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Ismael Salvador Igual1 and Juan-Carlos Perez-Cortes1,2

Abstract
Pedestrian detection is a particular case of object detection that helps to reduce accidents in advanced driver-assistance
systems and autonomous vehicles. It is not an easy task because of the variability of the objects and the time constraints.
A performance comparison of object detection methods, including both GPU and non-GPU implementations over a
variety of on-road specific databases, is provided. Computer vision multi-class object detection can be integrated on
sensor fusion modules where recall is preferred over precision. For this reason, ad hoc training with a single class for
pedestrians has been performed and we achieved a significant increase in recall. Experiments have been carried out on
several architectures and a special effort has been devoted to achieve a feasible computational time for a real-time system.
Finally, an analysis of the input image size allows to fine-tune the model and get better results with practical costs.
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Introduction

Object detection is a central problem in Computer Vision.

Its goal is to detect the location and class of each object in

images or image sequences. Applications include person

identification, video surveillance or autonomous car driv-

ing, among others. Regarding the last one, pedestrian detec-

tion constitutes one of the most challenging tasks to

perform in terms of on-road object detection for two main

reasons. First, pedestrians are the most vulnerable users of

the road, with any accident potentially causing them major

injuries, and even death. Second, their intrinsic variability

(people of different shapes in different clothes, poses and

light conditions) makes it especially difficult for vision-

based recognition systems to detect them precisely and

confidently. Therefore, despite recent large improvements

in accuracy, the pedestrian detection task still has several

difficulties that require more dedication on design, optimi-

sation and evaluation.1

Over the last 15 years, many tries to reach a strong

pedestrian detector have been carried out. First attempts
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Universitat Politècnica de València, Camino de Vera, s/n, 46022

Valencia, Spain.

Email: issalig@iti.es

International Journal of Advanced
Robotic Systems

September-October 2020: 1–10
ª The Author(s) 2020

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/1729881420929175

journals.sagepub.com/home/arx

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/

open-access-at-sage).

https://orcid.org/0000-0001-9269-3737
https://orcid.org/0000-0001-9269-3737
mailto:issalig@iti.es
https://sagepub.com/journals-permissions
https://doi.org/10.1177/1729881420929175
http://journals.sagepub.com/home/arx
https://creativecommons.org/licenses/by/4.0/
https://us.sagepub.com/en-us/nam/open-access-at-sage
https://us.sagepub.com/en-us/nam/open-access-at-sage
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1729881420929175&domain=pdf&date_stamp=2020-09-28


included the use of traditional algorithms for this purpose,

such as AdaBoost and Cascade based detection structures,

known as Viola–Jones2 or Histogram of Oriented Gradients

plus Support Vector Machine structures,3 with very poor

results, especially when considering small, occluded or

cropped pedestrians. Later, more refined, ad hoc algorithms

were proposed: Deformable Part Model,4 Integral Channel

Features,5 Locally Decorrelated Channel Features6 or Fast

Feature Pyramids,7 with better results. Nevertheless, they

still rely on carefully designed features. Finally, over the

last few years, major improvements have been achieved in

terms of quality and confidence in pedestrian detection,8

many of them based on Machine Learning (ML) tech-

niques, mainly Neural Networks, such as Rich Feature

Hierarchies (R-CNN),9 Deep Parts,10 Faster R-CNN,11 Sin-

gle Shot Multibox Detector (SSD)12 or You Only Look

Once (YOLO).13–15

However, not only there are variability constraints that

make it hard to overcome human-like performance at

detecting pedestrians in an automotive task, but also high

computational power demands that Convolutional Neural

Networks (CNN) pose. Because of that, some methods put

special efforts into getting fast detectors (throughput),

while others are focused on achieving state-of-the-art

results in terms of detection quality (precision and recall,

among other metrics).

These detectors can be classified as two-stage and one-

stage methods. Two-stage algorithms predict detections in

two phases: they use spatial features at pixel level to extract

some Regions of Interest, and then use a second phase to

classify all the proposals to decide if each region is a pedes-

trian or not. These methods usually produce better detec-

tion results, but they are more computationally

expensive,16 thus being less used in real-time (RT) detec-

tion tasks because of the limited computational power of

most of the resource-constrained devices usually installed

on-board. For these reasons, one-stage methods are very

common: they use a single phase to detect relevant objects

of many aspect ratios at multiple scales in the image. One-

stage detectors involve lighter algorithms that are much

more suitable for the available on-board hardware, but tra-

ditionally offer slightly worse detection accuracies. How-

ever, thanks to the special effort put into them, their

detection quality tends to get closer to their two-stage

counterparts.15

Regarding studies on one-stage detectors for pedestrian

detection, some articles can be found on literature but they

tend to focus on one single database for INRIA17,18 and

KITTI.19 In this article, we train and fine-tune YOLOv3

algorithm and apply it to multiple recent, on-road image

databases, and consider a set of indicators to assess

performance.

