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Featured Application: Development of a systematic procedure to synthesize the Inverse Kinematic
Model of non-redundant open-chain robotic systems by the application of Groebner Basis theory.

Abstract: One of the most important elements of a robot’s control system is its Inverse Kinematic
Model (IKM), which calculates the position and velocity references required by the robot’s actuators
to follow a trajectory. The methods that are commonly used to synthesize the IKM of open-chain
robotic systems strongly depend on the geometry of the analyzed robot. Those methods are not
systematic procedures that could be applied equally in all possible cases. This project presents the
development of a systematic procedure to synthesize the IKM of non-redundant open-chain robotic
systems using Groebner Basis theory, which does not depend on the geometry of the robot’s structure.
The inputs to the developed procedure are the robot’s Denavit–Hartenberg parameters, while the
output is the IKM, ready to be used in the robot’s control system or in a simulation of its behavior.
The Groebner Basis calculation is done in a two-step process, first computing a basis with Faugère’s
F4 algorithm and a grevlex monomial order, and later changing the basis with the FGLM algorithm
to the desired lexicographic order. This procedure’s performance was proved calculating the IKM
of a PUMA manipulator and a walking hexapod robot. The errors in the computed references of
both IKMs were absolutely negligible in their corresponding workspaces, and their computation
times were comparable to those required by the kinematic models calculated by traditional methods.
The developed procedure can be applied to all Cartesian robotic systems, SCARA robots, all the
non-redundant robotic manipulators that satisfy the in-line wrist condition, and any non-redundant
open-chain robot whose IKM should only solve the positioning problem, such as multi-legged
walking robots.

Keywords: kinematic problem; Inverse Kinematic Model (IKM); Groebner Basis; non-redundant
open-chain robotic systems

1. Introduction

The modeling and design of a robot’s control system begins with the resolution of its kinematic
problem, which is divided into two parts: the computation of the robot’s Forward Kinematics and the
synthesis of the Inverse Kinematic Model (IKM).
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The robot’s Forward Kinematics is the equation system that calculates the position and orientation
of a specific point of the robot’s structure according to the actual state of all its actuators. This point is
normally an important point of its structure, such as the end effector of a robotic arm or the center of
mass of a mobile robot. The Forward Kinematics is necessary for modeling the robot’s movements,
and it is also important for the synthesis of the Inverse Kinematic Model (IKM).

The IKM function is to calculate the control references required by the robot’s actuators, so the
robotic system can reach a desired position or follow a predetermined path. This makes the IKM a
fundamental part of the robot’s control system, as presented in Figure 1.

Figure 1. Inverse Kinematic Model (IKM) in the robot’s control system. The IKM’s function is to
calculate the required references for the robot’s multi-axis control.

There are different procedures to compute the Forward Kinematics of an open-chain robotic
system, which include Denavit–Hartenberg’s algorithm [1–3], dual quaternions [4,5], and the modeling
by Displacement Matrices [6]. All these procedures calculate the Forward Kinematics through the
execution of systematic algorithms, which are completely independent of the mechanical complexity
of the robot’s structure or its geometry.

On the other hand, the Inverse Kinematic Problem of open-chain robotic systems presents a
greater challenge because the most commonly used methods to calculate the IKM, the geometric
method, and the analytical method strongly depend on the analyzed robot’s geometry and do not
offer a systematic procedure for the synthesis of the desired model. The geometric method divides the
analyzed robot Inverse Kinematic Problem into several plane geometry problems, and solves those
problems using trigonometric relations [3,7]. It is obvious, by its own definition, that this method
depends heavily on the geometry of the robot’s structure, and any sequence of steps used to calculate
the IKM of a robotic system may not be valid for any other different structure.

The analytic method for the calculation of the IKM solves the state vector of the robot’s actuators
in the equation system that defines the Forward Kinematics [8–10]. The drawback of this method is
that the aforementioned equation system is composed of nonlinear equations, which forbids the use
of traditional matrix algebra procedures. Instead, individual relations inside the analyzed equation
system must be found, relations that are specific for each case. This implies that the analytic method is
also non-systematic because the relations found to calculate the IKM of a robot with a certain structure,
may not be valid or suitable for a different robot.

All the problems presented before have prompted the development of several projects that use
different artificial intelligence techniques to solve the Inverse Kinematic Problem, such as Neural
Networks [11–13], Particle Swarm Optimization (PSO) [14], PSO-optimized Neural Networks [15],
Neuro-evolutionary Algorithms (combination of Neural Networks and Genetic Algorithms) [16],
and PSO variants [17]. These techniques normally calculate satisfactory solutions for the Inverse
Kinematic Problem (IKP), without having any problems with the geometry of the robot’s structure.
However, it is important to clarify that, while these methods solve the IKP, they do not synthesize an
Inverse Kinematic Model (IKM). This implies that the position references that are offered as output do
not come from a differentiable function; therefore, these procedures are not capable of computing the
speed or acceleration references for the robot’s actuators. In addition, these methods could suffer from
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the known training problems of artificial intelligence techniques, such as the over-fitting of Neural
Networks and Genetic Algorithms.

Nowadays, several projects are being developed in the field of Robotics that use Groebner
Basis theory [18] to implement systematic methods that solve the Kinematic Problem, in a way
that is independent of the geometry of the robot’s structure. Among these projects, the works of
Kendricks [19] and Wang et al. [20] stand out, which solve the Inverse Kinematic Problem of robotic
manipulators using Groebner Bases. Abbasnejad et al. [21] use this theory for the kinematic analysis
of cable-driven robots. Rameau et al. [22] employ it to calculate the mobility conditions of several
mechanisms that can be used in robotic arms or parallel robots. The works of Gan et al. [23] and
Huang et al. [24] use Groebner Basis theory for the resolution of the Kinematic Problem of parallel
robots, while Uchida et al. [25] employ it to triangularize the kinematic constraint equations of
closed-chain robotic systems.

