electronics m\py

Article

Smooth 3D Path Planning by Means of
Multiobjective Optimization for Fixed-Wing UAVs

Franklin Samaniego **, Javier Sanchis'”, Sergio Garcia-Nieto” and Raul Simarro

Instituto Universitario de Automaética e Informaética Industrial, Universitat Politécnica de Valéncia,
46022 Valencia, Spain; jsanchis@isa.upv.es (J.S.); sgnieto@isa.upv.es (5.G.N.); rausifer@isa.upv.es (R.S.)
* Correspondence: frasarie@doctor.upv.es; Tel.: +593-99-130-5550

check for
Received:28 October 2019; Accepted: 25 December 2019; Published: 28 December 2019 updates

Abstract: Demand for 3D planning and guidance algorithms is increasing due, in part, to the increase
in unmanned vehicle-based applications. Traditionally, two-dimensional (2D) trajectory planning
algorithms address the problem by using the approach of maintaining a constant altitude. Addressing
the problem of path planning in a three-dimensional (3D) space implies more complex scenarios where
maintaining altitude is not a valid approach. The work presented here implements an architecture
for the generation of 3D flight paths for fixed-wing unmanned aerial vehicles (UAVs). The aim is
to determine the feasible flight path by minimizing the turning effort, starting from a set of control
points in 3D space, including the initial and final point. The trajectory generated takes into account
the rotation and elevation constraints of the UAV. From the defined control points and the movement
constraints of the UAYV, a path is generated that combines the union of the control points by means of
a set of rectilinear segments and spherical curves. However, this design methodology means that the
problem does not have a single solution; in other words, there are infinite solutions for the generation
of the final path. For this reason, a multiobjective optimization problem (MOP) is proposed with the
aim of independently maximizing each of the turning radii of the path. Finally, to produce a complete
results visualization of the MOP and the final 3D trajectory, the architecture was implemented in a
simulation with Matlab /Simulink/flightGear.

Keywords: UAV; path planning; smooth path planning; multiobjective optimization

1. Introduction

The latest technological and scientific advances in the field of mobile robotics have enabled the
area of autonomous vehicles (AV) to become a reality applied to the civil and military sectors [1,2].
Consequently, this technological branch presents a constant and vertiginous development in different
fields, among them the development of new navigation and guidance techniques. The constant
evolution in this field responds to new challenges in real applications [3-5].

Autonomous vehicles with non-holonomic characteristics [6—8] can be technologically adapted
to different environments, and so, produce unmanned ground vehicles (UGVs) [9-11], unmanned
underwater vehicles (UUVs) [12-14], and unmanned aerial vehicles (UAVs) [15-18]. Obviously, each of
the above categories presents its own scientific and technological challenges, including path planning,
navigation, and guidance.

It is important to note that the most common problem when determining a possible feasible
path is the consideration of the AV intrinsic constraints. Therefore, the non-inclusion of kinematic
and/or dynamic constraints of the AV when addressing the path planning problem may lead to
non-feasible solutions that, for example, make it impossible for the AV to satisfactorily follow a path.
However, including in the design all the constraints of the AV in the calculation phase of the path

Electronics 2020, 9, 51; doi:10.3390/ electronics9010051 www.mdpi.com/journal/electronics


http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0003-0829-0877
https://orcid.org/0000-0001-9697-2696
https://orcid.org/0000-0002-2722-742X
https://orcid.org/0000-0002-7311-2025
http://dx.doi.org/10.3390/electronics9010051
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/1/51?type=check_update&version=2

Electronics 2020, 9, 51 2 of 23

planning can lead to very complex optimization problems without a single solution and with very
high computational costs.

This paper focuses on the generation of smooth paths for fixed wing unmanned aerial vehicles
(UAVs) that have high flight capabilities and extended flight-time missions, even in low power
propulsion situations [19]. For these reasons, fixed-wing UAVs are suitable for use in terrain mapping
applications for later action by the security forces, and in search and rescue tasks, both for the detection
of people and the provision of first aid.

Due to the non-holonomic constraints of fixed-wing UAVs, the aim is to create a smooth
three-dimensional curve from an initial point to a goal point through a complex 3D space with
or without obstacles. To achieve this goal, it is essential to define a feasible path that minimizes flight
turning effort and distance traveled. The ordered set of waypoints that will be used to generate the
path to follow is defined as the control points set. In general, the problem of path planning is defined
in a space region denoted as x and split as the tripla (X rec, Xinits Xgoa1)- The movement space is defined
as (W = RN : N = {2,3}, where the obstacle region is denoted by x,ps, 50 that x/x,ps is an open
set denoting the collision-free space X fye.. The initial condition x;,;; and the final condition x ¢4 are
elements of X fye,-

The set of control points that define the collision-free space is calculated using specific path
planning methods based on continuous and discrete environment sampling. Some examples of
these techniques are: the rapidly-exploring random tree (RRT) [20-23]; probabilistic road maps
(PRM) [24-28]; heuristic planners (genetic algorithms—GA) [29,30]; swarm intelligence [31-34];
fuzzy logic [35,36]); Voronoi diagrams [37-39]; artificial potential [40-43]; and recursive rewarding
modified adaptive cell decomposition (RR-MACD) [44].

All the techniques mentioned build piece-wise paths in 2D or 3D to address the standard problem
of path planning. These methods may provide optimal or near-optimal paths; however, they cannot
guarantee smoothness and continuity, which could make it difficult to guide the UAV through the
paths generated. Moreover, these techniques do not directly incorporate the operational constraints of
the UAV and the environment. Therefore, this paper proposes a methodology to define feasible and
smooth UAV paths, including system operational kinematic constraints.