The article is organised as follows. First, the most com-

monly used databases for on-road tasks are presented.

Then, a selection of the best one-stage detectors are

described and a comparative analysis is performed. Later,

performance and throughput of the analysed detectors is

reported for a variety of architectures also including

resource-constrained hardware. Also, an ad hoc training

with reduction of the number of categories has been carried

out for YOLOv3, achieving a significant increase in recall.

Also, an analysis of the input image size is performed

allowing to fine-tune the model. Finally, conclusions and

future work on the topic are described.

Databases

Although generic-class databases, such as COCO,20 are the

starting point to develop general detection algorithms, we

focused our effort on specific on-road and human image

databases. After extensive research on the literature of the

last 10 years and according to the number of images, num-

ber of categories, dissemination and usefulness, we have

selected a subset of specific on-road databases that com-

prises Caltech-USA,21 Daimler,22,23 EuroCity Persons

(ECP)24 and nuScenes.25

First, Caltech is chosen for its generality and size,

including a variety of environmental conditions, such as

rain, fog or variations of lighting, and the fact that its

images are continuous sequences with more than 1200

unique pedestrians.

Besides, Daimler is a well-known, established dataset

focused on pedestrian detection consisting of black and

white (B/W) equalised images from a long video sequence.

ECP dataset is one of the most diverse and large auto-

motive person dataset, including data from the 4 seasons,

12 countries, 31 cities, with high pedestrian density. The

dataset comprises day and night images, with different

weather and adverse lighting conditions, and its focus is

on vulnerable road users (VRUs).

Finally, nuScenes is a very novel, public large-scale

dataset for autonomous driving. It includes data from the

full sensor suite of a self-driving car (RADAR, LiDAR,

cameras, IMU and GPS), with more than 1.4 million cam-

era images, and it provides manually labelled annotations

for 23 classes, including VRUs.

Therefore, the databases used are joined to obtain a

complete dataset that tries to represent as much variability

as possible including different image sizes and aspect

ratios, weather conditions, cities and roads, and a wide

range of light conditions (see Figure 1).

Algorithms

To test the databases selected for the experiments, we used

some of the state-of-the-art generic detectors suitable for

RT environments. These include SSD,12 Mobilenets,26

Spatial Pyramid Pooling YOLOv3,27 YOLOv3 416 and

YOLOv3 608.15 All these detectors have been trained on

generic datasets including objects such as ‘person’. There-

fore, we were able to use the pre-trained models directly to

perform our experiments.
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Redmon and Farhadi proposed YOLOv315: a one-stage

detector which leverages its fully convolutional structure to

create a predictor for images of any shape. It divides an

image into grids at three different scales creating three

grids of sizes 13 � 13, 26 � 26 and 52 � 52 (see Figure 4).

Each cell of the grid is responsible for predicting up to three

bounding boxes for objects whose centre pixel is within the

cell. The bounding box format is

ðx; y;w; h; c;C1;C2 ; :::;CnÞ

in which x and y are the shifts relative to the top-left corner

of the cell; w and h are width and height of the bounding

box relative to some preselected anchor boxes; c is the

confidence YOLOv3 estimates for the detection and

C1;C2; :::;Cn are the confidences for each class. As

YOLOv3 can handle any image shape, we chose the most

widespread versions (YOLOv3 416 and YOLOv3 608) for

our experiments, in which the main difference is the image

sizes used, that is, 416 � 416 � 3 and 608 � 608 � 3.

Although the network architecture is the same, the compu-

tational cost for YOLOv3 608 is higher than for YOLOv3

416 due to the need to apply convolutions to bigger images.

One of the reasons these two versions are included is to

compare how different image sizes affect the results. We

also include SSD,12 which is prior to YOLOv2 and intro-

duced the prediction of bounding boxes without fully con-

nected layers and the concept of multiscale prediction.

These new techniques were later included as an improve-

ment to YOLO in YOLOv2.

