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Abstract. Let X be a Tychonoff space. We survey some classic and recent results that characterize
the topology or cardinality of X when Cp (X) or Ck (X) is covered by certain families of sets (sequences,
resolutions, closure-preserving coverings, compact coverings ordered by a second countable space) which
swallow or not some classes of sets (compact sets, functionally bounded sets, pointwise bounded sets) in
C (X).

1. Preliminaries

Unless otherwise stated, X will stand for an infinite Tychonoff space. We denote by Cp(X) the linear space
C(X) of real-valued continuous functions on X equipped with the pointwise topology τp. The topological
dual of Cp (X) is denoted by L(X), or by Lp(X) when provided with the weak* topology. We denote by Ck(X)
the space C(X) equipped with the compact-open topology τk. A family {Aα : α ∈ NN} of subsets of a set X
is a resolution for X if it covers X and verifies that Aα ⊆ Aβ for α ≤ β. A family of bounded sets in a locally
convex space E that swallows the bounded sets is called a fundamental family of bounded sets. Definitions not
included in this paper can be found in [6, 18, 49].

2. Countable coverings for Cp (X)

The following folklore result can be found in [49, Proposition 9.18]. Velichko’s theorem can be found in
[1, I.2.1 Theorem] or in [49, Theorem 9.12].

Theorem 2.1. The space Cp (X) admits a fundamental sequence of pointwise bounded sets if and only if X is finite.

Theorem 2.2 (Velichko). The space Cp (X) is covered by a sequence of compact sets if and only if X is finite.

Next theorem extends Velichko’s result to relatively countably compact sets.

Theorem 2.3 (Tkachuk-Shakhmatov [75]). Cp (X) is covered by a sequence of relatively countably compact sets
if and only if X is finite.
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Theorem 2.5 below extends Tkachuk-Shakhmatov theorem to pointwise bounded relatively sequentially
complete sets. Recall that a sequence

{
fn
}∞
n=1 of real-valued functions defined on X is pointwise eventually

constant [34] if for each x ∈ X there is a constant f (x) such that fn(x) = f (x) for all but finitely many n ∈N.

Theorem 2.4 (Ferrando-Ka̧kol-Saxon [34, Theorem 3.1]). Cp (X) is covered by a sequence of relatively sequen-
tially complete sets if and only if X is a P-space.

Proof. Assume that Cp (X) =
⋃
∞

n=1 Qn with Qn relatively sequentially complete for every n ∈ N and let{
fn
}∞
n=1 be a uniformly bounded pointwise eventually constant sequence in Cp (X) with limit f in RX. Let

us denote by Cb (X) the Banach space of all continuous and bounded functions on X equipped with the
supremum norm ‖ · ‖∞. Fix k > 0 such that supn∈N

∥∥∥ fn
∥∥∥
∞
≤ k.

Since
{
Cb (X) ∩Qn : n ∈N

}
is a countable covering of Cb (X), according to the Baire category theorem

there is p ∈ N such that the closure Bp of Cb (X) ∩ Qp in Cb (X) has an interior point in the norm topology.
So, if D denotes the closed unit ball of Cb (X), there are ε > 0 and h ∈ Qp with h + εD ⊆ Bp. Since fn ∈ kD
for each n ∈ N, we have

{
h + εk−1 fn : n ∈N

}
⊆ Bp. As Cb (X) ∩ Qp is norm dense in Bp, for each n ∈ N

there is 1n ∈ Cb (X)∩Qp with
∣∣∣∣1n (x) −

(
h + εk−1 fn

)
(x)

∣∣∣∣ < n−1 for all x ∈ X. Since
{
h + εk−1 fn

}∞
n=1

is a pointwise

eventually constant sequence that converges to h + εk−1 f , clearly 1n → h + εk−1 f pointwise on X. Using the
fact that Qp is relatively sequentially complete, it turns out that h + εk−1 f ∈ C (X). Hence f ∈ C (X). But,
as follows from [34, Theorem 1.1], a Tychonoff space X is a P-space if and only if each uniformly bounded
pointwise eventually constant sequence in Cp (X) converges in Cp (X). So, X is a P-space. For the converse
note that if X is a P-space, then Cp (X) is sequentially complete [8].

Theorem 2.5 (Ferrando-Ka̧kol-Saxon [34, Corollary 3.2]). Cp (X) is covered by a sequence of pointwise bounded
relatively sequentially complete sets if and only if X is finite.

Proof. If Cp (X) =
⋃
∞

n=1 Qn with each Qn pointwise bounded and relatively sequentially complete, Theorem
2.4 ensures that X is a P-space. If {xn}

∞

n=1 is an infinite sequence in X, for each n ∈ N there is αn > 0 with
sup

1∈Qn

∣∣∣1 (xn)
∣∣∣ < αn. But [49, Lemma 9.5] provides f ∈ C (X) with f (xn) = αn, i. e., such that f < Qn for every

n ∈N, a contradiction. Thus X must be finite.

Theorem 2.6 (Tkachuk, [69, 3.11 Theorem]). If Cp (X) is covered by a sequence of functionally bounded sets, then
X is pseudocompact and each countable subset of X is closed, discrete and C∗-embedded in X.

Proof. (Sketch) Let us call σ-bounded a space which is covered by countably many functionally bounded sets
and assume that Cp (X) is σ-bounded. If X is not pseudocompact, it contains a closed homeomorphic copy Y
ofN, hence C-embedded [39, Problem 3L]. Since the restriction map T : Cp (X)→ Cp (Y) defined by T f = f

∣∣∣
Y

is continuous and onto, this implies that Cp (Y) is σ-bounded. Hence Cp (N) = RN is covered by a sequence
of compact sets and Velichko’s theorem ensures thatNmust be finite, a contradiction. On the other hand,
since Cp (X, I) =

{
f ∈ C (X) : −1 ≤ f ≤ 1

}
is a retract of Cp (X), it turns out that Cp (X, I) is σ-bounded. If Z is a

non-closed countable subset of X and y ∈ Z \ Z, it is not hard to show that M =
{

f ∈ Cp (X, I) : f
(
y
)

= 0
}

is
also covered by countably many functionally bounded sets {Fn : n ∈N}. But one can determine a function
f ∈ M such that f < Fn for every n ∈ N (see [69, 3.7 Lemma] for details). So, such Z does not exist. Finally,

it is well-known that a subspace S of X is C∗-embedded if and only if S
βX

= βS. If each countable set in X is

closed, it can be seen that each countable set A is discrete and C∗-embedded if and only if A
βX

= βA, [69, 3.8
Proposition]. With the help of this result one can show that if Cp (X, I) is σ-bounded, every countable subset
of X is discrete and C∗-bounded [69, 3.9 Theorem].
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3. Uncountable coverings for Cp (X)

Recall that X is a Lindelöf Σ-space if it is a continuous image of a space that can be perfectly mapped
onto a second countable space [1, 57]. Also, X is a Lindelöf Σ-space if and only if is countably K-determined
[63], i. e., if there is an upper semi-continuous (usc) map T from a subspace Σ ofNN into the family K (X)
of compact subsets of X such that

⋃
{T (α) : α ∈ Σ} = X. This is equivalent to saying that (i) {T (α) : α ∈ Σ}

covers X and (ii) if αn → α in Σ and xn ∈ T (αn) for every n ∈ N the sequence {xn}
∞

n=1 has a cluster point
in T (α). A space X is K-analytic (resp. quasi-Suslin) if there is a map T fromNN into K (X) (resp. into the
family of countably compact sets in X) such that (i) {T (α) : α ∈ NN} covers X and (ii) if αn → α in NN

and xn ∈ T (αn) for each n ∈ N the sequence {xn} has a cluster point contained in T (α) (see [76, I.4.2 and
I.4.3]). Each σ-compact (σ-countably compact) space is K-analytic (resp. quasi-Suslin). A space X is analytic
if it is a continuous image of NN. Each analytic space is K-analytic, each K-analytic space is quasi-Suslin
and Lindelöf Σ, and each Lindelöf Σ-space is Lindelöf. A family N of subsets of X is a network for X if
for any x ∈ X and any open set U in X with x ∈ U there is some P ∈ N such that x ∈ P ⊆ U. The network
weight nw (X) of X is the least cardinality of a network of X, and a space X is called cosmic if nw (X) = ℵ0.
Alternatively, X is a cosmic space if and only if it is a continuous image of a separable metric space [56]. So,
each analytic space is cosmic. Conversely, every K-analytic cosmic space is analytic [49, Proposition 6.4].
Moreover, Cp (X) is a cosmic space if and only if X is cosmic [56, Proposition 10.5]. A familyN of subsets of
a space X is a network modulo a familyA of subsets of X if for each open set V of X and for every A ∈ Awith
A ⊆ V there exists N ∈ N such that A ⊆ N ⊆ V. A space is Lindelöf Σ if and only if it admits a countable
network modulo a covering by compact sets [49, Proposition 3.5]. Hence, every cosmic space is a Lindelöf
Σ-space. A space X is angelic if relatively countably compact sets in X are relatively compact and for every
relatively compact subset A of X each point of A is the limit of a sequence of A, [36]. A space X is projectively
σ-compact if each separable metrizable space Y that is a continuous image of X is σ-compact. Clearly, every
σ-bounded space (in the sense of Theorem 2.6) is projectively σ-compact [3, Proposition 1.1], and every
projectively σ-compact cosmic space is σ-compact (see [49, Proposition 9.4] or [60]). A space Cp (X) is said
to be Lindelöf Σ-framed (or K-analytic-framed) in RX if there is a Lindelöf Σ-space (resp. a K-analytic space)
S in RX such that C (X) ⊆ S. A family N of subsets of a topological space X is called a cs∗-network at a point
x ∈ X if for each sequence {xn}

∞

n=1 in X converging to x and for each neighborhood Ox of x there is a set
N ∈ N such that x ∈ N ⊆ Ox and the set {n ∈ N : xn ∈ N} is infinite [38]; N is a cs∗-network in X if N is a
cs∗-network at each point x ∈ X.

Lemma 3.1. If Cp (X) is Lindelöf Σ-framed in RX, then υX is a Lindelöf Σ-space and Cp (X) is angelic.

Proof. First statement after the conditional comes from [59, Theorem 3.5] or [22, Theorem 3]. For the second
use the first and [62, Theorem 3], since Cp (X) is angelic whenever Cp (υX) is angelic.

Lemma 3.2 (Ferrando-Ka̧kol, [29, Lemma 1]). Let X be nonempty and Z be a subspace ofRX. If Z has a countable
network modulo a cover B of Z by pointwise bounded subsets, then Y =

⋃
{B : B ∈ B}, closures in RX, is a Lindelöf

Σ-space such that Z ⊆ Y ⊆ RX.

Proof. LetN = {Tn : n ∈N} be a countable network modulo a coverB of Z consisting of pointwise bounded
sets. SetN1 = {Tn : n ∈N},B1 = {B : B ∈ B}, closures inRX, and Y = ∪B1. Let us show thatN1 is a network
in Y modulo the compact cover B1 of Y. In fact, if U is a neighborhood inRX of B, use B compactness to get
a closed neighborhood V of B inRX contained in U. SinceN is a network moduloB in Z there is n ∈Nwith
B ⊆ Tn ⊆ V ∩ Z, which implies that B ⊆ Tn ⊆ U. According to Nagami’s criterion [1, IV.9.1 Proposition], Y
is a Lindelöf Σ-space such that Z ⊆ Y ⊆ RX.

Theorem 3.3 (Ferrando-Ka̧kol, [29, Proposition 1]). The following asserts are equivalent

1. Cp(X) admits a resolution of pointwise bounded sets.
2. Cp(X) is K-analytic-framed in RX.
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Proof. Let {Aα : α ∈ NN} be a resolution for Cp(X) of bounded sets, denote by Bα the closure of Aα in RX

and put Z =
⋃
{Bα : α ∈ NN}. Clearly each Bα is a compact subset of RX and Z is a quasi-Suslin space [11,

Proposition 1] such that Cp (X) ⊆ Z ⊆ RX. As each quasi-Suslin space Z has a countable network modulo
a resolution B of Z consisting of countably compact sets (see [20, Proof Theorem 8]) and every countable
compact subset of RX is pointwise bounded, Lemma 3.2 assures that Y =

⋃
{B : B ∈ B} is a Lindelöf

Σ-space, hence Lindelöf, such that Z ⊆ Y ⊆ RX. As each set B with B ∈ B is compact, and {B : B ∈ B} is
a resolution for Y, again Y is a quasi-Suslin space. Since every Lindelöf quasi-Suslin space is K-analytic
and Cp(X) ⊆ Y ⊆ RX, it turns out that Cp(X) is K-analytic-framed in RX. For the converse, note that each
K-analytic space has a resolution consisting of compact sets [67].

