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Abstract
Detection of hot objects with thermal infrared cameras has historically been of inter-
est mostly for military purposes. However, decreasing price and size combined with
increasing image quality and resolution in recent years have opened up new application
fields, such us firefighting missions, which is the focus of this project. In many cases, the
detection of hot objects is not enough and their tracking is also necessary. That is why
infrared cameras usually work together with mobile robots to provide the system with
movement.

The main purpose of this project is to develop and implement a system consisting
of an infrared camera and an autonomous mobile robot coordinated with each other to
detect and track hot objects in an unknown environment. To achieve this, two thematic
blocks corresponding to both devices fundamentally make up the proposed solution.
Regarding the equipment selection, Lepton 3.5 from FLIR brand is the IR-camera for
the main perception part of the system while the SMR developed by the Automation
and Control department of DTU constitutes the mobile robot.

A Python script is responsible for implementing the algorithm to detect hot objects
and its location in the images captured by the IR-camera, allowing to distinguish if
those objects correspond to fires according to a pre-established temperature threshold.
Thanks the continuous reading of this hot object data, a SMR-CL script handles the
algorithm that allows the robot to perform the following sequence of tasks: check for
any fire in the room, track and reach its location, extinguish it and return to the starting
position. The communication between both scripts is implemented using a custom made
plugin in C++.

The collected data during the experiments is shown by means of an infrared imaging
animation developed in Python, and a simulation of the robot trajectory and direction
map developed in Matlab. By analysing the results obtained in the final testing phase,
it is worth to conclude that the solution constitutes a robust system capable of tracking
both static and moving hot objects within different environments while the design is
fully customizable to a real application.
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CHAPTER 1
Introduction

Visual detection of hot objects is an engineering area that has been and currently is sub-
ject to extensive research and development. Thermal infrared cameras have historically
been of interest mainly for military purposes. However, as price and size decrease while
image resolution and quality increase, the use of this type of camera in other applications
has been rapidly growing.

Compared to cameras operating in the visual spectrum, infrared cameras are advan-
tageous due to their high performance in all weather conditions, ability to work even in
complete darkness, low maintenance and protection of privacy, among others. This great
potential makes them suitable for a wide variety of important fields such as firefighting,
automotive safety (obstacle detection), industry (plant inspection), security (intrusion
detection), or search and rescue (localisation of missing people) [2].

In many cases, the detection of hot objects is not enough and their tracking is also
necessary. That is why infrared cameras usually work together with mobile robots to
provide the system with movement and thus be able to detect and track both static and
moving hot objects.

Nowadays, mobile robotics is one of the fastest expanding fields of scientific research.
They can be distinguished from other robots by their ability to move autonomously, with
enough intelligence to react and make decisions based on the perception they receive from
the environment [17].

Due to their abilities, mobile robots can substitute humans in many fields and be a
great option to track objects safely, precisely, and autonomously in different places.

This thesis addresses the current necessity of tracking hot objects for several appli-
cations and analyses the advantages and limitations of using thermal infrared cameras
in conjunction with mobile robots for this purpose.

1.1 Objectives
The main goal of this project is to develop and implement a system consisting of an
infrared camera and an autonomous mobile robot coordinated with each other to detect
and track hot objects. Specifically, the focus is on firefighting within different environ-
ments (Figure 1.1).

To do this, the camera should be able to:
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Figure 1.1: Image captured by a thermal infrared camera on a firefighting mission [20].

• Continuously capture images with high frame rate while the robot is running.

• Identify if there is a hot enough object in the room according to a pre-established
temperature threshold.

• Find the hottest spot representing the fire and get its temperature and location in
the frame.

• Send the hot object data of interest to the robot.

• Produce an animation from the captured images to show the results of the experi-
ment.

On the other hand, the robot should be able to:

• Continuously read the hot object data from the camera.

• Check for any fire in the room.

• Track and reach the fire location.

• Extinguish the fire.

• Return to the starting position.

• Produce a simulation of the robot map to show the results of the experiment.
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1.2 Thesis outline
In this section, an overview of the chapters found in this project is presented:

• Chapter 1 gives a brief introduction to the fields of infrared cameras and mobile
robots that contextualize this project and states its main objectives.

• Chapter 2 analyses a solution that satisfactorily meets the objectives, setting the
necessary frame for its subsequent design and implementation.

• Chapter 3 addresses the module responsible for the infrared camera tasks in order
to detect hot objects in the room.

• Chapter 4 handles the module responsible for the robot tasks in order to track
the detected hot objects.

• Chapter 5 discusses the treatment and representation of data collected by both
devices during the experiments.

• Chapter 6 deals with the communications between all modules for the coordinated
operation of the overall solution.

• Chapter 7 analyses the results of the system test covering two possible scenarios
corresponding to a static and a dynamic hot object.

• Chapter 8 contains the main conclusions of the project regarding the achievement
of its objectives as well as other final considerations of interest.
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CHAPTER 2
Analysis

2.1 Introduction
In order to achieve the main objectives mentioned above, the realization of this project
can be approached in several ways. That is why a prior study of possible solutions
regarding each subsystem is required to allow choosing the one that best satisfies the
desired operation.

These decisions principally refer to the hardware and software to be used for the
proper design and implementation of the overall solution and depends largely on the
corresponding availability at the university.

The present analysis further divides the project into thematic packages that will be
described and evaluated on its own later on.

2.2 Camera
Unlike visible light images, thermography is a type of imaging that is accomplished
with an infrared (IR) camera calibrated to display temperature values across an object
or scene [22]. Therefore, IR-camera allows one to make non-contact measurements of
an object’s temperature and, consequently, is the type of camera used for the main
perception part of the system.

Due to the unstoppable growth in the use of thermography in industry, a great
rivalry has arisen to dominate the IR-camera market. There are numerous companies
focused on the development and commercialization of these devices, offering, in turn, a
wide variety of ranges and models to cover the different applications demanded by the
industry.

FLIR Systems is the world’s largest commercial company specializing in this field
and furthermore the Automation and Control department of DTU (AUT) has some of
its products available for students. The brand chosen for the infrared camera is therefore
FLIR.

With regard to the specific model, the PureThermal Mini - FLIR Lepton Smart
I/O Module has been chosen for the camera board and the Lepton 3.5 Uncooled VOx
Microbolometer for the camera itself (Figure 2.1). The main reason for this selection
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is that it constitutes an affordable and easy to hack thermal USB camera with a large
scene dynamic range of temperature and reduced dimensions and weight.

Figure 2.1: PureThermal Mini - FLIR Lepton Smart I/O Module with Lepton 3.5 in-
frared camera [8].

A more detailed description of the features of the chosen products will be included
in section 3.3, within the chapter about hot object detection.

2.3 Robot
Due to the high prices for commercial robot platforms at present, the Automation and
Control department of DTU decided to build their own platform. Custom made hard-
ware from the shelf components is the philosophy behind the Small Mobile Robot (SMR)
design. Although the department offers other bigger and better equipped options such as
the Terrain Hopper, iRobot ATRV-Jr or DTU MaizeRunner, the SMR has been chosen
since it covers all this project needs with a very compact design.

Regarding that design, an important parameter to be fulfilled is that the robot should
be so small that it can easily be handled by one person without any safety problems
and on the other hand, it should be big enough to carry equipment such as cameras. As
seen in Figure 2.2, the 28 by 28 cm size of the SMR together with its lightweight chassis
guarantee this parameter.

For more information about the chosen equipment, section 4.3 in the hot object
tracking chapter can be consulted.

2.4 Environment
Once the camera and the robot have been selected, the type of environment for the
subsequent experiments needs to be defined as well. The system should be versatile
enough to meet the main objective of tracking hot objects regardless the site. In fact,
as the focus of the project is on firefighting, it is reasonable to assume that the environ-
mental conditions may change over time due to damage and other factors caused by the



2.5 Software 7

Figure 2.2: Small Mobile Robot platform developed by the Automation and Control
department of DTU.

fire itself or its surroundings. Therefore, the environment is considered to be unknown,
meaning no map representation is available in advance.

On the other hand, the SMR uses a local network associated with the DTU building
326 for its communications and, consequently, the experiments are only carried out
indoors while outdoor scenarios are beyond the scope of this project.

2.5 Software
This section addresses the references to suitable software for the hardware mentioned
above. In most cases, the software to be used is the only option corresponding to the
chosen hardware and, in other cases, the best available option has been selected in terms
of good performance as well as usability.

Regarding the IR-camera, the following main software applies:

• Libuvc - A cross-platform library that supports enumeration, control and stream-
ing for USB Video Class (UVC) devices.

• Python - The programming language used for the image acquisition and creation
of the corresponding simulation.

On the side of the robot, the software list to use is as follows:

• Linux - The main Operating System.
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• Mobotware - A plug-in based platform developed at AUT for the control software
of mobile robots.

• SMR-CL - Small Mobile Robot Control Language is a simple interpreted language
developed at AUT intended to control mobile robots.

• C++++++ - The language to program the plugin that communicates the SMR with
the IR-camera.

• Matlab - The programming platform responsible for simulating the data provided
by the SMR.

2.6 Modules
All things considered, it is possible to identify different modules that need to work in
coordination to meet every agreed target at the beginning of the project. By doing so,
the system should be able to detect hot objects using the IR-camera, communicate with
the SMR to track them and finally represent the collected data. Therefore, the proposed
solution is split into four thematic packages or modules that are outlined in Figure 2.3
and briefly described below:

• Hot object detection - The first module is responsible for capturing images from
the IR-camera, identifying if there is a hot enough object in the room and getting
its temperature and location in the frame.

• Hot object tracking - This module mainly addresses the sequence of movements
to be carried out by the SMR to check for any fire in the room, track and reach
its location, extinguish it and return.

• Data representation - This module covers the animation of the images cap-
tured by the camera during the experiment as well as the simulation of the robot
trajectory and direction map.

• System communication - It guarantees that the rest of modules communicate
with each other for the correct functioning of the overall system, that is, it handles
the continuous exchange of hot object data between the IR-camera and the robot
and allows the scripts in charge of representation to read the data collected by
both devices.

2.7 Summary
In this chapter, an analysis of a solution which satisfactorily meets the objectives or
requirements stated in chapter 1 has been conducted, setting the necessary frame for its
subsequent design and implementation.
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Figure 2.3: Overview of the modules that make up the proposed solution.

Firstly, the best available hardware at DTU for the project purpose has been selected.
The PureThermal Mini - FLIR Lepton Smart I/O Module along with the Lepton 3.5
make up the IR-camera for the main perception part of the system while the SMR
developed by AUT constitutes the mobile robot. In addition, the experiment scenario
has been defined in such a way that the environment is indoor and unknown.

Next, the required software for each sub-task associated with both the camera and
the robot has been referenced and briefly commented.

Lastly, the solution under analysis has been divided into four modules to encompass
the primary missions of the project: system communication, hot object detection, hot
object tracking and data representation.

In the following chapters, the approach and development of each of the proposed
thematic packages will be presented at length.
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CHAPTER 3
Hot object detection

3.1 Introduction
The present chapter addresses the first module of the proposed solution, which is respon-
sible for the infrared camera tasks in order to detect hot objects in the room. Specifically,
the objectives related to this module are capturing images from the IR-camera, identi-
fying if there is a hot enough object around and getting its temperature and location in
the frame.

To meet the stated objectives, it is necessary to have some basic theoretical notions
of the subject matter. Therefore, the first section sets a theoretical background that
introduces the reader to the infrared radiation tenets, thermal imaging along with its
main characteristics and some of the most common applications.

Once the foundations are known, it is possible to describe in more detail the choices
made in the analysis regarding the equipment to be used. The equipment description
section covers both hardware and software tools related to the camera, determining the
advantages and limitations of what is available to implement the solution.

Next, an approach to the solution is conducted in a way that the best method to
achieve the objectives is identified and presented. The following subsection constitute
a gradual process that begins with a conceptual diagram and ends with the detailed
implementation of each of the parts that make up the solution for this module. Every
step followed by the algorithm that governs the camera is duly justified and described
in such subsection.

Finally, a module test is included to verify that the proposal fulfills the initial inten-
tion as expected.

3.2 Theoretical background
Thermal infrared imaging forms the basis of this section. All subsections included here
constitute a comprehensive introduction to the field and aim to provide a solid under-
standing of how infrared cameras work. This theoretical background is mainly focused
on the knowledge that is useful and can be applied in some way to the subsequent im-
plementation of the solution, rather than just a concatenation of conceptual definitions.
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3.2.1 Infrared radiation
Infrared radiation is a part of the electromagnetic spectrum, see Figure 3.1, and its name
originates from the Latin word infra, which means below. That is, the infrared band lies
below the visual red light band, since it has longer wavelength.

Figure 3.1: The electromagnetic spectrum with sub-divided infrared spectrum.

The infrared spectrum can be divided into several spectral regions based on their
properties. There exist different sub-division schemes in different scientific fields, but
the most common is as follows: near infrared (NIR, wavelengths 0.7–1 µm), shortwave
infrared (SWIR, 1–3 µm), midwave infrared (MWIR, 3–5 µm), longwave infrared (LWIR,
8–12 µm), and far infrared (FIR, 12–1000 µm). LWIR, and sometimes MWIR, is typi-
cally referred to as thermal infrared (TIR). TIR cameras are sensitive to emited radiation
in everyday temperatures and should not be confused with NIR and SWIR cameras that,
in contrast, mostly measure reflected radiation. These non-thermal cameras are depen-
dent on illumination and behave in general in a similar way as visual cameras [2].

Due to scattering by particles and absorption by gases, the atmosphere attenuates
radiation, making the measured apparent temperature decrease with increased distance.
CO2 and H2O are responsible for most of the absorption of infrared radiation [12]. Figure
3.2 shows the percentage of transmitted radiation depending on the wavelength and
indicates the molecule that is responsible for the transmission gaps. As can be seen in
the figure, there are two main sections in which the atmosphere transmits a major part
of the radiation. These are called the atmospheric windows and can be found between
3–5 µm (mid-wave window) and 8–12 µm (long-wave window) [16]. These windows
correspond to the MWIR and LWIR bands mentioned above. Conversely, due to the
large transmission gap between 5 and 8 µm, there is no reason for cameras to be sensitive
in this band. The same goes for radiation above 14 µm.

Radiation that is not absorbed or scattered in the atmosphere can reach and interact
with matter. There are three forms of interaction that can take place when energy strikes
or is incident upon an object. These are absorption (whose coefficient is α), transmission
(τ), and reflection (ρ). The total incident energy will interact with the surface in one or
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Figure 3.2: Atmospheric transmittance in part of the infrared region [23].

more of these three ways. The proportions of each will depend on the wavelength of the
energy as well as the material and conditions.

Conservation of energy requires that ρ+τ +α = 1, where ρ, τ, α ∈ [0, 1]. On the basis
of fundamental physics, every object at any given absolute temperature above 0 K emits
thermal radiation, which is defined as energy transfer in the form of electromagnetic
waves [4].

