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Abstract. The main object of this article is to consider a family of approximation operators of exponential
type, which has presumably not been studied earlier due mainly to their seemingly complicated behav-
ior. We estimate and establish a quantitative asymptotic formula in terms of the modulus of continuity
with exponential growth, a Korovkin-type result for exponential functions and also a Voronovskaja-type
asymptotic formula in the simultaneous approximation.

1. Introduction, Definitions and Preliminaries

Systematic investigations of approximation and some other basic properties of various linear and
nonlinear operators are potentially useful in many different areas of researches in the mathematical, physical
and engineering sciences. Some of the widely and extensively studied approximation operators include
(for example) the Szász and Baskakov operators [3], the Post-Widder operators [7], the Srivastava-Gupta
operators (see, for example, [8], [13] and [14]), the Szász-Mirakjan Beta-type operators [16], the the Szász-
Bézier operators [17], and so on (see, for example, [9]; see also [12] and [15] for other potentially useful
developments leading to various approximation theorems).
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Email addresses: vijaygupta2001@hotmail.com (Vijay Gupta), mlopezpe@mat.upv.es (Manuel López-Pellicer),
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Over four decades ago, Ismail and May [11] proposed an approach to construct several exponential type
operators. In fact, for the positive operators defined by

Sn( f , x) =

∫
∞

−∞

kn(x, t) f (t) dt (n ∈N := {1, 2, 3, · · · }),

the sequence of kernels {kn(x, t)}n∈N satisfy the following partial differential equation:

∂
∂x
{kn(x, t)} =

n
p(x)

(t − x)kn(x, t),

where p(x) denotes certain polynomials or functions of x. By taking different values of p(x), Ismail and May
[11] defined a number of known or new operators. In one of their examples, they considered p(x) = 2x3/2

and, based upon this example, Ismail and May [11, (3.16)] deduced the following operators:

Tn( f , x) =

∫
∞

0
kn(x, t) f (t) dt

= e−n
√

x
(
n
∫
∞

0
e−nt/

√
x t−1/2 I1(2n

√
t) f (t) dt + f (0)

)
, (1)

where x ∈ (0,∞), the kernel kn(x, t) is given by

kn(x, t) = e−n
√

x
(
ne−nt/

√
x t−1/2 I1(2n

√
t) + δ(t)

)
(2)

in terms of the Dirac delta function δ(t), and Iν(z) is the modified Bessel function of the first kind defined by

Iν(z) =

∞∑
k=0

( z
2

)ν+2k

k! Γ(ν + k + 1)
.

The Ismail-May operators Tn( f , x) in (1) satisfy the following partial differential equation:

2x3/2 ∂
∂x

{
e−n
√

x e−nt/
√

x
}

= n(t − x)
{
e−n
√

x e−nt/
√

x
}
. (3)

Even though the operators Tn( f , x) in (1) were presumably new at the time when Ismail and May [11]
initiated their study, yet these operators do not appear to have been studied much ever since then. In
order to preserve the constant function, the term f (0) was incorporated in the above definition (1). These
operators do preserve linear functions. Actually, by reproducing the linear functions, it is observed that
better approximation can be achieved. Many operators as such preserve linear functions, but some well-
known operators, which do not preserve linear functions, can be appropriately modified, so as to preserve
linear functions. Some other general classes of linear positive operators, which preserve linear functions
are studied recently in (for example) [5], [7] and [8].

Here, in our investigation, we present a systematic analysis of the Ismail-May approximation operators
of exponential type, which was presumably not studied earlier due mainly to their seemingly complicated
behavior. In particular, we estimate and establish a quantitative asymptotic formula in terms of the
modulus of continuity with exponential growth, a Korovkin-type result for exponential functions and also
a Voronovskaja-type asymptotic formula in the simultaneous approximation.

2. A Set of Auxiliary Results

We begin this section by presenting the following result.
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Lemma 1. The moments Tn(er, x) for er(t) = tr (r ∈N0 :=N ∪ {0}) satisfy the following recurrence relation:

Tn(er+1, x) = xTn(er, x) +
2x3/2

n
T′n(er, x).

