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Abstract 

Background: Environmental variance  (VE) is partly under genetic control and has recently been proposed as a 
measure of resilience. Unravelling the genetic background of the  VE of complex traits could help to improve resilience 
of livestock and stabilize their production across farming systems. The objective of this study was to identify genes 
and functional mutations associated with variation in  VE of litter size (LS) in rabbits. To achieve this, we combined the 
results of a genome‑wide association study (GWAS) and a whole‑genome sequencing (WGS) analysis using data from 
two divergently selected rabbit lines for high and low  VE of LS. These lines differ in terms of biomarkers of immune 
response and mortality. Moreover, rabbits with a lower  VE of LS were found to be more resilient to infections than 
animals with a higher  VE of LS.

Results: By using two GWAS approaches (single‑marker regression and Bayesian multiple‑marker regression), we 
identified four genomic regions associated with  VE of LS, on chromosomes 3, 7, 10, and 14. We detected 38 genes in 
the associated genomic regions and, using WGS, we identified 129 variants in the splicing, UTR, and coding (missense 
and frameshift effects) regions of 16 of these 38 genes. These genes were related to the immune system, the devel‑
opment of sensory structures, and stress responses. All of these variants (except one) segregated in one of the rabbit 
lines and were absent (n = 91) or fixed in the other one (n = 37). The fixed variants were in the HDAC9, ITGB8, MIS18A, 
ENSOCUG00000021276 and URB1 genes. We also identified a 1‑bp deletion in the 3′UTR region of the HUNK gene that 
was fixed in the low  VE line and absent in the high  VE line.

Conclusions: This is the first study that combines GWAS and WGS analyses to study the genetic basis of  VE. The new 
candidate genes and functional mutations identified in this study suggest that the  VE of LS is under the control of 
functions related to the immune system, stress response, and the nervous system. These findings could also explain 
differences in resilience between rabbits with homogeneous and heterogeneous  VE of litter size.
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Background
Understanding the effect of the environment on the phe-
notype of farm animals is important to improve responses 
to genetic selection. The environment can affect both the 
mean of a trait and its variance (environmental variance 

or VE ). Many studies in various species have provided 
statistical evidence that VE is partly under genetic con-
trol: pigs [1], mice [2], chickens [3], snails (Helix aspersa) 
[4] and cattle [5], among others. For instance, the VE can 
differ between genotypes under the same environment 
[6]. Successful divergent selection experiments for VE 
support these findings in both livestock and model ani-
mals [7–9].

Recently, VE was proposed as a measure of resilience 
[10], which is the ability of an animal to maintain or 
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quickly recover their performance in spite of environ-
mental perturbations [11, 12]. Previous genome-wide 
association studies (GWAS) for VE have identified rele-
vant contributions from candidate genes that are related 
to important phases of the inflammatory response, such 
as Hsp90 [13, 14], p22-PHOX, GNG11, and GNGT1 [15], 
which are triggered by tissue damage and the entry of 
pathogens [16]. In humans, the FTO gene, which affects 
the variability of body mass index [17], was also found to 
be associated with sensitivity to infections [18]. All these 
results support the role of the immune system in the 
detection and response to environmental perturbations 
such as pathogen infections [12].

Unravelling the genetic background of the VE of com-
plex traits could help to improve resilience of livestock 
and stabilize their production across farming systems 
[19]. The aim of this study was to identify genes and func-
tional mutations associated with variation in the VE of 
litter size (LS) in rabbits. We performed a GWAS and a 
whole-genome sequencing (WGS) analysis using data 
from two rabbit lines that have been divergently selected 
for high and low VE of LS [9]. These lines show a remark-
able difference in VE of LS (4.5% of the mean of the base 
population), as well as differences in mortality, in bio-
markers of immune response (plasma cortisol, leukocytes 
and acute-phase protein levels), and in plasma concen-
trations of cholesterol and triglycerides [20]. Moreover, 
the line with a low VE of LS was found to cope better with 
environmental stressors such as infections than the line 
with a high VE of LS, which suggests that the homogene-
ous line is more resilient.