The ability of an UAV to fly from one position to another and the consequent definition of the
mission to be performed remains a challenge that requires the application of increasingly sophisticated
strategies. One of the fundamental constraints to be considered in mission planning is the ability to be
positionable and sensorially oriented (on the UAV or the environment) throughout the duration of the
mission. This sensory location enables the construction of maps of the environment, and also enables
the UAV to estimate its own current position and complete its self-location on the map. Similarly,
it is important to note that good positioning and sensory orientation can be achieved by making a
path plan and tracking it across or beyond the sensory detection domain. It is important to mention
that the definition of smooth paths is not a new subject; various approaches have been proposed for
non-holonomic UAVs, such as Dubins [45,46] in which paths are defined by connecting lines and
arc-circular segments. The disadvantage is the generation of discontinuities in the connection points
between segments. Another useful methodology in the literature is Clothoid curves [47-49], the main
advantage being increases in curvature as a function of the arc-length; meanwhile the disadvantage
lies in the limitation of length. These approximate curves generate continuities [50] of the type C!
(a continuous path C! preserves the continuity of the tangent vector, in addition to maintaining
continuous speed) and have been used in applications on mobile vehicles and on UAVs with flight
limitation at a constant altitude, and examples are mentioned in [51-55]. An intuitive approach that
ensures C2 continuity (a continuous trajectory C? preserves the second order differential values at
each point of the trajectory, in addition to maintaining the continuity of the acceleration vector) in 3D
planning focuses on curvature and torsion zero at the junction points, as proposed in [56]. This is an
interesting proposal where the 3D curve is built from a 2D curve in a (x, y) plane; the resulting length
of this curve is the main parameter to build the curve in the other (x,z) plane. Finally, the Bézier,
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B-spline [57,58] are easy to implement polynomial curves; however, none are suitable for planning
since they are sensitive to control parameters and weights [59], and do not take into account the
constraints of the vehicles on which they are applied, so those curves need to be optimized. Finally,
these types of parametric curves have no physical meaning and the relationship between design
parameters and system variables is not defined. The above-mentioned approximation methodologies
generate two different phenomena called interpolation (generation of a curve which must pass through
the control points) and approximation (generation of a curve that approximates the control points,
but may only go through the start and finish rather than all of them) detailed in [60,61]. The work
presented here explores both phenomena in-depth to respond to the definition of feasible trajectories.

The starting point of this work is the set of 3D collision-free points generated by the various
planners that guarantee that the path departs from the init point and ends at the goal point, and
avoids static and dynamic obstacles. From these collision-free points, an ordered set of straight lines is
built that define a first path that will later be smoothed to incorporate the feasibility and constraints
of the UAV. The UAV constraints in this work are focused on its ability to turn horizontally and
vertically. Therefore, for a UAV to complete a sequence of turns at a defined speed, it must determine
its minimum turning radius Rp. If the turning radius is too small, the UAV will lose the trajectory;
however, if the turning radius grows, the UAV can perform maneuvers with less effort.

The aim is to maintain 3D planning results, and at the same time, generate a finite set of possible
3D curves that optimize an approximate 3D curve, and simultaneously, the turns of the UAV—which
is raised as a multiobjective optimization problem (MOP) [62]. This approach will result in a set of
paths that meet UAV constraints expressed as dominant solutions on a Pareto # dimensional front [63].
Finally, selection criteria must be applied to determine the desired response from the point of view
of curvature x and torsion T of the generated 3D curve. Thus, in order to verify the functionality of
the proposed methodology, the results of the curves generated after the 3D curve optimization were
compared with a known Bézier type approximation methodology [64].

This document is structured as follows. A brief summary of MOP concepts is given in Section 2.1.
In Section 2.2, a brief description of smooth curves is given. Section 3 presents the formulation of
the problem. Section 4 details the complete methodology for solving the problem. Section 5 details
the experiments and results of 3D smooth path planning. Finally, conclusions and future work are
presented in Section 6.

2. Background

2.1. MultiObjetive Optimization

The optimization problem (OP) attempts to determine a solution that represents the optimal
value (minimum or maximum) of a function, such as f : X — R, where X is a feasible decision vector,
being min(f(x)) : x € X. However, for problems where simultaneous optimization of more than
one objective is necessary, i.e., multiobjective optimization (MOP), the function is shaped f : x — R,
where k > 2 is the number of objectives. Therefore, the value vector of the target function could be
defined as f : X — RK, f(x) = (fi(x), -, fe(x))T. However, there is not usually a single X that
generates an optimum that simultaneously satisfies each of the k objectives, due to the conflict between
the objectives. The aim is to find a situation in which all objectives are satisfactorily within acceptable
parameters. The MOP solution leads to points where any improvement in one target results in the
degradation of any other target (one or more). Thus, these points are represented as a Pareto front [63],
where all the points of the front are equally optimal.

Therefore, as expressed in [62] the MOP can be established as

min J(6) = min(J1(6), 2(6), - () )
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subject to:

()
Qil S Gi S eiuri - [1/ t ,1’1],

where 6 € R" is the decision vector, D is the decision space; J(6) € R™ is the target vector; g(0) and
h(0) are constraint vectors; and finally, 6;; is the upper boundary and 6;, is the lower boundary of
the decision space. Consequently, there is no single optimal model; in fact, there is a set of optimal
solutions with different trade-offs between objectives, where none is better than the others. Using the
definition of dominance, the Pareto set @p is the set of each non-dominated solution.
In this way, the Pareto domination is defined in case a solution 6! dominates another solution 6%;
that is, (91 < 6?), if
Vi€ B,Ji(6") < Ji(6*) ATk € B: Jx(6") < Jx(67), ®)

where J;(6),i € B := [1---m] are the objectives to be optimized. Therefore, the optimal set of Pareto
Op is given by

Op=0cDPecD:6<0

©
J(©p) = {](6)|6 € ©p},

where ©, and ](®;) are MOP solutions. However, in most cases they are unreachable because @p
normally includes infinite solutions. Therefore, a finite set of ®} from ®p and another finite set of
J(©;}) from ](®p) represent satisfactory solutions. Starting from J(®},), the decision maker selects a
solution according to the established preferences. For example, a certain point in the Pareto front that
is close to the ideal point (called utopia point) J*4ee!.

