,
becomes more refined. All the steps are concatenated in such a way that the
outputs from every stage are the inputs for the next one. To fully understand
our design, the evolution of three key parameters through the stages is analyzed;
these are the quantity of data processed, the complezity of this data and their
velocity in terms of execution time:

e Quantity of data analyzed: The system starts working with large amounts
of data (e.g., scanning a whole image in the beginning), but then it de-
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Figure 5.5: Block diagram of the algorithm proposed by Wang et al.. in [114].

System Feature I Evolution ‘

Quantity of Data Decremental

Complexity of the algorithms | Incremental

Computational Cost Balanced

Table 5.1: Evolution of three parameters in our eye location solution.

creases step by step, so in the end, the algorithm is working just on the
data extracted from certain eye candidates.

o Complerity of the features: As the quantity of data to process decreases
with the steps performed, we can make use of more complex techniques.

e Fxecution time: The main intention is to keep it balanced along the stages.
The first stages process more data but in a simpler fashion, while in the
last stages the complexity of each step is greater, but with a lower quantity
of data.

Table summarizes the evolution tendency of these three parameters through-
out our system.

The system here proposed is structured into four main stages: first, it starts
with a Coarse Face Detection, based on the AdaBoost algorithm developed in
OpenCV. To simplify, we assume that the input image is in grayscale, has an
arbitrary size and contains one only face to be detected. In the case of multiple
faces, the steps of the system would be repeated for each face detection. In
the second step, a two-folded boosting stage is performed on the face regions
delimited by the bounding boxes previously detected, in order to extract some
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Figure 5.6: Block diagram of the stages of our eye location solution.

eye candidates. Then, all the eye candidates are combined to configure a few
face candidates, which are then normalized. After the normalization, HOG
features are extracted from the eye-positions of the face candidates, and then
a SVM classifier determines which is the optimal candidate. The final pair of
selected eyes determines their precise position.

The two classifiers used in this thesis are the boosting for the first stages
and SVM for the final step. These classifiers are known for their high perfor-
mance when classifying biometric samples. Due to the efficient training of such
classifiers, high accuracy in the location results was expected. Another factor
that was expected to contribute to the overall good performance was the use of
the HOG features, as will be proved later.

To provide greater clarity for our developments, the rest of this chapter is
devoted to an exhaustive theoretical analysis of each of the individual steps
of the system (following the structure shown in Figure , and a practical
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evaluation of their individual performance. Then, the experiments performed
to evaluate the overall system are described, with a comparative analysis of our
solution against other state-of-the-art algorithms.

5.5 Coarse Face Detection - AdaBoost

This section describes the Coarse Face Detection stage of our system, in which
the AdaBoost classifier provided by OpenCV was selected for use. Our motiva-
tion for using it is outlined first and some results obtained in this step are also
analyzed.

5.5.1 Motivation to use the AdaBoost classifier

The first stage in our location system is a Coarse Face Detection, aimed at
establishing an initial location of the face determining a bounding box around
it. The following stages of the system are focused on refining the location given
by this step. Locating a face though its bounding box is not a goal of this
work; however, the final performance of our eye location system is linked to the
performance of this step.

The Coarse Face Detection stage should essentially cover the following as-
pects:

e Considering these directives, it is important to select a face detection
algorithm able to achieve high face detection rates, regardless of potential
inaccuracies in the location (i.e., no facial elements are located, just the
face as a whole). The output bounding box provides information regarding
the regions of the image where a face is detected. The lack of a need
for accurate location results may lead to the use of algorithms with low
computational cost. These algorithms combine the use of fast techniques
with an optimal image-scanning organization. The result is that even large
images can be processed in a very short period of time.

e The selected algorithm for the Coarse Face Detection should minimize the
number of false alarms per image. In this case, a false alarm is produced
when there is a detection in a region where there is no true face. This
point is less critical than the previous one, as a high number of false alarms
can be reduced in subsequent stages, while a non-detected face in this first
step would be inevitably lost for the remainder of the system.

This thesis uses the AdaBoost classification method proposed by Viola and
Jones [IT3] to perform the Coarse Face Detection stage (specifically, the OpenCV
implementation for frontal faces). The AdaBoost supervised method first per-
forms a step of simple features extraction, in this case the Haar-like features,
followed by a classification step. This structure fits well with the requirements
of this stage: the simplicity of the Haar-like features in [I13] produce efficient
results for the detection of face regions.

In the training phase provided by OpenCV, the classifier is performed with
a dataset of male and female individuals, with a resolution of 24 x 24 pixels.
During the training stage, the AdaBoost does not learn rules for a single complex
classifier, but rather for a cascade of multiple simple classifiers. This is known
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as the boosting cascade. When a sample is evaluated, it will be rejected by the
classifier in the first stages of the cascades when it is efficiently detected as a
negative, and only in the case of true positives and false alarms do the samples
need to be classified by all the classifiers in the cascades. This fact significantly
speeds up the classification process.

However, as mentioned before, the AdaBoost achieves high hit rates with
low accuracy. This inaccuracy in the location of the face regions is mainly a
result of the concatenation of three sources of error:

e Resolution of the Training Faces: Low image resolution implies lower ac-
curacy of the detections performed at this stage. An example of a low
resolution training image can be seen in Figure 5.2}

e Image Scan Technique: The AdaBoost needs to fully scan the input image
to extract the regions which could contain faces. To avoid overloading
the system with a high number of operations, the classification is sped
up thanks to two factors: the intrinsic efficiency achieved when integral
images are used to extract Haar-like features, and the fact that the image
scan is non-intensive. The latter means that the image is not processed
pixel by pixel, but with certain scanning steps. This inevitably leads to a
loss in the precision of the face location.

o Results Clustering: After the scan of the image, the boosting classifier
needs to cluster the clouds of detections around each potential face region
into single and representative points. Usually, these clouds of points are
clustered following a meighborhood criteria which ultimately adds more
variability to the location of the central point of the detected face.

The inaccuracy of the location of the faces and the lack of any facial element
point (e.g., the eyes), motivates the remaining stages of the system. Next, some
experiments are presented to assess the use of the AdaBoost algorithm for the
Coarse Face Detection stage of our system.

5.5.2 Validation of the Coarse Face Detection

To understand the global results of the proposed eye location approach, it is
important to know the performance of the first stage. For the evaluation of the
boosting classifier at the Coarse Face Detection stage some tests were performed.
This tests were designed to work on four different face databases: the FERET
database (due to its great variety of individuals); Experiment 4 images of the
FRGCv2 dataset (mainly due to the great quantity of samples uncontrolled
scenarios); and the Yale and AR datasets, as in these sets the images for each
individual contain a controlled variety of expressions, face complements (glasses
or scarves) and different grades of illuminatiorﬂ In the case of FERET and
FRGCv2, the datasets used in the experiments were directly extracted from the
evaluation protocols of the databases.

In these experiments, a true positive was given when the system detected a
face whose bounding box contained the face center given by the data groundtruth.
Table summarizes the performance of the experiment in terms of hit rates
(i.e., actual faces labeled as face), and the number of false alarms (i.e., non-face
regions labeled as a face).

6All these databases are detailed in Appendix
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FERET Dataset

Dataset (Nr. images)

Hit Rate (%)

False Alarms/image

gallery (1196) 99.75% 0.001
fb (1195) 99.67% 0.003
fc (194) 100% 0

dupl (722) 99.86% 0.001
dup2 (234) 99.57% 0

FRGCv2 Dataset

Dataset (Nr. images)

Hit Rate (%)

False Alarms/image

Training (12776) 98.05% 0.054
Target (16028) 99.93% 0.023
Query (8014) 99.06% 0.0120

Yale and AR Datasets

Dataset (Nr. images)

Hit Rate (%)

False Alarms (per image)

Yale (165)
AR (279)

100%
96.77%

0
0.004

Table 5.2: Hit Rate and False Alarms for the AdaBoost classifier in Coarse Face

Detection.

The analysis of the results shown in the table leads us to confirm that the

two main requirements for the Coarse Face Detection are fulfilled:

1. For all the experiments, high hit rates were achieved— in some cases even

100%, meaning that all the faces in that set were correctly detected.

. For all the experiments, an acceptably low number of false alarms was

produced. Note that in FERET, the number of false alarms is around one
in every thousand images, while in FRGCv?2 it is one in every ten images.
The explanation for this difference is found in the fact that most images in
FERET show people with a plain background, while the great majority of
the images in FRGCv2 were recorded in a realistic scenario with complex
backgrounds. The probability of finding a false face in a plain background
is much lower than finding it in a non-homogeneous scenario.

For the case of the Yale and AR databases, the results for the number of
false alarms are not significant; they tend towards zero, mainly due to the
highly-controlled recording scenarios.

In conclusion, the AdaBoost classifier is confirmed to be a good selection for
the first stage of our eye location system. The use of an open and widespread
algorithm in this thesis has permitted to focus our attention in the following
stages.
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5.6 Extraction of Eye Candidates - Boosting

The second stage of the eye location system we propose is aimed to refine the
information derived from the Coarse Face Detection by extracting eye candidates
within the bounding boxes (from now on face-like regions) previously detected.
As can be seen in Figure this search for candidates is approached as a
Boosting Eye Location stage.

This section is structured in the following parts: it starts by defining the
architecture of the Boosting Eye Location stage, describing all its steps one
by one. After that, the necessity of creating our own eye database for the
boosting location is explained, and finally, the algorithms proposed are trained
and evaluated.

5.6.1 Architecture of the Candidates Extraction

Unlike face location, the process of eye location needs to be highly accurate.
Therefore, introducing a complex and advanced set of features to precisely de-
scribe the eyes might be necessary. A comparison between the original size of
the input image and the size of the face regions reveals that in regular scenes,
the latter are usually around 15% to 40% smaller than the former.

Despite the smaller size of the detected face regions compared to the size of
the whole image, applying in such regions an intensive extraction of complex
descriptors to locate the eyes would still require a large number of operations.
To avoid increasing the computational cost, the inclusion of a stage prior to the
complex features extraction is studied. In this thesis this stage is known as the
Extraction of Eye Candidates, or simply the Boosting Eye Location.

The aim of this stage is to extract candidates for the left and the right
eyes from detected face regions. It makes use of simple features to locate a
controlled number of candidates, called eye-candidates. As in the previous stage,
developing this task using a boosting classifier will allow an exhaustive location
mechanism without triggering an increase in the computational cost.

Summarizing, the structure of the current stage can be organized into three
different steps, as shown in Figure 5.7}

1. Boosting Location: This is a phase of exhaustive feature extraction
in which a configuration of boosting classifiers is trained with Haar-like
features. The outcome of this step is in the form of clouds of points
corresponding to a set of right- and left-eye candidates. However, notice
that at this point we do not distinguish between left and right candidates.

2. Clustering of Candidate Clouds: This step is aimed at clustering the
previous clouds of detections into single eye candidates using a clustering
approach. In this step, the quantity of eye candidates should be reduced
to a low and controllable number.

3. Eye Candidates Classification: Finally, the nature of the clustered
candidates has to be determined to classify them into right eye candidates
and left eye candidates. The criteria used in this step is based on simple
geometrical cues.

In the following sections, the previous steps are analyzed and evaluated.
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Figure 5.7: Diagram of the steps in the Coarse Eye Location stage.

5.6.2 Boosting Location

Similar to the Coarse Face Detection stage, the requirements to extract eye
candidates are summarized in the following: achieving high hit rates (i.e., the
actual eyes of a face should be present in the set of eye-candidates), along with
a limited number of false alarms (i.e., a low number of false candidates). The
intention of this step is to reduce the number of potential candidates within a
face region.

The previous determining factors led us to use a boosting classifier using
Haar-like features. The main motivation to use such classifiers is their proven
effectiveness and low computational cost, as explained in the previous section.

In order to perform the training phase of the boosting classifier for eye-
candidates extraction, we generated our own dataset, built up with positive and
negative samples of eyes, as detailed in Section[5.6.4] Compared to the classifiers
in the Coarse Face Detection stage, the eye boosting classifiers work with much
higher resolution images: while the face samples had very low resolution, rfqce =
24 x 24 pixels, in the eye-candidate boosting classifier the resolution of the eye
samples was actually of 7.y = 15 x 15 pixels.

Three issues from the eye-candidate boosting classifier are discussed more
in detail: the preprocessing prior to the classification, the configuration of the
classifier itself and its geometrical restrictions.

Face Region Rescaling

In principle, the eye-candidate boosting cannot detect candidates with dimen-
sions smaller than 7., and neither smaller than rt4... This could be a problem
with small-sized Faces, as from the Coarse Face Detection the smallest face-
region that can be detected has a size of ry4c.; such face-regions contain eyes
with sizes around 5 to 10 pixels, which smaller than 7¢y..

To avoid these situations, a rescaling of the face region is performed prior
to eye-candidates boosting. To determine a good solution for the rescaled size
of the face region, a set-up experiment was performed. This test searched for
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a high number of hits (positive eye-candidates) with a low number of false
positives (negative eye-candidates). The size of the rescaled face region was
varied in the range 24 < rgcq1eq < 240, which corresponds to the range rscqeq €
[Tfacea lorface]-

The result of an empirical study in this thesis on the size of the rescaled face
region was the following:

e The optimum size for the face region in order to perform the eye-candidates
boosting iS rrescated = 115 X 115 pixels.

After this rescaling, the typical size of the eye regions in the face is around 15
to 40 pixels, which is always within the detection range.

Classifier Configuration

Regarding the eye-candidate boosting classifier, two feasible configurations were
proposed to increase its robustness: single classifier and double classifier. Next
the main features of the two configurations are summarized:

e Single Classifier: In this configuration, there is a unique boosting classi-
fier. A single cascade of weak classifiers is trained using the whole dataset
of samples, including images of right and left eyes.

This configuration is based on the hypothesis that the similarity between
the right and left eyes is high enough, so that the two eyes of a face can be
detected with the same classifier. This speeds up the classification process,
but may also reduce the performance as the assumption of the left and
right eye being equal is not completely true.

e Double Classifier: In this configuration, two specialized boosting classi-
fiers are trained to detect each the right eye and the left eye candidates,
respectively.

This configuration tries to exploit the differences between the right and
the left eye to gain more accuracy. However, the use of two classifiers
instead of only one doubles the number of operations during the boosting
step.

The composition of the training sets for each of the two configurations of
the classifier is detailed in Section [(.6.41

Geometrical Restrictions

To limit the number of false alarms (i.e., negative candidates) produced by the
boosting classifier in its two configurations —and also to increase the velocity
of the stage— some simple geometrical restrictions on the area analyzed by the
classifier are set. These restrictions are motivated by the fact that given a
detected frontal face, the eyes are always located in the upper half of the face
region, and thus the lower half can be excluded from the search.

Given a face region of size h X w pixels, where h is the height and w the
width of the region, the search area, R, to extract eye candidates is:

R(z,y) = {z]0 <z <w,y|0 <y < 0.6h} (5.1)

Depending on the classifier configuration, we find that:
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e In the case of using the single classifier configuration, R is the scan area
of the boosting classifier.

e In the case of using the double classifier configuration, the two classifiers
work on the same area, R. The overlapping of the two boosting classifiers
is intended to provide the algorithm with further consistency: the left eye
boosting classifier may help to find right eyes, and vice versa. Also, when
a face is not completely frontal (e.g., a face in half-profile), the eyes can
be located displaces from its corresponding half of the face-region.

In Figure[5.8] the geometrical restrictions can be seen, restricting the search
areas of the boosting classifier for both configurations. In the picture, the search
area R corresponds to the union of the regions painted in blue, red and their
intersection.

Figure 5.8: Diagram of the geometrical restrictions set to restrict the searching
areas of the boosting classifier.

With these restrictions, 60% of the area that has to be scanned is skipped.

5.6.3 Clustering and Classification techniques

During the location of eye candidates, the boosting classifier exhaustively scans
the face region delimited by the face bounding-box. Due to its nature, the
boosting classifier is robust against small variations in translation and scale.
This means that around each eye and each false alarm multiple detections will
be found.

Therefore, every classification is presented as a cloud of detections around
the candidates. These clouds make the number of detections, ng, sometimes
extremely large, even when the classifier is working properly. Figure shows
two examples of clouds of points around the eyes, specifically in the images
corresponding to the Boosting column.

It is a goal of the Eye Candidates Location stage to reduce the information
contained in a face region into a few candidates, potentially centered on the
eyes of the individual. To fulfil this goal, it is critical that a technique to
produce single eye candidates from the clouds of detections be discovered. This
is equivalent to reducing as much as possible the number of final candidates per
eye, n. < ng.
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The extraction of single candidates is achieved through a two-step process.
First, all the detections given by the boosting classifier, d(z,y),0 < k < ng, are
clustered into candidate sets, [41, Ag, ..., A;], and then a unique representative
candidate is given for each of these sets, A; — c*(z,y),0 < i < ne.

Given a candidate set A;, its representative candidate, ¢;, is calculated as:

1 Ndi
Z dii(z,y),Vdyi(z,y) € Ai, (5.2)

n=1

3 —

c*(z,y) o
where ng; is the number of detections, dg;(z,y), that generate the set A; after
the clustering step.

Regarding the reduction of the number of candidates, this thesis analyzes
different clustering techniques, which can be found in the literature [50].

Generally speaking, the clustering techniques can be classified into two
groups: the Partitioning Methods and the Hierarchical Methods. The parti-
tioning methods comprise all those techniques in which there is an a priori
knowledge about the precise number of sets that will be obtained after the clus-
tering process; while in the hierarchical approaches, there is a clustering rule
that conditions the way the elements are joined until this rule cannot be sat-
isfied any more. In this case, the number of final sets is not known until the
clustering process ends.

In our system, it is completely impossible to know a priori the final number
of eye candidates, n., as it depends on the results obtained after the boosting
classification. Therefore, as the partitioning methods for clustering do not fit
with our problem, the focus of this thesis is on the hierarchical techniques.

The hierarchical methods are usually based on a bottom-up clustering ap-
proach. They start by assuming that each individual sample constitute their
own set in the first iteration; then, recursively, each of these sets is clustered
with those that fulfil distance rules, generating the so-called tree-structure or
dendrogram, as Manning and Schiitze detail in [70].

In Figure [5.9] samples and the tree-structure generated after applying hier-
archical clustering can be seen. In this example, a minimum clustering distance,
d, between clusters is established as a rule; the iterative process to generate such
a tree-structure is shown for minimum distance values between d and 4d.

Single-linkage clustering

The most widely-used hierarchical clustering technique is the single-linkage clus-
tering. This method is characterized by its simplicity: in each iteration, two
sets are clustered if the closest pair of samples within them (each of the samples
belonging to each of the sets) are at a distance lower than a maximum distance,
dmaz, defined as the clustering criterion.

Given two sets A and B, of sizes k, and k;, and generated by the samples
a = (xa,ya) and b = (zp,yp), respectively, a maximum distance between
samples of the same set, d,qz, is set such that the condition to cluster A and
B is given by the expression Ds(A, B) < dpma,. This distance between sets is
given by:

DS(A,B) = minij(dist(ai,bj)),o < 1 < ka,O < _] < kb7 (53)

where dist(a;,b;) is the Euclidean distance of the two samples. Even though
other kinds of distances can be defined (such as the Manhattan, Mahalanobbis



74 CHAPTER 5- Precise Face Detection using Eye Location

L I i L i I i L i L I i L i
25 3 a5 4 45 5 0o 05 1 15 z 25 3 a5 4 45 5
(e) (f)

Figure 5.9: Hierarchical clustering, with a distance criterion d. a) Initial sample
data, b) Hierarchical tree for different distance criteria, c) to f) actual clustering
with different distance criteria.

or the maximum norm), the Euclidean distance has empirically been proven to
be sufficient for this problem.

During the design of the Eye Candidates Extraction stage in our system, the
first experiments were performed with the single-linkage clustering. However,
after some initial tests, it was verified that in some cases this method could not
fulfil all the requirements of the stage. Specifically, there were cases where the
results after the clustering were not accurate enough.

These results were a consequence of the nature of the detections given by
the boosting stage. As mentioned earlier, the boosting classifier returns some
clouds of detected points around the eyes, inhomogeneously scattered. Around
a real eye, the clouds of points are frequently clustered in two regions: the center
of the eye (more often around the pupil) and the inner corner of the eye.

In Figure the left image shows a real example of the clouds of de-
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tections after the eye-candidates boosting stage, gathered around the eyes. In
the figure, the two aforementioned regions can be clearly observed. When the
eyes are clustered as shown in the figure, the performance of the stage decays
considerably.

Regarding the distance criterion, d,q., two different problems can be ob-
served:

e When low values of d,,,, are set, the clouds of points are clustered into
several sets and thus generate large number of candidates, placed between
the eye center and the corner of the eye. The main problem is that in most
of the cases none of the candidates are finally located in the eye-center,
which is the goal of this stage.

e When large values of d,,, are set, all the detections around the eye center
and all the detections around the corner of the eye are clustered into a

single candidate, usually placed in the gap between the two areas, thereby
decreasing the accuracy of the location. This example can be seen in

Figure
Clustering Algorithm ' Result '

Eye Cloud Detection' SINGLE-LINKAGE [
METHOD

|

COMPLETE-LINKAGE
METHOD

Figure 5.10: Example of a cloud of detections around the eye region and the
clustering using two different clustering algorithms.

Complete-linkage clustering

To avoid the problems of the single-linkage clustering, a second branch of clus-
tering methods to extract single eye candidates has been analyzed: the complete
linkage clustering methods [50], also known as the furthest neighbor clustering.
These techniques are iterative; on each iteration, two sets are clustered into one
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if the distance between the furthest pair of elements within them is lower than
a maximum distance. This distance criterion is the same as in the single-linkage
clustering, D(A, B) < dpmaz, but the distance itself is defined differently:

D(A, B) = max;j(dist(a;,05)),0 <i < kq,0 < j <k, (5.4)

where dist(a;, b;) refers to a Euclidean distance.

Setting up the value of the distance d,,q., the clustering produced by the
complete linkage method normally leads to a greater number of sets of smaller
size (i.e., they are more compact). Figure shows a theoretical example of
clustering performed with the single-linkage clustering and the complete-linkage
clustering. Note the different results obtained, depending on the technique
performed.

(b)

Figure 5.11: Hierarchical clustering for a) Single Linkage Method and b) Com-
plete Linkage Method.

The disposition of the clusters obtained with the complete-linkage clustering
method are in tune with the goals of this stage. With an appropriate d,,q., the
clouds of false positives that are placed around the corner of the eyes will not
interfere in the location of the candidates corresponding to the clouds actually
centered in the eyes, as they will be clustered as different sets.

Figure [5.10] depicts a real example of the extraction of eye-candidates on a
face region after applying single-linkage and complete-linkage clustering tech-
niques. As mentioned in Section the detected face regions are rescaled to
a size of Trescated = 115 X 115 pixels, allowing a constant value for the maxi-
mum distance to be fixed, d;,q,. For our eye location system, we empirically
arrived at the conclusion that the optimum distance is d,,q, = 16 pixels, which
corresponds to distances usually around 20% of the inter-ocular distance. This
distance maximized the number of cluster detected around a circumference of
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radius d < 0.5i0d, using the databases of YALE and ARD
It should be noted that the distance value obtained with the experimentation
is less than half the size of an eye.

Candidates classification

After the clustering, the last step of the eye-candidates extraction consists of
a simple classification. This is done by labeling each candidate with its posi-
tion in the face region: right eye-candidate or left eye-candidate, respectively. If
the boosting classifier is in double configuration, all the candidates are labeled
without taking into account if the detections came from the right-eye boosting
classifier or the left-eye boosting classifier. To ensure more stability in the sys-
tem, a certain degree of redundancy has been favored: to exploit the similarities
of the right and left eye, the right-eye boosting classifier is allowed to detect left
eye-candidates and vice versa. The labeling process is completely independent
from the result of the classifier, as seen in Figure For example, a candidate
detected by the left-eye classifier should not be necessarily labeled as a left-
eye. The labeling process will be performed in a subsequent stage depending on
geometrical restrictions.

5.6.4 Training of the Boosting Classifier

The stage of Eye Candidate Extraction works on the detections given by a
supervised boosting classifier, as mentioned earlier.

During the training phase of the classifier, the discriminative features are
selected, and the classification rules are learned from them. The performance
of the classifier directly depends on the nature of the features (Haar-like, sub-
traction of pixels, etc.), but also on how representative the training samples are,
both positive and negative.

In this work, a large and consistent dataset has been exclusively developed
to fulfil the requirements of the eye-candidates boosting classifier. This dataset
consists of a large number of eye images and also non-eye images, both directly
generated from the face images of the BiolD public database ﬂ The eye sam-
ples extracted from these images are not only cropped, but also include some
rotation, scaling and post-processing has also been applied. From the same face
images, the two training subsets have been extracted: positive samples (i.e., eye
samples), and negative samples (i.e., non-eye samples).

Before the extraction of the samples from the images, the faces are geomet-
rically normalized using the ground-truth position of the eyes. The result of
this normalization is a face image of size 125 x 160, with the eyes located in the
coordinates (25,30) and (100, 30), respectively.

Next, the positive and the negative samples of the eye dataset are described:

e Positive samples: They are the models of the elements to be detected
( the eyes). To build this subset, we generated positive samples by ex-
tracting two windows of size reye = 15 X 15 pixels from the normalized
face images, centered in the middle of the eye. Originally, up to 3400 eye

7See Appendix
B

8See Appendix
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images were selected, corresponding to the face samples of 25 different in-
dividuals. The eyes in this set were selected in different gestures to cover
a wider range of situations (opened, partially closed, frontal gaze, lateral
gaze, etc.).

In real images, usually when a face is detected the eyes are not horizontally
aligned with the borders of the face bounding-box. The result of this is
that an eye may present different aspects regarding the specific degree
of misalignment. Also, in real images is easy to find noise coming from
different sources.

As Li et al. probe in their work [62], artificially incrementing the set of
samples to be classified by AdaBoost can lead to a better performance
when the new samples add significant information. In our case, a good
way of incrementing the number of positive candidates in the training set
was to generate new images directly derived from the initial set of eyes.
Summarizing, the number of images was artificially augmented by two
means:

— All the samples were rotated, taking the center of the eye as the fixed
point, a total of 0°, £2° y +4°.

— Random Gaussian white noise was added to all the samples, including
the samples generated by rotation, to emulate the noise that can be
found in real scenarios.

If I.ye is defined as the initial set of samples (i.e., the initial 3400 eye

images), the final set of samples, directly derived from the first, Iy, is
defined as:

Teye(i) = Ngloye (i) + N (i), 6 = 0°,42°,+4°, (5.5)

where Ay is the transformation matrix that rotates the original eye im-
age a total of 0 degrees, i is the current sample and N (i) is a random
component of white Gaussian noise. Considering a grayscale image with
pixel intensities in the range 0 < I(i) < 1, the Gaussian noise N (i) is
generated with zero mean, p = 0, and a standard deviation of 10%. The
modelation of noise in many cameras can be modelled with a Gaussian
with the parameters before mentioned, as it is proved in the work of Irie
et al. [49].

After the combination of both processing steps, the final set derived from
the original set of positive samples consists of more than 60.000 images
for each type of eye (right and left). In the eye candidate boosting clas-
sifier, the main difference between the single and double configurations is
the composition of the subsets of positive samples. In the single classi-
fier configuration, the boosting cascade of classifiers is trained using the
120.000 samples corresponding to both subsets, the right and the left eyes.
In the case of the double classifier, each of the boosting cascades is trained
using only one of the subsets, the right or the left, respectively.

Negative samples: They are an example of what an eye does not look
like. Regarding this set, it must be borne in mind that the eye-candidate
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extraction is performed directly on previously detected face regions. There-
fore, the negative samples should be extracted from all the areas in a face
except for the eye regions.

Starting from the BiolD normalized face images, the negative samples
were generated by applying a low pass filter in two square patches of size
50 x 50 and each centered on the middle point of the eyes.

Figure shows some examples of positive and negative samples used to
train the eye-candidates boosting classifier. In the case of the positive samples,
both the original images directly extracted from the BiolD database and the
processed images with rotation and noise addition can be seen.

AR PR
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(b)

Figure 5.12: a) Positive samples and b) images from where negative samples are
extracted and used to train the boosting classifier for the coarse eye location.

In the following section, a validation of this stage is given as a stand-alone
subsystem, without taking into account the remaining parts of the eye location
system.

5.6.5 Validation of the Eye-Candidates Extraction Stage

In this section, some evaluation results are obtained after applying the boosting
stage for the eye-candidates extraction. These experiments try to prove that
this stage generates a limited number of eye-candidates with high reliability;
there should be at least one true candidate for the right eye and one for the
left eye in the list of candidates. Also, the number of false alarms among the
candidates should stay at some controlled levels.

Before running the performance experiments and selecting an appropriate
dataset, some internal parameters have to be tuned during the training phase
(independent of the configuration of the classifier selected).

Next, the tuning and the performance experiments are explained, along with
the results obtained.
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Tuning of the boosting classification cascades

One of the most important aspects of parameters during the training of the
boosting technique is the number of weak classifiers that constitute the training
cascade (known as the number of stages of the cascade). Generally, a high
number of weak classifiers trained will produce accurate results (with a low
number of false detections), but the classifier may also lose some true positives
(in our case, some eyes might not be detected). On the contrary, reducing
the number of stages in the boosting cascade would increase the recall of the
detector, producing a higher number of detections (usually we can reach a 100%
of eyes detected), but at the expense of incrementing the number of false alarms.
In this case, the classifier could become useless, as it would not be able to discern
between true and false positives.