Most of the aforementioned works employ Groebner Bases to solve their corresponding Kinematic
Problems, proving that the full set of solutions can be obtained using this theory. However, they do
not provide a procedure to synthesize a Kinematic Model that can be used in the control system of the
robot (see Figure 1).

This work objective is to use Groebner Basis theory to develop a systematic procedure for the
synthesis of the IKM of non-redundant open-chain robotic systems. This procedure is explained in
Section 3 and was used to synthesize the IKMs of two robots: a PUMA manipulator and a walking
hexapod. Section 2 presents the calculation by traditional methods of the kinematic models of the
two mentioned robots, which are later used as reference models in the performance analysis of the
developed procedure. Section 4 shows the procedure’s performance analysis, comparing the outputs
of the IKMs synthesized in this project with those of the reference models. The possible future works
that arise from this project are summarized in Section 5. In addition, finally Section 6 presents the
conclusions of the obtained results and the final remarks of this work.

2. Resolution of the Kinematic Problem by Traditional Methods

The two robotic systems that were studied in this project are a Unimate’s PUMA 560 robotic arm
(Danbury, CT, USA) and the walking hexapod robot BH3-R, built and distributed by Lynxmotion Inc.
(Swanton, Vermont, USA). Both robots, shown in Figure 2, are non-redundant open-chain robotic
systems, and they will be used as test benches for the procedure developed in this work.

Figure 2. Robotic systems used in this project: Unimate’s PUMA 560 robotic arm (left) and BH3-R
hexapod walking robot by Lynxmotion Inc. (right).

The first step for the resolution of the Kinematic Problem by any of the traditional methods is to
calculate the Forward Kinematics of the analyzed robot.
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2.1. Forward Kinematics

The Forward Kinematics of any robotic system can be easily solved by applying the
Denavit–Hartenberg’s method (D–H). The first step of this method is to establish the proper coordinate
systems, following the D–H convention, as explained in [1,3].

2.1.1. Forward Kinematics of the PUMA

Figure 3 shows the coordinate systems created for all the links of the PUMA 560 robotic arm.
Based on the coordinate systems presented in this figure, the D–H parameters of every link of the robot
are the ones contained in Table 1. Table 2 lists the dimensions, in mm, of these PUMA’s parameters.

Figure 3. Coordinate systems for all the links of the PUMA 560 robotic arm.

Table 1. Denavit–Hatenberg Parameters of PUMA 560.

Link θ d a α

1 q1 + (π/2) d1 0 −π/2
2 q2 d2 a2 0
3 q3 + (π/2) 0 −a3 π/2
4 q4 d4 0 −π/2
5 q5 0 0 π/2
6 q6 d6 0 0

Table 2. Parameter dimensions of PUMA 560.

Parameter Dimension [mm]

d1 660.4
d2 149.1
a2 431.8
a3 20.3
d4 433.1
d6 56.2
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For simplicity reasons, we will focus only on the first three links of the robotic arm, just before
the robot’s wrist. This simplification is valid because the last three links of the arm comply with
the conditions of Pieper’s Theorem [3,8], effectively conforming an in-line wrist. Therefore, the end
effector of this robot will be considered to be at the anchor point of this in-line wrist, just at coordinate
system number 4, shown in Figure 3.

Applying the Denavit–Hartenberg’s method, with the parameters presented in Table 1,
the solution to the Forward Kinematics problem of the PUMA 560 is the homogeneous transformation
shown in Equation (1), which establishes the transformation between the base of the robot and the
anchor point of its in-line wrist. The term “q(2+3)” in Equation (1) is equal to “q2+q3”.

0A4=

 sin(q1) sin(q(2+3)) sin(q1) cos(q(2+3)) −cos(q1) −sin(q1)[a2 cos(q2)+d4 cos(q(2+3))+a3 sin(q(2+3))]−d2 cos(q1)

−cos(q1) sin(q(2+3)) −cos(q1) cos(q(2+3)) −sin(q1) cos(q1)[a2 cos(q2)+d4 cos(q(2+3))+a3 sin(q(2+3))]−d2 sin(q1)

−cos(q(2+3)) sin(q(2+3)) 0 d1−a2 sin(q2)−d4 sin(q(2+3))+a3 cos(q(2+3))

0 0 0 1

 (1)

2.1.2. Forward Kinematics of the BH3-R Hexapod

The second robotic system used as a testbench in this project is the hexapod shown in Figure 2.
Because this hexapod has circular geometry, its kinematic problem can be synthesized in calculating the
IKM of one of the robot’s legs, to apply later the corresponding transformations between the hexapod’s
center and the origin of each of its extremities. This robot was selected as a testbench because each of its
legs has three rotational degrees of freedom for positioning, like most industrial robotic arms and many
multi-legged walking robots, and it only requires the resolution of the positioning kinematic problem.

The calculated D–H parameters that define this robotic system are shown in Table 3, while Table 4
lists the dimensions, in mm, of those parameters. Finally, Equation (2) presents the homogeneous
transformation between the origin of the hexapod’s leg and its final point, which was calculated
following all the steps of Denavit–Hatenberg’s method [1].

Table 3. Denavit–Hatenberg Parameters of the hexapod’s leg.

Link θ d a α

1 q1 0 L1 π/2
2 q2 0 L2 π
3 q3 + (π/2) 0 L3 0

Table 4. Parameter dimensions of the hexapod’s leg.

Parameter Dimension [mm]

L1 28.0
L2 58.0
L3 110.0

0A3=


cos(q1) sin(q2−q3) −cos(q1) cos(q2−q3) −sin(q1) cos(q1)[L1+L2 cos(q2)+L3 sin(q2−q3)]

sin(q1) sin(q2−q3) −sin(q1) cos(q2−q3) cos(q1) sin(q1)[L1+L2 cos(q2)+L3 sin(q2−q3)]

−cos(q2−q3) −sin(q2−q3) 0 L2 sin(q2)−L3 cos(q2−q3)

0 0 0 1

 (2)

2.2. Inverse Kinematics Using Traditional Methods

2.2.1. Inverse Kinematics of the PUMA 560 by the Geometric Method

Based on the link coordinate systems presented in Figure 3, and inspired in the geometry of
a human arm, various arm configurations can be identified for a PUMA robot with the assistance
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of three configuration indicators: ARM, ELBOW, and WRIST [3]. The first two, ARM and ELBOW,
are associated with the solution of the first three joints, while WRIST is related to the solution of the last
three. For a six-axis manipulator, like the PUMA 560, there are four possible solutions for the first three
joints (q1, q2 and q3), commonly referred as configurations, and for each one of these configurations,
there are two possible solutions for the last three joints (q4, q5 and q6) [3].

