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Feature-specific prediction errors and surprise
across macaque fronto-striatal circuits
Mariann Oemisch1,2, Stephanie Westendorff1,3, Marzyeh Azimi1, Seyed Alireza Hassani1,4, Salva Ardid 5,

Paul Tiesinga6 & Thilo Womelsdorf 1,4

To adjust expectations efficiently, prediction errors need to be associated with the precise

features that gave rise to the unexpected outcome, but this credit assignment may be

problematic if stimuli differ on multiple dimensions and it is ambiguous which feature

dimension caused the outcome. Here, we report a potential solution: neurons in four recorded

areas of the anterior fronto-striatal networks encode prediction errors that are specific to

feature values of different dimensions of attended multidimensional stimuli. The most ubi-

quitous prediction error occurred for the reward-relevant dimension. Feature-specific pre-

diction error signals a) emerge on average shortly after non-specific prediction error signals,

b) arise earliest in the anterior cingulate cortex and later in dorsolateral prefrontal cortex,

caudate and ventral striatum, and c) contribute to feature-based stimulus selection after

learning. Thus, a widely-distributed feature-specific eligibility trace may be used to update

synaptic weights for improved feature-based attention.
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When faced with novel objects we learn about the rele-
vance of their dimensions (e.g., color) and features
(e.g., red), by estimating feature values and improving

this estimate through trial and error learning1,2. Computationally,
this can be achieved by calculating how unexpected an experi-
enced outcome is, and updating value estimates in proportion to
this unexpectedness3,4. In typical reinforcement learning (RL)
models, the unexpectedness is calculated as prediction error
between predicted value and experienced outcome5.

A prominent hypothesis suggests that the degree of unex-
pectedness is guiding the subject’s future attention toward the
specific features that gave rise to an unexpected outcome6,7. The
biasing of attention to those features whose reward prediction is
most strongly violated can optimize sampling of visual
information8,9. Recent evidence supports this view by showing
that attention biases closely follow the distribution of feature
values3,4,10,11. Instead of attending all dimensions of a stimulus
equally, prioritizing dimensions that are most reward predictive,
dramatically enhances learning speed when stimuli are composed
of multiple dimensions1,12. These findings predict that brain
circuits combine information about the occurrence of a predic-
tion error with information about the specific stimulus feature of
the relevant dimension that should be attended in future trials13.
However, it is unknown how this combination of prediction error
information and feature-based attention is realized in brain
circuits.

Here, we address this question by quantifying how prediction
errors are encoded for task-relevant features within four areas of
the medial and lateral anterior fronto-striatal loops14. We asked
(1) whether prediction error signals in these regions are infor-
mative of the specific features that were chosen (upwards motion,

color red, etc.), and (2) whether such feature-specific encoding of
prediction errors occurs more commonly for the reward-relevant
dimension as opposed to reward-irrelevant dimensions. We did
so using a task that employed stimuli that could be characterized
by multiple dimensions (color, location, and motion), of which
however only one was linked to reward outcome across trials
(color). Feature values within this reward-relevant dimension
were then reversed, akin to intradimensional shifts in the set-
shifting literature (e.g.,15).

Learning in such a task might be accomplished with a localized,
general prediction error in the ventral striatum (VS) that is then
broadcasted to prefrontal cortex where it modifies the activity of
feature-selective neurons13. This view is supported by mostly
human functional magnetic resonance imaging findings that
single out the striatum as core region to encode prediction
errors16, and the lateral prefrontal cortex to encode feature-based
top-down signals3,17,18 together with prediction errors13. In
contrast to such a scenario, neurons encoding prediction errors
might be distributed widely and carry explicit feature-choice
information in multiple areas19. Activity of such neurons could
serve as a feature-specific eligibility trace20, orchestrated across
the recurrent fronto-striatal loops. Such a distributed, feature-
specific eligibility trace is predicted by network models that learn
relevant features by using attentional feedback signals to label
synapses of those neurons that contributed to the feature-specific
reward prediction itself21,22.

Here, we found support for distributed feature-specific
encoding of prediction errors across the anterior cingulate and
prefrontal cortex, as well as the connected striatal projection
regions in VS and caudate head. The neural feature-specific
encoding of prediction errors emerged on average after the
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Fig. 1 Feature-based reversal learning task and anatomical recording locations. a Animals are presented with two black/white stimulus gratings to the left
and right of a central fixation point. The stimulus gratings then become colored and start moving in opposite directions. Dimming of the stimuli served as
Choice/Go signal. At the time of the dimming of the target stimulus the animals had to indicate the motion direction of the target stimulus by making a
corresponding up or downward saccade in order to receive a liquid reward. Dimming of the target stimulus occurred either before, after or at the same time
as the dimming of the distractor stimulus. b Left: Three features characterize each stimulus—color, location, and motion direction. Only the color feature is
directly linked to reward outcome. The task is a deterministic reversal learning task, whereby only one color at a time is rewarded. Right: This reward
contingency switches repeatedly and unannounced in a block-design fashion. c Illustration of recording locations relative to stereotaxic zero for monkey H
(top) and monkey K (bottom). Neuron locations are collapsed across 5mm coronal slices indicated by the gray bars on the brain on top. Red circles
represent neurons that encoded a feature-specific prediction error, gray circles represent neurons that did not. Ant. ac. refers to anterior of anterior
commissure. Imaging data provided by the Duke Center for in vivo microscopy73,74
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encoding of nonspecific prediction errors and was conveyed by
neurons that showed stronger attentional selection signals in
subsequent trials, thus potentially contributing to improved
learning and visual selection.

Results
Behavior. Monkeys performed a reversal learning task which
presented two peripheral stimuli with different colors and motion
directions (Fig. 1a). Over sequences of 30 or more trials, one of
two colors was associated with reward outcomes (juice drops),
while features of other stimulus dimensions (left vs. right stimulus
location, up vs. downward motion direction) were not linked to
reward (Fig. 1b). To obtain reward, the animals had to wait for a
Go-signal (dimming of the stimuli) and make a saccade in the
motion direction of the stimulus whose color matched the
reward-associated color. The reward schedule in this task was
deterministic. This task required (1) feature-based attentional
selection of one stimulus based on a reward-associated color, (2)
to use the motion direction of the attended stimulus to program a
saccadic response, and (3) to make a response only when the
attended stimulus dimmed. Therefore, stimulus location (for

spatial attention) and stimulus motion direction (for action
planning) were task-relevant on a trial-by-trial basis, while only
stimulus color was linked to reward across trials.