Theorem 3.4 (Arkhangel’skiı̆-Calbrix, [4, Theorem 2.3]). If Cp (X) is K-analytic-framed in RX, then X is pro-
jectively σ-compact.

Proof. Assume Cp (X) is K-analytic-framed in RX. Let Y be a separable metric space that is a continuous
image of X, say f : X → Y. Consider the pullback f ∗ : RY

→ RX defined by f ∗
(
1
)

= 1 ◦ f , which is a linear
homeomorphism onto f ∗

(
RY

)
with closed range [1, 0.4.6 Proposition]. If S is a K-analytic space such that

C (X) ⊆ S ⊆ RX, then f ∗ (C (Y)) ⊆ S ∩ f ∗
(
RY

)
, which is a K-analytic subspace of RX, since S ∩ f ∗

(
RY

)
is

closed in S. Hence T :=
(

f ∗
)−1 (S)∩RY is a K-analytic subspace ofRY such that C (Y) ⊆ T ⊆ RY, i. e., Cp (Y) is

K-analytic-framed inRY. So, ifR+ are the nonnegative real numbers, since there exists a (strictly increasing)
homeomorphism fromR ontoR+, there exists a K-analytic subspace M ofRY

+ such that C+ (Y) := C (Y)∩RY
+

is contained in M. Let ϕ : NN → K (M), where K (M) designates the family of compact sets of M, an
usc map such that

⋃
{ϕ (α) : α ∈ NN} = M. Define λ : NN → RY

+ by λ (α) = infϕ
(
{β ∈NN : β ≤ α}

)
. As

{β ∈NN : β ≤ α} is a compact set inNN, ϕ
(
{β ∈NN : β ≤ α}

)
is a compact set in M and the infimum is with

respect to the pointwise ordering of RY, hence λ (α)
(
y
)

= inf
{
ϕ

(
β
) (

y
)

: β ≤ α
}
> 0 for each y ∈ Y. Clearly

λ (α) ≤ λ
(
β
)

whenever β ≤ α, and if f ∈ C+ (Y) ⊆ M there is γ ∈ NN such that f ∈ ϕ
(
γ
)
, so that λ

(
γ
)
≤ f .

Let
(
Y, d

)
be a metric compactification of Y. For each α ∈ NN set Kα =

⋂{
Y \ B

(
y, λ (α)

(
y
))

: y ∈ Y
}
, where

B
(
y, λ (α)

(
y
))

=
{
z ∈ Y : d

(
y, z

)
< λ (α)

(
y
)}

is the open ball in Y of center y and radius λ (α)
(
y
)
≥ 0. Clearly

Kα is a compact set in Y \Y, and we claim that {Kα : α ∈NN} is a compact resolution for Y \Y that swallows
the compact sets in Y \Y. The relation Kα ⊆ Kβ comes from λ

(
β
)
≤ λ (α) whenever α ≤ β. In addition, if Q is

a compact set in Y \ Y, the function h : Y→ R+ defined by h
(
y
)

= d
(
y,Q

)
belongs to C+ (Y) when restricted

to Y. So, there is γ ∈ NN such that λ
(
γ
)
≤ h|Y. Thus d

(
y, z

)
≥ λ

(
γ
) (

y
)

for every y ∈ Y and z ∈ Q. In other
words, Q ∩

⋃{
B
(
y, λ (α)

(
y
))

: y ∈ Y
}

= ∅, which means that Q ⊆ Kγ. In this circumstances, Christensen’s
theorem [15, Theorem 3.3] shows that Y \ Y is a Polish space, so an absolute Gδ [51, Chapter 6, Problem K].
Consequently, Y is an Fσ of the compact space Y, i. e., Y is a σ-compact space.

Corollary 3.5. If Cp(X) admits a resolution consisting of pointwise bounded sets, then X is projectively σ-compact.

Proof. This is a straightforward consequence of Theorems 3.3 and 3.4.

Theorem 3.6 (Ferrando-Ka̧kol, [29, Corollary 1]). Let X be a cosmic space. Cp (X) has a resolution of pointwise
bounded sets if and only if X is σ-compact.

Proof. The ‘only if’ statement is consequence of Corollary 3.5 and the fact, mentioned earlier, that each
projectively σ-compact cosmic space is σ-compact. For the ‘if’ part note that if X =

⋃
∞

n=1 Kn with each Kn
compact, the family {Aα : α ∈NN}with

Aα =
{

f ∈ C (X) : supx∈Kn

∣∣∣ f (x)
∣∣∣ ≤ α (n) , n ∈N

}
is a resolution for C (X) consisting of pointwise bounded sets.

Theorem 3.7 (Calbrix [9, Theorem 2.3.1]). If Cp (X) is analytic, then X is σ-compact.
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Proof. If Cp (X) is analytic, it is cosmic. Hence X is also a cosmic space [56, Proposition 10.5]. Since Cp (X) is
K-analytic, it has a resolution of pointwise bounded sets (actually, of compact sets [67]). So, Theorem 3.6
ensures that X is σ-compact.

Corollary 3.8. If X is metrizable, the following are equivalent.

1. Cp (X) is analytic.
2. X is σ-compact.
3. Cp (X) has a resolution of pointwise bounded sets.

Proof. 1 ⇒ 2 follows from Theorem 3.7 and, as mentioned above, 2 ⇒ 3 always holds true. On the other
hand, if Cp (X) has a resolution of pointwise bounded sets, then Cp (X) is K-analytic-framed in RX by
Theorem 3.3 and angelic by Lemma 3.1. But if X is metrizable, Cp (X) is angelic if and only if X is separable
[49, Corollary 6.10]. Consequently, for metrizable X, the fact that Cp (X) has a resolution of pointwise
bounded sets entails that X is a cosmic space. So, Theorem 3.6 yields the implication 3⇒ 2. Finally, if X is
a metrizable σ-compact space then X is separable. Thus Cp (X) is analytic by a clasic result of Christensen
[15, Theorem 3.7] (cf. Theorem 4.4 below). Hence 2⇒ 1.

Corollary 3.9. If Cp

(
Cp (X)

)
has a resolution consisting of pointwise bounded sets, then X is pseudocompact.

Proof. If X is not pseudocompact, then Cp (X) contains a complemented (linearly homeomorphic) copy of
Rω. If P is a continuous linear projection from Cp (X) onto the linear subspaceRω the (linear) restriction map
T : Cp

(
Cp (X)

)
→ Cp (Rω) given by Tϕ = ϕ

∣∣∣
Rω

is continuous and onto, for ifψ ∈ C (Rω) thenψ◦P ∈ C
(
Cp (X)

)
and T

(
ψ ◦ P

)
= ψ due to P1 = 1 for every 1 ∈ Rω. Hence T carries a resolution from Cp

(
Cp (X)

)
onto Cp (Rω)

made up of pointwise bounded sets. SinceRω is metrizable, Corollary 3.8 shows thatRω is a σ-space, which
is not true.

Theorem 3.10 (Tkachuk [71, 2.8 Theorem]). Cp (X) has a resolution consisting of compact sets if and only if it is
K-analytic.

Proof. If Cp (X) has a resolution consisting of compact sets, then Cp (X) is a quasi-Suslin space [11, Proposition
1]. But, according to Lemma 3.1, the space Cp (X) is angelic, and every quasi-Suslin angelic space is K-analytic
[11]. The converse can be found in [67] or in [49, Theorem 3.2].

The following result was stated and proved by Tkachuk, [71, 3.9 Theorem]. However, it can also be
derived as a consequence of Valdivia’s closed graph theorem for K-analytic spaces [76, Chapter I] (as
mentioned in [71]), which is the approach we choose.

Theorem 3.11. Assume Cp (X) is a Baire space. Cp (X) has a resolution of compact sets if and only if X is countable
and discrete.

Proof. According to Theorem 3.10, if Cp (X) has a resolution of compact sets then Cp (X) is K-analytic. Hence
Cp (X) is a locally convex space which is both Baire and K-analytic, so a separable Fréchet space by [76,
I.4.3.(21)]. This forces to Cp (X) = RX with X countable. Hence X is countable and discrete.

Theorem 3.12 (Arkhangel’skiı̆). If Cp (X) is both Baire and a Lindelöf Σ-space, then X is countable.

Proof. Let us prove this result with the additional assumption that X is realcompact. A proof of the general
case can be found in [71, 3.8 Theorem]. If Cp (X) is a Baire space, it is barrelled, i. e., each closed absorbing
absolutely convex set is a neighborhood of the null function. Hence, by the Buchwalter-Schmets theorem,
the functionally bounded sets in X are finite [8] (see also[1, I.3.4 Theorem]). If Cp (X) is a Lindelöf Σ-space,
then υX is a Lindelöf Σ-space by Lemma 3.1 (see also [59, Theorem 3.5]). Since by assumption X = υX,
it turns out that X is a Lindelöf Σ-space with finite compact sets. Consequently X must be countable [1,
IV.6.15 Proposition].
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Theorem 3.13. Let Cp(X) be a Baire space. If Cp(X) has a resolution of pointwise bounded sets, then X is countable.

Proof. This follows from a general property of locally convex spaces which assures that each locally convex
Baire space E with a resolution of bounded sets is metrizable (see [50, Corollary 1]). Let us try a direct
approach. Let {Aα : α ∈ NN} be a resolution for Cp(X) consisting of absolutely convex pointwise bounded
sets. Define β (1) = n1, β (i + 1) = α (i) for each i ∈N, and set Bβ := n1 abx (Aα) where abx (Aα) stands for the
absolutely convex cover of Aα and the closure is in RX. Thus Z :=

⋃
{Bβ : β ∈ NN} is a linear subspace of

RX, and each set Bβ is compact with Bα ⊆ Bβ if α ≤ β. So, Z is a locally convex Baire space with a resolution
of compact sets. By [31, Theorem 1], Z is a separable Fréchet space. Hence Cp(X) is metrizable, so X must
be countable.

Theorem 3.14. Let X be a paracompact locally compact space. Cp (X) has a resolution of pointwise bounded sets if
and only if X is σ-compact.

Proof. As follows from [7, 9.10 Theorem 5] the space X is the topological sum
⊕

α∈A Xα of a family {Xα : α ∈ A}
of locally compact σ-compact (pairwise disjoint) subspaces of X. Consequently, Cp (X) =

∏
α∈A Cp (Xα)

isomorphically. By the previous equality, Cp (X) contains a copy of RA. If Cp (X) has a resolution of
pointwise bounded sets, the subspace RA of Cp (X) also has a resolution of pointwise bounded sets. Since
RA is a Baire space, Theorem 3.13 shows that A must be countable. So, X is σ-compact. The converse also
holds as shown in the ‘if’ part of Theorem 3.6.

The preceding theorem was originally stated as a part of [10, Proposition 2.2] assuming Cp (X) is K-
analytic.

Theorem 3.15 (Tkachuk, [71, 3.7 Theorem]). Cp (X) has a resolution of compact sets that swallows the compact
sets if and only if X is countable and discrete.

Proof. Assume {Aα : α ∈ NN} is a resolution for Cp (X) of compact sets that swallows the compact sets
of Cp (X). We claim that compact subsets of X are finite. Otherwise there exists an infinite compact set
K in X. Since, according to Theorem 3.10, Cp (X) is K-analytic, it turns out that Cp

(
Cp (X)

)
is angelic [24,

Theorem 78]. As K is embedded in Cp

(
Cp (X)

)
, it must be a Fréchet-Urysohn compact, so there is a non

trivial sequence {xn}
∞

n=1 that converges to some x ∈ K. Let S = {xn : n ∈N} ∪ {x}, so that S is a countable
compact set, hence metrizable. Thus, there is a linear extender map ϕ : Cp (S) → Cp (X), i. e., such that
ϕ

(
f
∣∣∣
S

)
= f for every f ∈ C (X), which embeds Cp (S) into a closed linear subspace of Cp (X), [5, Proposition

4.1]. Therefore the metrizable space Cp (S) also has a resolution of compact sets that swallows the compact
sets in Cp (S). According to Christensen’s theorem [24, Theorem 94] this means that Cp (S) is a Polish space.
Hence, [1, I.3.3 Corollary] ensures that the compact set S is discrete, hence finite. This contradiction ensures
that the compact sets in X are finite.