As was stated in Section 2.1.1, we will focus exclusively in the first three joints of the PUMA
robotic arm. Thus, we only need to find the four possible solutions for q1 to q3, which are related to the
first two configuration indicators: ARM and ELBOW.

The ARM indicator can have two possible values, LEFT and RIGHT. LEFT indicates that positive
values of q2 will move the robot’s wrist in the negative Z0 direction when the third joint, q3, is not
activated, while RIGHT will move it in the positive Z0 direction. ELBOW also has two possible values,
ABOVE and BELOW, which indicate whether the third joint of the robot is above the imaginary line
described between the top part of the robot’s body and its wrist, or below this line, respectively.
The combination of the two possible values of the ARM indicator with the two of ELBOW gives the
four possible configurations that constitute the four solutions of the Inverse Kinematics Problem of the
PUMA 560.

If the position vector ~p(px, py, pz) is projected onto the X0 − Y0 plane, as shown in Figure 4,
q1 could be obtained solving the equations shown in Equation (3). The “L” and “R” superscripts added
to q1 differentiate between the LEFT and RIGHT arm configurations.

Figure 4. Geometric solution for joint 1 (q1), showing both possible configurations: “LEFT Arm” (left)
and “RIGHT Arm” (right) [3].

~OA = d2

~OE = R2 =
√
(px)2 + (py)2

~AE = ra2 =
√
(px)2 + (py)2 − (d2)2

α = atan2
(

d2
R2

,
ra2
R2

)
ϕ = atan2

(
py

R2
,

px

R2

)
qL

1 = ϕ− α; qR
1 = ϕ + α + π;

(3)

To calculate q3, the position vector ~p is projected onto the plane X2 − Y2, as shown in Figure 5,
obtaining the geometric equations presented in Equation (4):
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Figure 5. Geometric solution for joint 3 (q3), showing two of the possible four configurations: “LEFT and
BELOW Arm” (left) and “LEFT and ABOVE Arm” (right) [3].

~AB = a2; ~BC = a3; ~CD = d4;

~BD = r3 =
√
(a3)2 + (d4)2

~AD = ra3 =
√
(px)2 + (py)2 + (pz)2 − (d2)2

β = atan2
(
|d4|
r3

,
|a3|
r3

)
cos (ϕ) =

a2
2 + r2

3 − r2
a3

2 · a2 · r3

sin
(

ϕLA
)
= −

√
1− cos (ϕ)2; sin

(
ϕRA

)
= +

√
1− cos (ϕ)2;

sin
(

ϕLB
)
= +

√
1− cos (ϕ)2; sin

(
ϕRB

)
= −

√
1− cos (ϕ)2;

ϕk = atan2
(

sin
(

ϕk
)

, cos (ϕ)
)

(4)

The superscript k in Equation (4) may have the values LA, RA, LB or RB, depending on the value
of the ARM and ELBOW indicators. Thus, the four possible solutions for q3 can be compacted in the
expression presented in Equation (5):

qk
3 = ϕk − β (5)

Projecting the position vector ~p onto the plane X1 − Y1, as shown in Figure 6, q2 is calculated
solving the geometric equations presented in Equation (6).

Figure 6. Geometric solution for joint 2 (q2) [3].
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~EF = px; ~EG = py; ~DE = pz;
~AE = ra2; ~AD = ra3;

sin(α) = − pz

ra3

cos
(

αL
)
=

ra2
ra3

cos
(

αR
)
= − cos

(
αL
)
= − ra2

ra3

αi = atan2
(

sin(α), cos(αi)
)

cos(β) =
a2

2 + r2
a3 −

(
d2

4 + a2
3
)

2 · a2 · ra3

sin(β) =
√

1− cos(β2)

β = atan2 (sin(β), cos(β))

(6)

In Equation (6), the superscript i could either be L or R, depending on the value of the ARM
indicator. Therefore, the four possible solutions for q2 are presented in Equation (7):

qLA
2 = αL − β; qRA

2 = αR + β;

qLB
2 = αL + β; qRB

2 = αR − β;
(7)

Finally, Equation (8) presents the four configurations structure that conforms the whole solution
of the Inverse Kinematic Problem of the PUMA 560 manipulator:

qLA =

 qL
1

qLA
2

qLA
3

 qRA =

 qR
1

qRA
2

qRA
3


qLB =

 qL
1

qLB
2

qLB
3

 qRB =

 qR
1

qRB
2

qRB
3


(8)

2.2.2. Inverse Kinematics of the BH3-R Hexapod’s Leg by the Analytical Method

The analytical method begins with the Forward Kinematics equation system, presented in
Equation (9), that calculates the position vector of the end point, ~p, from the configuration of all
actuators of the hexapod’s leg (q1, q2 and q3). In this equation, px0 represents the projection of the
vector~p over the X0 axis, py0 is the projection over Y0, while pz0 constitutes the projection over Z0:

px0

py0

pz0

1

 = 0A3 ·


0
0
0
1

 =


cos(q1) [L1 + L2 cos(q2) + L3 sin(q2−q3)]

sin(q1) [L1 + L2 cos(q2) + L3 sin(q2−q3)]

L2 sin(q2)− L3 cos(q2−q3)

1

 (9)