Both monkeys learned this feature-specific credit assignment
and adjusted their attention bias to the reward-associated color
after uncued reversals (Fig. 2a). As estimated with an ideal
observer statistic23,24 (Supplementary methods), monkeys H/K
successfully learned on average 83 ± 2/91 ± 2% of blocks, whereby
learning occurred on average within 17.5 ± 0.5/16.5 ± 0.6 trials
following a reversal. Monkeys H/K performed on average 8.7 ±
0.3/8.9 ± 0.3 reversal blocks per recording session with average
block lengths of 45 ± 0.7/43 ± 0.8 trials (median: 37/36).

Encoding of outcome and feature-specific prediction errors.
We recorded 1960 units in two monkeys with 690 units in ACC
(monkey H/K: 405/285), 524 units in dlPFC (monkey H/K: 316/
208), 449 units in caudate nucleus (CD; monkey H/K: 234/215),
and 297 units in VS (monkey H/K: 163/134) (Fig. 1c). In total,
71%/78% of neurons in monkey H/K met the criteria for analysis
(see Methods). Among these neurons, 38% encoded outcome
(rewarded versus unrewarded), ranging between 27 and 53%
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monkey K (bottom). e Average firing rates of four example neurons in the outcome epoch following color 1 and color 2 choices across trials in a reversal
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across brain areas, as determined using linear regression analysis
in the 0.1–0.7 s following feedback onset (Supplementary meth-
ods and Figs. 2a, 3a, b).

To discern trial-by-trial encoding of reward prediction errors
(RPEs), we first evaluated various RL models using RPEs to
account for feature-based learning performance4,10 (Supplemen-
tary methods). The models used RPEs to update values either (1)
for all stimulus features independently, (2) for all stimulus
features weighted by their dimensional relevance, or (3) for only

the different colors. We found that the monkeys’ learning
performance was best explained by an RL model that learns to
weight values of specific features by their dimension, i.e., that
learned a location, motion direction and color weight, and
additionally decayed feature-specific values of the nonchosen
stimulus. These findings corroborate previous studies4,10, sug-
gesting that both dimension and feature information contribute
to learning performance (Fig. 2b, Supplementary Fig. 1, Supple-
mentary Methods). We used this RL model to generate
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trial-by-trial estimates of RPEs (see Fig. 2c) for correlating firing
rates during the −0.5 to 1.5 s outcome epoch of each trial time-
resolved in 200 ms windows shifted by 50 ms (Fig. 2d, e).

Neurons were classified as encoding RPEs when their firing
rates were significantly correlated with model RPEs in a
minimum of four consecutive time windows (≥0.1 s) (Spearman
correlation, see Methods). Negative RPE (nRPE encoding
neurons were indexed as those neurons that increased their
firing rates with more negative nRPE values25,26. By definition,
positive RPEs (pRPE) occurred solely on correct trials, nRPEs
occurred solely on error trials. For monkeys H/K firing rates
correlated significantly with pRPE in 21/22% of neurons, with
nRPE in 14/10% of neurons, and for 24/24% of neurons with the
unsigned RPE that indexes surprise (e.g.,27). RPE correlations of
firing were evident in all areas and monkeys (Supplementary
Fig. 2b). RPE’s were computed as RPE= R−V, where R denotes
reward (always 1 or 0), and V denotes expected value of the
chosen stimulus. This formulation also shows that RPE is
positively correlated with reward (R, always 0/1), and antic-
orrelated (−V) with the value of the chosen stimulus prior to the
time of reward throughout task performance.

We hypothesized that to effectively use RPE information to
adjust feature-based attention, (1) neurons may selectively encode
an RPE for one of two chosen feature values (e.g., for color 1 but
not color 2), and (2) across neurons, such RPEs are not equally

encoded for all stimulus dimensions, but selectively for the task-
relevant dimension (color vs. location/motion). Consistent with
the first hypothesis, we found evidence for feature-selective RPE
encoding in multiple neurons (Fig. 2e, Fig. 3). For instance, the
VS neuron in Fig. 3a responded from weak to strong when the
absolute RPEs (surprise) were low to high when color 1 was
chosen (upper panel), but showed no firing modulation with
RPEs when color 2 was chosen (middle panel), resulting in a
significant color-selective RPE × firing rate correlation in the
100–200 ms following reward onset (bottom panel). Similar
examples were evident for other feature dimensions. The ACC
neuron in Fig. 3d showed stronger firing with more negative
nRPE only when the selected stimulus was located on the left (top
panel), but not when it was located on the right (middle panel).
Finally, the dlPFC neuron in Fig. 3e fired stronger with larger
pRPEs when the motion of the chosen stimulus was upwards (top
panel), but not when it was downwards (middle panel).

Overall, we found that 53.1% of neurons (52.7%/53.6% in
monkey H/K) across the fronto-striatal areas tested encoded
feature-specific positive, negative, and unsigned (surprise) pre-
diction error signals (for their anatomical reconstruction see
Supplementary Figs. 4, 5). Indeed, most neurons (80%) that were
initially identified to encode non-specific RPEs (see above,
Supplementary Fig. 2b) encoded an RPE dependent on the
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feature of the chosen stimulus, i.e., they encoded feature-specific
RPEs (80.6%/79.5% in monkey H/K).

Feature-specific RPEs emerge later than nonspecific RPEs.
Feature-specific RPE signals might arise from neurons that
initially encode the occurrence of a nonspecific RPE by com-
bining RPE with chosen feature information over time. This
scenario predicts a slower time course of more specific infor-
mation about the source of the error28. We tested this by com-
paring for each neuron the time windows in which it significantly
encoded a feature-specific RPE, nonspecific RPE, or outcome
per se for a minimum of four consecutive time bins (≥0.1 s). For

