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Featured Application: The article gives a detailed description on how to implement a custom
force control for collaborative robots without knowing all the internal parameters. The
methodology presented can be used in any manufacturing process capable of being carried out
by a collaborative robot.

Abstract: Due to the elasticity of their joints, collaborative robots are seldom used in applications
with force control. Besides, the industrial robot controllers are closed and do not allow the user to
access the motor torques and other parameters, hindering the possibility of carrying out a
customized control. A good alternative to achieve a custom force control is sending the output of
the force regulator to the robot controller through motion commands (inner/outer loop control).
There are different types of motion commands (e.g., position or velocity). They may be implemented
in different ways (Jacobian inverse vs. Jacobian transpose), but this information is usually not
available for the user. This article is dedicated to the analysis of the effect of different inner loops
and their combination with several external controllers. Two of the most determinant factors found
are the type of the inner loop and the stiffness matrix. The theoretical deductions have been
experimentally verified on a collaborative robot UR3, allowing us to choose the best behaviour in a
polishing operation according to pre-established criteria.
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1. Introduction

In the next few years, a significant increase in the number of industrial robots is expected. The
prediction of the International Federation of Robotics (IFR) [1] is that between 2020 and 2022, nearly
two million new industrial robots will be installed in factories around the world. However, despite
this high demand, the robots are not useful for many manufacturing tasks today —in particular, those
found in small and medium enterprises. A goal for the next generation of smart factory floors is to
bring humans and robots closer together, working efficiently and collaborating safely [2].

Commonly, industrial robots are used in applications of low contact forces, such as material
handling, welding, assembly, and painting. Nevertheless, in the last few years, industrial robots have
been used in many applications of high interaction, such as milling, drilling, threading, and cutting.
Also, they have been used to perform surface finish tasks such as grinding, brushing, polishing, and
deburring [3].
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On the other hand, the use of collaborative robots (cobots) has increased in recent years. The
high productivity, flexibility, and quality of cobots, together with their low cost and high levels of
safety, making them a perfect alternative in interaction tasks. However, the disadvantages of these
robots are their lower stiffness compared with traditional ones. Their stiffness is lower because their
joints usually contain harmonic drives. These have a safe and reliable power transmission with high
reduction and low weight. However, they add more elasticity to the joints of the robot. The high force
produced in the contact, combined with the low stiffness, generates deflections in the end effector,
causing position errors and vibrations [4,5].

In the last few decades, many studies have been carried out in the area of force control using
robots with elastic joints. One of the first relevant works [6] uses a corrective control for the singular
perturbation model and the integral manifold technique to develop an inner/outer control. Where the
inner loop is linearizing feedback control, and the outer loop can be implemented with the typical
rigid robot force controls, as impedance control or hybrid position/force control. In the articles of Ren,
T. et al. [7] and Ajoudani, A. et al. [8], the authors use the joint elastic torques to decouple the joint
actuators and perform an impedance force control. The works in Magrini, E. et al. [9], Ahmad, S. [10]
and Goldsmith, P. et al. [11] use a torque-controlled system to make a hybrid position/force control.
Finally, a sliding mode control, adaptive control, and robust control have also been used as a solution
to force control [12-15]. These techniques, in general, assume that the dynamic models of elastic joint
robots are precisely known. Also, they assume the user can access the torques of the motors, which
is not usually the case in commercial robots. Besides, the desired trajectory must be derivable at least
four times, and the acceleration of the robot must be measured. However, in many commercial robots,
the acceleration and the dynamic parameters cannot be obtained.

Other researchers have developed force controllers without knowledge of dynamics, such as the
works found in Ma, Z. et al. [16] and Huang, L. et al. [17]. Nevertheless, the robot control with elastic
joints requires measurements of the whole state of the system as the motor side angles, the link side
angles, and the torque of the joints. These measures are difficult to get them in a commercial robot.

Commonly, commercial manipulators do not allow direct access to the actuator torques;
therefore, a torque-based control cannot be used. However, most commercial manipulators have
built-in position controllers. Some also have the possibility of velocity regulation. In these cases, it is
possible to achieve a force control by using inner/outer controllers that consists of an inner
position/velocity loop plus an outer force control loop. The external loop provides a reference
position/velocity to the inner loop. Examples of inner/outer force control loops on rigid manipulators
can be found in the works of Chiaverini, S. et al. [18], Winkler, A. and Suchy, J. [19], De Schutter, ]. et
al. [20] and Neranon, P. and Bicker, R. [21].

An advantage of the inner/outer loop is that this control does not need to know the dynamic
parameters of the robot [20]. The errors in the dynamic model can be modelled as force disturbances.

Some researches apply the inner/outer algorithm directly to the robot motion control. This has
the advantage of executing the task relatively straightforward [22-24], while others develop a macro-
mini manipulator, where the robot is the macro manipulator, and a special end-effector is the mini
manipulator or active device [25-27].

As collaborative robots are lighter and cheaper, the use of mini manipulators does not appear to
be an available alternative. The mini manipulator requires the development of another and specific
mini controller to each process. This method requires actuators, power amplifiers, active control
devices, and algorithms. They are expensive and relatively difficult to implement. Besides, a specific
device generates less stiffness and raise weight in the end effector [28].

According to the above, this article proposes the analysis and experimentation of a force control
with an inner motion loop on collaborative robot arms. The methodology implemented allows us to
demonstrate the possibility for cobots to perform a force control, although the internal parameters of
the robot remain unknown. This work proves the application of these control in a polishing operation.
Additionally, the analysis proposed considers the effect of the stiffness in the robot when it is used
in force tasks with an inner/outer control loop.
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This article is structured as follows. Section 2 presents the dynamic model for robots with elastic
joints. Section 3 describes the inner/outer control loops with their advantages and drawbacks. Then,
Section 4 shows an analysis of the possible inner loops and how the inner loops can affect the response
of the force control. Section 5 shows the methodology, experimental platform, techniques used, and
task planning. Section 6 exposes the results and discussion of the experiments performed with a
commercial collaborative robot. In this section, the inner position loop and the velocity loop are
compared. Besides, different algorithms for outer loops are contrasted. The best inner/outer loop is
applied in a polishing task. Finally, Section 7 collects the conclusions.