The solution for the first actuator of the robot, q1, can be obtained by dividing the second equation
of the system shown in Equation (9) by the first one, as presented in Equation (10):

py0

px0

=
sin(q1) [L1 + L2 cos(q2) + L3 sin(q2−q3)]

cos(q1) [L1 + L2 cos(q2) + L3 sin(q2−q3)]
=

sin(q1)

cos(q1)
=⇒ qF

1 = arctan
(

py0

px0

)
(10)

The right hand of Equation (10) shows one of the possible solutions for q1, the one normally
labelled as “FRONT” (F) for this type of mechanical structure. The second possible solution is the one
presented in Equation (11), which also solves Equation (10). This second solution is usually identified
as “BACK” (B):

sin(q1)

cos(q1)
=

py0

px0

=
−py0

−px0

=⇒ qB
1 = arctan

(−py0

−px0

)
= qF

1 + π (11)
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The two possible solutions for q1 are presented in Equation (12), where the arctan function has
been substituted by the more general atan2, which is fully defined for all the range [−π, π]:

qF
1 = atan2

(
py0 , px0

)
; qB

1 = qF
1 + π; (12)

To obtain the solution for q3, we have to return to the definition of the Forward Kinematics
equation system (see Equation (9)), and do the matrix operations shown in Equation (13):

px0

py0

pz0

1

 = 0A3 ·


0
0
0
1

 = 0A1(qi
1) · 1A2 · 2A3 ·


0
0
0
1


⇓

(
0A1(qi

1)
)−1
·


px0

py0

pz0

1

 =
(

0A1(qi
1)
)−1
· 0A1(qi

1) · 1A2 · 2A3 ·


0
0
0
1

 = 1A3 ·


0
0
0
1


⇓

pxi
1

pyi
1

pzi
1

1

 =


L2 cos(q2) + L3 sin(q2−q3)

L2 sin(q2)− L3 cos(q2−q3)

0
1



(13)

The superscript i that appears in some terms of Equation (13) may be either F (“FRONT”) or B
(“BACK”), depending on the related configuration of q1. The terms pxi

1
, pyi

1
, and pzi

1
represent the

projection of the position vector over the X1, Y1, and Z1 axes, respectively, taking into account that
these axes depend on the aforementioned configuration of q1.

From Equation (13), we can add the square of the first two equations of that equation system,
obtaining the solution shown in Equation (14):

(pxi
1
)2 + (pyi

1
)2 = [L2 cos(q2) + L3 sin(q2−q3)]

2 + [L2 sin(q2)− L3 cos(q2−q3)]
2

⇓
(pxi

1
)2 + (pyi

1
)2 = (L2)

2 + (L3)
2 − 2L2L3 sin(q3)

⇓

sin(qi
3) =

(L2)
2 + (L3)

2 − (pxi
1
)2 − (pyi

1
)2

2L2L3

(14)

The term sin(qi
3) in Equation (14) can have two possible solutions, depending on whether the

configuration of q1 is F or B. Each of these solutions for sin(qi
3) yield two possible values for cos(q3)

when the quadratic equation shown in Equation (15) is solved:

cos(qk
3) = ±

√
1−

[
sin
(
qi

3
)]2 (15)

The four possible values for cos(qk
3) in Equation (15) lead to the expression of q3 in Equation (16),

where the superscript k may be FA (“FRONT ABOVE”), FB (“FRONT BELOW”), BA (“BACK ABOVE”)
or BB (“BACK BELOW"). The names of these configuration identifiers were selected in a similar way
as the ones of the the PUMA 560 (see Section 2.2.1):

qk
3 = atan2

(
sin(qi

3), cos(qk
3)
)

(16)
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Once q3 has been calculated, q2 may be obtained solving the equation system shown in the final
part of Equation (13), as it is presented in Equation (17):

sin(qk
2) =

pyi
1
[L2 − L3 sin(qi

3)] + pxi
1
L3 cos(qk

3)

[L2 − L3 sin(qi
3)]

2 + [L3 cos(qk
3)]

2

cos(qk
2) =

pxi
1
− L3 cos(qk

3) sin(qk
2)

L2 − L3 sin(qi
3)

(17)

Finally, Equation (18) presents the four configurations structure that conform the solution of the
Inverse Kinematic Problem of the analyzed walking hexapod:

qFA =

 qF
1

qFA
2

qFA
3

 qBA =

 qB
1

qBA
2

qBA
3


qFB =

 qF
1

qFB
2

qFB
3

 qBB =

 qB
1

qBB
2

qBB
3


(18)

After analyzing the two traditional methods that are normally used to solve the Inverse Kinematics
Problem, it is obvious that they are not systematic procedures because the geometric calculations done
for the PUMA 560 manipulator cannot be applied to the BH3-R walking hexapod, and vice versa.
Section 3 presents the procedure developed in this work to synthesize the IKM in a systematic way,
using Groebner Basis theory.

3. Procedure to Synthesize the IKM Using Groebner Basis

The developed procedure for the calculation of the IKM of non-redundant open-chain robotic
systems is divided into six steps:

1. Information input
2. Forward kinematics
3. Obtention of the of the polynomial equation system
4. Monomial Order selection
5. Groebner Basis calculation
6. Final IKM algorithm

It is important to highlight that all these steps are only executed once, out of line, to synthesize
the IKM before the robotic system is activated. Therefore, the execution time of these steps does not
affect in any way the online computation time of the IKM.

3.1. First Step: Information Input

The procedure begins requesting all the relevant information about the analyzed robot. The user
has to supply only two data: the Denavit–Hartenberg (D–H) parameters of the robot and the movement
range of its actuators.

The first data, the D–H parameters, are necessary to solve the Forward Kinematics problem,
which is a required step to calculate the Groebner Basis that will constitute the IKM. These parameters
represent the fundamental information of any robotic system, so they are also indispensable for all
traditional methods that solve the Kinematic Problem.

The robot actuators’ movement range is employed to eliminate all the solutions that are not
reachable by the robotic system. This way, the IKM is able to discard those solutions that are out of the
robot’s workspace.
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3.2. Second Step: Forward Kinematics

The second step in the developed procedure is the robot’s Forward Kinematics calculation,
using the D–H parameters that were provided in the first step. This calculation is done applying the
Denavit–Hartenberg method [1], so this part of the procedure is similar to the presented in Section 2.1
for the traditional methods.

