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ABSTRACT Several efforts have been devoted to developing sustainable cities to address global environ-
mental challenges and the growth of urban areas. In particular, transportation has various issues such as air
pollution, noise, and traffic, which have to be addressed by collecting significant information of the traffic
and road conditions of the cities. Automating the data extraction process and street network construction will
allow buildingmore useful models to study traffic behavior. This work presents a networkmodeling approach
to identify interest points (extreme and internal) of the city, through a winner-takes-all edge trimming, and
mapping the traffic flow between them. Such points can be considered as entries of an Origin-Destination
matrix, where such information can be used to model traffic behavior between interest points. The case
study of Quito, Ecuador is considered. Besides, to address environmental issues, this paper encourages the
replacement of internal combustion taxis with electric vehicles. From the understanding of the vehicle traffic
behavior, a pre-feasibility siting of electric taxi (ET) charging stations was carried out. The results will allow
performing the sizing of each charging station considering electric power network constraints. This work
aims to ensure a sustainable transportation system based on this crucial information.

INDEX TERMS Charging station, driving time and distance, electric vehicle, graph trimming, urban traffic
network.

I. INTRODUCTION
Recently, sustainable cities have gained much attention
among urban scholars, planners, and policymakers, in
different fields of engineering [1], [2]. This includes the
development of new strategies for sustainable transportation
systems. So far, large cities inhabitants experience issues
such as the time spent in traffic, and adverse health effects
due to pollution and noise from congested traffic condi-
tions, and pressure from urban population growth [3], [4].
Thus, the main sustainable transportation goal and chal-
lenge is to relieve congestion and pollution for urban
mobility [5]–[7].

As the population and the automobile use increase consid-
erably, traffic flows and the congestion have become a major
problem that every nation in the world is facing. Main roads
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connect to the city downtown with smaller roads triggering
traffic disruption. Drivers are forced to slow down and stop,
leading to stopping and going waves and sometimes to the
traffic stoppage. The resulting jams are obviously unfavor-
able to safety and increase costs for both citizens in form of
fuel and time and likewise for the general well-being of the
city inhabitants [8]. Moreover, in zones of traffic stoppage,
pollution grows considerably resulting in health issues for the
people living around.

These challenges can be addressed by implementing new
transportation policies. Many governments have imposed
restrictions on car owners based on the license plate number,
which leads to the alleviation of traffic congestion and cleaner
air. However, this kind of strategies induces car owners’
discomfort and to the purchase of more cars [9], [10]. Hence,
new strategies should be proposed [11]. Urban transportation
infrastructure is subject to constant changes, and it is neces-
sary to optimize the newly available resources.
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In terms of local pollution, electric vehicles (EVs) have
gained much attention these last years to mitigate environ-
mental issues [12]. EVs have cradle-to-grave environmental
impacts, especially due to the use of lithium batteries, which
are heavily toxic in their production phase. Despite this, they
do not pollute locally, they are muchmore efficient than inter-
nal combustion vehicles (ICVs). Moreover, although EVs
transfer in a certain way the pollution from urban areas to the
electricity generation areas, it should be highlighted that EVs
can reduce CO2 emissions with most of the generation mix
scenarios. Only with the electricity generated from just coal
plants, the well-to-wheel CO2 emissions of EVs are similar
to that of ICVs [13].

However, the purchase cost of EVs is much higher than
ICVs, but they are profitable in the long-term, due to lower
maintenance and energy costs, and especially if the driven
kilometers are high. In the transportation fleet, taxis represent
a significant part, which could be appropriate candidates to
switch from gasoline to electric.

To ensure access to high-quality transport services in
cities requires some strategies and technological improve-
ments, as well as a deeper understanding of travel behavior.
Although ETs seem a proper solution to mitigate environ-
mental concerns, several challenges exist for their adoption.
Several charging spots have to be installed to support the
charging of ETs. For example, in New York, the public
charging stations are far from be sufficient to charge the
ETs based on their charging requirements [14]. In particu-
lar, taxis are driving all day, and not only for small trips,
thus, their electricity charging demand is much higher and
have to be supplied in quick times due to taxi drivers’
schedules [15].

To propose the electrification of taxis, additional needs
must be met, such as the location of charging stations, and
other relevant strategies for sustainable transportation, such
as traffic conditions. Significant efforts have been done in
transportation, science to access sensitive and crucial infor-
mation that helps to manage transportation systems and
power consumption efficiently [16].

This paper models the city as a street network interest
points (nodes) connected by streets (arcs). Two types of inter-
est points have been identified, on the one had extreme points,
which give information on how traversing the cardinal points
of Quito city. And on the other hand, internal points of the
city which could be used as charging hubs for EVs. The traffic
level at and between the interest points is mapped in this work
and could be considered as entries of an origin-destination
matrix.