Furthermore, if the mth-order central moments µn,m(x) are given by

µn,m(x) = Tn

(
(t − x)m, x

)
,

then

µn,m+1(x) =
2x3/2

n
[µn,m(x)]′ +

2mx3/2

n
µn,m−1(x).

Proof. The proof of Lemma 1 follows immediately by making use of (3).

We now state the following consequence of Lemma 1.

Corollary 1. Let β and δ be any two positive real numbers. Also let [a, b] ⊂ (0,∞) be any bounded interval. Then,
for any m ∈N0, there exists a constant C, depending only on m, such that∥∥∥∥∥∥

∫
|t−x|=δ

kn(x, t)eβt dt

∥∥∥∥∥∥ 5 Cn−m, (4)

where ‖ · ‖ denotes the sup-norm over [a, b].

Remark 1. (see [4]) Another approach to find the moments of the Ismail-May operators is by means of the
moment generating function (m.g.f) which is given by

Tn(eAt, x) = e
nAx

(n−A
√

x) . (5)

Thus, upon expanding in powers of A, we have

Tn(eAt, x) = 1 + xA +

(
2x3/2

n
+ x2

)
A2

2!
+

(
6x2

n2 +
6x5/2

n
+ x3

)
A3

3!

+

(
24x5/2

n3 +
36x3

n2 +
12x7/2

n
+ x4

)
A4

4!
+ · · · . (6)

It may be observed here that the coefficients of Ar

r! will provide the rth-order moment Tn(er, x). Further,
we have

Tn(er, x) = xr +
r(r − 1)

n
x(2r−1)/2 +

r(r − 1)2(r − 2)
2n2 xr−1 + O

( 1
n3

)
.

Remark 2. The central moments of the Ismail-May operators can be obtained as follows:

e
nAx

(n−A
√

x)
−Ax

= 1 +
2x3/2

n
A2

2!
+

6x2

n2

A3

3!

+

(
24x5/2

n3 +
12x3

n2

)
A4

4!
+ · · ·

We may observe here the the coefficients of Ar

r! will provide the rth-order central moment µn,r(x) = Tn

(
(t −

x)r, x
)

of the Ismail-May operators.
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Remark 3. In light of Remark 1, if we differentiate both sides partially with respect to A, we find that

Tn(eAte0, x) = e
nAx

(n−A
√

x)

Tn(eAte1, x) = e
nAx

(n−A
√

x)
n2x

(n − A
√

x)2

Tn(eAte2, x) = e
nAx

(n−A
√

x)
n2x3/2

(
2n − 2A

√
x + n2x1/2

)
(
n − A

√
x
)4 .

Thus, clearly, we have

Tn

(
eAt(e2 − e0x)2, x

)
= e

nAx
(n−A

√
x)

n4

(n − A
√

x)4
µn,2(x)

·

(
1 +

A
√

x
n

(2Ax − 1) −
2A3x2

n2 +
A4x5/2

2n3

)
.

Suppose now that n > 2A
√

x implies that

n − A
√

x >
n
2

or
n

n − A
√

x
< 2.

We then easily have

e
nAx

(n−A
√

x) < e2Ax,

A
√

x
n

(2Ax − 1) < Ax −
1
2
,

n4

(n − A
√

x)4
< 16

and
A4x5/2

2n3 <
Ax
16
.

Thus, by using the above bounds, we have

Tn(eAt(e2 − e0x)2, x) 5 C(A, x)µn,2(x),

where
C(A, x) = e2Ax16

(
Ax +

1
2

+
Ax
16

)
= e2Ax(8 + 17Ax).

3. Convergence Estimates

The first-order modulus of continuity (see [18] and [9]) is defined as follows:

ω1( f , δ,A) = sup
0<x<∞
(|h|5δ)

| f (x) − f (x + h)| e−Ax.

We now recall the following known result.