Since Cp (X) is K-analytic, Lemma 3.1 asserts that υX is a Lindelöf Σ-space. But a Lindelöf Σ-space with
finite compact sets is countable [1, IV.6.15 Proposition], so X is countable. On the other hand, if Q is a
compact set in Cp (X) there is γ ∈ NN such that Q ⊆ Aγ. Hence, {Aα : α ∈ NN} is a resolution of compact
sets for the metrizable space Cp (X) that swallows the compact sets of Cp (X). So, again Cp (X) is a Polish
space by Christensen’s theorem, and one more time [1, I.3.3 Corollary] asserts that X is discrete.

For the converse, note that Cp (X) coincides with RN whenever X is countable and discrete. Then
{Aα : α ∈ NN} with Aα = {x ∈ RN : |xn| ≤ αn} is a resolution for Cp (X) = RN consisting of compact sets that
swallows the compact sets in RN.

Theorem 3.16 (Ferrando-Gabriyelyan-Ka̧kol [28, Theorem 3.3]). Cp(X) has a resolution of pointwise bounded
sets that swallows the pointwise bounded sets if and only if X is countable. In other words, Cp (X) has a fundamental
resolution of pointwise bounded sets if and only if X is countable.
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Proof. (Sketch) If Cp(X) admits a fundamental resolution of pointwise bounded sets one can fix [28, Theorem
3.3] a countable family of closed sets (some of them may be empty) K = {Kn(α) : n ∈ N, α ∈ NN} in X
enjoying the properties:

1. Kn(α) ⊆ Kn+1(α) for every n ∈N and each α ∈NN.
2. Kn(α) ⊇ Kn(β) for every n ∈Nwhenever α ≤ β.
3.

⋃
n∈N Kn(α) = X for each α ∈NN.

4. For every increasing closed covering {Vn : n ∈N} of X there exists γ ∈ NN such that Kn(γ) ⊆ Vn for
all n ∈N.

Then it turns out that the familyN := {Nmn(α) : m,n ∈N, α ∈NN}, where

Nmn(α) :=
{

f ∈ C(X) : | f (x)| ≤
1
m
∀x ∈ Kn(α)

}
and Nmn(α) := {0} if Kn(α) is empty, is a countable cs∗-network at the origin in Cp(X) (see [28, Proposition
3.2] or [24, Claim 108] for details). So, according to [65, Theorem 2.3], X must be countable.

Recall that a locally convex space E is a quasi-(LB)-space if E has a resolution consisting of Banach disks,
i. e., of absolutely convex bounded sets D whose linear span ED is a Banach space when equipped with the
Minkowski functional of D as a norm.

Theorem 3.17 (Valdivia, [77]). If E is a quasi-(LB)-space, there exists a resolution for E consisting of Banach disks
that swallows the Banach disks of E.

Proof. (Sketch) Let {Dα : α ∈ NN} be a resolution for E consisting of Banach disks. For (n1, . . . ,nk) ∈ NN

define the absolutely convex set

Cn1,...,nk =
⋃
{Dα : α ∈NN, α (i) = ni, 1 ≤ i ≤ k}.

If α ∈NN and U a neighborhood of the origin in E it can be easily seen that there exists k (α,U) ∈N such that
Cα(1),...,α(k) ⊆ kU. So, if we set Fα(1),...,α(k) := span

(
Cα(1),...,α(k)

)
for every k ∈ N and Fα :=

⋂{
Fα(1),...,α(k) : k ∈N

}
,

the sequence{
Fα ∩ k−1Cα(1),...,α(k) : k ∈N

}
is a base of absolutely convex neighborhoods of the origin in the linear subspace Fα of a locally convex
topology τα stronger than the relative topology of E. In fact, it turns out that {(Fα, τα) : α ∈ NN} is a family
Fréchet spaces [77, Proposition 21] which covers E. Now, for α ∈NN set α (i) = α (2i − 1) for each i ∈N and
define

Qα =

∞⋂
k=1

α (2k) ·
(
Fα ∩ Cα(1),...,α(k)

)
The family {Qα : α ∈ NN} is clearly a resolution for E, and consists of Banach disks. It remains to prove
that this family swallows the Banach disks of E. In order to establish this statement, choose a Banach disk
D in E and consider the Banach space ED. Then consider the canonical inclusion J : ED → E and put
Un1,...,nk := J−1 (

Cn1,...,nk

)
. As ED =

⋃{
Un1 : n1 ∈N

}
and Un1,...,nk =

⋃{
Un1,...,nk,nk+1 : nk+1 ∈N

}
for each k ∈ N,

there is β ∈NN such that Uβ(1),...,β(k), closure in ED, is a neighborhood of the origin in ED for each k ∈N. So,
using the fact that Int

(
Uβ(1),...,β(k)

)
⊆ Uβ(1),...,β(k) for each k ∈N (see [77] or [49, Proposition 3.21] for details), if

x ∈ ED and k ∈ N there is λ > 0 such that λx ∈ Uβ(1),...,β(k), which implies that J (x) ∈ Fβ(1),...,β(k). This shows
that J (ED) ⊆ Fβ. So, by the closed graph theorem J is a continuous linear map from ED into Fβ. Hence, if we
choose a sequence {mk}

∞

k=1 inN such that

D ⊆ mk ·
(
Fβ ∩ Cβ(1),...,β(k)

)
for every k ∈N, setting γ (2k) = mk and γ (2k − 1) = β (k) for each k ∈N, it follows that D ⊆ Qγ.
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Theorem 3.18 (Ferrando-Gabriyelyan-Ka̧kol [28, Proposition 3.6]). Let X be a P-space. Cp (X) has a resolution
of pointwise bounded sets if and only if X is countable and discrete.

Proof. If X is a P-space then Cp (X) is locally complete [34, Theorem 1.1], i. e., each pointwise bounded set is
contained in a Banach disk. So, according to Theorem 3.17 there exists a resolution for Cp (X) consisting of
Banach disks that swallows the pointwise bounded sets in Cp (X). Hence, X is countable by Theorem 3.16.
But every countable P-space is discrete.

Alternatively, one may use the fact that Cp (X) is a Baire space (note that Cp (X) is pseudocomplete [72,
Section 1.5, p. 46] whenever X is a P-space and use [72, Problem 464]). Then apply Theorem 3.13 to conclude
that X must be countable, hence discrete.

Recall that a sequence {xn}
∞

n=1 in a locally convex space E is called local null or Mackey convergent to zero
[52, 28.3] if there is a closed disk B in E such that xn → 0 in the normed space EB. Each local null sequence
in E is a null sequence.

Theorem 3.19 (Ferrando, [25, Theorem 12]). Cp (X) admits a resolution of convex compact sets that swallows the
local null sequences in Cp (X) if and only if X is countable and discrete.

Proof. We may assume that Cp (X) admits a resolution {Aα : α ∈ NN} of absolutely convex compact sets
swallowing the local null sequences in Cp (X). If T : Cp (υX)→ Cp (X) denotes the restriction map T1 = 1

∣∣∣
X

we proceed as in [49, Proposition 9.14] to show that the family A = {T−1 (Aα) : α ∈ NN} is a resolution
for Cp (υX) consisting of (absolutely convex) compact sets, with the additional benefit thatA swallows the
local null sequences in Cp (υX). So, we may assume without loss of generality that X is realcompact or,
equivalently, that Cp (X) is bornological [8]. Hence, we denote as above by {Aα : α ∈ NN} a resolution
for Cp (X), with X realcompact, consisting of absolutely convex compact sets that swallows the local null
sequences in Cp (X).

LetM denote the family of all local null sequences in Cp (X). Since {Aα : α ∈NN} swallows the members
ofM, the Mackey* topology µ (L (X) ,C (X)) of L (X) is stronger than the topology τc0 on L (X) of the uniform
convergence on the local null sequences of Cp (X). As in addition σ (L (X) ,C (X)) ≤ τc0 , we conclude that(
L (X) , τc0

)′ = C (X). Moreover, since we are assuming that Cp (X) is bornological, its τc0 -dual
(
L (X) , τc0

)
is

complete by [52, 28.5.(1)].
We claim that every compact set in X is finite. Indeed, if K is a compact set in X, the homeomorphic

copy δ (K) of K in Lp (X) is compact, i. e., δ (K) is a σ (L (X) ,C (X))-compact set in L (X). So, the completeness
of

(
L (X) , τc0

)
, together with Krein’s theorem and the fact that τc0 is a locally convex topology of the dual

pair 〈L (X) ,C (X)〉, ensures that the weak* closure Q = abx (δ (K)) in L (X), where abx (δ (K)) stands for the
absolutely convex hull of δ (K), is a compact set in Lp (X), hence a strongly bounded set. Since Cp (X) is
quasi-barrelled [47, 11.7.3 Corollary], the strongly bounded sets in L (X) are finite-dimensional. Therefore
the set δ (K), as a linearly independent system of vectors in L (X), must be finite. Thus K is finite as well.

Since υX = X is a Lindelöf Σ-space by Lemma 3.1 and as we know each Lindelöf Σ-space with finite
compact sets is countable [1, IV.6.15 Proposition], X is countable. So Cp (X) is a metrizable space. But in a
metrizable locally convex space, the local null sequences and the null sequences are the same [52, 28.3.(1)
c)]. Furthermore, if M is a compact set in the metrizable space Cp (X), then M lies in the closed absolutely
convex cover of a null sequence

{
fn
}∞
n=1, [52, 21.10.(3)]. So, if

{
fn
}∞
n=1 ⊆ Aγ, thanks to the fact that Aγ is a

closed absolutely convex set, it turns out that M ⊆ Aγ. Therefore {Aα : α ∈ NN} is a compact resolution for
Cp (X) that swallows the compact sets of Cp (X). So, Cp (X) is a Polish space by Christensen’s theorem [24,
Theorem 94]. But then [1, I.3.3 Corollary] asserts that X is discrete. The converse is obvious.

Theorem 3.20 (Ferrando, [25, Theorem 16]). Cp(X) has a resolution of absolutely convex pointwise bounded se-
quentially complete sets that swallows the null sequences if and only if X is countable and discrete.

Proof. It can be readily seen that there is no loss of generality if we assume X to be realcompact. If Cp(X)
has a resolution {Aα : α ∈ NN} of the stated characteristics and

{
fn
}∞
n=1 is a null sequence in Cp(X), there is
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γ ∈ NN such that fn ∈ Aγ for every n ∈ N. Since
∑n

i=1 ξi fi ∈ Aγ for every ξ ∈ `1 with ‖ξ‖1 ≤ 1 and Aγ is
sequentially complete, it follows that

∑
∞

i=1 ξi fi ∈ Aγ for every ξ ∈ `1 with ‖ξ‖1 ≤ 1. So, the Banach disk

Q :=

 ∞∑
i=1

ξi fi : ξ ∈ `1, ‖ξ‖1 ≤ 1


is contained in Aγ. Now, it can be proved as in [52, 20.10.(6)] that Q =

{
fn : n ∈N

}00, the absolute bipolar of
the null sequence

{
fn : n ∈N

}
. Since each local null sequence is a null sequence, the dual of

(
L (X) , τc0

)
is

C (X), so σ (L (X) ,C (X)) ≤ τc0 ≤ µ (L (X) ,C (X)). As Cp (X) is bornological, the space L (X) is µ (L (X) ,C (X))-
complete. So, proceeding as in the proof of Theorem 3.19, with the help of Krein’s theorem we establish
that each compact set in X is finite. Now, using the fact that the resolution {Aα : α ∈ NN} consists of
pointwise bounded sets, Lemma 3.1 asserts that X is a Lindelöf Σ-space. Thus X must be countable, [1,
IV.6.15 Proposition], so Cp (X) is metrizable.

If M is a compact set in the metrizable space Cp (X), as mentioned above M lies in the closed absolutely
convex cover of a null sequence

{
fn
}∞
n=1. So, if

{
fn
}
⊆ Aγ then M ⊆ Aγ. Thus {Aα : α ∈NN} is a resolution for

Cp (X) that swallows the compact sets of Cp (X). Since each set Aα is precompact in Cp (X) and sequentially
complete, the metrizability of Cp (X) ensures that Aα is compact in Cp (X). Hence Cp (X) is a Polish space by
Christensen’s theorem. Thus X is discrete. The converse is clear, since each (absolutely convex) compact
set in RN is pointwise bounded and sequentially complete.

Another result of this type, which we state without proof is the following.

Theorem 3.21 (Ferrando, [25, Theorem 33]). Let X be first countable. Cp(X) has a resolution of pointwise bounded
sets that swallows the Cauchy sequences if and only if X is countable.

4. Uncountable coverings for Ck (X)

Theorem 4.1 (Ferrando-Moll, [35, Corollary 5]). The space Ck (X) has a resolution consisting of compact sets if
and only if it is K-analytic.