To avoid both extremes, a trade-off between having high detection rates and
an affordable number of false alarms had to be reached. For the experiments,
the three classifying cascades (one for the single classifier configuration, and two
for the double classifier configuration) were trained with the same number of
weak classifiers, NCjnitiar = 15. The value of NCjyitia; Was automatically fixed
for a given classification rate of 99.99% of positive classifications on the training
data. Then, the number of stages in each of the cascades was reduced until the
performance on the training set was close to 99% (decreasing the probability of
false alarms as much as possible).

e After the cascade tuning experiment, the number of stages in the three
boosting classification cascades was set to NCoptimar = 12.

Further on, all the experiments were performed considering this number of
stages of the classifying cascade.

Validation of the boosting classifier

A series of experiments were designed to evaluate the performance of the Eye-
Candidates Extraction stage. In these experiments, the extraction algorithm
is applied to a set of evaluation images, and the location of the eye-candidates
extracted is compared to the ground-truth positions of the actual eyes of the
faces.

To evaluate the method, the performance measures introduced in Section [3.3]
were used. If the error in the location of the eye was N0 < 5%, relative to the
inter-ocular distance, the eye was considered a positive. This criterion is quite
demanding compared to the most commonly-used criterion in the literature,
where the threshold is set to Nepror < 25%.

The experiments were performed using the FRGCv2 Experiment 4E| dataset,
motivated by its high number of images, and also to be consistent with the
validation tests performed in the previous stage.

Table summarizes the results of the experiments. These results are the
hit rate and the number of false alarms obtained after applying the boosting
stage for eye-candidates location. Specifically, the hit rate in this experiment is
the percentage of face images in which at least a valid candidate is extracted for
each of the eyes. The number of false alarms is the number of false candidates
extracted around each of the eyes.

9See Appendix
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Given that the boosting classifier in this stage has been designed to perform
with two different configurations, the single and the double (see Section ,
the table shows the results for each of them. To make the evaluation for both
configurations consistent, the hit rate always makes reference to the percentage
of faces in which a true candidate for both eyes was extracted simultaneously.

Simple Classifier Configuration

Dataset (Nr. images) | Hit Rate (%) False Alarms/eye
Training (12776) 92.87% 0.396
Target (16028) 97.86% 0.463
Query (8014) 90.69% 0.259

Double Classifier Configuration

Dataset (Nr. images) | Hit Rate (%) False Alarms/eye

Training (12776) 95.35% 0.630
Target (16028) 99.33% 0.660
Query (8014) 93.15% 0.554

Table 5.3: Hit Rates and False Alarms with the eye-candidates boosting classifier
using two configurations on FRGCv2 Experiment 4.

A first analysis of the results shows the following results:

e The boosting classifiers extract eye-candidates with high rate values, mak-
ing them suitable for our system. In all of the tests performed, the hit
rate was over 93%.

It should be noted that the results in this stage accumulate the errors
from previous stages, as a non-detected face in the first stage is counted
as a failure. Also, the number of false alarms detected around each eye is
lower than one per image, which increases the reliability of the stage.

e Comparing the performance obtained with the two boosting configura-
tions, it can be concluded that for all cases the double classifier achieves a
higher performance. In other words, when two different boosting cascades
are used, one for each of the eyes (left and right), the results are more
accurate than using a single boosting cascade for both.

In subsequent phases of our system, the eye-candidates boosting were always
configured using the double classifier.

5.7 Feature-based Eye-Candidate Selection

The two first stages of the eye location system proposed in this thesis extract
information from detected faces, producing a preselection of eye-candidates,
labeled right-eye candidates and left-eye candidates.
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In this section, the selection of the optimal eye-candidates is described to
finally decide on the precise location of the eyes. The synthesis from multiple
candidates to the final eye-pair is done using a feature-based mechanism based
on the extraction of HOG descriptors and a later classification step using SVM
machines.

This section starts describing the global architecture of the stage, followed
by the description of each of the individual steps. Finally, some validation
experiments on the SVM classifier are performed.

5.7.1 Architecture of the Eye-Candidates Selection

After the previous boosting stages, the eye location system has to deal with
an undetermined number of eye-candidates. To determine the final location of
the eyes, all possible combinations of eye-pair candidates are generated, always
considering pairs constituted by right and left eye-candidates, and then deter-
mining which eye-pair defines the location of the face with greater accuracy. In
this text, the eye-pair candidates are also called face-candidates, as an eye-pair
combination generates a potential face-like image.

The current stage is aimed at moving from eye-candidates to face-candidates
and extracting discriminative information from them to perform a classification.
Thus, for every detected face a total of Ck,0 < k < Neandidates face-candidates
is generated, where n.gndidates 1S the final number of eye-pair candidates.

The output of the boosting classifiers is conditioned by the trade-off between
detection rates and false alarms. From the results obtained during the validation
of the previous stage, it can be seen that the number of false alarms is too high
for the goals and requirements of the final system.

In the current stage, when the eye-candidates are paired to generate face-
candidates, the previous false alarms multiply the errors in the current stage.
One single negative eye candidate generates several negative eye-pair combina-
tions. To avoid these false alarms deteriorating system performance, it becomes
necessary to find some mechanism to discriminate between positive and false
eye-pair candidates. In other words, the goal of this stage is to perform an ad-
vanced mechanism to select the best face candidate, without incrementing the
computational cost.

The architecture of the eye-candidates selection stage can be summarized in
the following steps:

1. Generation and Normalization of face-candidates: All eye-candidates
are combined to generate normalized face-candidate images. These face-
candidates place each pair of eye candidates in fixed positions. The goal
is to determine the best face-candidate, that is, the one having the most
accurate eye-candidates combination.

The normalization of the face-candidates helps avoid problems with the
scaling or the rotation of the eyes. This can be useful for the extraction
of local texture features.

2. HOG Features Extraction: After the normalization of the face-candidates,
some local descriptors extract biometric information from the a priori-
known locations of the eyes. In this thesis, the local texture features
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used for this goal are the Histograms of Oriented Gradients (HOG) de-
scriptord™)]  The decision to use these features was made based on the
high descriptive power of the HOG features, reinforced by the previous
normalization step, which reduces the variability in the eyes.

In this step, two different feature vectors are extracted for every face-
candidate, covering both of the a priori known eye locations. However,
the information of these vectors is somehow combined later, producing a
unique signature for each combination of eye-candidates.

3. SVM classification: The selection of the optimum eye-pair after the
normalization of the face candidates is based on the information extracted
from the eye locations using HOG descriptors. The feature vectors of
each face-candidate are used to train a Support Vector Machines (SVM)
classifier.

The SVM [29] is a supervised classifier that sets a non-linear separation
among positive and negative samples. In our system, the SVM determines
whether the potential eye-pair of the face-candidate is a true positive or a
false alarm (i.e., with at least one of the candidate not being an eye). Along
with the classification results, the SVM provides a soft-output, which is
an indicator on how reliable that classification is. Finally, the best eye
location corresponds to the eye-pair classified as a true positive and having
the highest reliability.

Next, each of the steps integrating the Eye-Candidates Selection stage is de-
scribed more in detail.

5.7.2 Generation and Normalization of face-candidates

To select the best eye-pair (in terms of accuracy) from all the eye-candidates, all
possible combinations of right and left eye-candidates are explored. Given a face
region following the Eye-Candidates Extraction stage, the boosting classifier
has ncr samples labeled right eye-candidates, ¢ (z,y),1 < i < ncg and ncy,
samples labeled left eye-candidates, ch(x, y),1 < j <ncr. A total of neomp =
ncor X nep eye-pair combinations are then performed. From these combinations
a equivalent (or lower) number of normalized face candidates, ncandidates <
Neomb, 1S extracted.

The possibility of obtaining less face-candidates than eye-pair combinations
is given by the fact that some geometrical restrictions can be applied, so that
some combinations that logically cannot come from positive candidates can
be rapidly discarded. The geometrical restrictions can be summarized in two
points:

e A minimum separation distance between the right and the left eye-candidates,
10dmin, is required. The reason for this restriction is purely physiological:
it is known that the distance between eyes is proportional to the width of
a face and thus, eye-pairs with very close candidates contain at least one
negative candidate with high probability.

10See Chapter
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e The eye-pairs in which the candidates are at an angle with the horizontal
of the face greater than a maximum angle, a4, can also be disregarded.
This limitation is imposed by the specifications of the Coarse Face De-
tection stage, as the AdaBoost used is limited to detecting faces with an
inclination lower than «;,4,; any eye-pair with higher angles inevitably
has at least one negative eye-candidate.

Some problems are derived from the case in which given a detected face
region, the eye-candidate boosting fails to detect at least one of the two eyes (i.e.,
ncer = 0 or ngyp, = 0), added to the case where there is no valid combination of
eye-pairs after applying the geometrical restrictions. In both cases, the number
of final eye-pair candidates is null, Neandidates = 0 and thus the face region is
considered a false alarm from the Coarse Face Detection stage. This way, the
extraction of eyes becomes a mechanism to reduce the number of false faces
detected by the AdaBoost classification in the first stage; nevertheless, poor
performance in the later stages could also reduce the number of true detections.

Figure displays a real example of the face-candidates generated from all
combinations of the eye-candidates detected in a face-region. In this example,
two right and three left eye-candidates were extracted in the boosting stage,
and from them a total of six eye-pair combinations were generated. Note that
some of the face candidates corresponding to the eye-pair combinations with at
least one negative candidate do present a very different aspect from the rest of
the faces.

‘2 right-eye candidates . . .

* 3 left-eye candidates

6 face-candidates (possible eye-pairs)

Figure 5.13: Face candidates extracted from all the eye-candidate combinations
from a single face region.

Following the specifications of the AdaBoost classifier and the cascade for
frontal faces provided by OpenCV, in this work the maximum angle is set to
Qmaz = £20°. With regard to the criterion of minimum distance between eyes,
considering that all the detected face regions are rescaled to a fixed size of
Trescaled = 115 X 115 pixels, the distance iod,,;, is set empirically to 20 pixels,
which is between the 15% and the 20% of the width of the face.

From every eye-pair combination, a normalized face candidate of size 125 x
145 is generated. In this normalized face, the left and right eye-candidates are
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located in fixed positions, r(z,y) = (25, 35) and I(z,y) = (100, 35), respectively,
establishing an interocular distance of iod = 75 pixels.

5.7.3 HOG Features for Eye Description

After the normalization of the face-candidates, a single feature descriptor, Dy, is
generated for each of them. This feature descriptor consists of the concatenation
of the two feature vectors obtained after the extraction of local texture features
from the two eye locations of the face-candidate. That is:

D, = descr(%) U descr(@), 0 < k < Neombineds (5.6)

where the function descr(z) makes reference to the extraction of a local descrip-
tor on the coordinates of a specific candidate, =, and c%k and c7L . are the left

and right eye candidates ¢, and ¢} after the normalization of the face C.
It is important to remark that each eye-candidate, for both the right and
the left (c; or ¢}), generates not only one face-candidate, but a whole bunch

of them (czék and cJL 4> Tespectively). Each of the face candidates is completely
independent, and therefore contains unique information.

Intuitively, it is easy to understand that the information given by each eye-
candidate on a face-candidate is relative to the information provided by the
complementary eye-candidate. For example, a true right eye-candidate will
produce a positive face-candidate when combined with a true left eye-candidate,
but it will produce a negative (distorted) face-candidate when combined with a
false left eye-candidate. The distortion of the negative face candidates is seen
as a misalignment and a poor scaling of the normalized image. In Figure [5.13]
some examples of positive and negative normalized face candidates and their
different aspects are shown.

During the classification of eye-pairs, the most sensitive case is given when
an eye candidate is combined with a non-eye candidate. A real example of
this combination is displayed in Figure .I5]c. In this case, although the left
eye-candidate is correctly located, the eye-pair should be classified as negative.
Thus, the necessity of using a precise selection mechanism. The design of such
a mechanism is influenced by the following issues:

e The local descriptors are extracted only on preselected points and their
location in the normalized faces is fixed. This helps avoid intensive scans
and allows the use of complex local descriptors without increasing the
computational load.

e After their normalization, the positive face-candidates present a similar
aspect, while the aspect of the negative candidates tends to be distorted in
scale and rotation. Thus, the descriptor selected can be less restrictive, as
the invariance to these factors for the positive samples is given beforehand.

A great variety of local descriptors can be selected to fulfil these requirements
(as shown in Chapter [4)). The results obtained in recognition tasks led us to
examine the use of the Histograms of Oriented Gradients (HOG), which are
local statistics of the orientation of each pixel in an area around a central point
and the landmark we want to describe. The use of HOG descriptors is novel in
the matter of fine eye location.
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If the HOG features are considered, the equation [5.6] that represents the
most significant information for each eye-pair becomes:

Di(chp, ) = HOGe, (25,35) U HOG, (100,35),0 < k < npjace  (5.7)

where HOG, (x,y) represents the extraction of a HOG local descriptor in cen-
tered in the pixel with coordinates = and y of the candidate image Cj.

Regarding the internal parameters of the HOG descriptors (detailed in Chap-
ter, in this stage we used the standards defined by Lowe [65]: a square layout
with N, = 4 spatial cells and IV, = 8 orientation bins per histogram, producing
a HOG feature vector of NE x N, = 128 elements. The selection of these values
was motivated by the results obtained in Lowe’s work.

Also, from the results presented in the experiments in Section[6.6.1} the size
(in pixels) of each spatial cell is set to 6 x 6 pixels, producing a square HOG
region of 24 x 24 pixels.

Finally, regarding the Gaussian envelope that weights the module of the
gradients for each pixel in the area described, empirical results show that its
optimal workpoint is achieved when the function is centered on the landmark
and has a standard deviation equivalent to half the size of the HOG region
(which in our case is o = 12 pixels).

Next, the classification of the HOG features to discriminate between positive
and negative samples of the eye-pairs is described.

5.7.4 SVM classification of HOG features

After selecting the HOG descriptors to describe the eye locations in the normal-
ized face-candidates, it is necessary to design a methodology to determine the
most representative eye-pair. The best option is to use a classifier able discrim-
inate between the positive eye-pairs (where both eye-candidates are positive)
from negative eye-pairs (in which, at least one is a negative eye-candidate).

The selection of the classifier was determined by a series of context factors,
summarized in the following:

e Running the previous stages of the system on training images generates
as many positive and negative normalized eye-pair as necessary. This led
us to select a supervised learning classifier. The more representative a set
of samples, the better performance the classifier will achieve.

e The main goal in this step was to select the optimum eye-pair, and there-
fore it is critical to obtain a confidence value from each of the samples
classified. A higher confidence implies in this case a better location of the
positive samples.

e As this stage provides the final location with higher precision, the boosting
solution used in previous stages did not fit here. In the previous stage,
the eye-candidates were extracted through an exhaustive scan performed
at a pixel level. On the contrary, the classifier in the current step does
not work directly on the image information, but on local HOG descriptors
extracted from specific locations.

e Due to the complexity of the problem, the high dimensionality of the
data and the lack of information about its distribution in the feature
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space, it was difficult to achieve good discrimination using linear classifiers:
a non-linear criterion appeared to be more practical. The decision of
using SVM was taken considering its high accuracy, ability to deal with
high-dimensional data such as local texture descriptors, and flexibility in
modeling diverse sources of data. By the use of kernel functions, SVM
gains flexibility in the choice of the form of the decision surfaces that
separate eyes from non-eyes, which needs not be linear.

Considering these factors, the classifier selected was the Support Vector Ma-
chines (SVM) [111].

SVM classifiers usually treat the problem of classifying samples as a bi-
nary problem. Given an initial feature space where all the feature vectors from
positive and negative samples are placed, the goal of the SVM is to define a
discriminant criterion to classify them. However, as the samples in the feature
space usually follow a complex distribution, the SVM cannot solve this problem
at first as a linear classification. To convert a non-linear problem into a linear
one, the SVM creates a hyperspace, where the samples have greater dimension-
ality than in the feature space. This hyperspace is generated using some kernel
functions combined via dot products. The sample distribution in the new space
intends to be simpler than in the original one. If this is the case, the samples
are linearly separable by means of a hyperplane that constitutes the non-linear
separation criterion in the feature space. The selection of an appropriate ker-
nel function determines the distribution of the samples in the hyperspace, and
thus the discriminant criterion that is learned, in the feature space. Figure [5.14]
shows an example of two-dimensional data classified with linear, polynomial and
Gaussian kernels.

The SVM classifiers also provide soft output, which means that the classified
samples are not just labeled with a class, but also obtain a value that measures
the confidence in that classification. With the SVM classifier, the samples are
labeled positive and negative, and a real value indicates how close such samples
are to the separating criterion (coming from the hyperplane in the projected
space); the samples with higher confidence are farther from said hyperplane,
which means they are easily discriminated from potential outliers, closer to the
hyperplane.

In a first set of preliminary experiments, two ways of combining the de-
scriptors from both candidates in each eye-pair were studied: first, a previous
combination approach was tried, which consisted of concatenating the feature
vectors from the candidates before performing the SVM classification, and a
second option was to perform the SVM classification independently on each of
the eyes of the eye-pair, and then do a subsequent combination of the classifica-
tion results. Using the subsequent combination configuration of the SVM, the
final confidence value from an eye-pair is the sum of the individual confidence
values obtained separately for each of the candidates.

The preliminary results obtained for the two configurations of the SVM clas-
sifier showed results similar to those obtained after experimenting with the two
configurations of the boosting classifier (Section . The independent clas-
sification of samples in the subsequent combination performs better than the
combined classification using the previous combination. Therefore, the subse-
quent combination configuration was selected for further experiments.

For simplicity, the positive samples of the eye-pairs are henceforth called
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(b)

(d)

Figure 5.14: Example of discrimination of a set of samples using SVM with dif-
ferent kernels: a) Original sample set, b) Linear, ¢) Polynomial and d) Gaussian
discriminations.

eyes in this text, while the negative samples, which are the false alarms from
the previous stage, are called non-eyes. In this work, negative eye-pairs are
those containing one or two candidates labeled as non-eyes. Also, all the images
where all the eye-pair combinations are classified as negative are considered false
alarms.

The following part of this section is aimed at studying the training and
setting of the SVM classifier to adapt its performance to the specific problem
of fine eye location.

5.7.5 Training Methodology for the SVM classifier

To set up the SVM supervised classifier, two requirements should be considered:

1. The training sample set is organized into two groups, positive samples
(eyes) and negative samples (non-eyes). These groups need to contain a
wide variety of significant samples, as the classification rules to be learned
must cover a wide range of cases. Also, all training samples have to
be produced under the same conditions as those produced during the
validation and test of the system.
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2. A kernel function has to be selected to determine the distribution of the
positive and negative samples in the feature space. This distribution is not
known beforehand, and therefore the experiments should lead to choosing
the best option to separate the samples more precisely.

Next, the composition of the training datasets generated to train the SVM clas-
sifier is detailed. Then, the last section of this chapter is devoted to explaining
the experiments performed to determine the best kernel function fitting our
problem.

Generation of the training subsets for the SVM classifier

The samples classified by the SVM are the HOG feature vectors that describe
the region centered on the eye locations of the normalized face-candidates. To
generate the training samples for the SVM classifier, it is fundamental to emu-
late all the previous processing —eye-candidates extraction, eye-pair combination
and face-candidate normalization— step by step. From each training image, we
expected to extract up to two positive feature vectors from the eyes, and an un-
defined number of negative feature vectors from the false alarms. The diagram
in Figure shows a few samples used to train the SVM classifier.

To generate the training samples, a subset of images of BiolD and the CVL
datasetﬂ consisting of 223 images that belong to 118 individuals was required.
The need for ground-truth information about the location of the eyes motivated
the selection of these two datasets.

As a result of the boosting stages on the training samples, near 2000 un-
labeled eye-candidates were obtained, containing both positive (real eyes) and
negative (false alarms) samples. Due to the high quantity of false alarms (around
three per eye), it became necessary to automatically classify them. The criterion
to perform this labeling was based on the ground-truth information about the
actual eye locations, compared to the location obtained for each candidate. A
sample was considered positive when its actual distance error was Neppor < 5%
of the iod. This error is approximately equivalent to the size of the pupil. The
rest of the detections were considered negative candidates. With this criterion,
approximately one third of the 2000 samples were labeled positives and two
thirds, negatives (false alarms).

Depending on the eye-candidates, the normalized face-candidates that are
generated can be classified into three different categories:

e Positive Face-Candidates: Normalized faces generated by the combi-
nation of two positive eye-candidates. These faces present a homogeneous
aspect regarding the orientation, relative position and scaling of the face,
and produce positive feature vectors for both eyes. An example of this

category is displayed in Figure a.

e Negative Face-Candidates: Normalized faces generated by the com-
bination of two negative eye candidates (i.e., two false alarms). These
faces are highly distorted in relative position, rotation and scale. The fea-
ture vectors extracted from the fixed eye locations produce two negative
samples. An example of this category is displayed in Figure [5.15]b.

11See Appendix
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e Hybrid Face-Candidates: Normalized faces generated by the combina-
tion of one positive and one negative eye-candidate. In this set, the faces
are distorted only to a certain degree. In some cases, the distortion can be
so slight that it would be difficult to be detected by the naked eye. The
feature vector extracted from the negative sample can be clearly used as a
negative sample. However, it is difficult to define the utility of the positive
candidate, which is centered on an actual eye. Although it represents a
true sample in location, the complementary eye produces a distortion in
scale and rotation of the normalized candidate. Therefore, these samples
will not be considered for the training phase. An example of a hybrid
normalized face is is displayed in Figure [5.15c.

(b) (c)

Figure 5.15: Example of the three categories of normalized face candidates:
a) Positive Face Candidate, b) Negative Face Candidate and ¢) Hybrid Face
Candidate.

After extracting both HOG feature vectors from the eye-pairs generated with
the 2000 eye-candidate samples, up to 11078 positive samples (two from each
positive face-candidate) and 22160 negative samples (from the negative and
hybrid face-candidates) were obtained. With the size of these training sample
sets, a representative variety of samples was obtained.

Study of the optimum kernel function in the SVM classifier

Once the subsets of positive and negative samples are generated, the next step
consists of analyzing their distribution in the initial feature space to perform
the optimal classification. There are no previous works in the literature that
use SVM classifiers on HOG descriptors for eye classification. Therefore, there
is no criteria by which kernel functions may address the eye location problem.
This forced us to study the selection of an appropriate kernel function.

In this thesis, two kernel functions were used for the SVM classifier: Poly-
nomial and Radial Basis Function (RBF). Both kernels are parametric, so we
needed to vary their parameters to find the best configuration. Specifically, the
equations that describe the projection of the original samples to the hyperspace
using these two kernels are as follows (see [29] for further details):

k(zi,x5) = (z; - 25)", (5.8)
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in the case of polynomial kernels, and
k(z;i,2) = exp(—o||z; - x;])?, for o > 0, (5.9)

in the case of the Radial Basis Function kernel.
The parameters in both functions are the grade of the polynomial, n, in the
first case, and the standard deviation of the Gaussian function, o, in the latter.
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Figure 5.16: True Positives and True Negatives of single eye detections ob-
tained with SVM using two kernels functions: a) RBF and b) Polynomial.

A set of experiments was designed to determine the optimal values of the
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parametric kernel functions. In these experiments, some classification rates of
the SVM were obtained when applied to the training samples by varying the
value of the parameters n and o for both kernel functions:

e Polynomial Kernel: The grade of the polynomial is in the range n € [2, 10].
The best value is achieved when the number of true positives is maximized
for the lowest grade n possible. Also, a preliminary study showed that the
linear discrimination, n = 1, had quite a poor performance and therefore
it has not been included here.

e Radial Basis Function: In this Gaussian kernel, the variance o is tested
in two range orders, o € [0.1,1]U[1, 10]. Again, the best value is achieved
when the number of true positives is maximized for the lowest o possible.

In the experiments, a leave-one-out Cross-Validation methodology was used.
In each iteration, one element of the training dataset is extracted and becomes
the query set, while the rest of samples constitute the target set. At the end of
the iteration, the probe sample is labeled and the result compared to its actual
class (positive or negative). After all the iterations, a mean classification rate
is obtained™l

The results of the kernel experiments are presented in three sets of curves:

e Individual Eye Classification: These curves give an idea of the dis-
crimination of the SVM classifier in classifying each single candidate as
eye and non-eye, without considering the eye-pair.

Figure shows the results obtained for the True Positives (Hit Rate)
and the True Negatives. As the total number of actual positive and neg-
ative samples is known a priori, the complementary classification param-
eters (i.e. False Postives and False Negatives) can be directly inferred. In
the figure, the two sets of plots correspond to the two kernel functions
studied, RBF and Polynomial, respectively.

e Eye-Pair Classification: These curves add information about the per-
formance of the system to discriminate the best eye-pair from the remain-
ing face-candidates.

Figure [5.17] shows the results obtained for the True Positives and the
True Negatives of the eye-pairs. Similar to the previous case, the a priori
knowledge about the number of positive and negative samples directly
leads to the extraction of the False Positives and False Negatives. In the
figure, the two sets of plots correspond to the two kernel functions studied,
RBF and Polynomial, respectively.

e Joint analysis of the Kernels: This curve provides a comparison be-
tween the performance of the classifiers with the two kernels studied. It
allows the kernel with best performance and the optimal value of the pa-
rameters to be selected.

Figure displays the results in the form of a Precision-Recall curve (see
Chapter [3| for further details).

12Further explanations on this methodology are given in Chapter
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Figure 5.17: True Positives and True Negatives of eye-pair detections obtained
with SVM, using two kernels functions: a) RBF and b) Polynomial.

From the analysis of the experiments shown in Figure and Figure|5.16
it can be observed that when a RBF kernel function is used, an increase in the o
pushes all the rates to the ideal case, except for the True Positives in single eyes,
which becomes lower for values of ¢ > 3. For the polynomial kernel function,
all the curves monotonically increase with the value of the grade, n, for n < 7.
For n > 8, the rates do not suffer great variations, as the curves remain more
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or less consistent.
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Figure 5.18: Precision-Recall curves of the setting of the polynomial and RBF
kernel functions of the SVM classifier.

Figure [5.18 plots the two Precision-Recall curves obtained after applying the
SVM classifier, using both kernels and varying their parameters. Given that
the optimum working point of the PR curves are those closer to the upper-right
corner of the graph, it can be concluded that the optimal kernel configuration
is achieved with a Radial Basis Function approach with variance o = 3.

e For the forthcoming experiments in this thesis, the SVM classifier for the
eye location is trained using a RBF kernel with o = 3.

5.8 Evaluation of the Eye Location System De-
veloped

To validate all the initial hypotheses presented in Section [5.2] about the imple-
mentation of a novel Eye Location system, some tests were developed. In all,
three different sets of experiments were carried out. First, an evaluation of the
eye location system as a control mechanism of the number of face false-alarms,
and then two studies comparing our system against some state-of-the art refer-
ence algorithms: one in terms of performance results and another to evaluate
the computational load and time response of the algorithms.
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Dataset WITHOUT EYE DETECTION | WITH EYE DETECTION
(Nr. of images) | Nr. of FA FA Rate Nr. of FA | FA Rate
AR (279) 18 6.45% 0 0%

FERET (3542) 23 0.65% 2 0.05%

Table 5.4: Control of the False Alarms produced by the Coarse Face Detection
stage using eye locations in AR and FERET.

5.8.1 Control of the face alarms of a face detection system

Providing a face detection system with an eye location stage does not only
improve the accuracy on the location of the faces, but it also works as a filter to
reject some of the false alarms initially generated. This section describes a set
of experiments that try to probe that our system can be used as a mechanism
to reduce the number of potential false alarms given by some previous face
detection system.

When using robust classifiers, the probability of detecting positive eye-pairs
in regions where there is no real face is very low. Thus, by discarding these
detections the number of false alarms in the Coarse Face Detection stage can
be reduced, thereby increasing the reliability of the system.

To evaluate the control of the false alarms produced in the first stage, we de-
signed an experiment that evaluated two databases with a known number of false
alarms after the Coarse Face Detection: the FERET and the AR datasetd™] In
this experiment, the number of false alarms generated in face detection without
using eye location is compared to the number of false alarms generated after
using eye location.

The results from this experiment can be seen in Table [5.4]

The analysis of these results confirms that the eye location stages can be
used as an additional mechanism to control the information provided by the
Coarse Face Detection stage. In both test datasets, there is a significantly high
false-alarm rejection rate, showing that the system can detect nearly 100% of
the errors in the detected faces.

5.8.2 Comparative Study of the Eye Detection system

The experiments proposed in this section compared our eye location system
and the approaches proposed by the works detailed at the beginning of this
chapterE [62, 24] TT4]. For the experiments, commercial software developed
by Neurotechnologija [73] was also used: VeriLook.

In this comparative study, it is important to use exactly the same datasets
and performance evaluation methods for all approaches. The two datasets se-
lected were: FERET and the initial version of the Face Recognition Grand
Challenge (FRGCv1)7}

For these experiments, our eye location system was tested using all the steps
displayed in Figure [5.6] which is basically the Coarse Face Detection stage,

13See Appendix

14Section p.
ndix

15See Appe
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followed by an Eye Candidates Extraction step (both using boosting classifiers),
and finally, by performing a fine eye location stage with the extraction of HOG
local features that were validated using the SVM classifier.

A summary of the results of these experiments can be seen in Table
and Table The tables show not only the performance results, but also the
values within a confidence interval of 99%. For a detailed description of these
evaluation method, the work in [IT8] is recommended. It should be remarked
that the confidence intervals may vary with the number of the samples and the
estimated probability.