A blackbody is an ideal body that allows all incident radiation to pass into it and
that absorbs internally all the incident radiation, resulting in α = 1. By measuring
the blackbody radiation curves at different temperatures (Figure 3.3), it is possible
to observe that the intensity peak shifts to shorter wavelengths as the temperature
increases while the intensity increases with the temperature. For extremely hot objects,
the radiation extends into the visible spectrum, e.g., as seen for a red-hot iron [7].

Most materials studied for practical applications are assumed to be so called grey
bodies, which have a constant scale factor of the radiation between 0 and 1. This factor is
called emissivity (ε) and is defined as the amount of radiation actually emitted by a body
compared with that of a blackbody under identical conditions [5]. Further, Kirchhoff’s
law states that α = ε, i.e., α = 1 for a black body. Since emissivity depends on the
material, it is an important property when measuring temperatures with a thermal
camera.

3.2.2 Thermal imaging
Thermal imaging, also often briefly called thermography, is the process of converting
infrared radiation (heat) into visible images that depict the spatial distribution of tem-
perature differences in a scene viewed by non-contact thermal imaging devices. In most
cases, this measurement technique is able to quantitatively measure surface tempera-
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Figure 3.3: Intensity of blackbody radiation versus wavelength at different temperatures
[14].

tures of objects. For better understanding by humans of captured images, pseudo colors
are usually used to map pixel intensity values in order to visualize details more clearly.

Colors in the visible range express reflection of light. However, colors in an infrared
image express both reflection and emission. Emission of heat comes from the material
itself while reflection comes from its surroundings. Notice that these properties are
complementary, i.e., a good emitter is a poor reflector and vice versa. This is where
emissivity comes into play, which represents how efficiently an object radiates heat as
explained above.

When viewing a highly polished metal object with a low emissivity, that surface
will act like a mirror. Instead of measuring the temperature of the object itself, the
camera will also detect the reflected temperature. Reflected temperature (also known
as background temperature or Treflected) is any thermal radiation originating from other
objects that reflect off the target you are measuring. This is explained through Figure
3.4.

To properly obtain an accurate surface temperature reading with thermal imaging,
this Treflected value (along with the emissivity) must be quantified and included in the
camera’s object parameters. This is used (specially for lower emissivity objects, where
reflected temperature has a high influence) so that the software can compensate for,
and ignore, the effects of the radiation which does not correspond to the actual surface
temperature of the target.

By contrast, measuring an exact temperature is not necessary when the application
simply aims to locate thermal patterns such as missing insulation or air leakage in
a building, which is called qualitative thermography. In those situations, leaving the
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Figure 3.4: Reflected temperature can affect the temperature a thermal camera measures
[21].

values at their default settings (typically 0.95 for emissivity, and 20 °C for reflected
temperature) will suffice.

There are currently two types of thermal imaging sensors on the market, cooled and
uncooled. Cooled cameras are the most sensitive to tiny differences in temperature,
offer very high image quality, and are compatible with longer-range lenses. Images are
typically stored as 16 bits per pixel to allow a large dynamic range. On the other side,
uncooled cameras usually have bolometer-type detectors and operate in LWIR. They
yield noisier images at a lower frame rate, but are smaller, silent, and less expensive,
being particularly well-suited for mobile applications.

Some uncooled cameras are calibrated in order to measure temperatures and provide
access to the raw 16-bit intensity values, so called radiometric cameras, while others
convert the images to 8 bits and compress them, e.g., using MPEG. In the latter case
(non-radiometric), the dynamic range is adaptively changed to provide an image that
looks good to the eye, but the temperature information is lost. For automatic analysis,
such as target detection, classification, and tracking, it is suitable to use the original
signal, i.e., the raw 16-bit intensity values from a radiometric camera [2].

In many different applications, the most commonly used detector is an uncooled
bolometer camera for LWIR with germanium lens. This material is opaque and reflec-
tive in the visual spectrum while transparent in the thermal spectrum and is therefore
employed for the lens instead of glass, which has the opposite properties.
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3.2.3 Features, advantages and limitations
Thermography is an excellent example of an acquisition and analysis technique that can
be used in a wide variety of fields. This technique is so useful mainly due to the following
features [3]:

• It is non-contact (uses remote sensing)

– Keeps the user out of danger.
– Does not intrude upon or affect the target.

• It is two-dimensional

– Comparison between areas of the target is possible.
– The image allows for excellent overview of the target.
– Thermal patterns significantly enhance problem diagnosis.

• It is real time (or close to real time)

– Enables efficient scanning of stationary targets.
– High end cameras can capture fast moving targets.
– High end cameras can capture rapidly changing thermal patterns.

Certainly, thermal detection technologies are advantageous in many ways, but they
also present some drawbacks or limitations compared to cameras operating in the visual
spectrum that should be taken into consideration.

Listed here are relevant advantages when using thermal imaging [11]:

• High performance during darkness and/or difficult weather conditions. A thermal
camera is sensitive to emitted radiation, even from relatively cold objects, in con-
trast to a visual camera that measures reflected radiation and thus depends on
illumination.

• Low maintenance for lower total cost of ownership. Unlike visible-light cameras,
thermal cameras generate virtually no maintenance costs and, over time, are a
more cost-effective solution.

• Protection of privacy. Infrared cameras can detect an individual without revealing
their identity and therefore protect people’s privacy. This also can be a disadvan-
tage as listed further down.

• Fewer false alarms. This type of camera can produce sharp, accurate images, which
means fewer false alarms. They can clearly differentiate an animal, for example,
from an intruder.
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Regarding the limitations, the following are worth mentioning [11]:

• High initial investment cost. Thermal cameras’ optics and detection systems are
not as widely used as those of visible-light cameras, and they are built using
complicated components, which increases their purchase prices.

• Inability to ’see’ through certain materials like water and glass. Unlike visible light,
infrared radiation cannot go through water or glass, since it is reflected in those
materials.

• More training is necessary. In comparison to visual cameras, thermal detectors
typically require more training for correct usage. To provide accurate measure-
ments, the operator needs to be aware of the physical principles and phenomena
commonly viewed in thermal imagery (emissivity, reflected temperature...).

• Person identification is not possible. If person identification is requested, it has to
be combined with a visual camera.

3.2.4 Applications
The different characteristics analysed above define the type of applications in which it is
appropriate to use infrared cameras. A few categories are identified and briefly described
below along with Figure 3.5, which displays example images from each category [2] [18]:

a) Military. Thermal cameras are popularly used by the army and navy for border
surveillance and law enforcement. They are also widely used in military aviation to
identify, locate and target the enemy forces (gunfire, mines, snipers, etc.).

b) Agriculture. Monitoring of wild and domestic animals can be used, e.g., to detect
inflammations, perform behaviour analysis, or to estimate population sizes

c) Automotive safety. Detection and tracking of pedestrians or other vehicles, using
a small thermal camera mounted in the front of the car or train. It also provides
detection of defects of many products for the automotive industry.

d) Building inspection. When looking to improve upon energy efficiency and lead
the world forward in the fight against climate change, improving building structure
to combat energy loss and resource wasting is greatly aided with the use of infrared
cameras.

e) Industry. This is a broad area that includes applications such as detection of defects
and deficiencies of multiple materials, positioning, non-destructive testing etc.

f) Medicine. Thermal cameras are being used to help detect cancer earlier, locate
the source of arthritis, and even catch circulation issues before they become too
problematic.
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g) Search and rescue. Localisation of missing people regardless of daylight and
weather conditions using cameras carried by UAVs, helicopters, or rescue robots.

h) Security. Thermography is an ideal tool for finding and tracing of suspects, identi-
fication of persons and vehicles, and search for crime victims, among others.

i) Firefighting. Firefighters use thermal imaging cameras every day to see through
smoke, locate and rescue victims, identify hot spots, navigate safely, and stay better
oriented during response missions.

(a) Military.
Mine detection.

(b) Agriculture.
Mastitis detection.

(c) Automotive safety.
Looking for defects in an

airbag.

(d) Building inspection.
Detection of heat loss in a

building [7].

(e) Industry.
Pump leak detection [12].

(f) Medicine.
Localisation of infections

[12].

(g) Search and rescue.
Localisation of missing

people.

(h) Security.
Intrusion detection.

(i) Firefighting.
Detection of hot spots [13].

Figure 3.5: Examples of thermography applications in different fields.
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3.3 Equipment description
Once the basic tenets of thermography are understood, it is possible to take a closer
look into the chosen equipment. This chapter describes both the camera and the corre-
sponding software to analyse what is available for the implementation of the solution.

3.3.1 Hardware
As already mentioned, the sensor responsible for detecting hot objects consists of two
parts: the PureThermal Mini - FLIR Lepton Smart I/O Module for the camera board
and the Lepton 3.5 Uncooled VOx Microbolometer for the camera itself. This device
needs to be of reduced dimensions and weight, since it is mounted on the Small Mobile
Robot, so it is an uncooled-type camera. Furthermore, it provides radiometric images,
meaning each pixel can represent the temperature measured at that point, which is also
important when locating the hottest spots in the environment. Easy to integrate and
operate, it is intended for mobile devices as well as any other application requiring very
small footprint, very low power, and instant-on operation.

This micro thermal camera is assembled on the Lepton Smart I/O Module, which
is pre-configured to operate as a plug-and-play UVC 1.0 USB thermal webcam that
works with standard webcams and video apps on all major platforms (Windows, Linux,
Mac, and Android). It supports open source reference firmware and viewer software,
and it presents a compact form-factor ready to be embedded into production systems.
Specifically, the dimensions of the board are 19.15 mm in height and 15.32 mm in width
[9].

Regarding the Lepton 3.5 camera, Table 3.1 contains some specifications that should
be highlighted.

3.3.2 Software
The Lepton camera module supports a Command and Control Interface (CCI) hosted on
a Two-Wire Interface (TWI) similar to I2C (a standard serial communication protocol).
The interface consists of a small number of registers through which a host issues com-
mands to, and retrieves responses from the Lepton camera module. It can be operated
in its default mode or configured into other modes through the CCI.

The chosen module supports the USB video class (UVC), and this makes it very easy
to capture thermal imaging data from a host PC using standard tools and libraries and
includes the ability to update firmware over USB, which lengthens the shelf life of the
device. Libuvc is one of these standard tools and has been chosen for the implementation,
since it is a way to easily access camera commands and avoid directly hacking into the
firmware. It constitutes a comprehensive library and can be defined mainly through the
following features [10]:
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Table 3.1: Specifications of the Lepton 3.5 infrared camera from FLIR brand [6].

Sensor technology: Uncooled VOx microbolometer
Array format: 160 x 120 (19,200 active pixels)
Frame rate: 8.7 fps
Thermal sensitivity: <50 mK (0.05 °C)

Temperature compensation: Automatic (output image independent of camera
temperature)

Scene dynamic range: -10 to +400 °C
Horizontal FOV: 57 °
Lens type: f/1.1

Output format: User-selectable 14-bit, 8-bit (AGC applied), or 24-
bit RGB (AGC and colorization applied)

Size (w x l x h): 10.50 x 12.70 x 7.14 mm
Weight: 0.9 grams

Power consumption: 150 mW typical, 650 mW during shutter event, 5mW
standby

Operating temperature range: -10 to +80 °C

• Application Programming Interface (API) for UVC device discovery and manage-
ment (finding, inspecting and opening).

• Support for creating, managing and consuming video streams (device to host).

• Read/write access to standard device settings (functions for manipulating main
settings and stream parameters)

• Tools for managing frame buffers and converting between various image formats.:
RGB, YUV, JPEG, etc.

• Cross-platform user library.

As already mentioned in the analysis, a Python script is responsible for the camera
tasks, since it is a very versatile and productive language, as well as easy to use and
fast to develop. In particular, the version used is Python 3.6.9. Although Libuvc is a
library based on C language, it is seamlessly adaptable to Python using the so called
ctypes library. This is a foreign function library for Python that provides C compatible
data types and allows calling functions in DLLs or shared libraries. Therefore, it can be
used to wrap Libuvc in pure Python.

Furthermore, two other important Python libraries are needed for the correct oper-
ation of the source code: Numpy, used for working with arrays with faster execution
time; and Matplotlib, used for creating static, animated, and interactive visualizations.
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3.4 Design and implementation
This section addresses the design and implementation of the proposal that provides a
solution to the problems for which this module is responsible. Firstly, the approach
specifies the main characteristics and operating conditions of the camera applied to
this case study and sets the best way for the programming code to handle the device
accordingly. The second subsection goes into the details of the proposed solution and
explains each step followed by the hot object detection algorithm that governs the camera
along with some important considerations.

3.4.1 Approach
One of the first steps is to decide in which mode the camera should operate. As stated
in Table 3.1, the output format is user-selectable and can be of 14-bit, 8-bit or 24-bit
RGB. The former provides raw data, which implies that the AGC mode is disabled
and the TLinear mode is enabled. AGC stands for Automatic Gain Control and is a
process whereby the raw image is converted into a contrast-enhanced image suitable
for display, that is, a 14-bit to 8-bit conversion, with the corresponding loss of thermal
information. Enabling the TLinear mode changes the pixel output from representing
incident radiation in 14-bit digital counts to representing scene temperature values in
centikelvin, which is possible because the Lepton 3.5 is a radiometric camera and is
therefore calibrated for that purpose. As this module’s core priority is to get the thermal
data of every pixel rather than obtain images that look good to the eye, the raw 14-bit
option is selected, which is in fact the default output format.

Nevertheless, the TWI interface is a communication protocol that only allows 16-
bit transfers. Consequently, each pixel value is represented by 16 bits, covering all
14 bits of thermal information from the Lepton camera, and the default data type is
uint16 (unsigned integer with a data width of 16-bits). Since the Lepton 3.5 supports
a 160 x 120 format, the resulting image is represented by an uint16 array of 19200
pixels. As discussed in the next subsection, sometimes the proposed algorithm converts
temperature values from centikelvin to degrees Celsius for easier handling and reading.

Regarding the internal parameters of the camera, both the emissivity and the re-
flected temperature should be adjusted to get a highly accurate reading of the tempera-
ture of the target object, which is known from the theoretical section. For this project
application, however, only thermal patterns need to be read, since the objective is to
identify the hottest areas of the environment, instead of getting their exact temperatures.
Apart from that, two factors make it impossible to quantify the emissivity and the re-
flected temperature with sufficient accuracy: there is no specific target object, since the
environment is unknown; and the robot is in motion, so the camera captures scenes with
different conditions each time. As a result, these values are left at their default settings.

Lepton is factory calibrated to produce a highly uniform output image, although drift
effects over long periods of time degrade uniformity, resulting in imagery which appears
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grainy and/or blotchy. For scenarios in which there is ample scene movement, Lepton
is capable of automatically compensating for drift effects using an internal algorithm
called scene-based non-uniformity correction (scene-based NUC). On the other hand, for
applications in which the scene is essentially stationary, it is recommended to habitually
perform a flat-field correction (FFC) whereby the NUC terms are recalibrated to produce
the most optimal image quality. Considering that this project clearly deals with dynamic
scenes, the default automatic mode for the FFC is selected and no additional manual
FFC is required. In this automatic mode, Lepton performs FFC at start-up, every 3
minutes and in case the camera temperature has changed more than 1.5 °C, which will
suffice. It should be noted that the entire FFC process takes less than a second, so it is
not significant enough to affect the correct performance of the camera-robot system.