Jidml = {]1 min(g)/ o m min(g)}' %)

Hence, an appropriate methodology for characterizing MOP is known as the elitist multiobjective
evolutionary algorithm (¢ —MOGA) [62], which makes a distributed approach to Pareto’s front.
The aim of ¢'—~MOGA is to find an intelligent distributed convergence towards a set of e-Pareto;
i.e., determine 0}, along the Pareto front J(®@p). The target space is split into a fixed number of boxes.
Therefore, for each dimension i € B, cells n_box; wide are created €;, where

€ = (]l?"”x - ]Imi”) /n_box;

J"% = max J;(6), J/"" = min J;(6).
00},

©)

Each box can be occupied by a single solution; therefore, this grid produces an intelligent
distribution and preserves the diversity of J(®%,). In addition, it is important to note that only the
occupied boxes are verified, avoiding the need to use other clustering techniques to obtain adequate
distributions. On the other hand, for a solution 6 € D, box;(0) is defined as

box;(6) = lw -n_boxi] v €B @

Then, box(8) = {box1(6), - ,box; (0)}. A solution ' with value J(6') € dominates the solution
62 with value J(6?), denoted by ol <. 62, only if

box(6!) < box(6?) v (box(el) = box(6?) and 61 < 92) . ®)
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So, a set O, C Op is e-stop only if
vol,6% € @5, 0 # 6%, box(8') # box(6?) and box(0') £. box(6?). )

Thus, a ®}, is reached with the greatest possible number of solutions that adequately characterize
Pareto’s front and whose number of possible solutions depend on n_box;, and will not exceed the
following level.

H?:ln_boxi +1

03| <
[©F| n_boxmax + 1

,n_boxyqx = maxmn_box;. (10)
1

Hence, it is possible to control the maximum number of solutions to characterize the Pareto front.
Finally, due to the definition of the box, the anchor points J;(67*) are assigned a value of box;(6*) = 0,
whereby J;(6") = J™"i". Therefore, no solution 6 can e-dominate them because, by applying the
definition of the box, their box;(6) > 1.

The above process delivers two defined sets of responses: (a) the Pareto front ©} deploys a finite
set of minimum values as the optimal path response within the search space; (b) the corresponding
optimal points ] (©7).

2.2. 3D Curves for UAVs

A non-holonomic UAV [65] can perform flights in 3D Euclidean space. Nevertheless, to complete
each movement sequence (horizontal and vertical), a set of UAV flight constraints must overcome.
An UAV attempts to perform 3D movements at a defined velocity, meaning that the UAV is moving
continuously, attempting to maintain that velocity. However, an UAV has a maximum capacity of turn
and elevation at a defined velocity. Therefore, the aim is to build a 3D smooth curve inside the UAV
flight turning boundaries, in such a way to reach a complete 3D smooth curve tracking.

A smooth curve can be defined as the representation of a continuous function, which can be
expressed as C : I — X, where [ is the curve interval composed of real numbers, while X represents
the topological space. If the topological space is three-dimensional X = R3, then C : [a,b] —
RR3, is a differentiable injectable and continuous function, whose arc-length s is independent of the
parametrization C. If a UAV is considered as a particle that travels along the envelope of the C curve
at a defined speed v, this particle suffers changes in its local coordinate system due to the set of
rotations of the C curve. Therefore, C must not allow rotation changes outside of the intrinsic rotation
capabilities of the UAV.

It is important to mention that the formulation known as Frenet-Serret [66,67] describes the
kinematic properties of particles that move along three-dimensional Euclidean space R® continuous
and differentiable C(s), and parametetrized by its arc-length s (the arc-length is an invariant Euclidean
characteristic of the curve). However, if we assume a curve given by a series of points along the
Euclidean space as r(t), where the parameter t does not need the arc-length, then the tangent (T), normal
(N) and bi-normal (B) derived vectors can be described, as all are mutually perpendicular (orthogonal
base). Therefore, according to the theory of differential geometry of curves [68], the following equals
can be defined as:

HV:(f)H .
B(f) = T(t) x N(t) = ;,8 . :,,EZ;H (1)
/ " /
N() = B0) < () = s ey
where 7/ (t) = drd—(tt), r'(t) = % and "' (t) = % are the position vector derivatives r(t). These three

vectors configure a navigation reference system of the UAV. Similarly, it is important to mention that
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the tangent vector T(t) is parallel to velocity, while the normal vector N (t) is represented by the change
of direction per time unit of velocity.

The curvature terms « (change of direction of the vector tangent T (f) to the curve r(t)) and torsion
T (change of direction of the vector bi-normal B(t)) are defined as:

e x )]
RG] 12
OROPI0)
=T P OF (13)

x indicates a direct correlation with the horizontal rotation capability of the UAV, while T indicates
the elevation capability of the UAV. Therefore, the triedro Frenet-Serret can be defined in matricial
notation as a skew-symmetric matrix:

T 0 k 0
N|l=|-«x 0 =|, (14)
B 0 -1 0

where the point over the variable indicates the derivative with respect to the parameter of arc-length s.

In summary, the space curve according to the formulation Frenet-Serret, defines a smooth curve
that will be built from a spatial point and its tangent vector; this curve will be generated in the
Euclidean 3D space depending on the pre-defined values of « and 7, and finalize at a spatial 3D point
after completing the arc-length s. However, our goal was to start from a defined point p;,;;, and build
a curve that touches a target point pg,; therefore, the values of x and 7 have to fit so that when
complete, the arc-length s will touch p,,,. That gives us an infinite number of possible values of «
and T with which we could meet that goal. Even if the maximum and minimum values of x and T
are bounded, the complexity of the problem is high. In [69] it is mentioned that the complexity in
a 2D environment becomes NP-hard, and the need is demonstrated for path planning algorithms
that generate short paths with bounded curvatures in complicated environments. The aim is to
find for possible approximate values of ¥ and 7 that do not exceed the turn capabilities of the UAV.
In other words, starting from Figure 1, and assuming a configuration of the UAV as a triplet (p, x, T),
where p = [Py, - - -, P5] is a dimensional vector that specifies n collision-free points, ¥ and T are a set
of curvatures and torsion along the path. The smooth curve starts from P; and reaches out to Ps,
and approaches the remaining p without affecting them, with values of x and t within the boundaries
established by the maneuverability capabilities of the UAV. In summary, the selection of pgo, points
which determine radii of the tangent curves to the p points, will be obtained by solving a multiobjective
optimization problem (MOP). This MOP is stated in such a way that the values of all radii will be
maximized simultaneously. Obviously, the optimizer handles these values, taking into account that
they are in conflict (as radius of one of them is increased, consequently, the adjacent radius are reduced.
Therefore, the MOP solver will try to find a trade-off solution that guarantees the best set of points
Pgoal for all tangent curves between control points p.
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[1))