Lemma 2. (see [18] and [9]) For every positive number h > 0 and for k ∈N, the following inequality holds true:

ω1( f , kh,A) 5 k · eA(k−1)h
· ω1( f , h,A).
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Theorem 1 below provides a quantitative asymptotic formula in terms of the exponential modulus of
continuity.

Theorem 1. For the operators Tn : E→ C(0,∞), where E is the space of functions f having exponential growth, let

f ∈ C2(0,∞) ∩ E and f ′′ ∈ Lip(β,A) (0 < β 5 1).

Then, for x ∈ (0,∞) and n > 2A
√

x, it is asserted that∣∣∣∣∣∣Tn
(

f , x
)
− f (x) −

x3/2

n
f ′′ (x)

∣∣∣∣∣∣
5

e2Ax +
C(A, x)

2
+

√
C(2A, x)

2

 · 2x3/2

n

· ω1

 f ′′,

√(
12x
n2 +

6x3/2

n

)
,A

 , (7)

where
C(A, x) = e2Ax(8 + 17Ax)

and the spaces Lip(β,A) (0 < β 5 1) consist of all functions f such that

ω1( f , δ,A) 5Mδβ (∀ δ < 1).

Remark 4. The proof of Theorem 1 follows along the lines used earlier by [18] and [9]). It makes use of
Lemma 2, Remark 2 and Remark 3. We, therefore, choose to omit the details involved.

We next turn to a Korovkin-type result for exponential functions, which was established in [2]. Subse-
quently, in another paper [10], the following quantitative version of such results was given as the following
general theorem.

Theorem A. (see [10]) Let {
Ln : Ĉ[0,∞)→ Ĉ[0,∞)

}
n∈N

be a sequence of linear positive operators, where Ĉ[0,∞) denotes the class of all real-valued continuous functions f
on [0,∞) having finite limit value as x → ∞ and equipped with uniform norm. Suppose also that it satisfies the
following equalities:∥∥∥Ln(e−kt) − e−kx

∥∥∥
∞

= αk(n) (k = 0, 1, 2).

Then ∥∥∥Ln f − f
∥∥∥
∞
5

∥∥∥ f
∥∥∥
∞
α0(n) + [2 + α0(n)]

· ω̄
(

f ,
√
α0(n) + 2α1(n) + α2(n)

)
(8)

for f ∈ Ĉ[0,∞). The modulus of continuity used in the above assertion is defined as follows:

ω̄( f , δ) = sup
|e−x−e−t |5δ

(x,t>0)

| f (t) − f (x)|.

For the Ismail-May operators defined by (1), Theorem A takes the form given by Theorem 2 below.
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Theorem 2. For f ∈ Ĉ(0,∞), and n ∈ N, it is asserted that∥∥∥Tn f − f
∥∥∥
∞
5 2ω̄

(
f ,

√
2α1(n) + α2(n)

)
, (9)

where convergence takes place if n is sufficiently large.

Proof. Since the operators Tn preserve only the constant function, we have α0(n) = 0.Also, by Remark 1, we
find that

Tn

(
e−t, x

)
− e−x = e−

nx
n+
√

x − e−x.

We observe here that
0 <

n
n +
√

x
< 1

(
n = 1; x ∈ (0,∞)

)
.

Thus, following [10, Lemma 3.1], we get

u − v
ln u − ln v

<
u + v

2
(0 < v < u)

and, for
u = e−

nx
n+
√

x > v = e−x > 0,

we have

e−
nx

n+
√

x − e−x <
e−

nx
n+
√

x + e−x

2
x
(
1 −

n
n +
√

x

)
=

1
2

(xe−
nx

n+
√

x + xe−x)
√

x
n +
√

x
.

Again, by using [10, Eq. (3.1)], we get

e−
nx

n+
√

x − e−x <
1
2e

(
n +
√

x
n

+ 1
) √

x
n +
√

x
,

which implies that α1(n) tends to 0 as n→∞.
Similarly, the estimate α2(n) has the upper bound given by

e−
2nx

n+2
√

x − e−2x <
1
2e

(
n + 2

√
x

2n
+

1
2

)
2
√

x
n + 2

√
x

=
1
2e

(
n + 2

√
x

n
+ 1

) √
x

n + 2
√

x
.