2. Description of Dynamic Model for a Robot with Elastic Joints

Under the assumptions in Zollo, L. et al. [29], the dynamic model of a robot with elastic joints
can be expressed as

M@ + €(q.9) + G(q) + K,(q—6) + Foq + D(q—0) =—J"(9f, (1)

BO + K, (0—q) + Fg0 + D(6—q) =T, (2)

where q, q, and ¢ are the (nXx1) vectors of position, velocity, and acceleration of links,
respectively. 0, 0, and 6 are the (n x 1) vectors of positions, velocities, and accelerations of
motors. M(q) is the (n X n) robot link inertia matrix, €(q,q) is the (n X 1) vector of centrifugal
and Coriolis torques, K, is the (nxn) diagonal matrix of joint stiffness coefficients, G(q) is
(n x 1) vector of gravitational torque, and B is a (n X n) constant diagonal matrix, including the
rotor inertia in the gear ratios. F,, Fg, and D contain, in this order, the viscous coefficient in the link
side, the viscous coefficient in the motor side, and the damping of the elastic springs at the joints.
isthe (n X 1) input vector of driving torques, f isthe (n X 1) vector of contact force exerted by the
end effector on the environment, and J(q) is the Jacobian matrix that relates joint velocities ¢ with
the vector of end-effector velocities, x. The Jacobian is assumed to be non-singular. The transpose of
the matrix, J7(q), also relates the end effector force with the joint torques.

x=J(@q, (©)

t=J"(@f, (4)

For analysis purposes, the environment is modelled as a frictionless and elastically compliant
plane, which is very common in force control [18,29,30]. One contact point is considered, and the
contact force is expressed as

f = Ke(x - xe)/ (5)

where x is the end-effector position, x. is the position at the contact point, and K, is the constant
symmetric stiffness matrix of the environment.

3. Inner/Outer Control Loops

Among the main benefits of the force control with inner/outer loops are that the dynamics and
kinematics of the robot are included through the inner loop. In addition, this control is easy to
implement because only the outer control loop must be regulated. Also, sometimes, this control
strategy is the only possible way to perform a custom force control.

On the other hand, the inner/outer loop has some disadvantages. There are limitations in the
robot command set—for example, some robots do not have velocity commands. There is a lack of
information about the inner loop, control type, and control parameters. There is no possibility to
access the input of the torques directly, which makes it impossible to implement a force control in a
robot that applies inverse dynamic methods [6,9,31].

The stiffness of the environment is a very important factor in the performance of the interaction
tasks. Therefore, it is necessary to know this parameter to have better force control.



Appl. Sci. 2020, 10, 4329 4 of 24

The sampling period of the inner loop, established initially for position control, could be too
slow for force control. Some functions necessary for control (e.g., the Jacobian matrix) cannot be
implemented using the set of commands. Due to the sampling period, if the external loop is
implemented through an external computer, there will be communication delays.

The general block schemes of the typical configurations of inner/outer loops, with an inner
position loop and an inner velocity loop, are shown in Figure 1. The force of environment f,
measured with the force sensor is compared with the desired force f,. After that comparison, force
error ey is generated. This error is used by the force controller to produce the reference of absolute
position x; (Figure 1a), incremental position Ax, (Figure 1b), or velocity i, (Figure 1c).
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Figure 1. Force control with inner motion loops (a) with inner absolute position loop, (b) with inner
incremental position loop, and (c) with inner velocity loop.

In the three schemes, it has been assumed that the internal controller compensates nonlinearities
of the process. In the diagrams, the only difference between position and velocity lies in the
integrator, which is not included in the inner loop for the velocity controller. However, there are
crucial differences not reflected in the graphs.

The parameters of the controllers can differ for position and velocity control. Thus, it could be
necessary to implement different external loops depending on the inner controller. Also, the stiffness
matrix is not the same in the three cases.

The external force loops are not limited by the set of motion commands of the robot. In recent
decades, many authors proposed several types of general algorithms for outer loops. Table 1 shows
some of the most relevant, where u is the control action applied over the inner loop, f4 and f are
the reference and measured force, respectively. fa and f are the reference and measured derivative
force, respectively. K, fr Kag, and K if are the gain matrices of the proportional, derivative, and
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integral control, in this order. K,y is the gain matrix of the velocity feedback damping, x is the
cartesian velocity, and FF is the feedforward action.

Table 1. Typical control action for outer force loops.

Algorithm Control Action
Proportional Derivative—PD u=Ky(fa—f) + de(fd - f), 6)
Proportional with Velocity feedb—PV u=Kyr(fa—f) — Kysx, 7)
Proportio—Integ—Derivat—PID wu=Ky(fa—f) + Kaf(fa— ) + Kif [(fa— Pdt, 8)
Proport10nalfee12£e§r1§illvw1th Velocity w =Ky (fa— ) - Kog + Kiy [(Fa— f)dt, ©)
Proportional with Feedforward —P + FF u=FF + K, (fa—f), (10)

As can be read in Neranon, P. and Bicker, R. [21], PD and PID controls are usually replaced by a
PV or PIV controls due to the high noise produced by the force sensor, which makes the use of a
derivative control impracticable.

As itis known from control theory, the integral control action guarantees zero error if the system
is stable. However, it brings some problems like potential stability loss, wind-up, and slow
convergence. Additionally, in force control, if the sampling period is slow, the integrator does not
eliminate the error, as it will be demonstrated in the experimental part of this paper. For these reasons,
the use of an integrator should be considered for every case.

One of the main problems in force control is the change from free to constrained movement. This
transition phase, also called impact, is probably the most critical part of the task. This difficulty could
lead to the need for the use of different regulators in each phase. In Zotovic, R. and Valera, A. [32], a
single valid controller for force control and impact control is proposed. First, the controller is set to
perform speed control in free movements and force control in constrained movements. It avoids the
need to switch regulators and their associated problems. Second, they proposed switching off the
proportional constant and the feedforward to attenuate the impact. Therefore, the stability of the
system is improved through a better dissipation of energy.

In Siciliano, B. et al. [33], researchers studied two cases of external loops for different inner loops.
For an inner position loop, the authors proposed an external PV force controller. For an internal
velocity loop, the authors proposed just a proportional, P, force control for the outer loop. The authors
deduced that a proportional regulator of external force, with a proportional regulator for the inner
velocity loop, reaches the reference force in a finite time. However, this does not happen with the
inner regulator by position. For this reason, it is necessary to add an integrator in the force loop. It is
known that this reduces bandwidth and stability margin.

4. Analysis of Inner Motion Loops

The inner loops are implemented inside robot controllers. In most commercial robots, the details,
such as dynamics parameters, gains, and algorithms of the inner controller, are not available for users.
However, today, most of the robot controllers compensate for the nonlinear dynamics or, at least, the
effect of gravity. The force control tasks are usually performed at very low velocities and
accelerations. Thus, the inertia, centrifugal, and Coriolis forces have less influence than gravity force.