Methods
Animals
The rabbits used in this study belong to a divergent selec-
tion experiment for high and low VE of LS over 12 gen-
erations at the University Miguel Hernandez of Elche, 
Spain. Each divergent line had approximately 125 female 
and 25 male parents per generation (for more details see 
Blasco et  al. [9]). The total number of litters over these 
generations was equal to 13,788 for 3070 does: 6094 from 
the line with a low VE of LS, 6682 from the line with a 
high VE of LS, and 1012 from the base population. In 
total, 1658 records of litter size from generations 11 and 
12, and genotypes for 384 does were used for the GWAS: 
96 from the base population (404 parities), 149 from the 
line with a high VE of LS (649 parities), and 139 from the 
line with a low VE of LS (605 parities). The average lit-
ter size (total number born; TNB includes live born plus 
stillborn) for the base population and the lines with a low 
and high VE of LS was 8.72 (± 3.05), 7.71 (± 2.38) and 
6.51 (± 3.06), respectively.

Phenotype
In this study, we investigated genomic regions that were 
associated with the VE of LS, which was the selection cri-
terion in the divergent selection experiment [9]. The VE 
of LS was calculated as the within-doe variance of TNB, 
after correction of TNB by year-season (47 levels) and 
parity-lactation status (3 levels) to avoid the effect of sys-
tematic effects on VE . The mean estimate of residuals for 
a doe across parities was used to calculate the VE of LS 
for a doe, using the minimum quadratic risk estimator:

where xi is the pre-corrected TNB at parity i of a doe and 
n is the total number of parities of the doe (ranging from 
2 to 12). VE was calculated by assuming that the addi-
tive genetic and permanent effects are approximately the 
same for each parity of a doe [21]. The average of the VE 
of LS was 4.24 (± 3.41), 2.27 (± 1.97) and 3.84 (± 3.69) 
for the base population and for the low and high lines, 
respectively.

Genotypes
Genomic DNA was isolated from blood sampled from 
does using standard procedures. Genotyping was per-
formed with the 200  K Affymetrix Axiom OrcunSNP 
array (ThermoFisher Scientific). Quality control of geno-
types was performed using the platform Axiom Analy-
sis Suite 3.1 of ThermoFisher Scientific and the PLINK 
v1.9 software [22]. Animals with a call rate lower than 
97% and SNPs with a minor allele frequency lower than 
0.05, with missing genotypes higher than 0.05, or with 
unknown positions on the rabbit reference genome (Ory-
Cun v2.0.96) were removed. After quality control, 367 
animals (1589 parities) and 96,329 SNPs remained in the 
dataset. The missing genotypes were imputed with the 
Beagle v.4.1 software [23]. Finally, we identified outliers 
and checked the population structure by applying a prin-
cipal component analysis (PCA) based on the genotypes 
(see Additional file 1).

GWAS
Two approaches were used for GWAS: single-marker 
regression (SMR) and Bayesian multiple-marker regres-
sion (BMMR). SMR was performed using the linear 
mixed model method, which is available in the GCTA 
v1.91.4 beta software [24]. To correct for population 
stratification, GCTA considers the genomic relation-
ship matrix built, but without SNPs on the chromosome 
of the tested SNP [25]. The SNPs that were associated 
with VE of LS were identified at a conservative p-value 
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threshold of 0.0001 [26]. Using the same method, we 
also tested the effect of ignoring differences in number of 
parities between does. In order to do that, we performed 
the SMR using a weighted linear mixed model method 
implemented in the R software. Instead of a genomic 
relationship matrix, the model included the first five 
principal components of the genomic relationship matrix 
to correct for population stratification. The VE of LS was 
weighted according to Blasco et al. [9]:

where ni is the total number of parities for doe i.
BMMR was performed using a Bayes B model that is 