In FERET, the probability of finding a true positive eye-pair was hit =
96.2%, while in FRGCv1, the percentage was even higher, hit = 98.5, consid-
ering a relative location error of N = 10%iod. Figure shows the curves
corresponding to the true eye-pairs detected (as a function of the eye location
error), and defined by the expression . The results are plotted for the two
datasets evaluated.
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Figure 5.19: Curves with the detection rates of the eye-pairs versus their relative
errors in a) FERET y b) FRGCvl1.
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Maximum Ng,ror

5% tod

10% iod

25% iod

Our Solution
L. Jin [52]
P. Campadelli [24]
VeriLook [73]

78.0%,[76.73, 79.22]
55.1%,[53.02,57.17]
67.7%7[61.21, 73.57]
74.6%,[73.29, 75.86]

96.2% ,[95.58, 96.73]
93.0%,[91.86, 93.99]
89.5%,[84,70. 92.92]
96.8%,[96.24, 97.28]

99.6%7[99.36, 99.75]
99.8%,[99.51, 99.92]
96.4%7[93.00, 98.18]
99.9%,[99.75, 99.96]

Table 5.5: Eye detection percentages and confidence intervals in FERET
achieved with different criteria for maximum error distance for the detected
eyes.

Maximum Ne,.popr 5% iod 10% iod 25% iod

Our Solution
P. Wang [114]
P. Campadelli [24]
VeriLook [73]

92.3%,[91.63, 92.92]
91.2%,[90.47, 91.88]
81.2%,[73.53, 84.39]
82.6%,[81.66, 83.50]

98.5%,[98.17, 98.77]
99.0%,[9&72, 99.22]
92.8%,[90.19, 94.76)
97.8%,[97.42, 98.13]

99.6%,[99.41, 99.73]
99.7%,[99,53, 99.81]
97.1%,[95.23, 98.25]
99.9%,[99.79, 99.95]

Table 5.6: Eye detection percentages and confidence intervals in FRGC 1.0
achieved with different criteria for maximum error distance for the detected
eyes

From the figures, it can be seen that our eye location solution achieves the
best results in both databases, compared to the rest of works studied. Regarding
the commercial software in the comparison, VeriLook obtains better results in
the FERET dataset than in FRGCv1. This can be explained by the fact that in
the specifications of this software the images used for training the algorithm were
a selected subset extracted from the FERET and the XM2VTSDB databases.
Therefore, the results obtained with the VeriLook application are less conclusive.

From the study of the results obtained for FRGCv1, our system achieves
slightly better results than the ones obtained by the algorithm proposed by Wan
et al. [I14] when an error Ne,ror < 5% is considered. However, while selecting
less restrictive rates for Neyr.or, the difference between the two approaches are
statistically irrelevant.

It is important to remark that, although the same face databases were used
by all the approaches, not all of them use exactly the same samples, which could
distort the results of the study. To test our approach, we used 99.28% of the
images in the database, while the rest of the authors used a smaller subset of
images. In the case of Wang et al. [I14], the evaluation of the location results
used only the 94.5% of images in FRGCv1 —which corresponds to the quantity
of images in which they detected a face and an eye-pair. Thereby, our results
and the conclusions achieved are validated.
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5.8.3 Comparative Study of the computational cost for
the Eye Location system

Depending on the application using the face detection with eye location al-
gorithms, the computational cost (measured as execution time) of the whole
system can be in many cases as critical as the detection hit rate. However, it
should be remarked that the execution time is a relative measure, as it tends to
decrease with the use of more powerful machines.

Table [5.7] summarizes the time the system required when performing all
stages of our eye location system, as well as the execution time for the rest of
the authors selected for the comparative study [24, [52] (see Section for
further details). Also, notice that for all the algorithms displayed in this table,
the execution time was evaluated without taking into account the coarse face
location stage. When analyzing the table, it can be seen that our eye location

Execution Time | Technical Specifications
Our Solution 195ms £+ 12ms 1.85GHz Dual-Core PC
L. Jin [52] 105 + 19ms 2.93GHz PC
P. Campadelli [24] > 4s 3.2GHz PC
P. Wang [114] > 100ms 2.7GHz PC

Table 5.7: Execution Time per image for some eye location algorithms (without
coarse face location).

algorithm has a behavior similar to the remaining state-of-the-art algorithms
studied, in the sense that non of them can work at real-time (considering real-
time the algorithms operating at 25 frames per second), but still several images
per second could be processed. This allows all the algorithms to work on time-
demanding scenarios; also they can be run on the images of a video frame by
frame. The only exception to this statement is the work of Campadelli et al. [24],
which takes several seconds to analyze a single image.

Achieving such results in our system is a good indication that the distribution
of the computational load among the different stages of our system is, in general,
quite efficient, and also that this efficiency is extended to the concatenation of
all the steps. However, after performing a more exhaustive analysis, we can see
that this is not completely true, as 70% of the execution time in our system was
devoted to the boosting stage for the extraction of eye-candidates. Despite the
simplicity of the classifier in this step, its intensive scanning of the face region
for each possible location and scale still makes it the most demanding stage.

5.9 Conclusions

In this chapter, a fully automatic eye location algorithm was developed, tar-
geting gray-scale frontal faces in semi-controlled scenarios where the two eyes
were visible and preferably open. The novelty of our approach was to mix a
first set of stages of fast and robust boosting classifiers (to detect face-regions
and some eye-candidates) with a second set of steps, where HOG local features
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were extracted from the candidates and a SVM classifier was applied to select
the optimal eye-pair.

The main conclusions drawn from the experiments for eye location can be
summarized in the following:

e Boosting Stages: After experimenting on different datasets, it can be
determined that the boosting classifiers can extract true eye candidates
with high confidence. In none of the tests performed was the hit rate
under 90%. Moreover, the results for the negative candidates show that
on average the classifiers produce only a reduced set of false alarms per
eye, which confirms the reliability of the stage.

Also, the performance obtained when using two different classifiers, each
trained to detect the left and right eyes, respectively, is greater than when
a single classifier is used.

e Local Descriptors: The use of HOG local descriptors combined with a
binary SVM classifier leads to a robust selection of the best eye-pair from a
set of candidates. For a Radial Basis Function kernel in the SVM, setting
the variance parameter to o = 3, the detection rates achieved values of
around TP = 99%, with a false alarm rate of around FFP = 1% during
the training of the classifier. These results outperform the ones achieved
using a polynomial kernel approach.

e Multi-resolution Approach: The location of the eyes performed with
our multi-resolution design provides more precision than other state-of-
the-art approaches. Compared to some key works and a commercial soft-
ware, our algorithm achieves good results with two extensive datasets,
FERET and FRGC. For an error of Neyror < 5% in the inter-ocular dis-
tance, our approach surpassed the results of the other solutions compared.






Chapter 6

Face Recognition using Face
Graph Algorithms

6.1 Introduction

Face recognition is known as the process through which the identity of a subject
is provided using only facial biometrics extracted from an image. The identity
is given in the form of a label. Given a database of known individuals, During
a recognition process the label of the new face image is matched to one of those
in the database.

The implementation of a face recognition system is not trivial as it has to
tackle the issue of the differences between any pair of face images:

e A first group of differences are derived from the extrinsic variations of
the facial analysis, as reviewed in Chapter [I] As an overview, the extrin-
sic variations are those that do not depend directly on each specific face,
but on the context where the images are acquired. Most of the extrin-
sic variations are thus inherent to image conditions, such as illumination
variations, different image resolutions or uncontrolled occlusions in the
scene.

e A second group of differences are derived from the intrinsic variations for
each person. Each face is unique, and thus it defines a person identity.
However, the face of a person is still subject to multiple variations, some
related to its physiology and others related to the appearance of a face at a
specific moment. The identity is a mixture of characteristic features such
as the shape of the face, the skin color, the age or the gender, while the
appearance variations are related to the changes in the gestures, hair-style,
beard or the use of glasses.

When a face undergoes a face recognition process, a biometric representation is
needed. This representation is compared to the models in the database. Due
to the intrinsic and extrinsic variations, a person can show several appearances
and ideally the models in the database should account for them. Face recogni-
tion methods are designed most often as supervised algorithms. They learn the

101
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biometric information from a database of models and, depending on the infor-
mation they provide, the algorithms can be classified into two main categories:
holistic and component-based approaches.

Holistic approaches consider the face as a whole, while component-based
approaches define faces from the information from their individual elements.
Component-based approaches usually locate the elements on a face, extract a set
of features and then define relations between them. This results in component-
based methods having more accurate information than the holistic, though they
increase the complexity of the system and are also quite sensitive to the feature-
extraction step.

The use of local descriptors— such as the texture features (Chapter [4])— can
help to relieve the effects derived from the extrinsic variations. On the other
hand, to tackle the intrinsic variations a flexible solution should be employed.
This solution should locate and extract the local descriptors adaptively for each
person. The feature-based Face Graph Algorithms (FGA) address this specific
problem. Given a face, a Face Graph Algorithm consists of locating a number
of facial landmarks interconnected in a graph. The graph represents the face
that has to be recognized and fixes the location of the local descriptors to be
extracted. Figure provides a flow chart of a generic FGA, consisting of the
following steps:

1. Preprocessing: In this phase, the face is normalized for a common rep-
resentation, running a normalization process such as those presented in
Chapter [2l The initial information for this stage is usually provided by a
face detection algorithm.

2. Feature Location and Extraction: This is the main phase of the FGA.
The landmarks in the face are located and the local features are extracted
from these landmarks to constitute the graph that identifies each person.
Different FGA approaches are characterized by their respective implemen-
tation of this stage. The graph resulting from this stage is represented by
the face feature vector, which contains biometric information of the person.

3. Postprocessing: The postprocessing stage is basically a dimensionality
reduction phase that addresses this issue. Many reduction techniques can
be applied to the face feature vector. In Appendix [A] a summary of the
most common techniques used in this work is provided.

4. Matching: As in any face recognition algorithm, the FGA finishes by
matching the reduced face feature vector with the models that are stored in
the database. The methods used in this stage are described in Chapter [3]

The following sections start explaining the motivation for using feature-based
algorithms, followed by an introduction of the research yielded in this field.
Then two widespread Face Graph Algorithms employed herein are explained,
the Non-deformable Grids and the Active Appearance Models, and our two FGA
proposals are introduced: the HOG-EBGM and the Colored HOG-EBGM. The
last sections of this chapter detail the experiments to evaluate the performance.



6.2- Motivation and Contributions 103

. Image

Face Acquisition |

-

Preprocessing

v

Feature Extraction |

Ees

Postprocessing |

Classification |

~_Identity

Figure 6.1: Global flow chart of the steps in a FGA for face recognition, based
on the extraction of local features.

6.2 Motivation and Contributions

Although several works have already been developed, face recognition is still
an open topic that attracts many researchers. Due to the great quantity of
practical applications that can make use of it, finding new solutions able to
fit real-scenario constraints in face recognition has become one of our main
motivations for studying it. In order to develop our own system , we focused
on developing a Face Graph Algorithm that took advantage of the properties of
the local texture descriptors studied in Chapter [4] finding a practical solution
for the problem of recognizing frontal faces in semi-controlled scenarios.

Some techniques in literature, like Wiskott’s Elastic Bunch Graph Matching
(EBGM) [117] have succeed in combining a good graph location stage with the
extraction of local features. Specifically, this algorithm provides facial informa-
tion using Gabor jets, but it opened the door to explore approaches beyond the
original set-up.

e In this chapter we present the HOG-EBGM, a novel Face Graph Algorithm
based on Wiskott’s approach.

The HOG-EBGM combines the essentials from the classical Elastic Bunch
Graph algorithm (EBGM) for landmark location with the properties of HOG
features to describe the face using local gradients. Taking the EBGM approach
as a baseline, the idea is to replace the Gabor jets with a more robust set of
local descriptors, the HOG features.

In contexts other than related to face recognition, HOG features have proved
to be useful in retrieving biometric information, mainly due to their robustness.
This raises some hypotheses about the inclusion of HOG descriptors in the
EBGM algorithm, which will have to be proven later:
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e Hypothesis 1: The inclusion of HOG descriptors in the original EBGM
graph extraction can lead to a more precise set of coordinates for the key-
points located in the Face Graph.

This hypothesis is supported by the fact that Wiskott’s EBGM uses both
geometrical and texture information. When swapping from the Gabor
jets to a set of local descriptors with more descriptive power (i.e. the
HOG features), the accuracy of the location of the keypoints is expected
to increase.

e Hypothesis 2: The use of HOG descriptors to generate the face fea-
ture vector face can lead to an increase in the effectiveness of the original
algorithm for face recognition purposes.

This hypothesis predicts an improvement in the descriptive, biometric
power of a face, not only through better locating of the keypoints, but
also due to the type of information extracted at those specific landmarks.

Considering these two hypotheses the HOG-EBGM should witness an im-
provement over other FGA used in the literature. The set of experiments de-
signed as part of the present research was aimed at corroborating this fact.

To validate the two hypotheses, in this chapter we should be able to:

e Determine the improvements when we include HOG features into the orig-
inal EBGM, specifically addressing accuracy and descriptive issues.

e Analyze the inclusion of color cues into the HOG-EBGM using a range of
color spaces.

e Compare the usability of the HOG-EBGM algorithm with other widespread
non-EBGM-based face graph algorithms.

To achieve the last of these goals, it is of great importance that fair compar-
isons be performed. This was done by adapting some of the most widespread
non-EBGM face graph location algorithms to the use of HOG features. There-
fore, this chapter includes another significant contribution: the adaptation of
two common FGAs, the Non-Rigid Grids and the Adaptive Active Models, to
use HOG features.

6.3 State of the Art

Face recognition has been studied in depth over the last few decades. The most
common recognition methods are designed to detect individuals who usually
appear in a specific view, most often the frontal view, and in controlled or semi-
controlled scenarios. The more advanced the algorithms, the more difficult the
scenarios they are able to overcome, providing perks such as a greater flexibility
in tackling multiple views, a more robust handling of occlusions, etc.
Researchers have been working diligently on this issue, applying several ap-
proaches to the recognition problem. Some surveys on this topic may be con-
sulted for further descriptions of the most common algorithms [I28] [125]. Next,
an overview of the main tendencies for face recognition is given, remarking the
importance of those algorithms based on the generation of a face graph. This
overview is followed by the analytical description of two off-the-shelf Face Graph
Algorithms: Non-deformable Square Grids and Active Appearance Models.
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6.3.1 Works on Face Recognition

Taking the aforementioned surveys [128] [125] as a reference, the different ap-
proaches for face recognition can be broadly classified into the following cate-
gories:

e Statistical Holistic Methods: These are the methods that consider the
face as a whole. All biometrics are extracted from the face use statistical
approaches which are able to create a specific face representation. The raw
data to create such representations is generally the grayscale information
from the face images.

The most basic approaches of the statistical methods are the correlation-
based techniques (also known as Template Matching) [22,85]. These tech-
niques model each person using a template (sometimes adaptive), so that
each novel face is directly compared to each of the templates models in
the database. The problem with these approaches is that the templates
are extremely dependent on the extrinsic variations of faces.

Another family of popular solutions try to optimally represent the faces by
reducing the dimensions of the biometrics (face feature vectors), in such a
way that the new face representation contain the maximum information. A
good representative of the dimension reduction algorithms is the Principal
Component Analysis (PCA) [107]. Regarding the classification methods
used to classify face vectors in a reduced space, these solutions can be
divided into linear and non-linear.

Zhang et al. [127]. gives offer an analytical summary of the main ap-
proaches for the linear discrimination. One of the most widespread tech-
niques for linear discrimination is the Linear Discriminant Analysis (LDA) [12].
This approach discriminates maximizing the separation between classes,
while minimizes the separation of the members of the same class. That is,
individuals can be discriminated by maximizing the distance between the
models of different people in the final subspace. A number of variations
from the LDA have also been derived, such as the Null Spaces-PCA [46],
Orthogonal-LDA and Uncorrelated-LDA [122] or the Regularized-LDA [59],
being the latter implementation directly derived from the Lanczos algo-
m'thmlﬂ Another popular linear discriminant method is the Independent
Component Analysis (ICA) [63], in which the data at the subspace is
statistically independent.

Regarding the non-linear solutions, the Kernel methods are quite com-
mon. These methods use non-linear functions to project the face vector
to spaces of higher dimensionality, where a linear discrimination is possi-
ble. Some good representatives of these approaches are the Kernel Fisher
Analysis [64] and the Kernel Independent Component Analysis [9].

Finally, among the statistical approaches, another family of algorithms
should be mentioned: the Hidden Markov Models (HMM) [86]. These
algorithms define a number of states associated with a set of probability
density functions.

1These methods are explained in Appendix [A] as reduction techniques for face recognition
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e 3D Face Recognition: Human faces are represented as a projection of

3D surfaces, as shown in Chapter [2l Many authors have tried to take ad-
vantage of the 3D information to handle some of the extrinsic variations
(i.e. pose, illumination, etc.), as well as some of the intrinsic variations (i.e.
facial expressions). In the beginning, this option involved very high com-
puting costs, but greater advances in technology have allowed researchers
to explore this field.

In this category are found 3D Morphable Models [79] [15], which extract
texture and shape information from single face images. Given the difficulty
of this task, this remains a hot issue under study today. Kemelmacher and
Basri [55] propose a novel approach that exploits the similarity of faces
to obtain 3D models from single images in uncontrolled conditions (e.g.
from Internet images).

Methods based on 3D facial surface reconstruction [2I], 20] are likewise
found. The idea is that a face surface can be acquired, insensitive to
variations such as head orientations and facial expressions, from which
a model can be extracted. A Surface Interpretation Measure (SIM) has
been recently defined as a mechanism for describing surface areas and
extracting scores for subsequent face matching [T0T].

Feature-based Methods: These methods extract biometrics based on
local information of the faces, that we call keypoints (unlike the holistic
methods). These methods are mostly component-based, and tend to locate
the most discriminative keypoints building graphs overlaid on the faces.

From the beginning, many face recognition systems focused on the detec-
tion of individual face elements, such as the eyes, nose, mouth and head
contours. Some of these early studies can be found in [16] [57]. These
approaches proved, however, insufficient to handle problems such as the
variation produced by intrinsic and extrinsic factors.

To solve this, other algorithms were developed, as Elastic Graph Match-
ing (EGM) [60]. This has been one of the most advanced feature-based
methods developed. It makes use of neural information, included in the
Dynamic Link Architecture (DLA). The DLA is employed to solve some
of the problems in conventional artificial neural networks, such as the
expression of syntactical relationships in neural networks. In EGM, a
rectangular grid is placed over the test face, and a set of feature vectors
is extracted from each of the nodes of the grid (for instance, the Gabor
wavelet responses in [60]), and then compared to those extracted from the
face database. The amount of features extracted constitutes the main of
drawback of this approach, since the computational time increases con-
siderably. The EGM approach represents a natural base for two of the
FGAs studied in this work: the Rigid Grids and the Elastic Bunch Graph
Matching [117].

The Active Appearance Model (AAM) [27] is a Face Graph Match al-
gorithm which is partly feature-based and partly statistical. It is an in-
tegrated statistical model containing information about the shape and
appearance of the face. Then, the model is fitted to a new face in a way
that the differences become minimized. In the current chapter, the AAM
approach is explained in greater detail.
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Due to the relation of the Feature-based face recognition methods and the
approach presented in this thesis, the rest of this section is aimed to present two
of the aforementioned Face Graph algorithms: Non-deformable Square Grids
and Active Appearance Models.

6.3.2 Non-Deformable Rigid Square Grids

The simplest method to locate landmarks for the extraction of local features
is the use of Non-deformable Rigid Grids. In this case, a grid of points whose
distribution is known a priori; the landmarks extracted from an object are the
result of overlapping this grid directly onto the image.

The grids are considered non-deformable and rigid in the sense that they are
not able to fit the object they are describing. Non-deformable rigid grids can be
used as a Face Graph Algorithm to locate facial points where local information
may be extracted. The keypoints are located at the positions obtained after
overlaying the grid over a face normalized in scale and rotation (Chapter [2)).
The relative location of the landmarks is always the same, although the dis-
tribution depends greatly on the specific shape and configuration of the grid.
Figure shows three grids with different shapes (i.e. square, round and star)
and distribution configurations (homogeneous and non-homogeneous).
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Figure 6.2: Three non-deformable rigid grids with different configurations:
a) Homogeneous Square Grid, b) Homogeneous Circular Grid and c¢) Non-
homogeneous Star Grid.

To ensure the usability of non-deformable rigid grids as a FGA, the location
of each grid point is assumed for different individuals to correspond to a common
relative position. That is, the distribution of the landmarks should be equivalent
for all face images. To achieve this assumption some requirements have to be
fulfilled:

e All face images have to be obtain under the same camera view. That is, if
the grid is extracted from a frontal face, then it will only be comparable
to other grids extracted from frontal faces.

e All face images have to undergo exactly the same geometrical normaliza-
tion process. This normalization determines not only the rotation but
also the scale of the images. Grids extracted from different faces will be
comparable only if the relative scale and orientation of the images are the
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same. In our case, this scale is related to the inter-ocular distance, iod, as
shown in Chapter

e All grids need some initial points to be an anchored on the face. In FGAs,
a pair of facial landmarks common to all the images are used to set the
relative position when overlapping the grid. The position of the eyes
completely addresses this problem, so in this work the eye-centers will
coincide with two of the grid points for all images.

It is the interest of this thesis to generate simple facial graphs; therefore,
the two-dimensional square grids were considered. In these grids, the keypoints
are located according to a square pattern, and homogeneously distributed. For
simplicity, the directions of the axes of the grid are defined as parallel and
orthogonal to the inter-ocular line, respectively. The number of grid vertices,
N,,, corresponds to the the number of landmarks and is an indicator of the
quantity of information that can be retrieved from the face (regardless of the
quality of the information). However, it should be noted that a higher number
of keypoints also implies higher computational and storage costs.

In this work, two kind of configurations for the square grids are studied:

1. Sparse Square Grids: These grids have a low density of vertex, which
means that the keypoints located are sparsely distributed over the face.
In this configuration, the local features generally have a window size such
that the overlap between them is null or small (less than 25% of the window
size).

2. Dense Square Grids: These are grids with a high density of grid ver-
tices, which means that the keypoints located are condensed over the
face. In this configuration, the local features generally have a window size
greater than half the separation between landmarks, which implies that
the local descriptors have a remarkable degree of overlap.

In Figure [6.16] an example of overlapped dense and sparse square grids can
be observed.

6.3.3 Active Appearance Models - AAM face graphs

In 1998, Cootes et al. [28] developed one of the most popular methods for match-
ing a model to an image: the Active Appearance Models (AAM). AAM models
contain information about shape and appearance, learned through supervised
training. Also, these models use statistical information to be matched to new
images. The AAM can be used as a Face Graph Algorithm: a model is gener-
ated from a series of facial landmarks, matched to the input faces and then a
local descriptor is extracted from each graph point.

One of the most employed configurations of the AAM models is that de-
signed by Milborrow et al. [78]. This thesis is based on Milborrow’s design,
and therefore this chapter is aimed at studying its main features. However,
for a detailed explanation of this implementation of the AAM model matching
algorithm, the reader is referred to the original work.

In general, AAM models need to learn how to adapt to new faces. The
training stage is aimed to learn the variance in shape and appearance of different
faces. Prior to this training, a model face graph for all training images is located,



6.3- State of the Art 109

marking the points by hand. This constitutes the ground-truth of the AAM
models; the information about the shape and the appearance will be extracted
from this set of graph models.

Regarding shape information, a statistical model is generated using the Prin-
cipal Component Analysis (PCA) as a representation technique, described in
Appendix[A] This is achieved during the training, using the ground-truth. The
PCA technique is applied to each of the keypoints, which have been previously
aligned, such that a face graph shape, z, can be expressed as:

x =T+ Psbs, (6.1)

where T is the mean face graph shape, P; is the set of eigenvectors obtained
after applying PCA and b, are the coefficients for face graph .

To generate the appearance model, all training images undergo a warping
process. The goal of this process is to align the model face graphs using a
triangulation algorithm. To build the appearance model, we apply a PCA rep-
resentation technique that extracts appearance information from the warped
images. Each normalized model, g is in grayscale and is defined as follows:

g =g+ Pyby, (6.2)

where § is the normalized mean of the grayscale vector, P, is the matrix of
eigenvectors obtained after the PCA analysis and b, are the coefficients that
describe the sample g.

The last stage of AAM training is aimed at exploiting the correlation between
shape and appearance. A combination vector is generated, b = [b¥,by]” for each
training image, where b¥ is the weighted version of bs. If the PCA reduction
method is applied to this vector, a projection matrix, @, is obtained. After
projecting b with @, the combined appearance parameters, ¢, are obtained,
such that b = Qc.

Once the AAM models are generated, the process of creating a face graph in
a new image is iterative. An initial configuration of the face graph is assumed,
and then it iteratively adapts to locate in the new face the points equivalent
to those in the models. Figure [6.3] shows the iterative process of the AAM
algorithm from the initial configuration to the final matching.

Figure 6.3: Iteration process to adapt a graph model to a face using Active
Appearance Models.
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6.4 HOG-EBGM: HOG-based Elastic Bunch Graph
Matching

6.4.1 Introduction

HOG-based Elastic Bunch Graph Matching (henceforth HOG-EBGM). is an
algorithm specifically designed and developed in this work for the extraction of
biometric information in face images.

Although HOG-EBGM is a novel algorithm, it is based on a common and
widespread algorithm, the Elastic Bunch Graph Matching (EBGM) [117]. EBGM
is an algorithm that describes faces from the information that can be retrieved
at significant landmarks while these landmarks are organized in the form of
graphs. Thus, the main idea of the algorithm is that given a novel image of
a face, a Face Graph (FG) can be placed using the local information that is
extracted from some specific keypoints in a set of training images serving as
models. Each Face Graph consists of spatial and texture information extracted
from those facial landmarks.

Traditionally, EBGM algorithms have been performed using Gabor filters
(also known as Gabor jets) as local features to retrieve the facial information. As
will be seen, local features play a double role in the creation of the Face Graph:
they are partially responsible for the final location of the facial landmarks, and
they constitute the final descriptor of the face. Our main interest lies in finding
an alternative to EBGM that substitutes the original Gabor filters with the
Histograms of Oriented Gradients.

For the remainder of this thesis, the original EBGM algorithm will be re-
ferred to as Gabor-EBGM, or just EBGM.

6.4.2 Theoretical Development

To describe the operation of the HOG-EBGM algorithm, the steps performed by
EBGM are taken as a baseline. However, in this section the differences between
both algorithms will be highlighted.

The process to generate a new EBGM Face Graph can be broken down into
three main steps: image normalization, Face Graph location and extraction of
the local descriptors associated with the facial landmarks previously located. A
diagram outlining these steps can be seen in Figure [6.4] Also, the inputs and
outputs corresponding to each of the stages can be observed.

The normalization is solved as described in Chapter and it has to be
done essentially before the extraction of the local features. The variance of the
noise in the descriptors is much higher when non-normalized images are used.
In the case of using HOG features, the pixel gradients are more accurate in
images with higher contrast, as the transitions are strongly marked. Also, this
normalization step is associated with a gray-scale conversion of the image, as
the HOG-EBGM is designed to work only on intensity images. For the inclusion
of color information in our algorithm, see Section [6.5]

Definition of the Face Graph

Regarding the EBGM methods used in this work, during the extraction of the
graphs, the facial landmarks are located in a Face Graph, following the structure
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Figure 6.4: General steps performed by the HOG-EBGM algorithm.

proposed by the CSU project [I7]. In this structure, the total number of nodes
that constitutes each FG is N, = 25, and consists of one location, X; = (z;,¥;),
and its corresponding local descriptor, J;(X;).

Thus, a Face Graph can be defined as:

FG ={X;, Ji(X;),1 <i <25} (6.3)

Figure displays an example of a Face Graph generated with the HOG-
EBGM algorithm after the location of the facial landmarks, where N, = 25.

Figure 6.5: Example of the generation of a FG using the HOG-EBGM algorithm
with IV, = 25 facial landmarks.

The graphs generated by Gabor-EBGM and HOG-EBGM locate the same
landmarks, X; (with different accuracies), but mainly differ in the descriptor
J;. The local features used are Gabor jets in the case of Gabor-EBGM, J; =
Gabor(X;), and HOG descriptors in the case of HOG-EBGM, J; = HOG(X;).

Creation of EBGM training models

To automatically locate each of the facial landmarks, fg; = [X;, J;(X;)], on
a new FG, a set of models is needed. These models are generated during an
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off-line training phase, using a set of training images which should account for
differences produced by the intrinsic and extrinsic facial variances.

The process to build the set of EBGM models is not trivial. For a better
understanding of its difficulties, the steps outlined in Figure[6.6] will be followed.
The list of the variables involved is summarized in the following chart:

| Training Images Landmark 1 Landmark 2 S Landmark i

<K -k |
\mage 1 ‘ *z% !*Tj; H*%;:

fhga(1) fbgz(1) fbgi (1)

* X K ¥ |
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MODELS: fhg1 fbgz fbai

Face Bunch Graph: FBG .

Figure 6.6: Outline of the composition of the models and the FBG used to
generate a new FG in an input image.

From Figure [6.6] it can be seen that there is one model fbg; for each facial
landmark, accounting for a total of IV, models.