SPP YOLOv327 is a modification of the YOLO-like

architecture in which the last pooling layer is replaced by

a Spatial Pyramid Pooling layer. YOLO’s pooling layer

output size relies on the input image size, thus preventing

the usage of a fully connected network at the end of the

pipeline. Conversely, the Spatial Pyramid Pooling layer

divides the feature map into a N � M grid and performs a

max-pooling for each cell of the grid, giving an output size

independent to the dimensions of the input image.

Mobilenets26 is a lightweight CNN designed for

resource-constrained platforms, such as mobile systems.

It includes the concept of depthwise separable convolu-

tions into one-stage detectors. These sort of convolu-

tions represent a variant of the classical convolution

with reduced computational costs. This allows the archi-

tecture to run in RT even on non-GPU resource-

constrained systems.

Experiments

In terms of pedestrian detection, not only should we take

into account detection performance, but also throughput,

since speed is crucial to confidently implement a detection

on-board system. For this purpose, first we go through the

most widely used metrics to assess performance and

throughput of a detector. Then, the behaviour of some

detectors when applied to some important datasets is

analysed. After that, results on training one of the best

algorithms (YOLOv3) are presented in order to refine its

detections. Finally, we modify an important CNN para-

meter (grid size) from this detector to evaluate how it

affects performance.

Metrics

Common metrics usually used to assess object detection

performance are the following

FPPI ¼ FP

nimages

MR ¼ FN

TPþ FN

Precision ¼ TP

TPþ FP
Recall ¼ TP

TPþ FN

where TP, FP and FN stand for True Positives, False Posi-

tives and False Negatives, FPPI stands for False Positives

per Image and MR for Miss Rate. Therefore, scanning the

confidence threshold, the MR versus FPPI and Precision

versus Recall curves are obtained.

Finally, summarising particular parts of the curves, three

performance measures can be defined

LAMR ¼ 1

9

X8

i¼0

MR FPPI ¼ 10�2þ0:25i
� �

AP ¼ 1

11

X10

i¼0

Precision Recall ¼ i

10

� �

F1max score ¼ 2 � max
PrecisionðiÞ � RecallðiÞ

PrecisionðiÞ þ RecallðiÞ

� �

with LAMR standing for Log-Average Miss Rate and AP

for Average Precision, with lower values being better

for the first one and higher for the other two. Besides,

F1max_score represents the maximum value for F1-score

at all recall values.

Detection results

Pedestrian is the most difficult instance to detect on a driv-

ing task and represents the most vulnerable users on the

road. The so-called reasonable subset was established as

unoccluded or partially occluded (up to 35%) pedestrians

with a height of 50 pixels or more, intrinsically derived

from the annotation design of the original Caltech introduc-

tory article28 while the so-called difficult subset contains all

the annotations. Thus, bearing this in mind, we applied the

transformation required by the reasonable subset propor-

tionally to the image sizes of the other three datasets to

establish a common reasonable scenario in order to com-

pare their complexity and the adaptation of generic algo-

rithms analysed to each on-road dataset.

Figure 2 shows detection performance results of SSD,

Mobilenets and the three YOLOv3 versions for Caltech and

Castelló et al. 3



Daimler datasets. It can be noticed that YOLOv3 and its

variants present a good performance for both databases.

Besides, SSD shows poor precision with high recall, while

Mobilenets has poor general performance due to its focus

on low computational complexity.

Figure 3 shows detection performance (LAMR) versus

speed frames per second (FPS) on the Jetson TX2 mobile

platform. It can be shown that YOLOv3 416 presents

higher FPS while obtaining a similar miss rate. In our setup,

it is important to get a RT response and for this reason

YOLOv3 416 will be selected for the next experiments.

Hardware performance

As stated previously, even having constraints mainly due

to limited power and space available on board, there is

hardware available with enough computing power to

deal with algorithms like those presented in the third

section. Consequently, we selected an NVIDIA Jetson

TX2 mobile board with multiple GPU and CPU cores

that operates at a maximum power consumption of

15 W. Additionally, we also have included some powerful

GPUs and general-purpose processors that allowed us to

establish a comparison among three platforms: a desktop

CPU (Intel Core i7-7700 CPU x 8), a GPU (NVIDIA GTX

1080 Ti) and the mobile GPU platform presented above

(NVIDIA Jetson TX2).