At this point, it has been argued that the default settings of the Lepton 3.5 camera
are suitable for the operating conditions of this application and, by extension, there is
no need to modify any video mode, output format, data type, internal parameter or
image correction. By not having this need, there is no reason to use the specific API
provided by Lepton to access the internal CCI commands. Instead, this implementation
remains on a more superficial layer in this regard, and the already mentioned Libuvc
library is employed, since it is a generic API that enables fine-grained control over any
UVC device.

3.4.2 Algorithm
Once the camera is properly configured and ready to be programmed, it is time to
develop the algorithm in charge of this hot object detection module. As mentioned
above, the implementation of such algorithm is carried out by means of a Python script.

As a reminder, this module aims to fulfill three main objectives: to capture images
with a short time span from the IR-camera, identify if there is a hot enough object
around and get its temperature and location in the frame. To do this, the algorithm
represented in Figure 3.6 has been proposed, which outlines the set of instructions to be
followed.

The following lines describe the whole process in a progressive way, making contin-
uous reference to Appendix A.1, which contains the source code of the CAM_SCRIPT.py
file responsible for the camera’s mission. It should be noted that this file as well as
the diagram from Figure 3.6 also includes some tasks that, although they interact with
this module, correspond to the data representation and system communication modules
(written in italics on the diagram). That said, here the focus is only on the detection of
hot objects.

As can be seen in the flowchart, the Python script begins when the SMR starts
running. It is not known how exactly it is initialized, since the implementation of
this task will be addressed in the system communication module (Section 6.2), but it is
assumed that in some manner the camera is able to determine that the robot has started
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Figure 3.6: Flowchart showing the algorithm used to solve the hot object detection
module.

to work. Something similar happens with the rest of the tasks that depend on other
modules. In this regard, a module is understood as a delimited box that has its own
characteristics and objectives, but that is coordinated in a certain way with the rest of
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modules, receiving inputs and also providing outputs.
The preliminary settings are the first stage and fundamentally consist of package

and library imports, definition of functions and initialization of parameters. The most
important libraries have already been discussed in the software description, while the
functions will be addressed as they appear in the flowchart. Regarding the parameters,
the temperature threshold (hot_threshold_celsius in the code from Appendix A.1)
should be underlined due to its important influence on the algorithm. Thanks to this
threshold, the program is able to know if an object is considered hot (corresponding pixel
value above it) or not (pixel value below it). This differentiation is essential because the
particular goal of the project is not to track any hot object, but to track an object only
if it is hot enough to represent a fire. Although it is assumed that a fire is at a very
high temperature, the camera reading decreases with the distance, so initially a value of
50°C is established as the threshold, which will be validated in the system test chapter.

Before Lepton starts capturing images, the device should be found and opened for use.
Given that such operations are standardised for any UVC device, Libuvc fully covers the
camera access process, which includes basic functions (uvc_init, uvc_find_device and
uvc_open) along with functions that allows for the camera streaming (uvc_get_frame_
formats_by_guid, uvc_get_stream_ctrl_format_size and uvc_start_streaming).
For the latter, it is also checked that the data type and the height and width of the
frame are correct. If any of the functions fail, that is, the expected result is not ob-
tained, the program quits and a message specifying the type of error is printed. As a
brief comment, this is the moment when the camera automatically performs the afore-
mentioned FFC (at start-up).

Some of the UVC functions used cannot be found directly in the Libuvc library, but
they are gathered in an open source file called uvctypes.py, whose hyperlink is attached
in Appendix B.1. It is a sort of intermediate file, since it imports the aforementioned
ctypes library to adapt Libuvc to Python language and adds several useful parameters,
functions and object classes.

Initially, the program tries to capture the first frame to make sure that, apart from
having accessed the camera, it also works properly. The capturing process is done
through a callback function that continuously stores streaming data in a buffer or queue.
Fortunately, this function has a size parameter to control the number of items allowed in
the queue, which is set to 2 with the aim of improving resource efficiency. Accordingly,
the program simply takes an item from the queue (q.get) every time a frame needs to
be captured. As already mentioned, the obtained item is a Numpy array with 19200
uint16 data entries representing the approximate temperature values associated with
each pixel.

Once the first capture is successful, the camera is ready to enter the capturing loop,
which takes place as long as the robot is running. Here again, the implementation of
the robot status reading is unknown for the time being.

The first step within the loop is to capture a frame following the procedure explained
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above. Then it is saved along with the previously captured frames in a way that is
explained in the corresponding data representation module (Section 5.2).

To be able to compare with the preset temperature threshold (50°C), the highest
value of the array is taken using the max function and converted from centikelvin to
degrees Celsius. If this value (Tmax in the diagram) is above the threshold, fire has been
detected and its location in the frame should be obtained thanks to the unravel_index
function. Conversely, if Tmax is below, there is no need to know which pixel this temper-
ature corresponds to, since it is an object that is not considered hot enough to represent
a potential fire.

Last, this hot object data is sent to the SMR by means of a function, whose imple-
mentation is again discussed in the system communication module. Such data include
the following main parameters:

• found is set to 0 (if there is no fire), 1 (if a fire has been detected) or 3 (if the
capturing loop has ended).

• x_coordinate is the pixel index on the horizontal axis.

• z_coordinate is the pixel index on the vertical axis.

The process described is repeated until the SMR completes its tasks, which triggers
the video creation from the frames saved so far.

It is worth noting that the video could be made during the capturing loop or even
displayed at the same time. Nevertheless, it should not be forgotten that a core goal
of this module is to capture images as fast as possible so that the robot has access to
hot object data almost in real time and that its movements are fluid and without delay
(specially when tracking moving objects). Given the high computation time involved
in the processing and visualization of images, this part needs to be placed after the
loop, i.e., once the experiment has finished. Thus, the data collected by the camera can
be represented and analysed a posteriori without affecting the algorithm performance
during the experiment.

Finally, the use of Libuvc is again required, in this case for the end of the streaming
and device release thanks to the following standard functions: uvc_stop_streaming,
uvc_unref_device and uvc_exit.

3.5 Module test
The IR-camera functions have been tested by means of several experiments covering all
possible situations considered by the algorithm. A small adjustment has been applied
to the algorithm to avoid the tasks that will be implemented later in the system commu-
nication and data representation modules. Regarding the former, the hot object data is
not sent in each iteration and the algorithm starts and ends manually rather than based
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on the robot status. For the latter, the frames are simply not saved in each iteration and
the video creation is skipped. These modifications do not affect the camera operation
and allows for testing the detection module independently.

In this module test, the function called append_row_to_HOC has been used for data
logging over time, whose implementation can be found in the functions definition part
of the CAM_SCRIPT.py file attached in Appendix A.1. Although it is not used in the
final solution, thanks to this function, it is possible to keep track of the results obtained
by the camera without representing them. It basically creates a CSV file and appends
a new row in each iteration of the capturing loop containing the following data: date,
time, pixel index on the horizontal and vertical axis of the hot object (x_coordinate
and z_coordinate), and the corresponding temperature.

By using a thermal resistor, it has been possible to verify the camera’s response to a
potential fire, which correctly updates the coordinates in the frame based on the position
of the resistor. With respect to the temperature, it is also updated in such a way that
it increases or decreases depending on the voltage applied to the resistor. Equally, if the
resistor is hidden with the hand or simply placed out of the camera range, the maximum
recorded temperature drops suddenly and no fire is detected.

Furthermore, the time column in the CSV file should be highlighted, since it shows
that around 9 frames per second are captured, which matches the frame rate specification
of the camera indicated in Table 3.1. This involves that the algorithm makes the most
of the camera in this regard and allows the maximum data update rate so that the robot
movements are fluid and without delay, which is one of the fundamental goals of the
solution.

Lastly, some longer tests have been conducted to check the camera stability, resulting
in satisfactory operation regardless of the test duration.

3.6 Summary
The chapter presented here has covered all necessary stages for the successful detection
of hot objects by the selected infrared camera.

The first chapter has given a comprehensive introduction to the field of infrared
thermal imaging. It should be underlined that most infrared cameras operate in LWIR
(8–12 µm) avoiding the so-called atmospheric transmission gaps, and that the sensor is
usually uncooled due to its portability and low cost. In addition, the advantages over
a visual camera have been analysed, for example the ability to work in darkness, but
also the disadvantages, such as the higher initial cost. A wide variety of applications
have also been mentioned and displayed, ranging from industry field, namely pump leak
detection, to firefighting missions, such as the case of this project.

The equipment description has made it possible to understand the importance of
having an infrared camera that is radiometric to be able to read approximate tempera-
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tures. Emissivity and reflected temperature are camera parameters that can be adjusted
to improve the measurement accuracy, but this is not necessary for detecting hot objects
as this application focuses on thermal patterns rather than exact temperatures.

As analysed, the default camera settings properly respond to the operating conditions
of this application and no specific library is needed. Accordingly, the Libuvc standard
library can be used, which allows for handling UVC devices like the selected Lepton 3.5
camera.

The explained Python script is responsible for implementing the algorithm to de-
tect hot objects, allowing to fluently capture images and distinguish if those objects
correspond to fires according to a pre-established temperature threshold.

Finally, the test section proves that the implemented algorithm meets all its require-
ments specified above at this stage of development.
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CHAPTER 4
Hot object tracking

4.1 Introduction
This chapter is the second core thematic unit and follows the same structure that the
previous one. At this point in the development of the solution, the system is capable of
detecting a fire but cannot reach it. The hot object tracking module provides a solution
to this and has the Small Mobile Robot as its core element.

The content begins with a theoretical background on autonomous mobile robots and
the description of the selected SMR, follows with the design and implementation of the
proposed solution, and ends with some testing as a verification of the module.

4.2 Theoretical background
Mobile robots can move autonomously (in an industrial plant, laboratory, planetary
surface, etc.), that is, without assistance from external human operators. A robot is
autonomous when the robot itself has the ability to determine the actions to be taken
to perform a task, using a perception system that helps it [17].

Autonomous mobile robots forms the basis of this section. The following subsections
briefly synthesizes the most relevant theoretical considerations in connection with this
field. Although it is a very broad field, the content presented here focuses only on the
theory applicable to the specific case of this project, in which the ultimate goal is that
the robot serves as a means to track fires detected by the infrared camera.

4.2.1 Locomotion
A mobile robot needs locomotion mechanisms that enable it to move unbounded through-
out its environment. While there are a large variety of possible ways to move, virtually
all industrial applications locomote using wheeled mechanisms, a well-known human
technology for vehicles.

There are four major wheel classes: standard (rotation around the wheel axle and
the contact point), castor (two degrees of freedom), Swedish (three degrees of freedom)
and ball (difficult realization). These wheels can be combined in different ways creating
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numerous configurations depending on the needs of the application in terms of stability,
maneuverability and controllability.

4.2.2 Kinematics
Kinematics is the most basic description of how mechanical systems behave. Within the
field of mobile robots, dynamics constraints, i.e., consideration of the action of forces,
are also included specially in the case of high-speed mobile robots.

The robot is modeled as a rigid body on wheels, operating on a horizontal plane. The
total dimensionality of this robot chassis on the plane is three: two for position in the
plane and one for orientation along the vertical axis, which is orthogonal to the plane.

In order to specify the position of the robot on the plane, a relationship between the
global reference frame of the plane and the local reference frame of the robot can be
established, as in figure 4.1. The axes XI and YI define an arbitrary inertial basis on
the plane as the global reference frame from some origin O: {XI , YI}. To specify the
position of the robot, a point P on the robot chassis is chosen as its position reference
point. The basis {XR, YR} defines two axes relative to P on the robot chassis and is
thus the robot’s local reference frame. The position of P in the global reference frame
is specified by coordinates x and y, and the angular difference between the global and
local reference frames is given by θ. The pose of the robot can be described as a vector
with these three elements [19].

Figure 4.1: The global reference frame and the robot local reference frame [19].

4.2.2.1 Motion control
Many mobile robots use a drive mechanism known as differential drive. It consists of two
drive wheels mounted on a common axis and usually placed on each side of the vehicle.
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The wheels can independently being driven either forward or backward and hence does
not require an additional steering motion. To balance the robot, additional wheels may
be added.

Motion or kinematic control of a differential wheeled vehicle can be approached by
two methods [19]:

• Open loop control. In this first approach, the trajectory to be followed is divided
into motion segments of defined shapes, such as straight lines and parts of a circle.
The control problem is thus to precompute a smooth trajectory based on line
and circle segments which drives the robot from the initial position to the target
position. This approach can be regarded as open-loop motion control, since the
measured robot position is not fed back for velocity or position control, meaning
it will not adapt to dynamic changes of the environment.

• Feedback control. A more appropriate approach is to use a real-state feedback
controller. With this kind of controller the robot’s path-planning task is reduced
to setting intermediate positions (subgoals) lying on the requested path. A typical
problem is showed in Figure 4.2 and consists of finding a feedback control law such
that the position error with respect to the target tend to zero through the control
of linear ν(t) and angular ω(t) velocity.

Figure 4.2: Typical situation for feedback control of a mobile robot [19].

4.2.3 Perception
It is vital for an autonomous mobile robot to acquire knowledge about its work envi-
ronment and itself. This is achieved by means of sensors and subsequently extracting
relevant information from those sensor measurements [17].
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Mobile robot sensors are grouped into two important functional axes: proprioceptive
or exteroceptive, and passive or active. They are briefly described below:

• Proprioceptive sensors read values internal to the robot (motor speed, wheel load,
etc.)

• Exteroceptive sensors acquire information from the robot’s environment (distances,
light intensity, etc.)

• Passive sensors measure ambient environmental energy (microphones, cameras,
etc.)

• Active sensors radiate energy into the surroundings and then measure the reaction
(ultrasonic sensors, laser rangefinders, etc.).

When talking about perception, it is worth emphasizing odometry. The idea behind
odometry is to use data from the robot motion sensors to estimate change in position
relative to a starting location. In mobile robots, the most common form of odometry
is wheel-odometry, in which the position and velocity estimations are obtained from
a rotary encoder attached to each wheel (proprioceptive sensor). Because the sensor
measurement errors are integrated, the position error accumulates over time and the
position needs to be updated from time to time.

4.2.4 Navigation: localization-based versus
behavior-based solutions

In creating a navigation system, it is clear that the mobile robot will need sensors
and a motion control system. Sensors are absolutely required to avoid hitting moving
obstacles, among others, and some motion control system is required so that the robot
can deliberately move. It is less evident, however, whether or not the mobile robot
will require a localization system. Localization-based and behavior-based are the two
possible approaches in this regard, whose differences are outlined in Figure 4.3.

Regarding the former, first, the robot interpret its sensors to extract meaningful data.
Next, a (usually complex) world model is built, and the robot must decide how to act to
achieve its goals within this world model, before finally deciding upon an action, which
is executed in the real world. Therefore, this approach strongly relies on localization
and cognition modules.