As stated previously, the inner control may be a position loop or a velocity loop. Several authors
have used different forms of inner loops. All of them had to use Cartesian commands. Some used
absolute position commands [21,34]. Zeng, G. and Hemami, A. [35] used position increments instead
of absolute positions, and in the works of Magrini, E. et al. [9] and Han, D. et al. [30], the authors used
inner velocity loops. It should be emphasized that some robot controllers do not have cartesian
velocity commands, so this option is not always available.

An essential feature for the force control in a robot is the cartesian stiffness matrix. This matrix
determines the deviation of the robot from the nominal trajectory, under the effect of external forces.
The expression for this matrix depends on several factors. First, it is influenced by the location of the
position/velocity sensor for the feedback of the inner loop. It may be located on the motor (a typical
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configuration for rigid robots) or on the link (for the elastic ones). The cartesian stiffness matrix is not
equal in all the working range of the robot. It may be essential to know the expression for the stiffness
matrix to deduce where to perform the task, what will be the errors, etc.

Another important factor is how the inner loop coordinate transformation is performed. The
force control must be programmed in cartesian space. However, the motors are controlled in joint
space. Thus, cartesian coordinates must be transformed into joint coordinates. This can be
implemented in two ways, through the Jacobian inverse method or the Jacobian transpose method.
Thus, the control action of the inner position loop can be computed with these two methods by the
robot controller [33].

In the first case, the first step is to compute the cartesian position error and use the Jacobian
inverse to transform it into joint coordinate errors. Then, the control action is carried out. In the
second case, the regulator is applied directly to the cartesian position error. The result is multiplied
by the Jacobian transpose to obtain the input torques of the motors. These two possible
configurations, called Jacobian inverse control and Jacobian transpose control, can be seen in Figure
2.

X4 Ax Aq - q & Ax = f q
1 Matrix d Matrix T
— J (@ Gain || Robot —>+®—> canlll J' (@) | Robot
Xe Direct Xe Direct
Kinematics Kinematics
a) b)

Figure 2. Block schemes of operational space control (a) with Jacobian inverse and (b) with Jacobian
transpose.

In Section 4.1, the cartesian stiffness matrix is analysed depending on the location of the
position/velocity sensor, and the type of inner loop. Section 4.2 will study the effect of different
combinations of inner and outer loops, as well as the way they communicate. The external loops were
given in Equations (6)—(10). The inner loops will be position and velocity, both with Jacobian inverse
and Jacobian transpose. For the position inner loop, cases of absolute and incremental positions will
be considered. For each one, the steady-state error and stiffness matrix will be deduced.

The analysis of the inner loops allows to understand how they can affect the force response, and
in this way, to deduce what inner loop should be applied in the robot to ensure better performance
in the interaction task.

4.1. The Stiffness Matrix

In force control, the interaction forces may cause deviation of the end-effector from the nominal
trajectory. There are two different reasons. First, the external forces produce mechanical deformation
of the gears. Second, the external forces induce a deviation of the motors from their reference path.
The first case depends on the mechanical robustness of the robot. The second case depends on the
controller.

The mechanical deformations occur in joint space. Regarding the controller, it can be
implemented in both joint and cartesian space. The effect on the error will be different in the two
cases.

The joint stiffness matrix is defined as the relation between the deformation of the joints and the
applied torque,

T = K4Aq, (11)

where 7 is the vector of motor torques, K, is the diagonal stiffness matrix, and Aq is the vector of
differences between actual joint and reference positions.

The force control tasks are programmed in the cartesian space. Thus, for a good performance, it
is crucial that the robot deviates from the nominal cartesian trajectory as little as possible. The
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cartesian stiffness matrix describes the relationship between the deformations and the force in all the
cartesian directions. It is highly recommended to have higher stiffness in order to avoid errors. The
opposite phenomenon of stiffness is called compliance.

The robot cartesian stiffness matrix, K,, was first introduced in Salisbury, J. [36] as

K. =]T(@(K,)] (@), (12)

where J(q)™" and J(q)™! are the Jacobian transpose and Jacobian inverse, respectively.
Next equation relates the cartesian position deviations and the external force vector,

f =K, Ax. (13)

It should be noted that the Jacobian matrix of the robot depends on its position and, therefore,
the cartesian stiffness matrix, too.

In reference [37], researchers introduced the conservative congruence transformation—Equation
(14)—giving an improved version of the cartesian stiffness matrix,

K, =JT(@(K,— K,)] (@), (14)

T
where K g = [% f] is the additional stiffness term, caused by the variation of the Jacobian matrix
n

and the external force vector.

The part of the stiffness due to the mechanical deformation of the gears is called passive stiffness.
It is always expressed in cartesian space. In this study, it is referred as joint stiffness. The part due to
the deviations of the motors is called active stiffness and can be modified by the adequate adjustment
of the controller. It can be expressed in cartesian or joint space, depending on the way the control is
made.

The works of Salisbury, J. [36] and Chen, S. and Kao, I. [37] were made for classical, rigid robots.
These robots usually have only one position sensor per motor. It is located on the motor side and not
in the link because the measured position has a higher resolution. It is assumed that the position of
the motor and the link are equivalent. It is considered that there is no deformation of the gears, which
may be corrected by the position control. However, in force control tasks, the deformations cannot
be neglected.

On the other hand, the robots with elastic joints usually have two position sensors (encoders)
[38]. The first encoder is on the motor side, and the second one is on the link side, as shown in Figure

3.
Link Position
8 Sensor
A

Harmonic Drive
Gear Unit

Motion Position Sensor
included in the Motor package

Figure 3. The joint module of the Light WeigthRobot III, adapted from Institute of Robotics and
Mechatronics of German Aerospace Center (Deutsches Zentrum fiir Luft-und Raumfahrt-DLR)[38].
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This way, it is possible to control as feedback the position of the motor or the position of the link.
Besides, the motor or the link velocities can be controlled, too. Thus, there are several possibilities:
motor position control, motor velocity control, link position control, link velocity control, or a
combination of them.