The innovative contributions of this paper are highlighted
as follows:
• A proper traffic flow network is built of an Andean
city based on actual data, with automated geographical
network construction and traffic information extraction.

• Identification of interest points (extreme and internal)
in the city street network using a winner-takes all edge
trimming approach.

• Interest points grouping by geographical proximity and
driving time traffic flow mapping between them, as well
as, in and out flows.

• This paper is useful as a guideline looking for optimal
traffic management, namely building the traffic input for
siting of ET stations, or urban policy making.

II. RELATED WORKS
Related work of this paper is divided into two parts. Firstly,
an overview of the principal works of urban traffic modeling
is described. Then, someworks of the location of ET charging
stations are presented.

A. URBAN TRAFFIC MODELING
In order to implement appropriate urban traffic policies,
i.e. traffic information for deploying ET charging sta-
tions, a model of traffic conditions around the city is
fundamental [17], [18]. Vehicle traffic modeling has been
approached through different methodologies and techniques.
Models have in common an underlying structure for the city
streets, mainly a grid network, and a traffic flow estimation
along with the network. An agent-based model generating
trips in a grid-based urban area that mimics realistic travel
profiles was carried out in [19]. In [20], the authors deal with
an agent-based model of Zurich urban road network, where
the traffic density, flow and outflowwere estimated according
to the Macroscopic Fundamental Diagram. The work of [21]
models the equilibrium flow distribution across a road net-
work with EV drivers moving between their origins and des-
tinations, are givenwith optimal routes and battery recharging
plans. The authors in [22], [23] takes into account factors
such as driving ranges, real-time traffic conditions, available
in-station batteries and real-time sensors information to opti-
mize battery swapping for ETs. Another area of research is
modeling the complexity of the city network. For instances
in [24], a spatial attraction mechanism, together with match-
ing growth is proposed, to simulate city growth and reveal
the hidden spatial scaling relations between different city ele-
ments. The authors of [25] proposed a population-weighted
efficiency indicator, which tells how efficient the city is and
provides a quantitative measurement to guide transportation
infrastructure development. Understanding urban traffic is
necessary for electric mobility as well as for urban plan-
ning, in this sense, many efforts have been developed to
understand, predict and visualize traffic behavior in smart
cities [26]–[28].

The present paper, models a traffic network structure
reducing the street grid into interest points, resulting in a
trimming process accompanied by the extraction of the driv-
ing distance and time information to model the traffic flow
between interest points.

B. SITING ET CHARGING STATIONS
The siting or placement of charging stations is a crucial
task since if it is not done properly, power system problems
could occur such as voltage drops and fluctuations, and the
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FIGURE 1. Schematic representation of traffic mapping and clustering process.

acceptance of drivers. Thus, various works have proposed the
siting of ET charging stations [29], [30]. For example, a deci-
sion support system for the siting of ET charging stations
is studied at [31]. The goal is to maximize the satisfaction
of charging demand for ET drivers based on 800 data from
Wien on taxi cars. Likewise, the work of [32] provides an
optimal location for charging stations using a multi-agent
systems simulation framework to simulate the PETs’ daily
operation in real life such as cruising, picking up passengers,
and charging. Pan et al. [33] authors discuss the installation
of charging stations that take the impact of travelers, taxi
drivers, electricity distributors, transport networks, distrib-
utors, and electricity users into account. Multi-target opti-
mization is proposed to solve the proposed model. In [34],
an optimal planning of charging stations is studied consider-
ing distribution systems constraints. However, most of these
approaches have not considered spatial-temporal demand
coverage approaches. To address this, in [35], an optimiza-
tion approach was considered for the siting of ET charging
stations considering the spatial-temporal demand coverage.
The data from Shenzhen, China was used to demonstrate the
effectiveness of the approach. The authors of [36] presented
the location problem of ET charging stations considering
stochastic dynamic itinerary, by minimizing pickup requests
and passenger travel times. In [37], the development of the
charging demand of ETs is used for the optimal construc-
tion planning of ET charging stations. The authors of [38]
propose an optimal location of public charging stations using
real-world vehicle travel patterns.

Although all these works present optimal location of ET
charging stations especially in terms of costs, subject to
various constraints, they could be not realistic in terms of
transportation logistics, or not applicable to every city. In par-
ticular, to stimulate the purchase of EVs for taxi drivers, some
facilities in terms of charging have to be performed, thus
considering their schedule and traffic conditions.