/N

Figure 1. Perspective of the 3D flight problem for a fixed wing UAV, where C represents the position
vector of the center of gravity of the UAV. The global coordinate system CSg is placed at the origin,
the orientation of the local body coordinate system CS; expressed by Euler roll, pitch and yaw angles
respectively, which have been defined by three unitary orthogonal vectors aligned with the three axles
of the vehicle and centered at Cg. Finally, the angular velocities along the local axis of the UAV X,
Y and Z are represented by p, g and r, respectively. The set of collision-free points P; is represented by
black dots; the blue line describes the discrete path built from 3D path planning; the red dotted line is
the new smooth optimized path that the UAV could follow.

3. Problem Definition

Let us assume a workspace W = R, where it is possible to define a set of static or dynamic
obstacles, such as ground or aerial boxes of different dimensions and locations (see Figure 1).
The in-flight UAV receives data from its control station regarding environmental conditions and
performs the necessary calculations to determine the best smooth 3D trajectory. Relevant data include
the set of ordered 3D flight waypoints that are collision-free p = [P;,- - -, P5] in the environment.
The intrinsic maneuverability capabilities are determined by a Rp turning radius (which determines
the vertical and horizontal turning limitations) defined by their flight speed. The aim is to start from
Pinit and reach pg,, in such a way that the UAV approaches the direct trajectory marked by the ordered
sequence p. Therefore, p = P;(x;,y;,z;) where (i = 1,---,n) and n is the total set of collision-free
spaces and can be expressed as a discrete interpolation sequence p = f(t;) — R, where f(t;) is a set of
nodes in 3D space. Therefore, it is possible to establish a set of sub-intervals (n — 1) between i = 1 and
i = n partitioned in [a, b], defined as:

[‘1/ b] = [tlltZ] U [tZr t3] U---u [tn—Z/ tnfl] U [tnflz tn]

(15)
a=tH <th<---<t, 1 <t,=bh

A linear union between pairs of points then results in L : [a,b] — (x,,z). And can be expressed
as a set of straight lines that mark a direct flight path L(f) split into (n — 1) piece-wise.
Li(t) : t € [t, 1]
Lo(t) : t € [tp, t3]
(16)
Ln(t) : t E [tnfl,tn]
L(t) = Li(t) + Lo(t) + - - - + Ln(t).
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Therefore, L(t) is a linear interpolation function for the discrete sequence p = f(#;). In the same
way, between the p points, there is a subset of (n — 1) straight lines that join the init and the goal of the
trajectory along the collision-free flight space.

However, a non-holonomic UAV cannot perform every type of maneuver defined by L(f).
In general, it is desirable to perform maneuvers with a high turning radius. Therefore, the approach
presented in this work builds a smooth trajectory from p, that attempts to avoid inappropriate
maneuvers using low values of k¥ and 7T included within the boundaries of the UAV flight turn,
while simultaneously closing in on the trajectory L(t).

Let us assume, from Figure 1, that the blue line denoted as L(t) is the direct path between the
collision-free points of the environment, and the red dotted line is a smooth 3D spatial curve defined
as C(t). The construction of this 3D smooth curve C(f) is done by joining a set of segments that can be
of two types: spherical curves S (defined from a sphere of radius Rp) or straight lines L. Thus, each S
segment is defined by three continuous points of p; this segment S has two points of tangency, one for
each pair of adjacent straight lines L(t) formed by the current set of three points p. Hence, each S
segment may have infinite solutions, with each radius Rp resulting in different tangent points on
the lines L(t). Therefore, for each S segment, an infinite set of spheres can be defined, which will be
linked through the relevant L segments or another S segment. Obviously, this approach to the problem
suggests the existence of infinite combinations for the S and L segments. The way to address this issue
has been through the approach of an MOP.

4. Methodology

This section describes the proposed methodology for the generation of 3D smooth trajectories.
The proposed method is split into two parts, first detailing how the S segments were obtained, and then
describing the union with the L segments.

4.1. Definition of Spherical Segment

Let us assume that from the result of a path planning, p = [Py, - - - , P,] is the set of collision-free
points of the environment described in Figure 2 (red points). This set of points is defined as P;(x;, y;, z;) :
i={1,---,n},where pi,i; = P;(x;,yi,2z) i = {1} and pgoas = Pi(x;,y;,2;) 1 i = {n}.

As indicated above, Figure 2b shows an osculating sphere (0S) [68] defined with a minimum
turning radius value Rp, located between the set of the first 3 P; and tangential to the straight lines
L(t) formed between the same set of P;. Therefore, taking into account the number of collision-free
points p, the set of spheres is equal to G; : i = {1, --- ,n — 2}, as shown in Figure 2¢ (orthogonal view).