implemented in the GenSel software [27]. This model 
assumed that, in a given iteration of the Monte Carlo 
Markov chain, many SNPs have no effect and variance, 
with a prior probability of π = 0.999, and approximately 
100 SNPs have an effect and a variance on the VE of LS. 
The analysis was done using a chain length of 550,000, 
with a lag of 100 and a burn-in of 150,000. The means of 
the priors of the genotypic and environmental variances 
were equal to 5.1 and 4.3, respectively. A Bayes factor was 
calculated to determine statistical significance of the SNP 
associations, as:

where π is the prior probability and p̂i is the posterior 
probability of a SNP in locus i having an effect. A thresh-
old for BF  higher than 10 was used to identify SNPs 
that are associated with VE of LS [28]. The contribu-
tion of each of the 2125 non-overlapping 1-Mb genomic 
windows to the genetic variance was computed as the 
posterior mean of the percentage of the genomic vari-
ance explained by all markers across the genome (total 
genomic variance).

Additional evidence for associated SNPs
The SNPs identified to be associated with VE using both 
the SMR and BMMR approaches were further tested 
using a permutation test and a GWAS within each pop-
ulation (base, with a high and with a low VE of LS) to 
determine whether they were spurious associations due 
to drift. Only SNPs that passed these additional tests 
were considered as displaying a true association with VE 
of LS.

The permutation test was performed using the PLINK 
v1. 9 software [22]. In total, 100,000 random permuta-
tions were performed to remove the true association 
between VE of LS and the genotype. Each permutated 
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,

dataset was analysed using a linear-mixed model and the 
p-value of each SNP was calculated. The resulting dis-
tribution of p-values was used to calculate an empirical 
p-value (EMP1) for each SNP in the original data based 
on the number of times that the p-value of that SNP was 
declared to have a significant association with VE of LS 
under the null hypothesis of no association in the permu-
tated data. The minimum EMP1 that could be registered 
was 1/N, where N is the number of permutation tests. 
Thus, only SNPs with an EMP1 close to 0.00001 were 
considered to be associated with VE of LS.

Within-population GWAS was performed for each 
population using the SMR approach [24]. The same refer-
ence alleles were established in the two lines and in the 
base population to estimate allele substitution effects. 
Confidence intervals (CI) of the SNP effects within a 
population were estimated as the allele substitution effect 
estimate ± 2SE. Overlapping CI for a SNP between lines 
was declared to signify no evidence of differences in allele 
effects on the phenotype across populations.

Identification of associated genomic regions
The significant SNPs were used to perform a linkage 
disequilibrium (LD) study using the PLINK v1.9 soft-
ware [22]. For this purpose, SNPs within 0.5  Mb of a 
significant SNP were grouped into blocks, which were 
then expanded to genomic regions ± 1  Mb for the LD 
study. Genomic regions associated with the trait were 
considered to be blocks of SNPs with  r2 higher than 0.7 
between each other. We established this strong threshold 
following Vanliere et  al. [29], who determined that two 
SNPs were dependent when  r2 was equal or higher than 
0.43.

Whole‑genome sequencing
To identify which variants were present in one line but 
not in the other, due to the selection process, a pool of 
DNA from the breeding males in the 10th generation was 
created for each line (27 animals per line) and sequenced 
with Illumina Technology at an average depth of 27×. 
These males were all fathers of animals from the 11th 
generation, which were used in the GWAS.

Pre-processing of the WGS data was performed fol-
lowing Elston [30]. The BWA algorithm [31] was used to 
index the OryCun v2.0.96 reference genome from the raw 
data. Illumina adapters and low-quality read ends were 
removed using Trimmomatic v0.39 [32]. The BWA-MEM 
algorithm was used to align reads to OryCun v2.0.96. The 
sorted BAM files were obtained by SAMtools [33]. Dupli-
cates were marked using Picard MarkDuplicates [34].