this analysis, we collapsed across neurons encoding color/loca-
tion/motion-specific RPEs and grouped neurons into those
encoding either feature-specific, or nonspecific RPEs (see Meth-
ods). We found that on average feature-specific RPE encoding
emerged later than nonspecific RPE encoding as indexed by a
shallower slope of the temporal cumulation of the proportion of
significant RPE encoding neurons (Kolmogorov–Smirnoff test,
Bonferroni–Holm corrected: pfeat-non < .001; Dfeat-non= 0.10, nfeat-
spec= 774; nnon-spec= 167) (Fig. 4). This was additionally con-
firmed using nonparametric statistics (Rank-sum test,
Bonferroni–Holm corrected, W= 8.4 × 106, p < .0001, Hedges’
g=−0.21). The effect was partly driven by feature-specific RPE
encoding neurons showing a continued increase and remaining at
a higher plateau level for a longer duration than nonspecific RPE
signals (Fig. 4a, b, Figure S6a). Thus, while some individual
neurons did show early feature-selective RPE encoding, at the
population level, the set of neurons encoding feature-specific
error information showed a slower time course, which was sus-
tained at a higher level compared to nonspecific error informa-
tion. Feature-specific RPEs on average also emerged significantly
later than encoding of rewarded/nonrewarded outcome
(Kolmogorov–Smirnoff test, Bonferroni–Holm corrected,
pfeat-out < 0.001, Dfeat-non= 0.12, Hedges’ g= 0.26, nout= 702),
while nonspecific RPEs were encoded at a similar time as out-
come (pnon-out= 0.089, Dfeat-non= 0.03, Hedges’ g= 0.05). Sup-
porting these latency findings, we found that 25% of outcome
encoding occurred at 268 ms after feedback onset, 25% of non-
specific RPE encoding occurred at 255 ms, and 25% of feature-
specific RPE encoding occurred at 355 ms (randomization sta-
tistic: pfeat-non < 0.001; pfeat-out < 0.001; pnon-out= 0.27; Fig. 4c).
These results were robust to the statistical criterion for identifying
RPE encoding neurons (Supplementary Fig. 6a).

We next asked when feature-specific RPE encoding emerged in
each of the four brain areas. Using the same latency measures as
above, we found that the rise of neurons with significant feature-
specific RPE differed significantly between all areas, except for
ACC and CD (Kolmogorov–Smirnoff test, Bonferroni–Holm
corrected: pACC-dlPFC < 0.001, DACC-dlPFC= 0.09; pACC-CD=
0.128, DACC-CD= 0.03; pACC-VS < 0.001, DACC-VS= 0.09; pdlPFC-
CD < 0.001, DdlPFC-CD= 0.09; pdlPFC-VS= 0.006, DdlPFC-vs= 0.05;
pCD-VS < 0.001, DCD-VS= 0.09) (Fig. 5a, b). Feature-specific RPE
signals emerged earliest in the ACC (310 ms) and CD (330 ms),
followed by dlPFC (385 ms), followed by VS (428 ms) (randomi-
zation statistic: pACC-dlPFC < 0.001; pACC-CD= 0.136; pACC-VS <
0.001; pdlPFC-CD < 0.001; pdlPFC-VS= 0.018; pCD-VS < 0.001; Fig. 5b
bottom). Using a nonparametric measure confirmed these results,
except for no significant latency difference between dlPFC and VS
(Rank-sum test, Bonferroni–Holm corrected: pACC-dlPFC < 0.001,
WACC-dlPFC= 11 × 106; pACC-CD= 0.514, WACC-CD= 9 × 106;
pACC-VS < 0.001, WACC-VS= 8.5 × 106; pdlPFC-CD < 0.001, WdlPFC-

CD= 8.9 × 106; pdlPFC-VS= 0.345, WdlPFC-VS= 8.3 × 106; pCD-VS <
0.001, WCD-VS= 3.2 × 106). These results were robust to the
statistical criterion for identifying significant RPE encoding
(Supplementary Fig. 4b).

Feature-tuning of RPEs. To update the attentional set to the goal-
relevant color during reversal learning, neurons should pre-
ferentially encode prediction errors for the reward-relevant color
dimension as opposed to the motion and location dimension that
were task relevant only for completing individual trials29. Con-
sistent with this rationale, we found nRPEs and pRPEs were
encoded more often for the color dimension, than for location or
motion (one-sided bootstrap CI: p ≤ 0.05; Fig. 6a, d, respectively).
Neurons encoding color-specific nRPEs were more prevalent in
ACC, VS, and dlPFC (one-sided bootstrap CI: p ≤ 0.05, Fig. 6b). We
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Fig. 5 Latency comparison of feature-specific RPE encoding across areas.
a Histogram of the proportion of feature-specific RPE encoding units in
ACC, VS, dlPFC, and CD combined in time across both monkeys. For each
neuron, all time bins for which an RPE was encoded are included (nACC=
256; nVS= 132; ndlPFC= 234; nCD= 152). To enhance visualization of the
four histograms lines representing the outlines of each histogram are
added. b Normalized cumulative sums of the histograms in (a). Top: Thick
lines represent the mean across both monkeys, while thin continuous lines
represent cumulative sums of monkey H, and thin dotted lines represent
cumulative sums of monkey K. The cumulative sums of all areas except for
ACC and CD differed significantly from each other (Kolmogorov–Smirnoff
test, Bonferroni–Holm multiple-comparison correction; pACC-CD= 0.128, all
other p < 0.01). Bottom: Magnification of the cumulative sums around the
25% window. Open circles represent the time points at which 25% of
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used an index to quantify the relative proportion of color-selective
RPE neurons compared to location- and motion-selective RPEs
[(RPEcol−RPEloc+motion/2)/(RPEcol+RPEloc+RPEmotion), Eq. (2)]
with values >0 indicating more prevalent color-specific RPE
encoding. This color-tuning index showed that for nRPEs ACC, VS,
and dlPFC showed stronger color-tuned RPEs than CD (two-sided
bootstrap CI: p ≤ 0.05; Fig. 6c, see Methods). These results were not
dependent on defining nRPE encoding as significantly increased
firing with more negative RPE values and hold when nRPE
encoding is defined as significantly decreased firing similar to prior
studies of midbrain dopamine neurons30,31. Overall, ACC and VS
are those areas with the largest population of color-specific nRPE
information (Supplementary Fig. 7).

Similar to nRPEs, pRPEs were more often color-specific than
location- or motion-specific in ACC and VS (one-sided bootstrap
CI: p ≤ 0.05, Fig. 6e, left column). Neurons in CD also selectively
encoded feature-specific pRPEs in the color dimension, while
neurons in dlPFC were not selective (Fig. 6e, right column).
Color-tuning indices did not differ substantially between areas
(ACC: Icol= 0.10, VS: Icol= 0.14, dlPFC: Icol= 0.05, CD: Icol=
0.123; two-sided bootstrap CI: p > 0.05; Fig. 6f).

In contrast to nRPEs and pRPEs, unsigned RPEs were across
areas similarly prevalent for the color, location and motion
dimensions (one-sided bootstrap CI: p > 0.05; Fig. 7a). Split by
areas, only the VS encoded surprise signals stronger for color
than motion and location (one-sided bootstrap CI: p ≤ 0.05,
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Fig. 7b bottom left). This finding was confirmed by a significantly
higher color-tuning index for VS (Icol= 0.103) than for ACC
(Icol=−0.024), dlPFC (Icol=−0.036), and CD (Icol=−0.01)
(Fig. 7c). For a detailed overview of results see Supplementary
Table 1 and Supplementary Fig. 8. These results were qualitatively
similar with varying statistical criterions for identifying RPE
encoding neurons (Supplementary Fig. 9).