III. METHODOLOGY: URBAN TRAFFIC FLOW MAPPING
AND CLUSTERING
This section describes the process used to map the traffic
flow between interest points in the city area of Quito. All the
process was automated from extracting the city as a graph
to the selection of extreme nodes that traverse the city. First,
the network (graph) of the city was extracted. The street

network is extracted for a window region of a given area
of the city, where a center and a side squared in kilometers
are specified. Then a simplification process was carried out
to reduce the number of nodes in city graph. The network
was also trimmed according the length of the streets (edges)
connecting the nodes in the city graph. Once the final nodes,
that is, the extreme point of interest in the city area were
identified, a fully connected network is built according to
the distance between points, and then trimmed according the
maximum distance between points, to get a traversal map of
points of the city. A winner-takes-all edge trimming approach
is carried out to identify the extreme points for the given
region, based on the driving distance of the the length of
the cumulative streets connecting points. Once, the extreme
points are identified, the traffic flow in driving time between
them is requested to the Google Distance Matrix API [39].
The extracted data consists of rows containing the ‘‘real-
time’’ driving duration and distance values for each pair of
extreme points identified as returned by the live traffic from
the API.

This strategy is also used to map inner points in the city by
reducing the selectedwindow region. The inner points and the
ingoing and outgoing traffic for each of them is mapped. The
points of minimum traffic flow are identified and are selected
as pre-feasibility sites for ET charging stations. A hierar-
chical clustering analysis based in the Euclidean distance
is carried out to identified groups of points, according to
their geographical location. The traffic flow is them mapped
between groups, to describe the traffic for the extreme points
of the city. Finally, the traffic flow between clusters of interest
points (extreme and internal) is calculated to illustrate the
times for traversing the city of Quito. A schematic represen-
tation of the process steps and the main libraries used are
depicted in Fig. 1. The detailed process is explained in the
next subsections.

A. NETWORK EXTRACTION
The network of the city was extracted according the following
steps:
S.1 Network extraction: The street network of the city

can be extracted with OSMnx [40], which is a tool for
collecting data and creation of street networks to analyse
them from the perspective of graph theory [41]. Such
networks are useful for urban transportation and urban
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FIGURE 2. (a) Extracted network of the city area of Quito; (b) detail of
Quito downtown with all identified nodes; (c) simplification of the
network, highlighted nodes in red color will be removed; (d) simplified
city network; (e) simplified city network with highlighted main avenues in
red.

design studies. The street network can be defined as a
graph which is a tuple G = (V ,E), where vi ∈ V ;
i = 1, . . . , n, is the nodes set belonging to the street net-
work, andE ⊆ {{vi, vj}|(vi, vj) ∈ V 2

∧i 6= j}, is the set of
edges connecting nodes i and j. An edge is a tuple (vi, vj),
direction is implied in this tuple where the connection
goes from vi to vj. The nodes in the network are interest
points (mainly the corners) of the city and the edges are
the streets connecting the corners. The street network is
a directed and weighted graph, where the edge weights
are the distance between nodes. OSMnx returns the big
avenues and highways to be conformed by a series of
nodes connected between them. The resulting network
is a multigraph, which is a graph in which multiple
edges are allowed or needed between nodes. OSMnx
also, gives information about the extracted urban net-
work, such as total street length, average street length,
number of intersections, to mention a few. See Fig 2 for
reference.

S.2 Network simplification:OSMnx allows to simplify the
network extracted in the step S.1, given that the original
network might be too large, which will make it com-
putationally complex to deal with. After the extraction
of the network, a simplification process is carried out.
OSMnx allows joining all the nodes that are part of
a path between intersections, removing them from the
network, but adding their weight to a single connection
that use intersections as endpoints to keep the correct
distance and all additional information between nodes.
After the simplification process, a street network is
returned with unique connections that are created with
the accumulated distance of all nodes corresponding to
a simplified path. These final connections are composed
of an OSM ID, the ‘‘from’’ and ‘‘to’’ nodes informa-
tion, and the distance between them. The simplified
street network (G = (V ,E)), can be represented as the
weighted adjacency matrix J and it can be expressed
as the element wise product J = C ◦ D = Jij =
Cij ·Dij with the connectivity (topology) matrixCwhere
Cij = 1, if a connection between node i and j exists,
and Cij = 0 otherwise; and the driving distance matrix
D [39], with Dij = dij, where dij is the distance (weight)

from node i to node j. The driving distances are not
symmetrical (Dij 6= Dji) and self connections are not
allowed (Cij = 0, for i = j). See Fig 2 for reference.