Each model contains the information for the automatic location of a specific
landmark, fg;, in new images. Each is built by aggregating the local descrip-
tors fbg;(k) (HOG features for HOG-EBGM, instead of Gabor jets used in the
standard EBGM), extracted for that landmark over the N; training images. In
Figure each fbg; is represented as a column. The association of all the
models fbg; is called the Face Bunch Graph (FBG):

fogi =) fbgi(k)VE,1 < k < N, (6.4)

FBG = fbg:vi,1<i <N, (6.5)

Note that the location of each trained landmark, fbg;(k), aggregated to the
FBG is done manually on the training images, while the facial landmarks, fg;,
in the FG for new images are automatically located.
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Global Parameters Symbol Description
Number of Landmarks N, Landmarks in the graph
Number of Training Images | NV, Images to extract models
Training Parameters Symbol Description
Models fbg; Models the i-th Landmark
Face Bunch Graph FBG Formed by Models
Testing Image Parameters Symbol Description
Landmark f9 Describes the i-th landmark
Face Graph FG Formed by Landmarks

Table 6.1: Summary of the variables involved in the HOG-EBGM.

Creation of the HOG-EBGM Face Graph in incoming face images

In contrast to the process of creating the FBG models, the location of landmarks
in a new FG is achieved through an automatic iterative process. In this iterative
process, the position of each new landmark is predicted using information from
the landmarks previously detected, thereby reducing the search area.

The a priori information of this process is the position of the first two facial
landmarks, which corresponds to the center of both eyes. As can be seen in
Figure this information is provided directly by the normalization step. For
the rest of the landmarks, the process to detect the i-th facial landmark fg;
(i > 2) is graphically described in the flow chart shown in Figure

The creation process for the HOG-EBGM Face Graph is defined as follows:

1. Coarse Location Step: This step is aimed at producing an initial estima-
tion of the facial landmark location, X?. This estimate is predicted using
the mean of displacements between the i-th and the j-th (j < i) keypoints.
More in detail:

(a)

Let d™(i,7) be the mean value of the displacements between key
points i and j, estimated using the data in the FBG. This distance
is calculated off-line with the information from the training images.
In Figure [6.8]a, an example of the mean displacements calculated
with the FBG information is displayed. In this example, only the
calculation of the distances involved in the location of the landmark
i = 4 is shown. Also in this figure, the FBG is assumed to consist of
only three training images.

Let X; be the coordinates of the j-th keypoint, which has been al-
ready located.

For each X, X;(j) = X;+d™(i, j) is defined as the initial estimation
of the i-th keypoint, based on the j-th keypoint.

The initial estimate is X7 = - > jj<i(Xi(jj)), i.e. the mean of the
estimates of previous key points. Figure [6.8b offers an example of
the effect of the last three steps after being applied to a new image.
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Figure 6.7: Scheme of the iterative landmark location algorithm used to build
the FG in HOG-EBGM.

2. Calculate the HOG feature on the previous location, HOG(X?).
3. Compare HOG(X?) with the fbg;(k) of the FBG and let:
i = min |(HOG(X;) — b (A)] (6.6)

The training image corresponding to ki, will be the referent regarding
the landmark ¢, as k,,;, and the actual new image have the most similar
information for that landmark. Thus, for the rest of the iteration, all the
calculations will refer not to the whole FBG, but to the information in

4. Fine Location Step: This step is aimed at refining the initial estimation of
the location of the landmark in a closed and controlled area. The output
of this step is the final location, X;, of the landmark in the Face Graph.
This step is divided into two stages:



6.4- HOG-EBGM 115

(a)

Define a search area, S;, around X;. The extent of the search area
depends on the particular key point, as shown in Figure [6.9}b. The
search areas are empirically set by considering the dispersion of the
facial landmark locations in the FBG.

Refine the initial estimate of the i-th key point using the descriptor

fbgi(kmin)i
Xi = min [HOG(X) — fbg; (kynin) | (6.7)

The idea of this step is that for every location inside the selected
area and around the initial estimate of the landmark, X;, an HOG
descriptor centered in that point will be extracted and compared to
the model descriptor, fbg;(kmin). The final location, X;, corresponds
to the location with the local texture most closely corresponding to
that of the model.

OFF-LINE COMPUTATION OF LANDMARKS DISTANCES IN THE FBG REGARDING LANDMARK #4
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COMPUTATION OF LANDMARK #4 COARSE LOCATION ON A NEW IMAGE

£

1. Location performed for 2. Each location is added with 3. The Coarse Location of
Landmarks #1 - #3 the mean distance of the FBG Landmark #4 is the
in a new image mean of the previous distances

(b)

Figure 6.8: Example of the Coarse Location step of the 4-th landmark during
the HOG-EBGM iterative location algorithm. In this example, the following can
be observed: (a) the off-line distances needed to locate the landmark i = 4, as-
suming that the FBG consists of three training images, and (b) the calculations
needed for a new image to estimate the location of the landmark.

In Figure the order of the key points located by the iterative method
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can be observed, as well as the geometry and size of the search areas, S;, used
in the precise location of the landmarks.

(b)

Figure 6.9: (a) Location through iterations of the 25 facial landmarks in the
EBGM face graph algorithm. (b) Refinement Search Areas for each facial land-
mark.

Once all the points are located, each facial landmark, fg;, is finally defined
by its coordinates, X;, and the HOG descriptor extracted at that location.
In other words, given a gray-scale image, I, and a set of landmarks, X;, the
corresponding descriptor associated with them, J;, is calculated as the vector:

J; = HOG(I, X;) € RNnes (6.8)

where Njo4 is the dimension of the HOG descriptor. The standard definition
of the HOG feature is Nj,y = 128. For a number of external tasks— such as
recognition— the faces, F', need to be represented lastly by a unique feature
vector. In the case of HOG-EBGM, this vector is the result of concatenating
the descriptors associated with the N, landmarks of the F'G:

F =[J1,Ja,...,Jo5] € RN/ N = Npoy x N, (6.9)

where Ny is the dimension of the feature vector associated with the face, F.
Assuming Npog = 128 and N, = 25, the standard dimension of the vector
would be Ny = 3200.

6.5 Colored HOG-EBGM: CHOG-EBGM
6.5.1 Basics of CHOG-EBGM

As shown in the previous section, the HOG-EBGM does not make use of the
color information from the images. To avoid this question, images are converted
to grayscale during the first step of the algorithm, as seen in the first block of

Figure
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Generally, a color image, A, with dimensions of m X n, consists of three
components (channels): Cy, Cy, C3, most commonly R, G, B. Treating these
channels as column vectors, the image A can be expressed as the matrix:

A=[Cy,Co,C3] € RN3 N=mxn (6.10)

When performing a grayscale conversion of the color image A into an inten-
sity image I, these three components are combined linearly, such that:

I = [wlc’l + wyCy + w303] e RN,N =m X n, (6.11)

reducing the dimensionality from N x 3 to N, and subsequently reducing the
amount of information.

The method proposed here, Colored HOG-EBGM (henceforth CHOG-EBGM),
is an adaptation of HOG-EBGM, using the information given in C, Cs and Cj.
CHOG-EBGM addresses the problem of the loss of information during the con-
version of the color images to grayscale by including the color information. To
this end, two aspects are taken advantage of:

1. As proven in Section the facial landmark localization step in HOG-
EBGM has better accuracy than other algorithms, such as Wiskott’s orig-
inal EBGM [I17].

This allows the grayscale HOG-EBGM location algorithm to be used by
the CHOG-EBGM. Including color information in the location stage would
considerably increase the computational burden.

2. Some authors [4,[19,[109] have shown that HOG descriptors are empowered
for recognition tasks when they embed color information.

With this knowledge, the CHOG-EBGM is expected to perform better
than the intensity-based HOG-EBGM, as the color descriptors contain a
greater quantity of information useful in recognition tasks. In the ideal
case of uncorrelated information between C7, Cy and C3, the texture in-
formation would be increased up to three times more than the information
in the intensity image.

It remains an open question which color spaces contain more discriminative
information suitable for recognition tasks. Next, the implementation and the
details of the CHOG-EBGM are defined.

6.5.2 Theoretical Development

As stated before, CHOG-EBGM is a HOG-EBGM-based algorithm, thus it
consists of the same three steps revealed in Figure [6.4} image normalization,
creation of the graphs and feature extraction. Figure [6.10] displays an example
of color face graph location and the extraction of the local color features from
an input image.

Through these steps, similar to those in the grayscale algorithm, each face
in CHOG-EBGM is described by a Color Face Graph (FG¢), composed of
automatically located facial landmarks, X;, and their associated color-HOG
(CHOG) descriptors, Jf.
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Figure 6.10: Example of the location of facial landmarks in CHOG-EBGM and
the extraction of the local features.

Considering a Color Face Graph based on the one proposed for HOG-EBGM,
it can built from N, = 25 facial landmarks, fg{, such that:

fai =X, i (X3)], (6.12)

and
FGo =] fg¢vi,0<i<N, (6.13)

For the first and second steps of CHOG-EBGM, the same process described
in Section [6.4] is reproduced exactly using the gray-scale information for the
automatic location of the landmarks. This can be seen in the second column of
Figure Given an input color image, it is first converted to grayscale, the
location of the facial landmarks are computed and then the resultant graph is
translated back to the original color image.

The image normalization step is also carried out as in Section [6.4] But note
that in this case, the grayscale conversion is only used for the location of the
landmarks, and not for the final extraction of the descriptors.

The main difference between CHOG-EBGM and HOG-EBGM is in the fea-
ture extraction step. The color descriptor proposed, J¢, is extracted from every

3

facial landmark, X;, by independently applying an HOG descriptor for each of
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the color components, and then concatenating them:
J¢ = [HOG(Ch, X;), HOG(Cy, X;), HOG(C3, X;)] € RNehos (6.14)

where Nepog is the dimension of the color HOG descriptor, which is actually
Nechog = Nhog x 3. Assuming a dimension for the standard HOG descriptor of
Nhog = 128, as seen in the previous section, the final dimension of the color
version would be Ncpog = 384.

For recognition tasks, a color face F¢ is represented by the vector derived
from the concatenation of the N, = 25 color descriptors on the FG¢:

Fo = [J8,JS, ..., J5) € RN (6.15)

where N, is the dimension of the feature vector associated with a color face, F,
and is defined as N = N¢pog X N,,. For standard values, the final dimension of
the color feature vector is N, = 9600.

6.6 Set-up Experiments for HOG-based Face Recog-
nition Algorithms

The current section is devoted to set-up all the face recognition techniques
developed. These techniques have in common the use of HOG local descriptors,
and therefore, first a set-up on the features itself has to be performecﬂ The
set-up experiments can be divided in the following;

e Set-up of the size of the local HOG features for face recognition:
the experiments will be tested using hand-marked Face Graphs, although
the results will be extrapolated to be used with the graph location tech-
niques.

e Adaptation and set-up of two Face Graph Algorithms to be used
with HOG features: two algorithms are adapted, Active Appearance
Models and Rigid Square Grids. The resulting adaptation are called HOG-
AAM and HOG Rigid Square Grids, respectively.

Unlike the HOG-EBGM, the two FGAs proposed are not novel but only
slightly adapted to the needs in this thesis. In these algorithms, the land-
mark location stage is not modified, and only during the feature extraction
are the HOG features included.

6.6.1 Optimum size of the HOG descriptor for Face Recog-
nition

The majority of HOG internal parameters are determined by the solution pro-
posed by Lowe [65] for the description of objects. Yet, the size of the local
feature window has not be defined to adapt to face recognition. The scale fac-
tor of the original SIFT features is determined during the location stage (using
the scale-space transform). In the case of the HOG features, the scale factor of
the image is fixed according to the normalization of the face (see Chapter |2))
and therefore the feature wide size has to be arranged relative to it.

2This set-up is complementary with the one presented in Section
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It is necessary to determine the optimal number of pixels Pgog that best
characterizes facial elements for a given normalization. The parameter Pyog
determines the quantity of information that can be retrieved from the element
that is described, and also relates to the specificity of such information:

e Quantity of information: low values of Pyo¢ lead to a too small feature
window, compared to the element described. This removes potentially
useful information for discrimination.

e Specificity of the descriptor: high values for Pyog may lead to de-
scriptor windows greater than the element that is described. In this case
the descriptor includes information of elements different from the goal.
The result is a noisy and less discriminative descriptor. Therefore, the
selection of a value for the feature window size is a trade-off between quan-
tity and specificity of the discriminative information that can be extracted
from an element.

The experimental set-up addresses the trade-off of this two parameters. The
results are valid for the extraction of local features in face recognition, as well
as for eye location (see Chapter [5)).

In these experiments, three assumptions have been considered:

1. Regardless the facial element that is described, a square HOG descriptor
window of size Pgpog X Proc is used. Thus, the value of Pyog has to be
valid for all the facial elements.

The HOG descriptor is organized as a 4 x 4 square grid (as shown in
Figure [6.11)), limiting the range of values for Progq-.

40 pixels 20 pixels

5 pixels

Figure 6.11: Representation of the HOG descriptor extracted the right eye, with
an square window shape and a organization as a 4 x 4 square grid.

2. We assume that the size of the face is normalized such that inter-ocular
distance, iod, is known a priori. Assuming this, the descriptors are ex-
tracted on facial elements with fixed relative sizes. In this experiment,,
the inter-ocular distance is set to iod = 40 pixels.

3. The size of the most significant facial elements, specifically the eyes, the
mouth and the nose, are approximately in the same order of magnitude
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compared to the size of the face (and thus, regarding the inter-ocular
distance). With this assumption, we can state that the value of Pyog
determined will be valid for all the facial elements without losing generality
of the results.

The experiment to determine the optimum size Py o consists on describing
faces extracting HOG features on a set of manually marked facial landmarks
(corresponding to the N, = 25 landmarks in the EBGM algorithm). The ex-
periments are repeated for different sizes of the descriptor window and the hit
rates are computed.

Given a point p(z,y), the HOG descriptor centered at it and with window
size Prog = s, is HOG(z,y, s). For each image, the final face feature vector,
D, is extracted as the concatenation of the 25 keypoints manually marked:

Di(s) = [HOG(x’i,yi, s), HOG(xé,yé, 8)yerny HOG(x§5,y§5, s)], (6.16)

where x}c and y,i, correspond to the location of the k-th keypoint (facial element)
on the i-th image of a dataset.

The matching of the face feature vectors was done using a Nearest Neigh-
bor classification with Fuclidean distance. In the experiments the extraction of
the face feature vectors was performed using different values of the HOG win-
dow: PHOG = 0.2i0d, PHOG = 0.3’i0d, PHOG = 0.4i0d, PHOG = O.5iod, PHOG =
0.6iod and Pyog = 0.Tiod. Given the initial assumption of inter-ocular dis-
tance iod = 40 pixels, this size values configure HOG feature windows of size
S1 =8x8, 5 =12x 12, §3 = 16 x 16, S; = 20 x 20, S5 = 24 x 24 and
Se = 28 x 28 pixels, respectively. Let’s remark that all the Pyog values tested
are multiples of 4. This is due to the configuration on the HOG window, which
is a square grid with N, = 4 cells on each direction.

The results using the databases of Yale and CVIE| are displayed in Fig-
ure

From the identification rates observed in the figure, it can be deduced that
the behavior for the two databases under analysis is different. In both cases,
the curves present a maximum for middle values of Pyo¢, in concordance to
the previous reasoning. However, the optimum is reached with different window
sizes for each database. In the case of the curve obtained using the images on
CVL, the maximum is produced with a window size Pyog = 0.5i0d, while in
the case of the results obtained when using the Yale database, the identification
rate is approximately flat in the range of sizes 0.3i0d < Pyog < 0.5i0d, with a
tendency of decreasing while Py increases.

A reasonable explanation can be found on the divergence of results in the
two databases: when the size of the HOG window is reduced, the local features
cover a smaller area of the facial element and therefore are less sensible to noise
introduced by extrinsic factors, like changes in illumination. This also explains
the decreasing tendency of the rates for both databases for larger window sizes.
Yale contains higher contrasts to illumination, and therefore for smaller sizes
the performance is less affected.

As a conclusion, the optimum size of the HOG feature window describing
facial elements is reached when using Pyog = 0.5%0d. Given the face normal-
ization explained in Chapter [2] this size corresponds to a square HOG window
of 20 x 20 pixels centered in the keypoint that is going to be described.

3See Appendix




122 Chapter 6- Face Recognition using Face Graph Algorithms

0.99

o
©
@

Recognition Rate

0.93 [ i i
0.2 0.3 0.4 0.5 0.6 0.7 0.8
pliod

Figure 6.12: Study of the influence of the HOG window size, Pyo¢ in the per-
formance for identification tasks. The curves plotted correspond to the results
obtained for the Yale and CVL databases. The size of the feature window,
Proa X Pgog is normalized with the inter-ocular distance, iod.

Henceforth, in this work we will use this window size for the HOG features.
Also for the sake of simplicity, we will refer to the descriptor HOG(z,y, s = 20),
just as HOG(z,y).

6.6.2 Face Recognition using HOG-AAM

Several works have proven the efficiency of the location stage provided by the
Active Appearance Model technique. When the AAM is used as a Face Graph
Algorithm, the extraction of landmarks for biometric analysis can adapt to a
number of facial variations, making it worthy of study for the goals of this thesis.

In this work, it seemed worthwhile to develop an adaptation of the AAM
Face Graph Algorithm where the HOG features could be extracted from the
landmarks after the graph was matched with a face. The algorithm resulting
from this adaptation is called HOG-AAM, and for its implementation, the AAM
location stage proposed by Milborrow et al. [78] was followed.

Regarding the HOG-AAM a preliminary set of experiments has been per-
formed to decide the number of landmarks of the final face graph generated.
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Experiments to determine the number of points in HOG-AAM

During the training stage of the Active Appearance Models, the number of
keypoints that constitute the facial graph can be configured. Milborrow et al.
work with graphs of N,, = 58 points. In Figure [6.13] an example of an AAM
face graph generated using Milborrow’s approach can be observed.

Figure 6.13: Real example of a face graph generated using the AAM model
matching technique, with graph models of N,, = 58 landmarks.

In accordance with the ideas exposed for the EBGM-based techniques, a
balance needs to be struck between the number of keypoints in a graph (i.e.
the quantity of information that can be retrieved) and the computational and
storage cost of having large N,, values. Compared to the rest of the Face Graph
Algorithms proposed in this chapter, the Active Appearance Models have a
larger quantity of keypoints, only surpassed by the Dense Square Grids, as it
will be seen next. As the HOG-EBGM has N,, = 25, one goal was to reduce the
number of points in AAM to make them comparable.

Three configurations were considered for the landmark locations using the
AAM face graph algorithm:

e Original AAM (58-AAM): In this configuration, the original AAM
designed by Milborrow et al. [78] is used explicitly, with N, = 58 facial
landmarks. This model constitutes the foundation for the rest of the model
configurations.

The dimension of the face-feature vector in this configuration, using HOG
features, is dim, = 7424.

e Coincident AAM (22-AAM): In this configuration, the AAM graph
model consists of N, = 22 keypoints. Starting from Milborrow’s facial
model, only those points which completely coincided in location with the
facial landmarks extracted with EBGM (see Section were selected.
With this modus operandi, up to 22 coincidences were found. Specifically,
the facial landmarks selected corresponded to the whole set of landmarks
in the EBGM Face Graph, in addition to the upper-head and fore-front
points. Figure[6.14]shows the equivalence of landmarks between the HOG-
EBGM and the HOG-AAM graphs.
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The dimension of the feature vector corresponding to the Coincident HOG-
AAM is dim. = 2816.

HOG-EBGM . AAM

Figure 6.14: Example of the 22 coincident landmarks between the face graph
location algorithms of HOG-EBGM and the standard AAM.

e Extended AAM (25-AAM): In this configuration, the AAM graph
model consists of N, = 25 key points. This configurations uses the 22
landmarks located by the Coincident AAM and the three additional land-
marks automatically generated from the rest of the points using geometri-
cal cues. This configuration was developed to be fully comparable in num-
ber of landmarks between the Sparse Square Grid and the HOG-EBGM,
and also comparable in location with EBGM.

The dimension of the feature vector corresponding to the Extended HOG-
AAM is dim, = 3200.

Table [6.2] summarizes the key parameters of the three AAM model configura-
tions. The adaptation of the three AAM configurations was done by extracting
a HOG local descriptor at each of the key points of the final graph. That is, for
each graph keypoint, i, HOG"(z;,y;, s) was extracted, where (z;,y;),1 <i < N,
are the coordinates of the landmark and s is the size of the square HOG descrip-
tor window. In our case, pixels were set at s = 20, as described in Section

For the validation of the three HOG-AAM configurations, some experiments
were carried out to compare the derived models (Np1 = 22 and Ny = 25,
respectively) with the model designed by Milborrow et al. (N,, = 58). The
experiments were carried out as follows:
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AAM Model Configuration
Original | Coincident | Extended
Facial Landmarks 58 22 22+3
Feature Vector Dimension 7424 2816 3200
Coincident Landmarks (EBGM) 22 22 25

Table 6.2: Summary of the main parameters of the AAM models for HOG-AAM.

1. Two different datasets of face images were selected to perform the matches.
In this experiment the images from the FERET face database were used.
the fa subset for the target images and the fb, fc, dup! and dup2 subsets
for the query datasets El

Given the groundtruth on the location of the eyes, all the images in these
datasets were normalized following the guidelines in Chapter

2. For all the configurations, the landmark location algorithm was run on all
the datasets. In this step, the original, coincident and extended versions
of the AAM models were used. The face feature vector was extracted by
concatenating all the HOG descriptors resulting from the matched graph.

3. Due to the high dimensionality of the face feature vectors obtained (see
Table , a reduction method needed to be applied. In this case, a
simple LDA technique was selected, reducing the dimension for all the
face feature vectors to dim,..q = 200.

4. Finally, the identification performance results were obtained by matching
the face graphs extracted from the query test images to the face graph
extracted from the target images. In this case, the matching was obtained
using a cosine distance similarity measure.

Figure shows the curves obtained after this experiment, using the three
HOG-AAM model configurations. The curves display the performance in iden-
tification versus the number of landmarks in the graph model.

From the analysis of the results, we observe that the curves tend to increase
with the number of keypoints in the face graph. This fact corresponds to what
was expected, as a higher value of IV, implies more biometric information re-
trieved. As we will see in further experiments, this is consistent with the results
obtained with Dense Grids. The different performance between the 22-AAM
and the 25-AAM is much higher than difference in performance between the
25-AAM and the 58-AAM.

This result is significant considering that the original configuration doubles
the quantity of landmarks of the others. This is an indicator that many of
the keypoints in the graph model proposed by Milborrow contain redundant
information. The omission of such keypoints does not reduce significantly the
discriminability of the graph. Observing the location of the 58 keypoints of
the Original AAM, as shown in Figure [6.13] it can be noticed that the spatial

4See Appendix [Bl for further details
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Figure 6.15: Identification hit rate in the FERET database versus the number of
keypoints in the graph model, using the original (N,, = 58), coincident (N, = 22)
and extended (N, = 25) configurations of the HOG-AAM models.

distance between landmarks is small, so when the HOG-features are extracted,
high rates of overlapping take place.

From these validation experiments we can conclude that the HOG-AAM
achieves higher results when using the Extended AAM configuration, using a
face model with IV, = 25 keypoints. The number of points in this configuration
is the same than in the graphs generated with the EBGM location algorithms,
and also the quantity of information is not reduced much with regard to the
Original AAM model with N, = 58 keypoints.

6.6.3 Face Recognition using HOG-Grids

HOG Rigid Square Grids is an FGA algorithm produced by adapting the Non-
deformable rigid square grids showed in Section [6.3.2] and therefore uses the
mapping of the location of features described there. Once the keypoints are
placed on a face, a HOG local texture descriptor is extracted from each. The
facial graph obtained is the concatenation of the HOG feature vectors extracted
from the grid nodes.

To validate the HOG Rigid Square Grids algorithm, some experiments were
designed. This experimental set-up studied the behavior of HOG-Grids two
possible configurations: the Sparse Square Grids and the Dense Square Grids.

For all the experiments, the face normalization stage proposed in Chapter 2]
was used, which implies a face width of w; = 120 pixels and a inter-ocular dis-
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tance of iod = 40 pixels. Also used was the HOG feature window size proposed
in Section which is Prog = 0.5i0d = 20 pixels.
In all, three different square grids were studied:

1. Sparse Square Grid (25 HOG-Grid): This configuration came from a
grid with 5 x5 nodes, which corresponded to a total of N,, = 25 landmarks.
In this configuration, the separation between neighbor landmarks was 30
pixels, which introduced an overlap between the HOG feature windows
of 005 = 25%. The face feature vector extracted, after concatenating the
HOG features extracted at each landmark, had dimension dimsos = 3200.

This square grid size of N, = 25 located landmarks was chosen to of-
fer maximum comparability between the rest of the FGAs described in
this chapter, specifically the HOG-AAM and the HOG-EBGM. All the
algorithms extracted an equivalent number of facial landmarks, so a fair
comparative study could be performed.

2. Dense Square Grid (81 HOG-Grid): This configuration came from a
grid with 9 x9 nodes, which corresponded to a total of NV,, = 81 landmarks.
In this configuration, the separation between neighbor landmarks was 15
pixels, which introduced an overlap of the windows of the local features
of og1 = 63%. The face feature vector extracted, after concatenating the
HOG features extracted at each landmarks, had dimension dimg; = 10368.

3. Highly Dense Square Grid (81 HOG-Grid): This configuration came
from a grid with 13 x 13 nodes, which corresponded to a total of N,, =
169 landmarks. In this configuration, the separation between neighbor
landmarks was 10 pixels, which introduced an overlap of the windows
of the local features of 0169 = 75%. The face feature vector extracted,
after concatenating the HOG features extracted at each landmarks, had
dimension dimigg = 21632.

Figure [6.16] displays an example of the location of the facial landmarks using
the three square grids described earlier. Additionally, Table [6.3] summarizes the
parameters of these grids.

Figure 6.16: Example of facial landmark location using Rigid Square Grids: a)
Sparse Grids (N,, = 25). b) Dense Grids (N,, = 81). ¢) Highly Dense Grids
(N, =169)

To evaluate the behavior of the face graphs generated by these grids:
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Sparse Grid | Dense Grid | Highly Dense Grid
Grid Size 5 x5 9%x9 13 x 13
Facial Landmarks 25 81 169
Feature Vector Dimension 3200 10368 21632
Feature Overlapping 1/4 2/3 3/4

Table 6.3: Summary of the main parameters of the different HOG-GRID con-
figurations.

1. Two different datasets were selected to build the target and query datasets.
In this experiment, the images from the FERET face database were usedﬂ
Specifically, the fa subset for the target images and the fb, fc, dup! and
dup2 subsets for the query datasets were used.

Given the ground-truth on the location of the eyes, all images in these
datasets were normalized following the guidelines of Section [2.4]

2. For all the configurations, the keypoints in every image of all datasets were
distributed on top of the image. In this step the sparse, dense and highly
dense square grids were used.

3. Due to the high dimensionality of the face feature vectors obtained (see
Table, a reduction method needed to be applied. In this case, an LDA
techniqueﬁ was selected, reducing the dimension for all the face feature
vectors to dim, = 200.

4. Finally, the identification performance results were obtained by matching
the face graphs extracted from the query images to the face graphs ex-
tracted from the target images. In this case, the matching was obtained
using a cosine distance for the similarity measures.

The results obtained in these experiments can be seen in Figure [6.17] in
which the curves represent the identification rates for a given number of vertex
in the grid (i.e. the number of keypoints located).

As expected regarding the behavior of the grid configurations, it was ob-
served that the curves had a clear tendency to achieve better identification
results as the number of points, NV, were increased. This result is coherent with
the analysis made before, as a higher number of keypoints leads to a higher
quantity of information.

However, the difference in the results obtained with N, = 81 and N, = 169
is of low relevance, which indicates a tendency to the overfitting. Thus, it could
be said that the best grid size would correspond to N, = 81. As in the case of
the Highly Dense Grid (169 HOG-Grid), the increase in the identification rates
is not relevant, while the computational cost is higher.

In further experiments, the performance of the Square Grids needed to be
compared to other FGAs, with N, = 25 landmarks in each. Thus, it was
decided to use not only the Dense Grid configuration (25 HOG-Grid), but also
the Sparse Square grid (81 HOG-Grid) with N, = 25 keypoints.

5See Appendix [B]
6See Appendix Al for further details.
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Figure 6.17: Identification rates for different square grid configurations using
HOG features as local descriptors, for images from the FERET database. The
square grids analyzed have the following sizes: 5 x 5,9 x 9 and 13 x 13

6.7 Evaluation of the HOG-EBGM algorithm

This section is focused on proving the hypothesis concerning HOG-EBGM in
order to generate Facial Graphs for recognition tasks. In proving these hy-
potheses, this algorithm is evaluated as an alternative to other face recognition
algorithms. With this goal in mind, four sets of experiments were carried out
in this work:

1. A comparative study between HOG-EBGM and Gabor-EBGM. The ex-
periments focus on two main aspects, the accuracy on the location of
the landmarks in the Face Graph and the descriptive power of the local
features used.

2. Experiments to validate the accuracy on the location of the landmarks,
compared to HOG-AAM

3. A comparative study between HOG-EBGM and some conventional, holis-
tic face recognition algorithms. These techniques are used as a baseline
useful to validate the results.

4. Analysis of different feature-based approaches using HOG descriptors to
discriminate local textures. The experiments sought to validate the HOG-
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EBGM against two adapted Face Graph Algorithms: HOG Rigid Square
Grids and HOG-AAM.

The rest of this section provides the results of the four sets of experiments.

6.7.1 HOG-EBGM versus Gabor-EBGM.

This section is aimed at validating the HOG-EBGM algorithm comparing it to
the original EBGM.

Some sets of experiments were conducted to analyze the effect of changing the
local features (Gabor filters with HOG descriptors) on the descriptive potential
of the EBGM Face Graph. Another goal was to compare the stability and the
precise location stage achieved by both algorithms.