Figure 2b shows the first G; : i = 1 located among the three first P;s. Therefore, it is possible to
define a plane 77; : i = 1 between the same points P;, which will have an angle in relation to the location
of the current set of points P;, as can be seen in the Figure 3a,b. The importance of the definition of
this plane is given by the fact that within it is contained the center of G; with radius Rp. In this way,
there is a self-contained curve S; (as a series of points along the Euclidean space) on the surface of
the sphere and tangent to L(t) with f; and f3 in plane 7;, as shown in Figure 3; hence, the S; curve
segment (black line) is defined as:

Si(t) = [Sx, Sy, S2]

Si, =xo+ Rp=sin(yp)*cos(p) | 91> ¢ > ¢ (17)
Si, = Yo + Rp *sin(¢) * sin(¢) A
Si, = z0 + Rp * cos(y) 1 <P <.

where, x, o and z( together represent the center of G;. The curve S; performs a horizontal and vertical
path due to the angular ranges of i and ¢, which implies variations in the values of x and 7 (these
have a direct connection to Rp and the arc-length of S;). Consequently, if the value of Rp grows, S; also
grows, while x and T decrease.
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Figure 2. Smooth path planning problem. The red dots represent p and the blue line is the path made
up of straight-lines L(#). (a) Result of path planning with p collision-free points. (b) Definition of
a sphere with a relation of the Rp minimum. (c) Set of G; over p. (d) Example of optimal smooth
trajectory, with optimized x and 7 represented by dotted green lines in orthogonal view.
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Figure 3. Spherical smooth path, where the black line shows the curve in a segment S; along the
plane 7r;. The red lines show the union from the center of coordinates of the sphere to the points
of intersection between the sphere and the 71; plane resulting in the spherical semicurve. (a) View
perpendicular to the horizontal plane (x,y). (b) Perpendicular view to the vertical plane (x, z).
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Remark 1. If the plane 7; is parallel to the horizontal plane (x,y) of the environment, then T = 0 because the
movements of the UAV will be horizontal. In the same way, if 7t; is parallel to the vertical plane (x,z) of the
environment, then x = 0.

However, before applying Equation (17), it is necessary to determine the location of the points
(x0,Y0,20) so that G; is tangent at a point on its surface with L(t), as shown in Figure 2b on the
points (t; and t3). Nevertheless, it should be noted that there is an angle between each pair of L(f),
and this leads to G; approaching or moving away from the lines and their tangent points. Therefore,
the geometric analysis applied to arrive at an optimal solution is detailed below.

First, a vector direction in space can be defined as v = p—q:pAq € R3. Therefore, starting
from the known data p = [Py, - - - , P, taking Figure 2 as an example, where it is assumed that the
collision-free initial points are (P; : {i =1, ---,3}), a first set of two vectors is defined as:

Wi=p—q:p="Pe.q9="P
i : (i+1)- 49 (i) i=1. (18)
Ti=p—q:p= Piit1y,9 = Pt

Just like a perpendicular vector from i to T, denoted as 7, the normal vector is defined as:
7 = 71' X 71'. (19)

Consequently, the parametric equation of the 77; plane containing three points is defined as:

(x = px)
= |(y—py)|* [7] P = Plivay,, Py = P, Pz = Plitay,- (20)
(z—p2)

In the same way, the Euclidean distance defined between two points p and g is given by

d(p,q) =/} (p—9)2 (21)

Therefore, two distances can be defined as du; : p = P(;,1),9 = Py and dv; : p = P 1),9 = P(j12).
Finally, the angle between 7 ;and U} is defined by:

N
[ < |

(W, V) = ¢; = tan
u;-0;

(22)
Therefore, with Equation (22) and Rp known, the tangential points at the lines L(t) can be located
at a distance defined as: R
p
;= . 23
Thereby, two spatial points defined as pUi; and pUg; located in the direction of the vector 7
provide that Pi = P; 1, Pg¢ = P; and d(p,q) = du;; thus

v =0i/d(p,q)
pUij = (Pi — Pg) 7y + Pi (24)
pUg; = —(Pi — Pg) %y + Pi.

In the same way, two points pVi; and pVg; can be defined in the vector direction T4, 50 long as
Pi = P; 11, Pg = P15 and d(p, q) = dv;, according to Equation (24). Hence, the perpendicular bisector
of pUi; and pVi; on the plane 71; determines the center of the sphere (xg, 1o, zo). Figure 4a shows the
application of the Equations (18)—(24), which can be repeated throughout the successive collision-free
points p (this first Algorithm 1 is summarized in pseudocode). Between the centers of the spheres
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(%0, Y0, z0) and the points of intersection with L(t) are the displacement angles ¢ and ¢ of the segment
S;, as can be seen in the Figure 3, where pUi; = t; and pVi; = t3.

Remark 2. Regardless of the angle condition produced by the pair of straight lines L(t) denoted in the
Equation (22), the angle formed between the points of intersection on the sphere G;, seen from its center
towards the vertical or horizontal component, does not exceed 90° in any case; that is, (0° < ¢ < 90°) and
(0° < <90°).

() (b)

Figure 4. Description of the methodological basis. The circle of black dots shows the osculating sphere
(0S); the green line is the radius of turn Rp;. (a) Sphere location G; with minimum turning radius.
(b) Sphere location G; with upper turning radius displaced within the bounds given by [t1, ;] and
defined by the value of 6;.

Algorithm 1 First set of G;

1 p =[Py, ,Py] — Path planning problem result.
2: Rp = minimum sphere radius.

3: k = 1 counter for the set of intervals f.

4: fori=1:n—-2do

(i';, ;) = vectors .direct 'ons;

(,bl = angle betweeLines( v5)
=distance. mtersectlonPomt( v, ¢i);

gPUlu pUg;) =intersectPoint.(P; 1, P;, 07);

9: é?VlZ, pVgl ) =intersectPoint.(P; 1, P o, 0;);

10: (xo, yo, z9) =bisectPoint(pUi;, pVi;, 11;);

11:  if i==1 then

12: ty = Py;

13: tkr = pUi;;
14: else

15: te = pUg],
16: te1 = pUiy;
17:  end if

18:  if i==n-2 then
19: teyo = szZ,
20: teyz =

21:  endif

2: k=k+2;

23: end for

Algorithm 1 summarizes the geometric procedure followed. In line 4, a loop is started that
performs through all the collision-free points marked by rho. From line 5 to line 9, the necessary
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computations are made to determine the center of G; (line 10). The definitions of the intervals
containing the S and L segments are in lines 12, 13, 15, 16, 19 and 20.