On the other hand, the behavior-based alternative designs sets of simple behaviors or
actions (running simultaneously or not) that together result in the desired robot motion.
Fundamentally, this approach avoids explicit reasoning about localization and position,
and thus generally avoids explicit path planning as well [19].
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Figure 4.3: Comparison of the information flow in localization-based (left panel) and in
behavior-based (right panel) approach. For the latter, any number of behaviors may be
involved, and the figure only shows an example with four behaviors.

The best solution depends on the application, being necessary to study the operating
conditions, especially the type of environment, the complexity of tasks to be carried out
and the final objective of the overall system.

4.3 Equipment description
Once the theoretical basis is established, the equipment for this part of the solution
needs to be addressed. In this section, the choices in terms of robot hardware and
software resulting from the analysis in Chapter 2 are described in more depth. Besides
the purely technical specifications, some considerations are included in connection with
the fundamentals learned above.

The first subsection explains the most relevant characteristics of the selected Small
Mobile Robot of DTU, including the sensors and actuators it uses. Next, the software
subsection covers its Operation System (OS), the main modules and the corresponding
programming language.

4.3.1 Hardware
As is known, the SMR platform is a custom made hardware developed by Automation
and Control department of DTU. It is a differential-drive vehicle with two motorized
standard wheels at the rear and two castor wheels at the front. This versatile robot
consists of the basic elements presented below [1]:

• The Computer is a standard µATX. The chipset used on the motherboard has
sound and USB capabilities. A plug-in PCI card carries a PC-Card WaveLAN
wireless LAN card connecting to the Internet.
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• Motor and power amplifiers are connected to the computer through the RS-485
serial communication bus on the SMR. The velocity servo in the power module
uses the encoders for measuring wheel speeds.

• Power supply is ATX compliant and enables the SMR to run on battery or external
power while recharging. When fully charged, it can run for approximately 2 hours.
The battery is a 12 V sealed lead-acid battery and has a capacity of 7 Ah.

• 7 IR-distance sensors are connected to the RS-485 bus to enable obstacle avoidance
and sensing the environment. They measure at distances up to 60 cm.

• Encoders on each wheel give 2000 tics per wheel revolution equal to approximately
0.1 mm resolution. The encoder values are read from the power amplifier module
on the RS-485 bus.

• Also connected to the RS-485 bus, a reflectance sensor measures surface reflectance
(used for line following) and a laser scanner handles further localisation and obsta-
cle detection.

• Wireless LAN connects the SMR to the section WLAN and the Internet.

The Lepton infrared camera should be considered an additional sensor, which can
be easily connected to the robot thanks to the USB capabilities. It is mounted on top
of the vehicle and oriented in the same direction to get a satisfactory field of view.

4.3.2 Software
The software is based on the standard Slackware distribution of Linux. The control
software is based on Mobotware developed at AUT, which is a hierarchical distributed
system based of plugins and communication through TCP-IP sockets. The system has
three core blocks:

• Robot Hardware Deamon (RHD). Flexible hardware abstraction layer for real-time
critical sensors.

• Mobile Robot Controller (MRC). Real-time closed–loop controller of robot motion
and mission execution.

• Automation Robot Servers (AURS). Advanced framework for processing of complex
sensors and soft real-time mission planning and management.

The hierarchical structure makes allows for programming the system at all levels and
the use of plugins makes it easy to add new functionality depending on the needs of each
application.
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To make programming tasks as easy as possible, an interpreted robot control language
has also been developed at AUT and included in the architecture. The so-called SMR-
CL language is targeted specifically for robot applications giving an efficient program
being able to run on even small computers. SMR-CL is inspired by Colbert, but while
Colbert relies on C syntax, SMR-CL requires very little programming skills. Specific
robot issues such as setting velocity and acceleration can be done as options to commands
giving a compact and readable code, while its simple structure gives transparency to the
algorithm at hand. Furthermore, this language provides built-in features like multiple
stop conditions and handles real-time issues at the appropriate level.

As for the robot operation, the motion controller is provided with pose informa-
tion based on odometry, free space information based on IR-distance sensors and line
information based on the reflectance sensor, and outputs speed commands to the two
motors. The primitive motion commands are the following: stop, fwd, turn, turnr,
drive, follow_line and follow_wall [15]. The basic format in SMR-CL is:

command parameters [@v velocity] [@a acceleration] [: controlconditions] (4.1)

where [ ] means optional.
Thanks to the WLAN connection, all user files are located on the section server and

mounted automatically using NFS. In the case of this project, the implementation of the
solution is carried out through a Virtual Machine, whose OS is Ubuntu 18.04.5 LTS.

4.4 Design and implementation
The development of the solution regarding the module responsible for tracking hot ob-
jects is discussed here. The section begins with a definition of the approach to be
followed, specifying the characteristics of the proposed solution with emphasis on the
sensors and actuators to use, the type of navigation and the sequence of tasks of the
robot. Next, the proposed algorithm that makes this sequence possible is described.

4.4.1 Approach
Before implementing the algorithm in charge of this module, it is important to define
which sensors and actuators are necessary for the system to carry out its tasks success-
fully. Regarding the sensors, the first and most obvious is the Lepton 3.5 IR-camera,
since it provides the needed hot object data. Its characteristics and functions have
already been described in detail in the previous module.

Among the default sensors of the SMR platform, only the wheel encoders and IR
distance sensors are employed. The encoders are useful for position and velocity estima-
tions, i.e., odometry of the system, which the controller needs when executing motion
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commands. The IR-sensors are used in order to avoid possible obstacles in the path and,
in the case of this project, to know when the hot object location is reached. Specifically,
the front three sensors are used because the robot approaches the hot object head-on.

Regarding the actuators, as the SMR is a differential-drive vehicle, the use of both
motors for the drive wheels is mandatory for any movement to be carried out. In addition,
taking into account that the focus of this project is on firefighting, the system should
be able, in a real application case, to extinguish the detected fire by means of a kind of
water hose. However, neither this actuator nor the required operating and environmental
conditions for testing are available. Accordingly, its use is considered beyond the scope
of this project, although the proposed solution is adapted and prepared for its inclusion
when necessary.

Another important aspect to define is the type of navigation of the robot. As it
is known from the theoretical framework, the choice between a localisation-based and
behavior-based solution strongly depends on the need of localization and cognition mod-
ules. In the case of this project, the infrared camera gives information about where in
the room the hot object is, but it is not able to calculate the distance from the robot
to the object. This implies that the exact target position is unknown and the robot
should follow the direction towards the object indicated by the camera, relying on the
IR-distance sensors (which are short-range) to know when to stop because the object
has been reached. This strategy obviates the need for direct localization as well as the
decision-making at the robot’s cognitive level (e.g., path planning), which would require
a given environment map and goal location. By not relying on a predefined map, this
navigation strategy is more robust in the sense that it can operate effectively regard-
less the surroundings, which is consistent with the analysis in Section 2.4 regarding the
consideration of the environment as unknown. That being said, the proposed type of
navigation is closer to a behavior-based approach.

Furthermore, it is worth emphasizing that following the direction towards the hot
object implies that the robot should turn left if the camera detects that the object is on
the left, turn right if it is on the right, and go straight if it is roughly in the middle. This
kind of robot movements have no complexity and they are reactive behaviors, i.e., there
is a direct relation between sensors and actuators, which is another central condition
that characterizes behavior-based solutions.

However, internal states, which provide the robot with memory, are also included in
a behavior-based approach. These internal states are actually needed for this project
application, for example to store the initial position.

To determine the whole list of different tasks or behaviors to be carried out by the
SMR, it is necessary to recall the objectives of the project in relation to this module.
Given the fact that they involve clearly differentiated actions, each objective has been
assigned to one or more tasks as follows: the robot should be able to check for any fire
in the room (checking task), track and reach the fire location (going), extinguish the fire
(firefighting), and return to the starting position (returning plus initial position). This
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set of behaviors is outlined in Figure 4.4, which also summarizes the present section,
since exposes the type of navigation and highlights the sensors and actuators employed
for the solution of this module.

Figure 4.4: Scheme showing the behavior-based proposal used to solve the hot object
tracking module.

4.4.2 Algorithm
This subsection addresses the algorithm that allows the robot to perform the set of
tasks in Figure 4.4. The following lines describe the whole process, making some refer-
ences to Appendix A.2, which contains the SMR-CL source code of the SMR_SCRIPT file
responsible for the robot’s objectives of this module.

In order to make it possible, a sequence of states needs to be applied through different
labels and the corresponding conditions to obtain the desired general behaviour of the
robot. In SMR-CL, the commands label "labelname" and goto "labelname" allows
for jumps in the code flow and are therefore used to switch from one task to another when
needed. This is important, since the order in the task sequence may vary depending on
the hot objects found. As a comment, to talk about the five possible tasks of the robot,
the words task, state, behavior or action are used interchangeably. The variable State is
a numeric value or flag that is updated at the beginning of each code block corresponding
to a task to keep track of which task the robot is performing at all times. It is worth
mentioning that in this approach, no task occurs simultaneously with another.

The movements of the robot strongly depends on the hot object data received from
the infrared camera, which is continuously updated in three internal system variables:
$l8 indicates if a hot object is found or not (found variable in the detection algorithm
from Section ), $l9 indicates the pixel index on the horizontal axis (x_coordinate), and
$l3 indicates the pixel index on the vertical axis (z_coordinate). The implementation
of this communication between both modules is addressed in Section 6.3.
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The list below covers a description of the different robot tasks that make up the
sequence of states of the algorithm. Further details at the code level can be consulted
in Appendix A.2.

• Checking. The robot performs a rotation (turn command in the code) until a fire
is detected during the specified checking time (CheckingTime parameter, which is
set to 10 seconds). There are three possible situations:

– Initial checking. Rotation performed at the beginning of the program to check
for any fire in the room.

– Intermediate checking. If the robot is going towards the fire and for some
reason the camera suddenly stops detecting it, a rotation is performed trying
to detect it again in the surroundings.

– Final checking. Once the robot has returned to the home or starting position,
it makes a rechecking to ensure there is no more fire in the room.

• Going. Once the fire is detected (found = 1), the robot tracks it thanks to the
feedback from the infrared camera until its location is reached. Figure 4.5 shows
the established acceptable limits in the captured frames for fire tracking, resulting
in three possible movements:

– Turn left. The robot should turn left if the fire is detected in the left panel
(x_coordinate < 60). This turn is performed with a certain radius so that
the movement is smooth, which is implemented with the turnr command and
a radius parameter of 1 meter.

– Turn right. The robot should turn right if the fire is in the right panel
(x_coordinate > 100). The command used is the same as before but with
an opposite sign angle.

– Move forward. The robot should go straight if the fire is detected in the
central panel (60 < x_coordinate < 100). The SMR-CL command used
here is drive.

• Firefighting. This task begins when the fire is reached, which is known when
any of the three front IR-sensors detect a shorter distance than a specified safe
distance (SafeDistance, which is set to 0.2 m). The IR-distances are stored
in the following system variables: $irdistfrontleft, $irdistfrontmiddle and
$irdistfrontright. The firefighting task consists of an animation pretending to
extinguish the fire, since, as already mentioned, the robot would be equipped with
a water hose in a real application. Some turns from side to side covering a 90
degrees angle make up the animation until the fire is no longer detected (found =
0), meaning the firefighting work has been completed successfully.

• Returning. First, the robot faces home by means of a turn, whose angle is
calculated as the difference between the current orientation of the robot and the
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one if it was facing home (whose coordinates were stored at the beginning of
the program). Next, the robot moves forward until home location is reached.
The mentioned movements relies on estimations from odometry, whose position
coordinates and orientation of the robot at any time are stored in the system
variables $odox, $odoy and $odoth. If a new fire is detected during the return,
the program will jump directly to the going task in order to track it.

• Initial position. Once the robot is at home and has completed the final checking,
it goes back to the initial angle by means of a turn, whose angle is calculated
as the difference between the current orientation and the one at the beginning of
the experiment, which was also stored. Again, this movement relies on odometry.
Consequently, the start and end position will not match exactly, but it is not the
goal of this project. Although the fact of returning to the initial position is useful
because it is where the robot is supposed to have better visibility of the room to
perform the checking tasks, the application mainly aims to track any fire detected
by the infrared camera.

Figure 4.5: Scheme showing the acceptable limits in the frames captured by the IR-
camera for hot object tracking. The robot should move so that the detected hot object
remains on the central panel.

The sequence of tasks explained above will continue as long as any new fire is detected
before the initial position task is performed.
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4.5 Module test
The implemented solution has been tested to verify the fulfillment of the objectives
regarding the hot object tracking module. As this test is carried out independently
of the rest of modules, some small adjustments needs to be applied to the algorithm,
namely to the hot object data that will be obtained from the infrared camera in the final
system test.

With respect to the found variable, it is temporarily replaced by the system variable
$irdistright, which corresponds to the distance reading from the IR-sensor that is
on one side of the robot and is not used in the final solution. By doing this, covering
the sensor (using tape for example) represents that a fire has been detected and leaving
it uncovered represents the opposite. This simple adjustment allows for controlling
the detection of the supposed fire and therefore testing the algorithm at this point of
the development. On the other hand, x_coordinate and z_coordinate indicating the
location of the fire in the frame are defined as constants for now.

That being said, several tests are conducted covering three possible situations: the
fire remains on the left panel of the frame, on the central panel and on the right panel
(see Figure 4.5). In this sense, it has been possible to verify that the robot turns left,
continues straight or turns right, respectively, until reaching the target location, that
is, the front IR-sensors detect a distance shorter than the safe distance while the right
IR-sensor is covered with tape. By covering and uncovering this sensor, it has been
guaranteed that in a normal situation where only one fire is detected, the robot performs
the sequence of tasks programmed by the algorithm as expected: initial checking, going,
firefighting, returning, final checking and initial position. It is worth mentioning that
the robot keep extinguishing the fire as long as the it is active, covering an adequate
range of action.

Additionally, more complex cases have also been successfully tested. First, the detec-
tion of a second fire has been simulated during the final checking, to which the robot has
responded by repeating the cycle of tasks. Second, the detection of another fire has been
simulated during the return and the robot has interrupted it to switch directly to the
going task. Last, a situation has been simulated in which the robot loses sight of the fire
during the going task (for example because an obstacle is interposed) and it performs
an intermediate checking in order to find it again as expected. If so, it continues with
the normal sequence of movements, and if not, it switches to the returning task.

To improve accuracy in terms of odometry and distance reading from the IR-sensors,
built-in calibration methods have been applied using the default option of MRC (the
program implementing the SMR-CL scripts), that is, by means of the MRC -c command
in the terminal window logged on to the robot. Odometry calibration consists of follow-
ing several closed square trajectories clockwise and counterclockwise, whereas IR-sensors
calibration consists of placing an object at different known distances from the robot. By
doing this, the accuracy achieved in the tests is increased in such a way that the initial
and final position of the robot hardly differ and the distances read by the IR-sensors are
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much more reliable, which allows a better approach to the fire and detection of possible
obstacles.