4.1.1. Motor Position

Considering the robot dynamics, Equations (1) and (2) in a steady-state and an input control in
the motor side, we have

K(q-6)=-J'f, (15)

K@ —q)=1t=K,5(0,—6), (16)
where 6, is the desired motor position, and K,q is the proportional gain matrix of the motor
position control. Solving for 8 from Equation (16),

0=0,-K,5t=0,—-K,3]"f. (17)

Replacing (17) in (15) and solving for q, we have
q=0—-KY'f=0,—(Kys + KIS, (18)
Therefore, the link positions will be affected by an equivalent stiffness that is influenced by the
passive stiffness, K ~1 and the active stiffness of the motion control, K;el. Since the motor and link

positions are equivalent and assuming the reduction factor N = 1, we can consider that 84, = q4. For
small deformations, Ax and Aq can be related,

Ax = J(q)Aq =J(@)(64 — @). (19)
Then, the cartesian stiffness matrix is
_ _ 1\ 1,_
szézl T(erl + K 1) ] 1. (20)

Hence, in this case, the active and passive stiffnesses are equivalent.

4.1.2. Link Position

Considering the robot in a steady-state and input control (position sensor) in the link side, we
have

K(q-6)=-J'f, (2D

K(6—q) =7 =Kpy(qa—q), (22)

where q4 is the desired link position, and K, is the proportional gain matrix of the link position
control. Solving for q from Equation (22),

q=qa—Kpqt=q4—K;3J"f, (23)
therefore, the link positions will be affected only by the active stiffness of the joint motion control,
K4 The stiffness matrix will be

Ky =L =Kyt (24)

Ax

4.1.3. Link Velocities

In the case of link velocity control, there is a possibility of finding stiffness effects depending on
the type of control. Considering the control input, 7, as a proportional-integral with gravity
compensation, G(q),

T=Kpg(Ga— @ + Kig [(qa — dt + G(q), (25)
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where 4 is the desired link velocity, K4 is the proportional gain matrix, and Kj; is the integral
gain matrix of the velocity control.
The integral term can be analysed as a proportional term regarding the position.

T=K,4(qa— @) + Kiq(qa — @) (26)
Considering the robot dynamics, Equations (1) and (2) and the input in a steady state, we have
K(q-6)=-J'f, (27)
K@ -q) =T, (28)
T=Kpsqa + Kig(qa — @. (29)

Solving for q from Equation (29),
q4=0q + Ki'(Kpq@a—7) = 94 + Kij'(Kpe@a —J'f). (30)

Ordering the equation,

f=1"(Kig(@a— @) + Kpgla) =] T (Kig) '(xqa — %) + Kpadya). (31)

Hence, the cartesian stiffness matrix of the robot will be,
K,=]"KyJ™" (32)

The term J 'K pqda acts like a bias. It means, for zero external force f, the robot will have some
deformation. Therefore, the integral control acts like active stiffness and the proportional control as
a bias. If the velocity loop does not have an integrator, just like a proportional control, the control
action will be.

T= qu(iId - q)r (33)

f = ]_Tqu(‘.Id - q) = ]_TquiId _]_TquiI/ (34)

The first term acts like bias and the second one as damping. Thus, there is no active stiffness.
The system will behave like a mass-damper under an external force. The final state will be achieved
when the robot stops (q = 0).

f = _]_Tquqd/ (35)
which means, that the reference velocities, ¢4, should be
qa = —J"Kpif- (36)
This corresponds to an open control loop, theoretically without force error.
In summary, if the velocity loop has an integrator, the integrator acts like active stiffness in the

joint space and the proportional control as bias. In the case, it does not contain an integrator; if no
stiffness term appears, then the exerted force is proportional to the reference velocity.

4.2. Absolute Cartesian Position Inner Loop

In the following subsection, we will make the convergence analysis of the force for the case when
the external loop sends the absolute reference position to the controller. In the deduction, we will use
the proportional-derivative and the proportional-derivative with feedforward as external loops. The
proportional-integral-derivative will not be studied since it guarantees zero error if the system is
stable.

Regarding the inner loops, both possibilities—Jacobian inverse and Jacobian transpose —will be
contemplated. Every combination of inner and outer loop will be studied. The deductions of the
formulae will be omitted for briefness. Only the final results will be presented.
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4.2.1. Jacobian Transpose

Considering the motion control as PV with gravity compensation. In this case, the error is in
cartesian coordinates. Thus, the input torque is

="Ky (xa— %) + G(q), (37)

where K, is the proportional gain matrix in cartesian space.
Replacing Equation (37) in dynamics, Equations (1) and (2), and resolving for steady-state force
f ., the following expression is obtained:

fo = (I + KpeKo1) ™ (Kpexg — Kpyxe), (38)

The force will be influenced by the passive stiffness of the environment, K1, and the active
stiffness of the motion control, K,,, as well as the position of the environment, x,. Typically, these
values are unknown. However, the value of K, is uniform in all the working range of the robot.

4.2.2. Jacobian Inverse

In this case, the error is in joint coordinates. Therefore, the inner control torque input is

1= Kpo(qa—a) + 6(@), (39)

where K, is the gains matrix of the proportional control in the joint space.
Replacing Equation (39) in dynamics and resolving for steady-state force, we have

fo = (I + RpKo?) " (Rpuxa — Kpaxe), (40)

where K,, =] TK,,J ! is the active stiffness in cartesian space, which is calculated through the
coordinate transformation expressed in Equation (12).

The force will be influenced by the passive stiffness of the environment, K, 21, and the active
stiffness of the motion control, K, as well as the position of the environment, x,. Typically, these
values are unknown. However, the value of K px 1S not uniform in all the working range of the robot.

4.2.3. Implications

The main difference in these methods is that the Jacobian inverse matrix, J~!, and Jacobian
transpose matrix, J~7, appear in the term K, due to the transformation of the active joint stiffness
into the cartesian space. This transformation of coordinates implies that the Cartesian stiffness
depends on the actual position where the robot is, so it will not be constant during a given trajectory.

It should be noted that the force also depends on the x4 input reference coming from the
possible outer loops. Therefore, in Table 2,the final value of the steady-state force, f., in both cases,
is obtained by replacing x, with one of the outer algorithms already exposed in Table 1.

Table 2. Response force of the control force with absolute position inner loop.

Jacobian Outer
teady-State F
Case Algorithm Steady-State Force
_1\—1
Jr PV foo=(I + KpSpKps + KpeSpK')  (KpuSrKpsfa — KpaSpxe),  (41)
-1
I P+ FF fo=( + KpSiKps + Kp,StK.') (KpxSiKpsfa + KpyFF — 42)
KPxSfxe)/
- = = IPTES P IS
J PV fo=(I + KpxSyKpr + KpuSpKS)  (RKpuSpKppfa — KpaSpxe),  (43)
- - PR P -
= P+ FF foo=(I + KpSeKpp + Kpjstel) (KpxSeKpsfa + Ky FF — (44)

K,iSpxe),
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Here, S; is the selection matrix of the force direction, K of 18 the compliance matrix of the force
control, and I is the identity matrix.