The described process shows the geometric analysis for the location of the set of spheres G;
defined with constant radius Rp, as can be seen in Figure 2c. In addition, there is a set of four segments
S and another set of five segments L, being segments S—those comprised by the intervals [ty, t3],
[ts, t5], [te, t7] and [tg, t9], and the segment L included by the intervals [t1, t2], [t3, ta], [t5, te], [t7,tg] and
[t, t10]. The goal now is to increase the radius Rp in each segment, so that the values of k¥ and T along
the curve are minimized, and the solution is to increase the radius Rp; in each G;.

The solution adopted in this work is to move the intersection point of each sphere G; in the
direction of the adjacent segment L(t). Consequently, G; : i = 1 approximates symmetrically to the
intervals t; and t4, G; : i = 2 makes the corresponding approximation to the intervals ¢3 and t¢, etc.
Therefore, in Figure 4b, the segments L(t) can be seen adjacently to G; : i = 1, denoted as [t; =
Py, ty = pUij, t3 = pVij, tg = png]. Thus, between the adjacent intervals [t1, ;] a vector is defined
U ; =ty — t;, and associated with this vector is a spatial point p; defined by the parametric equation:

pi, = o, + 0; * 71'X
pi, =ty +0ix i, 0,06, <1, (25)
pi, = t2, + 0; * 71'2

where 0; defines the space point p; along 1 and within the intervals [t1,t2]. Therefore, the value
of the distance o; from P;; to p; is defined according to the equation on (21), being p = P;;1 and
g = pi12. A symbolic space point is defined g; between the intervals [t3, t4] with direction U=ty — 1y
at the same distance ;. Then 0; also has the angle ¢;, and according to the Equation (22) it is possible
to define a new Rp; according to Equation (23), which would have a higher radius value. Finally,
the perpendicular bisector of p; and g; on the plane 7; determines the center of G;(xo, yo,20) (see
Figure 4b). Therefore, as the center of G; is defined, the Equation (17) defines the segment S;,—and
over this segment we find lower values of k¥ and T according to the Equations (12) and (13).

Multiobjective Problem Definition (MOP)

Given Equation (25), it is important to note that any value of 6; between 0 and 1, defines a
space point between the interval [t1, t;]. In the same way, it is important to mention that within the
boundaries of 0;, there is an infinite number of space points with an infinite number of radius Rp; and
its corresponding infinite number of G;, with which its corresponding segments S;, can be built.

Therefore, to obtain an optimal solution, a multiobjective problem (MOP) is solved using
evolutionary algorithms [70] based on the concept of e-dominance [71]. To do this, it is necessary
to define the decision variables, the initial conditions of the process, the constraints of the MOP
and the index vector to be optimized to represent the Pareto front. If it is assumed that the
number of spheres G; is equal to m, and the number of objectives for each G; is equal to two,
then [ (9) = [J1(8), J2(6),- - - , Joxm(8)] is the objectives vector, where J; denotes the i objective.
Consequently, ]# = min(x(6;)), J® = min(7(0;)) € G; : [i = 1,--- ,m], where ]/ and J? depend on
the decision variables vector 6. Assume D as a decision space within a subset R”, where 6 is the
decision variable vector composed of a set of 6; for alli € 1 < i < m, where 6; is [0,1]P. Consequently,
the MOP problem can be stated as:

. 17A B . .
Ielélll;l[]i 0),J; (9)]“(2*"1), Viel<i<m. (26)

where , Y
PN OEEAC]
! (B -
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from Equation (12)
5 SO - [7(0) x S()
1 [Si(t) x sy (H)I*

from Equation (13)

0=10],. , Viel<i<m

1xm”’

subject to:
Si. = X0+ Rp;*sin(y) * cos(¢)
Si(t) = 4 Si, = Yo+ Rp; *sin(y) « sin(¢)
S; = 20 + Rp; * cos(¢)
from ec. (17)
Rp; = 07+ (¢/2)

from Equation (23)
0i = \/ ) (pi — Piy1)?
from Equation (21)
pio = by + 0% U i,
pi = q Pi, = ty, +0;i* 7@
pi, = t2, + 0; * 7,‘2

from Equation (25)
6; € [0,1]P.

In summary, the aim is to find an optimal 3D smooth curve that minimizes x and 7 in each of the
possible 5;. It is important to mention that the adjacent spheres G; can grow into each other, until a
maximum of q; € F? =piy1 € E}, which implies a decrease in the total set of segments, as described
Figure 2d, where the green dotted line shows the set of S; segments belonging to G;.

An example of reconstruction according to the response @} can be seen in Figure 2d, where the S
reconstruction is made in four segments, defined by the boundaries [t,, t3], [ta, t5], [t5, t6] and [t7, tg];
the S segments belonging to C(t) are defined according to Equation (17).

In contrast, and with reference to Figure 2d, the L segments are defined by the rest of the
boundaries, those boundaries being [t1, t2], [t3, ta], [te, t7] and [, to].

4.2. Definition of Straight-Line Segment

A segment path of L in a straight-line can be described by two points in the Euclidean space.
Figure 2d shows an example of an L segment defined by the [t1, f;] points, where the direction of the
line is given by the flight path of the UAV. Therefore, v (Figure 5) is a unit vector that points in the
direction of the desired orientation, and with d defined as the distance between #; and ¢, according to
Equation (21). Therefore, the L segments will be described, in general, as:

Ly={reR®:r=(Hh—t)xy—H} =>0<v<d. (27)

Finally, the interpolation of S and L build a final 3D smooth curve on the plane (x,y,z).
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Figure 5. Straight-line segment.

5. Experiments and Results

This section presents the results of the computer simulation using Matlab/Simulink software and
flightGear flight simulator for graphical visualization.