Proof. If Ck (X) has a resolution consisting of compact sets, so does Cp (X). So, Lemma 3.1 and Theorem
3.3 ensure that υX is a Lindelöf Σ-space and Cp (X) is angelic. Therefore Ck (X) is angelic as well [36, 3.3
Theorem]. Since Ck (X) is a quasi-Suslin space, necessarily Ck (X) must be K-analytic [11].

Theorem 4.2 (Gabriyelyan-Ka̧kol [37, Corollary 2.10]). Let X be metrizable. Ck (X) has a resolution of compact
sets that swallows the compact sets if and only if X is σ-compact.

Proof. If Ck (X) has a resolution of compact sets, Cp (X) has a resolution of pointwise bounded sets. So,
Corollary 3.8 assures that X is σ-compact. Conversely, if {Km : m ∈N} is an increasing sequence of compact
sets in X covering X then ∆m = {(x, x) : x ∈ Km} is compact in the metric space (X × X, d). Hence, the sequence{
Um,n : n ∈N

}
where

Um,n =
{(

x, y
)
∈ X × X : d

((
x, y

)
,∆m

)
< n−1

}
is a basis of the system of neighborhoods of ∆m. Let us encode in each α ∈ NN a whole sequence
{αn}

∞

n=1 of elements of NN by considering a bidimensional array whose ith file is formed by coordinates
(αi (1) , αi (2) , . . . , αi (n) , . . .) of αi and defining α by setting α (1) = α1 (1), α (2) = α1 (2), α (3) = α2 (1),
α (4) = α1 (3), α (5) = α2 (2), α (6) = α3 (1), α (7) = α1 (4), . . . and so on. Conversely, given α ∈ NN we may
extract a sequence {αn}

∞

n=1 ⊆N
N from α as indicated above. Then let Aα be the absolutely convex set f ∈ C (X) : sup

(x,y)∈Um,αm (n)

∣∣∣ f (x) − f
(
y
)∣∣∣ ≤ 1

n
, sup

x∈Km

∣∣∣ f (x)
∣∣∣ ≤ αm (1) ∀m,n ∈N

 .



J. C. Ferrando, M. López-Pellicer / Filomat 34:11 (2020), 3575–3599 3584

Let x ∈ X and ε > 0 be given. Take m ∈ N such that x ∈ Km and 1/n < ε. Setting Um,n (x) :={
y ∈ X :

(
x, y

)
∈ Um,n

}
, each f ∈ Aα satisfies

sup
y∈Um,αm(n)(x)

∣∣∣ f (x) − f
(
y
)∣∣∣ ≤ sup

(z,y)∈Um,αm(n)

∣∣∣ f (z) − f
(
y
)∣∣∣ ≤ n−1 < ε.

As Um,αm(n) (x) is a neighborhood of x, this means that Aα is equicontinuous at x. So all sets Aα are
equicontinuous. In addition, since sup f∈Aα

∣∣∣ f (z)
∣∣∣ ≤ αm (1) if z ∈ Km, we see that Aα is pointwise bounded

and closed. Hence Aα is a compact set in Ck (X).
On the other hand, if K is a compact set in Ck (X), the fact that X is a kR-space guarantees that K is

equicontinuous (Ascoli’s theorem). Since K is equicontinuous at each x ∈ Km, for each n ∈ N there is
ε (m,n, x) > 0 such that

sup
y∈B(x,ε(m,n,x))

∣∣∣ f (x) − f
(
y
)∣∣∣ ≤ 1

2n
(1)

for all f ∈ K , where B (x, ε) stands for the open ball of center at x and radius ε > 0.
Setting U =

⋃
z∈Km

B (z, ε (m,n, z)) × B (z, ε (m,n, z)), if
(
x, y

)
∈ U there is z ∈ Km such that x, y ∈

B (z, ε (m,n, z)), so
∣∣∣ f (x) − f

(
y
)∣∣∣ ≤ ∣∣∣ f (x) − f (z)

∣∣∣ +
∣∣∣ f (z) − f

(
y
)∣∣∣ < n−1 for all f ∈ K . As ∆m ⊆ U there is

r (m,n) ∈Nwith ∆m ⊆ Um,r(m,n) ⊆ U. Thus

sup
(x,y)∈Um,r(m,n)

∣∣∣ f (x) − f
(
y
)∣∣∣ ≤ 1

n
.

On the other hand, the fact that K is a compact set for the compact-open topology ensures that for each
m ∈ N there is km ∈ N such that sup f∈K supx∈Km

∣∣∣ f (x)
∣∣∣ ≤ km. Hence, setting α such that αm (n) = r (m,n), we

may assume that αm (1) ≥ km. All this says that K ⊆ Aα. As Aα ⊆ Aβ if α ≤ β, the family {Aα : α ∈ NN} is as
stated.

Corollary 4.3 (Ferrando [23, Proposition 3]). Let X be a metrizable space. Ck (X) has a fundamental bounded
resolution if and only if X is σ-compact.

Proof. If X is σ-compact, Theorem 4.2 ensures that Ck (X) has a resolution consisting of compact sets that
swallows the compact sets. So, Ck (X) has a bounded resolution {Aα : α ∈NN} consisting of closed absolutely
convex bounded sets. As X is a kR-space, Ck (X) is complete and consequently each Aα is a Banach disk. So,
Theorem 3.17 provides a resolution {Aα : α ∈ NN} for Ck (X) consisting of Banach disks that swallows the
Banach disks, hence the bounded sets in Ck (X). Thus, Ck (X) has a fundamental bounded resolution. The
converse comes from Corollary 3.8.

Theorem 4.4 (Christensen [15, Theorem 3.7]). Let X be a separable metric space. Ck (X) is analytic if and only if
X is σ-compact.

Proof. If Ck (X) is analytic then Cp (X) is analytic as well, so Calbrix’s theorem ensures that X is σ-compact.
If X is σ-compact then Ck (X) has a resolution of compact sets by Theorem 4.2. Hence Ck (X) is K-analytic
by Theorem 4.1. As X is a separable metric space, it is a cosmic space, and so is Cp (X). So, Cp (X)
being K-analytic and cosmic is analytic. Hence Cp (X) must be submetrizable by the second statement of
[24, Theorem 85] (see [66, Proposition 6.3]). Consequently, Ck (X) is K-analytic and submetrizable, hence
analytic by the first statement of [24, Theorem 85].

If N is a uniformity for a (nonempty) set X, we denote by τN the uniform topology defined by N . A
base {Uα : α ∈ NN} of N is called a G-base if Uβ ⊆ Uα whenever α ≤ β. There is no loss of generality
by assuming that each Uα is a symmetric vicinity. On the other hand, if {Uλ : λ ∈ Λ} is the family of all
admissible uniformities for a completely regular space (X, τ), the smallest uniformity Uλ0 that makes all
τ-continuous functions f : X→ R uniformly continuous, is called the Nachbin uniform structure of X, [61].
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Theorem 4.5 (Ferrando, [21, Theorem 1]). Ck (X) has a resolution consisting of equicontinuous sets if and only if
there exists an admissible uniformity for X, larger than or equal to the Nachbin uniformity, with a G-base.

Proof. AssumeN is a uniformity for X which contains the Nachbin uniform structure and let {Uα : α ∈NN}
be a G-base of N . If {αn}

∞

n=1 is a sequence inNN, encode {αn}
∞

n=1 in α as indicated in the proof of Theorem
4.2 and define

Pα =

 f ∈ C (X) : sup
(x,y)∈Uαn

∣∣∣ f (x) − f
(
y
)∣∣∣ ≤ 1

n
∀n ∈N

 .
We claim that {Pα : α ∈NN} is a resolution for Ck (X) consisting of equicontinuous sets. In fact, since if α ≤ β
then αn ≤ βn for every n ∈ N, clearly Pα ⊆ Pβ. On the other hand, if f ∈ C (X), since N is larger than the
Nachbin uniformity, f isN-uniformly continuous on X. Bearing in mind that {Uα : α ∈ NN} is a G-base of
N , for each n ∈ N there exists αn ∈ NN such that

∣∣∣ f (x) − f
(
y
)∣∣∣ ≤ 1/n whenever

(
x, y

)
∈ Uαn , which shows

that f ∈ Pα for α defined as above. Finally, let us see that each set Pα is equicontinuous. Indeed, given ε > 0
take n ∈ N such that 1/n < ε. According to the definition of Pα there is αn ∈ NN, which we extract from
α as explained earlier, such that

∣∣∣ f (x) − f
(
y
)∣∣∣ < ε whenever

(
x, y

)
∈ Uαn and this happens for every f ∈ Pα,

which shows that Pα is uniformly equicontinuous, hence equicontinuous.
For the converse, suppose that {Pα : α ∈ NN} is a resolution of Ck (X) consisting of equicontinuous sets.

For each α ∈NN define

Vα = {
(
x, y

)
∈ X × X : sup f∈Pα

∣∣∣ f (x) − f
(
y
)∣∣∣ < α (1)−1

}.

If α ≤ β then Pα ⊆ Pβ, which implies that Vβ ⊆ Vα. Let us see that {Vα : α ∈NN} is a base of some uniformity
N for X. First observe that the diagonal ∆ (X) = {(x, x) : x ∈ X} is contained in each Vα, so no Vα is empty. On
the other hand, clearly {Vα : α ∈NN} is a filter-base with V−1

α = Vα. In addition, if β ∈NN satisfies that β ≥ α
with β (1) ≥ 2α (1) we claim that Vβ ◦Vβ ⊆ Vα. Indeed, if

(
x, y

)
∈ Vβ ◦Vβ there is z ∈ X with (x, z) ,

(
z, y

)
∈ Vβ.

Hence
∣∣∣ f (x) − f (z)

∣∣∣ < β (1)−1 and
∣∣∣ f (z) − f

(
y
)∣∣∣ < β (1)−1 for every f ∈ Pβ. So,

∣∣∣ f (x) − f
(
y
)∣∣∣ < 2β (1)−1

≤ α (1)−1

for all f ∈ Pα ⊆ Pβ, which shows that
(
x, y

)
∈ Vα.

Let us check thatN is an admissible uniformity for X, i. e., that τN coincides with the original topology of
X. Since X is completely regular, it suffices to show that X and (X, τN ) have the same continuous functions.
Take f ∈ C (X), pick an arbitrary point x0 ∈ X and choose ε > 0. Then select α ∈ NN such that f ∈ Pα and
α (1)−1 < ε. Clearly

Vα (x0) =
{
y ∈ X :

(
x0, y

)
∈ Vα

}
is a τN -neighborhood of x0, and since

∣∣∣ f (x) − f
(
y
)∣∣∣ < α (1)−1 < ε for every

(
x, y

)
∈ Vα, we have in particular

that
∣∣∣ f (x0) − f

(
y
)∣∣∣ < ε for all y ∈ Vα (x0). This shows that f is continuous at x0 under τN . Assume conversely

that f ∈ C (X, τN ) and fix x0 ∈ X and ε > 0. Then there is α ∈NN with
∣∣∣ f (x0) − f

(
y
)∣∣∣ < ε for every y ∈ Vα (x0).

But, since Pα is equicontinuous at x0, there exists a neighborhood V of x0 of the original topology of X such
that suph∈Pα

∣∣∣h (
y
)
− h (x0)

∣∣∣ < α (1)−1 for every y ∈ V. Hence if x ∈ V then suph∈Pα |h (x) − h (x0)| < α (1)−1,
which according to the definition of Vα means that x ∈ Vα (x0). This shows that V ⊆ Vα (x0) and thus∣∣∣ f (x0) − f

(
y
)∣∣∣ < ε for all y ∈ V. So f is continuous at x0 under the original topology of X and f ∈ C (X).

Let us finally check that the uniformityN generated by the base {Vα : α ∈NN} is larger than the Nachbin
uniformity. We have to prove that every real-valued continuous function on X isN-uniformly continuous.
Now, given f ∈ C (X) and ε > 0, taking advantage of the fact that {Pα : α ∈ NN} is a resolution of C (X),
we can choose γ ∈ NN such that γ (1)−1 < ε and f ∈ Pγ. Consequently, for each

(
x, y

)
∈ Vγ it happens that∣∣∣ f (x) − f

(
y
)∣∣∣ < γ (1)−1 < ε, which shows that f isN-uniformly continuous, as stated.

Corollary 4.6. Let X be a kR-space. If Ck (X) is K-analytic then there exists an admissible uniformity for X, larger
than or equal to the Nachbin uniformity, with a G-base.