The three sets of experiments carried out for the comparative are:

1. Analysis of the performance for identification problems, given a prior lo-
cation (ideal location) of the Face Graphs in the test images. In this case,
the groundtruth is the same for both algorithms.

2. Influence of the number of images in the FBG training models on the
recognition rates.

3. Accuracy obtained in the automatic landmark localization stage.

Notice that in all the experiments to compare HOG-EBGM and Gabor-
EBGM, the classification of the Face Graphs is done using a Nearest Neighbor
algorithm based on the distances obtained landmark by landmark.

Next, the implementation and results obtained in each set of experiments is
described.

Face Identification using ideal location of the landmarks.

This first set of experiments was designed to compare the descriptive capacity of
the feature vector obtained from each of the methods with independence from
the landmark location. To achieve this independence, the experiments assumed
ideal facial landmark locations; under this assumption, it was not necessary to
use the training model information to build the Face Graphs. The location of
the keypoints was manual, given as an input ground-truth in the data. As both
algorithms shared the location of the FG, the comparative was only between
the descriptors that were extracted.

As a consequence of the ideal location of the FGs, the identification results
obtained can be considered the upper bound for the algorithms, as they establish
their limit in performance.

In this experiment, the testing sets were the Yale and CVL databasesﬂ They
were selected since they contain a ground-truth with additional information
about the location of the IV, = 25 facial landmarks that constituted both EBGM
algorithms. The evaluation methodology used for the test was leave-one—outﬂ

The performance results for face identification in each of the test sets are
shown in Table [6.4l

"See Appendix
8Explained in C apter
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Database | Gabor-EBGM | HOG-EBGM
Yale 85.5% 97.0%
CVL 96.5% 99.1%

Table 6.4: Identification Rates with Gabor-EBGM and HOG-EBGM, using ideal
(hand-marked) location of the landmarks.

HOG-EBGM outperforms the rates of Gabor-EBGM in both test datasets.
As the location of the keypoints was the same for both algorithms, the first con-
clusion that can be drawn is that the descriptive power of the HOG features for
the same facial landmarks is greater than that achieved with Gabor coeflicients.

Analyzing more in detail, it was found that the difference of rates obtained
by both algorithms was greater using the Yale dataset. This can be explained
by the fact that the images in Yale contain greater variance in illumination, and
the HOG descriptors are less vulnerable to illumination changes than the Gabor
filters.

Summarizing, the results of this experiment show that for specific facial
landmarks, the HOG descriptors outperform the Gabor filters in extracting a
more descriptive feature vector.

Influence of the number of model images in the FBG in face identifi-
cation rates.

The goal of this second set of experiments was to determine the influence of the
number of training models, Ny, on face recognition rates. The stability of the
facial landmarks located with HOG-EBGM and Gabor-EBGM was measured
when the number of models in the FBG varied. Notice that in EBGM, the
landmark location relied on the information from the FBG models. The stability
in the location provides useful information about two measures:

e Repeatability of the location algorithm: A high variance in the location of
the keypoints when the number of models are changed would imply bad
repeatability. This would mean a high dependence on the results obtained
regarding the specific FBG selected.

e Stability of the recognition results: With this measure, one can determine
if the recognition results obtained with the EBGM algorithms depend on
the models in the FBG.

The experiments designed in this section consisted of generating Facial Graphs
with the HOG-EBGM and Gabor-EBGM location algorithms, while varying the
number of models in the FBG. Each FBG modification produced an execution
useful to determine the performance of face identification.

The FBG modifications follow a systematic process: given a set of models,
the number of images, Ny, to constitute the new FBG; then, model images were
randomly included until the subset was complete. The resulting FBG subset
was called FBGY; £ where 7 refers to the specific realization of random models.

To avoid possible dependencies of the results on a specific FBG subset, each
experiment was repeated a total of 20 times, randomly changing the contents
of the subsets.
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The landmarks in the model images needed to be manually annotated. For
the experiment, two datasets with information about the location of the land-
marks were used: Yale and CVIﬂ Independence between the training set (to
generate the FBG subsets) and the testing set needed to be achieved. Thus,
a combination of both databases was used, such that when one was used for
the training stage, the other was used as test set for identification. Therefore,
while the Yale images were selected to constitute the FBG, the face recognition
system was applied to CVL images, and vice versa. This produced two different
datasets configurations.

The results of the experiments performed for the two configurations are
shown in Figure for Ny € [10,15,20, 25,30, 35,40]. The curves in this
figure represent the mean value of the identification rates for the execution
repetitions. There is also a representation of the standard deviation of the
performance that gives information about the confidence of the results.

The results obtained show that the performance of both algorithms is highly
stable as the number of model faces in the FBG varies. For both configura-
tions, the higher rates were achieved by HOG-EBGM. This confirms the results
obtained by the experiments in the previous section.

In Figure [6.19] one can see the effect of the dispersion of the located land-
marks on a specific image after the 20 repetitions of the FBG subsets with
N; =10 and Ny = 40. Notice that this figure does not give information about
the accuracy of the location of the landmarks, only their dispersion.

The stability of the location of the keypoints is higher (lower dispersion)
when the number of models in the FBG increases. However, the differences
are not significant according the standard deviation that is seen in Figure [6.18
Also, the variance achieved by HOG-EBGM is lower, which can partially explain
the higher rates of face identification shown in Figure [6.18]

Finally, notice that the rates obtained with automatic landmark location are
similar to the results with ideal location showed in Table[6.4l This leads one to
think that the automatic location of the Face Graph is not only stable, but also
tends towards the ideal values.

Comparison of the precision of the location of landmarks.

The EBGM iterative method has two goals: to precisely locate facial landmarks,
and biometrically identify the face generating a facial feature vector. The pre-
vious experiments aimed to prove the descriptive capacity of the HOG feature
vectors, but neither addressed the location.

The HOG-EBGM location step is based on the original EBGM, but the
use of different descriptors leads to different landmark locations. Therefore,
the higher performance of HOG-EBGM versus Gabor-EBGM in identification
might also be influenced by the precision of the location of the Face Graph. The
stability of the location algorithm has been measured, but the accuracy of the
final face graph has not been checked.

The experiments in this section attempt to compare the location of the Facial
Graphs generated with both EBGM algorithms to their ideal counterpart, using
a quantitative set of test images. Once again, the Yale and CVL databases were

9See Appendix
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10 model images in the FBG | 40 model images in the FBG

HOG-EBGM

Gabor-EBGM

Figure 6.19: Dispersion of the facial landmarks automatically detected when
using FBG model sets with 10 and 40 images and 20 repetitions.

chosen due to their extensive ground-truth information, thereby producing two
configurations.
The methodology of the experiments consisted of three stages:

1. A Facial Graph was generated for each of the N; images in the test dataset.
In this case, the two test datasets used consisted of the whole set of valid
images from Yale and CVL, respectively.

2. For each of the landmarks, the distance was calculated between the loca-
tion given by the iterative method, X;(k), and their ground-truth infor-
mation X ¢y, (k), where 1 < ¢ < 25 was the number of the facial landmark
and 1 < k < N; was the number of the image in the dataset.

3. For each set of distances belonging to the same landmark, 7, the mean
distance was extracted:

Ny
. 1
dist; = 5 D IXu(k) = X, (8)] (6.17)
k=0

The representation of the mean distances for each landmark (sorted by the
order shown in Figure can be seen in Figure The two set of curves
correspond to the two dataset configurations.

From the results, a clear tendency can be perceived: the location of the
graph with HOG-EBGM is closer to the ideal for all the landmarks than with
Gabor-EBGM. This means that HOG-EBGM achieves higher precision in the
location step, which leads to an improvement in identification tasks. For most
of the landmarks, the location error achieved using HOG features was between
5% and 15% lower than with Gabor Filters.
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the groundtruth) and the positions automatically obtained with HOG-EBGM
and Gabor-EBGM for: (a) Yale database, (b) CVL database.
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Figure [6.21] shows a graphic representation of the difference in the location
between two Face Graphs, generated with HOG-EBGM and Gabor-EBGM,
and the ideal location of those keypoints extracted from the ground-truth of the
image.

—e- Hand-marked landmarks
-4~ Automatically detected landmarks

GABOR-EBGM HOG-EBGM

Figure 6.21: Comparison of Facial Graphs located using the iterative algorithms
of Gabor-EBGM (left) and HOG-EBGM (right) with regard to the ideal location
of the same keypoints.

The increasing tendency of the curves in Figure[6.20]should also be explained.
During the EBGM Face Graph creation algorithm showed in Section [6.4] each
keypoint was located using spatial information from the landmarks previously
located. Assuming null initial error the eye centers, the spatial error of the
following landmarks was always cumulative. That is, a landmark located with
high inaccuracy increases the error in the location of the resting landmarks.

6.7.2 Landmark Location: HOG-EBGM versus AAM

In the previous experiments, it has been proved that the accuracy on the location
of the Face Graph generated with HOG-EBGM is higher than the one obtained
with the original EBGM. In this experiment, HOG-EBGM is compared to a
completely independent Face Graph algorithm: Active Appearance Models.

To perform this comparison, the configuration of 22-AAM was selected. This
experiment compared the precision on the location of the graphs generated with
HOG-EBGM and AAM to a ground-truth of hand-marked keypoints. The Yale
and CVL databases were used, as they contain such ground-truth information.
From them, two different testing sets were generated, corresponding to whole
sets of images in Yale and CVL, respectively.

The experimental set-up for the comparative can be summarized in the fol-
lowing steps:

1. Extraction of the facial graphs. For each face image in the test set, a
face graph using HOG-EBGM and AAM was located. For each landmark,
the location with the two algorithms can be expressed as X9 (k) and
Xgem(k), respectively, where ¢ is the landmark number, 1 <4 < 25 and k
represents the order of the image in the testing set, 1 < k < N;.
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2. Estimation of the distance between the k-th landmark location given by
each of the iterative methods, X" (k) and X2%™ (k), to the ground-truth
information, X4, (k).

3. Extraction of a mean distance value for each method. The mean distance
for HOG-EBGM and AAM (respectively), considering i-th landmark, can
be expressed as:

Ny
1

dist{" ™ = — Y || X (k) — XET| (6.18)

Ne k=0

and

1
disttom = — xaam gy — x6T 6.19
i Ntkzzollz (k) b (6.19)

The representation of the mean distances is displayed in Figure [6.22 The
two sets of curves represent the distances obtained for the Yale database and
the CVL database.

In both algorithms, the order of the landmarks is the one proposed by the
CSU Evaluation System [I7] for the standard EBGM. However, there is no
data in the interval 18 < ¢ < 20 (the curves are displayed as dotted lines).
This is explained by the fact that there were only 22 coincident landmarks
between HOG-EBGM and the Coincident AAM. In Figure an example of
the coincidence of landmarks between HOG-EBGM and AAM is displayed.

From a preliminary analysis of the curves, it is difficult to conclude which
algorithm achieves better accuracy. AAM performs better than HOG-EBGM for
14 out of 22 facial landmarks when using the Yale database, and HOG-EBGM
performs better than the standard AAM for 12 out of 22 points when using
CVL. This means that, depending on the testing set, either AAM or EBGM
locate their graphs with more precision. However, what is more significant is
that HOG-EBGM tends to achieve higher accuracy for the landmarks that are
associated with the inner and non-deformable keypoints of the face (i.e. from
the landmark ¢ = 1 until the landmark = 14), while AAM achieves better results
for the borders of the face or deformable elements such as the mouth (i.e. from
the landmark ¢ = 15 until the landmark ¢ = 25).

Additionally, it can be observed from the curves that the variance on the
location is lower with AAM, as the distances for each keypoint when testing the
two sets (Yale and CVL) are more stable than the distances obtained with HOG-
EBGM. This implies that the latter is more dependent on the image conditions.

6.7.3 Evaluation of HOG-EBGM compared to other holis-
tic face recognition algorithms

To determine the usability of HOG-EBGM as a face recognition algorithm, a
set of experiments involving some holistic approaches needed to be carried out.

To achieve this goal, the CSU Face Identification Evaluation System was
used in this experiment, as described in [I7]. This Evaluation System provides
a standard set of well-known face recognition algorithms and established ex-
perimental protocols, which are specifically tuned to be run on the FERET
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Figure 6.22: Distance for each of the facial landmarks located by the graph-
generating algorithms HOG-EBGM and AAM, with regard to the same land-
marks manually marked in the groundtruth of the: (a) Yale database and (b)

CVL database.
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face database. This evaluation protocol intends to set a solid basis for drawing
conclusions about the relative performance of the HOG-EBGM algorithm.

In the CSU Face Identification Evaluation System, up to three baseline algo-
rithms using holistic approaches are compared, plus the classical, feature-based
Gabor-EBGM algorithm:

1. Standard PCA algorithm, as described in Appendix [A] In this case,
during the matching step in the evaluation, two distances were consid-

ered: Euclidean distance and Mahalanobis Cosine. For further details, see
Chapter [3]

2. Fisherface algorithm (which combines PCA and LDA) based upon the
University of Maryland algorithm in the FERET tests. This combination
is likewise described in more detail in Appendix [A]

3. Bayesian Intrapersonal/Extrapersonal Image Difference Classi-
fier based upon the MIT algorithm in the FERET tests. In this case, two
variants of the classifier have been considered: a Bayesian classifier with
Maximum A Posteriori (Bayesian MAP), and a Bayesian classifier with
Maximum Likelihood (Bayesian ML).

4. Elastic Bunch Graph Matching Algorithm that uses localized land-
mark features represented by Gabor jets, on 25 locations (as described in
Section, based upon the USC algorithm in the FERET tests.

In Figure (extracted from [I7]), an scheme of the CSU Evaluation Sys-
tem can be seen. In the experiments of this section, only the Rank Curve
Performing was performed.

Preprocessing

Normalization

Training

Subspace Training |l Bayesian Training

Testing

Subspace Project Bayesian Project

Analysis

Rank Curve Testing Permutation Testing

Standard Cumulative Probability Distribution
Match Curves for Recognition Rate

Figure 6.23: Overview of the CSU process for evaluating algorithms.

All curves were evaluated using the FERET fa subset as the gallery, and
the fb, fe, dupl and dup2 as probe sets. In Figure[6.24] the performance of the
algorithms analyzed using the rank curves can be observed.
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Figure 6.24: Performance evaluation of face identification for the CSU algo-
rithms and the HOG-EBGM algorithm using the rank curves on the feret sub-
sets: a fath, (b) fafc, (¢) fa-dupl and (d) fa-dup2.

From these curves, it can be concluded that the HOG-EBGM algorithm
performs better than the rest of the algorithms for all the tests. HOG-EBGM
achieves higher results for rank r = 1, considered the recognition rate, than the
rest of the algorithms. Sometimes it even achieves identification rates doubling
those from the rest of the algorithms.

One may think that the performance differences obtained in these experi-
ments for HOG-EBGM could be motivated by comparing holistic and feature-
based approaches. However, in this experiment, a second feature-based ap-
proach, Gabor-EBGM, was tested. In the figure, it can be seen that Gabor-
EBGM performs worse in some scenarios than other holistic approaches, such
as the Bayesian classifiers.

6.7.4 HOG-EBGM compared to other HOG-based FGAs

In the previous experiments, the HOG-EBGM approach has been proven to
outperform Gabor-EBGM algorithm. Also, at this point, the HOG-EBGM
technique has been validated against other holistic face recognition algorithms,
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as well as feature-based algorithms using local features different from the HOG
descriptors.

The goal of this section is to provide an experimental basis to validate the
HOG-EBGM algorithm against other feature-based algorithms based on HOG
descriptors.

In these experiments, the performance in recognition of the HOG-EBGM is
evaluated against two Face Graph Algorithms: HOG Rigid Square Grids and
the HOG-AAM. For a complete analysis on these algorithms, see Section

Two different sets of experiments were designed to achieve the goals men-
tioned above:

e Performance evaluation of HOG-EBGM, Gabor-EBGM, HOG-AAM and
HOG-Grid, for face identification.

e Performance evaluation of HOG-EBGM, Gabor-EBGM, HOG-AAM and
HOG-Grid, for face verification.

Next, the results of the experiments are given.

Comparison of HOG-EBGM, HOG-AAM and HOG-Grid for face
identification

The biometric information contained in a facial graph strongly depends on the
algorithm that generated it. The experiments here evaluated the influence of
the feature-based algorithms on the facial feature vector that is generated. The
objective was to measure their descriptive power in identification tasks.

A comparative study comprising several variables was set up and the results
were given in the form of tables containing the hit rates. The variables involved
in these experiments can be summarized as follows:

e Face Graph Algorithms: The comparative study is between five algo-
rithms: HOG-EBGM, 22 HOG-AAM, 25 HOG-AAM, 25 HOG-Grids and
81 HOG-Grids.

The performance of each of the algorithm versions is individually displayed
in a different table of results (Table to Table [6.9).

¢ Dimensionality Reduction Methods: Due to the high dimensionality
of the face graphs generated (see Table , an additional dimensionality
reduction stage was included. The number of dimensions was reduced one
order of magnitude, from O(10%) to O(102).

Five reductive algorithms were used: PCA, LDA, a Regularized LDA

(RLDA), Orthogonal LDA (OLDA), Null-Space PCA (PCANULL) and
Kernel Fisher Analysis (KFA)E

Two remarks need to be made:

1. The KFA is a non-linear method based on kernel functions. In this
case, a polynomial function with degree n = 2 was selected.

2. In Regularized-LDA, the value of the regularization constant « was
tested for the range: a = [0.01,0.05,0.1,0.5,1,5,10]. In this case,
the performance results are those obtained with the best value of the
constant « for each case.

10Al]l these methods are explained in greater detail in Appendix
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Nr. Landmarks | Feature Vector Dimension

HOG-EBGM 25 3200
Sparse 25 3200

HOG-Grid
Dense 81 10368
Coincident 22 2816

HOG-AAM
Extended 25 3200

Table 6.5: Dimensionality of the feature vector for the different face graph
algorithms tested.

In the tables of results, each dimensionality reduction method is repre-
sented in a different column.

e Similarity Measures: The experiment was evaluated with two distances:
cosine and Fuclidean.

Both were used in all experiments, except for KFA, in which case only the
cosine distance was performed. In [64], the author shows that the cosine
works better for KFA.

The results containing two values (i.e. vali,vals) correspond to measures
with the cosine and Fuclidean distances, respectively. Cells containing
only one value (valy) correspond to cosine distance.

e Test Datasets: The experimental sets of images used were FERET and
FRGCvAT

— In FERET fa form the target set, while the fb, fc, dupl, dup2 subsets
acted each time as a different query set.

— In FRGCv2, the images corresponding to Ezperiment 4 were used
with the predefined training, target and query sets.

Table Table[6.7]and Table contain the performance results from the
experiment. For a better overview of the results, the best results (corresponding
to each of the algorithms on each of the test sets) are highlighted in each table.

Table [6.9] summarizes the performance of the feature-based algorithms, col-
lecting the best results obtained from each case. The table offers a comparison
of the best results achieved by each algorithm. Also, the highest performances
obtained on each of the test sets have been highlighted.

Due to the complexity of the tables, the results require an analysis of the
different variables involved:

1. Analysis of dimensionality reduction: Using FRGC, the best results
were always obtained with the Orthogonal LDA algorithm across all the
tests. Using FERET, depending of the specific dataset used, the best
performances were achieved with the LDA, Regularized LDA and Kernel
Fisher Analysis reduction algorithms. The main problem with RLDA is

11See Appendix
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Sparse Square Grid 5 x 5 (25 Landmarks)
PCA LDA RLDA OLDA PCANULL | KFA
FERET fafb | 93.40, 91.97 | 98.41, 98.41 | 98.41, 98.41 93.12, 92.23 93.40, 91.67 95.48
FERET fafc | 82.47, 88.66 | 93.81, 93.30 93.81, 93.81 82.47, 86.08 82.47, 83.66 | 95.36
FERET dup1 | 56.51, 57.20 | 71.60, 71.47 71.75, 71.60 52.49, 55.82 56.51, 57.20 54.57
FERET dup2 | 40.17, 45.30 64.1, 64.53 63.68, 63.68 31.20, 40.17 40.17, 45.30 32.47
FRGC 62.72,62.55 | 74.17,75.1 | 76.07,76.07 | 87.92,87.92 | 62.72, 6255 | 73.38 |
Dense Square Grid 9 x 9 (81 Landmarks)
PCA LDA RLDA OLDA PCANULL | KFA
FERET fafb | 94.73, 94.56 | 99.16, 99.16 | 99.08, 99.08 95.15, 94.48 94.73, 94.56 | 97.23
FERET fafc | 85.57,89.69 | 96.39, 96.39 96.39, 96.39 85.58, 88.66 85.57, 89.69 | 98.45
FERET dup1 | 61.63, 62.74 | 80.61, 80.47 | 80.61, 80.75 57.06, 59.69 61.63, 62.74 | 59.00
FERET dup2 | 45.30, 51.28 | 74.36, 74.36 | 74.79, 74.79 | 35.04, 44.02 45.30, 51.28 38.88
FRGC 65.23, 66.15 | 75.76, 75.76 7711, 71.11 60.46, 65.23 65.15, 72.87 7 78.53 7

Table 6.7: Face Identification rates with HOG-Grid with the Sparse and Dense configurations using FERET and FRGC.
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HOG-EBGM GRID 5 x 5 GRID 9 x 9 HOG-AAM HOG-AAM
25 Landmarks | 25 Landmarks | 81 Landmarks | 22 Landmarks | 25 Landmarks
FERET fafb 97.74 98.41 99.16 96.47 96.65
FERET fafc 100 95.36 98.45 94.33 100
FERET dup1 69.80 71.60 80.75 70.08 72.99
FERET dup2 65.81 64.53 74.79 74.36 76.92
FRGC 74.34 87.92 78.53 81.53 85.61

Table 6.9: Summary of the best performances obtained from each of the face graph algorithms for identification tasks.
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the uncertainty in determining the optimal value for the regularization
constant, «. This prevents this algorithm from being used in a regular
scenario.

2. Analysis of similarity measures: in the majority of tests, the cosine
distance outperformed the Euclidean distance. Henceforth, the cosine
distance was selected to be the best distance for face recognition.

3. Analysis of the algorithms: Due to the complexity of the data in the
tables [6.0] to [6.8] this analysis is done using the summarized information
in Table [6.91

¢ HOG-Grid Variants: in FERET, the performance was improved
when the number of points in the grid was higher. The Dense (9 x 9)
grid systematically outperforms the Sparse (5 x 5) grid.

In the FRGCv2 dataset the Sparse grid outperforms the Dense grid.
As the images in FRGC are more challenging, the worse performance
of the 9 x 9 HOG-Grid could be caused by the overfitting problem.

Although the HOG-Grid with higher number of points achieves higher
rates in controlled scenarios (FERET), its instability due to the ran-
dom location of the keypoints decreases its robustness for scenarios
with uncontrolled conditions (FRGC).

¢ HOG-AAM Variants: the 25 HOG-AAM variant outperforms the
22 HOG-AAM in all tests.

The increase in the number of keypoints in AAM is followed by an
increase in the performance. Unlike the grids, here the extra key-
points added to the face graph correspond to specific (not random)
face landmarks, and therefore their information contribution is sig-
nificant.

¢ HOG-EBGM versus HOG-Grids and HOG-AAM: From the
tables it can be observed that the three algorithms have a very close
behavior.

However, two issues should be remarked: on one side, it can be ob-
served that the tendency of the graphs generated by HOG-AAM is
to slightly outperform those of the other algorithms. On the other
side, assuming frontal faces in which the angle variance is low, using
grids is the simplest and fastest method to extract features.

Comparison of HOG-EBGM, HOG-AAM and HOG-Grid for face ver-
ification

This experiment addressed the comparison of the three HOG feature-based al-
gorithms, analyzing their behavior in verification tasks (evaluated using ROC
curvey 7).

The information obtained for the experiments of identification in the previ-
ous section were helpful to delimit the variables involved:

12G8ee Section m
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e Face Graph Algorithms: The study compares the three FGAs used in
the identification experiments: HOG-EBGM, HOG-AAM and HOG Rigid
Square Grids.

In relation to HOG-AAM and HOG-Grid, it was decided to use only the
variants with the same number of landmarks as the HOG-EBGM, to be
fully comparable: 25 HOG-AAM and 25 HOG-Grid (Sparse Grid).

e Dimensionality Reduction Methods: Similar to the identification ex-
periments, some dimensionality reduction techniques had to be applied to
reduce the face feature vector (see Table [6.5]).

Based on the results of the previous experiments, three reductive algo-
rithms were tested for verification: PCA (as a baseline), the standard
LDA and the Orthogonal LDA (OLDA).

Each of the reduction methods were shown as different set of curves in the
final results.

e Test Datasets: The experimental sets of images of FRGCv2 Experiment
4 were used. This database was selected because it defines a standard
protocol focused on the performance analysis for face verification, using
the extended ROC curves.

The evaluation was performed using three subsets for the ROC curves:
ROC I, ROC II and ROC III For further explanations, refer to Sec-
tion In the results, each variant of the ROC curves was displayed
with a different curve-line.

e Similarity Measure: Only one distance measurement was performed
in verification, the cosine distance. This choice was attributed to the
results obtained in the previous experiment, in which the cosine distance
outperformed the Euclidean distance in the majority of cases for the PCA,
LDA and OLDA algorithms.

Figure[6.25] Figure[6.26|and Figure [6.27]display the ROC curves correspond-
ing to all tests performed in this experiment.
The following conclusions can be drawn:

1. The best performance is achieved with the Orthogonal-LDA for all the
approaches and image subsets.

The performance of OLDA is nearly double that of PCA if a false alarm
probability of ps, = 1073 is considered. When OLDA is compared to the
standard LDA algorithm, the difference is less remarkable.

These results match those obtained in identification experiments using
FRGCv2. With regard to reduction methods, it can therefore be con-
cluded that LDA techniques outperform PCA in face recognition, with
OLDA as the best case.

2. Regarding the dimensionality reduction technique used, when PCA was
used, the curves had greater dispersion than with any of the LDA algo-
rithms. That means that PCA is less stable than LDA in verification
tasks.
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Figure 6.25: ROC curves for verification performance using the PCA reduction

method in FRGCv2.

3. For all the cases, the HOG-Grid achieves the best results, especially when

combined with the OLDA technique. For a probability of false alarm of
pra = 1073, the hit rate is around 60%, while in the case of HOG-EBGM
and HOG-AAM, the performance is around 55%.

. Focusing on HOG-EBGM and HOG-AAM, we observe that the perfor-
mance is very similar. In PCA and LDA, HOG-AAM outperforms HOG-
EBGM, whereas in OLDA (the best case for all the algorithms), HOG-
EBGM outperforms HOG-AAM.

This similarity is due to the fact that the only difference between HOG-
EBGM and 25 HOG-AAM is in the location of the keypoints, and in both
cases it is quite accurate.

. If the experiments with PCA are considered, for all the methods, the ROC
I subset performs better than ROC' II, and this in turn outperforms the
results for ROC III.

On the other hand, for all the tests performed with the two LDA-based
methods, the results obtained with ROC' III outperform those obtained
with ROC II and ROC 1.

Summarizing, it can be stated that in verification, OLDA is the optimum

dimensionality reduction algorithm. This is especially true when it is applied to
graphs obtained from the Sparse HOG-Grid, followed by the HOG-EBGM and
the AAM-EBGM, which all perform similarly.
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Figure 6.26: ROC curves for verification performance using the LDA reduction
method in FRGCv2.

6.8 Effect of automatic eye location on face recog-
nition

As introduced in Chapter [5] to determine the robustness of a face recognition
system regarding its initial conditions, it is necessary to test it with regard to
initial location of the eyes.

Here, an evaluation experiment is designed to analyse the effects of the vari-
ance of the location of the eyes on face recognition. To that end, we have
selected HOG-EBGM (without using dimensionality reduction on the face fea-
ture vector). The results are also compared to a baseline PCA algorithm based
on eigenfaces [I07]. The selection of the PCA algorithm has been motivated by
its use as a baseline and also because of its sensibility to small displacements
on the location of the face.

In this experiment, three scenarios have been created for the test images:

1. Hand-marked Location: the location of the eyes is provided before-
hand, as part of the groundtruth of the datasets.

2. Automatic Location: the location of the eyes is provided by the eye
location stage proposed in Chapter

3. Randomly Displaced Location: the location of the eyes comes from the
groundtruth, but a component of white random Gaussian Noise, N[u, sigmal
generated with zero mean, = 0 and maximum standard deviation 5% of
the inter-ocular distance is added.
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Figure 6.27: ROC curves for verification performance using the Orthogonal-
LDA reduction method.

For all the experiments a subset of FERET images has been used. This
subset corresponds to 200 individuals with three different images per person.
The methodology used in this experiment was a 3-fold Cross-Validation, where
two random images for each individual generated the gallery subset, and the
resting images the probe set. In this experiment it was important to select a
controlled set of face images, so that the inaccuracies due tu external factors
(such as bad resolution or changing light conditions) would not have a significant
influence on the final results.

The results of the study of the performance of both algorithms using the
three scenarios are displayed in Figure [6.28

From the results, it can be concluded HOG-EBGM is quite robust to the
variation in the initial location of the eyes: in none of the three scenarios re-
markable differences are appreciated, unlike in the case of the PCA algorithm.

Also let’s also notice that our eye location system performs for both recogni-
tion algorithms in a mid-point between the hand-marked results and the hand-
marked results with additional noise. As the addition of noise was designed
with a standard deviation of 5% of the inter-ocular distance this means that,
the error of our location was less than that level.