This evidently completes the proof of Theorem 2.

4. Simultaneous Approximation

In this section, we establish a Voronovskaja-type asymptotic formula in simultaneous approximation.
We first establish Lemma 3 below.

Lemma 3. There exist the functions qi, j,r(x), independent of n and t, such that(
2x3/2

)r ∂r

∂xr

{
e−n
√

x e−nt/
√

x
}

=
∑
2i+ j5r
(i, j=0)

ni+ j(t − x) j qi, j,r(x)
{
e−n
√

x e−nt/
√

x
}
.
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Proof. In order to prove the result asserted by Lemma 3, it is sufficient to show that

∂r

∂xr

{
e−n
√

x e−nt/
√

x
}

=
1
2r

∑
2i+ j5r
(i, j=0)

ni+ j(t − x) jqi, j,r(x)x−3r/2
{
e−n
√

x e−nt/
√

x
}
.

We shall prove this last result by applying the principle of mathematical induction. Indeed, for r = 1, the
result is true as indicated in (3) in this case when i = 0, j = 1 and qi, j,r(x) = 1. Suppose now that the result is
true for a give positive integer r. Then

∂r+1

∂xr+1

{
e−n
√

x e−nt/
√

x
}

=
∂
∂x

 1
2r

∑
2i+ j5r
(i, j=0)

ni+ j(t − x) j qi, j,r(x)x−3r/2 e−n
√

x e−nt/
√

x


=

1
2r

∑
2i+ j5r

(i=0; j=1)

ni+ j(t − x) j−1[− jqi, j,r(x)]x−3r/2 e−n
√

x e−nt/
√

x

+
1
2r

∑
2i+ j5r
(i, j=0)

ni+ j(t − x) j q′i, j,r(x)x−3r/2 e−n
√

x e−nt/
√

x

+
1

2r+1

∑
2i+ j5r
(i, j=0)

ni+ j(t − x) j[−3rqi, j,r(x)]x(−3r−2)/2 e−n
√

x e−nt/
√

x

+
1

2r+1

∑
2i+ j5r
(i, j=0)

ni+ j+1(t − x) j[−x−1/2 qi, j,r(x)]x−3r/2 e−n
√

x e−nt/
√

x

+
1

2r+1

∑
2i+ j5r
(i, j=0)

ni+ j+1(t − x) j[tx−3/2qi, j,r(x)]x−3r/2 e−n
√

x e−nt/
√

x.

We thus find that

∂r+1

∂xr+1

{
e−n
√

x exp
(
−

nt
2x2

)}
=

1
2r

∑
2(i−1)+( j+1)5r

(i=0; j=1)

ni+ j(t − x) j[−( j + 1)qi−1, j+1,r(x)]x−3r/2 e−n
√

x e−nt/
√

x

+
1
2r

∑
2i+ j5r
(i, j=0)

ni+ j(t − x) j q′i, j,r(x)x−3r/2 e−n
√

x e−nt/
√

x

+
1

2r+1

∑
2i+ j5r
(i, j=0)

ni+ j(t − x) j[−3rx1/2qi, j,r(x)]x−3(r+1)/2 e−n
√

x e−nt/
√

x

+
1

2r+1

∑
2i+( j−1)5r

(i, j=0)

ni+ j(t − x) j[qi, j−1,r(x)]x−3(r+1) e−n
√

x e−nt/
√

x,

which does have the required form where

qi, j,r+1(x) = −x3/2( j + 1)qi−1, j+1,r(x) + x3/2 q′i, j,r(x) − 3rx1/2qi, j,r(x) + qi, j−1,r(x)

(2i + j 5 r + 1; i, j = 0)
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with the convention that qi, j,r(x) = 0 if any one of the constraints is violated. Thus the result holds true for
r + 1. This completes the proof of Lemma 3.