J. C. Ferrando, M. López-Pellicer / Filomat 34:11 (2020), 3575–3599 3586

Theorem 4.7 (Ferrando-Gabriyelyan-Ka̧kol, [27, Theorem 1.8]). Ck (X) has a resolution consisting of weakly
compact sets that swallows the weakly compact sets if and only if X is countable and discrete.

Proof. First we claim that if Ck (X) has a resolution {Aα : α ∈ NN} consisting of weakly compact sets that
swallows the weakly compact sets in Ck (X), each compact set in X is finite. As Cp(X) admits a resolution of
compact sets, it is K-analytic by Theorem 3.10, so Cp

(
Cp (X)

)
is angelic by Lemma 3.1. Hence, each compact

set of X ↪→ Cp

(
Cp (X)

)
is Fréchet-Urysohn. If there exists an infinite compact set K in X, then K contains an

infinite convergent sequence that, together with its limit, is homeomorphic to a metrizable compact subset
Q of βX. Thus, there is a continuous linear extender map ϕ : Cp (Q) → Cp

(
βX

)
, [5]. If S : Cp

(
βX

)
→ Cp (X)

is the restriction map S1 = 1
∣∣∣
X, the mapping ψ = S ◦ ϕ is a continuous linear extender, i. e., ψ

(
f
)∣∣∣

Q = f for
every f ∈ C (Q). This ensures that the linear map ψ : C(Q) → Ck (X) (weak), where Ck (X) (weak) stands
for the space Ck (X) equipped with its weak topology, has closed graph. Since C(Q) is a Banach space
and Ck (X) (weak) has a resolution of compact sets, the closed graph theorem [31, Theorem 1] ensures that
ψ : C(Q)→ Ck (X) (weak) is continuous, so weakly continuous.

A routine procedure shows that the family {ψ−1 (Aα) : α ∈NN} is a resolution for the Banach space C(Q)
consisting of weakly compact sets. If P is a compact set under the weak topology of Ck (Q), then ψ (P) is
a compact set in Ck (X) (weak). Hence, there is a γ ∈ NN such that ψ (P) ⊆ Aγ, so that P ⊆ ψ−1

(
Aγ

)
. This

means that {ψ−1 (Aα) : α ∈ NN} swallows the compact sets of C(Q) (weak). But it is shown in [55] that for
compact Q, if the Banach space C (Q) has a resolution of weakly compact sets that swallows the weakly
compact sets, then Q is finite. Thus Q must be a finite set, a contradiction

Finally, since each compact set in X is finite, one has Ck (X) = Ck (X) (weak) = Cp (X). So X must be
countable and discrete by Theorem 3.15.

A Fréchet space E is called a Strongly Weakly Countably Generated (briefly a SWCG) space if every bounded
set in

(
E′, µ (E′,E)

)
is metrizable. Equivalently, E is a SWCG space if given a base of closed absolutely convex

neighborhoods of zero {Un : n ∈N}with 2Un+1 ⊆ Un for each n ∈N there exists an absolutely convex weakly
compact set K ⊆ E such that for every weakly compact (absolutely convex) set L ⊆ E and every n ∈N there
is α (n) ∈ N with L ⊆ α (n) K + Un [30, Theorem 9]. A Fréchet space E is called Strongly Weakly K-Analytic
(briefly SWKA) space if (E, σ (E,E′)) admits a compact resolution that swallows the σ (E,E′)-compact sets.

If E is a Fréchet space with a base of closed absolutely convex neighborhoods of zero {Un : n ∈N} such
that 2Un+1 ⊆ Un for each n ∈N, a resolution {Aα : α ∈NN} for E is called weakly compactly generated if there
exists an absolutely convex weakly compact set K such that

Aα =

∞⋂
n=1

(α (n) K + Un)

for every α ∈ NN. Clearly Aα ⊆ Aβ whenever α ≤ β, and the condition imposed to the base implies that
each Aα is closed. Hence {Aα : α ∈NN} is a weakly compact resolution for E, as follows from [30, Claim 6].

Theorem 4.8. A Fréchet space E is SWCG if and only if E has a weakly compactly generated resolution that swallows
the weakly compact sets.

Proof. Assume that E is a SWCG space, and let {Un : n ∈N} be a base of closed absolutely convex neighbor-
hoods of the origin such that 2Un+1 ⊆ Un for every n ∈ N. For every α ∈ NN set Aα :=

⋂
∞

n=1(α (n) K + Un),
where K is the absolute convex weakly compact set mentioned after the definition of SWCG space. Clearly
{Aα : α ∈ NN} is a weakly compactly generated resolution for E. If L ⊆ E is a weakly compact set in E, for
each n ∈ N there exists γ (n) ∈ N such that L ⊆ γ (n) K + Un, so that L ⊆ Aγ. Hence {Aα : α ∈NN} swallows
the weakly compact sets of E.

Assume conversely that E contains a weakly compactly generated resolution {Aα : α ∈ NN} that
swallows the weakly compact sets. Then there exists a weakly compact absolutely convex set Q such that
Aα =

⋂
∞

n=1 (α (n) Q + Un) for every α ∈ NN. If L is any weakly compact set in E there is γ ∈ NN such that
L ⊆ Aγ, hence for each n ∈N one gets L ⊆ γ (n) Q + Un. So E is a SWCG space.
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Theorem 4.9 (Ferrando-Ka̧kol, [30, Theorem 22]). If Ck(X) is a Fréchet space, the following statements are equiv-
alent

1. Ck(X) is a SWCG space.
2. Ck (X) is a SWKA space.
3. X is countable and discrete.

Proof. Clearly 1⇒ 2. Equivalence 2⇔ 3 is consequence of Theorem 4.7. If X is countable and discrete then
Ck(X) = RX is reflexive, so 3⇒ 1.

5. Closure-preserving coverings for Cp (X)

A closure-preserving covering of Cp(X) is a generalization of a locally finite covering. A covering F of
a space X is called closure-preserving if⋃

{F : F ∈ G} =
⋃{

F : F ∈ G
}

for any G ⊆ F .

Theorem 5.1 (Guerrero, [40, Corollary 2.7]). Cp(X) admits a closure-preserving covering by closed σ-countably
compact sets if and only if X is finite.

Proof. First let us suppose that F is a closure-preserving covering of Cp (X) by closed σ-compact subspaces.
Note that X must be pseudocompact. Otherwise Cp (X) has a closed homeomorphic copy of RN and
hence Cp (N) has a closure-preserving covering G by closed σ-compact subspaces. As the space Cp (N) is
separable, there exists a countable subfamily G0 ⊆ G such that

⋃
G0 =

⋃
G0 = Cp (N), which means that

Cp (N) is covered by a countable family of compact sets. ThusN should be finite by Velichko’s theorem, a
contradiction.

If f ∈ C (X) we claim that f (X) is finite. Indeed, if Y := f (X) since Y is a separable metric space the space
Cp (Y) is separable. On the other hand, as X is pseudocompact and Y is second countable f is anR-quotient
map [72, S.154, Fact 3], so the pullback f ∗ : Cp (Y)→ Cp (X) defined by f ∗

(
1
)

= 1 ◦ f embeds Cp (Y) in Cp (X)
as a closed subspace [1, 0.4.10 Proposition]. Therefore, Cp (Y) is covered by a closure-preserving familyM of
closed σ-compact subspaces and there exists a countable subfamilyN ofM such that

⋃
N =

⋃
N = Cp (Y).

Again Velichko’s theorem implies that Y must be finite.
Since f (X) is finite for every f ∈ C (X), the space X must be finite. If not there is a countable discrete

subspace D = {xn : n ∈N} in X and a countable family of open sets {Un : n ∈N} such that Un ∩D = {xn} and
Ui ∩U j = ∅ if i , j. So, for each n ∈ N there is fn ∈ C (X) with 0 ≤ fn ≤ 1 such that fn (xn) = 1 and fn (x) = 0
if x ∈ X \Un. Then clearly f =

∑
∞

n=1 fn ∈ C (X) but f (X) ⊇ D, which is infinite, a contradiction.
If the closure-preserving covering consists of closed σ-countably compact sets instead of closed σ-

compact sets, we get the same conclusion by using the Tkachuk-Shakhmatov theorem instead of Velichko’s
theorem.

Conversely, Rn can always be covered by a countable family of compact balls.

Theorem 5.2 (Guerrero, [40, Corollary 2.8]). If Cp(X) admits a closure-preserving covering by countably compact
sets then X is finite.

Proof. Let F be a closure-preserving cover of Cp (X) by countably compact sets. If X is not pseudocompact,
there is a sequence {Fn : n ∈N} in F with

⋃
∞

n=1 Fn ∩ RN = RN. So, RN is covered by a countable family
of pseudocompact sets. In this case Theorem 2.6 forces N to be pseudocompact, a contradiction. So, X is
pseudocompact.

Then [1, 3.4.23 Theorem] shows that each member ofF is a compact set. Hence,F is a closure-preserving
cover of Cp (X) by compact sets, and the conclusion follows from the preceding theorem.
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Lemma 5.3 (Guerrero, [40, Lemma 2.10]). Let X be an infinite compact space. If Cp (X) admits a closure-
preserving covering by subspaces of density less than or equal to an infinite cardinal κ then w (X) ≤ κ.

Proof. We shall restrict ourselves to the case κ = ℵ0, what will be used later. So, assume Cp (X) admits
a closure-preserving covering F by closed separable subspaces. Proceed by contradiction by supposing
w (X) > ℵ0. It suffices to consider the case w (X) = ℵ1.

Since d
(
Cp (X)

)
= iw (X) = w (X) = ℵ1 [58], there is F0 ⊆ F such that |F0| ≤ ℵ1 and Cp (X) =

⋃
F0. This

covering can be rewritten as {Fα : 0 ≤ α < ω1}, and if we define Gα =
⋃{

Fβ : 0 ≤ β < α
}

for every 0 ≤ α < ω1,
clearly G = {Gα : 0 ≤ α < ω1} is an increasing closure-preserving covering of Cp (X) by separable subspaces
which swallows the separable sets in Cp (X).

As X is embeddable in [0, 1]ω1 , let us consider the natural projections πα : X→ [0, 1]α for 0 ≤ α < ω1. For
each α < ω1 define Zα = πα (X) and set Mα := π∗α (C (Zα)), where π∗α : Cp (Zα)→ Cp (X) is the pullback of πα,
defined as usual by π∗α (h) = h ◦ πα. It can be easily seen that the familyM = {Mα : 0 ≤ α < ω1} is another
increasing covering of Cp (X) such that d (Mα) = w (Zα) ≤ ℵ0. So, for each α < ω1 there exists α ≤ β < ω1

with Mα ⊆ Gβ. Conversely, for each β < ω1 there exists β ≤ γ < ω1 with Gβ ⊆Mγ.
Note that X cannot be embedded in [0, 1]α for any α < ω1, otherwise if X ↪→ [0, 1]γ then w (X) =

∣∣∣γ∣∣∣ = ℵ0,
a contradiction. This entails that for each α < ω1 there exists β < ω1 with β ≥ α such that both Gα ⊆ Mβ

and the natural projection πα,β : Zβ → Zα is not injective. So we may get an increasing sequence of
countable ordinals {αn : n ∈N} such that Gα2n−1 ⊆ M2n ⊆ G2n+1 and the projection πα2n−1,α2n : Zα2n → Zα2n−1 is
not injective. Let γ := sup {αn : n ∈N} and for each n choose two different points xn, yn ∈ Zα2n ⊆ Zγ with
πα2n−1,γ (xn) = πα2n−1,α2n (xn) = πα2n−1,α2n

(
yn

)
= πα2n−1,γ

(
yn

)
.

According to [40, Lemma 2.9] there is 1 ∈ C
(
Zγ

)
whose restriction to

{
xn, yn : n ∈N

}
is injective, so that

1 (xn) , 1
(
yn

)
for every n ∈ N. This means that supp 1 * Zα2n for all n ∈ N, in other words, 1 does not

belong to C
(
Zα2n

)
for any n ∈ N. Hence, the function f = π∗γ

(
1
)
∈ π∗α

(
C

(
Zγ

))
= Mγ does not belong to

Mα2n for any n ∈ N. Thus f <
⋃
∞

n=1 M2n = Gγ, the latter equality because both G and M are increasing,
Gα2n−1 ⊆Mα2n ⊆ Gα2n+1 and

⋃
G = C (X).