These results create a favourable background to mix our eye location stage
with the HOG-EBGM face recognition approach.
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Figure 6.28: Analysis of the influence of the location of the eyes on the perfor-
mance of some Face Recognition algorithms.

6.9 Evaluation of the Color HOG-EBGM algo-
rithm

In previous experiments, the grayscale HOG-EBGM has been evaluated for
face recognition problems. This evaluation could be significantly enhanced by
performing the same tests with the color information, using the CHOG-EBGM
algorithm described in Section [6.5]

The main target of this section is to experiment how the inclusion of color
cues affects to the discriminability of the face feature vector that is extracted.
To this end, both HOG-EBGM algorithms, the color-based version and the
standard grayscale are compared.

Some additional issues were considered, such as the selection of the optimal
color space (in terms of discrimination power) to be used with CHOG-EBGM.
A second goal of this section is to analyze the recognition results as a function
of the color space: the standard RGB, HSV, the Opponent Color Space (OCS)
and the Discriminant Color Space (DCS). All these color spaces are explained
in detail in Section 2.3

These color spaces can be directly derived from the RGB, except for DCS,
which needs to be trained off-line. In DCS, an optimal discriminant space
is calculated for a specific set of training images. In our case, the FRGCv2
database was used in all experiments, specifically the images corresponding to
FExperiment 4 EL The transformation matrix from RGB to the optimum color
space for FRGCv2 is given in Liu [120]:

0.28 0.06 0.74
Xrrec = 10.06 —0.16 0.40
0.29 -0.21 -0.12

The rest of this section is focused on the description of a series of experiments

13See Appendix
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using the two versions of the HOG-EBGM face graph algorithm to validate the
hypothesis:

e Comparison of CHOG-EBGM and grayscale HOG-EBGM face graph al-
gorithms for face identification.

e Comparison of the two face graph algorithms for face verification.

The evaluation was done using FRGCv2, as it is one of the most extensive
color databases. Due to the large quantity of images in FRGCv2, other authors
tend to perform their experiments using reduced subsets. In our case, the orig-
inal sets were approximately halved through random selection of the images.
This allowed the computational burden to be reduced and eased the demands
on the allocation of memory. Next, the experiments performed are performed,
along with an analysis of the results.

6.9.1 Analysis of CHOG-EBGM for face identification

This experiment evaluates the influence of color information on descriptive
power when a Face Graph is generated using a HOG-EBGM algorithm.

Following the steps proposed for the grayscale HOG-EBGM in the previous
experiments, a comparative study was presented. The results are given in the
form of tables that contain the hit rates and also the rank curves of some specific
cases to obtain more detailed information.

Next, a summary is offered of the organization of the results and the param-
eters involved:

e Algorithms and Color Spaces: the comparison is between the CHOG-
EBGM and the regular grayscale HOG-EBGM. For the CHOG-EBGM al-
gorithm, four variants were analyzed which corresponded to four different
color spaces: CHOG-EBGM on RGB, CHOG-EBGM on HSV, CHOG-
EBGM on OCS (Opponent Color Space) and CHOG-EBGM on DCS
(Discriminant Color Space).

The performance of each of the algorithm variant is displayed as a row in
the table of results, and as a different curve-line in the rank curves.

¢ Dimensionality Reduction Methods: The feature vector generated
with the CHOG-EBGM had dimension d. = 3600, three times larger than
the dimension of the grayscale variant. Therefore, a reduction method
was needed to decrease the number of dimensions.

The reduction techniques tested were: PCA, LDA, the Regularized LDA

(RLDA), Orthogonal LDA (OLDA), Null-Space PCA (PCANULL) and
the Kernel Fisher Analysis (KFA), explained in detail in Appendi

Two additional remarks are needed:

1. For the KFA, a polynomial kernel function was used, with the degree
set ton = 2.

2. In the LDA-Iterative Power Method, tuning was required for the
value of the regularization constant, a. The values were empirically
set: @ =[0.01,0.05,0.1,0.5,1,5, 10].

The result shown in the result table for the RLDA are those obtained
with the best value of the constant « for each case.
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In the table of results, each of the dimensionality reduction methods are
represented in different columns, while in the rank curves, only two re-
duction methods are shown as different sets of curves: the Orthogonal
LDA and the KFA. The reason for showing just these two sets of curves
is explained below.

e Similarity Measures: Two distances were employed in these tests, co-
sine and Euclidean, except for KFA, as in [64] Li shows that the optimal
similarity measure is the cosine distance.

In the table of results, all the cells that contain two performance values
(i.e. valy, valy) correspond to cosine and Fuclidean distances, respectively.
The cells with only one value correspond to cosine.

Regarding the rank curves (Figure , cosine distance was used for the
Orthogonal LDA. For greater clarity, the curve-lines obtained with the
Fuclidean distance are not shown in the results, as for all the methods,
cosine outperforms Euclidean.

Table [6.10] contains the results obtained for the CHOG-EBGM and HOG-
EBGM algorithms in face identification. The best results for each variant are
highlighted.

Some conclusions can be drawn:
1. For all cases, CHOG-EBGM outperformed the grayscale HOG-EBGM.

2. Regarding the measurement distances, the results obtained using cosine
outperformed the ones obtained with Fuclidean. This result is in accor-
dance with the results obtained with the grayscale HOG-EBGM.

3. Regarding the Color Space, the highest rates were obtained for all the
cases with the Opponent Color Space.

4. Regarding the dimension reduction method, the best results were obtained
with the Orthogonal LDA and the KFA for all the color spaces.

Since the performances of the OLDA and KFA reduction techniques are
quite similar. For a deeper comparison of the methods, we also plotted the rank
curves corresponding to all the CHOG-EBGM variants (along with the grayscale
HOG-EBGM) were also extracted using both the OLDA and KFA techniques.
The results are shown in Figure [6.29]

From the rank curves, it can be seen that the behavior using both reduc-
tion techniques is still quite similar. The results obtained with KFA for all the
variants are better and more consistent than the results with OLDA. On the
other hand, in the case of Orthogonal-LDA, the CHOG-EBGM algorithm per-
forms slightly better on the Opponent Color Space. For example, an accuracy
of hit — rate = 95% was achieved for rank r = 6 for the CHOG-EBGM on OCS
with the OLDA technique. The same was achieved for rank r = 8 when using
the KFA technique.

6.9.2 Study of CHOG-EBGM for face verification

The last experiment designed to evaluate the CHOG-EBGM algorithm was
aimed at analyzing its behavior in face verification. Following the experimental
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Figure 6.29: Rank curves corresponding to CHOG-EBGM performed on dif-
ferent Color Spaces in FRGCv2, using two dimension reduction methods: a)
Orthogonal-LDA and b) Kernel Fisher Analysis.
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set-up provided in Section [6.7.4] the performance of the two algorithms was
evaluated using the ROC curves.

To optimize the experimental set-up, some of the conclusions from the pre-
vious CHOG-EBGM identification experiments were used. This information
helped delimit the number of variables involved in the current set-up.

In this experiment, the FRGCv2 dataset was also used. Due to the amount
of information in the ROC curves, only the ones corresponding to the ROC I
set proposed in the CSU methodology are displayed, as the results for the ROC
IT and ROC IIT do not make a significant contribution.

The variables involved with the verification experiments are:

e Algorithms and Color Spaces: The comparison is between the CHOG-
EBGM and the regular grayscale HOG-EBGM. For the CHOG-EBGM al-
gorithm, four variants were analyzed, each corresponding to four different
color spaces: CHOG-EBGM on RGB, CHOG-EBGM on HSV, CHOG-
EBGM on OCS (Opponent Color Space) and CHOG-EBGM on DCS
(Discriminant Color Space).

The performance of each of the algorithms is displayed as a different curve-
line in the figures displaying the ROC curves.

¢ Dimensionality Reduction Methods: From the experiments for iden-
tification, it can be concluded that the two most outstanding methods for
reducing the dimension of the CHOG-EBGM feature vector are the Or-
thogonal LDA and the KFA techniques. In this experiment, the algorithm
variants with both techniques were evaluated, and the PCA and LDA were
added as baselines.

Each of the tests run with the different reduction techniques are shown as
different sets of curves in the final results.

e Similarity Measures: the final scores were evaluated with the cosine
distance, as a consequence of the results in the experiments for identifica-
tion.

In Figure [6.30} Figure [6.31] Figure and Figure [6.33] one can observe
the ROC curves corresponding to all the tests performed for this experiment.
Next, the results obtained from the ROC curves were analyzed:

1. Analysis of dimensionality reduction algorithms: For all the color
spaces tested, the best performance is achieved with the Orthogonal-LDA
and the Kernel Fisher Analysis.

Considering false alarm probability ps, = 1073, the results obtained for
OLDA and KFA are quite similar. However, if the number of false alarms
is increased, OLDA performs slightly better. The performance with the
PCA technique is quite low compared to the other cases.

2. Analysis of the performance of color spaces: When the performance
of the CHOG-EBGM on the different color spaces is analyzed, two con-
clusions can be drawn:

e The curves obtained for the CHOG-EBGM indicate a higher per-
formance than the curves for the grayscale HOG-EBGM in almost
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Figure 6.30: Verification performance of CHOG-EBGM with different Color
Spaces using PCA on FRGCv2.

all the cases. However, the response of the CHOG-EBGM depends
on the color space used, and in some cases, the HOG-EBGM can
outperform the CHOG-EBGM for certain color spaces. This can be
seen in Figure[6.30]and Figure[6.33] corresponding to PCA and KFA,
respectively.

e For all the color spaces and all cases studied, the one with the best
performance was the Opponent Color Space (OCS). The best curve
was obtained using this color space and the KFA technique for di-
mension reduction, as seen in Figure [6.33

6.10 Conclusions

This section is aimed to summarize the main conclusions extracted from the use
of different Face Graph algorithms, specifically the one developed in this thesis
HOG-EBGM, and its color adaptation CHOG-EBGM.

The section is structured in blocks corresponding to the conclusions ex-
tracted from each set of experimental analysis.

6.10.1 HOG-EBGM compared to Gabor-EBGM.

From the results comparing the two EBGM-based methods, it can be generally
said that the use of HOG-EBGM to extract facial graphs is more convenient
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Figure 6.31: Verification performance of CHOG-EBGM with different Color
Spaces using LDA on FRGCv2.

than the standard Gabor-EBGM. Analyzing this statement more in detail, it
can be seen that:

1. The descriptive power achieved with HOG-EBGM to represent a given
set of facial landmarks is greater than that obtained with Gabor-EBGM.
This is a good indicator that it is preferable to use HOG descriptors over
Gabor jets, even for configurations other than EBGM algorithms.

2. The automatic process of facial landmarks localization is more stable and
accurate when the iterative EBGM algorithm uses information from the
HOG descriptors previously stored in the models set.

3. The use of HOG-EBGM in identification tasks outperforms a number of
the most common and widespread holistic algorithms.

All these conclusions support the use of the HOG-EBGM algorithm as a
Face Graph Algorithm.

6.10.2 HOG-EBGM compared to HOG-AAM and HOG-
Grid

One of the goals of this chapter was to evaluate different feature-based face
recognition approaches, based in HOG descriptors. The experiments provided
assess the use of the HOG-EBGM, comparing it with other HOG-based face
graphs algorithms: HOG-AAM and HOG-Grid. Specifically, this validation
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Figure 6.32: Verification performance of CHOG-EBGM with different Color
Spaces using Orthogonal-LDA on FRGCv2.

was aimed at evaluating the accuracy of the three algorithms on the location of
the keypoints of the face graph and their performance in recognition tasks.

From the results of the three sets of experiments performed, some valid
conclusions can be drawn:

e Regarding the location of the face graph, the HOG-EBGM algorithm is
compared to the standard AAM. Two main conclusions can be extracted
from the experiments:

1. The accuracy of the keypoints achieved by both algorithms is com-
parable. The HOG-EBGM achieves higher accuracy for the inner
landmarks of the face and also those less flexible parts (e.g., the cor-
ners of the eye or the nose), while AAM achieves better results for
the borders of the face or deformable elements (e.g., the mouth).

2. The landmarks extracted with AAM are more stable (i.e. have lower
dispersion), than those obtained with HOG-EBGM, meaning that
HOG-EBGM is more dependent on the image conditions.

e Regarding the performance in recognition of HOG-EBGM, HOG-AAM
and HOG-Grids using dimensionality reduction, the conclusions reached

are:

1. The HOG-Grid tends to outperform HOG-EBGM and HOG-AAM;
however, this result needs to be contextualized. The location of the
points in the a non-deformable grid is static, not obeying the charac-
teristics of the image. Therefore, for normalized and frontal images,
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Figure 6.33: Verification performance of CHOG-EBGM with different Color
Spaces using KFA on FRGCv2.

the HOG-Grid tends to naturally place the keypoints in the same
relative position on the face. Meanwhile, for HOG-EBGM and HOG-
AAM, badly conditioned images can lead to non-accurate locations.
Nevertheless, the adaptability of the HOG-Grid should be tested
when the faces are not completely frontal.

2. HOG-EBGM and HOG-AAM have similar performances in recogni-
tion and verification, being both suitable for such tasks, as the only
difference is in the method to locate the keypoints.

3. In both experiments, a final step of dimension reduction was needed.
For all the algorithms tested, the two achieving the most relevant
performances were the Orthogonal-LDA and the Fisher Kernel Anal-
ysis. However, depending on the set of images, results may change,
making it difficult to determine the priority of either one of these
methods.

4. With regard to the matching algorithm, different distances were tested,
leading to the conclusion that the cosine distance generally outper-
forms the Euclidean distance in recognition tasks.

6.10.3 CHOG-EBGM compared to the standard HOG-
EBGM

In this section, a testing context was provided to validate the use of the color-
based HOG-EBGM, comparing it to the grayscale HOG-EBGM face graph al-
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gorithms. The experiments were aimed at measuring the performance of the
two algorithms in recognition with the use of different color spaces.

Next, some of the conclusions are summarized after performing the two sets
of experiments:

e Regarding the descriptive power of the color features, CHOG, compared
to the grayscale features, HOG, the first showed better results for all
the experiments performed, indicating a higher descriptive power in those
graphs that incorporate color cues.

In terms of performance, the CHOG-EBGM is preferable to the standard
HOG-EBGM, although its cost is higher in terms of the memory used and
the number of operations.

e Regarding the five color spaces analyzed , some have proved to fit better
with our problem than others. The classical RGB color space showed one
of the poorest performances, while others, such as the Opponent Color
Space, were more discriminative.

e Regarding the reduction of dimensions, two techniques proved to be more
appropriate in dealing with the color feature vectors: the Orthogonal-LDA
and the Fisher Kernel Analysis.

As a final conclusion, it can be asserted that the CHOG-EBGM achieves its
best performance when it is used on the Opponent Color Space, with the OLDA
or the KFA techniques for dimension reduction.



Chapter 7

Results of the MOBIO
contest for a HOG
feature-based solution

7.1 Introduction to the MOBIO contest

In the field of biometrics, great efforts have been made to develop non-intrusive
techniques such as face or speaker recognition. These two topics have been stud-
ied for a long time: since the mid 1960s, in the case of face recognition [16] [31],
while for the topic of automatic speaker recognition, research started in the
1970s [8,[72]. The research on these topics has often been done in parallel, with-
out any feedback between them. Nowadays, images are usually associated with
sound streams, and thus it is reasonable to think that both kinds of biometric
analyses could be coordinated to achieve better results. The problem is that
the historical isolation of these topics has produced few joint databases of face
images and speaker voices.

During the last two decades, some academic and public institutions, such as
the National Institute of Standards and Technology (NIST) [I], have organized
a series of contests for face and speaker recognition. The aim of these contests
was to spur development of novel algorithmic approaches and challenge the
technology.

In the case of face recognition, some of the most remarkable and widespread
competitions in recent years have been the 2004 ICPR Face Verification Com-
petition [77] and the Face Recognition Grand Challenge [94], both organized by
NIST.

Regarding the challenge offered by these databases, it must be remarked
that some sets of images in the Face Recognition Grand Challengeﬂ contain
many blurry images with uncontrolled light and background conditions. Despite
the challenging level of the images, there was still a general lack of samples
showing realistic scenarios. The majority of these contests offered samples in
semi-controlled conditions, with images acquired using known poses and angles
for the face and camera. Such contexts move the experiments away from the

1See Appendix [B| for further description
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conditions of real scenarios.

To overcome some of the limitations of previous competitions, a group of
universities designed a new database in 2009 in the form of a competition:
the Mobile Biometry Face and Speaker Verification Evaluation (MOBIO). The
aim of MOBIO was to provide a unique opportunity to jointly analyze two
mature biometrics, face and voice, in a realistic environment. The database was
designed as a series of videos of people recorded from a common mobile phone.
This mobile environment offered challenging conditions for the acquired images,
including adverse illumination, noisy background and noisy audio data.

Note that the MOBIO database offered a joint dataset of video and audio,
whereas the evaluation was focused on examining uni-modal face and speaker
verification techniques. The participants in this contest were expected to con-
front the evaluation from only one of two perspectives: face recognition or
speaker recognition.

The universities involved in the recording of the samples of the database
were: the Brno University of Technology (BUT), the University of Manch-
ester (UMAN), the Idiap Research Institute (IDIAP), the University of Avignon
(LIA), the University of Surrey (UNIS) and the University of Oulu (UOULU).

Finally, the database was designed to be recorded in two phases: Phase I
and Phase II. Phase I was used for the competition in the 2010 International
Conference on Pattern Recognition (ICPR). This phase was open to the public
and it is the only one object of study in the current chapter. Phase II was
intended to be developed independently, and thus its study is beyond the aim
of this work.

7.2 Motivation to participate in the MOBIO con-
test

The MOBIO contest targeted participants willing to match their algorithms
for facial analysis and voice recognition with the solutions given by the other
participants. However, the major challenge that this competition offered was
going beyond the state-of-the-art of recognition methods to overcome a number
of problems derived from the mobile context in which the samples were acquired.

The MOBIO competition grants a propitious framework to develop novel
solutions, evaluate them and assess them against other state-of-the-art methods.
While working on this thesis, we considered it productive to take part in the
competition. Our main interests were in the area of face recognition, as it offered
an opportunity to complement and put together the work presented during the
previous chapters.

The main reasons that motivated our participation in the MOBIO contest
are summarized in the following;:

e The evaluation of the MOBIO database is a perfect complement to the
study carried out through this work. Because of the mobile environment
provided, we gained the opportunity to experiment on realistic samples.

The MOBIO database contains a number of challenging features, such as
the uncontrolled pose of the face, the gesticulation that results from peo-
ple’s speech or severe changes in illumination, among others. These fea-
tures are difficult to find in other face databases, as shown in Appendix
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Figure [7.1] displays some examples of challenging images extracted from
the MOBIO database.

(b)

Figure 7.1: Examples of two challenging identities in different sample videos
from the MOBIO database.

e The intentional lack of groundtruth in the images about the location of
faces or any specific facial landmarks requires the use of a face detection
stage prior to extracting biometric information for face recognition. In
this thesis, it became necessary to unify the eye location system presented
in Chapter [5 with some of the face graph algorithms studied in Section [f]
for face recognition.

The study of the joint performance of both stages was a good complement
to the experiments in previous chapters as it gave an overview of the
system as a whole.

e The MOBIO database offered the chance of designing experimental set-
ups when video samples are used. The majority of databases used for face
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recognition are based on still images.

Performing on videos enables a preselection of the faces with the best ap-
pearance from all the video frames, unlike other databases where only a
few images per person are given. On the other hand, applying the tradi-
tional still-image algorithms to videos involves finding solutions to some
additional problems: a mechanism is needed to select the best face in
each frame. Each detection produces a score which allows the most suit-
able faces in the video to be selected. However, in the MOBIO database,
each different identity is associated with one video, as the videos were
recorded with one person alone (i.e., one face per frame).

e The MOBIO competition provided a framework for evaluating our joint
system against other state-of-the-art approaches from other competitors.

e Thanks to this competition, we met our goal of disseminating new tech-
nologies, transmitting our approaches to other researchers and comparing
results in a common scenario.

This chapter starts by analyzing the MOBIO database and the performance
evaluation proposed by the organizers. Then, our contribution to the competi-
tion is detailed, with the results analyzed and compared to the most significant
results from the rest of competitors. Finally, some conclusions about the com-
petition are drawn.

7.3 The MOBIO database

The composition of the MOBIO database determines the evaluation and the
experimental tests that can be performed on it. That is, the MOBIO competi-
tion provides not only the necessary samples, but also the evaluation protocol
for determining the training, the development and the test sets, as well as the
performance evaluation that has to be used for a fair comparison between all
the participants.

As stated before, our main interest in the MOBIO contest was to validate our
face analysis algorithms by using the video sequences and leaving out the audio
samples. Therefore, the rest of this section is mainly focused on the description
of the samples and the protocol established to deal with the video sequences for
face recognition.

7.3.1 Composition of the MOBIO database

The capture of video and audio samples in the MOBIO database addressed
several issues neglected by other public databases. Some of its main features
are summarized in the following:

1. The database consisted of recordings which acquired consistent data over
a period of time. This is important when studying the problem of model
adaptation.

2. The videos were recorded directly from mobile devices and showed people
talking, which leads to a constant change in facial expressions. Also, the
recordings were acquired under different lighting conditions and with a
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variety of poses. This covered the necessity of having video sequences
captured in realistic scenarios.

3. The audio was captured on a mobile platform, producing a considerable
variance in noise in each sample, meeting the need of realistic audio sam-
ples for the speaker recognition algorithms.

4. One of the goals of the database was to contain a large variety of scenarios
and people from diverse origins. Phase I was recorded collaboratively in
locations from the MOBIO consortium.

5. The samples of the database were acquired primarily using a regular mo-
bile phone, with a camera resolution of 640 x 480 pixels and a rate of
25 frames per second. All the sequences had an approximate duration of
between 10 seconds and 20 seconds, which amounts to 250 to 500 images
per video.

6. The sound samples were extracted directly from the audio track associated
with the video samples. Although the speech was limited to English, the
MOBIO database included recordings from both native and non-native
English speakers.

The Phase I of the the database contained 160 participants who completed six
recording sessions. In each session, the participants were asked to answer a set
of questions, classified as: i) set responses, ii) read speech from a paper, and
iii) free speech. In all, each session consisted of 21 questions: 5 set response
questions, 1 read speech question and 15 free speech questions. More details are
given below:

e Set responses were given to the user. There were five such questions in
total and fake responses were supplied. Five different questions were asked,
and each question took approximately five seconds to answer (although
this varies among users).

e Read speech was obtained by supplying each user with three written sen-
tences. The sentences were the same for each session.

e Free speech was obtained by prompting each user with a random question.
For five of these questions, the user was asked to speak for five seconds; and
for ten questions, the user was asked to speak for ten seconds, giving a total
of fifteen questions. The users were asked again to give false information
and make up their answers.

7.3.2 The MOBIO evaluation protocol

The database was split into three different sets, following the format of super-
vised algorithms: one for training, one for development and one for testing.
For each subset, the data was split in such a way that it came at least from
two different institutions. This way, a total independence between sets was
achieved, as the three sets for the evaluation were completely independent, with
no information regarding individuals or the conditions shared between any of
them.
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The data contained in the training set was available for use by all partici-
pants in the competition. The data was intended to derive background models:
for instance, training a world background model or a vectorial space to apply
reductive techniques, among others. Table lists the main features and the
uses intended for the training set in the database.

TRAINING SPLIT

Usage Background Training
Data to Use All Data (non-mandatory)
Total Number of identities 53

Number of female identities 14

Number of male identities 39

Number of Recording Sessions 6

Number of Videos per Session 21

Total Number of Videos per Person 126

Table 7.1: Training split of the MOBIO database.

The development and the test splits were almost identical in their structure.
They were divided into several sessions: one for the enrollment (gallery set),
and the rest for the evaluation (probe set). Despite their similarities, each of
the splits was designed with a very different purpose:

e The development split had to be used as a self-assessment set. The results
obtained in this stage were not relevant to the public, but were very useful
to adjust the proposed system to the actual scenario.

In this set, the identity of the probe samples were known and the idea was
that the participants were able to derive the parameters and thresholds to
tune their systems. Also, it was allowed in this competition to determine
any fusion parameters if the participants chose to do so.

The video samples of the development split were recorded in six sessions:
one for enrollment and five for testing. Table summarizes the main
features of this set.

e The test split was used to derive the final matching scores. In this set,
the identity of the probe samples was not known by the participants. Fol-
lowing the evaluation protocol of the MOBIO competition, no parameters
could be derived from this set to assist in the matching, only the final
feature vectors.

The organizers provided the test split to the participants in a second stage
of the competition. The main rule was that no a priori knowledge about
the probe set was allowed. To ensure this statement, the data was encoded
so that the filename gave no clue to the identity of the user.

The video samples of the test split were recorded in six sessions: one for
enrollment and five for testing. For further details, see Table
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DEVELOPMENT SPLIT

Usage Self-assessment
Data to Use Set questions only
Total Number of identities 47
Number of female identities 20
Number of male identities 27
Number of Recording Sessions 6
Number of Videos in Enrollment Session 5
Number of Videos in Test Session 15

Total Number of Videos per Person 54+ 75

Table 7.2: Development Split of the MOBIO database.

TESTING SPLIT

Usage Final Scores
Data to Use Free Speech Only
Total Number of identities 47
Number of female identities 20
Number of male identities 27
Number of Recording Sessions 6
Number of Videos in Enrollment Session 5
Number of Videos in Test Session 15

Total Number of Videos per Person 5+ 75

Table 7.3: Testing Split of the MOBIO database.

In the development and testing splits, the first recording session was used
for enrollment, while the remaining sessions were used as probe. This can be
summarized as follows:

e Enrollment (Session 1): For each individual, the data consisted of five
video recordings. All the individual parameters were derived from this
set.

e Evaluation (Sessions 2-6): Data came from the free speech. Each video
was treated as an individual probe observation, producing a client match
and C — 1 impostor scores, where C' is the number of classes (individuals)
in the enrollment set. In all, 15 videos were recorded from each session,
producing a total of 75 videos per person.

Also, for a more extensive evaluation, male and female labeling was provided
with the samples, so that the testing could be performed independently for each
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group. A posteriori mixed evaluation was also given (only the results are mixed,
not the test sets).

7.4 HOG-EBGM with eye location

The system we proposed for the competition integrated a face detection with eye
location stage with a face recognition stage based on HOG-EBGM (studied in
Chapter@. For face detection, we tried two different solutions: one based on the
techniques described in Chapter [5 and one based on a commercial off-the-shelf
algorithm.

The system we designed for the contest also included an additional stage
between detection and recognition: Best Faces Selection. It was aimed at se-
lecting the best faces of an individual, exploiting the advantages of using videos
instead of still images. This stage was designed to solve two problems:

1. Reduce the information from the videos to specific face images in which to
perform the identity matching. Given the high number of images extracted
from each of the video samples, it was important to reduce it to a small
set of face images, and therefore optimal for face recognition.

2. Tackle the problem of multiple faces detected in a single frame. In this
case, only the faces with the best appearance (with higher reliability) were
selected.

The structure of the MOBIO competition forced us to add an independent
phase for the development and test splits:the video feature extraction. It was
an off-line phase performed prior to the tests. Its main goal was to extract the
main information from each video of the target and query sets. To that end,
this phase made use of the Best Faces Selection stage.

The rest of this section is aimed at analyzing the particularities of our facial
analysis system, going into detail during the face detection and normalization
stage, the extraction of features and the enrollment phase.

7.4.1 Face Detection, Cropping and Normalization

The face detection stage has a great impact on the whole facial analysis system.
For example, the reliability of the results given by the face recognition stage
are highly dependent on the accuracy of the location of the detected face, as
confirmed by the experiments in Section

For the MOBIO competition, we proposed two different solutions, which
only differed in the Coarse Face Detection step (as shown in Figure : the
first solution used the face detection algorithm studied in Chapter [5] while the
second used a commercial off-the-shelf solution.

The principal motivation for presenting two different solutions was that for
some specific videos, we were not able to detect any faces with the OpenCV
detector. As explained below, this was due to the inability of our implementation
to deal with the problem of faces that exceed the borders of the image. This
problem had a significant impact on the global recognition rate, since the number
of enrolled people in MOBIO was rather smal]ﬂ

2See Table for further details
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Next, the two solutions proposed to detect faces are described:

e Solution 1 - Boosting based: This solution follows all the steps de-
scribed in Chapter [5] in which the OpenCV AdaBoost classifier is used to
detect frontal faces. This solution has already been proven to be effective
for face detection (as can be seen in Table with a high rate of hits and
a low rate of false alarms).

Unfortunately, this approach presents some major drawbacks regarding
some of the samples given by the MOBIO database. Basically, in the
samples where the face was not completely contained in the image, the
face could be detected by any means. As explained before, this led to a
great loss of information. Some examples of difficult images are shown in

Figure

e Solution 2 -VeriLook SDK + Kalman Filter: This solution adopted
a commercial product for the detection of faces, the VeriLook SDK de-
veloped by Neurotechnologija [73]. The selection of this system was mo-
tivated by the results obtained for the eye location analysis performed in
Chapter [f]

Before setting up this solution, we also performed some experiments on
some of the MOBIO sets and the accuracy of this software was similar to
that obtained with the Boosting stage. The key difference was that the
faces were detected in almost all the images.

Additionally, we considered that taking advantage on the video properties
would also improve the results. In this solution, we introduced a Kalman
Filter [54] to track the eyes and reduce the eye detection noise. Tracking
the position of the eyes throughout a sequence and making a prediction
of it for each frame using a Kalman Filter offers two main contributions:

1. For static or near-static faces, comparing the detected and the pre-
dicted coordinates can smooth the jittering in the location of the
eyes (due to bad detections, noise, changes in illumination or eyes
gestures, such as blinking).