Lastly, it has also been possible to check that the two hours of battery life offered
by the robot are sufficient for the experiments this project deals with. As a result, it is
not necessary to include any battery recharging task.

4.6 Summary
In the chapter presented here, the Small Mobile Robot has been addressed as the main
tool that allows for the tracking of hot objects detected by the Lepton infrared camera.
As a first step, a theoretical framework has been set to contextualize the fast expanding
field of autonomous mobile robots and review the primary concepts regarding locomo-
tion, kinematics, perception and navigation. For the latter, it is worth emphasizing the
differentiation between localization-based and in behavior-based approaches depending
on the need for the application of explicit reasoning about localization and position, and
path planning.

A description of the SMR has been included to show the features of this hardware
custom made by AUT, together with the corresponding considerations regarding the
architecture of the software used. The simplicity and versatility of the SMR-CL language,
which is also custom made, has been highlighted in this section.

Regarding the design and implementation of the solution, it has required the use of
the Lepton 3.5 IR-camera, IR-distance devices and wheel encoders as sensors, and the
wheel motors as actuators. Considering the operating conditions, it has been argued the
need to design a sequence of different actions or behaviors to be followed by the robot
that correspond to the goals of this module. Specifically, the application framework
has focused on a firefighting mission, which has been finally tested considering different
situations in terms of fire location in the frame and number of fires detected. The SMR
has responded satisfactorily to all possible situations and has shown improved accuracy
when applying calibration methods to odometry and IR-sensors.
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CHAPTER 5
Data representation

5.1 Introduction
The present chapter discusses the treatment of data collected by both the camera and
the robot during the experiment and the way it is represented. The data representation
module does not influence the results of the experiment in any way , since it takes place
a posteriori, but it constitutes a key phase of the project because it allows the study and
analysis of those results.

Given that all the knowledge applied here is directly related to the already studied
fields of infrared cameras and mobile robots, no additional theoretical background or
equipment description is required. Accordingly, the following sections assume that the
reader has sufficient context of the project at this point and focus on the development
of this part of the solution.

The content is divided into two main sections. Firstly, the creation of the animation
from all the frames captured by the camera is addressed along with some improvements
to facilitate its interpretation. Next, another visualization is described, but in this case
to simulate the robot trajectory and direction throughout the experiment.

The chapter ends with some testing and checks that the two implemented partial
solutions satisfy their objectives.

5.2 Thermal imaging animation
This thermal imaging animation aims to cover the approach and every decision made
with regard to the proposal of data representation for the infrared camera. The corre-
sponding implementation is attached in Appendix A.1 and it is a Python function called
plot_data that belongs to the CAM_SCRIPT.py file already addressed in Section 4.4.2.
Although its details at the code level can be consulted in the functions definition part
of that script in the appendices, the most relevant considerations are also described in
this section.

As a reminder, the need for a high frame rate is the reason why the hot object
detection and data representation have been separated into two different modules. By
placing the code responsible for creating the animation after the capturing loop of the
camera, it has been possible to verify that the computational time greatly decreases and
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the robot response is much more precise accordingly.
To follow this approach, it is worth bearing in mind that the entire experiment

should be reconstructed once it has finished, meaning that various data needs to be
stored during the capturing loop. The first and most important piece of information is
the image, that is, the captured frame. Saving the image itself in each iteration would
be an option, but the problem is that once it is saved with a standard format (JPEG
for example), pseudo colors are automatically applied to the pixels and the thermal
information is lost, so the exact location of the hot object can no longer be indicated
nor its temperature. This would also imply the use of an array to store the information
about pixel coordinates and temperature of the hot object corresponding to each frame.
Additionally, the process of saving and afterwards opening and loading an image is very
slow. Instead, saving only the raw image array is much more efficient, since it is a faster
command and the thermal data is not lost. Therefore, the proposed solution initializes
an array and concatenates a new array corresponding to the new captured frame in each
iteration. After the experiment, the resulting array contains all captured frames stacked
vertically in a way that the width of 160 columns remains and the height is 120 rows
multiplied by the total number of frames (see scheme in Figure 5.1).

Figure 5.1: Scheme of the array resulting from concatenating every frame captured by
the infrared camera during the experiment.

Within the source code, the function that makes this possible is np.concatenate,
and the array receives the name of q2 in the capturing loop and arr_full inside the
plot_data function. As one might expect, the format does not change, i.e., it is still a
Numpy array of uint16 data type.

Apart from the image, a timer can be useful to get a rough idea of how long the
experiment is taking. That is why the queue called toc is used to store a new time
value in every iteration of the capturing loop. The time.perf_counter function is used
because it provides the highest available resolution to measure a short duration. The
initial time value (before the loop) is stored in the tic variable and is also needed, since
the displayed time is calculated as the difference between it and the toc corresponding
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to each moment.
To sum up, the plot_data function is called after the end of the capturing loop and

uses the following arguments:

• arr_full is the array containing the sequence of captured frames.

• image_filter is the chosen colormap to apply to the images.

• hot_threshold_celsius is the preset temperature threshold.

• tic is the initial time.

• toc is the sequence of time values corresponding to each frame.

Once inside the function, the frames array is read in the same order it was constructed.
To do this, two indexes are updated in a loop to indicate where each frame begins and
ends so that the array of Figure 5.1 is read from top to bottom.

The differentiation between hot and not hot objects is made by comparison with the
threshold in the same way as in the hot object detection module (Section 4.4.2). In case
a hot object is found, its X and Z pixel coordinates in the frame are also obtained as in
such section.

Matplotlib is employed for visualization, which constitutes a comprehensive and pow-
erful tool that provides a Matlab-like interface. Thanks to this library, the following
tasks are performed in order to show the results of the experiment:

• The array of each frame (arr in the function) is displayed as an image and a
colormap is applied to translate each temperature value into pixel intensity. This
colormap or filter is defined in the pre settings part of the code. While many
options are available, the so-called plasma filter has been selected due to the fact
that it offers a nice range of colors that adapts specially good to infrared images,
showing clear contrast between hot and cold objects.

• The hottest spot is marked with a red square to indicate its position in the frame.
This square only appears if the spot is considered a potential fire, i.e., its temper-
ature exceeds the threshold. A grid is added to facilitate the reading of the fire
position.

• Some text is added at the bottom left of the image, which includes the timer and
the maximum temperature of the scene (in °C) . This temperature is always visible
but when it corresponds to a detected fire, the text becomes bold and red.

• The colorbar plays a key role as it allows to represent which temperature corre-
sponds to each color intensity. It is added to the right and consists of eight marks
that adaptively change their values depending on the temperature range measured
for each scene.
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• Last, the final video is created from all previously processed images and is saved in
MP4 format. The frame rate needs to be close the actual one during the experiment
to get a realistic animation (in this case 10 fps).

As a brief comment, the Python script attached in Appendix A.1 also contains two
visualization functions that have not been included in the final solution but have been
useful for some tests during the experimental phase. They can be found in the part of
functions definition and are the following: draw_trajectory (to check that the camera
detects moving hot objects correctly) and draw_histogram (for a better understanding
of the temperature distribution in a scene)

5.3 Robot map simulation
The software package of the SMR developed at AUT includes a simple robot simulator,
which replaces the robot hardware while the control software is exactly the same as
when using the real robot (MRC). In a real scenario, the MRC communicates with the
hardware via a hardware-server called RHD to which it is connected through a socket
(the software arquitecture can be consulted in Section 4.3.2). When simulating, the
control software simply connects to the simulator instead of the hardware-server.

Nevertheless, this simulator is intended to be used when employing the default sensors
of the robot, such as the IR distance or reflectance sensors. In the case of this project,
the whole robot algorithm depends on a external sensor, that is, the infrared camera.
As the simulator is not able to receive any feedback from the camera, it cannot be used
either for testing or for representing the results.

Instead, a new simulator has been designed specially for this project application.
This custom-made simulator has been developed using the Matlab platform and the
idea behind it is to represent the movements of the robot in a map once the experiment
is done. The Matlab script responsible for the robot map simulation can be consulted
in Appendix A.3 for more details.

The input for this script is a log file containing primarily the position and direction
data generated by the SMR during the experiment. Therefore, the coordinates and
orientation of the robot (x, y, θ) is what the script uses to run the simulator. It is worth
mentioning that these variables are based on odometry, which implies that the data is
approximate since a little error accumulates over time. For short-duration experiments
like the ones in this project and for visualization purposes, this level of accuracy is
sufficient.

Another important parameter included in the log file is the state, which is a numeric
value representing one of the five possible actions or behaviors of the robot (checking,
going, firefighting, returning and initial position).

In the log file, the variables are sampled every 0.01 seconds and stored as a line for
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each sample time, which makes it easy for matlab to read the data of interest. This data
is extracted from the file and stored in Matlab arrays so that the program can use it. In
this way, the position and direction of the robot and its corresponding state is known
for each moment.

The figure generated by the program is split into two panels: the robot direction map
in the left and the robot trajectory map in the right. The former shows the direction
of the robot by means of arrows whereas the latter shows its position throughout the
experiment. The robot direction map provides comprehensive information, since differ-
ent colors are used for the arrows according to the possible behaviors of the robot. This
differentiation is made thanks to the state parameter mentioned above.

Apart from the final image that displays the entire experiment, a video is generated
to show the progress of the experiment, from beginning to end, in such a way that it
is possible to see how the robot is moving and changing its direction in the map when
tracking the fire. The implementation behind this is a concatenation of frames within
an array, similarly to the previous section. Once all the frames are gathered, a function
is used to generate a video file from that array. To get an easy to read result, the
frequency of the data plotting is reduced so that not all rows from the log file are used,
which would lead to a too dense representation, specially for the arrows of the trajectory
map. The frame rate of the video is also adjusted so that it progresses at the same time
as the thermal imaging animation and can be displayed together simultaneously.

Although it is not visible from a static image, the simulation in the video file shows a
dynamic legend in the trajectory map containing the color arrow and state corresponding
to each moment. The states are added to the legend as they occur, and become bold
when active. To achieve this and to avoid adding the same state twice (for example in
cases where multiple fires are detected), the function called remove_repeated_elements
is used, whose source code is also attached in Appendix A.3.

5.4 Module test
Once the implementation for both representations is discussed, this section aims to show
that the thermal imaging animation and the robot map simulation provides successful
results. As at this point in the development of the project the system communication
module has not yet been addressed, the tests included here are carried out independently.
In the case of the representation for the camera, the captured images are displayed
without considering the robot movements, while in the case of the representation for
the robot, the states and the path to follow are predefined without taking into account
the feedback from the camera. In this way, only what concerns the part of the data
representation is tested here.

Regarding the thermal imaging animation, two different situations are considered.
Figure 5.2 shows a frame when a hot object is detected, whereas Figure 5.3 shows a
frame when no hot object is detected around. In the first case, a thermal resistor is
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placed in front of the camera, whereas in the second it is hidden with the hand.
By observing both figures, it is possible to see how the temperature range together

with the colorbar are adaptively changed depending on the scene captured by the infrared
camera. The selected image filter also accomplish its purpose, since it clearly shows
temperature contrasts throughout the image. Furthermore, the temperature of the hot
object and its position in the frame are properly marked. Therefore, all the goals of the
thermal imaging animation are met as expected and it is ready to play its important
role in the ultimate system test by showing the results of an entire experiment through
a video.

Figure 5.2: Representation of an image captured by the Lepton 3.5 infrared camera
when a hot object is detected.

On the other side, the robot map simulation has also been tested. Figure 5.4 shows
the image resulting from the simulation of the SMR movements, where the the left map
represents the robot direction and the right map represents the robot trajectory. As
can be seen, the five possible actions are clearly differentiated by means of different
colors and the corresponding explanatory legend. Additionally, the frequency of arrow
plotting is suitable, since the image is not too dense and the progression of the robot can
be observed in an understandable way. While the direction map provides comprehensive
information of the experiment, the trajectory map is especially useful to show a clearer
representation when the robot follows more complex paths where the direction arrows
may appear mixed or overlapped. That being said, it can be concluded that the robot
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Figure 5.3: Representation of an image captured by the Lepton 3.5 infrared camera
when no hot object is detected.

map simulation also fulfills its intention satisfactorily.

5.5 Summary
This chapter has addressed all meaningful considerations regarding the visualization of
data collected by the two devices that make up the system. On the one hand, the best
way to save the frames obtained by the infrared camera and convert them to readable
images with some improvements has been described. On the other hand, the designed
simulator has allowed for the representation of the sequence of movements followed by
the robot, displaying the trajectory and direction throughout the different stages of the
experiment.

Finally, a test module has been included showing that both the thermal imaging
animation and the robot map simulation fully display the data of interest in a clear and
understandable way. Accordingly, they are powerful tools to consider when analysing
any result obtained during the experimental phase.
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Figure 5.4: Representation of the direction (left panel) and trajectory (right panel) map
of the Small Mobile Robot.



CHAPTER 6
System communication

6.1 Introduction
The system communication plays a core role since the rest of the modules depend to a
great extent on it. Therefore, it guarantees that the other modules communicate with
each other for the correct functioning of the overall system. This chapter describes all
interactions between different modules and addresses their implementation by referring
to the most relevant considerations at the software level.

The content is split into three sections covering the three connections between the
hot object detection, hot object tracking and data representation modules. As regards
the testing part, some comments are included within each of these sections to verify
that every implemented communication works as expected. However, as all other mod-
ules have already been completed, the overall operation of communications is addressed
directly in the system test (Chapter 7).

6.2 Detection - Tracking modules
This section deals with the communications between the hot object detection and track-
ing modules, including all required steps in both directions.

To start with, the detection module just needs to know when the SMR starts running
and when it stops, as already explained in Section 4.4.2, Figure 3.6. In the first case,
the problem is solved by simply executing both scripts corresponding to both modules
(CAM_SCRIPT.py and SMR_SCRIPT) at the same time, which is implemented in a Linux
environment adding the & command in the corresponding terminal window. To know
when the robot stops, a for loop using the psutil.process_iter function has been
added at the end of the capturing loop, which returns all running processes on the
local machine. By doing this, it is possible to check if there is a process called MRC
(the program implementing the SMR-CL scripts), which means that the robot is still
running. If it is not the case, the algorithm exits the capturing loop. The source code
regarding this is included in the CAM_SCRIPT.py file attached in Appendix A.1.

On the other hand, the data required for the correct operation of the tracking module
is whether a hot object has been found and its location in the image, which corresponds
to the variables found, x_coordinate and z_coordinate from the detection module.
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To have access to these variables handled by the Python script, the first step of the
proposed solution is to write their values in a CSV file. This file has a single row and
three columns corresponding to each variable, which are updated with new values in
every iteration of the capturing loop thanks to the write_to_HOCN function (whose
implementation is also included in Appendix A.1).

Once the hot object data of interest is updated in an intermediate file, the objective
is to continuously store their values in local variables of the SMR-CL script. As the
laser scanner is a sensor of the robot that is not employed in this application, it leaves
some system variables free, so $l8, $l9 and $l3 are used for the aforementioned camera
variables, respectively. The really important aspect about using laser variables is that
it allows for tailoring the data stored in such variables by means of plugins (written in
C++). Therefore, a custom made plugin (camplugin) has been programmed as a bridge
between the CSV file and the SMR-CL script. The idea behind this C++ plugin is to
read the values from the CSV file and write them in $l8, $l9 and $l3 on a continuous
loop. The fact of sending the values to system variables of the SMR requires a special
syntax, which can be found in the corresponding source code attached in Appendix A.4.