We performed a comparative throughput analysis for

YOLOv3 416 algorithm running on our three platforms

with CUDA backend for GPUs, without any further code

optimisation. For this reason, they represent a lower bound

(baseline) from which a single forward-pass time of the net

will decrease at prediction time in case any optimisation

technique is applied.

An analysis of the forward-pass mean time is computed

for two of the presented datasets, both containing fixed-size

images. We present the results for the three computing

platforms mentioned in Table 1.

Figure 1. Samples of the databases used.
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Driving reaction time in humans is known to range from

500 ms to 2 s,29 so we must guarantee that our system

works at a lower reaction time. Jetson TX2 fulfils it.

The final goal is to achieve high-quality, RT detection of

VRUs. Therefore, as our experiments were developed in

Python, some optimisation techniques may eventually be

applied in order to increase throughput (see the fifth section).

Specific training

In order to improve the network performance as well as to

increase the recall levels while keeping precision, we mod-

ified the architecture of YOLOv3 detector by reducing the

number of classes of the task.

The original YOLOv3 was trained on the generic dataset

COCO,20 which includes up to 80 different classes. However,
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Figure 2. Detection performance of the five analysed generic algorithms applied to (a) Caltech and (b) Daimler datasets in the
reasonable scenario.
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Figure 3. Detection performance versus throughput of the five
analysed generic algorithms applied to the four aforementioned
on-road datasets.

Table 1. Mean computing time and throughput of a single
forward-pass of Daimler images on different platforms for
YOLOv3 416.

Daimler

Time (ms) FPS

Intel Core i7 � 8 707 1.4
GTX 1080 Ti 35 28.6
TX2 Max-N mode 240 4.2

YOLO: You Only Look Once.
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in our task, we are only interested in pedestrians. Therefore,

we trimmed the last layer of the network so that it predicts

bounding boxes of only 6 floating point values (2 for position,

2 for shape, 1 for bounding box confidence and 1 for the class

confidence) in contrast with the original 85 values (see Fig-

ure 4). YOLOv3 predicts 3 boxes for each grid cell at 3 dif-

ferent scales of size 13� 13, 26� 26 and 52� 52. Thus, for

each grid cell, the 3 boxes with 6 parameters are encoded in a 1

� 1 � 18 vector instead of the original 1 � 1 � 255 vector.

This new network has been trained on the same COCO

dataset as the original one and tested using the 5000 images

from the COCO 2014 validation dataset. Figure 5 shows the

results for the COCO 2014 validation dataset. It can be

noticed that the single class model outperforms the generic

YOLOv3 results, and for a given precision, a higher recall

is obtained for this model. Table 2 shows the increase in

mean average precision (mAP), higher TP and lower FP,

FN for the single class model.

As stated below, the trained model with one class gets

better results under the COCO dataset, but it is also inter-

esting to see how it performs for modern, specific, on-road

databases such as ECP and nuScenes. For this reason, we

have tested the model on ECP and nuScenes databases.

Figure 6 also confirms the improvement of the single class

model and Figure 7 shows that the single class model has a

better recall without getting too much FP.

Grid size analysis

As shown below, we achieved a better mAP by training a

model with only pedestrians. From the other side, the orig-

inal YOLOv3 algorithm uses a 13 � 13 grid that

 

 

 

Figure 4. YOLOv3 structure after modifying the last layers with 18 channels instead of the original 255. YOLO: You Only Look Once.
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the YOLOv3 single class for the COCO validation dataset.
YOLO: You Only Look Once.
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corresponds to 416 � 416 pixels (grids are regions of 32 �
32 pixels) and YOLOv3 608 corresponds to a 19� 19 grid.

Each grid cell predicts 3 objects at 3 different scales, hav-

ing a total of 10,647 objects. Figure 8 shows the default

13 � 13 grid.

It can happen that a 13 � 13 grid it is not the best setup

for pedestrian class. Therefore, an extensive analysis has

been carried out for different grid (image) sizes. One of the

advantages of the YOLOv3 architecture is that image input

(grid) size for inference can be different from the input size

used to train the network, thus allowing a fine-tuning step

to get the most from the model.

Figure 9 shows the detector performance depending on

the grid size. Each line shows the performance for a grid of

size width� height, with height being fixed (i.e. w: 13) and

width being variable. Besides, the x-axis shows the grid

area obtained by multiplying width and height, which is

correlated with the computational cost.

It can be seen that a higher or equal resolution for width

instead of height works better than the opposite. Values for

mAP for a given grid area increase with higher width and

lower height values.