2. The faces that are in movement are usually displayed as blurred im-
ages, making a proper facial analysis difficult. These images can be
easily discarded using the prediction error of the Kalman Filter.

The contribution of the Kalman filtering step to improving the recognition
results proved to be even more important than the change in the coarse
face detection method.

For both solutions, the detected faces were normalized using the eye coor-
dinates, following the stages proposed in Chapter [2] The location of the eyes
was based on the extraction of HOG-features and preselected eye candidates,
as shown in Chapter [

A diagram of the two solutions for face detection can be seen in Figure[7.3

7.4.2 Face Graph Extraction

Regarding the extraction of face graphs for face recognition, we decided to use
the HOG-EBGM algorithm, as described in Chapter [6] in our two solutions
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Figure 7.2: Examples of three challenging videos from the MOBIO database,
with faces not completely contained in the images.
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(VeriLook SDK) |:> hased) :> Filtering E.I:> Normalization

Figure 7.3: Diagram of the two solutions presented in this work for the MOBIO
competition.

for the contest. In short, each face is represented by a feature vector resulting
from the concatenation of the N = 25 facial landmarks. Each landmark is
described by a HOG feature, so that the total dimensions of the feature vector
are dfqce = 25 x 128 = 3200.

Since the dimensionality of this feature vector is too high, we applied some
dimensionality reduction techniques. Following the results obtained in the ex-
periments presented in Section[6.7} we decided to use the Kernel Fisher Analysis
(KFA), which uses non-linear projection.

The system was trained using face images from the FERET database (600
images corresponding to 200 individuals)ﬂ and ten face images of each person
in the MOBIO training split. Two additional experiments were performed, one
using only the FERET database and one using only the MOBIO training set; the
best results were always achieved when these two sets were combined together.
This can be explained by the FERET images having included a higher number
of different people. On the other hand, using images from the MOBIO training
set is important, as they can better model the intra-person variability: more
images per person are available, and also the context from the MOBIO training
set is logically closer to the testing set than to the FERET database.

The KFA projecting subspace was learned using a polynomial kernel function
of degree n = 2. The final number of features per face after dimensionality
reduction was dfinq = 140.

3See Appendix
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7.4.3 Video Feature Extraction

The protocol of the MOBIO competition included an enrollment phase that
has to be performed prior to the testing itself. The Video Feature Extraction
phase is an off-line stage aimed at condensing the information from the videos
of each person so that an appropriate set of gallery images is generated. A block
diagram of the steps needed in this phase is given in Figure [7:4]

DEVELOPMENT
VIDEO SAMPLE

For each
Frame

Face Detection Best Faces
(Face + Eyes) Selection

Individual Video

Features

Figure 7.4: Diagram of the Video Feature Extraction phase.

The Best Faces Selection step in the figure is the key block of the Video
Feature Extraction phase. Based on a certain criterion, it reduces the infor-
mation extracted from the videos into N face images. Particularly, to extract
the information of a new person, we only selected the NV faces with the highest
confidence from the corresponding videos, and stored these images (or, equiv-
alently, the set of feature vectors from each of those faces) as a model for the
person.

It is important to select an appropriate value for IV, as a low number of face
images would imply less information of the model enrolled. On the other hand,
high values of N would greatly increase the complexity of the system. Therefore,
during the development stage, we ran some experiments with different numbers
of faces in each person model; we found that a number of N = 10 was a good
trade-off between complexity and accuracy. In fact, no significant recognition
improvements were achieved for values greater than N; this indicated that a
good model of the person was already extracted with only ten face images.

Regarding the criterion for selecting the best faces from the videos, we used
two different confidence values, one for each of the two solutions provided:

e Solution 1 - Number of hits: Almost every face detection system pro-
duces a number of hits around each real face, which are usually clustered
into one detection. This number of hits is also referred to as the number
of neighbors.

We decided to use the number of hits produced after applying the OpenCV
Adaboost face detector as a confidence measurement of the quality of the
face. However, we found that with this confidence measurement, we were
missing important information about the precision of the location of the
eyes. In turn, it is very important to perform a good normalization of the
face.
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e Solution 2 - Kalman Filter: This solution is based on the commercial
software VeriLook SDK for the detection of faces and our HOG-based
eye location stage. We also included a simple Kalman Filter to track the
location of the eyes in the video, giving us useful information.

We decided to use the error of the Kalman filter predictions as a mea-
surement of the face confidence. The smaller the distance between the
actual and the predicted location of the eyes, the higher the confidence.
This measurement allowed us to select faces with low head motion, which
usually have better definition and lower noise in the location of the eyes.

The faces selected with the second criterion proved to be more representative
(i.e., more useful for the extraction of the video features) than the faces obtained
with the criterion for the number of hits.

Finally, the feature vector associated with each face image was extracted
and stored with a label.

7.5 Discussion on the results in the MOBIO com-
petition

The MOBIO competition not only provided a database of faces recorded in a
mobile environment, but also defined the performance evaluation protocol the
participants had to follow. With this test-bench, face recognition algorithms
from diverse approaches could be tested and compared all together. In this
section, the final evaluation of our solutions is given, performing a comparison
with the results obtained by the rest of participants.

This section is divided into three parts: first, it provides the theory behind
the performance evaluation proposed by the MOBIO competition; next, the
experiments to obtain the performance results of our two solutions are explained,
and finally, the analysis of the best results from all competitors is carried out.

7.5.1 Performance Evaluation Protocol

The performance evaluation protocol proposed within the framework of the
MOBIO contest was based on common performance measurements, giving place
to a fair comparison between different systems. All the performance methods
used in this chapter are described in Chapter [3]

In order to measure the performance of the different verification systems,
the MOBIO competition uses the Half Total Error Rate (HTER). The HTER
operator was mandatory to evaluate each system in two scenarios, depending on
the test videos included in the probe set: only the female or male video samples.
A third scenario was derived from the fusion of these two.

The HTER operator might not have been enough, as it represents the results
in just one operating point. For the MOBIO competition, the HTER was used
for the working point where the error rates FAR and FRR were equaﬂ However,
depending on the scenario, one may give more importance to one of both errors.
For this reason, it became useful to compare the verification results using other

4See Section p- ﬁ
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kinds of representations, such as the Receiver Operating Characteristic (ROC)
curve or the Detection-Error Trade-off (DET) curve.

In the MOBIO competition, all comparisons between different algorithms
were made by calculating the DET curves in the two scenarios described above:
only female video samples and only male video samples.

Summarizing, the MOBIO evaluation performance was set to be given by
the HTER operator for all the algorithms, choosing a suboptimal threshold
value; for a more detailed comparative analysis between different algorithms,
the results were given using the DET curves.

7.5.2 Evaluation of the two HOG-EBGM solutions pro-
posed.

The results given by the two solutions provided for the MOBIO competition, and
following the Performance Evaluation Protocol, are summarized in Table[7.4] In
this table, the columns represent two scenarios: only female videos, only male
videos. The results for the derived joint scenario are also given.

Male | Female | Joint
UPV 1 | 23.74% | 23.70% | 23.72%
UPV 2 | 21.86% | 23.84% | 22.85%

Table 7.4: HTER results obtained by the UPV approach for the Test MOBIO
set.

Both face recognition solutions, named UPV 1 and UPV 2 for the competi-
tion, performed well on the MOBIO data. Note that we did minimal tuning on
the configuration of the tests, to improve the performance of the KFA technique.
This tuning was done during the creation of the KFA space, where images from
the FERET and the MOBIO training datasets were used. This particular tuning
gave an improvement of about 2% in the equal error rate during the testing.

The difference in recognition performance between male samples and female
samples is also statistically insignificant. This is consistent with the fact that our
solutions were never designed to be gender dependent (using hair style features,
for instance).

We did not observe any significant difference in the performance results
using the development or the test sets. This shows that both datasets had
similar levels of difficulty, and it also proves that our system was not tuned to
any particular dataset.

Finally, a slight improvement in our second solution (UPV2) can be observed,
our hypothesis being that it was produced by a better selection of useful faces
using the Kalman tracker described before.

7.5.3 Comparative results of all the solutions in the MO-
BIO competition for face recognition

A total of nine universities, research institutes and companies participated in the
competition: University of Surrey (UNIS), Visidon Ltd. (VISIDON), Instituto
Tecnologico de Informatica de UPV (ITI), NICTA, National Taiwan University
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(NTU), Idiap Research Institute (IDIAP), University of Nottingham (UON),
Tecnologico de Monterrey (TEC) and ourselves, iTEAM Universidad Politecnica
de Valencia (UPV).

It must be noted that most participants presented several solutions (two in
our case). To simplify, in this section only the results corresponding to the
solution that achieved better results for each of the competitors are shown.
For a more extensive study of all the solutions and their results, the reader
is referred to [7I]. In our case, the algorithm shown corresponds to UPV 2.
Another relevant aspect was the option to perform a normalization stage with
the scores. Some of the participants employed score normalization techniques,
and others (as was our case) did not. This favored an interesting discussion on
the relevance of normalizing the scores.

A summary of the results of the best face verification systems for each par-
ticipant can be found in Table[7.5] The columns in this table represent the three
scenarios described above: only female videos, only male videos and the derived
scenario under the title of joint. Also, notice that the columns of the table
have been sorted according to the global results from the competition (which
corresponds to the results in the last column).

Male | Female | Joint

UNIS 9.75% | 12.07% | 10.91%
VISIDON 10.30% | 14.95% | 12.62%

ITT 16.92% | 17.85% | 17.38%

UPYV - Our Solution | 21.86% | 23.84% | 22.85%
NICTA 25.43% | 20.83% | 23.13%

NTU 20.50% | 27.26% | 23.88%

IDIAP 25.45% | 24.39% | 24.92%

UON 29.80% | 23.89% | 26.85%

TEC 31.36% | 29.08% | 30.22%

Table 7.5: HTER results of the best performing face verification systems by
each participant of the MOBIO competition.

The first observation to be made from the table is that our solution was
the fourth best performing, which put our algorithm in a good position. Also
from the table, the approaches can be divided into three groups based on their
performance:

e The first group is composed of the two systems with the best results. The
best performance, with an HTER of 10.9%, was obtained by the Univer-
sity of Surrey, which fused multiple cues and post-processed the scores
using score normalization. The same system without score normalization
obtained an HTER of 12.9%. The second best performance was obtained
by Visidon Ltd, with an HTER of 12.6%. It used local filtering with no
score normalization. Interestingly, it should be noticed that these systems
used a proprietary software for the task of face detection.



7.5- Results in the MOBIO competition 177

e The second group is composed of three systems: the Instituto Tecnologico
de Informatica, UPV (ours) and NICTA (with score normalization). In
this group, all the solutions achieved HTER values under 25% (except
for the case of NICTA in males, which was slightly higher). The Insti-
tuto Tecnologico de Informatica also used a proprietary software for face
detection (the same as the University of Surrey), UPV Solution 2 used
the VeriLook software and NICTA directly employed OpenCV’s boosting
solution. A particularity of NICTA was that the performance from the
female test set was considerably better than from the male test set.

e Finally, the third group is composed of the remaining systems, which
obtained HTER values of more than 25%. The majority of these systems
used an OpenCV-based face detection scheme and all seem to have similar
performances.

An extension of these results can be seen in the DET plots shown in Fig-
ure [7.5] The two sets of curves correspond to the same algorithms from Ta-
ble [7.5 performed on the male and female trials.

The curves confirm the conclusions extracted from the table of results. The
only difference of note is with the NICTA algorithm, which apparently per-
formed better than shown in the HTER results.

Summarizing, two conclusions can be drawn from the results:

1. The accuracy of the face detection system can have an important
impact on the face verification performance: The impact of the
face detection algorithm can be seen when examining our two solutions.
The commercial solution performed slightly better than the one based on
OpenCV, by a difference of 1% in the HTER results.

However, the same behavior was seen in other solutions. For instance,
the Instituto Tecnologico de Informatica presented two systems differing
only in the face detection technique used. They used the frontal OpenCV
face detector in one system, and in the second, Affinity SDK from Om-
niPerception [74]. The difference in the stage of face detection led to an
absolute improvement in the average HTER of more than 4%.

This reasserts our hypothesis that one of the biggest challenges for video-
based face recognition (and face recognition in general) is the problem of
accurate face detection.

2. It is difficult to define the influence of the score normalization on
the performance: A second interesting conclusion is that score normal-
ization can be difficult to apply to face recognition. This can be seen by
examining the performances of the systems from the University of Surrey
and NICTA. The NICTA results show that score normalization provides
a minor but noticeable improvement in performance. However, the Uni-
versity of Surrey systems provide conflicting results; score normalization
in some cases degraded performance whereas score normalization in other
cases improved performance.

The only conclusion that can be drawn from this is that further research
is necessary to successfully apply score normalization to face verification.
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Figure 7.5: DET plot of face verification systems on the test set in: a) male
individuals, b) female individuals.
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7.6 Conclusions

This work contributed to the MOBIO competition using a completely automatic
facial analysis system, using face detection with eye location and face recognition
and based on face graph algorithms.

Participating in the MOBIO competition gave us the opportunity to:

e Evaluate our joint systems in a mobile and realistic environment, with an
appropriate evaluation protocol to analyze the data.

e Integrate the two stages studied in this work: face detection with eye
location based on HOG-features, and a face recognition algorithm using
HOG-EBGM.

e Study the advantages and inconveniences of using videos instead of still
images in our facial analysis algorithms.

e Compare our solutions to other state-of-the-art algorithms.

The first conclusion is that our solution achieved quite good results, finishing
among the top participants. This means that it can be suitable for realistic
scenarios with minor adaptations. Note that our solution did not introduce
some mechanisms (such as the score normalization), which in some cases helped
to improve the results.

This competition also highlighted the necessity of having an accurate face
detection stage before face recognition. All the algorithms with the highest
performances in the MOBIO competition had commercial solutions for the de-
tection stage. Our first solution (UPV1), was the best in the ranking if we
consider only those solutions using a non-proprietary face detection approach.

Finally, participating in the MOBIO contest confirmed that working on
videos rather than still images can produce more advantages than inconve-
niences. In a video sequence, the high number of face images per person allowed
us to preselect images. This enabled us to perform the facial analysis only on
the images that best fit our needs. To select the best images, some techniques
should be studied. In our case, the Kalman filtering was the most suitable.






Chapter 8

Conclusions, dissemination
and future lines of research

The primary goal of this work was to develop a fully automatic approach for face
detection and recognition. The solution proposed tackles this topic with a two-
faceted approach: first, the detection stage locates the eyes with a high degree
of precision, and second, the recognition approach extracts local features, from
the eye locations information. In order to find a final system, several approaches
were tested for each of the modules.

This last chapter summarizes the achievements of this thesis. It discusses the
principal results and their limitations. An overview of the scientific contribu-
tions of the present work, as well as its dissemination and possible applications,
is likewise included. This chapter concludes with various suggestions for future
lines of research.

8.1 Conclusions

Discussion of the conclusions derived from the work in this thesis is divided into
three sections:

e Eye Location: Conclusions following the evaluation of the novel eye loca-
tion algorithm based on local features, compared to other state-of-the-art
approaches.

e Face Recognition: Conclusions extracted from the study of the HOG-
EBGM feature-based algorithm for the extraction of graphs, compared
to other approaches. Also in this section, some conclusions are drawn

concerning the use of color features versus grayscale features.

e Integrated System: Conclusions extracted from the integration of detec-
tion and recognition subsystems for the MOBIO contest.

Subsequently, each of these categories are discussed.

181
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8.1.1 Eye Location

One primary goal in this work was to increase the accuracy of face detection
by locating the eyes. A fully automatic eye location algorithm was developed,
targeting grayscale frontal faces in semi-controlled scenarios where the two eyes
are visible and open or semi-opened. The novelty of this approach was to
combine a preliminary stage of fast and robust boosting classifiers to detect
face-regions and some eye-candidates, with a second series of steps where HOG
local features were extracted from the candidates and a SVM classifier was
applied to select the optimal eye-pair.

The main conclusions drawn from the experiments for eye location can be
summarized in the following:

e Boosting Stage: After testing on different datasets, it can be determined
that the boosting classifiers can extract true eye candidates with high
confidence. In the tests performed on FRGCv2, with more than 36000
images, the extraction of true candidates was close to 97%. Moreover, the
results for the negative candidates showed that, on average, the classifiers
produce a reduced number of false alarms per eye, which attests to the
reliability of the stage.

Additionally, the performance results attained by using two different clas-
sifiers, each trained to detect the left and right eyes, respectively, are
higher than when a single classifier is used.

e Local Descriptors: The use of HOG local descriptors in combination
with a binary SVM classifier leads to a robust selection of the best eye-
pair from a set of candidates. For a Radial Basis Function kernel on the
SVM, with the variance parameter set to o = 3, the detection rate values
achieved were approximately TP = 96%, with a false alarm rate of approx-
imately F'P = 1% during the validation and test of the classifier. These
results outperform those achieved using a polynomial kernel approach.

e Multi-Resolution Approach: Locating the eyes with our multi-resolution
design provides more precision than other state-of-the-art approaches.
Compared to three referent works [52] 24], [114], as well as to VeriLook,
a commercial software product created by Neurotechnologija [73], our al-
gorithm achieved promising results with two extensive datasets, FERET
and FRGC. With an inter-ocular distance error of Nerror < 5%, the ap-
proach here surpassed the results of the other solutions compared, with a
hit rate in FERET of HRrrrer ~ 80% and HRrrac ~ 98% in FRGC.

In regard to execution time, our approach takes 200ms to locate the eyes
in a facdﬂ However, there are some approaches, such as that of Jin et
al. [52] that perform faster. This may be due to the fact that Jin et
al. directly classify eye-pairs using low-level features (such as borders),
while in our approach each of the eyes is independently described using
a boosting classifier. The majority of our system execution time, around
70%, is dedicated to the two boosting stages. Despite the simplicity of
these stages, their intensive scanning of the face region for each possible
location and scale still renders them the most inefficient of all the stages.

IThis results were achieved using a 1.85GHz dual core CPU, without parallel computing
and non-fully optimized
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8.1.2 Face Recognition

This work addressed the study and design of a face recognition method to deal
with partially uncontrolled scenarios. The primary targets of this stage were
frontal faces, and the approach relies on the use of local texture features to
extract descriptive information about the facial elements.

The present study focused on three different feature-based algorithms, each
employing HOG local descriptors, with our principal contribution being made in
the HOG-EBGM approach. Several analyses were performed to optimize both
the dimensionality reduction methods and the similarity measures, followed by
a study of the performance results when color cues were introduced.

The main conclusions drawn from the experiments are summarized below:

e HOG-EBGM: The experiments with EBGM focused on comparing dif-
ferences in performance in landmark locations and in descriptive power
when HOG features substituted Gabor Filters.

Regarding face graph location, the inclusion of HOG descriptors in the
original EBGM leads to a more precise set of keypoints. For most of
the landmarks, the location error achieved by using HOG features was
between 5% and 15% lower than the error using Gabor Filters. On the
other hand, the location accuracy of the HOG-EBGM was higher than
that of the AAM algorithm in only for the inner landmarks (like the eyes
or the mouth). For the borders of the face, AAM achieved higher accuracy.

Regarding descriptive power, the graphs generated using HOG features
revealed better results than those using Gabor Filters. Using an extensive
dataset of images (FERET), the recognition results obtained with HOG-
EBGM outperformed those obtained with Gabor-EBGM, increasing the
rate of hits between 20% and 40%. Additionally, the performance of HOG-
EBGM surpasses other off-the-shelf face recognition holistic approaches,
such as PCA, LDA or Bayesian.

e Feature-based algorithms using HOG descriptors: In this work, two
additional Face Graph Algorithms were analyzed: HOG-Grids (Square
Rigid Grids) and HOG-AAM. The two algorithms were also compared
to our approach, HOG-EBGM. The main conclusions drawn for each of
these algorithms and their resultant comparisons are summarized here.
The results are valid for both face identification and verification.

— HOG-Grids Conclusions: The experiments on Rigid Square Grids
reveal that grids with a higher number of points, NV, clearly tend
to achieve higher recognition results. A denser grid contains higher
quantity of information. However, when the overlapping of the HOG
windows exceeds 50%, increases in the number of points on the grid
register only a negligible increase in the final results. The best grid
size is therefore one with an overlap of approximately 50%.

— HOG-AAM Conclusions: The experiments carried out with differ-
ent AAM configurations focused on employing models with varying
numbers of keypoints. The results show that, in the case of AAM,
incrementing the number of keypoints does not have a direct influ-
ence on the discrimination power of the graphs that are extracted.
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This is an indicator that many of the keypoints in the graph model
proposed by Milborrow [78] contain redundant information. There-
fore, the best AAM configuration tested was that in which the model
keypoints coincided with the landmarks extracted with an EBGM
approach.

— Comparison of the Three FGAs: When comparing the three HOG-
based FGAs, it becomes apparent that the three algorithms present
similar results. However, it was surprising to find that in many exper-
iments, the best performing method was the HOG-Grid, the simplest
of of the three. This can be explained by the fact that the images
from the FRGC dataset were completely frontal, so the rigid loca-
tion of landmarks was more coincident than the iterative extraction
performed by HOG-EBGM and HOG-AAM. HOG-EBGM and HOG-
AAM got similar performances, as the only difference between them
was on the location of the landmarks, which in both cases is quite
accurate.

— Similarity Measures: In the majority of experiments performed, the
cosine distance outperformed the Euclidean distance, independent of
the reduction method performed.

— Dimensionality Reduction Methods: The reduction methods that best
address the problem of face recognition are in essence the Orthogonal
LDA —a variation of LDA— and the Kernel Fisher Analysis using a
polynomial kernel.

e Inclusion of color cues: The experiments that analyzed four different
color spaces to extract CHOG features using EBGM revealed that color
cues lead to better performances than the grayscale HOG-EBGM. Indeed,
the best results were achieved using the Opponent Color Space along with
the Discriminant Color Space. The results obtained using color were ap-
proximately 10% higher than those yielded from the FRGC dataset.

8.1.3 Integrated System

An integration for automated face recognition based in HOG-EBGM with eye
location was tested in a challenging scenario: a realistic mobile-based scenario
for video sequences. This verification was carried out as part of the MOBIO
competition.

The experiments show that the recognition performance obtained with an
EBGM algorithm depends closely on the initial location of the eyes. The recog-
nition results obtained from our proposed eye location subsystem increased up
to 10% regarding a random location with displacements of 5% to 10% of the
inter-ocular distance.

Regarding the results of the MOBIO experiments, some conclusions can be
drawn:

e Selection of the best faces in video sequences: To select the best
faces to extract biometric information, the spatial redundancies over time
can be exploited. In a video sequence, the high number of face images
per person enables that the facial analysis may be performed only on
those images that best fit the requirements of the face graph algorithms.
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Kalman filtering can be helpful in obtaining a more stable location of the
eyes, thereby rendering more accurate faces. Recognition results using this
method surpassed those in which a simple eye location was performed, as
the faces selected to describe individuals were more representative.

e Our system compared to other MOBIO participants: The solution
proposed in the present work achieved quite good results in the MOBIO
competition, placing among the top participants. The use of Kalman fil-
tering to stabilize the location of the eyes in video-sequences improved the
results. Also, let’s note that our solution did not perform score normal-
ization, which in some cases helped improve results.

In all, it has been proved that our integrated system based on the use of
HOG local descriptors is on par with other face recognition algorithms. The
fusion of the information provided by the two subsystems has been successfully
resolved, with the location of the eyes serving as an appropriate starting point
for the recognition subsystem.

8.2 Dissemination and Applications

The research carried out in this work has been received positively by the sci-
entific community, thereby giving rise to a number of scientific publications,
dissertations in international conferences and research projects. Moreover, col-
laboration with various firms has also generated an industrial interest in our
developments. This sections is dedicated to describing the dissemination of this
research, as well as the industrial applications derived from it.

8.2.1 Scientific Publications and International Conferences

Dissemination of findings related to the investigation in the present thesis has
extended to various publications in scientific journals and presentations in in-
ternational conferences. The list of publications is as follows:

International Journals

e David Monzo, Alberto Albiol, Jorge Sastre, and Antonio Albiol. Pre-
cise eye localization using HOG descriptors. Machine Vision and
Applications, pp 1-10, 2010. [83]

e Alberto Albiol, David Monzo, Antoine Martin, Jorge Sastre, and Antonio
Albiol. Face recognition using HOG-EBGM. Pattern Recognition
Letters, 29(10):1537-1543, July 2008. [7]

International Conferences

e David Monzo, Alberto Albiol, Antonio Albiol, and Jose M Mossi. Color
HOG-EBGM for face recognition. In 2011 18th IEEE International
Conference on Image Processing (ICIP), pages 785-788, September 2011.
[81]
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e David Monzo, Alberto Albiol, Antonio Albiol, and Jose Manuel Mossi.
A Comparative Study of Facial Landmark Localization Methods
for Face Recognition Using HOG descriptors. In Proceedings of the
International Conference on Pattern Recognition, Istanbul, August 2010.
R0]

e David Monzo, Alberto Albiol, Jorge Sastre, and Antonio Albiol. HOG-
EBGM vs. Gabor-EBGM. In IEEE International Conference on Image
Processing (ICIP), San Diego, CA, USA, pages 1636-1639, October 2008.
[82]

e S. Marcel, D. Monzo, A. Albiol et al. On the results of the first mo-
bile biometry (mobio) face and speaker verification evaluation.
Recognizing Patterns in Signals, Speech, Images and Videos, volume 6388
of Lecture Notes in Computer Science, pages 210-225, Springer Berlin
Heidelberg, 2010. [71]

Public Dissemination

e K. Baker, J. Kantorovitch, D. Monzo, J. Vandenabeele, C. Sandoval,
Guarantee: Active Safety Products, Architecture and Business
Opportunities, in eChallenges e-2011 Conference Proceedings, Paul Cun-
ningham and Miriam Cunningham (Eds), IIMC International Information
Management Corporation Ltd 2011.

8.2.2 Research Projects

The work carried out in this thesis has formed the basis for various research
projects at the local and European level. Two principal projects incorporat-
ing our research are described below, with the specific research contributions
highlighted.

International: Guarantee Project

The novel face recognition system presented here has been used in European
research projects involving computer vision. This is the case of the Guarantee
Project of the ITEA2 commission which researches ICT solutions incorporating
advanced technology, safety and human behavioral understanding.

The Guarantee research project has selected a set of 40 cases where safety
could be improved around the home and public places by incorporating an un-
derstanding of human behavior, and studied how this knowledge can be applied
to advanced technologies. These use cases were reduced to four demonstrators,
which show how current home communication networks, robotics, care terminals
and vision systems can be used jointly to improve safety.

Our approach formed the core of one of the demonstrators, the Smart Door
scenario. This scenario was aimed at assisting elderly people who spend long
periods alone at home. When a visitor arrives, the lack of information about
this person can lead to unexpected reactions from the elderly. The project
posited that a set of technological subsystems and sensors might be combined
in this scenario to produce a synergy capable of revealing the identities of the
actors, and the viewers resultant reactions and behaviors, thereby facilitating
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or denying the callers entrance. The HOG-EBGM algorithm was used to de-
tect and recognize potential visitors at the door, and manage a database of
friends/relatives of the elderly resident.

Figure shows an example of the set-up in Guarantee. The HOG-EBGM
sends the recognition results from a visitor at the main door to an interactive
IPTV, where the interface with the elderly resident is shown.

Figure 8.1: Picture of the set-up in the Guarantee Project: an interactive IPTV
shows the results of face recognition (using HOG-EBGM) from a peep-hole
camera at the main entrance of a home.

As a result of this project, a scientific publication was included in the eChal-
lenges e-2011 Conference.

Spain: PATRICIA Project

Our face recognition system has likewise formed part of local research projects.
One example is project PATRICIA, developed as part of the IMPIVA Program
(Comunidad Valenciana, Spain). Project PATRICIA (Activity Patterns in Re-
tail using Advanced Computer Vision) is aimed at providing the retail sector
computer vision solutions beyond uses normally associated with security . This
project was carried out by a technological firm, Visual Tools S.A., in collab-
oration with the optics institute, AIDO.

The object of PATRICIA was to assist shop managers in defining or refin-
ing their marketing strategies through an analysis of customer behavior. This
behavior is inferred from objective information retrieved by a multi-camera sys-
tem installed in a shopping area. In this research project, two different use
cases were analyzed: an estimation of crowd movements using heat maps, and
a statistical estimation of a customer average time inside a shopping area.

Our face recognition system formed the core of the latter. Specifically, two
cameras were installed in a supermarket, one monitoring the entrance and one
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monitoring the exit, both capturing frontal face images of the customers. Both
cameras were synchronized: when a face from a customer leaving the supermar-
ket was identified with a face of a customer that had previously come in, then
the time spent inside the shop could be determined. This identification process
was designed with the HOG-EBGM as a base.

Figure 8.2 shows two pictures from the set-up used in the PATRICIA project
for estimation of stay time of the clients, and two images recorded from the
testing footage of these cameras.

ENTRANCE EXIT

Figure 8.2: Set-up in the project PATRICIA, along with two images retrieved
using the system.

The pictures in the figure show that in this use-case the light conditions in
the images recorded were sometimes extreme, rendering them invalid for their
original purpose.