Feature-specific RPEs are segregated from outcome signals.
Feature-specific firing correlations with RPE might emerge from
neurons that show already feature-specific firing for outcomes
irrespective of prediction error, or they could occur in a segre-
gated neuronal population. To answer this question, we first
calculated the prevalence of feature information in the outcome
period, by testing whether neurons encoded any of nine feature-
related variables using multiple regression analysis (see Supple-
mentary methods). Since neurons likely encoded more than one
variable (Supplementary Fig. 3c, d), we evaluated feature infor-
mation encoding at the first order (greatest regression coefficient)
as well as at the second order, in which case a bi-linear regression
with two variables had to fit a given neuron significantly better
(see Supplementary methods). We found that 20/16/13% of
neurons encoded color/motion/location-specific information
about the outcome at the first or second order (see Supplemen-
tary methods). However, only 35/28/26/% of those neurons also
showed significant color/motion/location firing correlations with
RPEs, suggesting that prediction error-independent feature tun-
ing during the outcome period of the task does not explain the
majority of feature-specific RPE firing (Supplementary Fig. 10).

Cell-class specificity of RPE encoding neurons. To understand
the mechanisms underlying feature-specific RPEs, it is important
to identify the functional cell types encoding them. Our record-
ings allowed distinguishing two functional cell classes in the
cortical brain areas (putative pyramidal cells and putative inter-
neurons), and two cell classes in the striatum (putative medium
spiny neurons and putative interneurons) using methods estab-
lished before32–34 (Supplementary methods and Fig. 8). The null
hypothesis was that the distribution of narrow- and broad-spiking
units that encode feature-specific RPEs is the same as the dis-
tribution in the total population of recorded neurons. In the

cortical areas ACC and dlPFC, we found that narrow-spiking
neurons more likely encoded feature-specific RPE signals (ratio
narrow/broad= 0.65) than expected from the total population
(ratio narrow/broad in population= 0.41) (chi-square test, χ2=
5.95, p= .015, φ=−0.096), while encoding of non-specific RPE
signals did not differ (ratio narrow/broad= 0.53; chi-square test,
χ2= 0.37, p= 0.55, φ=−0.027; Fig. 8c–e). For the striatum we
found a statistical trend that feature-specific RPEs were more
frequently encoded by narrow-spiking neurons (which include
the putative fast-spiking interneurons34,35) than suggested based
on the population distribution (chi-square test feature-specific
RPEs: χ2= 3.02, p= 0.082, φ=−0.092) (Fig. 8h–j). Control
analyses showed that these results were not merely explained by
the higher firing rate of narrow-spiking neurons (Supplementary
Fig. 11).

Feature-specific RPE signaling can affect stimulus selection.
What are the functional consequences of feature-specific encod-
ing of prediction errors? At the behavioral level, prediction errors
indicate the need to adjust attention in subsequent trials. At the
neural level, this adjustment for future attention might corre-
spond to a shift of firing to the outcome epoch early during
learning to firing to the color-onset epoch after learning. Such a
temporal transfer of firing from outcome to cue epochs is the
classical signature of RPE encoding by ventral tegmental dopa-
minergic neurons30,31. To test whether such a transfer takes place
within the population of color-specific RPE encoding neurons, we
determined whether the magnitude of the RPE (outcome epoch)
in the current trial was related to firing rate changes following
color onset in the subsequent trial. We hypothesized that during
learning periods when prediction errors are large, neurons would
not yet contribute to the visual selection of the color, but after
learning, when prediction errors are low, the same neurons would
show an enhanced color onset response indicating that they
contribute to the attentional selection of the relevant stimulus.
We tested this by extracting the 25% of trials with the largest RPE
and the 25% of trials with the smallest RPE (trial n) for each
color-specific RPE encoding neuron, and compared the neurons’
change in firing rate from pre to postcolor onset in the trials
following those (trial n+ 1).

We found that color-specific RPE encoding neurons showed on
average a significantly enhanced color onset firing (post vs. precolor
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onset) (t test, p < 0.0001 for each RPE type). This increased color
onset response was on average stronger following trials with low
RPE than high RPE, i.e., after learning (Fig. 2d, Fig. 9c, e,
Supplementary Fig. 12), specifically when the preceding trial’s
choice was for the preferred color of the neuron, i.e., the color for
which it selectively encoded a greater RPE signal (Fig. 9c, e cyan vs.
gray bars, Fig. 3 top panels). This difference in firing rate change
following trials with low vs. high RPE was statistically significant
when the preceding trial’s choice was for the preferred RPE color,
for neurons encoding positive RPE (paired t test, tpref= 3.73, ppref <
0.001, Hedges’ g= 0.28, tnonpref= 1.33, pnonpref= 0.185, Hedges’
g= 0.09, n= 140) (Fig. 9c), and for neurons encoding surprise
(paired t test, tpref= 3.82, ppref < 0.001, Hedges’ g= 0.19, tnonpref=
1.85, pnonpref= 0.065, Hedges’ g= 0.09, n= 260) (Fig. 9e), but not
for neurons encoding negative RPE (paired t test, tpref= 1.72,
ppref= 0.089, Hedges’ g= 0.13, tnonpref= 1.06, pnonpref= 0.291,
Hedges’ g= 0.07; n= 114) (Fig. 9a).

The selectively increased firing to color onsets after low RPE
trials was most prominent and statistically significant for ACC
neurons encoding color-specific positive RPEs (paired t test,
tpref= 3.29, ppref= 0.002, Hedges’ g= 0.44, n= 44, Fig. 9d,
Supplementary Fig. 12), and for CD neurons encoding color-
specific surprise (paired t test, tpref= 344, ppref < 0.001, Hedges’
g= 0.33, n= 50, Fig. 9f, Supplementary Fig. 12). These findings
suggest that color-specific RPEs during the early reversal learning
trials translate into color cue firing rate increases for these same
neurons after reversal learning, reminiscent of the temporal
transfer of classical dopaminergic prediction error signals.

Discussion
We found that about half of the neuronal populations in anterior
cingulate cortex, dorsolateral prefrontal cortex, VS, and CD
encoded RPEs that were informative about the specific features of
the attended and chosen stimulus. This feature-specific RPE was
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more commonly encoded for the task relevant (color) dimension
that also predicted reward, illustrating the encoding of the spe-
cific, goal-relevant information needed to improve feature-based
attention in future trials. Feature-specific encoding of RPEs
emerged on average later than nonspecific RPE encoding, indi-
cating that over time it might emerge by combining general
prediction error information with feature information.