The result of this second step is the homogeneous transformation matrix (0An) between the origin
of the coordinate system in the robot’s base and the one in its end effector. Therefore, after applying
the developed procedure to the PUMA robot presented in Figure 3, the result of this step is the same
homogeneous matrix presented in Equation (1).

3.3. Third Step: Obtention of the Polynomial Equation System

Once the robot’s Forward Kinematics is calculated, the equations that relate the pose of the end
effector with the robot’s state can be extracted from the homogeneous transformation matrix obtained
in the second step. In this work, for simplicity, we are only interested in the position of the end effector,
which is only a part of its pose. However, all the calculations made in the developed procedure can be
also extended to the orientation, to complete the whole pose.

Continuing with the case of the PUMA robot, these equations are the ones presented in
Equation (19), which correspond to the first three elements of the fourth column of Equation (1):

px = − sin(q1)[a2 cos(q2)+d4 cos(q2+q3)+a3 sin(q2+q3)]−d2 cos(q1)

py = cos(q1)[a2 cos(q2)+d4 cos(q2+q3)+a3 sin(q2+q3)]−d2 sin(q1)

pz = d1−a2 sin(q2)−d4 sin(q2+q3)+a3 cos(q2+q3)

(19)

As it can be seen in Equation (19), the final result obtained from the robot’s Forward Kinematics
is a trigonometric equation system that establish the position of the end effector, and it is from this
equation system that the calculation of the IKM begins.

The previous equation system is completed with the corresponding trigonometric identities of
all the robot’s rotational degrees of freedom (DoFs), identities of the form sin(qi)

2 + cos(qi)
2 = 1.

Then, all the trigonometric expressions are expanded, and variable substitutions of the form sin(qi) = si
and cos(qi) = ci are applied. This step’s objective is to obtain a polynomial equation system where the
variables are either a pair sine-cosine of a rotational DoF (si and ci), or directly the position value of a
prismatic DoF (qj).

For the case of the PUMA robot, this step’s output is the trigonometric equation system presented
in Equation (20). In this equation system, px, py, and pz are the three components of the position vector
of the PUMA’s wrist (~p), and they are input parameters. The six variables of Equation (20) that should
be solved are s1, c1, s2, c2, s3, and c3.

−a2s1c2 − d4s1c2c3 + d4s1s2s3 − a3s1s2c3 − a3s1c2s3 − d2c1 − px = 0

a2c1c2 + d4c1c2c3 − d4c1s2s3 + a3c1s2c3 + a3c1c2s3 − d2s1 − py = 0

d1 − a2s2 − d4s2c3 − d4c2s3 + a3c2c3 − a3s2s3 − pz = 0

s2
1 + c2

1 − 1 = 0

s2
2 + c2

2 − 1 = 0

s2
3 + c2

3 − 1 = 0

(20)

3.4. Fourth Step: Monomial Order Selection

The polynomials that integrate the equation system shown in Equation (20) would constitute
the generators of an Ideal that will be the starting point for the Groebner Basis calculation [18]. It is
important to highlight that any solution of the calculated Groebner Basis is also a solution of the Ideal,
which translates in a solution of the original polynomial equation system [26]. Therefore, the obtention
of this basis simplifies greatly the calculation of the IKM.
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A fundamental step in the calculation of the Groebner Basis is the selection of the monomial
order because this order will establish the way in which the variables are calculated while solving
the obtained basis. Different monomial orders will produce different bases, but it is important to
remember that the solution of all these bases is the same solution of the initial Ideal [26].

The main three types of monomial orderings used in Groebner Bases calculations are:
Lexicographic Order (lex), Graded Lexicographic Order (grlex) and Graded Reverse Lexicographic
Order (grevlex) [26]. Between these three types of monomial orderings, the one that assures the
existence of a simple analytical solution for the calculated basis is the lexicographic order (lex)
because this order arranges the monomials following a strict ordering in which a variable always
precedes those of lesser value in the order. This strict order guarantees that the obtained basis is
a triangular equation system, whose variables can be solved one at a time. In this project, we are
interested in finding analytical solutions for the Inverse Kinematic Problem, and therefore we selected
the lex order as the type of monomial ordering used for the calculated Groebner Basis.

Continuing with our example of the PUMA 560, the selected lex order for this robot is the one
shown in Equation (21). This selected lex order represents the same order in which the variables were
solved while applying the geometric method presented in Section 2.2:

c2 > s2 > s3 > c3 > c1 > s1 (21)

3.5. Fifth Step: Groebner Basis Calculation

Once the lexicographic order is selected, the developed procedure proceeds to calculate the
Groebner Basis of the polynomial equation system obtained in Section 3.3. This basis calculation
is executed in a two step process: First, an initial Groebner Basis is obtained using Faugère’s F4
algorithm [27,28], with a graded reverse lexicographic order (grevlex). After this first basis is calculated,
an FGLM basis conversion, based on the algorithm developed by Faugere et al [29], is made to convert
the basis to the lexicographic order selected in the previous step.

This two-step process was selected because it has been proven that it is the most efficient way to
calculate a Groebner Basis for a zero-order Ideal, i.e., an Ideal that has a finite amount of solutions,
with six variables or less [26]. This is exactly our case because the Kinematic Problem of the studied
non-redundant open-chain robotic systems contains at most six variables: one or two for each of the
three DoF (q1, q2 and q3), depending on whether it is a rotational DoF or a prismatic one. In addition,
it also has a finite number of solutions: at most four, as is typical when solving the position of
non-redundant open-chain robots.