Variant calling was performed using the GATK Best 
Practices pipeline [35] by applying GATK to the BAM 
files using HaplotypeCaller and GenotypeGVCF to 
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obtain the raw VCF files for the high and low VE of LS 
lines. Variants were filtered using SelectVariant from 
GATK. Single nucleotide variants (SNVs) that were fil-
tered out were labelled using VariantFiltration with the 
following filter expressions: QD < 2, FS > 60, MQ < 40, 
MQRankSum < −12.5, ReadPosRankSum < −8. INDELs 
were filtered out according to QD < 2, FS > 200, and Read-
PosRankSum < −20. Finally, variants were annotated 
using the snpEFF software [36].

Identification of candidate genes and functional mutations
The Ensembl release 97 database [37] was used to inves-
tigate candidate genes in the genomic regions associ-
ated with VE of LS, using OryCun 2.0.97 as the reference 
genome. SNVs and INDELs that were present in the 
genomic regions associated with VE of LS were also 
detected. Variants that segregated differently between 
the two lines and that had a greater impact on gene func-
tion were proposed as functional mutations for VE of LS. 
We considered that a variant had a greater impact if it 
affected: (a) the amino acid sequence of the protein (mis-
sense or frameshift mutations), (b) the UTR regions of 
the mRNAs, or (c) the splicing pattern of the transcripts. 
Genes that contained such possible functional mutations 
were identified as candidate genes for VE of LS were. The 
biological functions and the gene ontology of the candi-
date genes were reviewed in GeneCards [38].

Results
Genomic regions associated with VE of LS
GWAS identified SNPs associated with VE of LS using two 
approaches, SMR and BMMR. SMR identified 12 SNPs 
with a p-value less than 0.0001 on Oryctolagus cuniculus 
chromosomes (OCU) 3, 7, 10, and 14 (Fig. 1a). The same 
results were obtained with the weighted SMR analysis of 
VE to take differences in number of parities between does 
into account (data not shown). With BMMR, we identi-
fied 60 SNPs on several chromosomes that had a Bayes 
factor ( BF  ) higher than 10 (Fig.  1b), including all the 
SNPs that were identified by SMR (Table 1). These latter 
SNPs were in genomic windows on OCU3 (50–52 Mb), 
OCU7 (141–142 Mb), OCU10 (4–5.7 Mb), and OCU14 
(163–164 Mb), which explained 4.0, 0.2, 3.2 and 0.5% of 
the total genomic variance, respectively. The three most 
significant SNPs on OCU9 were also considered because 
they reached a p-value close to the threshold of 0.0001 
(0.00018) and a BF  greater than 10 (Fig. 1). The genomic 
window that contained these SNPs on OCU9 (4–6 Mb) 
explained 0.9% of the total genomic variance. In sum-
mary, 15 SNPs were identified to be associated with VE of 
LS by both methods.

These 15 SNPs were further evaluated by comparing 
their within-population allele substitution effects and 

by a permutation test. The allele substitution effect esti-
mates for the 15 SNPs did not differ significantly between 
lines. However, five of these SNPs, located on OCU14 
and 9, did not pass the permutation test because of their 
high empirical p-value (EMP1). The 10 SNPs that passed 
the additional tests were used to perform an LD analy-
sis and determine the VE-associated genomic regions 
(vQTL), as described in methods (Table  1), resulting in 
associated LD blocks of 1.2, 1.8 and 2.4 Mb on OCU14, 
10 and 3, respectively. On OCU7, no associated LD block 
was detected (see Additional files 2, 3, 4 and 5). Hence, 
vQTL were identified on OCU3 at 50.4–52.8  Mb, on 
OCU10 at 3.9–5.7 Mb, on OCU14 at 162–163.2, and on 
OCU7, close to 141,236,037 bp (Table 1).