Among the recorded brain areas, the ACC stood out by con-
taining most neurons with early feature-specific RPE information,

with a slower rise of feature information in the CD, dlPFC, and
VS (Fig. 5b). This finding underlines the importance of ACC to
provide the specific information needed to adjust attention and
behavior in future trials36,37 and complements previous reports of
ACC neurons conveying prediction error related activity for
specific actions38, unique objects39, stimulus–response mapping
rules40, attentional and motivational origin of errors36, and more
abstract combinations of stimulus and reward information25. Our
ACC finding uniquely adds to this literature by showing firstly,
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that RPE activity in ACC is combined with the attended color
feature in a selective attention task that always presented all
possible features on the screen. This display induces perceptual
ambiguity and makes the task difficult to perform (Fig. 1 and
Fig. 6). Secondly, our results show that this feature-specific RPE
activity is linked with greater feature-based attention activity in
subsequent trials. Neurons that encoded color-specific RPEs
increased their activity to the color-cue onset in the next trial
(Fig. 9). This finding complements reports of attention-specific
activity in ACC18,41,42 and supports the view that ACC plays a
role in controlling to which stimulus features (covert) attention is
shifted43,44.

Our results also clarify that specific information about the
source of the RPE, with regards to the currently rewarded feature,
is not localized to the ACC, but widely distributed to all four areas
we recorded from. These areas are anatomically mono-
synaptically connected2,14,45 and functionally synchronized in
different task contexts41,42,46,47. The distributed information
about feature-specific prediction errors is consistent with the
recurrent nature of fronto-striatal processes underlying reward-
based choices48. In contrast to views that emphasize more loca-
lized and serial computations of subprocesses of goal-directed
choices49, acknowledging the recurrent connectivity of fronto-
striatal networks entails that many brain areas act in concert to
perform similar computations19,44,48,50. Consistent with this
view, RPEs seem to be evident in many brain regions, in a pos-
sibly redundant fashion51,52 with mixed selectivity for a variety of
combinations of task-relevant features53 (see also Supplementary
Fig. 3d). Resonating with such a distributed, mixed code, we
found substantial amounts of neurons encoding RPEs for
nonreward-relevant stimulus dimensions (motion/location),
reminiscent of recent studies in prefrontal cortex showing a
prevailing influence of nonrelevant task variables and features
over multiple trials43,54,55. This encoding of non-relevant infor-
mation has been suggested to promote behavioral flexibility in
volatile task environments by facilitating the detection of unex-
pected changes in these environments55,56.

The preponderance of narrow-spiking neurons with feature-
specific error information in the cortex and with a statistical trend
in the striatum was an unexpected, data driven finding (Fig. 8,
Supplementary Fig. 11) that supports suggestions of a particular
role of inhibitory neurons to process learning related information
and/or to induce plasticity in cortical and striatal networks57,58.
Narrow action potential waveforms have been associated with
fast-spiking inhibitory neurons in cortex and striatum35,59. Our
finding that putative interneurons are particularly informative
about the error term is consistent with their involvement to
regulate network level plasticity changes58, including spike-timing
dependent changes at corticostriatal synapses60 and the balancing
of inhibitory with excitatory synaptic strength in balanced
networks61.

For the ACC, dlPFC, CD, and VS, prediction errors correlated
with the firing of neurons after correct trials (giving rise to
positive RPEs), after incorrect trials (giving rise to negative RPEs),
and irrespective of the sign of the actual trial outcomes (giving
rise to surprise). Large surprise signals (to rare, high rewards) in
the ACC have previously been shown to predict adjustment of
behavioral strategies27, but it has been questioned whether any
surprise related activity exists that relates to changes in atten-
tion62. Here, we refute this view by reporting widely distributed
and prevalent neuronal signals conveying surprise for all
dimensions of an attended stimulus in ACC, dlPFC, CD, and VS.
Most notable was the VS by showing proportionally stronger
neuronal surprise signals for the goal-relevant color dimension as
opposed to the task-relevant, but reward-irrelevant, location and
motion dimensions (Fig. 7c). A feature-specific surprise signal,

that carries no information about the valence of the outcome,
reflects the accuracy with which a feature predicts outcome, and
therefore indexes the outcome uncertainty associated with a given
feature63. A long-standing psychological theory of attention
suggests that attention during learning is driven by unexpected
events such as the surprising outcomes we quantified6,7.
According to this attention model, unexpected outcomes should
give rise to stronger attention to the stimulus feature that gave
rise to the violated expectation64. Our study tested this hypothesis
and found evidence that the same neural population that encodes
a color-specific surprise signal also showed stronger firing rate
increases after feature onset in later trials of a block when the
reward relevance of that color had been learned (Fig. 9). This
increased feature selection signal (1) was stronger for the color
that was preferred versus non-preferred by the neuron, and (2) it
was stronger when subjects had learned the relevant feature, i.e.,
during trials when prediction errors were comparatively low.
These results provide direct evidence for a role of the VS to
contribute to attentional biasing towards goal-relevant features,
i.e., to “learned attention”. This conclusion adds an important
functional role to RPE signaling which is—across species—ubi-
quitously reported to be particularly strong in the VS65–67. In
contrast, feature-specific surprise signals in ACC, PFC, and CD
may primarily serve to increase overall “attentiveness” to all sti-
mulus features during periods of uncertainty to promote correct
behavioral adjustment in complex and volatile task environments
(Fig. 7).

Our findings also supports recent suggestions that attentional
biases reflect an internal activity state within the striatum that
resolves competing value predictions and beliefs about possible
relevant stimuli44,68. In this framework, attention is not con-
sidered to reflect a unitary, obscure top-down signal that is
localized to the prefrontal cortex as in many classical models, but
rather attention emerges from (“is the effect of”) the current state
of basal ganglia circuits that continuously integrate multiple
information streams and resolve competition among these input
streams68. A core insight from this view is that the striatum has
direct access to the spatial maps in the superior colliculus2 for
exerting a direct, ongoing bias for overt sampling and covert
attentional selection of visual information (e.g.,69). Our study
strongly supports this view revealing widespread feature-specific
RPEs (Figs. 6, 7) and feature-specific selection effects (Fig. 9 and
Supplementary Fig. 12) across the medial (ACC and VS) and the
lateral (dlPFC and CD) fronto-striatal loops.

