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Effect of noise in CT image reconstruction using
QR-Decomposition algorithm

A. Iborra∗, M. J. Rodrı́guez-Álvarez, A. Soriano, F. Sánchez, P. Bellido, P. Conde, E. Crespo, A. J. González,
F. Martos, L. Moliner, J. P. Rigla, M. Seimetz, L. F. Vidal and J. M. Benlloch

Abstract—The QR-Decomposition algorithm for CT 3D image
reconstruction uses a linear system of equations to model the
CT system response. Linear systems have a condition number
that can be used to estimate the image noise. In this work the
number of projections and the number of pixels in the detector
have been studied to characterize the CT and the linear system
of equations. The condition number of the system is estimated for
the previous parameters used to generate the CT model with the
aim of characterizing how these parameters affect the condition
number and therefore bound the image noise level. It is shown
that the condition number mainly depends on the size of pixels
of the detector rather than the number of projections and this
algorithm can be applied to low dose CT 3D image reconstruction
without compromising image quality.

Index Terms—Medical imaging, image reconstruction, QR
decomposition, image noise

I. INTRODUCTION

IN the field of CT 3D image reconstruction the Filtered
Backprojection (FBP) [1] is the predominant algorithm

nowadays, although recently, new alternatives are appearing 
such as MLEM [2] applied to CT 3D image reconstruction [3],
[4], [5]. Another alternative for CT 3D image reconstruction 
is the resolution of a linear system of equations, Ax = b, 
using QR-Decomposition with Givens rotations [6], where
A ∈ Rm×n is a matrix that models the CT system response 
in 3D (geometry and the conebeam factor [7]), b ∈ Rm is the 
CT measurement and x ∈ Rn represents the unknown scanned 
object.

The main advantage of this reconstruction method is that 
most of the computational effort lies in the decomposition 
process of A in Q and R. This process needs to be done 
only once, when the CT model is stated. The actual image 
reconstruction process only implies a matrix vector multipli-
cation and a backward substitution process which have lower 
computational costs. The FBP has a computational cost of 
O(N3) and a matrix vector multiplication and a backward 
substitution process have a total computational cost of O(2N2) 
which is one order of magnitude lower.

*.

II. METHODS

A. Sensitivity of a linear system
The matrix A is a model and therefore an approximation.

Likewise, the problem to solve is in fact to find x̂ such that
minimizes the residual r

min ‖r‖2 = min ‖Ax̂− b̂‖2 (1)

where x̂ = x + δx and b̂ = b + δb. δb represents the
differences between the prediction of the model in A of the
CT measurement b and the actual CT measurement b̂. δx
represents the error in the image reconstruction, which is the
difference between unknown scanned object x and the object
obtained by the reconstruction process x̂.

It is expected that x̂ and x will be similar. In other words,
if δb is small, then δx will be also small . In relative terms, it
is expected that ‖δb‖2‖b‖2 and ‖δx‖2‖x‖2 will approximately have the
same size. This is known as system sensitivity.

The condition number (κ(A)) of a matrix A (described in
detail in [8]) is a measurement of the sensitivity of the linear
system Ax = b

‖δx‖2
‖x‖2

≤ κ(A)‖δb‖2
‖b‖2

(2)

If A has a low condition number, then low values of ‖δb‖2‖b‖2
imply low values of ‖δx‖2‖x‖2 and it is said that the system is well-
conditioned. If the condition number is high, then low values
of ‖δb‖2‖b‖2 do not imply low values of ‖δx‖2‖x‖2 and it is said that
the system is ill-conditioned. However, the difference between
a well and an ill-conditioned system relies on the requirements
of the problem that is being solved.

In this case, a linear system with a κ(A) ≈ 2 will be
considered as well-conditioned. The relative error of the recon-
structed image of a linear system with this condition number
will be, at most, twice the perturbation level introduced in b.
However, in the case that the perturbation level introduced in
b almost reaches the accuracy requirement of the problem a
lower κ(A) may be needed.

B. QR-Decomposition algorithm overview
The algorithm of 3D image reconstruction using QR-

Decomposition (described in detail in [9]) consists of the
generation of a linear system of equations Ax = b, where A is
the CT system response. Since the model is an approximation,
the problem to solve becomes the problem (1), where a QR-
Decomposition is applied in A using Givens rotations

min ‖r‖2 = min ‖QRx̂− b̂‖2 (3)



Fig. 1. Phantom of PMMA with inserts of PMMA (*) for alineation
purposes, air (1), polytetrafluoroethylene (PTFE) (2), polyethylene (PE) (3)
and polyoxymethylene (POM) (4), which model regions filled with air inside
the body, soft bone, adipose tissue, and organs tissue, respectively.

where Q ∈ Rm×m is orthogonal and R ∈ Rn×n is upper
triangular.

As Q is orthogonal

min ‖r‖2 = min ‖QTQRx̂−QT b̂‖2 (4a)

min ‖r‖2 = min ‖Rx̂−QT b̂‖2 (4b)

where x (the reconstructed image) is found by means of a
backward substitution process.