The feedforward of the reference force eliminates the error in rigid robots, which have the
possibility to access directly to the motor torques. However, the elasticity of the environment and the
inner loop introduce an error. For the case of Jacobian transpose, to obtain zero error, the feedforward
should be

fo=Ffa ©FF=(SK;' + K,})fa + S;xe, (45)
and for the case of the Jacobian inverse,
fo=Fa © FF=(S;K;* + K;})fa + Ssxe, (46)

In Table 2, the final value for the steady-state force depends on the characteristics of the
environment, as its position (x,) and stiffness (K;1). Thus, there will be a force error in steady state,
unless those values are known with exactitude to be compensated.

It is crucial to notice that, in outer loops with feedforward action, it is possible to obtain a zero-
force error. To achieve this, the reference force must have the value given by FF term. In the case of
Jacobian transpose, the feedforward action depends on the environment and the proportional gain
of the cartesian position control. In the other case (Jacobian inverse), the control action depends on
the environment, and the proportional gain of the joint control transformed into cartesian space.
Therefore, it is necessary to know the Jacobian matrix to calculate the stiffness in each sampling
period. In summary, in all the versions of the absolute cartesian position control, the characteristics
of the environment (stiffness and position) appear. To achieve good tracking, these magnitudes must
be known. Moreover, for the inner loop with Jacobian transpose, the force control is uniform in all
the working range. For the Jacobian inverse, it is not.

4.3. Incremental Cartesian Position Inner Loop

In the case of cartesian position control, we have another alternative to give a reference to the
control. We can give the incremental difference Ax, instead of x4.
4.3.1. Jacobian Transpose

The calculated steady-state force depends on the product of the gain matrix of the cartesian
proportional control and the desired incremental position.

foo = KpxAxy, (47)

4.3.2. Jacobian Inverse

In this case, the calculated steady-state force depends on the product of the gain matrix of the
joint proportional control transformed into cartesian space and the desired incremental position.

fo = Kpxbxy, (48)

4.3.3. Implications

As in the case of absolute position loop, in the Jacobian inverse method, the stiffness matrix must
be determined through the transformation of the proportional gain from the space of the articulations
into the cartesian space of the end effector. However, it should be noted that, in an incremental
position loop, the force will not be affected by environmental conditions.

Table 3 shows the steady-state force obtained by replacing Ax; by the algorithms exposed in
Table 1.
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Table 3. Response force of the control force with incremental position inner loop.

Jacobian Out.er Steady-State Force
Type  Algorithm
J’ PV fo= (I + KpuSiKpr) " (KpeSiKprfa), (49)
JT PV +FF Fo = (I + KpuSiKpp) " (KpuSpKpsfa + KpuFF), (50)
J 1Y fo= (1 + RpxSprf)_1(RpxSprffd)' (51)
J PV + FF foo = (I + RpuSiKpp) " (RpuSpKppfa + K, FF), (52)

Here, Sy is the selection matrix of the force direction and K, is the active compliance matrix
of the force control.
The force control with incremental position loop depends only on the active stiffness of the

position control, K, or K and the active stiffness of the force control, K,f. Besides, the

px/
feedforward action is easier to implement because it only depends on the gains of the position

controls. For the case of Jacobian transpose, to obtain zero error, the feedforward should be

fo=Ffa © FF=K,ifq (53)
and for the case of the Jacobian inverse,
foozfd @Fle’?;J}fd/ (54)

In summary, the incremental position control has an important advantage over the absolute
position control; it does not depend on characteristics of the environment.

4.4. Cartesian Velocity Inner Loop

In the case of the inner velocity loop, the input is considered as a proportional control with
gravity compensation.

4.4.1. Jacobian Transpose
In this case, the input of the inner loop in the cartesian space is
T =] Ky (kg — %) + G(q), (55)

where K,; is the proportional gain matrix of the velocity cartesian control.
Replacing Equation (55) in dynamics and resolving it for steady state, we can calculate the force
as the product of the proportional gain matrix and the desired velocity as

fo = Kpixy, (56)

4.4.2. Jacobian Inverse

In this case, the input in the inner control is expressed in joint space. Thus, the input is
T=Kp(qa— @ + G(q), (57)

where K, is the proportional gain matrix of the velocity joint control.

Replacing Equation (57) in dynamics and resolving it for steady state, we can calculate the force
fo as the product of the proportional gain matrix of the joint control (transformed into cartesian
space) and the desired velocity,

fo = Kpixy, (58)

As can be seen in the Equations (56) and (58), the force in steady state depends only on the active
stiffness of the velocity control. In Equation (56) depends on the cartesian stiffness, K,;, and in
Equation (58) depends on the joint stiffness and the position of the robot due to the Jacobian term

Ky
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4.4.3. Implications

The results of the force obtained replacing Ax, by the algorithms exposed in Table 1 are shown
in Table 4.

Table 4. Response force of the control force with inner velocity loop.

Jacobian Type Algorithm Steady-State Force
-1
I PV fo = + KpiSiKps) KpiSiKpifa, (59)
Jr PV +FF fo= (I + KpiSiKpp)  KpiSKppfa + KpiFF,  (60)
- -~ -1~
J PV fo =+ KpiSiKps) KpiSiKpifa, (61)
! PV +FF foo = (I + RyiS/K, ) " KpiS/Kyfa + K,iFF,  (62)

Here, Sy is the selection matrix of the force direction and K, is the compliance matrix of the
force control.

In both cases, incremental position and velocity loop, it is possible to observe that control with
feedforward action FF will only depend on the gain of the controller and will not depend on the
position and stiffness of the environment. For the case of Jacobian transpose, to obtain zero error, the
feedforward should be

fo=Ffa © FF=K,fq (63)
and for the case of the Jacobian inverse,
foo=fd =>FF=R;J%fdr (64)

Moreover, if the velocity control is a proportional-integral control, the force error in steady state
will be zero.

Summarizing, the incremental position control and the velocity control are very similar.
However, in real robots, they may behave in different ways. There are two main reasons for this. In
one case, the inner loop uses the position proportional constants, while in the other case, it uses the
velocity proportional constants. There is no reason why they should be equal. Thus, the active
stiffness in one case will be higher than in the other. The other reason is that one of the inner loops
(position or velocity) may use Jacobian transpose, while the other applies Jacobian inverse.

5. Methodology

The previous deductions have been verified experimentally. Different control methods have
been tested and compared in practice. With these results, the best combination of inner and outer
loop has been identified. These experiments were carried out through polishing operations.