On the other hand, let a finite subset A of X and ε > 0 be given. Let

U f =
{
h ∈Mγ :

∣∣∣h (x) − f (x)
∣∣∣ < ε, x ∈ A

}
be a neighborhood of f in the relative topology of Mγ. If πγ (x) = πγ

(
y
)

for x, y ∈ A then f (x) = f
(
y
)
, so we

may assume πγ (x) , πγ
(
y
)

for each pair x, y ∈ A. In this case there is l ∈N such that πα2l,γ is one-to-one on
πγ (A). Hence πα2l = πα2l,γ ◦πγ is one-to-one on A. So, we can choose ϕ ∈ C

(
Zα2l

)
such that ϕ

(
πα2l (x)

)
= f (x)

for each x ∈ A.
Since h := ϕ ◦ πα2l = π∗α2l

(
ϕ
)
∈M2l ⊆Mγ, clearly h ∈ U f . So, f ∈M2l and consequently f ∈M2l ⊆ Gα2n+1 ⊆

Gα2n+3 ⊆ Gγ, a contradiction.

Theorem 5.4 (Guerrero, [40, Corollary 2.13]). Let X be an infinite compact space. Cp(X) admits a closure-
preserving covering by separable subspaces if and only if X is metrizable.

Proof. If X is a compact metrizable space, then Cp(X) is separable. Let D be a countable dense subspace
of Cp (X). For every f ∈ C (X) put D f := D ∪

{
f
}
. Then clearly F =

{
D f : f ∈ C (X)

}
is a closure-preserving

covering of Cp(X) by separable subspaces. Conversely, if the space Cp(X) admits a closure-preserving
covering by separable subspaces, Lemma 5.3 with κ = ℵ0 yields w (X) ≤ ℵ0. Since X is compact, this implies
that X must be metrizable.

Theorem 5.5 (Guerrero, [40, Corollary 2.14]). Let X be an infinite compact space. Cp(X) admits a closure-
preserving covering by second countable subspaces if and only if X is countable.

Proof. If Cp(X) admits a closure-preserving covering by second countable subspaces, then Cp(X) admits
a closure-preserving cover by separable subspaces. Hence X is metrizable by the previous theorem and,
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consequently, Cp (X) is separable. This clearly implies that Cp (X) has indeed a countable covering by second
countable subspaces, so we may apply [70, Corolary 1.7] to guarantee that X is countable.

For the following lemma, given a function f ∈ Cb (X) and a number ε > 0 let

I
(

f , ε
)

=
{
1 ∈ Cb (X) :

∥∥∥ f − 1
∥∥∥
∞
≤ ε

}
.

Lemma 5.6 (Guerrero-Tkachuk [43, Proposition 2.1 (a)]). If F is a closure-preserving covering of Cp (X) by
closed subspaces, there exist F ∈ F and f ∈ Cb (X) such that I

(
f , ε

)
⊆ F for some ε > 0.

Proof. We claim that the family
{
F ∩ Cb (X) : F ∈ F

}
is also a closure-preserving covering by closed subspaces

of the Banach space Cb (X) equipped with the supremum-norm ‖·‖∞. Indeed, since the Banach topology τu
is stronger than the pointwise topology, denoting Cb (X) by G, if F ′ ⊆ F one has⋃

F∈F ′
F ∩ G = G ∩

⋃
F∈F ′

F
τp

⊇ G ∩
⋃
F∈F ′

F ∩ G
τp

⊇

⋃
F∈F ′

F ∩ G
τu

⊇

⋃
F∈F ′

F ∩ G.

By [68, Theorem 2.5] there exist F ∈ F and f ∈ Cb (X) for which there is an open ball

B
(

f , δ
)

=
{
1 ∈ Cb (X) :

∥∥∥ f − 1
∥∥∥
∞
< δ

}
centered at f in the Čech-complete space

(
Cb (X) , ‖·‖∞

)
, such that B

(
f , δ

)
⊆ F ∩ G. Hence, if ε = δ/2 we get

I
(

f , ε
)
⊆ F.

Theorem 5.7 (Guerrero-Tkachuk [43, Corollary 2.5]). If P is a hereditary topological property and Cp (X) has a
closure-preserving cover F by closed subspaces such that each F ∈ F has property P, both Cp (X, [0, 1]) and Cp (X)
have property P.

Proof. Under these hypotheses we claim that some F ∈ F contains a homeomorphic copy of Cp (X). By
Lemma 5.6 there exist F ∈ F and f ∈ Cb (X) such that I

(
f , ε

)
⊆ F for some ε > 0. Then the map

ϕ : Cp (X, [0, 1])→ Cb
p (X) defined by

ϕ
(
1
)

= 2ε
(
1 − 1

2

)
+ f

is a homeomorphism such that ϕ (C (X, [0, 1])) = I
(

f , ε
)
. Since F has the hereditary propertyP, the set I

(
f , ε

)
also has property P and consequently Cp (X, [0, 1]) has property P. But Cp (X, [0, 1]) contains Cp (X, (0, 1)),
which is homeomorphic to Cp (X). So Cp (X) also has property P.

Theorem 5.8 (Guerrero-Tkachuk [43, Theorem 2.7]). LetP be a closed hereditary topological property. If Cp (X)
has a closure-preserving cover F by closed subspaces such that each F ∈ F has property P, then Cp (X, [0, 1]) has
property P.

Proof. Again Lemma 5.6 provides F ∈ F and f ∈ Cb (X) such that I
(

f , ε
)
⊆ F for some ε > 0. By the proof of

Theorem 5.7 the subspace I
(

f , ε
)

of Cb
p (X) is homeomorphic to Cp (X, [0, 1]) and closed in F, so Cp (X, [0, 1])

has property P.

Remark 5.9. Applications of the preceding results. Theorem 5.7 applies for instance to the Fréchet-Urysohn
property and metrizability. Theorem 5.8 applies to K-analyticity, Lindelöf Σ-property and normality.
Concerning realcompactness, if Cp (X) has a closure-preserving cover F by closed subspaces such that each
F ∈ F is realcompact, Theorem 5.8 ensures that the space Cp (X, [0, 1]) is realcompact. Since C (X, (0, 1))
can be obtained from Cp (X, [0, 1]) by throwing out a union of Gδ-subsets of Cp (X, [0, 1]), it turns out that
C (X, (0, 1)) is realcompact (see [72, Problem 408]). Hence Cp (X) is realcompact.
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Corollary 5.10 (Guerrero-Tkachuk [43, Proposition 2.20]). If X is a Lindelöf Σ-space and Cp(X) has a closure-
preserving cover by closed Lindelöf Σ-subspaces then Cp(X) is a Lindelöf Σ-space.

Proof. According to Theorem 5.8, Cp(X, [0, 1]) must be a Lindelöf Σ-space. So [1, IV.9.17 Theorem] ensures
that Cp(X) is a Lindelöf Σ-space.

6. Domination by a second countable space

Given a Tychonoff space M, a family of setsA of another Tychonoff space X is said to be M-ordered (or
ordered by M) ifA = {AK : K ∈ K (M)}, whereK (M) denotes the family of all compact sets in M, and P ⊆ Q
in M implies AP ⊆ AQ. The space X is said to be M-dominated (or dominated by the space M) if X has an
M-ordered coveringA consisting of compact sets (an M-ordered compact covering).

Theorem 6.1 (Cascales-Orihuela-Tkachuk, [14, 2.1(a) Theorem]). Every Lindelöf Σ-space is dominated by a
second countable space.

Proof. An equivalent definition of Lindelöf Σ-space says that X is a Lindelöf Σ-space if and only if there exists
a second countable space M and a compact-valued usc map T : M→ K (X) such that

⋃
{T (x) : x ∈M} = X.

If K is a compact set in M, define AK =
⋃
{T (x) : x ∈ K}. ClearlyA = {AK : K ∈ K (M)} is an M-ordered cover

consisting of compact sets.

The class of spaces dominated by second countable spaces has good stability properties [14, 2.1 Theorem].

Theorem 6.2 (Cascales-Orihuela-Tkachuk, [14, 2.2 Proposition]). The following relations are equivalent for a
Tychonoff space X.

1. X has a resolution consisting of compact sets.
2. X isNN-dominated.
3. X is dominated by a Polish space.

Proof. 1 ⇒ 2. Let {Aα : α ∈ NN} be a resolution for X of compact sets. If P ∈ K (NN), define αP ∈ NN

by αP (i) = maxπi (P), where πi : NN → N is the canonical ith-projection. Clearly αP ≤ αQ if P ⊆ Q
and if we set AP := AαP for every P ∈ K (NN), then A = {AP : P ∈ K (NN)} is an NN-ordered family
of compact sets which covers X. The latter because if x ∈ X there is γ ∈ NN with x ∈ Aγ, and the set
Qγ := {α ∈NN : α (i) ≤ γ (i) ∀i ∈N} is compact inNN and verifies that αQγ = γ. So x ∈ AQγ .

2 ⇒ 1. Let {AP : P ∈ K (NN)} be anNN-ordered compact cover of X. If γ ∈ NN let Qγ ∈ K (NN) be the
previously defined set that verifies the equality αQγ = γ. Then the familyA = {Aγ : γ ∈NN}with Aγ := AQγ

verifies that Aγ ⊆ Aδ if γ ≤ δ. Moreover, A covers X. For if x ∈ X there is P ∈ K (NN) with x ∈ AP. So,
if σ (i) = maxπi (P) for every i ∈ N then AP ⊆ Aσ and hence x ∈ Aσ. Therefore A is a resolution for X by
compact sets.

2 ⇒ 3 is clear. Finally, if X is dominated by a Polish space M, there is an M-ordered compact cover
A = {AK : K ∈ K (M)}. Since M is a Polish space, there is an open continuous map ϕ : NN → M fromNN

onto M. Consider the family F = {Aϕ(Qα) : α ∈NN}. If x ∈ X there is a compact set K in M such that x ∈ AK

and there exists P ∈ K (NN) such that ϕ (P) = K [18, 5.5.8]. If σ (i) = maxπi (P) for every i ∈ N then P ⊆ Qσ

and hence K = ϕ (P) ⊆ ϕ (Qσ) so that x ∈ Aϕ(Qσ). Hence F covers X and clearly F is aNN-ordered compact
covering for X. So X isNN-dominated. This shows that 3⇒ 2.

Theorem 6.3 (Cascales-Orihuela-Tkachuk, [14, 2.4 Corollary]). Cp (X) is dominated by a Polish space if and
only if it is K-analytic.

Proof. If Cp (X) is dominated by a Polish space, by the previous theorem Cp (X) has a resolution consisting of
compact sets. So Cp (X) is K-analytic by Theorem 3.10. Conversely, if Cp (X) is K-analytic, it has a resolution
of compact sets [67]. Thus, according to Theorem 6.2, Cp (X) is dominated by a Polish space.
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Lemma 6.4. If X is dominated by a second countable space, X has a countable network modulo a covering by countably
compact sets and Cp (X) is Lindelöf Σ-framed in RX.

Proof. If X is dominated by a second countable space M, the first statement of the consequent follows from
[14, 2.6 Proposition], where one should notice that the fact that M is second countable is critical. The second
follows from [71, 2.7 Proposition].

Theorem 6.5 (Cascales-Orihuela-Tkachuk, [14, 2.15 Theorem]). Cp (X) is dominated by a second countable
space if and only if it is a Lindelöf Σ-space.

Proof. Sufficiency is Theorem 6.1. For the necessity assume that {FK : K ∈ K (M)} is an M-ordered compact
covering of Cp (X). Apply Lemma 6.4 to show that Cp

(
Cp (X)

)
is Lindelöf Σ-framed in RX and then Lemma

3.1 to get that υCp (X) is a Lindelöf Σ-space. Then apply [1, IV.9.5 Theorem] to conclude that υX is also a
Lindelöf Σ-space, which guarantees that the space Cp (υX) is angelic [25, Theorem 78].

If T : Cp (υX)→ Cp (X) denotes the restriction map T f = f
∣∣∣
X, it can be easily seen that {GK : K ∈ K (M)},

where GK = T−1 (FK) is an M-ordered compact covering of Cp (υX). Since Cp (υX) is dominated by a second
countable space, Lemma 6.4 asserts that Cp (υX) has a countable network modulo a covering by countably
compact subsets. But Cp (υX) angelicity ensures that Cp (υX) has a countable network modulo a covering by
compact sets. So, according to [1, IV.9.1 Proposition], Cp (υX) is a Lindelöf Σ-space. Consequently Cp (X),
as a continuous image of a Lindelöf Σ-space, is also a Lindelöf Σ-space.

Domination of each subspace of Cp (X) by a second countable space also leads to some interesting
properties. We state the following theorem without proof (see [14] for details).

Theorem 6.6 (Cascales-Orihuela-Tkachuk, [14, 2.18 Proposition]). If every subspace of Cp (X) is dominated
by a second countable space, then Cp (X) is cosmic.