Candidate genes for VE of litter size
In total, 38 genes were located in the genomic regions 
that were associated with VE of LS (Table  1). We used 
WGS data of each line to identify 18,729 variants 
(SNVs + INDELs) in these regions (Table 2). From these, 
129 were relevant (112 SNVs and 17 INDELs) based on 
their location in the transcription unit and/or splicing 
sites, which were located in 16 of the 38 genes identified 
in the GWAS (see Additional file 6). These 16 genes (pro-
posed as candidate genes) are involved in biological pro-
cesses related to inflammatory response, development 
of sensory structures, and regulation of gene expression 
(see Additional file 7).

All 129 relevant variants segregated in one of the two 
lines and were absent (91) or fixed (37) in the other 
line, except for one INDEL in the 3′UTR of the HUNK 
gene (see Additional file 6). This latter was a 1-bp dele-
tion that was fixed in the line with a low VE of LS and 
absent in the line with a high VE of LS. The other variants 
that were fixed for the alternative allele were identified 
in the line with a high VE of LS in the ITGB8, MIS18A, 
ENSOCUG00000021276, and URB1 genes, and in the 
line with a high VE of LS for the HDAC9 gene (see Addi-
tional file  6). These variants could affect biological pro-
cesses that are related to immune (HDAC9, ITGB8, and 
HUNK) and stress (ENSOCUG00000021276) responses, 
to regulation of gene expression (HDAC9, MIS18A, and 
URB1), and to phosphorylation of proteins (HUNK).

Discussion
Our aim was to identify candidate genes and functional 
mutations associated with VE of litter size in rabbits. In 
GWAS, estimates of the effect of genomic variants on the 
phenotype depends on the model used [39]. In our study, 
we identified associated genomic regions using SMR and 
BMMR analyses. The SMR analysis does not consider the 
dependencies between SNPs, so the effects were over-
estimated. In addition, the number of false negatives 
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increases when a correction such as Bonferroni is applied 
and variants with small effects cannot be detected. In the 
BMMR analysis, the shrinkage parameter of the model 
(π = 0.999) increases the power to detect variants with 
small effects but also increases the number of false posi-
tives [39]. Thus, in our study, only genomic regions that 
were identified by both methods were considered as can-
didate regions for identifying relevant genes.

Several genomic regions were associated with VE of 
LS (Table 1). The highlighted SNPs in these regions were 
further evaluated using within-population GWAS and a 
permutation test. However, both these tests have some 
limitations. The within-population GWAS, accurate 

estimation of the allele substitution effect was lim-
ited by the small number of individuals per population 
(base = 91; low = 134; high = 142), which did not repre-
sent the allele and genotype frequencies in each popula-
tion. For the permutation test, the highest EMP1 of the 
SNPs retained in the analysis was 0.00097 (OCU14). This 
means that in 97 of the 100,000 permutation tests per-
formed, the SNP was associated with VE of LS by chance 
under the null hypothesis. This could be due to the high 
level of relationship between animals in each population, 
which hinders elimination of true associations between 
genotype and phenotype.

Fig. 1 Manhattan plots for genome‑wide association analyses for environmental variance of litter size. a −log10(p‑value) for association of SNPs 
using the single‑marker regression approach. b Bayes factor (BF) for association of SNPs using the Bayesian multiple‑marker regression approach. 
The dashed lines represent significance thresholds a p‑value of 0.0001 (a) and BF of 10 (b). The red triangles highlight the SNPs that pass the 
threshold
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The GWAS results were combined with WGS to iden-
tify candidate genes and functional mutations associ-
ated with VE of LS. We screened for SNVs and INDELs 
between the two divergent rabbit lines in the vQTL 
that were detected by GWAS (Table  2). A variant was 
considered as a potential functional mutation when it 
caused a missense or frameshift mutation or affected 
the UTR regions in the mRNAs or the splicing pat-
tern of the transcripts. Such variants are expected to 
have a critical effect on the function of a gene because 
of a change in mRNA stability or in the amino acid 
sequence of the protein it encodes. Sixteen of the 38 
genes identified in the GWAS contained at least one 
of these variants (see Additional file  6). Most of these 

variants segregated in one of the rabbit lines and were 
absent (91) or fixed (37) in the other line (see Addi-
tional file  6). The use of DNA pools for WGS allowed 
us to have more coverage to identify different variants 
between the lines with high and low VE of LS. However, 
the use of pools does not allow estimation of the fre-
quency of a variant in a line, or the genotype of each 
animal used in the pool. For this reason, although we 
classified 129 variants as functional mutations, we 
focused on the variants that were fixed in one line and 
not in the other (see Additional file 6).