When the developed procedure is applied to the PUMA 560, the output of this fifth step is
the Groebner Basis presented in Equations (22) to (27). In these equations, all the parameters of
the robot are already substituted by their numerical values. In order to reduce the computation
time of the F4 algorithm, all these parameters were given as integer numbers. This means that a
dimension conversion, from mm to tenths of mm, was done to the PUMA’s parameters (see Table 2).
This dimension conversion has to be taken into account in the last step of the procedure, to ensure that
all the parameter dimensions and positions are in the same units:

2223081−p2
x+2982pys1+[p2

x+p2
y]s

2
1 = 0 (22)

1491+pys1+pxc1 = 0 (23)

p4
x+p4

y+p4
z+2(p2

x p2
y+p2

x p2
z+p2

y p2
z)−26416(p2

x pz+p2
y pz+p3

z)+182342946p2
z

+7891682(p2
x+p2

y)−104233335856pz+12496273537617

+[988024862656pz−295168762271912−74805032(p2
x+p2

y+p2
z)]c3+1402021590789920c2

3 = 0

(24)

13208pz−p2
x−p2

y−p2
z−3945841+37402516c3+1753108s3 = 0 (25)
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203(p3
x pz+px p3

z+px p2
y pz)−1340612(p3

x+px p2
y)−6457521(p2

x py+p3
y+py p2

z)−4021836px p2
z

+26077729363px pz−55281595746468px+85290937368py pz−25480351120161py

+[57203848(p2
x pz+p2

y pz)−4331(p4
x+p4

y+p2
x p2

z+p2
y p2

z)−8662p2
x p2

y−17089437371(p2
x+p2

y)]s1

+242058150980520pyc3+162346177720[p2
x+p2

y]s1c3

+[1753108(p3
x+px p2

y+px p2
z)−23155050464px pz+72560675546380px]s2 = 0

(26)

4331(p3
x pz+px p2

y pz+px p3
z)+302673(p2

x py+p3
y+py p2

z)−28601924(p3
x+px p2

y)−85805772px p2
z

+12481050765897py−3997704984py pz+394863649563px pz−112858644398084px

+[203(p4
x+p4

y+p2
x p2

z+p2
y p2

z)+406p2
x p2

y−2681224(p2
x pz+p2

y pz)+8370926067(p2
x+p2

y)]s1

+[1072134157662880px−162346177720px pz]c3

+[1753108(p3
x+px p2

y+px p2
z)−23155050464px pz+72560675546380px]c2 = 0

(27)

As can be seen in the previous equations, the obtained Groebner Basis constitutes a triangular
equation system that can be solved in a staggered way. This is because the first equation of the system,
shown in Equation (22), only depends on one variable, the lesser monomial in the selected lex order
(see Equation (21)). After that equation is solved, the second one has at most two variables, the one that
was previously calculated in the first equation and a new one, while the third depends at most on three
variables, two computed in the preceding equations and a new one, and so on. Solving this triangular
equation system gives the solution for the all the variables of the original polynomial equation system,
the one that was calculated in Section 3.3.

3.6. Sixth Step: Final IKM Algorithm

The last step of the developed procedure consists of transforming the triangular polynomial
equation system of the calculated Groebner Basis in an algorithm that implements the final IKM.
As was shown in the previous step, this triangular equation system can be solved in a staggered way,
solving one new variable in each equation, so it is just a matter of implementing a procedure that
transforms this set of equations into an executable algorithm.

Table 5 shows all the possible polynomial equations that can be encountered by our procedure
when computing the final IKM. The maximum possible degree of this polynomial equations is four
because the Inverse Kinematic Problem of the positioning of non-redundant open-chain robotic systems
has at most four solutions, as it was shown in Section 2.2.

Table 5. Possible types of polynomial equations that can be encountered when solving the final basis.

Type Degree Polynomial

Lineal 1 a1x + a0 = 0
Quadratic 2 a2x2 + a1x + a0 = 0

Bi-Quadratic 4 a4x4 + a2x2 + a0 = 0
Quartic 4 a4x4 + a3x3 + a2x2 + a1x + a0 = 0

The lineal and quadratic equations that our procedure encounters are solved by the very well
known algorithms for these types of polynomials. The bi-quadratic polynomial equation is solved as
two concatenated quadratic equations. In addition, finally, the quartic equations that the developed
procedure may encounter are solved using Salzer’s algorithm [30]. It is important to highlight that
is not necessary to prepare for the appearance of cubic equations because the solutions of the IKP of
open-chain robotic systems always come in pairs [3].

As was stated before, the variables of the obtained solution correspond to either a prismatic
DoF (qj) or a pair sine–cosine of a rotational DoF (si and ci). Therefore, to finish the IKM synthesis of
the analyzed robot, it is only necessary to compute the final value of the rotational DoFs, using the
corresponding expression of the form presented in Equation (28):

qi = atan2 (si, ci) (28)
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The output of this last step is the algorithm of the systematically generated IKM that solves all
the polynomial equations obtained in the fifth step, implemented in two different languages: C++,
as compiled code ready to be used in the robot’s microcontroller, and MATLAB

R©
script (R2017b,

MathWorks
R©

, Natick, MA, USA). This IKM can be used directly in the robot’s control system, as the
generator of the references for the multi-axis control (see Figure 1), or to simulate the robot’s behavior.

The developed procedure can be used to synthesize the IKM in all the following types of
open-chain robots [31]:

• Cartesian robotic systems.
• SCARA robots.
• Non-redundant robotic manipulators that satisfy the in-line wrist condition, like the PUMA 560

presented in this work.
• Non-redundant open-chain robot whose IKM should only solve the positioning problem, as is the

case of most multi-legged walking robots.