Throughout the remainder of this section, Cγ(0,∞) (γ > 0) denotes the class of continuous functions on
(0,∞) with

| f (t)| 5Metγ (M > 0).

Moreover, the norm ‖ · ‖γ on this class of functions is defined as follows:

‖ f ‖γ = sup
x∈(0,∞)

| f (t)|e−tγ.

Theorem 3. Let f ∈ Cγ(0,∞). Also let f (r+2)(x) exists at a point x ∈ (0,∞). Then, for r = 0, 1, 2, it is asserted that

lim
n→∞

n
[
T(r)

n ( f , x) − f (r)(x)
]

= x−3/2 f (r−1)(x)
(r − 3)!

{(
r −

3
2

) (
r −

5
2

)
· · ·

(
−

1
2

)}
+ x−1/2 f (r)(x)

(r − 2)!

[
− (r − 2)

{(
r −

3
2

) (
r −

5
2

)
· · ·

(
−

1
2

)}
+

{(
r −

1
2

) (
r −

3
2

)
· · ·

(1
2

)} ]
+ x1/2 f (r+1)(x)

(r − 1)!

[
(r − 1)(r − 2)

2

{(
r −

3
2

) (
r −

5
2

)
· · ·

(
−

1
2

)}
− (r − 1)

{(
r −

1
2

) (
r −

3
2

)
· · ·

(1
2

)}
+

{(
r +

1
2

) (
r −

1
2

)
· · ·

3
2

} ]
+ x3/2 f (r+2)(x)

r!

[
−

r(r − 1)(r − 2)
6

{(
r −

3
2

) (
r −

5
2

)
· · ·

(
−

1
2

)}
+

r(r − 1)
2

{(
r −

1
2

) (
r −

3
2

)
· · ·

(1
2

)}
− r

{(
r +

1
2

) (
r −

1
2

)
· · ·

3
2

}
+

{(
r +

3
2

) (
r +

1
2

)
· · ·

5
2

}]
,

where the terms within the curly brackets end with the last terms as indicated in each bracket and, otherwise, its value
is 1.

Proof. Making use of Taylor’s theorem, we can write

f (t) =

r+2∑
v=0

f (v)(x)
v!

(t − x)v + ψ(t, x)(t − x)r+2 (0 < t < ∞), (10)
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where the function ψ(t, x)→ 0 as t→ x. From the equation (10), we obtain

T(r)
n ( f , x) =

dr

dwr

{
Tn

(
f (t),w

)} ∣∣∣∣∣
w=x

=

r+2∑
v=0

f (v)(x)
v!

dr

dwr

{
Tn

(
(t − x)v,w

)} ∣∣∣∣∣
w=x

+
dr

dwr

{
Tn

(
ψ(t, x)(t − x)r+2,w

)} ∣∣∣∣∣
w=x

=

r+2∑
v=0

f (v)(x)
v!

v∑
j=0

(
v
j

)
(−x)v− j dr

dwr

{
Tn(t j,w)

} ∣∣∣∣∣
w=x

+
dr

dwr

{
Tn

(
ψ(t, x)(t − x)r+2,w

)} ∣∣∣∣∣
w=x

=: I1 + I2. (11)

Because of the fractional powers of x in Tn(er, x), it does not seem to be possible to consider all terms.
Following [6, Theorem 5], therefore, we estimate I1 as per our assumption as follows:

I1 =
f (r−1)(x)
(r − 1)!

dr

dwr

{
Tn(tr−1,w)

} ∣∣∣∣∣
w=x

+
f (r)(x)

r!

[
r(−x)

dr

dwr

{
Tn(tr−1,w)

} ∣∣∣∣∣
w=x

+
dr

dwr {Vn(tr,w)}
∣∣∣∣∣
w=x

]
+

f (r+1)(x)
(r + 1)!

[
(r + 1)r

2
x2 dr

dwr

{
Tn(tr−1,w)

} ∣∣∣∣∣
w=x

+ (r + 1)(−x)
dr

dwr {Tn(tr,w)}
∣∣∣∣∣
w=x

+
dr

dwr

{
Tn(tr+1,w)

} ∣∣∣∣∣
w=x

]
+

f (r+2)(x)
(r + 2)!