S.3 Network trimming by edge distance: Once the sim-
plified street network (J) is obtained (as described in
step S.2), the network is trimmed according the distance
Dij between nodes. The goal of the trimming process
is to extract interest nodes of the network which are
extremes points in the city, as well as, the distance
between them. The nodes and edges in the network are
removed according the following criteria Cij = 0 for
Dij < θ . This process removes the connection between
nodes i and j for which the value of Dij is lower than
a given θ value. Here, θ corresponds to a trimming
threshold, which can be expressed as the percentile value
for which the distance allows to keep a given propor-
tion of the network connections. Unconnected nodes are
removed from the trimmed network. The nodes with
a lower distance between them are removed from the
trimmed network, keeping mainly the edges belong-
ing to main avenues and large streets that interconnect
the city, the points interconnected by such streets and
avenues are the extreme points to traverse the city. See
Fig. 3 for the resulting trimmed network.

FIGURE 3. Extreme points network for the city area of Quito and
corresponding clusters.

S.4 Winner-takes-all distance trimming: From the
extreme points, identified after the trimming performed
in step S.3, a fully connected network is built: Cij =
1, ∀ ij. Again self connections are excluded and the
distance matrix D is not symmetric. The extreme points
fully connected network is then trimmed according to
the maximum distance connecting two nodes: Cij = 1
for max[max(Dij,Dji) for j ∈ k(i)]. The only connec-
tion that is kept for every node i is the maximum distance
connected node in its neighborhood k(i). The maximum
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distance corresponds to the weight connection between
the nodes. All other connections are removed from the
neighborhood in a winner-takes-all approach. Following
the aforementioned trimming criteria, the network con-
nections are considered to be undirected. The resulting
network connects the extreme points and can be used to
identified the time to traverse the city. See Fig. 3 for the
resulting extreme points network.

B. TRAFFIC FLOW EXTRACTION
Once the network has been extracted, it is necessary to get
the information on the traffic flow. The Distance Matrix
API [39] is used to get real-time data of the traffic from
one point to its connected neighbors. This is a service sup-
plied by Google that provides the travel distance and time
based on the recommended driving route between two points.
The information is provided by the service in JSON format.
To make the requests, the start and end points that are used,
corresponds to the origin and destination nodes and every
connection present in the final network described in the last
subsection III-A. The request can be done, to the Google
DistanceMatrix API, giving a time interval. Each register, for
the traffic flows, records the data with the following structure:
from(latitude, longitude), to(latitude, longitude), mean_time,
mean_distance, time_stamp. Such data can be used as it is
registered, or summarized according a clustering analysis
described as follows.

C. SITES CLUSTERING AND TRAFFIC FLOW MAPPING
The identified sites (extreme points) in subsection III-A
can be grouped according to their geographical proximity.
Near sites will be grouped together, reducing the dimension
of the traffic flow network and summarizing driving mean
times between cardinal directions of a city. The coordinates
information is projected using the World Geodetic System
(WGS84), The projected coordinates are then Standardized,
as distance based clustering techniques are sensitive to the
scale of the variables. A hierarchical clustering is performed

using euclidean distance affinity dij =
√
δXij + δ

Y
ij with δ

X
ij =

(Xi − Xj)2, δYij = (Yi − Yj)2; and Ward linkage [42].

The euclidean metric corresponds to the straight-line dis-
tance between two points, and is used to build the distance
matrix for the clustering technique that uses Ward linkage as
a criterion to merge clusters hierarchically.

Ward linkage uses the following objective function recur-
sively to decide if clusters Ci and Cj will merge, d(Ci ∪
Cj,Ck ) = αid(Ci,Ck ) + αjd(Cj,Ck ) + βd(Ci,Cj), with

αi =
ni+nk

ni+nj+nk
, αj =

nj+nk
ni+nj+nk

and β = −nk
ni+nj+nk

, for
disjoint clusters Ci, Cj, and Ck with sizes ni, nj, and nk
respectively. The merge, Ci ∪ Cj, occurs for the minimum
d(Ci ∪ Cj,Ck ). Once the clusters have been identified, the
information from the traffic flow data can be summarised
(i.e. averaged) over the clusters inter-connectivity. This is
carried out by comparing the origin and destination clusters of

the edges and averaging time between the edges connecting
nodes belonging to clustered sites.

IV. CASE STUDY: QUITO - ECUADOR
A. TRANSPORTATION SYSTEM INFORMATION
The case study of Quito is particular for different reasons.
Quito is the capital of Ecuador, and it is situated in the
Andean region at 2,800 altitude meters. Due to high altitude,
the combustion in the vehicles is very inefficient, which
creates major pollution concerns [43]. Furthermore, Quito
has an area of 372.39 km2, and is 40 km long and 5 km at its
widest, most of the important avenues of the city extending
from north to south. Since Quito is an Andean city, its relief
is uneven, which creates heavy traffic, especially at peak
hours. This is the main problem that causes dissatisfaction in
citizens due to lost time in traffic, pollution, and noise [44].
Thus, the main duties of majors are to develop solutions to
traffic issues. One solution could be to provide proper public
transportation, which so far is not proper. Buses and taxis
are the main sources of traffic, and thus noise and pollution.
To this end, it is crucial to know the traffic conditions of the
city and propose guidelines for clean transportation. Proper
location of public charging stations for taxis could encourage
taxi companies to purchase EVs, so this work gives some
insights into the location of public charging stations.