In our task, RPE signals specific for the reward-relevant color
are precisely what is needed to enhance those synaptic connec-
tions between neurons encoding the specific color that is more
relevant than expected, and to reduce the synaptic connection
weights among neurons encoding the color that was less rewarded
than expected. These types of synaptic weight changes following
RPEs have been used in network models implementing various
RL rules22,70. These models illustrate, for example, that simpler
stimulus–response reversal learning performance in monkeys can
be realized by spike-timing dependent plasticity changes71.
However, it has remained unclear how to implement more
complex credit assignment in a higher dimensional feature space
where multiple features could be credited for an outcome, even
though only one feature is actually relevant4,11. For this situation,
a recent spiking model suggested a four-factor learning rule that
is dependent on attention to a specific stimulus feature or action
prior to registering a reward/no-reward outcome22. In this model,
neurons activated by an outcome receive a synaptic tag, which is
specific to the attended feature, from feedback connections ori-
ginating from output neurons similar to striatal output neurons.
This attentional feedback-induced synaptic tag acts like an
attention-specific eligibility trace that can be combined with
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dopamine dependent (feature unspecific) prediction error infor-
mation when a (rewarding or nonrewarding) outcome is received.
Learning is achieved when these two factors (attentional feedback
and neuromodulatory prediction error information) meet at the
synapses between pairs of neurons that showed near coincident
pre and postsynaptic activity during the outcome processing22.
The models make multiple predictions that our data directly
support. Firstly, synaptic updating is taking place in an associative
network layer that resembles the fronto-striatal network of value
learning as opposed to sensory or motor related network layers.
Secondly, feature-specific RPEs should emerge locally in multiple
areas across the entire associative network based on neuron-
specific synaptic tags, closely corresponding to the distributed
RPEs we observed. Finally, the model predicts that learning of
task-relevant features depends on deploying attention toward
those stimulus features that are most consistently reward asso-
ciated. This attentional hypothesis of RL was directly tested in our
experiment, providing evidence that the most ubiquitously
encoded prediction error signals occur for the attended, goal-
relevant color feature.

Taking together, our findings support the concept of attention
weighted RL as a generic framework to understand learning and
attention in environments with multidimensional stimuli3,4,10.
The existence of network-wide available information about the
degree to which individual features of visual stimuli led to
unexpected outcomes critically inform learning rules that effi-
ciently solve the credit assignment problem1,58,67,72. Our study
may thus provide a starting point to understand how network-
wide credit assignment processes are directly related to improved
biases of feature-based visual attention.

Methods
Electrophysiological recordings. Data were collected from two male rhesus
macaques (Macaca mulatta, ages: 7–8 years). All animal care and experimental
protocols were approved by the York University Council on Animal Care and were
in accordance with the Canadian Council on Animal Care guidelines. Extra-cellular
recordings were made with 1–12 tungsten electrodes (impedance 1.2–2.2 MOhm,
FHC, Bowdoinham, ME) in anterior cingulate cortex (area 24, ACC), prefrontal
cortex (area 46, dlPFC), caudate nucleus (CD), and ventral striatum (VS) through
rectangular recording chambers (20 by 25 mm) implanted over the right hemi-
sphere (Fig. 1c). Electrodes were lowered daily through guide tubes using software
controlled precision micro-drives (NAN Instruments Ltd., Israel). Data amplifi-
cation, filtering, and acquisition were done with a multichannel acquisition pro-
cessor (Neuralynx). Spiking activity was obtained following a 300–8000 Hz
passband filter and further amplification and digitization at 40 kHz sampling rate.
Sorting and isolation of single unit activity was performed offline with Plexon
Offline Sorter, based on principal component analysis of the spike waveforms.
Experiments were performed in a custom-made sound attenuating isolation
chamber. Monkeys sat in a custom-made primate chair viewing visual stimuli on a
computer monitor (60 Hz refresh rate, distance of 57 cm). Eye positions were
monitored using a video-based eye-tracking system (EyeLink, SRS Systems) cali-
brated prior to each experiment to a nine-point fixation pattern. Eye fixation was
controlled within a 1.4°–2.0° radius window. During the experiments, stimulus
presentation, monitored eye positions, and reward delivery were controlled via
MonkeyLogic (www.brown.edu/Research/monkeylogic/). Liquid reward was
delivered by a custom-made, air-compression controlled, and mechanical valve
system.

Behavioral paradigm. The monkeys performed a feature-based reversal learning
task that required covert spatial attention to one of two stimuli dependent on color-
reward associations (Fig. 1a). These color-reward associations were reversed in an
uncued manner between blocks of trials with constant color-reward association
(Fig. 1b). By separating the location of attention from the location of the saccadic
response, this task allowed an identification of neural responses to the location of
attentional focus independent of neural signals linked to response preparations,
during reversal learning. Each trial started with the appearance of a gray central
fixation point, which the monkey had to fixate. After 0.5–0.9 s, two black/white
gratings appeared to the left and right of the central fixation point. Following
another 0.4 s the two stimulus gratings either changed color to green and red
(monkey K: cyan and yellow), or they started moving in opposite directions up and
down, followed after 0.5–0.9 s by the onset of the second stimulus feature that had
not been presented so far, e.g., if after 0.4 s the grating stimuli changed color then
after another 0.5–0.9 s they started moving in opposite directions. After 0.4–1 s

either the red and green stimulus dimmed simultaneously for 0.3 s or they dimmed
separated by 0.55 s, whereby either the red or green stimulus could dim first. The
dimming represented the go-cue to make a saccade to one of two response targets
displayed above and below the central fixation point. Please note that the monkeys
needed to keep central fixation until this dimming event occurred. A saccadic
response following the dimming was only rewarded if it was made to the response
target that corresponded to the movement direction of the stimulus with the color
that was associated with reward in the current block of trials, e.g., if the red
stimulus was the currently rewarded target and was moving upward, a saccade had
to be made to the upper response target at the time the red stimulus dimmed. A
saccadic response was not rewarded if it was made to the response target that
corresponded to the movement direction of the stimulus with the nonreward
associated color. Hence, a correct response to a given stimulus must match the
motion direction of that stimulus as well as the timing of the dimming of that
stimulus. The rationale for this design was to ascertain continuous allocation of
attention to one stimulus—since the animal did not know the time of dimming of
the current target stimulus (which could occur before, after, or at the same time as
the second stimulus), it had to attend continuously until the “Go-signal” (dim-
ming) of that stimulus occurred. If dimming of the target stimulus occurred after
dimming of the second/distractor stimulus, the animal had to ignore dimming of
the second stimulus and wait for dimming of the target stimulus. A correct
response was followed by 0.33 ml of water delivered to the monkey’s mouth.