C. Measurements

CT measurements have been generated based on a real
CT measurement from the Albira µCT [10] of a polymethyl-
methacrylate (PMMA) cylinder of 50 mm height and 55 mm
in diameter containing smaller cylinders of different materials
of 8 mm in diameter at 16 mm off the axis (see figure 1). Using
this reconstruction as a geometrical guide, a virtual phantom is
generated with the ideal CT value (depending on the material)
in each cylinder zone (see figure 2).

The matrix A (CT system response model) is generated
according to the geometry of the Albira µCT. Considering that
the digital phantom is generated according to the geometry of
an Albira µCT reconstruction, the generated measurements of
the CT system response model and the measurements of the
Albira µCT can be compared and the model can be verified.

In order to generate the measurements, the digital phantom,
x, is multiplied by the CT system response model, A, to obtain
the measurement expected by the model, b. Then a randomly
generated δb is added to b such that ‖δb‖2‖b‖2 raises to a desired
percentage (1%, ..., 10%). Since δb is randomly generated, to
reduce statistical fluctuations, ten δb are generated for each
combination of number of projections and number of pixels
in the detector.

Fig. 2. Digital phantom of PMMA with inserts of air (1), PTFE (2), PE (3)
and POM (4). Half of the PMMA cylinder has been removed in order to see
the inserts.

D. Condition number estimation

The condition number of A is estimated to find out how the
parameters of the CT model influence on it. These parameters
are: number of pixels in the CT detector, number of elements
in the reconstructed image (voxels) and δb (difference between
the predicted measurement and the obtained measurement).

The CT model was generated varying the number of pro-
jections from 80 to 260 and the number of pixels in the
detector from 60 × 60 to 192 × 192. For all generated CT
system response models, the sizes of the detector panel and
the reconstructed image are constant (and the same as in the
Albira µCT). Therefore, to model a higher number of pixels in
the detector implies the reduction of the pixel size. In the same
way, reconstructing an image with higher resolution implies
that this image will have a higher number of elements. Each
of these models is used to reconstruct images with perturbed
measurements such that ‖δb‖2‖b‖2 varies from 1% to 10%.

A 3D image reconstruction is performed for each b̂ and
its relative error, ‖x−x̂‖2‖x‖2 , is calculated. The condition number
estimation relies on the relation between the average of the
ten relative errors of a combination of model parameters and
the perturbation level added to b according to bound (2).

III. RESULTS

An estimation of the condition number of A is obtained
for each combination of number of projections and number
of pixels in the detector. As it was expected, the estimated
condition number decreases as the number of pixels in the
detector and number of projections increase. However, the
condition number decreases mainly with the number of pixels
in the detector (see figures (3) and (4)).

For the sake of simplicity, the size of each pixel in the
detector and the size of each image element is taken into



Fig. 3. Average relative errors of image reconstructions of all combinations
of the CT system response model with ‖δb‖2‖b‖2

= 1%.

Fig. 4. Average relative errors of image reconstructions of all combinations
of the CT system response model with ‖δb‖2‖b‖2

= 3%.

account by the ratio

R =
voxel size

detector size

Obtained data show that for R above 2.2 CT system models
have a κ(A) ≈ 2 (the relative error of the reconstructed
image is twice the perturbation level introduced in b at most),
even with a number of projections which is scarce for other
reconstruction methods (as FBP). Similar results are obtained
for various resolutions (see table I). Figures (5) – (9) show the
mean relative error of reconstructions for different R values

Fig. 5. Average relative errors of image reconstructions for different R values
with 1% level of CT measurement perturbation.

Fig. 6. Average relative errors of image reconstructions for different R values
with 2% level of CT measurement perturbation.

Fig. 7. Average relative errors of image reconstructions for different R values
with 3% level of CT measurement perturbation.

(only 1% to 5% are shown). A horizontal line shows the level
of CT measurement perturbation in each case and shaded area
represents the relative errors below the bound (2) derived from
a κ(A) = 2.



Fig. 8. Average relative errors of image reconstructions for different R values
with 4% level of CT measurement perturbation.

Fig. 9. Average relative errors of image reconstructions for different R values
with 5% level of CT measurement perturbation.

TABLE I
MEAN RELATIVE ERRORS FOR CONFIGURATIONS THAT MATCH THE
PIXEL / VOXEL RATIO AND HAVE ONLY 100 PROJECTIONS AS THE

REQUIRED RESOLUTION INCREASES.

Voxel Size 2.17mm 1.30mm 0.93mm

Detector / Voxel ratio 2.33 2.20 2.28

Relative error at 1% noise level 0.0134 0.0196 0.0215

Relative error at 2% noise level 0.0288 0.0383 0.0436

Relative error at 3% noise level 0.0441 0.0574 0.0670

IV. CONCLUSIONS

The condition number of the model matrix of the QR-
Decomposition algorithm for CT 3D image reconstruction
mainly depends on the ratio between the sizes of detectors
and voxels. For values of R > 2.2 the condition number of its
model matrix let us bound the image noise up to a maximum
of twice the difference between the predicted measurement
and the CT measurement, even with a number of projections
that for other algorithms, as FBP, is scarce.

The requirements for voxel size
detector size > 2.2 for high resolution

CT 3D image reconstruction in terms of number and size of the
pixels of the CT detector are achieved or exceeded in modern

CT scanners. Therefore, the QR-Decomposition algorithm can
be used in low dose CT imaging, where a limited number of
projections are required without compromising image quality.
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