In Quito, like in many cities, taxi services are heavily
regulated. In particular, taxi drivers need to validate the reg-
ulation process, where they have to satisfy different require-
ments [45]. Therefore the municipality of Quito determines
the number of taxi licenses based on those conditions. Nowa-
days, there are 12,000 taxi vehicles in the city. The actual
major of Quito is promoting the introduction of ETs and
electric buses to mitigate pollution issues. For this purpose,
35 ETs have already been purchased by taxi companies. Due
to political and social uncertainties, it is not possible to know
the number of ETs that will be purchased in the future, so the
location of charging stations will be determined by priorities.

B. DATA AND ASSUMPTIONS FOR LOCATIONS OF ET
CHARGING STATIONS
This work proposes candidate places for public slow charging
stations for ETs. Based on Quito taxi drivers’ schedules, it is
considered that drivers have to charge their ET at home at
night. This will allow providing enough energy for almost
all the next day. During daytime, it is expected that public
slow charging stations will allow ETs to provide an additional
amount of energy in a few hours to avoid range anxiety. This
solution is found better than fast charging stations due to the
power system and cost constraints.

Based on a previous work that considers the GPS travel
patterns of various taxi drivers, it was found that the vehicle
is stopped during lunchtime, dinner time, and most of them
during all night [46]. Typically, taxi vehicle owners park their
cars at home when it is not in use. Considering the shift
from gasoline to electric, it is necessary that taxi owners
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install a residential charging spot. However, taxi drivers drive
typically more than 150 km per day, so they can suffer range
anxiety, which is the fear that the vehicle has insufficient
range to reach the destination. Hence, it is necessary to install
public ET charging stations to promote the purchase of ETs.

The different assumptions are considered for the siting of
the ET charging stations:
• The taxi drivers start or finish their main trips in the
selected interest points, both internal and extreme.

• In zones with significant traffic, charging stations should
be installed at the internal points, to avoid more traffic
congestion of taxis for finding the charging stations.

• In zones with low traffic, charging stations should be
installed in the middle of the nodes (centroids of the
internal points clusters).

• Charging stations should be installed close to interest
places, e.g: malls, gas stations, parking in commercial
or working places [47]. This information could be added
to future mappings and could be requested to the google
places API.

In zones with high traffic, for the driver’s convenience,
it is suitable to install charging stations at the beginning of
the nodes to avoid losing time in traffic. In zones with low
traffic, there is no more the time constraint for the driver’s
convenience, so to minimize the number of charging stations
to install, it could be useful to assume the location in the
centroid of the identified nodes.

The process followed for identifying the extreme points in
the city of Quito can be replicated for smaller regions of the
city in order to identify inner points of interest. Fig. 6 depicts
the result of the process for three regions: north with (latitude,
longitude)= (−0.115573,−78.487634) and an area of 4 kilo-
meters squared; center (latitude, longitude) = (−0.162812,
−78.483310) with an area of 3 kilometers squared; and south
(latitude, longitude) = (−0.202488, −78.491241) with an
area of 3 kilometers squared.

V. RESULTS AND DISCUSSION
A. TRAFFIC NETWORK FLOW OF QUITO
Fig. 2 shows the network of Quito and the simplification
process performed by the OSMnx library. Fig. 2 (a), corre-
sponds to the city area of Quito, including the satellite cities,
mainly the valleys of Cumbaya at the east and the Sangolqui
at the southeast. The extracted network comes from a region
window of size 12 kilometers squared, with a central point
in the reference coordinate (latitude = −0.181100, longi-
tude = −78.478611) for the Quito city. The street network
is composed of 31273 nodes, and after simplification the
street networks contains 9470 nodes, that is 21803 nodeswere
removed. The simplification process is depicted schemati-
cally in panels (b), (c), (d) and (e), for a zoomed portion
of the city network. Panel (b) shows all extracted nodes in
blue, the network simplification will remove all red nodes
depicted in panel (c). The final result corresponds to the
city network depicted in panel (d). For comparison, panel
(d) shows a diluted street network compared with panel (b),

FIGURE 4. (a) Dendrogram of the extreme points with cluster labels;
(b) average silhouette width for different number of clusters.