Across trials of a block the color-reward association remained constant for 30 to
a maximum of 100 trials. Performance of 90% rewarded trials (calculated as
running average over the last 12 trials) automatically induced a block change. The
block change was uncued, requiring the subject to use the reward outcome they
received to learn when the color-reward association was reversed in order to
covertly select the stimulus with the rewarded color. Note that at all times the
reward schedule was deterministic. In contrast to color, other stimulus features
(motion direction and stimulus location) were only randomly related to reward
outcome—they were pseudo-randomly assigned on every trial. Saccadic responses
had to be initialized within 0.5 s after dimming onset to be considered a choice
(rewarded or nonrewarded). All other saccadic responses, e.g., toward the
peripheral stimuli, were considered nonchoice errors.

This task ensured that behavior was guided by the specific color-reward
association, which was evident in monkeys choosing the stimulus with the same
color following correct trials with 89.5% probability (88.7%/ 90.3% for monkey H/
K), which was significantly different from chance (t test, both p < 0.0001). In
contrast, monkeys chose the stimulus with the same motion direction following a
rewarded trial only with a 46.7% probability (43.7%/46.2% for monkey H/K), and
the stimulus with the same location following a rewarded trial with a 44.9%
probability (47.3%/46.0% for monkey H/K), indicating a tendency to switch
motion and location choices following rewarded trials (t test, all p < 0.0001).
Although reward was deterministic, performance of the task was not optimal,
evident in asymptotic average performance of around 75% (Fig. 2a). This illustrates
the general task difficulty, which was likely driven by the need to integrate multiple
stimulus features into a single response (Fig. 2, Supplementary Fig. 1).

We used block sine gratings with rounded-off edges for the peripheral stimuli,
moving within a circular aperture at 0.8°/s and a spatial frequency of 1.2 (cycles/°)
and a radius of 2.0°. Gratings were presented at 5° eccentricity to the left and right
of the fixation point.

Data analysis. Analysis was performed with custom MATLAB code (Mathworks,
Natick, MA), utilizing functions from the open-source Fieldtrip toolbox (http://
www.ru.nl/fcdonders/fieldtrip/). All spike-density functions were smoothed with a
Gaussian kernel with a standard deviation of 25 ms. Only correct and incorrect
choice trials were analyzed, whereby correct choice trials were rewarded trials,
while incorrect choice trials were either made to the nonrewarded stimulus or in
the incorrect response time window (first vs. second dimming). Fixation breaks,
early responses, and no-response trials were not included in any analyses.

Units were only included in any of the following analyses if they (i) had a
minimum firing rate of 0.5 Hz within the feedback epoch (0–1.5 s following
feedback onset), (ii) prediction errors computed with a RL model (see below) could
be computed for ≥40 trials, and (iii) these minimum of 40 trials could be identified
as either occurring during learning or after learning according to an ideal observer
statistics (see Supplementary methods). All trials from blocks that were not learned
to criterion were discarded.

We quantified the trial-by-trial progression of RPEs during reversal
performance using a variety of reinforcement learning (RL) principles that were
previously found to account for feature-based reversal learning
performance3,4,10,11,23. We compared models that used prediction errors (RPEs) to
update different types of representations using methods similar to a previous
study10, as described in detail in Supplementary methods. The RL models differed
how the features were represented and weighted to achieve reversal learning. In a
first model, RPEs were used to update all features (e.g., red, green, location left,
location right, motion up, and motion down) of a stimulus nonselectively (feature-
nonselective RL model, F-NS model), i.e., without using preknowledge about which
(feature) dimension is most rewarded. In a second model, RPEs were used to
update only the color feature that was systematically linked to reward. This feature-
selective RL model (F-S model) assumed that the animals had formed an
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attentional set that only included the two different colors as features for a top-down
representation. In a third model, we are representing all features as in the F-NS
model but include a dimensional weight that learns during a reversal block a higher
weight for features of the most reward-consistent dimension (color) and a lower
weight for those dimensions that are not systematically linked to reward (location
and motion direction). This feature-dimension weighted RL model (F-DW model)
thus learns the attentional set during the reversal learning period until the
performance asymptotes. We devised a fourth model implicated in previous studies
to realize learning with multidimensional stimuli using a decay parameter that
reduces the values of features of the nonchosen stimulus. This feature-decay model
(F-Dec model) was otherwise identical to the F-NS model. In a fifth model, we
combined the decay mechanism with the dimensional weighting mechanism to a
feature-dimension weighted decay RL model (F-DW-Dec model) to test whether
combining mechanisms of the models improved the fitting of the monkey’s
learning performance. All models are described in detail in the Supplementary
methods.

We optimized the model by minimizing the negative log likelihood over all
trials using up to 20 iterations of the simplex optimization method to initialize the
subsequent call to fmincon (matlab function), which constructs derivative
information. We used an 80%/20% (training dataset/test dataset) cross-validation
procedure repeated for n= 50 times to quantify how well the model predicted the
data. Each of the cross-validations optimized the model parameters on the training
dataset. We then quantified the log-likelihood of the independent test dataset given
the training datasets optimal parameter values. We found that the F-DW-Dec
Model provided the lowest Akaike Information Criterion for both monkeys
(Supplementary Fig. 1a), and resulted in the lowest (monkey H) and second lowest
(monkey K) (i.e., best) Log-likelihoods for the cross-validated test dataset
(Supplementary Fig. 1b, c). These results lead us to choose the F-DW-Dec model
for generating prediction errors for the neuronal analysis. The optimized F-DW-
Dec Model showed similar parameter values for monkey H/K, with η (learning
rate)= 0.22/0.25, β (selection noise)= 3.55/2.79, ϕ (dimension weighting of feature
representation)= 0.68/0.98, and ω (value decay for nonchosen feature)= 0.92/
0.68. These results align well with previous studies using a similar model
architecture3,4,10,11.