To demonstrate the application of this procedure to multi-legged walking robots, it was also used
to synthesize the IKM of a leg of the hexapod robot shown in Figure 2. As it was said before, the user
just has to give as inputs the D–H parameters of the hexapod, presented in Table 3, the restrictions of
its actuators and a lexicographic order for the monomials. The selected lex order for this IKM is the
one presented in Equation (29), that constitutes the same order in which the variables were solved in
Section 2.2.2.

s2 > c2 > s3 > c3 > s1 > c1 (29)

When the developed procedure is applied to the hexapod’s leg, the output of the fifth step is the
Groebner Basis presented in Equations (30) to (35). The final output of the full procedure, as was also
the case for the PUMA 560, is the IKM for the hexapod’s leg, implemented both in C++, as a compiled
code ready to be used in robot’s microcontroller, and as a MATLAB

R©
script:

−p2
x+[p2

x+p2
y]c

2
1 = 0 (30)

−pyc1+pxs1 = 0 (31)

p5
x+px p4

y+px p4
z+2(p3

x p2
y+p3

x p2
z+px p2

y p2
z)−26224(p3

x+px p2
y)−29360px p2

z+52684800px

+[1644160(p2
x+p2

y)−112(p4
x+p4

y+p2
x p2

z+p2
y p2

z)−224p2
x p2

y]c1+162817600pxc2
3 = 0

(32)

p3
x+px p2

y+px p2
z−14680px−56[p2

x+p2
y]c1+12760pxs3 = 0 (33)

28(p5
x+px p4

y+px p4
z)+56(p3

x p2
y+p3

x p2
z+px p2

y p2
z)+200704(p3

x+px p2
y−px p2

z)−174562304px

+[10304(p4
x+p4

y)+20608p2
x p2

y−p6
x−p6

y−4p2
x p2

y p2
z−3(p4

x p2
y+p2

x p4
y)−2(p4

x p2
z+p4

y p2
z)

+7168(p2
x p2

z+p2
y p2

z)−p2
x p4

z−p2
y p4

z−7463680(p2
x+p2

y)]c1

+[12760(p3
x pz+px p3

z+px p2
y pz)+10003840px pz]c3+714560[p2

x pz+p2
y pz]c1c3

+[116(p5
x+px p4

y+px p4
z)+232(p3

x p2
y+p3

x p2
z+px p2

y p2
z)+181888(px p2

z−p3
x−px p2

y)+71300096px]c2 = 0

(34)

10304(p3
x pz+px p2

y pz)−p5
x pz−px p5

z−px p4
y pz−2(p3

x p3
z+p3

x p2
y pz+px p2

y p3
z)+7168px p3

z+6234368px pz

+489216[p2
x pz+p2

y pz]c1+[357280(px p2
z−p3

x−px p2
y)+280107520px]c3

+[10003840(p2
x+p2

y)−12760(p4
x+p4

y+p2
x p2

z+p2
y p2

z)−25520p2
x p2

y]c1c3

+[116(p5
x+px p4

y+px p4
z)+232(p3

x p2
y+p3

x p2
z+px p2

y p2
z)+181888(px p2

z−p3
x−px p2

y)+71300096px]s2 = 0

(35)

The performance analyses of the two synthesized IKMs are presented in Section 4.
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4. Performance Analysis

The procedure presented in Section 3 was used to synthesize the IKMs of the PUMA 560 robot
and a leg of the BH3-R walking hexapod, both presented in Figure 2. As was previously explained
in Section 3, the output of the developed procedure is the calculated IKM, both in C++ and in
MATLAB

R©
script.

The performance of the two IKMs was simulated in MATLAB
R©

, testing their ability to solve
the Inverse Kinematic Problem in all the workspace of their corresponding robotic systems. All the
obtained solutions for both IKMs were compared with their corresponding reference models that are
the kinematic models calculated by traditional methods (see Section 2).

4.1. Performance Analysis of the IKM Synthesized for the PUMA 560

Figure 7 presents the comparison, in all the robot’s workspace, of the results obtained by the
IKM synthesized for the PUMA 560 and the corresponding reference model. This figure has marked
in green (“Correctly calculated”) all those positions in which the IKM obtains the same amount of
solutions as the reference model and, for all those solutions, the root mean square error (RMS) in the
configuration space is less than 1 × 10−8. This figure proves that the IKM calculated by the developed
procedure successfully computes all the possible solutions inside the PUMA’s workspace.

Figure 8 shows the histogram of the RMS error for all the analyzed points inside the robot’s
workspace. It can be seen in this histogram that the errors for all the solutions computed by our IKM
are completely negligible.
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Figure 7. Performance analysis of the synthesized IKM for the PUMA 560. The left side shows the
isometric view of the PUMA’s workspace, while the right side presents the top, side, and front views
of the same workspace. Marked in green (“Correctly calculated”) are all the the positions in which
the IKM obtains the same amount of solutions as the reference model, with an RMS error lesser than
1 × 10−8. The data show that all the positions of the analyzed workspace are correctly calculated.
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Figure 8. Histogram of the RMS errors in the computations of the PUMA’s IKM. The x-axis presents
a partition of 100 sets of the obtained RMS errors for all the calculated points inside the PUMA’s
workspace, while the y-axis shows the frequency of occurrence of each of these error sets, in a
logarithmic scale. The majority of the obtained RMS errors fall inside the first sets, the ones that
represent less error. It can also be seen that the higher sets still represent a completely negligible error.

The synthesized IKM performance was also tested following a trajectory that covers the majority
of the PUMA’s workspace. Figure 9 presents these tests results, where it can be seen that the outputs
given by our IKM allow the PUMA’s wrist to follow any trajectory, with high precision and a completely
negligible positioning error.

Regarding the computation time of the synthesized IKM for the PUMA robot, Table 6 contains
a summary of the times required by this IKM to follow the previously mentioned test trajectory
(row identified as “IKM”), and compares them with the ones of the reference model (row named
“Ref”). This table shows the maximum (“Max [s]”), minimum (“Min [s]”) and average (“Avg [s]”) times
required to compute all the different positions of the trajectory. It is important to highlight that it is
impossible to achieve computation times that are less than the ones of the reference model calculated
by traditional methods because this model is already composed of equations specially crafted for the
analyzed robot. The computation times of the IKM shown in Table 6 are close enough to the ones of
the reference model, while achieving a negligible positioning error, so it can be concluded that the IKM
synthesized by our procedure is equivalent to this reference model.