The laser scanner server responsible for these communications is called ulmsserver
and requires a configuration file for its usage. This file called ulmsserver.ini contains
some initializations such as the server port and, above all, loads the modules or plugins
so that they are available in the SMR-CL scripts. Accordingly, the camplugin is loaded
in such file, which is also attached in Appendix A.4. The last step is simply calling
this plugin, which is done at the beginning of the SMR-CL script through the laser
"camplugin findhotobject" command, where the first word within quotation marks
indicates the name of the plugin and the second the name of the specific function inside
that plugin. By doing this, the hot object data from the detection module is already
available for the tracking module through the continuously updated variables of the laser
scanner.

6.3 Detection - Representation modules
The second connection is between the hot object detection and data representation
module. In this case, the data transmission is unidirectional, i.e., from the former to
the latter, and there is no need for any intermediate file or plugin. Instead, the call to
the function plot_data already described in Section 5.2 is the direct transition from
one module to the other, within the same Python script (attached in Appendix A.1). In
this way, the data representation module can mainly read the array that contains all the
frames captured by the infrared camera during the experiment and their corresponding
time values, which is provided by the hot object detection module.
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6.4 Tracking - Representation modules
Last, the input data that the representation module requires from the tracking module
is the position and orientation of the robot and the corresponding state or task, as
mentioned in Section 5.3. The bridge between both is a log file in this case, which is
first generated by the hot object tracking module using the log command followed by
the required variables at the beginning of the SMR-CL script (whose complete source
code is attached in Appendix A.2). Once the experiment has finished, the Matlab script
(attached in Appendix A.3) simply extracts the meaningful data from the log file to
create the robot map simulation within the representation module.

6.5 Summary
In this brief chapter, the union of all modules has been addressed, in such a way that a
correct coordination between them has been guaranteed in order to achieve a satisfactory
overall system operation, which will be finally tested in Chapter 7.

On the one hand, bidirectional communications between the hot object detection
and tracking modules have been described in detail. It should be emphasised that the
sending of hot object data from the detection to the tracking module is implemented by
means of a CSV file and a custom made plugin called camplugin that uses free system
variables belonging to the robot’s laser scanner.

On the other hand, both modules also send data collected by the camera and the
robot to the representation module for creating a thermal imaging animation and robot
map simulation, respectively. While the data collection is performed during the experi-
ment, its sending occurs a posteriori through the call to a Python function in the case
of the detection module, and a log file in the case of the tracking module.
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CHAPTER 7
System test

7.1 Introduction
Once each module has been implemented and tested individually in Chapters 3 to 6, this
chapter aims to test the overall solution resulting from the coordination of all modules.
In this way, at the end of this chapter, it will be possible to verify the fulfilment of every
objective outlined in Section 1.1.

During this final testing phase, the implemented solution has been thoroughly tested
with multiple parameter settings and environment configurations, covering all possible
situations that the system may face. However, only the most relevant results are pre-
sented here.

Two different real-life scenarios make up the content of this chapter. On the one
hand, the test deals with several static fires that the system should extinguish. On the
other hand, the system is intended to track a hot object that is in motion, along with its
corresponding firefighting. In both cases, image and video documentation are included
to display the results of the experiments in detail and facilitate their analysis.

7.2 Static hot object test
The first test addresses the system’s ability to track static hot objects. The hyperlink to
the video documentation regarding this test is attached in Appendix B.2 and shows the
robot direction map simulation on the left side of the screen and the thermal imaging
animation on the right. As for the simulation of the robot, only the direction map has
been included in the video because it is the map that provides more information about
the experiment. However, the resulting image from the simulation of both direction and
trajectory map can be seen in Figure 7.1.

Thanks to the colored arrows and the corresponding dynamic legend, it is possible
to know the orientation and task that the robot is performing at all times, which is
complemented by the images obtained by the camera. Apart from all representation
features already explained in Chapter 5, the video also includes in the map a fire icon
representing the thermal resistor used in the real experiments, which facilitates the
interpretation of its approximate location in the room and of its three possible states:
active (normal colors), being extinguished (changing colors) and inactive (gray color).



56 7 System test

Figure 7.1: Representation of the direction (left panel) and trajectory (right panel) map
of the SMR when tracking two static hot objects.

That being said, the test under consideration is described step by step as follows.
First, the robot rotates in the starting position until a fire is detected by the IR-camera
(checking task) and then it tracks and reaches its location in the map (going). The robot
makes an animation pretending to extinguish the fire, that is, it turns from side to side
covering the fire area (firefighting). When it is done, which is simulated by hiding the
thermal resistor with the hand, it goes back to the starting position (returning). As in
Figure 7.1 the order cannot be seen, it should be mentioned that this first sequence of
movements correspond to the upper closed path.

Next, the robot makes a rechecking in the starting position and it identifies a second
hot object representing a fire, so the same cycle of tasks is repeated in order to extin-
guish it. Once the robot has returned, it checks again to make sure there is no more fire
in the room and the process ends by turning back to the initial angle (initial position).
Therefore, the sequence of tasks carried out by the system throughout the entire exper-
iment is: checking, going, firefighting, returning, checking, going, firefighting, returning,
checking and initial position.

By observing the thermal imaging animation in the attached video, it is possible to
verify that the aforementioned sequence of tasks matches what the IR-camera perceives
at all times. The captured images show the position of the fire in the frame using a clear
red mark and indicates the maximum temperature. In this regard, both the fire position
and maximum temperature are accurately updated during all the experiment. Equally,
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when there is no fire around or it has already been extinguished, no hot object mark
appears in the animation. Thanks to this differentiation, it is clear that the camera
performs the comparison with the preset temperature threshold in the expected way.

The most important aspect to address regarding this test is the system communi-
cation. While it was already known that the detection, tracking and representation
functions worked correctly as demonstrated in their respective module tests, this ex-
periment allows for checking the communications between the modules in all possible
directions and, accordingly, verifying the overall solution. The first and most obvious
point is that both detection and tracking modules are able to send the collected data
by the camera and the robot to the representation module, since it has been possible
to create the corresponding robot map simulation and thermal imaging animation. Dis-
playing these representations allows, in turn, to check the bidirectional communications
between the detection and tracking modules. As can be easily seen in the video, the
camera is able to read the robot status, both devices start and ends their operation
at the same time. On the other side, the robot successfully reads the hot object data
from the camera. This implies that the robot knows if there is a fire or not, since it
starts tracking the fire as soon as it is detected by the camera, and stops extinguishing
it once the camera no longer detect it. Furthermore, the robot also knows the fire po-
sition in the frames captured by the camera, given the fact that it finally reaches the
correct fire location in the room. By dealing with two different fires in this test, all the
considerations mentioned here are verified twice.

7.3 Moving hot object test
This second test handles a more complex scenario, where the hot object to track is in
motion. In the same way as before, the hyperlink to the video documentation regarding
this test is attached in Appendix B.2 and the resulting image from the robot map
simulation can be seen in Figure 7.2. However, the video shows more comprehensive
information in this case, since both the direction and trajectory map are included and
a video of the real experiment is added. This is done with the intention of getting a
better understanding of how the system works in every regard through this challenging
experiment.

When displaying the results in the attached video, the robot map simulation appears
at the top of the screen, the thermal imaging animation at the bottom right and the
video of the real experiment at the bottom left. The latter is recorded using a normal
camera operating in the visual spectrum, which is placed in a high place to have a view
of the experiment similar to that offered by the robot map simulation but in real life.
This is greatly advantageous in the sense that it allows to check if the simulated robot
movements match the real ones as well as the equivalence between what is represented
in the camera animation and what it is seeing in reality.

With respect to the test under consideration, the sequence of tasks is described as
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Figure 7.2: Representation of the direction (left panel) and trajectory (right panel) map
of the SMR when tracking a moving hot object.

follows. To start with, the robot carries out a rotation from the initial location until a
hot object is detected by the IR-camera and it starts moving accordingly. As shown in
the video, it first goes straight but the hot object changes its position and, in response,
the robot changes the trajectory in order to track the object. The SMR reacts well to
changes in the position of the hot object both to the right and to the left. Suddenly, the
hot object disappears from the IR-camera view and the robot performs an intermediate
checking as expected. After making almost a full rotation, the system detects the object
again and keeps tracking it until finally reaches it. The next steps are carried out in
the same way as in the previous experiment, that is: the robot makes a firefighting
animation until the camera no longer detects the hot object, returns to the starting
position, performs a final checking and, as there are no more fires, the robot goes back
to the initial angle and stops running. In consequence, in this case, the sequence of tasks
throughout the whole test is: checking, going, checking, going, firefighting, returning,
checking and initial position.

Apart from all the considerations discussed in the previous section, which can also be
applied to this case, this experiment provides important information on the operation of
the implemented algorithms. Thanks to it, it is possible to verify one of the major objec-
tives of the project, which is that the camera works accurately and with high frame rate.
This can be clearly seen by the smooth trajectories the robot follows and its real-time re-
actions to the moving object, which again guarantees that the communications between
different modules work successfully in any scenario. With respect to such trajectories, it
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is visible from the video that the SMR continuously tries, by means of smooth turns, to
keep the hot object in the central part of the frames captured by the IR-camera, which
leads it to finally reach the target location. Once there, it can also be verified that the
safe distance selected to extinguish the fire is appropriate, as well as the range of action
during the firefighting task.

7.4 Summary
In this chapter, the overall system has been tested through two experiments within dif-
ferent scenarios. The first test has led to a detailed understanding of how the system
works when tracking static hot objects. By analysing the displayed results in the experi-
ment video, it has been possible to verify that all modules work in a coordinate way and
lead the system to achieve both robot and camera goals. Specifically, the IR-camera
has accurately perceived the hot object data from the environment and the SMR has
carried out the correct sequence of tasks accordingly.

On the other hand, the second experiment has addressed a case with a moving hot
object, whose final results have shown that the SMR is able to adapt the trajectory
smoothly and quickly based on what the IR-camera perceives. A visual video of the real
experiment has also been included in the attached documentation so that comprehensive
information about all system features and operating conditions is available.
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CHAPTER 8
Conclusion

Once the present project has been completed, a series of conclusions can be drawn
regarding the achievement of the objectives set at its beginning as well as other important
aspects observed throughout the different phases of its execution.

Particularly remarkable is the fulfilment of the main purpose of the project, since a
system consisting of an infrared camera and an autonomous mobile robot coordinated
with each other to detect and track hot objects has been properly developed and im-
plemented, primarily focusing on a firefighting application. To do this, the solution has
been divided into four modules, leading to the corresponding satisfactory results that
are highlighted below:

• Hot object detection. A Python script has covered the main objectives of the
Lepton 3.5 IR-camera in such a way that it captures images identifying if there
is a hot enough object in the room and getting its temperature and location in
the frame. The achieved frame rate allows hot object data to be available quickly
enough for the tracking module.

• Hot object tracking. A SMR-CL script has been responsible for the sequence
of tasks to be performed by the SMR robot, that is, to check for any fire in the
room, track and reach its location, extinguish it and return to the starting position.
By using the IR-camera, IR-distance devices and wheel encoders as sensors, and
the wheel motors as actuators, it has been possible to implement a fundamentally
behavior-based algorithm to achieve the robot objectives.

• Data representation. This module has been included to fulfill the goals of the
IR-camera and the robot concerning the representation of the data collected by
both devices. The thermal imaging animation implemented in Python has shown
easily readable results in terms of temperature and location of the hot objects
detected by the camera. Additionally, the map simulation developed in Matlab has
displayed both trajectory and direction of the robot during the experiments, along
with comprehensive representation features such as a dynamic legend indicating
the robot active task at all times.

• System communication. Lastly, the system communication has integrated all
components of the solution and achieved its coordinated operation accordingly.
By mainly using intermediate files and plugins, it has addressed the objectives
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regarding the continuous transfer of hot object data between the IR-camera and
the robot, as well as the sending of data for results representation.

Finally, according to the obtained results, it is worth to conclude that the solution
constitutes a robust system capable of tracking both static and moving hot objects within
different environments while the design is fully customizable to a real application.

As a brief comment with respect to the United Nations World goals, many appli-
cations connected to detection and tracking with infrared cameras can be related to a
sustainable society, such us prevention and localisation of energy losses.
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APPENDIXA
Source code

This appendix contains the source code of the different scripts programmed in this
project grouped according to the module.

A.1 Hot object detection script
Listing A.1: CAM_SCRIPT.py

1 ##--------------------------------------------------------------------------------
2 ## IMPORTS
3 from uvctypes import *
4 import time
5 import cv2
6 import numpy as np
7 import numpy
8 from queue import Queue
9 import platform

10 from matplotlib import pyplot as plt
11 import time
12 from collections import deque
13 from matplotlib import cm
14 import matplotlib.animation as animation
15 import csv
16 import datetime
17 import os
18 import psutil
19 from matplotlib import ticker
20

21

22 ##--------------------------------------------------------------------------------
23 ## FRAME CALLBACK
24 BUF_SIZE = 2 # max number of items that can be placed in the frames queue
25 q = Queue(BUF_SIZE)
26

27 def py_frame_callback(frame, userptr):



66 A Source code

28

29 array_pointer = cast(frame.contents.data, POINTER(c_uint16 *
(frame.contents.width * frame.contents.height)))↪→

30 data = np.frombuffer(array_pointer.contents,
dtype=np.dtype(np.uint16)).reshape(frame.contents.height,
frame.contents.width)

↪→

↪→

31

32 if frame.contents.data_bytes != (2 * frame.contents.width *
frame.contents.height):↪→

33 return
34

35 if not q.full():
36 q.put(data)
37

38 PTR_PY_FRAME_CALLBACK = CFUNCTYPE(None, POINTER(uvc_frame),
c_void_p)(py_frame_callback)↪→

39

40

41 ##--------------------------------------------------------------------------------
42 ## FUNCTIONS DEFINITION
43

44 # Temperature unit conversions:
45 def centikelvin_to_celsius(t):
46 return (t - 27315) / 100
47 def celsius_to_centikelvin(t):
48 if t==None:
49 return None
50 return (100 * t) + 27315
51 def to_fahrenheit(ck):
52 c = centikelvin_to_celsius(ck)
53 return c * 9 / 5 + 32
54