8.2.3 Industrial Applications
Escritorio Movistar: Telefénica I+D

During its initial stages, this thesis was granted by Telefonica I4D, a pioneer
company in Research and Development. Collaboration with Telefonica I+D
took place in the framework of the research project Codificacion y Aplicaciones
Multimedia. The main goal of this project was to improve a software package
developed by Telefonica I+D: Escritorio Movistar.

Escritorio Movistar is a free software that provides smart management of
network connections and enables mobile access to data services such as Internet,
corporate Intranets or E-mail and other Movistar services. All services are
designed to work across different platforms, thus allowing the user to use it
with multiple terminals and operating systems.

The project Codificacion y Aplicaciones Multimedia aspired to, among other
things, incorporate an automated face recognition system in the main program,
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for use as a non-intrusive biometric password.

This collaboration facilitated the development of the early prototypes for
joint face detection and recognition system presented in this work. In Figure8.3]
an example is given of a recognition match process.

Imagenes de Test =JElx]

Imagenes mas paracidas

-~
Y Y IS

Figure 8.3: Example of a sequence for face recognition with test images matched
to labeled images.

Security Applications: Visual Tools S.A.

Our work has also left its mark on the area of security and surveillance. The
technology firm Visual Tools S.A. is closely involved with the field of com-
puter vision, particularly in its application to security and surveillance. Our
group collaborated with the company to produce various commercial applica-
tions based on the HOG-EBGM face recognition algorithm.

This collaboration yielded developments of various prototype systems which
offered the opportunity to test our algorithms in realistic scenarios. In 2010, a
banking security system was designed for a major Spanish bankﬂ In this case,
real images of criminals entering banking offices were matched to a database
of suspects. The scenario proved to be highly challenging: the cameras at the
banking offices were not positioned to capture frontal face-images of the suspects
and the conditions were highly uncontrolled.

Figure [B4] presents an example of the interface employed by our system to
identify criminals and manage the database of suspects. Due to privacy issues,
all faces have been blurred in this figure.

8.3 Future Work

In this section, some outlines about pending issues and future directions for
research are briefly offered.

The face detector based on eye location offers good performance and signifi-
cant robustness to semi-controlled variations. However, its usability is restricted
by some inherent limitations: to detect the faces, they have to be frontal or

2Due to privacy concerns, details and non-blurred images regarding this project cannot be
included.
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quasi-frontal, and both eyes must also be perfectly visible. In images where the
eyes are not entirely visible (because of the face angle or partial occlusion by
elements such as glasses frames, light reflections on the glasses or dense fringes),
the performance markedly decreases.

To deal with the non-frontality of the of the face, several approaches could be
addressed, such as the introduction of 3D models of the face or adaptation of face
graphs to use only the information for the parts that are visible. In order to deal
with the partial or total occlusion of the eyes, two possible approaches arise. One
solution would be to improve the training datasets to include more examples of
difficult images as positive samples. This would generate more accurate models
and could help to minimize the classification errors. Another possible solution
requires providing more robustness to the location algorithm, including a third
facial landmark. With three landmarks, when just one is missing, the remaining
pair still offer information to normalize the representation. In this case, it would
be advisable to take the tip of the nose as a landmark as this key-point is visible
most of the times and is also less apt to be contorted by facial gestures.

Regarding the face graphs extracted with EBGM, this thesis has tackled with
the problem of frontal faces. However, when the face is not frontal, the graph
gets distorted and the data from many of the nodes introduces more noise than
biometric information. An analysis of the head pose could move our algorithm
to a new stage to determine which landmarks have higher contributions and
statistically model the useful information. This way, some of the landmarks
could even be neglected, while the addition of pose-specific landmarks could
also be considered.

The main texture descriptor used in this thesis has been local gradients.
The HOG features have proven to offer good performance in facial analysis,
nevertheless some open lines of research could still be derived from them. For
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a start, a mixed approach combining holistic and feature-based unique HOG
size was used in this work to describe multiple facial elements. However, its
size was optimized for the description of the eyes. Considering that each facial
landmark (the eyes, the nose, the mouth, etc.) have a different size, one could
logically predict that the descriptive power of the face graph could likewise be
optimized by varying the size of the descriptor for each landmark. In the same
vein, it would be of great interest to combine this component-based approach
with holistic HOG descriptors extracted globally from the face.

Finally, this line of research should not be limited to the use of a single
descriptor, the HOG feature. Other state-of-the-art descriptors, such as the
Local Binary Patterns [89], should be studied /examined. These descriptors have
been proven to be quite robust in describing faces in uncontrolled conditions.
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Appendix A

Dimension Reduction
Methods

A.1 The need for dimension reduction in feature-
based face analysis

In Machine Learning, it is common to find the problem of methods breaking
down because they cannot manage the number of random variables (dimen-
sions) of the samples measured on an observation [36]. When working with
high-dimensional sets of samples, quite often we find that the majority of the
variables do not have a significant contribution to solve a specific machine learn-
ing problem.

This gives raise to the interest to reduce the dimension of the original data,
x = (x1,...,2p)7, into a lower dimensional representation, s = (s1,...,s;)7, k <
p, used to model a machine learning problem.

The study of the reductive techniques in this thesis has been motivated
by the high dimensional features obtained using the feature-based algorithms
described in Chapter [5] and Chapter [6] The current appendix is focused on
the theoretical study of some key approaches: Principal Component Analysis
(PCA) [91], [107], the Linear Discriminant Analysis [37), 12], some algorithms
directly derived from the LDA analysis, such as the PCA over Null-Spaces [46],
Orthogonal LDA [122] (OLDA) and the Regularized LDA [59], and finally the
Kernel Fisher Analysis (KFA) [64].

This process of dimensionality reduction is shown in the diagram displayed

in Figure

A.2 Principal Component Analysis - PCA

The Principal Component Analysis (PCA) is one of the most extended statistical
methods, as it is the best linear dimension reduction technique in terms of
reducing the mean-square error. PCA is mainly used in two ways: for the
representation of samples and for the reduction of dimensions.

This supervised method is trained producing an orthogonal lineal transfor-
mation over the samples of a set of training data. A subspace is derived where
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Figure A.1: Diagram of the steps needed for the dimension reduction stage.

REDUCED SAMPLE

the main axis are related with the directions of maximum variation of the train-
ing samples; using this coordinates change, the correlation between the training
samples can be highly reduced. The directions where the samples have less
variation are rejected, giving place to a lower final number of dimensions in the
subspace.

From a mathematical perspective, the set of directions with maximum vari-
ation, @, can be found by solving an eigenproblem such like S;A = A¢, where
S; is the scatter matrix of the training data, directly related to the correlation
matrix.

Let’s define the sample matrix, X = [z1,...,2x] € R™*", where each row
corresponds to a vectorized training image. The set of training images has been
previously normalized to have zero mean. From this data, the scatter matrix is
defined as S; = X X7,

Solving the equation:
SiA = A9, (A1)

the main directions of the new subspace are extracted, ® = [¢1, ..., ¢,] € R™*"
where ¢ is the direction of maximum variation of the data, ¢s is the following
direction of maximum variation and so on, and the initial dimension of the
samples is n.

The vector A = [Aq,...,A,] € R™*™ contains the eigenvalues associated to
the vectors of directions ¢;, and they are indicators of the quantity of energy
of the data contained in each of the directions in the subspace. The directions
with higher variance correspond to eigenvalues of higher energy.

Once the PCA subspace is learned, projecting a single sample into the new
subspace is done by simply solving the following transformation:

Y = 07X, .0 (A.2)

Given a new set of samples, Xnew, the procedure to project them is the
following:
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1. calculate the normalized zero-mean version of X'mw by subtracting the
mean vector from the training set, Teqn to each of the samples, such

i A
that z} .., = Thew — Tmean-

A PCA analysis is optimum for the statistical representation of the samples
in terms of mean square error. Normalizing X to have zero mean is critical
to find the new base that minimizes the mean square error of the projected
data.

2. project X,,e using the transformation matrix ® as shown in equation[A-2]
Removing the directions ¢; associated to eigenvalues A; with no energy o
energy close to zero leads to a reduction of the dimensions without losing
relevant information.

In many works, the criterion selected for the reduction is to conserve a
number of eigenvectors with a high rate of total energy, e,q:0. Specifically,
the energy contained on the first i eigenvectors associated to the largest 4
eigenvalues is defined as,

K2
o = k=0 (A.3)
Zk:O Ak
Using this criterion, the final projection matrix, ®’ consists of ®' =
[01,...,¢i], such that e; < erqtio and €;4+1 > €rario. Selecting the first 4
eigenvectors, the dimensionality of the samples is reduced from dim;p;cio =
n to dim finar = 1.

A.3 Linear Discriminant Analysis - LDA

The Linear Discriminant Analysis (LDA) is one of the most popular reduction
and classification methods. The outline behind this algorithm is similar to
the PCA technique, as the goal is to find a new base of vectors conforming a
subspace in which the new samples will be projected.

LDA generates a subspace where the distance between all the samples be-
longing to the same class is minimized, while at the same time the distance
between samples belonging to different classes is maximized.

In mathematical terms, given a set of training samples X, having a mean
sample m, and with all the samples labeled into C different classes, {L1, ..., Lc},
let’s define a between classes scatter matrix, Sy, and a within class scatter matrix
Sw, such that:

C
Sb = Z Ni(mi — m)(ml — ﬁl)T <A4>
C
Sw=Y_

=12

Z (LUZ‘ - 7”I’LZ)(.I‘z — mi)T (A5)
JEL;

where m; is the mean of all the samples belonging to the class ¢,2; € L;.
Let’s also remark that the scatter matrix Sj represents the variations between
the classes represented by their means, and the scatter matrix S,, represents
the the variations between samples of the same class. These two matrices are
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directly related with the total scatter matrix, S;, which is the scatter matrix of
the whole set of samples. This relation is showed in the following expression:

Sy = Sy + Su (A.6)

To generate a final subspace in which the maximum separation of samples
from different classes is reached, it is necessary to maximize the so called Fisher
Criterion:
|27 S, 2|
|27 S @||

where @ is a matrix for linear transformation. In an equivalent way, the criterion
can be expressed as

Dy = arg max (A7)

trace(®T' S, ®)

) — STAC T ObT)
Tr(®) mgxtrace(q)Tqu))

:mgx{tmce((qﬂswcp)*1(<I>T5b<1>))} (A.8)

The maximization of the Jpr criterion is given after solving the following
generalized eigen-problem

SoLSA = AD (A.9)

where the eigenvectors that are associated to the eigenvalues with higher values
form the base of the new subspace. Let’s note that upper limit regarding the
dimensions of this subspace is given by [ = C' — 1.

Assuming a normal distribution of the samples for each of the classes, it
has been proved [43] that applying the LDA technique is equivalent to perform
a maximum likelihood classification. Even if this initial assumption was not
completely true, the effectiveness of the LDA has been also proved, mainly due
to the fact that the lineal models are robust against noise and tend not to suffer
the effects of overfitting.

When the LDA is used on samples that are images for facial analysis, it is
quite common to come across the situation where the number of face images
used to learn the new subspace is much lower than the original dimension of
their feature vectors. This is known as the undersampling problem, and has
a direct effect on the calculus of the Fisher Criterion [A-8 In such cases the
within scatter matrix, S, is singular and consequently it has no inverse S, !.
This leads to a generalized eigen-problem with no solution.

To avoid the undersampling problem, many authors have adopted the solu-
tion of including a preprocessing stage using PCA, prior to the LDA technique
(PCA-LDA). This solution is aimed for a reduction of the dimensions of the
original data X in the first stage, projecting them to the PCA subspace. The
final dimension of the PCA subspace is chosen such that the within-class scatter
matrix of the projected data, S.,, is non-singular, being then possible to solve
the generalized eigenproblem in

Other solutions to the undersampling problem are also possible. Next, some
of them are described.

A.4 Techniques deriving from the LDA algorithm

The technique of the PCA-LDA exposed before is not always the best solution
for the undersampling problem.
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When a preprocessing PCA stage is applied, there is not a unique criterion to
select the number of dimensions dimpc 4 that should be kept to make S/, non-
singular without loss of information. Trying to avoid the singularity problem
of S, after applying the PCA stage, some eigenvectors associated to non-null
eigenvalues are removed to form the base of the PCA subspace. However, this
vectors usually correspond to directions that contain pieces of discriminative
information, which will be completely lost during the LDA stage.

To overcome this problem, some LDA-based variants have been developed.
Specifically, in this work, three different algorithms derived from the original
LDA are analyzed: the PCA on null-spaces [46], the Orthogonal LDA [122] and
the Adaptive Power Method LDA [99] [59], also known as the Lanczos algorithm.

A.4.1 PCA on null-spaces

Huang et al. [46] developed an alternative to the undersampling problem in
LDA by studying the behavior of the subspaces spanned by the scatter matrices
St, Sy y Sw previously described. From Equation [AZ6] it can be seen that the
three scatter matrices are linked, and therefore, there should also exist a direct
relation between the subspaces spanned by each of them.

From other works, it is known that the null space generated by .S; is the sub-
space spanned by the eigenvectors associated to null eigenvalues. This subspace
is the intersection of the null subspaces of S; and S, and it does not con-
tain discriminative information. It can be removed without losing significant
information.

However, let’s keep in mind that the part of the null spaces of S, and S,
which do not intersect do contain discriminative power. Taking advance on this
feature, the method that is proposed in [46], solves the LDA problem following
some steps:

1. First, the intersected null-space from S, and S, —equivalent to the null-
subspace generated by S;—, is removed. To achieve this, a PCA tech-
nique is applied on thel data matrix X, obtaining a transformation ma-
trix, Vpca. The columns corresponding to the eigenvectors associated
with null eigenvalues are removed, resulting in the transformation matrix

PCA-
Then, the matrices S, and 5, are projected on the subspace generated by
P g, such that S = @y’ Sp®pe s and S, = Doy’ SuwPpea-

2. The matrix S} is projected over the null-space spanned by Sj,, which
is known to have the greatest discriminative power [127]. To that end,
PCA is again applied on S/, to obtain a projection matrix ®g,,.The null-
space of the matrix corresponds to the eigenvectors associated to the null
eigenvalues; this is spanned by the projection matrix ®g,, | . Projecting S,
with ®g,, 1, a new between-class scatter matrix, S; = @SWJ_TS;)(I)SWJ_, is
obtained.

3. The last step consists of removing the null-space in Sb”, which ideally does
not contain discriminative information to separate the samples. Again,
PCA is applied on this scatter matrix, obtaining a transformation matrix
®g,, from which the eigenvectors associated to the null eigenvalues are
removed. The result is the projection matrix @’Sb =®NnuLL-
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The projection matrix ®yy 7 maximizes a modified version of the Fisher
Criterion
OnyLL = arg max 275, || (A.10)

and thus is a valid alternative to the LDA.

Contrary to PCA-LDA, this technique does not remove discriminative infor-
mation when the PCA is used. However, it has to be remarked that the modified
Fisher Criterion has lower accuracy compared to the original criterion [A-8] as it
does not take into account the minimization of the scatter matrix of the samples
belonging to the same class, and it can lead to also inaccurate distribution of
the samples in the final subspace.

A.4.2 Orthogonal Linear Discriminant Analysis - OLDA

Among the multiple LDA variants that are proposed in the literature to avoid
the undersampling problem, one that is not much extended but has been proved
to be quite effective is the one exposed by Ye in [I122]. The key idea of this
variant lies in the discriminant vectors that form the basis for the LDA subspace,
which in [I22] are all orthogonal. In other words, the columns of the projection
matrix derived by this technique are orthogonal, giving its name to the method,
Orthogonal LDA.

Ye proposes an efficient method to calculate the projection matrix of the
OLDA. Next, in this section, we describe the mathematics that are needed to
extract the orthogonal basis from a training data set X, in which the samples
belong to C different classes. Due to the complexity of the mathematics involved
in this technique, which are out of the scope of this thesis, only a simplification
of the main steps is provided here:

1. Similar to the steps performed in null-space PCA, OLDA removes the null
space of the total scatter matrix Sy, applying PCA on it. The result is the
projection matrix ®; associated to the eigenvalues A;:

T X0 T
Sy = q)tAt‘I)t = [Ql,ég] 0 0 [@1, @2] (A.ll)

where ®; corresponds to the eigenvectors associated to non-null eigenval-
ues Y2

2. A matrix Hy is defined such that it has in its columns the centered means
that represent each of the classes, H, = [v/Ni(m1 —m),...,v/Nc(me —
m)]. Tt is easy to check that S, = H,H} .

H,, is projected on the non-null space spanned by S;:
H) =x7'o!H, (A.12)
and afterwards, Hj is decomposed using Singular Value Decomposition,
Hj = P2QT (A.13)
obtaining a projection matrix ®444 that, as Ye proves in [122], simulta-
neously diagonalizes the three scatter matrices .Sy, Sy, and Sy:

>x-'p o,
cI)diag = (I)t < tok Im) (A14)
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3. Given that usually the range of the within scatter matrix is rank(S,) =
C — 1 = g, the next step consists of selecting the first ¢ columns of ®g;q4
to obtain a new projection matrix ®,.

In [122], Ye also proves that the Fisher Criterion can be maximized
from the matrix ®,, such that ® = ®,M, where M € R?*7 is a non-
singular arbitrary matrix. The degree of freedom to select the matrix M
gives place to select an orthogonal projection matrix, which is the object
of this reduction technique.

To that end, first the QR decomposition is performed on the matrix @,
such that ®, = QR. Because of the properties of the QR decomposition,
the columns that compose the matrix Q are orthogonal. Thus, an arbitrary
matrix can be selected to fulfil M = R~1, making d,M = QRR™ ' = Q,
which is orthogonal.

Solving the problem this way, the final projection matrix for the Orthogonal-
LDA is: . .
Porpa =P, R =Q (A.15)

Ye proves in [122] that the removal of R during the QR decomposition re-
duces the noise inherent to the classification of the samples, and thus it provides
them with a higher discriminative power.

A.4.3 Regularized LDA

One of the most extended methods for solving the undersampling problem is
the Regularized LDA (RLDA). These techniques are focused on avoiding the
undersampling problem inducing an artificial conditioning to the total scatter
matrix. The most widespread regularizing method is the following:

Si=aS;+(1-a)[,0<a<1 (A.16)

where [ is the identity matrix and « is the so called arbitrary regularization
constant. Nevertheless, in [59] the authors use a simplified (and also quite
extended) variant of this regularization technique, defined as:

Sy =S8, +T1I (A.17)

where I is a vector of elements that modify the principal diagonal of the scatter
matrix S, so that the matrix .§t is invertible.

In this thesis, we use RLDA approach based on the work of De la Torre et
al. [59] in the context of Oriented Component Analysis (ROCA). This approach
uses a variant of the Power Method technique to solve generalized eigengprob-
lems. Specifically, following the formulation of the Lanczos algorithm [99), it
solves the following variant of the Fisher Criterion:

trace(®T S, ®)

®) = max AL _ND)
Tr(®) e trace(®T S; @)

(A.18)
where the matrix that is minimized is not the within-class scatter matrix, S,
which represents the variation of the samples from the class, but the total scatter
matrix, S, which represents the variation of all the samples in the training set.
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Given that S; and S, are related such that S; = S,, + Sb, both variants of the
Fisher Criterion produce equivalent results.

Starting from a simple regularization, based on the addition of an arbitrary
constant v to the principal diagonal of the total scatter matrix, S, =S, + I,
the iterative method proposed by De La Torre et al. is solved following the next
steps:

e Step 0: Generate an initialization for the projection matrix ®*=0) ¢
R?¥*4_ In this case, the initialization is not arbitrary. To reduce the number
of iterations, the matrix formed with the eigenvectors of S, associated to
the non-null eigenvalues is taken as the seed for the iterations.

e Step 1: The iteration k = k + 1 starts.
e Step 2: The linear system ®*+1 = ﬁt_leq)(k) is solved.

e Step 3: The matrices ®*+1) G, S, are normalized, such that:

&Y _ Pk+1)

maz (K1)
5 = DT g g Y (A.19)
g = T g 0D

e Step 4: The projection matrix ®*+1 is determined after solving the
Al
generalized eigen-problem S{W = S; WA, and the projection Plh+1) —
"y

k+1 k
o™t o]

e step 5: Repeat the sequence Step 1-Step 4 until the condition ——zrt—
.

€, Ve is reached, where og; are the eigenvalues extracted in Step 4. '

A.5 Kernel Fisher Analysis - KFA

The last reductive technique studied in this work is the one developed by Liu
in [64], which is the Fisher analysis based in kernel functions, also known as
Kernel Fisher Analysis (KFA). This technique is designed to be applied on sets
of labelled samples belonging to multiple classes and make use of different kernel
functions, such us the polynomial or the radial basis, among others.

Sometimes, the linear discrimination is not enough to solve specific machine
learning problems; Liu proposes to exploit the non-linear dependencies that
exist between the samples and their sets. The idea that supports KFA is to find
a mapping using a proper kernel function that projects the original samples to
a vectorial space of higher dimensions than the feature space. This new space
is called the mapping space. The goal of projecting to this space is that in it a
lineal separation of the samples can be performed. However, let’s remark that
even though the separation of samples in the mapping space is linear, when such
mapping is reversed the separation in the feature space is not linear. This is
because of the non-linearity of the Kernel functions.

<
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There are other algorithms, like the Generalized Discriminant Analysis (GDA),
proposed by Baudat et al. [I0], which also use the non-linear approach to im-
prove the results of the LDA. In this work, we have studied KFA, as a derivation
of the GDA, because unlike other methods, it gives a unique solution to the cal-
culus of the final subspace, being thus an optimal solution for an specific Kernel
function.

Following the steps of the kernel-based techniques, the key to classify the
training samples using non-linear discrimination using a space of higher di-
mensions is in the use of dot products, such that kernel(z,y) = kernel(z) -
kernel(y). Given a kernel function p, the training set is mapped such that X =
[Z1,..., 2] € R™*™ The mapped set is D = [p(z1),...,p(z,)] € R ¢ >m
and it can be arranged to have zero mean. Defining a correlation matrix of the
samples in the mapped space, we have that:

K =DDT (A.20)

Now, following the steps of the LDA, a total scatter matrix and a between-
class scatter matrix can be defined from the mapped set:

S 1
S, = —pDT (A.21)
n
_ 1 T
Sy = —DWD (A.22)
n

where n is the total number of samples, and W € R™*™ is a block diagonal
matrix, W = diag[Wh, ..., W¢], such that each element is W; € RYi*Ni | with
a constant value in its diagonal: N%, 1 <j <C, being C the number of classes
and N; the number of elements in class j.

Using these matrices, the Fisher Criterion [A77] can be formulated to derive
a projection matrix. This projects the samples to a subspace of less dimensions
than the original feature space. To do this, the generalized eigen problem S, ® =
AS;® is solved:

o= Zcip(mi) =Da« (A.23)
i=1
where @ = [c1,...,¢,] € R™. The generalized eigen-problem can be refor-

mulated using Equation and Equation and applying a regularization
step to the total scatter matrix of the mapping space, as it is shown in Equation
A 17

KWEKa = ACKa (A.24)

with @ = [, ..., ay], and where each «a is defined as: «;, ||®;]|? = ol Ka; = 1.
The projection matrix ® = [®;,...,d,] can be directly solved as

® =Da (A.25)

In PCA, LDA and the LDA-derived techniques, to project test samples to
the learned subspace it is only necessary to use the projection matrix and maybe
the mean training vector to have zero mean data. Let’s notice however that in
KFA, after learning the final subspace, the projection of a new data sample,
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Xoew, is done as Yyew = @7 p(Xpew) = aBB, where B is defined from the dot
products of each of the training samples with regard to X,,c.,, such that

B = [p(X1) - p(Xnew): -+ p(X1) - p(Xnew)] (A.26)

This implies that in this case we have to store not only the information
about the projection matrix, but also the original training samples and the
kernel function that was used for the first mapping.



Appendix B

Public Face Databases and
Evaluation Protocols

This appendix describes the face databases and their related evaluation pro-
tocols used for the experiments in this thesis. These datasets are public and
available for researchers, and all of them contain frontal face images in con-
trolled or semi-controlled scenarios. Also, they contain more than one sample
per individual, providing an good context for supervised learning.

B.1 BiolD Database

The BioID Face Database [47] was recorded and published to give all researchers
working in the area of face detection the possibility to compare the quality of
their face detection algorithms with others. It comprises 1521 gray level images
from 23 different subjects. The images show the frontal view of the persons and
were acquired under a large variety of illumination, background and face sizes.
The scenarios are semi-controlled indoors and groundtruth data of the position
of the eyes (along with other facial landmarks) is also provided.

Some sample images of the BioID database can be seen in Figure

Database | Images | Individuals | Color | Metadata ‘ Eval. Protocol
BiolD 1521 23 - - -
Yale 165 15 - X -
CVL 114 7 X - -
AR ~ 4000 126 X X -
FERET 3365 ~ 1000 - X X
FRGC 36818 16028 X X X

Table B.1: Summary of the main attributes of the face databases used in this
thesis.

203
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Figure B.1: Image samples from BiolD.

B.2 Yale Database

The Yale Face Database [2] contains 165 grayscale images of 15 individuals. For
all the subjects, a total of 11 images per subject were recorded. Each of these
images corresponds to a different predetermined facial expression or scenario
configuration: center-light, glasses, happy, left-light, no glasses, normal, right-
light, sad, sleepy, surprised, and wink. This makes the Yale database useful to
test the robustness any classification algorithm against changes in illumination
and facial gestures.

Some sample images of the Yale database can be seen in Figure

Figure B.2: Image samples from Yale.
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B.3 AR Database

The AR face database was in the Computer Vision Center (CVC) at the U.A.B.
It contains around 4,000 color images corresponding to 126 individuals. Images
feature frontal view faces with different facial expressions, illumination condi-
tions, and occlusions (sun glasses and scarf) in controlled indoor scenarios. Each
individual participated in two sessions, separated by two weeks (14 days) time.
The same pictures were taken in both sessions.

Some images of the AR database can be seen in Figure [B:3]

Figure B.3: Image samples from AR.

B.4 CVL Database

The CVL database [92] contains a set of 114 individuals with 7 images per
each. The images were taken under uniform illumination and with projection
screen in the background. Due to the different head orientations acquired, many
works make only use of the images corresponding to frontal faces (3 images per
subject).

Some sample images of the CVL database can be seen in Figure [B:4]

A0

Figure B.4: Image samples from CVL.

B.5 FERET Database

The FERET database is one of the most widely adopted databases for bench-
marking face recognition algorithms. It contains 3365 grayscale frontal facial
images of almost 1000 different subjects.
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Along with the face images, FERET also provides a face recognition eval-
uation protocol. In FERET, all frontal faces are divided into five categories:
fa, fb, fc, dupl, and dup2. The pictures in fa and fb were taken on the same
day, with the same camera and illumination condition. The pictures in fc were
taken the same day that fa and fb, but using a different camera and changing
illumination conditions. The categories dup! and dup2 correspond to images of
the same subjects, acquired several months later. In the case of dupl pictures
were taken within the same year than fa. In dup2, the pictures were taken at
least one year later than fa pictures.

In the FERET tests, 1196 fa pictures are used as the gallery set, while the
categories fb ( 1195 images), fc (194 images), dup! (722 images), and dup2 (234
images) constitute different probe sets. The gallery set contains only one image
per person (i.e. each image defines a class label). Also, there is a set with 736
training samples.

In the Face Identification Evaluation System proposed by [17], the cumula-
tive match curve is used in the FERET tests to compare the performance of
different algorithms.

Some sample images of the FERET database, classified by their category
subset, can be seen in Figure [B:5]

fa fb fc dupl dup?2

Figure B.5: Image samples from FERET.

B.6 FRGCv2 Database

The Face Recognition Grand Challenge (FRGCv2) face database [94] arose from
the necessity of reducing the error rate in face recognition systems by an order
of magnitude regarding older achievements liker the ones obtained with the Face
Recognition Vendor Test (FRVT) 2002.

Three aspects of the FRGC dataset has projected it to be a benchmark for
researchers: first is the size of the FRGC in terms of data. The FRGC data
set contains up to 50,000 recordings from around 4,000 subjects; second is its
complexity. FRGC consists of three modalities of samples: high resolution still
images, 3D images, and multi-images of a person; third is the infrastructure.
The infrastructure for FRGC is provided by the Biometric Experimentation En-
vironment (BEE), which allows the description and distribution of experiments
in a common format.

The FRGC distribution was organized into six experiments. In experiment 1,
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the gallery consists of a single controlled still image of a person and each probe
consists of a single controlled still image. Experiment 2 studies the effect of
using multiple still images of a person on performance. Experiment 3 measures
the performance of 3D face recognition. FExperiment 4 measures recognition
performance from uncontrolled images. In experiment 4, the gallery consists of
a single controlled still image, and the probe set consists of a single uncontrolled
still image. Experiments 5 and 6 examine comparing 3D and 2D images.

Related to the current work, the most interesting subset of samples is Ex-
periment 4. As it is explained in [94], the images belonging to this subset are
considered the most challenging of the FRGCv2 database, due to the mix of
controlled and uncontrolled conditions of acquisition, although all of them are
indoor images. Experiment 4 has a total of 12,776 training images, 16,028
target images and 8,014 query images.

Also, for Experiment 4, the Biometric Experimentation Environment (BEE)
defines three possible selections of datasets, which give place to three different
sets ROC curves during the evaluation: ROC I, ROC II and ROC III. Each
of these variants corresponds different target—query subsets, defined in [94].
Specifically, in ROC I, all the data are within semesters, in ROC II, they are
within a year, while in ROC III, the samples are between semesters. These
experiments are of of increasing difficulty.

Some sample images of FRGCv2 can be seen in Figure [B.6]

Figure B.6: Image samples from FRGCv2.
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