[
(r + 2)(r + 1)r

3!
(−x)3 dr

dwr

{
Tn(tr−1,w)

} ∣∣∣∣∣
w=x

+
(r + 2)(r + 1)

2
x2 dr

dwr {Vn(tr,w)}
∣∣∣∣∣
w=x

+ (r + 2)(−x)
dr

dwr

{
Tn(tr+1,w)

} ∣∣∣∣∣
w=x

+
dr

dwr

{
Tn(tr+2,w)

} ∣∣∣∣∣
w=x

]
.

which, in view of Remark 1, yields

I1 =
f (r−1)(x)
(r − 1)!

[
(r − 1)(r − 2)

n

(
r −

3
2

) (
r −

5
2

)
· · ·

(
−

1
2

)
x−3/2

]
+

f (r)(x)
r!

[
r(−x)

(r − 1)(r − 2)
n

(
r −

3
2

) (
r −

5
2

)
· · ·

(
−

1
2

)
x−3/2

+ r! +
r(r − 1)

n

(
r −

1
2

) (
r −

3
2

)
· · ·

(1
2

)
x−1/2

]
+

f (r+1)(x)
(r + 1)!

[
(r + 1)r

2
x2 (r − 1)(r − 2)

n

(
r −

3
2

) (
r −

5
2

)
· · ·

(
−

1
2

)
x−3/2

+ (r + 1)(−x) ·
(
r! +

r(r − 1)
n

(
r −

1
2

)(
r −

3
2

)
· · ·

(1
2

)
x−1/2

)
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+

(
(r + 1)! x +

(r + 1)r
n

(
r +

1
2

)(
r −

1
2

)
· · ·

3
2

x1/2

)]
+

f (r+2)(x)
(r + 2)!

[
(r + 2)(r + 1)r

3!
(−x)3 (r − 1)(r − 2)

n

(
r −

3
2

) (
r −

5
2

)
· · ·

(
−

1
2

)
x−3/2

+
(r + 2)(r + 1)

2
x2
·

(
r! +

r(r − 1)
n

(
r −

1
2

)(
r −

3
2

)
· · ·

(1
2

)
x−1/2

)
+ (r + 2)(−x)

(
(r + 1)!x +

(r + 1)r
n

(
r +

1
2

)(
r −

1
2

)
· · ·

3
2

x1/2

)
+

(
(r + 2)!

2
x2 +

(r + 2)(r + 1)
n

(
r +

3
2

)(
r +

1
2

)
· · ·

5
2

x3/2

)]
+ O

( 1
n2

)
.

We thus obtain

lim
n→∞

{
n
[
T(r)

n ( f , x) − f (r)(x)
]}

=
f (r−1)(x)
(r − 1)!

[
(r − 1)(r − 2)

(
r −

3
2

) (
r −

5
2

)
· · ·

(
−

1
2

)
x−3/2

]
+

f (r)(x)
r!

[
−r(r − 1)(r − 2)

(
r −

3
2

) (
r −

5
2

)
· · ·

(
−

1
2

)
x−1/2

+ r(r − 1)
(
r −

1
2

) (
r −

3
2

)
· · ·

(1
2

)
x−1/2

]
+

f (r+1)(x)
(r + 1)!

[
1
2

(r + 1)r(r − 1)(r − 2)
(
r −

3
2

) (
r −

5
2

)
· · ·

(
−

1
2

)
x1/2

+ (r + 1)(−x) ·
(
r(r − 1)

(
r −

1
2

) (
r −

3
2

)
· · ·

(1
2

)
x−1/2

)
+

(
(r + 1)r

(
r +

1
2

) (
r −

1
2

)
· · ·

3
2

x1/2
)]

+
f (r+2)(x)
(r + 2)!

[
−

1
3!