55 # Data logging over time (not used):
56 Hot_Object_Coordinates_Path = "/shome/31388/h1/purethermal1-uvc-capture/python/li ⌋

buvc/build/Testing/Hot_Object_Coordinates.csv"
#customizable

↪→

↪→

57 trajectory_x = deque()
58 trajectory_z = deque()
59 csv.register_dialect('myDialect', delimiter=';')
60 if os.path.exists(Hot_Object_Coordinates_Path)==False:
61 with open(Hot_Object_Coordinates_Path, 'w', newline='') as file:
62 writer = csv.writer(file, dialect='myDialect')
63 writer.writerow(["DATE", "TIME","X","Z", "TEMPERATURE (ºC)"])
64 def append_row_to_HOC(file_name, x_coordinate, z_coordinate, temperature):
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65 with open(file_name, '+a', newline='') as file:
66 writer = csv.writer(file, dialect='myDialect')
67 datetime_now = datetime.datetime.now()
68 writer.writerow([datetime_now.strftime("%x"),

datetime_now.strftime("%X"), x_coordinate, z_coordinate, temperature])↪→

69 trajectory_x.append((x_coordinate)) # in case that drawing the hot object
trajectory is needed↪→

70 trajectory_z.append((z_coordinate)) # in case that drawing the hot object
trajectory is needed↪→

71

72 # Drawing hot object trajectory (not used):
73 def draw_trajectory(trajectory_x, trajectory_z):
74 plt.plot(trajectory_x, trajectory_z, '--', color='r', marker='s', ms=6,

mfc='none', mec='r')↪→

75

76 # Plotting histogram (not used):
77 def plot_histogram(arr):
78 plt.hist(arr.ravel(), bins=256, fc='k', ec='k')
79 plt.title('Histogram',fontweight="bold",fontsize=15)
80 plt.xlabel('Temperature [ck]')
81 plt.savefig("Testing/Test 0/Histogram.png")
82 plt.clf()
83

84 # Data logging for communication with the camplugin:
85 Hot_Object_Coordinates_Now_Path = "/shome/31388/h1/purethermal1-uvc-capture/pytho ⌋

n/libuvc/build/Testing/Hot_Object_Coordinates_Now.csv"
#customizable

↪→

↪→

86 def write_to_HOCN(file_name, found, x_coordinate, z_coordinate):
87 with open(file_name, 'w', newline='') as file:
88 writer = csv.writer(file, dialect='myDialect')
89 writer.writerow([found])
90 writer.writerow([x_coordinate])
91 writer.writerow([z_coordinate])
92

93 # Data plotting for the video:
94 height = 120
95 start_index = 0
96 end_index = start_index + height
97 def plot_data(arr_full, image_filter, hot_threshold_celsius, tic, toc):
98 print("Processing video...\n")
99 global height

100 global start_index
101 global end_index
102 global total_frames
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103

104 total_frames = round(arr_full.shape[0]/height)
105 print("Total number of frames: {}\n".format(total_frames))
106

107 # Frame initialization:
108 arr = arr_full[start_index:end_index , :]
109

110 # Figure initialization:
111 fig = plt.figure(figsize=(11,8))
112 ax = fig.add_subplot(111, aspect='equal')
113 spots, = ax.plot([], [], 's',fillstyle='none', markeredgewidth=4, ms=30,

color='r')↪→

114 im = ax.imshow(arr, cmap=image_filter)
115 plt.grid()
116 time_text = fig.text(0.08, 0.155, '', color='w')
117 temperature_text = fig.text(0.08, 0.18, '', color='w')
118

119 # Colorbar initialization:
120 cbar = fig.colorbar(im, label='Temperature [°C]', shrink=0.79)
121 tick_locator = ticker.LinearLocator(numticks=8)
122 cbar.locator = tick_locator
123 cbar.update_ticks()
124 plt.tight_layout()
125

126 try:
127 def updatefig(i):
128 global height
129 global start_index
130 global end_index
131 global total_frames
132

133 # Taking a frame out of the full array which represents the entire
experiment:↪→

134 arr = arr_full[start_index:end_index , :]
135 im.set_array(arr)
136

137 # Taking the pixels with the minimum and the maximum temperature:
138 temperature_min_celsius = centikelvin_to_celsius(arr.min())
139 temperature_max_celsius = centikelvin_to_celsius(arr.max())
140

141 # If a hot enough object is found in the room:
142 if temperature_max_celsius > hot_threshold_celsius:
143 # Marking the hottest spot:
144 i_index,j_index = numpy.unravel_index(arr.argmax(), arr.shape)
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145 spots.set_data(j_index,i_index)
146 spots.set_visible(True)
147 temperature_text.set_color('r')
148 temperature_text.set_fontweight("bold")
149 else:
150 spots.set_visible(False)
151 temperature_text.set_color('w')
152 temperature_text.set_fontweight("normal")
153

154 # Text update:
155 try:
156 tocc = toc.get_nowait()
157 except:
158 return
159 time_text.set_text('Time = %.2f s' % (tocc-tic))
160 temperature_text.set_text('Max temp. = %.2f ºC' %

temperature_max_celsius)↪→

161

162 # Colorbar animation:
163 cbar.set_clim(arr.min(),arr.max()) # colorbar range update for every

frame↪→

164 cbar_ticks = np.linspace(temperature_min_celsius,
temperature_max_celsius, num=8, endpoint=True)↪→

165 cbar_ticks = np.around(cbar_ticks, 2)
166 cbar.ax.set_yticklabels(cbar_ticks)
167

168 plt.tight_layout()
169

170 print("Frame {} / {}".format(i,total_frames))
171

172 # Index update to take next frame:
173 start_index += height
174 end_index += height
175

176 return im,
177

178 plt.ioff() # turns off interactive mode to hide rendering animations
179

180 # Making animation:
181 try:
182 ani = animation.FuncAnimation(fig, updatefig, frames=9999999,

interval=10, blit=True, repeat=False)↪→

183 except:
184 return
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185

186 plt.title('IR-cam tracking',fontweight="bold",fontsize=15)
187 plt.xlabel('X-axis pixel')
188 plt.ylabel('Z-axis pixel')
189

190 # Saving video of the animation:
191 writermp4 = animation.FFMpegWriter(fps=10)
192 ani.save("Testing/Test 0/IR_cam_tracking.mp4", writer=writermp4)
193

194 except:
195 return
196

197

198 def main():
199 print("\n //////////////// START OF THE CAM SCRIPT\n")
200

201 ##------------------------------------------------------------------------------
202 ## PRE SETTINGS
203 image_filter = cm.plasma # plasma, viridis, bwr...
204 hot_threshold_celsius = 50 # do not store any hot spot data if there is not a

hot enough object in the room (if every pixel is below this threshold)↪→

205

206

207 ##------------------------------------------------------------------------------
208 ## FINDING AND OPENING THE CAM
209 ctx = POINTER(uvc_context)()
210 dev = POINTER(uvc_device)()
211 devh = POINTER(uvc_device_handle)()
212 ctrl = uvc_stream_ctrl()
213

214 res = libuvc.uvc_init(byref(ctx), 0)
215 if res < 0:
216 print("uvc_init error")
217 exit(1)
218

219 try:
220 res = libuvc.uvc_find_device(ctx, byref(dev), PT_USB_VID, PT_USB_PID, 0)
221 if res < 0:
222 print("uvc_find_device error")
223 exit(1)
224

225 try:
226 res = libuvc.uvc_open(dev, byref(devh))
227 if res < 0:
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228 print("uvc_open error")
229 exit(1)
230

231 print("Device opened!")
232

233 frame_formats = uvc_get_frame_formats_by_guid(devh, VS_FMT_GUID_Y16)
234 if len(frame_formats) == 0:
235 print("Device does not support Y16")
236 exit(1)
237

238 libuvc.uvc_get_stream_ctrl_format_size(devh, byref(ctrl),
UVC_FRAME_FORMAT_Y16,↪→

239 frame_formats[0].wWidth, frame_formats[0].wHeight, int(1e7 /
frame_formats[0].dwDefaultFrameInterval))↪→

240

241 res = libuvc.uvc_start_streaming(devh, byref(ctrl), PTR_PY_FRAME_CALLBACK,
None, 0)↪→

242 if res < 0:
243 print("uvc_start_streaming failed: {0}".format(res))
244 exit(1)
245

246

247 ##--------------------------------------------------------------------------
248 ## CAM CAPTURING
249 try:
250 # Trying to capture the first frame:
251 try:
252 arr = q.get(True, 10)
253 except:
254 exit(1)
255 q2 = np.array(arr,dtype=np.uint16)
256

257 mrc = 1
258 i=1
259 tic = time.perf_counter()
260 toc = Queue()
261

262 # Capturing while the SMR script is running:
263 while mrc == 1:
264 # Frame capturing:
265 try:
266 arr = q.get(True, 10)
267 except:
268 exit(1)
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269

270 # Concatenating every frame in a big array for later animation:
271 arr_copy = np.array(arr,dtype=np.uint16)
272 q2 = np.concatenate((q2, arr_copy))
273 toc.put(time.perf_counter())
274

275 temperature_max_celsius = centikelvin_to_celsius(arr.max())
276

277 found = 0 # hot object not found
278 i_index = 0
279 j_index = 0
280

281 # If a hot enough object is found in the room:
282 if temperature_max_celsius > hot_threshold_celsius:
283 found = 1 # hot object found
284 i_index,j_index = numpy.unravel_index(arr.argmax(), arr.shape)
285

286 # Sending data about whether a hot object has been found and its X
and Z coordinates to the camplugin:↪→

287 write_to_HOCN(Hot_Object_Coordinates_Now_Path, found, j_index,i_index)
288

289 i += 1
290 mrc = 0
291

292 # Checking any process with the name 'mrc', which means that the SMR
script is running↪→

293 for proc in psutil.process_iter():
294 if 'mrc' in proc.name():
295 mrc = 1
296

297 write_to_HOCN(Hot_Object_Coordinates_Now_Path, 3, j_index, i_index) #
found=3 means the end of the cam script for the camplugin↪→

298 print(f"\nCam capturing runned in {time.perf_counter() - tic:0.4f}
seconds\n")↪→

299

300 # Calling animation function to save the video of the experiment:
301 plot_data(q2, image_filter, hot_threshold_celsius, tic, toc)
302

303

304 ##--------------------------------------------------------------------------
305 ## STREAMING STOP AND CAM RELEASE
306 finally:
307 libuvc.uvc_stop_streaming(devh)
308
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309 finally:
310 libuvc.uvc_unref_device(dev)
311

312 finally:
313 libuvc.uvc_exit(ctx)
314 print("\n //////////////// END OF THE CAM SCRIPT\n")
315

316

317 if __name__ == '__main__':
318 main()

A.2 Hot object tracking script
Listing A.2: SMR_SCRIPT

1 % \\\\\\\\\\\\\\\\ START OF THE SMR SCRIPT
2

3 %%--------------------------------------------------------------------------------
4 %% CONSTANTS AND VARIABLES DEFINITION
5 Pi = 3.141592
6

7 % Maximum time to wait when trying to find a hot object:
8 CheckingTime = 10
9

10 % Acceptable limits in the captured frames for hot object tracking:
11 LeftLimit = 60
12 RightLimit = 100
13

14 % Parameters for driving commands:
15 PositiveAngle = 30
16 NegativeAngle = -30
17 Radius = 1
18 VelRotation = 0.4
19 VelForward = 0.4
20 VelTurnR = 0.3
21 VelTurn = 0.2
22 VelFirefighting = 0.1
23 VelInitialPos = 0.15
24 SafeDistance = 0.2
25

26 % Flags:
27 Home = 1
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28 State = 0 % 1=checking, 2=going, 3=firefighting, 4=returning, 5=initial position
29

30 % Initial position:
31 eval $odox
32 eval $odoy
33 eval $odoth
34 x0 = $odox
35 y0 = $odoy
36 th0 = $odoth
37

38

39 %%--------------------------------------------------------------------------------
40 %% FIRSTLY
41 % Camplugin call for constant storage on the internal variables $l8=found,

$l9=x-coordinate, $l3=z-coordinate:↪→

42 laser "camplugin findhotobject"
43

44 % Data logging for later animation of the robot trajectory and direction:
45 log "State" "$odox" "$odoy" "$odoth" "$l8" "$l9" "$l3"
46

47

48 %%--------------------------------------------------------------------------------
49 %% ROTATION UNTIL HOT OBJECT IS FOUND DURING THE SPECIFIED CHECKING TIME
50 label "Rotation0"
51 t0 = $time
52 label "Rotation"
53 if ($l8==1) "Check0"
54 State = 1
55 turn 15 @v VelRotation
56 if (($time-t0)<CheckingTime) "Rotation"
57 if (Home==1) "InitialPosition"
58 if (Home==0) "Return"
59

60

61 %%--------------------------------------------------------------------------------
62 %% FACING TO THE HOT OBJECT AND TRACKING IT
63 label "Check0"
64 State = 2
65 Home = 0
66 label "Check"
67 if ($l8==0) "Rotation0"
68 if ($l9<LeftLimit) "TurnLeft"
69 if ($l9>RightLimit) "TurnRight"
70 if (($l9>LeftLimit)&($l9<RightLimit)) "MoveForward"
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71

72 label "TurnLeft"
73 turnr Radius PositiveAngle @v VelTurnR

:(($l9>LeftLimit)|($l8!=1)|($irdistfrontmiddle<SafeDistance)|($irdistfrontlef ⌋

t<SafeDistance)|($irdistfrontright<SafeDistance))
↪→

↪→

74 if (($irdistfrontmiddle<SafeDistance)|($irdistfrontleft<SafeDistance)|($irdistfro ⌋

ntright<SafeDistance))
"Reached"

↪→

↪→

75 goto "Check"
76

77 label "TurnRight"
78 turnr Radius NegativeAngle @v VelTurnR

:(($l9<RightLimit)|($l8!=1)|($irdistfrontmiddle<SafeDistance)|($irdistfrontle ⌋

ft<SafeDistance)|($irdistfrontright<SafeDistance))
↪→

↪→

79 if (($irdistfrontmiddle<SafeDistance)|($irdistfrontleft<SafeDistance)|($irdistfro ⌋

ntright<SafeDistance))
"Reached"

↪→

↪→

80 goto "Check"
81

82 label "MoveForward"
83 drive @v VelForward

:(($l9<LeftLimit)|($l9>RightLimit)|($l8!=1)|($irdistfrontmiddle<SafeDistance) ⌋

|($irdistfrontleft<SafeDistance)|($irdistfrontright<SafeDistance))
↪→

↪→

84 if (($irdistfrontmiddle<SafeDistance)|($irdistfrontleft<SafeDistance)|($irdistfro ⌋

ntright<SafeDistance))
"Reached"

↪→

↪→

85 goto "Check"
86

87

88 %%--------------------------------------------------------------------------------
89 %% HOT OBJECT REACHED
90 label "Reached"
91 eval $irdistfrontleft
92 eval $irdistfrontmiddle
93 eval $irdistfrontright
94 eval $l8
95 eval $l9
96 eval $l3
97

98

99 %%--------------------------------------------------------------------------------
100 %% ANIMATION PRETENDING TO EXTINGUISH THE FIRE
101 label "Firefighting"
102 if ($l8!=1) "Return"
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103 State = 3
104 turn 45 @v VelFirefighting
105 turn -90 @v VelFirefighting
106 turn 45 @v VelFirefighting
107 goto "Firefighting"
108

109

110 %%--------------------------------------------------------------------------------
111 %% FACING HOME
112 label "Return"
113 State = 4
114 AngleOdoDeg = $odoth*180/Pi
115 eval AngleOdoDeg
116