In this section we analyze five scenarios in 3D space, similar to the methodology proposed in [44].
Recursive rewarding modified adaptive cell decomposition (RR-MACD) splits the 3D environment
like a discrete mesh of collision-free voxels. In particular, it places the UAV within an initial voxel and
determines which of the adjacent voxels is the most suitable to make a displacement. To determine the
best choice of displacement, the set of adjacent voxels have a set of associated constraints (conditions
such as distance, vertical, and horizontal movement angles, battery consumption, etc.) to be satisfied
before performing a discrete displacement. The voxel that minimizes the total effort and satisfies the
constraints will be the next collision-free point. The RR-MACD methodology gives two sets of results
based on the defined constraints. The results presented in [44] are shown in summary form in Table 1,
where the first column shows the scenario number. The second column shows RR-MACD with four
constraints and the RR-MACD with 10 constraints in the third column shows the conditions to solve
the path planning problem. The 3D control points reflected in Table 1, px(F) ~ p, are the starting
points for analyzing the method described in this paper for generating 3D smooth curves. Finally, it is
important to note that the algorithms have been run on an Intel(R) Core(TM) i7-4790 3.60 GHz CPU
(Manufacturer: Gigabyte Technology Co., Ltd., Model: B85M-D3H) with 8Gb RAM and S.O. Ubuntu
Linux 16.04 LTS. The algorithms were programmed in MATLAB version 9.4.0.813654 (R2018a).

Table 1. 3D path planning results. The number of free-collision voxels within a defined environment
is indicated as Sy, while the number of discrete 3D nodes built by [44] is denoted by px(F) (3D
final path).

RR-MACD RR-MACD
4 Constraints 10 Constraints

# # # #
Sfree px(F) Sfree px(F)
#1 115 18 202 27

Env.

#2 27 8 35 10
#3 19 6 16 7
#4 11 6 51 10
#5 19 7 35 10

It is important to mention that the characteristics of the UAV assumed in the experiments have
been taken from [65], whose study has been carried out on a fixed wing UAV model kadett 2400,
represented by six states (x,y,z,¢,0, ), where the first three states define the position vector of the
UAV’s global coordinate system, located at the origin of its center of gravity. The last three are the
Euler angles of roll, pitch and yaw respectively, which define the orientation of the UAV.
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Finally, the aim of the simulations is for the UAV to maintain its continuous flight at a defined
constant speed of 18 m/s, within an established minimum radius of curvature Rp = 33 m to achieve
smooth behavior and without maneuvers that could endanger the integrity of the aircraft.

It is important to remember that because the number of py(F) = [Py, - - -, P,] collision-free points
is greater than five, a proper visualization method is essential to the decision making process for the
final solution. Thus, the graphical representation method called level diagram [72] has been used,
which consists of representing each objective and each design parameter in separate diagrams, all of
which are synchronized with their y axis. Synchronization is made with the normalized distance of
each point from the Pareto front to the ideal point. Therefore, with a brief training this representation
offers a good visual understanding of the compromise reached on the Pareto front.

5.1. Bézier

To compare the results, an approximation of curves has been applied using Bézier [68],
which enables the generation of trajectories for non-holonomic systems through a set of discrete
control points, where the curve in a multidimensional environment can be described as:

B(i’) = ipibirn(t)’ t e [O, 1}
=0 (28)

bin(t) = <n> HL—=8)"" i=0,,n
i
Bernstein-Bézier generates a finite vector of points belonging to the curve and guarantees to
go through the first and last control points (translated as p = [Py, - - - , P;]) and remaining inside the
convex envelope.

5.2. Application Example

To represent visual and numerical results from Table 1, the results for the #3 environment with
RR-MACD with four constraints are detailed below. As in this example, the total number of P; equals
6, and this means that the decision criteria of Equation (26) — m = 4. Therefore, there are four values
of ¥ and four values of T;i.e., @; = (]1 (91) = K1, ]3(92) = Kp, ]5(93) = K3, ]7(94) = Ky, ]2(91) =10,
J1(62) = 1o, J6(03) = 13 and Jg(64) = T4), as can be seen in Figure 6.

It is important to mention that the interpolation of segments S and L builds a set of 3D smooth
curves, all of which are possible solutions. It is, therefore, necessary to address a decision stage (decision
maker (DM)) that selects one of them; i.e., a point on the Pareto front. In this work, the selection criteria
based on the shortest distance to the ideal point have been used. Figures 6 and 7 show the selected
point in red from | (@;) and O, which have been selected using the co-norm standard.

Figure 8a shows the build of the 3D smooth curve C(t), while Figure 8b shows the best
optimization in terms of curvature x and total torsion 7, according to Equations (12) and (13). It is
important to note that the mathematical mean of the values of the geometric variables x and T tends to
be low. However, in some particular cases an increase is detected due to the change in direction of the
flight; i.e., when the UAV is terminating an S segment in one direction and another S segment begins
in the opposite direction. The curve generated by Bézier B(t) is shown as a yellow line, a more direct
route can be seen between the init and goal point. However, this curve is very close to the bottom
obstacle. To solve this, different authors propose modifying the control points p, or adding new points
within the points established initially, as remarked in Section 1.

Figure 9 shows the set of four additional examples from Table 1, in order to represent the
functionality of the algorithm. Similarly, it is important to note that the number of p was different
in each experiment, as were the altitudes, which guaranteed movement and 3D planning. It is also
important to mention that the first environment shown in Figure 9a has smaller flight dimensional
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characteristics, so the turning radius in this example was set at Rp = 3 m with an average flight speed

of 1.7m/s.

0

[19@) 11

0.015 0 0.01 0.02 0.03 0.0«

6.005 0.01 0.015 0.02 0.025 0.03 0

20

[19@) 11

05

0.01 0.02 0.03

o
[1JO) 11,

[196) ]

3
4(0,) x10°3

Figure 6. Representation of Pareto front using co — norm. The ] pair sub-indices represent the x values
in each S; segment, while the | odd sub-indices represent the T values in the same S; segments. Targets

closest to [l are shaded in red circles.

[IRIONI

0.2 0.4 0.6 0.8 1
0,

0.5
0 0.2 0.4 0.6

(3

4

Figure 7. Representation of Pareto’s optimal parameters. Targets closest to [/ are shaded in

red circles.