(r + 2)(r + 1)r(r − 1)(r − 2)
(
r −

3
2

) (
r −

5
2

)
· · ·

(
−

1
2

)
x3/2

+
(r + 2)(r + 1)

2
x2
·

(
r(r − 1)

(
r −

1
2

) (
r −

3
2

)
· · ·

(1
2

)
x−1/2

)
+ (r + 2)(−x)

(
(r + 1)r

(
r +

1
2

) (
r −

1
2

)
· · ·

3
2

x1/2
)

+

(
(r + 2)(r + 1)

(
r +

3
2

) (
r +

1
2

)
· · ·

5
2

x3/2
)]
.

In order to complete the proof of Theorem 3, it is sufficient to show that

lim
n→∞
{nI2} = 0.

We begin by observing that
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I2 =
dr

dwr

{
Tn

(
ψ(t, x)(t − x)r+2,w

)} ∣∣∣∣∣
w=x

=

∫
∞

0
k(r)

n (w, t)ψ(t, x)(t − x)r+2 dt
∣∣∣∣∣
w=x

Also, in view of Lemma 3, we have

|I2| 5
∑
2i+ j5r
(i, j=0)

ni+ j |qi, j,r(w)|

2r · w3r/2

∫
∞

0
|t − w| j kn(w, t)ψ(t, x)| · |t − x|r+2 dt

∣∣∣∣∣
w=x

=
∑
2i+ j5r
(i, j=0)

ni+ j |qi, j,r(x)|

2r · x3r/2

∫
∞

0
|t − x| j kn(x, t)ψ(t, x)| · |t − x|r+2 dt. (12)

Now, since ψ(t, x)→ 0 as t→ x, for a given ε > 0, there exists a δ > 0 such that

|ψ(t, x)| < ε whenever |t − x| < δ.

Furthermore, we can find a constant M > 0 such that

|(t − x)r+2ψ(t, x)| 5Meγt (|t − x| ≥ δ).

Hence, by using Lemma 3 once again, we get

|I2| 5
∑
2i+ j5r
(i, j=0)

ni+ j |qi, j,r(x)|

2r · x3r/2

∫
∞

0
|t − x| j kn(x, t)ψ(t, x)| · |t − x|r+2 dt

5
∑
2i+ j5r
(i, j=0)

ni+ j |qi, j,r(x)|

2r · x3r/2

(
ε

∫
|t−x|<δ

kn(x, t)|t − x| j+r+2dt

+ M
∫
|t−x|=δ

kn(x, t)|t − x| j eγt dt
)

=: I21 + I22.

Let us now take

K = sup
2i+ j5r
(i, j=0)

|qi, j,r(x)|

2r · x3r/2 .

Thus, by applying the Schwarz inequality and Remark 2, we find that

I21 = ε K
∑
2i+ j5r
(i, j=0)

ni+ j
( ∫

∞

0
kn(x, t) dt

)1/2 ( ∫
∞

0
kn(x, t)(t − x)2 j+2r+4 dt

)1/2

= ε
∑
2i+ j5r
(i, j=0)

ni+ jO
( 1

n( j+r+2)/2

)
= ε ·O

(1
n

)
.
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Since ε > 0 is arbitrary, nI21 → 0 as n → ∞. Again, by using the Schwarz inequality, Corollary 1 (with
2γ = β) and Remark 2, we obtain

I22 5M1

∑
2i+ j5r
(i, j=0)

ni+ j
( ∫

∞

0
kn(x, t)(t − x)2 j dt

)1/2

·

( ∫
|t−x|=δ

kn(x, t)e2γt dt
)1/2

5M1

∑
2i+ j5r
(i, j=0)

ni+ j O
( 1

n j/2

)
O

( 1
nm/2

)
= O

( 1
n(m−r)/2

)
,

which implies that nI22 → 0 as n → ∞ on choosing m > r + 2. Thus, from the above estimates of I21 and
I22, nI2 → 0 as n→∞. Clearly, the result asserted by Theorem 3 follows from the above estimates of I1 and
I2.