FIGURE 5. Traffic flow between clusters (named from A to G) and mean
time between clusters in minutes.

that is the density of blue points (nodes) is lower, due to the
removal of intermediate points and the path joining process
described in the methodology (see subsection III-A). Finally,
panel (d) highlights the important avenues (red) from small
streets (blue) in the simplified network.

The city of Quito, as the majority of cities, is composed
mainly of small streets, which means that the simplification
result still implies a large street network. For this reason,
a further simplification is necessary. From the street net-
work which is a weighted graph, a trimming threshold θ for
the edge (street) distances was used. The value of θ used
corresponds to the 97th percentile, that is, only the edges
with larger 3% distances were kept in the network. The final
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FIGURE 6. Prefeasibility siting of ET Charging station for points of minimum traffic flow in minutes: (a) Identified points of
interest in the network; (b) Ten stations with lower driving time flow and the rest of the nodes.

result of this trimming process is depicted in Fig. 3. The
aforementioned trimming process allowed to identified the
extreme points in the city, corresponding to the 17 nodes
depicted in Fig. 3.

Once, the 17 extreme points have been identified, a
fully connected network is built, connecting every node
to the other 16 nodes available (no self connections are
allowed). The edges weights corresponds to the distance
(Dij) between every pair of nodes (i, j). Then an edge trim-
ming is carried out, from the fully connected neighborhood
(k(i)) of every node i the longest neighbor is identified, that
is the neighbor j with a maximum distance from node i:
max[max(Dij,Dji) for j ∈ k(i)]. This is the only connec-
tion that is kept for node i with its corresponding weight.
Note that the connections between pairs of nodes are not
symmetric, and the maximum between the outgoing Dij and
ingoing Dij distance is returned, for all the the neighbor-
hood, in a winner-takes-all fashion. The directions are kept,
resulting in a directed network. This is reflected in Fig. 3,
where the winner-takes-all trimming process, results in the
16 edges, depicted in the figure. Note that the resulting
edges are considered to be undirected, that is ingoing and
outgoing time and distances are considered the same, as
obtained with the winner takes all approach explained above.

The network in Fig. 3, represents the extreme points in the
city area of Quito, and the edges contain information of the
mean driving time and mean driving distance necessary to
traverse the city of Quito. To obtain the driving distance
and time, requests to the Google Distance API were made
every 20 minutes, every day, during a week. The average
results for the extreme points network in Fig. 3 are shown
in Table 1.
It is worth noting that other algorithms can be used to

extract the extreme points network, for instance, the max-
imum spanning tree algorithm. For the case study of the
city of Quito the winner-takes-all trimming approach was
adopted, given that the resulting network connections were
more diverse, between cardinal points. Although a connected
extreme points network resulted from the winner-takes-all
approach, this was not a necessary condition for the intended
analysis, as it is for the resulting maximum spanning tree,
and again the more diverse connectivity of the former was
preferred.

A hierarchical clustering technique was used to identify
clusters of nodes according to the geographical euclidean
distance between points. Once the distance matrix is calcu-
lated for every pair of points, hierarchical clustering is per-
formed using euclidean distance affinity and Ward linkage.
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TABLE 1. Mean time and distance between extreme points in the city of
Quito.

The corresponding dendrogram for c = 7 clusters is depicted
in Fig. 4 (a) and the average silhouette width for c =
{2, . . . , 10} clusters is shown in the bottom panel. Three
regions can be identified in the silhouette plot in Fig. 4 (b);
the average silhouette width increases up to c = 5 clusters,
which is desirable, a second region, for c = 6 to c = 8,
where average silhouette width goes down, and then starts
increasing from c = 9 and up. One can identified c = 5
clusters as optimal, but that would imply joining clusters E-D
and clusters F-G. For c = 7 a better distribution of clusters is
found for the geographical characteristics of the city of Quito.
For larger c = 9 or c = 10 the average silhouette width is
larger, but this is expected since each cluster will end up with
a lower number of nodes, and average silhouette width will
go up to the extreme case in which each cluster will have only
one observation (node).

The clustering decisions are justified, given that for small
datasets hierarchical clustering works especially well and the
computational cost of the agglomerative methods is not an
issue when using small data [48].

Finding the optimal number of clusters could be an
involved task, in particular for this work, the average sil-
houette method was used to identify the behavior observed
in Fig. 4, and decide the number of clusters. The silhouette
measures the similarity of an object with those who belong to
its cluster (cohesion) compared to other clusters (separation).
The silhouette range ranges from −1 to +1, with a high
value indicating a good object match to its cluster and poor
match to other clusters. One should select the number of
clusters that maximizes the average silhouette width [49]. The
quantitative average silhouette width was used together with
the qualitative visual inspection of the city map, to identify
suitable clusters for both the external and internal points
of Quito.