Moreover, it can be seen that some grid configurations

get better mAP with similar grid sizes (computational cost).

Taking into account that YOLOv3 416 uses a grid size of

13 � 13 resulting in an area of 169 regions, and YOLOv3

608 corresponds to 19 � 19, some intermediate configura-

tions can be chosen in order to keep the computing time

low while improving the mAP. Some of the selected points

are near a grid area of 225, where the slopes of the curves

begin to decrease having smaller mAP/grid ratio. Thus,

Table 2. Results for the COCO validation dataset with the
original 80 classes and for the single class model.a

YOLOv3 80 YOLOv3 1

mAP 72.04% 72.78%
F-score 0.68 0.71
Precision 0.67 0.71
Recall 0.69 0.70
TP 7505 7664
FP 3638 3101
FN 3383 3224

YOLO: You Only Look Once; TP: true positives; FP: false positives; FN:
false negatives.
amAP is computed at IOU ¼ 0.5 and the confidence threshold is set to
0.25.

(a) (b)
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Figure 6. Detection performance of single class trained YOLOv3 for (a) ECP and (b) nuScenes on the reasonable scenario. YOLO: You
Only Look Once; ECP: EuroCity Persons.
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Figure 7. Pedestrian detection for the original YOLOv3 and the YOLOv3 for pedestrians on the ECP dataset: (a) berlin_00414, (b)
berlin_00436, (c) budapest_00859, (d) barcelona_01293, (e) amsterdam_01078, (f) ljubljana_01051 and (g) hamburg_00681. From left
to right: ground truth, original YOLOv3 and single class YOLOv3. YOLO: You Only Look Once; ECP: EuroCity Persons.
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we have selected 16 � 11 size, which has almost the same

grid elements, and 15 � 15, which gets a considerably

better mAP (74.12 vs. 72.78 at 13 � 13) with a slightly

larger grid size. It is also worth to mention that 15 � 15

obtains a recall of 0.72 while 13 � 13 gets 0.70.

Finally, Table 3 shows the detection results achieved

with our training against the COCO validation dataset base-

line and the results with our single class model for different

grid sizes.

Conclusions and future work

In this article, we have presented five generic-purpose

object detection algorithms and their performance on

pedestrian detection task for the on-road datasets

Caltech-USA, Daimler, ECP and nuScenes. This set of

databases includes images in very different conditions,

sizes and locations. Then, an experimentation with the

YOLOv3 algorithm was carried out on three different

hardware platforms, including the mobile platform

NVIDIA Jetson TX2, in order to establish a throughput

baseline for further developments. Moreover, an ad hoc

training experiment only with the pedestrian class was

performed on the COCO generic dataset and we have

been able to significantly increase recall, as we wish a

decrease in type II errors in spite of an increase in type I

errors which may be mitigated in subsequent stages

(such as tracking or sensor fusion with other signals).

Finally, as computation time is a critical parameter, dif-

ferent grid sizes have been evaluated, with some of them

performing better at slightly higher computation times,

getting an improvement in mAP from 72.04% to

74.12%.

As future work, further training of these generic CNNs

on some of the presented on-road specific datasets to

improve detection results for a number of interest classes

(car, bus, pedestrian, bicycle, motorcycle, etc.) is likely to

provide a detection performance that, when combined with

RADAR and LiDAR inference and other post-processing

techniques, delivers superior detection results. In addition,

optimisations at code level and libraries, such as using

TensorRT and porting Python functions to C, will be also

considered.
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Figure 8. YOLOv3 default 13 � 13 grid. YOLO: You Only Look
Once.

Figure 9. mAP versus grid area (dotted line for YOLOv3 416).
YOLO: You Only Look Once.

Table 3. Results for COCO validation dataset with original 80
classes and single class trained models.a

YOLOv3
80 YOLOv3 1

YOLOv3
1 16 � 11

YOLOv3
1 15 � 15

mAP 72.04% 72.78% 73.17% 74.12%
F-score 0.68 0.71 0.71 0.71
Precision 0.67 0.71 0.72 0.70
Recall 0.69 0.70 0.70 0.72
TP 7505 7664 7676 7890
FP 3638 3101 3043 3434
FN 3383 3224 3212 2998

YOLO: You Only Look Once; TP: true positives; FP: false positives; FN:
false negatives.
amAP is computed at IOU ¼ 0.5 and confidence threshold is set to 0.25.
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