A Tychonoff space X is strongly dominated by M if there exists an M-ordered compact covering F of X
that swallows the compact sets in X. Strong domination by second countable spaces has been extensively
studied in [14, 41, 45, 74]. Under CH it is shown in [14, 3.10 Theorem] that, for compact X, if Cp (X) is
strongly dominated by a second countable space, X must be countable. The CH is removed in [41], where
it is proved that, assuming Cp (X) is a strongly dominated by a second countable space, if X is separable,
scattered, second countable, compact or pseudocompact, then X is countable. Theorem 6.8 below extends
this result to all Tychonoff spaces.

Lemma 6.7 (Guerrero-Tkachuk, [45, Lemma 3.4.5]). Let X be an uncountable Lindelöf Σ-space. Assume Cp (X)
is strongly dominated by a second countable space M, and let {FK : K ∈ K (M)} be an M-ordered compact covering of
Cp (X) that swallows the compact sets in Cp (X). Then there exists a family Q = {QK : K ∈ K (M)} of compact sets of
RX such that QK ⊆ QL if K ⊆ L and

⋃
Q contains the linear subspace Σ (X) of all countable supported functions of

RX.

Proof. If K ∈ K (M), let aK (x) = inf
{
1 (x) : 1 ∈ FK

}
and bK (x) = sup

{
1 (x) : 1 ∈ FK

}
. Letting

QK =
∏
x∈X

[aK (x) , bK (x)] ,

the family Q = {QK : K ∈ K (M)} consists of compact sets in RX and clearly verifies that QK ⊆ QL if Q ⊆ L.
We claim that Σ (X) ⊆

⋃
Q.

Choose f ∈ Σ (X) and denote by A = {xi : i ∈N} the countable support of f . By Theorem 6.5 we know
that Cp (X) is a Lindelöf Σ-space, hence [64, Theorem 5.4] provides a retraction r : X → F such that A ⊆ F
and |F| ≤ ℵ0. If F =

{
yn : n ∈N

}
, put U1 = F and Un+1 = F \

{
y1, . . . , yn

}
for each n ∈ N. Clearly, the family

{Un : n ∈N} consists of F-open sets and is point-finite in F, i. e., each x ∈ F belongs at most to finitely-many
sets Un. Moreover yn ∈ Un for every n ∈ N. Since F is a retract of X, it follows that the family {Vn : n ∈N},
where Vn := r−1 (Un) for each n ∈ N, consists of open sets in X, is point-finite in X and verifies that yn ∈ Vn
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for every n ∈ N. If xi = yni and we set Wi = Vni for each i ∈ N, the family {Wi : i ∈N} consists of open sets
in X, is point-finite in X and verifies that xi ∈Wi for every i ∈N.

For each i ∈ N choose fi ∈ C (X) with 0 ≤ fi ≤ 1 such that fi (xi) = 1 and fi (X \Wi) = {0} and define
1i =

∣∣∣ f (xi)
∣∣∣ · fi and hi = −

∣∣∣ f (xi)
∣∣∣ · fi. As the family {Wi : i ∈N} is point-finite, the set P =

{
1i, hi : i ∈N

}
∪ {},

where here stands for the identically null function on X, is compact in Cp (X). Consequently, there exists
some K ∈ K (M) such that P ⊆ FK, which means that 1 (x) ∈ [aK (x) , bK (x)] for each 1 ∈ P. Since f (xi)
coincides with 1i (xi) or with hi (xi), clearly f (xi) ∈ [aK (xi) , bK (xi)] for each i ∈ N, whereas if x < A then
f (x) = 0 ∈ [aK (x) , bK (x)] since ∈ P ⊆ FK. Therefore f ∈ QK and the proof is over.

Theorem 6.8 (Guerrero-Tkachuk, [45, Theorem 3.4]). Cp (X) is strongly dominated by a second countable space
if and only if X is countable.

Proof. Suppose that Cp (X) is strongly dominated by a second countable space and let {FK : K ∈ K (M)}
be an M-ordered compact covering of Cp (X) that swallows the compact sets in Cp (X). Proceeding by
contradiction, assume that X is uncountable. By [41, Theorem 3.10] there is no loss of generality if we
assume that X is a Lindelöf Σ-space. So, according to Lemma 6.7, there exists a familyQ = {QK : K ∈ K (M)}
of compact sets in RX such that QK ⊆ QL if Q ⊆ L and Y =

⋃
Q contains the linear subspace Σ (X) of

countable supported functions of RX.
It is not hard to see that this implies that there exists a Lindelöf Σ-space Z such that Y ⊆ Z ⊆ RX, so that

Σ (X) ⊆ Z. But Σ (X) is not Lindelöf Σ-framed in RX if X is uncountable [45, Proposition 3.1].

In [45, Theorem 3.9] it is showed that, for compact X, if Cp (X, [0, 1]) is strongly dominated by a second
countable space, then X is countable. In [74] the requirement of compactness of X is relaxed by the following
result, which we state without proof.

Theorem 6.9 (Tkachuk, [74, 3.7 Theorem]). Let X be a Lindelöf Σ-space. If Cp (X, [0, 1]) is strongly dominated
by a second countable space, then X is countable.

7. Some examples

Example 7.1. If Ω is a nonempty open subset of Rn, both the spaceD (Ω) of test functions equipped with its usual
inductive limit topology and the space of distributionsD′ (Ω) endowed with the Mackey* topology µ (D′ (Ω) ,D (Ω)),
which coincides with the strong topology β (D′ (Ω) ,D (Ω)) (see [46, Chapter 4]), are analytic. The first statement
is consequence of the fact that the inductive limit of a sequence of Fréchet-Montel spaces is analytic, the
second follows from the fact that the strong dual of an inductive limit of a sequence of Fréchet-Montel
locally convex spaces is also analytic (see [76, I.4.4.(21) and I.4.4.(23)]).

Example 7.2. The space Cp (Z) with Z being the set of all weak P-points ofN?. If X is a Tychonoff space, a point
x ∈ X is called a weak P-point of X if x < A for any countable set A ⊆ X \ {x}. Every P-point of X is a
weak P-point of X. The subspace Z of all weak P-points of the remainderN? = βN \N of the Stone-Čech
compactification βN ofN is dense inN∗ [53], so it is infinite. But the space Cp (Z) is covered by a sequence
of pseudocompact sets (i. e., Cp (Z) is σ-pseudocompact) [2, 6.4 Example]. By Theorem 2.6, the space Z is
pseudocompact (see [2, 6.3 Proposition] for a direct proof of this property) and each countable subset of Z
is closed, discrete and C∗-embedded in Z. Note that Cp (Z) is not σ-compact, otherwise Z would be finite by
Velichko’s theorem.

Example 7.3. The Sorgenfrey line S is a (hereditarily) Lindelöf space which is not a Lindelöf Σ-space, since
S×S is not Lindelöf. Hence Lemma 3.1 prevents the space Cp (S) to have a resolution consisting of pointwise
bounded sets.

Example 7.4. The space Cp(NN) is not K-analytic-framed in RNN . By Corollary 3.8 the space Cp(NN) is not
analytic and does not admit a resolution of pointwise bounded sets. Hence, Cp(NN) is not K-analytic-framed
in RN

N
because of Theorem 3.3.



J. C. Ferrando, M. López-Pellicer / Filomat 34:11 (2020), 3575–3599 3593

Example 7.5. The spaces Ck (R) and Ck(Q). Both spaces have a resolution of compact sets that swallows the
compact sets by virtue of Theorem 4.2. By Theorem 4.3 they also have a fundamental resolution of bounded
sets, and according to Theorem 4.4 both spaces are analytic.

Example 7.6. The spaces Cp (R) and Cp(Q). Although both spaces have a resolution of compact sets, according
to Theorem 3.15 they do not have a resolution of compact sets that swallows the compact sets. The space
Cp (Q) has a fundamental resolution of pointwise bounded sets but, as follows from Theorem 3.16, such a
resolution lacks in Cp (R).

Example 7.7. LetN be equipped with the discrete topology and choose p ∈ βN\N. Then X :=N∪
{
p
}

with
the relative topology of βN is a non discrete space with finite compact sets, hence hemicompact. So, Cp (X)
is analytic by Theorem 4.4, and Ck (X) is a Fréchet space with a resolution of compact sets that swallows the
compact sets by Theorem 4.2.

Example 7.8. The space ω1 of countable ordinals with the order topology. It is essentially well-known that if
ℵ1 = d (the dominating cardinal) the space ω1 has a resolution of compact sets that swallows the compact
sets in ω1. However ω1 is not even a µ-space, since ω1 is pseudocompact but not compact.

Example 7.9. The space Cp (ω1). Clearly Cp (ω1) is not analytic because of Theorem 3.7. Actually, Cp (ω1)
does not admit a resolution of compact sets, since every topological space with a resolution of compact sets
has countable extent (closed discrete sets are countable) [49, Corollary 3.5] whereas the extent of Cp (ω1)
is uncountable. Consequently, Cp (ω1) is not K-analytic although, as is well-known, it is a Lindelöf space.
Note that ω1 is pseudocompact, hence projectively σ-compact.

Example 7.10. If Ck (X) admits a resolution of convex compact sets that swallows the local null sequences, X need not
be countable or discrete. If X is an infinite σ-compact metric space, then Ck (X) has a resolution {Aα : α ∈NN}
of compact sets that swallows the compact sets (hence the local null sequences) of Ck (X) by virtue of
Theorem 4.2. But, if one looks at the proof of this theorem, the sets Aα are absolutely convex. So, Ck (R) has
a resolution of absolutely convex compact sets that swallows the local null sequences.

Example 7.11. A K-analytic not analytic Cp-space. Let X be the Reznichenko compact space mentioned in [2,
7.14 Example]. This is a Talagrand compact space with a point p such that X = βY with Y = X \

{
p
}
. Hence

Y is a pseudocompact not realcompact space, so that X = υY. Since Cp (Y) is a continuous image of Cp (X),
the space Cp (Y) is K-analytic. Cp (Y) is not analytic by Theorem 3.7.

Example 7.12. The space Cp (L (ℵ1)), where L (ℵ1) is the Lindelöfication of the discrete space of cardinality ℵ1. Since
L (ℵ1) is a P-space, Cp (L (ℵ1)) is Baire. So, by Theorem 3.13, Cp (L (ℵ1)) lacks a resolution of pointwise
bounded sets. As L (ℵ1) is a Lindelöf P-space, it is projectively σ-compact [3, Proposition 2.2]. Hence, the
converse of Corollary 3.5 fails.

Example 7.13. The space Cp (L (ℵ1) , [0, 1]). Under CH the space Cp (L (ℵ1) , [0, 1]) has a compact resolution
[71, 2.10 Example]. Since Cp (L (ℵ1) , [0, 1]) is countably compact but not compact, C (L (ℵ1) , [0, 1]) is not a
µ-space, hence it is not K-analytic.

Example 7.14. Cp (X) need not be Lindelöf if Cp (X, [0, 1]) is a Lindelöf Σ-space. If X is a discrete space of
cardinality ℵ1 then Cp (X, [0, 1]) = [0, 1]ω1 is compact, but Cp (X) = Rω1 is not Lindelöf. If both υX and
Cp (X, [0, 1]) are Lindelöf Σ-spaces, then Cp (X) is a Lindelöf Σ-space (see [1, IV.9.17 Proposition] or [73,
Problem 217]).

Example 7.15. Neither RN nor Cp ([0, 1]) admits a closure-preserving covering by functionally bounded subspaces.
Otherwise, since both spaces are separable and the closure of a functionally bounded set is also functionally
bounded, both would admit a countable covering by (closed) functionally bounded subspaces. So, Theorem
2.6 would requireN to be pseudocompact, which is not, and every countable set in [0, 1] should be closed,
which is neither the case since [0, 1] is uncountable and separable.
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Example 7.16 (Okunev, [59, Example 2.7]). There exists a σ-compact space X such that Cp (X) is not Lindelöf.
If Y is the subspace of [0, 1]ω1 consisting of all function of finite support and 1 ∈ [0, 1]ω1 is the constant
function 1 (t) = 1 for every t ∈ ω1, define X = Y ∪

{
1
}
. Then Cp (X) is such space. Note that 1 ∈ Y but no

countable subset of Y contains 1 in its closure, so that X has uncountable tightness t (X). Hence Cp (X) is not
a Lindelöf space because of Asanov’s theorem [1, I.4.1 Theorem]. Clearly Cp (X) has a bounded resolution.
So, according to Theorem 3.3, Cp (X) is K-analytic-framed in RX. But Cp (X) is not K-analytic because it is
not Lindelöf.