The traffic flow in terms of the driving distance and
time extracted for the network in Fig. 3 and Table 1 can
be summarized for the clusters depicted in Fig. 5. Fig. 5
depicts the seven clusters identified, which are named with
letters from A to G, and the flow is expressed as the

FIGURE 7. (a) Inner points dendrogram with cluster labels; (b) average
silhouette width for different number of clusters.

mean driving time between clusters. Table 2 summarizes the
meantime, mean distance, and mean speed between clusters.
The nodes belonging to a cluster are represented with the
same color. For instance, cluster A is represented in red
color, and nodes 9 and 15 corresponds to it. Cluster B is
composed of only node 10, represented in yellow. Cluster
C of nodes 7 and 8 with green colors, and so on. The
flow is considered to be symmetrical, that is ingoing and
outgoing connections between a pair of clusters are sum-
marized together. the centroids of the clusters (mean values
in latitude and longitude), are the origin and final points of
the connections. The flow corresponds to the meantime for
going from one cluster to another, according to the edges
shown in Fig. 3. As an example, the flow (meantime) between
cluster C and G is calculated from the edges connecting
nodes belonging to cluster C (nodes 7 and 8) with nodes
belonging to cluster G (nodes 12, 14, 16, and 17). According
to Table 1 (and Fig. 3), two connections exist between clusters
C and G, corresponding to edges (7, 12) and (8, 12) with
mean times 38.01 and 42.79 respectively. Averaging these
values, the flow between clusters C and G is obtained as
mean_time(C, G) = 〈38.01, 42.79〉 = 40.40. This is the
mean time between clusters C and G represented in Fig. 5.
The flow between clusters provides information on howmuch
time it takes to traverse the city of Quito. For instance,
one can appreciate that going from the northwest extreme
(cluster A) of the city to the southeast (cluster E) takes
around 35.55minutes on average. Getting to the valley area of
Cumbaya (cluster C) from the south part of the city (cluster F)
takes 31.54 minutes on average and traversing the city from
north to south (B to F) or vice-versa takes 26.66 minutes on
average. This last driving time is reduced greatly due to the
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TABLE 2. Mean time and distance between clusters in the city of Quito.

FIGURE 8. Prefeasibility siting of ET Charging station by clustering: (a) minimum traffic flow charging points; (b) centroids
for each of the six charging stations clusters identified.

existence of the highway Simón Bolívar that connects both
extremes of the city.

B. POTENTIAL LOCATIONS OF ET CHARGING STATIONS
Fig. 6 (a) depicts the identified points of interest in the
network. Again, driving time and distance information are
available. The driving time information is assigned to each
node as the aggregate value of the ingoing and outgoing
flows (driving time in minutes). The driving time T for each
point of interest is depicted on a continuous scale between
the minimum 6.45 and maximum value 17.87 in minutes
(yellow and red color respectively). The size of the nodes
is depicted as the multiplicative inverse of the time (1/T ).
That is the yellower and bigger the node, the lower the value
of the traffic flow (in time) for that node. The ten nodes
with lower time values are depicted as squares in Fig. 6 (a).
The lower times criteria is used to decide the location of ET
charging stations as a first approach. Fig. 6 (b) depicts the
ten stations with lower driving time flow in minutes with
yellow squares with the rest of the nodes depicted as black
circles. The label of the yellow square nodes indicates also
its importance, i.e. the node labeled as 1 is the node with the
lowest value for the driving time flow. The one labeled with

2 is the second with lower time, and so on. Each of these ten
points can be considered to locate an electric charging station.

The ten possible ET charging stations identified in Fig. 6
can be grouped together using hierarchical clustering accord-
ing to their geolocation, in the same manner, as the traffic
flow clusters were identified previously.

The corresponding dendrogram for c = 6 clusters is
depicted in Fig. 7 (a) and the average silhouette width for
c = {2, . . . , 8} clusters is shown in the bottom panel. Two
regions can be identified in the silhouette plot Fig. 7 (b),
the average silhouette width increases up to c = 4 clusters,
with a break point for c = 5 where the average width is
minimum, and starts to increase for larger values of c, where
a second region, can be identified for c = 6 to c = 8,
One can identified c = 4 clusters as optimal, just before the
aforementioned break-point in c = 5, but c = 6 yields a better
distribution of the clusters found for the inner points.

The six identified clusters are geographically depicted
in Fig. 8 (a) which shows the ten charging points (with min-
imum traffic flow) and their corresponding cluster. Fig. 8 (b)
depicts the centroids for each of the six ET charging station
clusters identified. The centroids of the extreme points traffic
flow clusters are depicted, as blue pastel circles, in both
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FIGURE 9. Chord diagram depicting traffic flow profiles between interest points (extreme) clusters and charging
station (internal) clusters: (a) all stations (1-6) and interest points clusters (A-G); (b) all stations and northern
clusters (A, B); (c) all charging stations and valley regions (C, D, E); (d) all stations and southern clusters (F, G).

panels for reference. As follows, the meantime flow between
charging points and extreme points of interest in the city is
analyzed.