The 16 candidate genes identified in this study are 
involved in functions that are related to immune 
(DOCK2, HDAC9, ITGB8, and HUNK) and stress 
(ENSOCUG00000021276) responses, development of 
sensory structures (FOXI1, FGF18, and EVA1C), regu-
lation of gene expression (PAXBP1, FERD3L, HDAC9, 
and FOXI1), and phosphorylation of proteins (HUNK), 
among others [see Additional file  7]. A recent study by 
Argente et  al. [20] found differences in levels of plasma 
leukocytes and cortisol between the divergent rabbit 
lines used here but from generation 8 and showed that 
the line with a low VE of LS was less sensitive to infection 
and stress than the line with a high VE of LS. Our results 
confirm the importance of immune and stress responses 
for VE of LS through the DOCK2, ITGB8, HDAC9, and 
ENSOCUG00000021276 genes. For instance, DOCK2 is 
involved in the extravasation of monocytes (entry into 
the affected tissue) by promoting polarization of the cell 
membrane and remodelling of the actin cytoskeleton 
needed for this function. In addition, DOCK2 controls 
the monocyte inflammatory response via FcyR receptors 

Table 1 Genomic regions associated with environmental variance of litter size in rabbits

a Oryctolagus cuniculus chromosome
b Bayes factor
c Candidate genes with relevant variants identified by whole‑genome sequencing analysis
d SNPs that did not pass the additional tests

OCUa Position (Mb) Significant SNPs p‑value BF
b Genes located in the region

3 50.4–52.8 Affx‑151987366 7.02e−5 13.88 SPDL1, DOCK2c, INSYN2Bc, FOXI1c, LCP2, KCNMB1, ENSOCUG00000020826, 
KCNIP1, GABRP, RANBP17, TLX3, FGF18c, ENSOCUG00000022678, 
ENSOCUG00000011117c, ENSOCUG00000018666

Affx‑151799106 7.66e−5 14.39

Affx‑151959457 8.79e−5 12.54

7 141.2 Affx‑151820818 6.26e−5 24.88 AOX1

10 3.9–5.7 Affx‑151981327 1.76e−5 58.37 HDAC9c, FERD3Lc, TWISTNB, TMEM196c, ENSOCUG00000019989, 
ENSOCUG00000018779, MACC1, ITGB8c

Affx‑151890261 1.97e−5 58.48

Affx‑151932936 2.29e−5 69.79

Affx‑151906185 2.29e−5 70.82

Affx‑151891719 2.29e−5 68.65

14 162–163.2 Affx‑151919621d 8.65e−5 10.01 HUNKc, MIS18Ac, URB1c, ENSOCUG00000021276c, EVA1Cc, CFAP298, 
SYNJ1, PAXBP1c, C21orf62c, ENSOCUG00000011671, OLIG1, PLCXD1, 
GTPBP6, ENSOCUG00000017611

Affx‑151789209 1.14e−4 12.13

Affx‑151983021d 1.34e−4 10.91

Table 2 Classification and  total number of  variants 
(SNVs + INDELs) in each vQTL region

Region OCU3 OCU7 OCU10 OCU14 Total

Upstream 141 21 34 328 524

5′UTR 2 0 5 0 7

Synonymous 9 2 10 34 55

Missense 1 0 6 28 35

Frameshift 0 0 0 4 4

Splicing 4 0 1 9 14

Intron 2019 267 1622 3145 7053

3′UTR 28 0 3 39 70

Downstream 193 34 57 486 770

Intergenic 3961 112 2237 3887 10,197

Total 18,729
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[40], such as ITGB8, through TGF-β activation [41]. 
The HDAC9 gene may play a role in hematopoiesis and 
self-tolerance through the control of  Treg cells [42]. The 
ENSOCUG00000021276 gene, which is orthologous to 
the human MRAP (melanocortin 2 receptor accessory 
protein) gene, could modulate stress response though the 
production of glucocorticoids in the adrenal gland but 
experimental analyses are needed to verify this inferred 
function [37].