5.1. Experimental Setup

The physical system employed in this study is shown in Figure 4. The robot used for the
experiments is a UR3 (Universal Robots A/S, Odense, Denmark). This robot arm has a six-revolute-
joints anthropomorphic geometry. The joints are actuated by servo motors via harmonics drive
reduction; two encoders are used in each joint. A magnetic encoder monitors the motor position, and
an optical encoder monitors the link position. A force sensor is mounted on the end effector of the
robot.

The robot has a sampling frequency of 125 Hz or, in other words, a sampling period of 0.008 s.
The force/torque sensor is type HEX-EB165 (OnRobot A/S, Odense, Denmark), with a force range
from 0 N to 200 N and a torque range from 0 Nm to 10 Nm. The sensor has a maximum sampling
frequency of 500 Hz and is directly connected with the robot controller. All the variables, such as
position, velocity, torques, and forces, are sent via ethernet to a computer, where the data are received
every sampling period by an acquisition software implemented in Labview (version 2017, National
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Instruments, Austin, TX, USA). Afterward, these data are processed with Matlab (version 2019,
MathWorks Inc., Natick, MA, USA).

Dremel

Fortiflex Flexible Rotary

Shaft |

Robot UR3

Polishing
N\ Tool B

Force
Sensor
Aluminum
Aluminum Probe
Plate Polyscope
Controller

Figure 4. Experimental setup.

The preliminary experiments were made using an aluminium probe with a spherical tip attached
directly to the force sensor to avoid vibrations. The definitive experiments were made with a common
polishing tool.

Two materials were considered as workpiece—aluminium and a polymer plate—with the aim
to evaluate the force control with different stiffness of the environment.

The tool chuck was driven by a Dremel model FortiFlex 9100 (Dremel Europe, Breda, The
Netherlands) with a flexible rotary shaft. It was installed in the end-effector of the robot through a
custom machined coupling. The final tool was a commercial polishing tool of 130 mm of diameter. It
was composed of a rubber base and a buffing pad.

5.2. Method

To avoid the experimental comparisons of all the combinations of inner and outer loops, in the
first step, we identified the internal loop with the best performance. For these experiments, we used
a proportional force controller for the external loop. As demonstrated later in this paper, the best
results were obtained with an inner velocity loop. In the following step, the behaviours of several
external regulators were compared. The best inner loop identified in the first step was applied.

Regarding the identification of the optimal inner loop, in this work were considered the position
and velocity loops in cartesian space. In the case of the position, both proposals, absolute and
incremental, were treated. Also, in all the cases, the stiffness was evaluated.

Next, we explain the commands used to implement the inner loops. In the case of position loops,
we used the command script movel,

movel(x vector, a, v, t, 1).

where x vector represents the cartesian position to be reached by the end-effector, a is the acceleration,
v is the velocity, t is the time, and radius is the blend radius. This command controls the position in
the cartesian space in each sampling period. If the variable time is specified, the command will ignore
the velocity and acceleration values. In our case, it was necessary to specify a time of 8 ms as a
sampling period. Also, it was necessary to implement an external trapezoidal trajectory generator to
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specify the velocity and acceleration of the movement on the Y-axis. This trajectory generator was
implemented with script commands.
In the case of the velocity loop, we used the command script speedl],

speedl(v vector, a, t).

where v vector represents the cartesian velocity to be reached by the end-effector, a is the acceleration,
and ¢ is the time. This command controls the velocity in the cartesian space. We can indicate a specific
cartesian velocity in each degree of freedom. However, we only can indicate a global acceleration. In
this case, it was not necessary to specify the time because the command was applied in each sampling
period.

Then, the inner loop with the best performance was used with different outer force loops. A
comparison between PD and PV algorithm is shown to study the effect of the damping action in the
interaction task. In addition, the integral control action is compared with the feedforward action, in
order to study which alternative is more appropriate in practical applications. All these results were
obtained using the aluminium probe tool to avoid the vibrations of a real polishing tool.

Finally, a real application is shown. A polishing task was performed with the polishing tool and
with the best force control obtained. The task was performed with and without the force control to
compare results. The gains, applied in the different control algorithms, were determined
experimentally. These values were found after several experiments and analysis of the force response.
The best values of these gains are exposed in this work.

5.3. Task Planning

The trajectory of the task used in the experiments had initially a free movement in the minus Z
direction with constant speed, switching to force control in the Z direction when the measured force
surpassed a threshold of 1 N. The impact control consisted of a proportional gain of less value until
reaching the reference force (5 N or 10 N). When the force reference was reached, the robot started a
controlled movement on the Y direction, maintaining the pressure force over the workpiece surface.
A scheme of the experiments is shown in Figure 5.

Figure 5. Scheme of experiments.

5.4. Stiffness Parameters Identification

The stiffnesses of the joints were identified experimentally. The robot was stopped while the
controller was working. Then different weights of 2 kg, 2.5 kg, and 3 kg were applied on the joints of
the robot. The joint torques and joint positions were measured in the robot. The stiffness of each joint
was calculated through Equation (65). The stiffness values k; of the joints are shown in Table 5.

At;

ki =, (65)

Aq
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where, for each joint, Ar; was the change in the torque value due to the added weights and Aq; was
the change in the position value. As the joints of the UR3 robot have only three sizes [39], it was not
necessary to measure the six joints. Base joint and shoulder joint have the same size, the elbow joint
has the other size, and the three wrist joints have another same size. Then, it was only necessary to
identify joint 5 (wrist), joint 3 (elbow), and joint 2 (shoulder). The three weights were applied to each
joint and the stiffness values were obtained through the mean of the measurements.

Table 5. Stiffness joint parameters.

Joint k1 k2 k3 k4 k5 k6
Stiffness (N/m) 13323 13323 4412 2729 2729 2729

6. Results and Discussions
6.1. The Inner Loops

6.1.1. Absolute Position Loop

In Section 4, it was demonstrated that the performance of the absolute position loop depends on
the characteristics of the environment much more than the others. The worst results were expected
from this loop. This hypothesis was confirmed by the experiments.

The output of the external loop corresponds to the reference position of the robot. In some cases,
this position was not in contact with the environment, which provoked bouncing. High accelerations
were reached. Sometimes, the robot had hard impacts against the piece, and the security measures
were activated, causing an emergency stop.

After several experiments, this type of inner loop was discarded. It was the worst of three.

The plots resulting from these experiments have not been shown in the article. However, we
included this method since we consider that our experience, albeit negative, may be useful to other
people that work in force control.