117 AngleObjective = atan2(-$odoy,-$odox)
118 AngleObjectiveDeg = AngleObjective*180/Pi
119 eval AngleObjectiveDeg
120

121 AngleReturnDeg = normalizeangledeg(AngleObjectiveDeg-AngleOdoDeg)
122 eval AngleReturnDeg
123

124 turn AngleReturnDeg @v VelTurn :($l8==1)
125 if ($l8==1) "Check0"
126

127

128 %%--------------------------------------------------------------------------------
129 %% DRIVING HOME
130 AngleDrive = $odoth*180/Pi
131 eval AngleDrive
132 drive x0 y0 AngleDrive @v VelForward :(($targetdist<0.05)|($l8==1))
133 if ($l8==1) "Check0"
134 Home = 1
135

136

137 %%--------------------------------------------------------------------------------
138 %% FINAL CHECKING
139 goto "Rotation0"
140

141

142 %%--------------------------------------------------------------------------------
143 %% BACK TO INITIAL ANGLE
144 label "InitialPosition"
145 State = 5
146 AngleHome = normalizeangledeg((th0-$odoth)*180/Pi)
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147 eval AngleHome
148 turn AngleHome @v VelInitialPos
149 eval $odox
150 eval $odoy
151 eval $odoth
152

153 % \\\\\\\\\\\\\\\\ END OF THE SMR SCRIPT

A.3 Data representation scripts
Listing A.3: ROBOT_MAP_SIMULATION.mlx

1 %%--------------------------------------------------------------------------------
2 %% VIDEO RECORDING
3 clear all; close all
4

5 % Colors to be used:
6 bb = [0 0.2 0.7];
7 rr = [1 0 0];
8 brbr = [0.9 0.5 0.9];
9 gg = [0 1 0];

10 mm = [1 0 1];
11 oo = [1 0.5 0];
12 pp = [1 0.4 0.6];
13 yy = [0.5 0.5 0];
14 cc = [0 1 1];
15

16 % Arrow colors to be used:
17 clrs = [[0.7,0.7,0.7]; oo; pp; cc; yy; gg];
18

19 % Log file from the SMR script:
20 log = load("log"); % "State" "$odox" "$odoy" "$odoth" "$l8" "$l9" "$l3"
21

22 % Taking the relevant data:
23 odo = log(:,2:4);
24 State = log(:,1);
25 N = size(odo,1);
26

27 % Function to draw the arrows representing the robot direction:
28 drawArrow = @(x,y,varargin) quiver( x(1),y(1),x(2)-x(1),y(2)-y(1),0, varargin{:});
29

30 % Initializations:
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31 al = 0.4;
32 del = 3;
33 cx = 1;
34 ri = 1;
35 rf = N;
36 lx = 1;
37 tl = []; lgh = [];
38 p3 = []; p3b = [];
39 aux = [0 0];
40 tlss_old = [];
41

42 % Figure definition:
43 figure('Name', "ROBOT MAPS", "Position", [0, 100, 1000, 500], 'Color','w',

'visible','on')↪→

44

45 subplot(122)
46 hold on;
47 scatter(0, 0, 200, 's', 'LineWidth', 1, 'MarkerEdgeColor', gg)
48 text(0.15, -0.02, "\textit{Start}", 'Interpreter',"latex");
49 grid on; grid minor;
50 xlim([-1 2]); ylim([-0.5 4.5]);
51 title("\textbf{Robot trajectory map}", 'Interpreter',"latex")
52 xlabel("X-axis coordinate", 'Interpreter',"latex", 'FontSize',9)
53 ylabel("Y-axis coordinate", 'Interpreter',"latex", 'FontSize',9)
54

55 subplot(121)
56 hold on;
57 scatter(0, 0, 200, 's', 'LineWidth', 1, 'MarkerEdgeColor', gg)
58 grid on;
59 xlim([-1 2]); ylim([-0.5 4.5]);
60 title("\textbf{Robot direction map}", 'Interpreter',"latex")
61 xlabel("X-axis coordinate", 'Interpreter',"latex", 'FontSize',9)
62 ylabel("Y-axis coordinate", 'Interpreter',"latex", 'FontSize',9)
63

64 % Frame initialization:
65 rec(1) = getframe(gcf);
66

67 % Data plotting loop:
68 for i = del+ri:40:rf % it's possible to adjust the data plotting frequency
69

70 subplot(122)
71 if ~isempty(p3), delete(p2); delete(p3); end
72 p2 = plot(odo(1:i,1), odo(1:i,2), '--', 'LineWidth', 1, 'Color', mm);
73 p3 = scatter(odo(i,1), odo(i,2), 30, rr, 'o', 'filled', 'LineWidth', 1);
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74 xlim([-1 2]); ylim([-0.5 4.5]);
75 legend(p2, 'Robot position', 'Location', "southeast", "Orientation","horizontal",

'Interpreter',"latex")↪→

76

77 subplot(121)
78 grid on;
79 if ~isempty(p3b), delete(p3b); end
80 q1 = odo(i,1:2);
81 q2 = odo(i,1:2) + al*[cos(odo(i,3)) sin(odo(i,3))];
82 flag = State(i)~=State(lx(end));
83 if flag
84 switch State(i)
85 case 1, cx=2;
86 case 2, cx=3;
87 case 3, cx=4;
88 case 4, cx=5;
89 case 5, cx=6;
90 end
91 lx = [lx; i];
92 tl = [tl; State(i)];
93 end
94

95 h = drawArrow([q1(1), q2(1)],[q1(2), q2(2)], 'MaxHeadSize',30,'Color', clrs(cx,:)
,'LineWidth',0.5); hold on;↪→

96

97 p3b = scatter(odo(i,1), odo(i,2), 30, rr, 'o', 'filled', 'LineWidth', 1);
98

99 if ~isempty(tl)
100 tls = cellstr(num2str(tl));
101 if find(ismember(tls,'1')), aux = find(ismember(tls,'1')); for

p=1:length(aux), tls{aux(p)} = 'Checking'; end, end↪→

102 if find(ismember(tls,'2')), aux = find(ismember(tls,'2')); for
p=1:length(aux), tls{aux(p)} = 'Going'; end, end↪→

103 if find(ismember(tls,'3')), aux = find(ismember(tls,'3')); for
p=1:length(aux), tls{aux(p)} = 'Firefighting'; end, end↪→

104 if find(ismember(tls,'4')), aux = find(ismember(tls,'4')); for
p=1:length(aux), tls{aux(p)} = 'Returning'; end, end↪→

105 if find(ismember(tls,'5')), aux = find(ismember(tls,'5')); for
p=1:length(aux), tls{aux(p)} = 'Initial pos.'; end, end↪→

106 tlss = remove_repeated_elements(tls,State(i),0);
107 if length(tlss)~=length(tlss_old), lgh = [lgh h]; end
108 tlss_old = tlss;
109 legend(lgh, tlss{1:end}, 'Interpreter', 'Latex', 'NumColumns', 1,'Location',

"southeast", 'Orientation', 'horizontal')↪→
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110 end
111

112 xlim([-1 2]); ylim([-0.5 4.5]); title("\textbf{Robot direction map}",
'Interpreter',"latex")↪→

113

114 % Figure update:
115 drawnow
116

117 % Frame concatenation:
118 rec =[rec; getframe(gcf)];
119

120 end
121

122 tlss = remove_repeated_elements(tls,State(i),1);
123 legend(lgh, tlss{1:end}, 'Interpreter', 'Latex', 'NumColumns', 1,'Location',

"southeast", 'Orientation', 'horizontal')↪→

124

125 rec =[rec; getframe(gcf)];
126

127

128 %%--------------------------------------------------------------------------------
129 %% VIDEO CREATION
130 rec2 = [];
131 for i=1:length(rec)
132 if ~isempty(rec(i).cdata), rec2 = [rec2; rec(i)]; end
133 end
134

135 v_writer = VideoWriter('Robot_animation');
136 v_writer.FrameRate = 2.9; % it's possible to adjust the animation speed
137 open(v_writer);
138 writeVideo(v_writer,rec2);
139 close(v_writer);

Listing A.4: remove_repeated_elements.m

1 function a = remove_repeated_elements(x,index,N)
2 a=x;
3 k=1;
4 n=length(a);
5 while k<=n
6 j=1;
7 while j<=n
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8 if k~=j
9 if strcmp(a(k),a(j))

10 a(j)=[];
11 n=length(a);
12 end
13 end
14 j=j+1;
15 end
16 k=k+1;
17 end
18 if N==0, a(index) = append('\bf{',a(index),'}');
19 end

A.4 System communication scripts
Listing A.5: camplugin.cpp

1 /***************************************************************************
2 * This plugin is derived from the zoneobst files. *
3 ***************************************************************************/
4

5 #include "ufunczoneobst.h"
6 #include <iostream>
7 #include <algorithm>
8 #include <vector>
9 #include <cmath>

10 #include <fstream>
11 #include <stdlib.h>
12 #include <unistd.h>
13 #include <string>
14 #include <utility> // std::pair
15 #include <stdexcept> // std::runtime_error
16 #include <sstream> // std::stringstream
17

18 using namespace std;
19 unsigned int microsecond = 1000000;
20

21 /// Global variables
22 int found, x_coordinate, z_coordinate, num_errors;
23

24 #ifdef LIBRARY_OPEN_NEEDED
25
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26 /*** This function is needed by the server to create a version of this plugin */
27 UFunctionBase * createFunc()
28 { // create an object of this type
29 return new UFunczoneobst();
30 }
31 #endif
32

33 bool UFunczoneobst::handleCommand(UServerInMsg * msg, void * extra)
34 { // handle a plugin command
35 const int MRL = 500;
36 char reply[MRL];
37 bool ask4help;
38 const int MVL = 30;
39 char value[MVL];
40 int i;
41 double zone[10];
42 for(int i=0; i<10; i++) zone[i]=0;
43

44 // Plugin variables
45 bool calculate_now;
46

47 // Check for parameters - one parameter is tested for - 'help'
48 ask4help = msg->tag.getAttValue("help", value, MVL);
49 calculate_now = msg->tag.getAttValue("findhotobject", value, MVL);
50

51 if (ask4help)
52 {
53 std::cout << "\n[ CAMPLUGIN HELP: ]\n";
54 std::cout << "\n>> This plugin is derived from zoneobst files. \n";
55 std::cout << "\n>> Available camplugin options\n";
56 std::cout << "camplugin help --> This message\n";
57 std::cout << "camplugin findhotobject --> Identifies the object using the

results from the scans\n"; }↪→

58 else if (calculate_now)
59 {
60 //----------------------------------------------------------------------------//
61 std::cout << "\n //////////////// START OF THE CAMPLUGIN\n";
62

63 // File pointer
64 fstream fin;
65

66 // Open the file where the cam script is sending the data
67 string Hot_Object_Coordinates_Now_Path = "/shome/31388/h1/purethermal1-uvc-capt ⌋

ure/python/libuvc/build/Testing/Hot_Object_Coordinates_Now.csv";↪→
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68 fin.open(Hot_Object_Coordinates_Now_Path, ios::in);
69

70 // Read the data from the file as string vector
71 string line;
72 found = 0;
73 num_errors = 0;
74

75

76 while (found!=3) { // found=3 means the end of the cam script
77

78 // Variable 'found' //
79 // Read an entire row and store it in a string variable 'line'
80 getline(fin, line);
81 // Convert string to integer
82 if (!line.empty()) {
83 found = stoi(line);
84 zone[8] = found;
85 } else num_errors++;
86

87 // Variable 'x_coordinate' //
88 // Read an entire row and store it in a string variable 'line'
89 getline(fin, line);
90 // Convert string to integer
91 if (!line.empty()) {
92 x_coordinate = stoi(line);
93 zone[9] = x_coordinate;
94 }
95

96 // Variable 'z_coordinate' //
97 // Read an entire row and store it in a string variable 'line'
98 getline(fin, line);
99 // Convert string to integer

100 if (!line.empty()) {
101 z_coordinate = stoi(line);
102 zone[3] = z_coordinate;
103 }
104

105

106 // SEND DATA TO SMR
107 /* SMRCL reply format */
108 snprintf(reply, MRL, "<laser l3=\"%g\" l8=\"%g\" l9=\"%g\" />\n",
109 ^^I zone[3],zone[8],zone[9]);
110 // send this string as the reply to the client
111 sendMsg(msg, reply);
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112 // save also as global variable
113 for(i = 0; i < 10; i++)
114 var_zone->setValued(zone[i], i);
115

116 fin.clear();
117 fin.seekg(0);
118

119 usleep(0.1 * microsecond); // it needs a small delay
120

121 }
122

123 fin.close();
124 std::cout << "Number of errors when reading: " << num_errors << "\n";
125 std::cout << "\n //////////////// END OF THE CAMPLUGIN\n";
126 //----------------------------------------------------------------------------//
127 }
128 return true;
129 }
130

131 void UFunczoneobst::createBaseVar()
132 { // add also a global variable (global on laser scanner server) with latest data
133 var_zone = addVarA("zone", "0 0 0 0 0 0 0 0 0 0", "d", "Value of each laser

zone. Updated by zoneobst.");↪→

134 }

Listing A.6: ulmsserver.ini

1 server imagepath="./"
2 server datapath="./"
3 server replayPath="./log"
4

5 #Setup server for port 20100+N where N is team nr.
6 server port="24919"
7

8 #Load basic modules
9 module load="odoPose"

10 module load="laserPool"
11 module load="v360"
12 # module load for odometry control and global varable access
13 module load=var
14 module load=mappose
15



A.4 System communication scripts 85

16 # live laser scanner on SMR
17 scanset devtype=urg devname="/dev/ttyACM0"
18 scanset def=urg
19 scanset mirror=true
20

21 #Set scanner position with respect of SMR center
22 scanset x=0.255 z=0.04
23 scanset width=180
24 scanset logOpen
25 scanset log=used
26

27 ####################################################
28 ## Load modules and enter setup commands below ##
29 ####################################################
30 module load="aupoly.so.0"
31 module load="aulocalize.so.0"
32 module load="auplan.so.0"
33 module load="/shome/31388/h1/purethermal1-uvc-capture/python/libuvc/build/camplug ⌋

in/camplugin.so.0"↪→
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APPENDIX B
Online resources

In this appendix, links to online resources of interest for this project are collected.

B.1 Libraries
• libuvc

https://github.com/libuvc/libuvc

• uvctypes.py
https://github.com/groupgets/purethermal1-uvc-capture/blob/master/
python/uvctypes.py

B.2 Videos
• Static hot object test

https://youtu.be/Jr9R9Qsef0g

• Moving hot object test
https://youtu.be/4Ud4dSFI4ig

https://github.com/libuvc/libuvc
https://github.com/groupgets/purethermal1-uvc-capture/blob/master/python/uvctypes.py
https://github.com/groupgets/purethermal1-uvc-capture/blob/master/python/uvctypes.py
https://youtu.be/Jr9R9Qsef0g
https://youtu.be/4Ud4dSFI4ig
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