Previous GWAS for VE in pigs and cows also identi-
fied genes that are involved in the immune response, 
more specifically in the inflammatory response [13–15]. 
Sell-Kubiak et al. [13] and Morgante et al. [14] identified 
genes of the HSP (heat shock protein) family to be associ-
ated with VE , which regulate activation of leukocytes and 
protect cells against reactive-oxygen species (ROS) [43]. 
In mice, the candidate gene HDAC9 regulates expression 
of a gene of the HSP family (HSP70) [42]. Wijga et al. [15] 
also found genes involved in the phagocytosis process to 
be associated with the standard deviation of milk somatic 
cell count in cattle, which is in line with functions related 
to the DOCK2 gene [40]. Thus, there are several lines of 
evidence that support the importance of the immune sys-
tem in the control of VE.

For the other genes identified here (FOXI1, EVAC1, 
FGF18, and HUNK), we found no evidence in the litera-
ture that links them to a biological function associated 
with VE . A recent study proposed to use VE as a meas-
ure of animal resilience [10], which is supported by the 
results of Argente et al. [20], who suggested that the line 
with a low VE of LS is more resilient to general stressors 
than the line with a high VE of LS. According to Colditz 
and Hine [12], animals can better maintain performance 
(be more resilient) when they can properly discriminate 
environmental stimuli from the background. In this con-
text, the nervous system, cell receptors, and the immune 
system act as sensors of environmental disturbances. 
Thus, the immune system is required to perceive and 
properly respond to environmental stimuli that occur 
on farms, as well as correct development of the sensory 
organs and the neuron system [12]. Along the same line, 
candidate genes such as FOXI1, EVAC1, and FGF18 
would be important to develop sensory structures and 
parts of the nervous system. The FOXI1 gene encodes 
an important transcriptional factor, which is necessary 
for normal development of the inner ear, with mice that 
lack this gene developing deafness [44]. The EVA1C gene 
is involved in the correct development of olfactory and 
optic sensory axons and other neural structures [45]. The 
growth factor FGF18 regulates development of the neural 
system, specifically the midbrain structure [46]. Finally, 
HUNK is a serine/threonine kinase, which was recently 
shown to be associated with control of expression of 

E-cadherin [47], a molecule that can act as a receptor 
for pathogens [48]. We identified a 1-bp deletion in the 
3′UTR region of the HUNK gene, which was fixed in 
the line with a low VE of LS and absent in the line with a 
high VE of LS. Mutations in the 3′UTR region can affect 
expression of the gene and/or translation rate of the 
mRNA. This suggests that different levels of expression of 
HUNK between the two lines could influence VE of LS. 
The role of the identified candidate genes on modulation 
of VE of LS and, therefore, on resilient responses, requires 
further study to complement current evidence on the rel-
evance of the immune system on VE [13–15, 20].

Conclusions
A combined GWAS and WGS analysis allowed us to 
identify 16 new candidate genes that carry 129 putative 
functional mutations that are associated with VE of LS in 
rabbits. These findings provide support for the control of 
VE of LS through regulation of the immune system and 
suggest that development of the nervous system and sen-
sory structures may also be important to modulate ani-
mal resilience. This study advances our understanding of 
the genetic background of VE . However, further studies 
are needed to validate the true effect of the putative func-
tional mutations in these genes on VE of LS, as well as the 
relationship of VE with animal resilience.
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