6.1.2. Incremental Position Loop

Figure 6 shows the force control with an inner position loop applied over two materials: a
polymer (orange lines) and aluminium (blue lines). As can be seen, the force response remains around
the reference force of 5 N for the first 150 s. Concerning the material in contact, the force shows higher
deviations in the aluminium as a result of seizing between same materials.

14

i .
——Fz Aluminum
12 -—-Fz Polymer i

Reference

10 —

Forces (N)

L l l \
20 40 60 80 100 120 140 160 180 200
Time (s)

Figure 6. Force control with inner position loop.
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The force error at the end of the stroke (from 150 s) is mainly due to the changes produced in the
cartesian stiffness. This suggests that the position loop is made with the Jacobian inverse method;
therefore, the stiffness changes due to the change in position and the use of the Jacobian matrix.

A representation of the cartesian stiffness during the trajectory is shown in Figure 7. It was
calculated using the coordinate transformation in Equation (12). In the figure, the force and stiffness
in the Z direction, K, are shown. As can be seen, during the time that the end effector is within the
stable force path, at 5 N, the stiffness K, has the maximum value. However, when the robot is near
the end of the trajectory, the stiffness decreases, generating errors in the force response. If the internal
control gains were known, this effect would be compensated in the control action to avoid the
observed deviations.

5
24t? ‘ : : 10
e et 8
—~ ’ = e
Z el il L z
‘
& / i 2
F T
/ ==Kz 0
L —Fz
1.6 1 1 | L | I 2
0 20 40 60 80 100 120 140 160 180 200

Time (s)

Figure 7. Stiffness analysis in the inner position loop.

6.1.3. Velocity Loop

Figure 8 shows the force control with the inner velocity loop applied over the polymer (orange
line) and aluminium (blue line). As can be seen, unlike the position loop, in the speed loop, the force
is maintained around the reference value throughout the trajectory. Furthermore, it should be noted
that there is no significant difference in the force error between materials. This coincides with stated
in Equation (57), which indicates that the force response does not depend on the environment
stiffness.

8

Forces (N)

——Fz Aluminum
----Fz Polymer
Reference

1 1 | 1 1 1 |
20 40 60 80 100 120 140 160 180 200

Time (s)

Figure 8. Force control with inner velocity loop.



Appl. Sci. 2020, 10, 4329 18 of 24

In addition, the velocity loop is not affected by the position in the trajectory of the robot. This
allows to obtain better results, independently of the position of the robot in the workspace. This
suggests that the velocity loop is implemented with the Jacobian transpose.

6.2. The Outer Loops

This subsection describes the experimental comparative analysis of the several external loops
explained previously. The internal loop used in all the cases was the velocity loop, which
demonstrated the best results.

In force control is not only important tracking the reference force. The oscillations and peaks of
the applied force cause not only uneven polishing but also, a gradual deterioration in the robot
mechanics. For these reasons, this work presents the average force tracking error, standard deviation,
number of peaks, and maximal/minimal value to compare the different external loops.

6.2.1. Proportional Derivative (PD) vs. Proportional with Velocity Feedback (PV)

In Figure 9, we can observe the function of the force derivative (blue lines) and the velocity
feedback term (yellow lines). The proportional algorithm P (orange lines) is used as a reference to
compare the performance of the other algorithms.

8

Forces (N)

0 iidlashhanhli g
(i #&f{* F2PV

0 10 20 30 40 50 60 70
Time (s)

Figure 9. Proportional derivative (PD) vs. proportional with velocity feedback (PV) comparison.

Regarding the response, the classic derivative action of the force control does not present good
results due to the noise in the sensor, which worsens the numerical derivation, generating peaks up
to 34% higher (highlighted as circles) than the pure proportional controller. This is due to the noise
of the sensor and the long sampling period. Thus, the force derivative may change substantially
during a sampling period.

Through the numerical results associated with the graph, the derivative control action
employing the velocity feedback (PV) shows a slight improvement in damping peak force by 30%,
and the PD peaks have a smaller size than in PV and P controls. However, the velocity changes faster
than the sampling period, so its effect is not so observable.

6.2.2. Integral Action (PI) vs. Feedforward Action (P + FF)

In Figure 10, we can observe the function of the integral action and the feedforward of the force
to reduce the error of the system.

Although theoretically, the integral action guarantees a null error, it is not very popular, because
it can have stability problems, wind-up, and slower convergence than a feedforward action.

On the other hand, control with feedforward is challenging to implement since it requires
knowledge of the active stiffness matrix of the position control. In this case, we consider a constant
FF gain for the feedforward action.
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Due to the low sampling period and the fast dynamics of the interaction, both the integral action
and the feedforward action do not guarantee a zero error. However, even using a constant
feedforward, like the one used in Figure 10, P + FF allows to reduce the error from 0.11% to 0.02%.

—FzPI
- - -Fz P+FF

| I 1 1 1 | | |
0 20 40 60 80 100 120 140 160 180 200
Time (s)

Figure 10. Integral action (PI) vs. feedforward action (P + FF) comparison.

6.2.3. Global Results

Table 6 contains the results of force control with velocity inner loop and with various types of
outer loops. It should be noted that FF, K,¢, K, and K, are the gains of the outer force loops. The
table shows the mean, standard deviation, and the error respect to the reference value of 5 N. Also, it
incorporates the maximum and minimum values reached by the force control. Finally, the quantity
of picks outside the range of +1 N are shown.

Table 6. Comparison of outer loops.

o 4 o H

D Ky K Ky ven g e e oe VO
P 0.001 4.9932 0.4445 0.13% 6.9728 3.2728 324 392
PV 0.001 0.03 4.9897 0.4504 021% 6.8789 3.1789 231 420
PD 0.001 0.03 4.9855 0.6097 0.29% 6.9084 2.9084 297 456
PIL 0.001  0.0001 4.9949 0.4484 0.10% 6.8634 3.5634 320 324
PIV 0.001 0.0001 0.03 4.9945 0.4340 0.11% 7.1285 3.4285 204 355
P +FF 1-10° 0.001 4.9990 0.4531 0.02% 6.8982 3.2982 389 341

Table 6 represents the value of the best experiments for every regulator (outer loop). It may be
appreciated that the error is very small for all the outer loops.

According to the theory, PV should be more damped than a simple proportional, albeit it is
slower to converge. According to the experiments, PV control has a slightly worse average error and
standard deviation. However, it has fewer peaks, and they are lower. In the same way, a PD algorithm
is applied. The results show as the derivative action in the force is worse than the feedback velocity
action.