To describe the different groups of trajectories generated by L(f), C(t) or B(t) displayed in
Figure 9, Table 2 shows the flight results from the init to goal point in terms of distances; according to
one of the results of each environment set by Table 1. It can be seen that the set of greater distances
corresponding to the path in the form of the straight line marked by L(t), C(t) reduces the distance
by L(t). As B(t) makes an approximation (as a mathematical expression) between the set of p of
each environment, its route is the shortest. The column "EAA Error (meters)” shows the approximate
absolute error EAA = 1Y | |A — B|, where A = L(t) and B = C(t) A B = B(t). Therefore, the results



Electronics 2020, 9, 51

17 of 23

of the column EAA Error (meters) show a greater approximation by C(t) and which results in a better
avoidance of obstacles.

Table 2. Flight distance of the curves. The column "Flight distance (meters)” shows the distance in
meters at the initial and final free collision points marked by p. The column "EAA Error (meters)” shows
the average error in meters along the trajectories.

E Flight Distance [Meters] EAA Error [Meters]
nv.
L(t) Cwt) B(t) L(t)vs C(t) L(t) vs B(t)
#1 182.929355  174.002834  148.911388 0.622684 3.248545
#2  1728.757868 1610.781941 1453.060601  17.234613  41.453691
#3  1863.391222 1721.505017 1526.055284  14.600159  56.678212
#4  1936.078758 1860.263202 1772.944453  9.871725 36.617234
#5  1873.814514 1839.965587 1743.723244  9.891240 36.614752
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Linear Inter
smooth 3D
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. i
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(b)

Figure 8. Example of a 3D environment cluttered of obstacles. (a) Reconstruction of 3D trajectories,
where the obstacles are the black boxes; the red circles show the collision-free points; and the green
line shows the final 3D trajectory C(#). The yellow line represents the Bézier B(t) curve. (b) Geometric
averages of the variables x and 7 of the final path.

Similarly, Table 3 shows a set of results referring to the five environments analyzed. The averages
of x and T generated along each smooth curve shows that B(t) exceeds C(t). However, in the first
environment there is a collision caused by the B(t) curve.

Table 3. Average results of ¥ and 7 along the curves C(t) and B(t). The column “Collision” indicates
collision (x) or no collision (o) of a curve against an obstacle.

Env. Curve K T Collision
#1 C(t) 0.157961 0.185973 o
B(t) 0.019513  0.092539 X
#2 C(t) 0.007138 0.159732 o
B(t) 0.001082  0.006652 o
#3 C(t) 0.004556 0.185806 o
B(t) 0.001068  0.004442 o
#4 C(t) 0.003445 0.574121 o
B(t) 0.000812 0.003332 o
#5 Ct) 0.004515 0.135183 o
B(t) 0.000643 0.004253 o

Finally, the results produced by the simulation of the UAV kaddet 2400 matlab/simulink/
flightGear over the environment #3 are shown in Figure 10. The geodesic coordinates of Figure 10a are
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expressed in decimal degrees; in this example the flight starts with an altitude of 500.4 m, and after the
maneuvers performed by the UAYV, it reaches a new altitude of 603.1 m. Figure 10b shows the UAV
model in flight using FlightGear Simulator as visualization platform.
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1500
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(© (d
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Figure 9. Additional 3D environment experiments in which the obstacles are the black boxes
and the green line shows the final 3D trajectory C(t); the yellow line represents the Bézier B()
curve. (a) (Table 1—Environment #1.) It represents an unstructured environment with different
buildings, where a collision between B(t) and a building (collision marked as a circumference of
magenta color) can be seen. (b) (Table 1—Environment #2.) 3D environment with two obstacles of
different sizes. (c) (Table 1—Environment #4.) 3D environment with two obstacles of different sizes.
(d) (Table 1—Environment #5.) 3D environment with three small aerial obstacles.

X:39.5
Y:-0.5093
Z:600

-0.505

39.52
latitude[’dec] 30525 0525

longitude|[°dec]

(a) (b)

Figure 10. Simulation of the UAV flight simulink, where the starting point is [39.52, —0.5232, 500]
and the target point is [39.50, —0.5093, 600]. (a) Flight of the UAV, where the blue line is the path

calculated from the process described and the red line is the actual path of the UAV. (b) View from a
model perspective.
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6. Conclusions and Future Works

This paper describes an approach to the generation of a continuous 3D smooth path that enables
consideration of the operational constraints of fixed-wing UAVs.

Firstly, the document describes the formulation of the problem by defining two types of segments
within the trajectory: the S segments as a set of sphere segments that ensure a continuous and minimum
curvature profile, and then the definition of L segments that generally connect S.

Next, we proposed the resolution of an MOP problem to obtain the numerical values of the
parameters of the trajectory, given that the problem has infinite feasible solutions. When solving
an MOP problem, the DM stage is essential to finally select the desired point from the Pareto set of
optimal solutions.

It is important to remember that with methods such as classic Bézier or B-splines curves, you can
define the number of samples along the path. However, the distance measured between one point
and the next is not the same or even close (the difference can be large). These types of curves are
useful in relatively simple environments (few obstacles); however, as the number of obstacles grows,
the control points increase due to trajectory planning. Consequently, the construction of the curve can
cause collisions. This work enables a constant approach distance between pairs of contiguous points.

The kinematic constraints of UAVs have been considered in this work, in the same way that
dynamic constraints could be calculated mathematically. However, an important consideration that
can enhance the generation of new trajectories in a new job is to increase the optimization criterion by
improving variables such as energy consumption or incomplete data in dynamic environments.

Connected with the results shown in this paper, several future works arise. For example,
integration of dynamic obstacles (UAVs swarms or other aircraft systems) into the flying area. From the
optimization point of view, the proposal can be improved by taking into account dynamic constraints
(i.e, inertia, wind disturbances, torque forces, etc.) into the MOP problem. Similarly, new cost indexes as
flight time or/and spent energy could be added to the optimization problem. Finally, implementation
of the proposed algorithm under real conditions (UAV in an outdoor environment) and its application
to different uses (such as satellite trajectory generation [73]) will be investigated.
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