To identify RPE encoding neurons, we correlated each neuron’s firing rate
time-resolved with RPEs obtained from the best fitting RL model (the F-DW-
Dec Model). The trial-by-trial development of the average positive and negative
RPEs for each monkey are shown in Fig. 2d. We also illustrate the prediction
errors for each of the features of the chosen stimulus separately, confirming that
the RPE’s used by the model to adjust feature values are dominated by the color
dimension, while the reward-irrelevant motion and location dimensions show a
similar progression of RPE but at a lower magnitude corresponding to their
lower feature values (Supplementary Fig. 13). Each correlation analysis required
a minimum of 15 trials. We correlated firing rate with positive RPEs in correct
choice trials and with negative RPEs in incorrect choice trials. To identify
neurons that encoded an unsigned RPE, we used partial correlation analysis to
correlate firing rates with the absolute RPE in correct and incorrect choice trials
while partializing out the sign of the RPE (by including a co-variate of ±1 for
correct/incorrect trials, respectively). The analysis time ranged from −500 to
1500 ms after the outcome event; time windows spanned 200 ms and were
shifted by 25 ms. For a neuron to be considered to encode a nonspecific positive,
or unsigned RPE signal, it had to significantly positively correlate its firing rate
with a positive, or unsigned RPE, respectively (Spearman correlation, p < 0.05),
for a minimum of four consecutive time bins following the outcome event, while
not correlating positively in more than two consecutive time bins before the
outcome event. For a neuron to be considered to encode a negative RPE signal, it
had to significantly negatively correlate its firing rate with a negative RPE, i.e.,
the more negative the RPE the higher the firing rate, for a minimum of four
consecutive time bins following the outcome event (Spearman correlation, p <
0.05), while not correlating negatively in more than two consecutive time bins
before the outcome event. A neuron could be identified to encode more than one
signal type, e.g., a neuron could encode an nRPE and pRPE. For a supplementary
analysis, and to acknowledge previous literature, we also considered the opposite
encoding of negative RPEs, with firing rates decreasing with more negative RPEs.
In this case, a neuron had to significantly positively correlate its firing rate with a
negative RPE for a minimum of four consecutive time bins following the
outcome event.

To identify neurons that encoded a feature-specific RPE signal, trials were split
into the features of interest prior to the correlation analysis (color, location, and
motion direction). The principle for identifying positive, negative, and unsigned
feature-specific RPE neurons was the same as for nonspecific RPE signals with
additional criteria described in the following. For instance, for a neuron to be
considered to encode a color-specific RPE signal, it had to significantly encode an RPE
signal (as described above) in minimally four consecutive time bins for trials in which,
e.g., color 1 was chosen, while either not encoding or encoding significantly less an
RPE signal for trials in which color 2 was chosen. Significant differences between R
values (Spearman correlation) for the two trial types were computed by z-
transforming R values and comparing them using a z-test:

Zobserved ¼
z1 � z2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N1�3 þ 1

N2�3

q ; ð1Þ

where z1 and z2 are the z-transformed R values for the correlation with feature
value 1 and feature value 2, respectively. When Zobserved exceeded |1.96| (p < 0.05),
R values were considered significantly different for a given time bin. In a minimum
of four consecutive bins, R values from correlations with two different feature
values (e.g., color 1 chosen or color 2 chosen) had to significantly differ, while an
RPE had to be encoded for at least one of the two feature values according to the
same criteria as for nonspecific RPE signals. The method of identification was the
same for identifying location and motion-specific RPE signals, with the exception
of splitting trials according to chosen location or chosen motion direction,
respectively. We determined for each neuron the duration in which it encoded an
RPE signal as the first span of four or more consecutive significant time bins after
the feedback event. Again, a neuron could technically encode more than one signal
type, e.g., a neuron could be identified to encode a color-specific pRPE and a
location-specific nRPE.

Note that technically a neuron could be identified as encoding a nonspecific and
feature-specific RPE. Consider the following example: a neuron may encode a
significant RPE for color 1 and color 2 choices, but does so significantly stronger
for color 1 choices. This neuron would statistically still “show up” as a nonspecific
RPE encoding neuron when color 1 and color 2 choices are collapsed. Since it is not
meaningful to label a neuron as feature-specific and nonspecific, for any analysis
that explicitly compared feature-specific with nonspecific RPEs (e.g., Fig. 4 and
Fig. 8), a neuron was only considered as a nonspecific RPE neuron if it could not
also be identified as a feature-specific RPE neuron, making these two separate
populations.

To compare time courses of RPE signals, as well as trial outcome signals, we
determined for each neuron the time window (minimum 4 consecutive bins) in
which it encoded a RPE/trial outcome signal significantly (if a neuron encoded an
RPE/trial outcome signal over longer time spans with time bins in between that
were not significant, only the first time window of consecutive significant time bins
was considered for this analysis). Across neurons, we therefore obtained
distributions of time bins in which RPE/trial outcome signals were encoded, and
we then tested these distributions for differences in their cumulative sums
(Kolmogorov–Smirnoff test, Bonferroni–Holm multiple-comparison correction,
α= 0.05). To verify these results, we additionally employed nonparametric Rank
Sum tests (Bonferroni–Holm multiple-comparison corrected, α= 0.05). As an
additional measure of latency, we tested whether the time point at which 25% of
RPE/trial outcome signals were encoded (the time point when the respective
cumulative sum reaches 25%) differed using a randomization procedure (α= 0.05,
n= 500). The analysis procedure was equivalent when comparing the latencies of
feature-specific RPE encoding between areas.

We used a bootstrap procedure to determine whether the encoding for any
specific feature (e.g., color) was more prevalent than other features (e.g., color
versus location and motion direction) based on the distribution across all feature-
specific RPEs independent of their specificity (color, location, and motion
direction) (n= 10,000). Specifically, we assigned each neuron that encoded a
feature-specific RPE a value of 1 (color, location OR motion), and every other
neuron a value of 0. Across this population, we computed a confidence interval that
indicated how likely it was for a neuron to encode a feature-specific RPE (any type).
Since we were specifically interested in whether a specific type of feature RPE was
encoded more often than the others, we computed a one-sided confidence interval.
When the proportion of color-specific RPEs falls above this upper confidence
interval, it indicates that color-specific RPEs were more often encoded than would
be expected based on the population of all feature-specific RPEs (Figs. 6, 7). This
bootstrap procedure was computed across all units encoding a specifically signed or
unsigned RPE, initially independent of area recorded (Figs. 5a, d, 6a), and in a
second step separately for each area (Figs. 6b, e and 7b). To compare the ratio of
color-specific RPE encoding versus location- or motion-specific RPE encoding
between areas, we computed a color-tuning index for each area as follows:

Icol ¼
Pcol � Ploc þ Pmotð Þ=2
Pcol þ Ploc þ Pmot

; ð2Þ

whereby Icol refers to the color-tuning index, Pcol, Ploc, and Pmot refer to the
proportions of color-, location-, and motion-specific RPE units, respectively. We
then compared color-tuning indices across areas by computing a two-sided
confidence interval (bootstrap procedure, n= 10,000) around color-tuning indices
that were computed with randomized area labels. An area was considered to have a
significantly greater or smaller color-tuning index than the other areas if it fell
outside of the confidence interval (Figs. 6c, f, 7c).

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data supporting this study and its findings, as well as custom MATLAB code
generated for analyses, are available from the corresponding author upon rea-
sonable request.
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