The smallest average error is obtained with P + FF control. However, PI and PIV have better
standard deviation and fewer peaks outside the range of +1 N. It should be emphasized that the
feedforward term was constant in these experiments. The results can be improved by adjusting the
feedforward gain based on the stiffness matrix.

Due to the number of criteria that determine the performance of force control, a prioritization
matrix has been made. The aim of this matrix is determining the most suitable algorithm for the outer
loop. The criteria for evaluating the algorithms are

e A mean close to the reference force;
e A minimum standard deviation;
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e  Fewer peaks above and below the reference force;
e  Lower value of maximum and minimum force.

Furthermore, it is preferable to use algorithms where the adjustment of the gains of the force
control is not dependent on the knowledge of the features of the inner loop.

Table 7 presents a prioritization matrix where the different algorithms are evaluated according
to the criteria above. The weights of the criteria were previously determined, these weights should
be decided according to the final application (in this case, a polishing task). The options were
evaluated with a score from 1 to 5, with 5 being the best score.

Table 7. Prioritization matrix of outer loops.

Mean Std. Deviation ~ N° Picks N°Picks MaxPick MinPick Adjusting

(46%) (19%) >6 N (11%) <4 N (11%) (4%) (4%) Gain (6%)  Total
Pt % Pt % Pt % Pt % Pt % Pt % Pt %

P 4 1.82 5 0.96 4 0.43 4 0.43 4 016 4 016 5 029 425
PV 3 137 4 0.77 3 0.32 5 054 4 016 4 016 5 0.29 3.60
PD 3 137 4 0.77 3 0.32 4 0.43 4 016 3 012 5 0.29 3.46
PI 4 1.82 5 0.96 5 0.54 3 0.32 5 020 5 020 5 029 433
PIV 4 182 5 0.96 4 0.43 5 054 4 016 5 020 5 029 440

P+FF 5 228 5 0.96 4 0.43 2 0.21 5 020 3 012 3 0.18  4.37

The total scores indicate that the use of a PIV algorithm is the most suitable option for this
example. However, the P + FF algorithm is also a good option if the inner loop structure is known.

6.3. Polishing Application

A polishing task was performed to demonstrate the effectiveness of the force control. In Figures
11 and 12, the force measurements for polishing with a reference force of 5N and 10 N, are presented.
For these experiments, we used an inner velocity loop with an outer PIV force loop. The figures
display the measured cartesian forces, the reference force, and the force in Z—direction without force
control.

< R B S B W B B = Fy
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6! Without Force Control
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Figure 11. Polishing with force control with reference force 5 N.

In both cases, the force F, remains stable in both experiments. Forces F, and F, are shown. The
force F, was produced by the friction along the trajectory. The force F, was produced by the radial
force due to the polishing tool. It can be seen as the force F, and F, increase if the force F, increases.
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Figure 12. Polishing with Force control with reference force 10 N.

As can be observed, the force response is better with the polishing tool than with the probe. This
proves that the inner velocity loop is affected by the stiffness of the tool. Further, in Figure 11, it is
possible to observe the polishing task without force control (green line). This demonstrates that
without external force control is not possible to maintain the reference force. Thus, we obtain a poor
surface polish. Table 8 shows the result of the polishing task.

Table 8. Results for polishing task.

Relf(e;irelce Mean Standard Deviation Error Max Min 1\14})9“;(3 1\>I6 /ll’;cllils
5 4.9525 0.2591 0.95% 5.6617 3.9617 1 0
10 9.9666 0.2975 0.33% 11.056 8.4562 33 4
w/o 3.4416 0.5915 31.26% 4.9181 1.6181 8460 0

Table 8 includes values of mean, standard deviation, and error of the force control. Also, since
the polishing tool is more flexible, it allows to obtain smaller measurement errors than the reference.
This effect is reflected in the fewer number of observed picks.

7. Conclusions

In summary, the main goals have been achieved. An analysis of inner and outer control loops
has been made, working with equations oriented to collaborative robots, unlike the proposals made
for rigid robots [18-21]. The study was made with a practical approach to identify the inner loops
when their characteristics are unknown. This is easier to implement than the works in Ma, Z. et al.
[16] and Huang, L. et al. [17] because they measured all the variables of the robot, like torques, motor
position, etc. The article also explains how that information may be used to define the external loop
in order to obtain better results. The importance of the concept of the stiffness matrix, applied to robot
control, has been proved in theory and practice.

After completing the previous steps and making experiments, the absolute position inner loop
obtains the worse results. Theoretically, the incremental position loop and the velocity loops are
equivalent. However, in practice, this equivalence depends on the way the internal loop is
implemented and the gains of the inner control.

According to the way of the coordinate transformation is made by the robot controller (Jacobian
transpose vs. Jacobian inverse), the stiffness matrix changes considerably. The Jacobian transpose
gives a constant stiffness matrix, which causes stable contact force in all the working area of the robot,
while the Jacobian inverse method gives a cartesian stiffness matrix that depends on the joint stiffness
and the position of the robot.
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As a rule, the user does not have the information on the way the inner loop was implemented.
However, it can be deduced experimentally. To prove this, an experimental verification was made
with a UR3 CB3 robot. Despite the limitations of this robot (as slow sampling frequency and low joint
stiffness), the theoretical results have been mostly verified.

Summarizing, the results on the UR3 robot show that the variations in the performance of the
different external controllers are small. Using a PV over a proportional (P) in the outer loop improves
the impacts, while the PD action confirms a worse performance in force control, as observed in the
paper of Neranon, P and Bicker, P. [21]. A feedforward term (FF) achieves better force tracking than
an integrator (PI)—in this case, it is an improvement compared to the methods exposed in the book
Siciliano, B. et al. [33]. However, it has more peaks. It may be enhanced if the stiffness matrix is
introduced. Regarding the inner control, the inner velocity loop gives the best results, probably
because it is implemented using the Jacobian transpose in the UR3.

The force control is affected by the stiffness of the tool, as is the case with the polishing tool,
where its more flexible material lets reducing the number of oscillations obtained during the
execution of the task. This fact decreases the effect of the problem explained in Iglesias, I. et al. [3].

Several problems remain for future works, and three stand out. Experiments should be repeated
with a robot with better performance, such as increased joint stiffness and a faster sampling period,
to prove their influence in the improvement of the force control. The feedforward term should be
implemented considering the stiffness matrix; in this way, the force error can be cancelled. On the
other hand, for outer loops, other types of algorithms could be used, like adaptive control or the
sliding mode.
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