Fig. 9 depicts the traffic flow in mean the time between
points for possible charging stations named from 1 to 6, and
extreme points in the city named from A to G. Table 3 sum-
marizes the interest points with minimum flow time selected
as potential stations.

The traffic between regions is represented as segments
in a chord diagram, such segments are proportional to the
traffic flow in each identified point, both, internal (1 to 6),
and extreme (A to G) points. A chord diagram is typically
used to display the inter-relationships between the nodes or
block of nodes of a network (from an adjacency matrix).
The blocks (node subsets) are arranged radially around a
circle and the relationships are drawn as arcs that connect
the blocks. The block importance is reflected as the segment

TABLE 3. Interest points with minimum flow time selected as
prefeasibility stations.

size, and the importance of the relationships as the width
of the arcs. Arcs widths correspond to the time in minutes
between interest points (internal 1 to 6 and extreme A to G)
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and segment sizes are depicted with commutative traffic
times.

Fig. 9 (a) shows the flow between all charging and extreme
points clusters. The circle sectors for charging points 1 and 2
are the largest, that is, moving from and to charging points
1 and 2 and all extreme points clusters take the largest times
given that they are located in the north extreme, inside,
the city of Quito. Also, it can be observed, as expected,
that flow is minimum in the neighborhood and larger for
long-distance points. Occurs the contrary for station 6, mov-
ing from and to charging point 6, takes the lower time given
that such a place is rapidly accessed from almost every
longest point (B, C, D, E) through the SimónBolívar highway.
The circle sector size indicates the flow size incoming or
outgoing from that station, and can be used as a reference
for the station sizing.

Note that these locations are located in various areas of
coverage, which allows serving with taxi service all the main
zones of the city. Moreover, they are situated close to inter-
esting places that allow drivers to find quickly passengers.

Although this information provided is crucial for providing
the most proper places to install charging stations, it is crucial
also to study the number of charging spots that have to
be installed in each station, considering the grid constraints
(e.g.: the size of the feeder in each location, cost of invest-
ment). Moreover, several scenarios depending on the possible
penetration of ETs should be considered to quantify if the
investment is profitable.

C. DISCUSSION
The present work discusses a case study for the modeling
of a traffic network for the city of Quito. For the city street
network extraction, OSMnx proved to be a valuable tool,
when compared with commonly used methods of dealing
with urban information, which are based on Geographic
Information Systems [50], [51]. Combined with the traffic
information extraction using the Google API, the two inputs
for building a traffic model, the street network, and the traffic
information, are readily available to start the computational
analysis of the model.

The main drawback observed, regarding the model scala-
bility, is related to the extraction of traffic information using
the Google API, which could be expensive. For the networks
presented in this work, which are relatively small, with an
upper limit N nodes and K = N × (N − 1) total con-
nections; that is, N = 17 and N = 91 for the internal
and external connections, the request cost was of 300 credits
(USD dollars) a week, for 20 minutes interval requests. The
OSMnx simplified network was of the order of N = 9470,
K = 21137, which is four orders of magnitude larger than
the used network. Scaling the model to the number of nodes
OSMnx allows to extract could be not permissible economy
wise.

For this work the extracted data, was processed in an offline
way, but an application can be carried out extending the
presented work, to process the requested data online fashion,

to deal with ‘‘real-time’’ traffic information and events along
with the city network.

VI. CONCLUSION
In the past few years, growing attention has been devoted
to sustainable transportation. Hence, this paper proposed a
method for modeling a street network between interest points
identified through awinner-takes-all trimming process. Once,
the interest points of the network are identified, the flow
between points and the ingoing and outgoing flows are mod-
eled from data acquired from the driving distance and driving
time returned by the Google Distance API.

This information is used to analyze the traffic in different
regions of the city of Quito, and to identify potential location
sites for ET charging stations around the city. Both, inter-
est points of the city and traffic stations spots are grouped
according to their geographical proximity using a hierarchical
clustering approach. The traffic flow between extreme points
of the city and charging stations were characterized, giving
information that might be used for station sizing.

In future studies, a network complexity analysis and metric
description, of the street/traffic network, warrants further
investigation. Also, a model based on the information of
traffic of Quito, for the optimization of the sizing of the
charging stations of ETs will be studied, considering various
constraints such as grid conditions, taxi drivers schedules, and
traffic conditions.
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