Corollary 2. Let f ∈ Cγ(0,∞). Also let f ′′(x) exist at a point x ∈ (0,∞), then

lim
n→∞

{
n[Tn( f , x) − f (x)]

}
= x3/2 f ′′(x).

Corollary 3. Let the function f ∈ Cγ(0,∞) admit the derivative of the third order at a fixed point x ∈ (0,∞). Then

lim
n→∞

{
n
[
T′n( f , x) − f ′(x)

]}
=

3x1/2

2
f ′′(x) + x3/2 f ′′′(x).

Remark 5. It may be remarked here that Theorem 3 can be extended for r = 3 if we also consider the
coefficients for f (r−i)(x) (i = 2, · · · , r), which is because of the fact that, in Remark 1, the value of Tn(er, x) has
fractional powers of x.

5. Concluding Remarks and Observations

Our present investigation is motivated essentially by the fact that systematic investigations of approxi-
mation and some other basic properties of various linear and nonlinear operators are potentially useful in
many different areas of researches in the mathematical, physical and engineering sciences. Here, in this ar-
ticle, we have considered a family of approximation operators of exponential type, which was presumably
not studied earlier due mainly to their seemingly complicated behavior. In particular, we have estimated
and established a quantitative asymptotic formula in terms of the modulus of continuity with exponential
growth, a Korovkin-type result for exponential functions and also a Voronovskaja-type asymptotic formula
in the simultaneous approximation. For motivating and encouraging further researches of such topics as
those that we have considered here, we have chosen to include citations of earlier developments concerning
other families for approximation operators.

Acknowledgements

The authors wish to thank the referee for a careful reading of their submission and for a number of valu-
able comments and suggestions which have significantly improved this paper. The second-named author is
supported by Grant PGC2018-094431-B-I00 of the Ministry of Science, Innovation and Universities of Spain.

Conflicts of Interest: The authors declare no conflicts of interest.



V. Gupta et al. / Filomat 34:13 (2020), 4329–4341 4341

References

[1] P. N. Agrawal and K. J. Thamer, Approximation of unbounded functions by a wew sequence of linear positive operators, J. Math.
Anal. Appl. 225 (1998), 660–672.

[2] B. D. Boyanov and V. M. Veselinov, A note on the approximation of functions in an infinite interval by linear positive operators,
Bull. Math. Soc. Sci. Math. R. S. Roumanie (Nouvelle Sér.) 14 (62) (1970), 9–13.

[3] Z. Ditzian, On global inverse theorem of Szász and Baskakov operators, Canad. J. Math. 31 (1979), 255–263.
[4] V. Gupta, Convergence estimates of certain exponential type operators, in Mathematical Analysis. I: Approximation Theory, Pro-

ceedings of the International Conference on Recent Advances in Pure and Applied Mathematics (ICRAPAM) (New Delhi, India,
October 23–25, 2018) (N. Deo, V. Gupta, A. M. Acu and P. N. Agrawal, Editors), pp. 47–55, Springer Proceedings in Mathematics
and Statistics, Vol. 306, Springer, Singapore, 2020.

[5] V. Gupta, A note on the general family of operators preserving linear functions, Rev. Real Acad. Cienc. Exactas Fı́s. Natur. Ser. A
Mat. (RACSAM) 113 (2019), 3717–3725.

[6] V. Gupta, Approximation with certain exponential operators, Rev. Real Acad. Cienc. Exactas Fı́s. Natur. Ser. A Mat. (RACSAM) 114
(2020), Article ID 51, 1–15.

[7] V. Gupta and D. Agrawal, Convergence by modified Post-Widder operators, Rev. Real Acad. Cienc. Exactas Fı́s. Natur. Ser. A Mat.
(RACSAM) 113 (2019), 1475–1486.

[8] V. Gupta and H. M. Srivastava, A general family of the Srivastava-Gupta operators preserving linear functions, European J. Pure
Appl. Math. 11 (2018), 575–579.

[9] V. Gupta and G. Tachev, Approximation with Positive Linear Operators and Linear Combinations, Springer International Publishing
AG, Cham, Switzerland, 2017.
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