Table 6. Computation times of the PUMA’s IKM and its reference model (“Ref.” row), for all the points
in the predetermined trajectory. Column “Avg [s]” presents the average computation times obtained
during the trajectory’s execution (in seconds), while “Min [s]” and “Max [s]” show the minimum and
maximum registered times, respectively.

Mod Min [s] Avg [s] Max [s]

Ref. 0.98 × 10−4 1.16 × 10−4 1.33 × 10−3

IKM 2.20 × 10−4 2.59 × 10−4 1.69 × 10−3
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Figure 9. Trajectory tracking analysis for the PUMA’s IKM. The red dots represent the outputs of the
reference model, for each of the PUMA’s DoFs, when it is supplied with the predetermined trajectory,
while the continuous blue lines are the IKM’s outputs for that same trajectory. The upper left figure
presents the computed outputs for the first DoF (q1), the upper right one corresponds to the second
(q2), while the bottom figure are the ones for the third DoF (q3). The data show that the IKM’s outputs
follow the ones of the reference model, with high accuracy and a negligible error along all the desired
trajectory, in the robot’s three DoFs.

4.2. Performance Analysis of the IKM Synthesized for the Hexapod’s Leg

Figure 10 compares the results obtained with the IKM synthesized for the hexapod’s leg and
those of the corresponding reference model. This figure shows that the calculated IKM successfully
computes all the possible solutions inside the workspace of the hexapod’s leg, while also finding all
the singularities of the leg’s mechanism, marked by the red circles (“Singularities”). These singularities
are located in the axis defined by the intersection of the planes X = 0∩Y = 0.
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Figure 10. Performance analysis of the synthesized IKM for the hexapod’s leg. The left side shows
the isometric view of the leg’s workspace, while the right side presents the top, side, and front views
of the same workspace. Marked in green (“Correctly calculated”) are all the the positions in which
the IKM obtains the same amount of solutions as the reference model, with an RMS error lesser than
1 × 10−8. The red circles correspond to the singularities of the leg’s mechanism that are correctly
identified by the synthesized IKM. The data show that all the positions of the analyzed workspace are
correctly calculated.

Figure 11 shows the hexapod’s IKM performance following a trajectory. As shown, the outputs
given by our IKM allow the hexapod’s leg to follow any trajectory with a negligible positioning error.

Table 7 contains a summary of the computation times required by the hexapod’s IKM to follow
the test trajectory (row identified as “IKM”), and compares them with the ones of the reference model
(row named “Ref”). As it happened in the PUMA’s case, these times are close enough, while also
achieving negligible positioning error. Thus, it can be concluded that the hexapod’s IKM, synthesized
by the developed procedure, is equivalent to the reference model.

Table 7. Computation Times of the hexapod’s IKM and its reference model (“Ref.” row), for all the
points in the predetermined trajectory. Column “Avg [s]” presents the average computation times
obtained during the trajectory’s execution (in seconds), while “Min [s]” and “Max [s]” show the
minimum and maximum registered times, respectively.

Mod Min [s] Avg [s] Max [s]

Ref. 0.98 × 10−4 1.23 × 10−4 1.50 × 10−3

IKM 2.19 × 10−4 2.68 × 10−4 3.69 × 10−3
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Figure 11. Trajectory tracking analysis for the hexapod’s IKM. The red dots represent the outputs of
the reference model, for each of the leg’s DoFs, when it is supplied with the predetermined trajectory,
while the continuous blue lines are the IKM’s outputs for that same trajectory. The upper left figure
presents the computed outputs for the first DoF (q1), the upper right one corresponds to the second
(q2), while the bottom figure is the one for the third DoF (q3). The data show that the IKM’s outputs
follow the ones of the reference model, with high accuracy and a negligible error along all the desired
trajectory, in all three DoFs.

5. Future Work

After proving that the developed procedure can be successfully employed to synthesize the IKMs
of a multi-legged walking robot (Lynxmotion’s BH3-R hexapod) and a non-redundant manipulator
with an in-line wrist (PUMA 560), the next logical step is to extend the procedure to also cover the end
effector’s orientation, in order to complete the calculation of the full pose of all types of non-redundant
robots. It is important to highlight that the extension to the generic 6R manipulator will present
more than four solutions, and therefore it will not be possible to find an analytical solution, like it
was done in this project. That case will surely require the application of numerical methods to find
the final solution. However, all the cases of non-redundant manipulators that have an in-line wrist,



Appl. Sci. 2020, 10, 2781 20 of 22

non-redundant multi-legged walking robots, Cartesian robotic systems, and SCARA robots would still
have analytical solutions, as it was shown in this work.

Another proposed future work is the extension to redundant robots, to fully cover all the spectrum
of open-chain robotic systems. The application of Groebner Basis theory to a redundant robot will
surely produce an underdetermined equation system that has infinite solutions. The final solution of
these types of equation systems will require the application of kinematic restrictions, such as Lagrange
multipliers, as is common for redundant robotic systems.

6. Conclusions

This project presents a procedure that applies the Groebner Basis theory to synthesize the IKM of
non-redundant open-chain robotic systems. The IKM calculations are performed in a systematic
way that do not require any special knowledge of the robot’s mechanical structure, besides its
Denavit–Hartenberg parameters and the movement range of its actuators. The procedure’s output is
the IKM, both in C++ and as a MATLAB

R©
script, which can be used directly in the robot’s control

system or to simulate its behavior.
The performance analysis presented in Section 4 shows that the synthesized IKMs are totally

comparable, both in precision and computation time, with the kinematic models calculated by
traditional methods. This implies that the developed procedure represents a systematic solution
to the Kinematic Problem of non-redundant open-chain robotic systems that is independent of the
robot’s mechanical structure or its geometry.

The IKMs synthesized in this work showed how the developed procedure can be applied to
non-redundant manipulators that satisfy the in-line wrist condition, such as the PUMA 560, as well as
multi-legged walking robots, like the Lynxmotion’s BH3-R hexapod. However, it can also be applied to
all Cartesian robotic systems and SCARA robots, covering a large range of open-chain robotic systems.
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