Example 7.17 (Guerrero-Tkachuk, [43, Example 3.8]). There exists a σ-compact space X such that Cp (X) is not
Lindelöf but it contains a dense σ-compact subspace M. Let Z be the subspace of {0, 1}ω1 consisting of those
functions of finite support and define the function 1 as in the previous example. The space X = Z∪

{
1
}

is as
promised. For each f ∈ C (X) put M f := M∪

{
f
}
. Then F =

{
M f : f ∈ C (X)

}
is a closure-preserving cover of

Cp(X) by σ-compact subspaces. This shows that the closedness condition of the sets of the closure-preserving
covering in the statement of Theorem 5.1 cannot be dropped.

8. Further research

If ∆ = {(x, x) : x ∈ X} is the diagonal of X × X, much research has been developed on the (strong)
domination of the space (X × X) \ ∆ by a second countable space. We provide a brief account of this
investigation, but first let us point out a couple of facts.

In first place, according to [18, Excercise 4.2.B] a compact space X is metrizable if and only if ∆ is a
Gδ-set in X × X. On the other hand, for compact X, if Cp (X, [0, 1]) is a Lindelöf Σ-space, clearly Cp (X) is
also a Lindelöf Σ-space. Hence Baturov’s theorem [1, III.6.1 Theorem] shows that for every subspace Y of
Cp

(
Cp (X)

)
the extent ext (Y) of Y equals the Lindelöf number l (Y) of Y. As Xn is embedded in Lp (X), for each

n ∈ N, as a closed subspace [72, Problem 337], so in Cp

(
Cp (X)

)
, clearly X2

\ ∆ is embedded in Cp

(
Cp (X)

)
.

Consequently, one gets l
(
X2
\ ∆

)
= ext

(
X2
\ ∆

)
. On the other hand, since each space which is dominated by

a second countable space has countable extent [14, 2.1 (h) Theorem], if (X × X) \∆ is dominated by a second
countable space, it follows that l

(
X2
\ ∆

)
= ℵ0, i. e., (X × X) \ ∆ is a Lindelöf space. This implies that ∆ is a

Gδ-set in X × X, so ∆ must be metrizable.
The first result on this subject is [13, Theorem 1], whence it follows that, for compact X, if the space

(X × X) \ ∆ is strongly NN-dominated (equivalently, strongly dominated by a Polish space) then X is
metrizable. This extends to the following.

Theorem 8.1 (Cascales-Muñoz-Orihuela [12, Corollary 22]). For a compact space X the following statements
are equivalent.

1. X is metrizable.
2. (X × X) \ ∆ is strongly dominated by a Polish space.
3. (X × X) \ ∆ is strongly dominated by a separable metric space.

For strong domination of a Tychonoff space by a second countable space, one has

Theorem 8.2 (Guerrero-Tkachuk, [45, Corollary 3.6]). If (X × X)\∆ is strongly dominated by a second countable
space, then X is cosmic.

Since each compact cosmic space is metrizable, one gets again

Corollary 8.3 (Cascales-Orihuela-Tkachuk, [14, 3.11 Theorem]). A compact space X is metrizable if and only
if (X × X) \ ∆ is strongly dominated by a second countable space.
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In [74, Example 4.6] it is shown that under MA the space (X × X) \ ∆ with X non-metrizable, first
countable, compact space, is strongly dominated by a countable space (with a unique non-isolated point).
So, under MA, for compact X strong domination of (X × X) \ ∆ by a countable space does not imply the
metrizability of X.

In [16] it is shown that under CH a compact space X is metrizable whenever (X × X) \ ∆ is dominated
by a Polish space. This result was extended to ZFC in [17] as follows.

Theorem 8.4 (Dow-Hart, [17, Theorem 8]). A compact space X is metrizable if and only if (X × X)\∆ is dominated
by a Polish space.

Under CH one may change the Polish space domination of the previous theorem into second countable
domination.

Theorem 8.5 (Guerrero-Tkachuk, [44, 3.3 Corollary]). Under CH a compact space X is metrizable if and only if
(X × X) \ ∆ is dominated by a second countable space.

Recently, the following ZFC result has been published.

Theorem 8.6 (Feng, [19, Theorem 5.3]). Let X be a compact space. If (X × X) \ ∆ is dominated by the space Q,
then X is metrizable.

Since [44], when (X × X) \ ∆ is dominated by a space M, it is usual to say that X has an M-diagonal.
With this new terminology and since the space P of irrationals is homeomorphic to the Polish space NN,
Theorems 8.4 and 8.6 can be stated as follows.

Theorem 8.7. Let X be a compact space X. If X has either a P-diagonal or a Q-diagonal, then X is metrizable.

The following result is a proper extension of Theorem 8.1.

Theorem 8.8 (Guerrero, [42, Theorem 2.3]). If M is a separable metric space, every compact space with an M-
diagonal is metrizable.

In [44, Theorem 3.4 (a)] it is shown that under CH if a Tychonoff space X has a second countable diagonal,
then X is cosmic. The following result show that the preceding statement also holds in ZFC.

Theorem 8.9 (Guerrero, [42, Corollary 2.4]). For a Tychonoff space X, if (X × X) \ ∆ is dominated by a second
countable space, then X is cosmic.

Since, as mentioned earlier, each compact cosmic space is metrizable, this solves in the positive the
following question originally posed by Cascales, Orihuela and Tkachuk in [14].

Problem 8.10 (Guerrero-Tkachuk, [44, Question 4.1]). Let X be a compact space. If (X × X) \ ∆ is dominated
by a second countable space, is it true in ZFC that X metrizable?

It is proved in [70] that if Cp (X) is covered by a countable family of countably tight sets, then Cp (X)
has countable tightness. In [78] is shown that a compact space with a closure-preserving covering by finite
sets must be Eberlein compact. Related research about domination and strong domination of a space X
by a locally compact second countable space M, by an ω-hyperbounded space M (i. e., an space in which
the closure of each σ-compact subspace is compact) or by a κ-hemicompact space M (for a given infinite
cardinal κ) can be found in [48].

On the other hand, the bidual M (X) of Cp (X) equipped with the relative topology of RX has recently
deserved some attention in relation to the distinguished property of Cp (X) (see [33] and references therein),
after the discovering that not always M (X) coincides with RX (in fact, it can be shown that M (X) = RX

exactly when Cp (X) is distinguished, which is not always the case). Let us mention the following result
(from which Theorem 3.16 is a straightforward consequence).

Theorem 8.11 (Ferrando, [25, Theorem 28]). The bidual of Cp (X) has a resolution consisting of pointwise bounded
sets if and only if X is countable.
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9. Some open problems

Theorem 2.4 asserts that if Cp (X) is covered by a sequence of relatively sequentially complete sets, then
X is a P-space.

Problem 9.1. If Ck (X) is covered by a sequence of weakly relatively sequentially complete sets, is X is a P-space?

Theorem 2.5 states that if Cp (X) is covered by a sequence of pointwise bounded relatively sequentially
complete sets, then X is finite.

Problem 9.2. If Ck (X) is covered by a sequence of bounded weakly relatively sequentially complete sets, must X be
finite?

By Corollary 3.5 if Cp (X) has a resolution consisting of pointwise bounded sets, then X is projectively
σ-compact. On the other hand, according to [26, Theorem 3.1] the space X is σ-compact if and only if there
exists a metrizable locally convex topology τ on C (X) such that τp ≤ τ ≤ τk. If τ is a metrizable locally
convex topology on C (X) stronger than τp certainly Cp (X) has a resolution consisting of pointwise bounded
sets, but if X is a µ-space the τk-closures of a fundamental system of τ-neighborhoods of the origin in
C (X) define a metrizable locally convex topology η on C (X) coarser than τk because of the Nachbin-Shirota
theorem. In other words, if X is a µ-space and there is a metrizable locally convex topology τ on C (X)
such that τp ≤ τ, there exists a metrizable locally convex topology η on C (X) such that τp ≤ η ≤ τk. So, the
following makes sense.

Problem 9.3 (Ka̧kol). Assume that X is a µ-space. If Cp (X) has a resolution consisting of pointwise bounded sets,
is there always a stronger metrizable locally convex topology τ on C (X) such that τp ≤ τ ≤ τk?

Observe that a positive answer to this question, also gives a positive answer to the following question.

Problem 9.4. Assume that X is a µ-space. Is it true that Cp (X) has a resolution consisting of pointwise bounded
sets if and only if X is σ-compact? Equivalently, is it true that Cp (X) is K-analytic-framed in RX if and only if X is
σ-compact?

According to Theorem 3.16, the space Cp(X) has a resolution of pointwise bounded sets that swallows
the pointwise bounded sets if and only if X is countable.

Problem 9.5. If Cp (X) has a resolution of pointwise bounded sets that swallows the compact sets, is X countable?

If X is first countable, Theorem 3.21 asserts that Cp(X) has a resolution of pointwise bounded sets that
swallows the Cauchy sequences if and only if X is countable.

Problem 9.6. If Cp(X) has a resolution of pointwise bounded sets that swallows the Cauchy sequences, is X countable?

In Theorem 2.5 it is shown that Cp (X) is covered by a sequence of pointwise bounded relatively sequen-
tially complete sets if and only if X is finite.

Problem 9.7. If Cp (X) has a resolution of pointwise bounded relatively sequentially complete sets that swallows the
pointwise bounded relatively sequentially complete sets, is X countable?

Theorem 2.6 shows that if Cp (X) is covered by a sequence of functionally bounded sets, X is pseudo-
compact and each countable set in X is closed, discrete and C∗-embedded.

Problem 9.8. If Cp (X) has a resolution of functionally bounded sets that swallows the functionally bounded sets, is
X countable and discrete?

If X is metrizable, according to Theorem 4.2 the space Ck (X) has a resolution of compact sets that
swallows the compact sets if and only if X is σ-compact.
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Problem 9.9. Characterize in terms of the topology of X those spaces Ck (X) which admit a resolution of compact sets
that swallows the compact sets.

If X is metrizable, Theorem 4.3 shows that Ck (X) has a resolution of bounded sets that swallows the
bounded sets if and only if X is σ-compact, and in [23, Theorem 8] is proved that Ck (X) has a resolution of
bounded sets that swallows the bounded sets if and only if X is a so-called cn-space [23, p. 3].

Problem 9.10. Is there a nicer characterization in terms of the topology of X of those spaces Ck (X) which admit a
resolution of bounded sets that swallows the bounded sets.

By Theorem 6.9, if X is a Lindelöf Σ-space and Cp (X, [0, 1]) is strongly dominated by a second countable
space, then X is countable. So Cp (X) is metrizable and separable, i. e., Cp (X) is cosmic. Consequently Cp (X)
is a Lindelöf Σ-space.

Problem 9.11 (Guerrero-Tkachuk, [45, Question 4.1]). Suppose that Cp(X, [0, 1]) is dominated by a second
countable space. Must Cp(X, [0, 1]) be a Lindelöf Σ-space?

Problem 9.12 (Guerrero-Tkachuk, [45, Question 4.2]). If X is metrizable and Cp(X, [0, 1]) is dominated by a
second countable space, must Cp(X, [0, 1]) be a Lindelöf Σ-space?

Problem 9.13 (Guerrero-Tkachuk, [45, Question 4.3]). If X is Lindelöf and Cp(X, [0, 1]) is dominated by a second
countable space, must Cp(X, [0, 1]) be a Lindelöf Σ-space?

Recalling again Theorem 3.16, the following natural question makes sense.

Problem 9.14. Let M be a second countable space. If Cp (X) is covered by an M-ordered familyA = {AK : K ∈ K (M)}
consisting of pointwise bounded sets that swallows the pointwise bounded sets in Cp (X), must X be countable?

Problem 9.15 (Guerrero-Tkachuk, [44, 4.4 Question]). If X is a compact space with a σ-compact diagonal, is X
metrizable?

Problem 9.16 (Guerrero-Tkachuk, [44, 4.5 Question]). If X is a compact space with a Lindelöf Σ diagonal, is X
metrizable?

Problem 9.17 (Tkachuk, [74, 5.6 Question]). Is it true in ZFC that for any compact first countable space X there
exists a countable space M that strongly dominates (X × X) \ ∆?

Problem 9.18 (Guerrero, [42, Problem 4.1]). Let X be a compact space. If (X × X) \ ∆ is dominated by a metric
space, is X metrizable?

In [25, Corollary 22] it is shown that for X realcompact, the weak* bidual M (X) of Cp (X) is a Lindelöf
Σ-space if and only if X is countable.

Problem 9.19. May we drop the condition that X is realcompact in the previous statement?
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