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ABSTRACT Integration of renewable energy sources require an increase in the flexibility of power systems.
Demand response is a valuable flexible resource that is not currently being fully exploited. Small and
medium industrial consumers can deliver a wide range of underused flexibility resources associated with
the electricity consumption in their production processes. Flexible resources should compete in liberalized
operation markets to ensure the reliability of the system at a minimum cost. This paper presents a new tool
to assist industrial demand response to participate in operation markets and optimize its value. The tool
uses a combined physical-mathematical modelling of the industrial demand response and a Parallel Particle
SwarmOptimization algorithm specifically tuned for the proposed problem to maximize the profit. The main
advantages of the proposed tool are demonstrated in the paper through its application to the participation of a
meat factory in the Spanish tertiary reservemarket during awhole year using a quarter-hourly time resolution.
The enhanced performance of the proposed tool with respect to previous methodologies is shown with
these four flexible processes examples, where the maximum available profit obtained in the simultaneous
consideration of all different flexible processes is computed. The flexible processes are technical and
economically characterized in a way that makes the tool valid for most of the processes in the industry.

INDEX TERMS Demand response, energy resource management, industrial production, end-user tool,
parallel particle swarm optimization.

INDICES
t Time period
g Flexible process
d Day of the month
m Month
r DR event

SETS
T Set of time periods on a day in a month m
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G Set of flexible processes
Dm Set of days in a month
M Set of months in a year
Rdm Set of DR events on a day d in a month m

PARAMETERS
tPTU Program Time Unit (h)
1P1gdm Power reduced during any DR event (kW)

1P2rgdm Power increased before DR event (kW)

1P3rgdm Power increased after DR event (kW)
TMaxgdm Maximum time duration of a DR event (h)

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 24721

https://orcid.org/0000-0002-9637-9208
https://orcid.org/0000-0003-1089-5197
https://orcid.org/0000-0002-8238-1606
https://orcid.org/0000-0002-1376-4531


J. Rodríguez-García et al.: Maximizing the Profit for Industrial Customers of Providing Operation Services

T 2
rgdm Preparation time of a DR event (h)

T 3
rgdm Recovery time of a DR event (h)

TMingdm Minimum time between DR events (h)

T Egdm Recovery time from previous day event (h)

T avatgdm Availability of a DR event

T IA Notification time in advance (h)

πCBtdm Price of the capacity band (e/kW)

πEDtdm Price of the energy delivery (e/kWh)

πetdm Price of the consumed electricity (e/kWh)
CFg Investment cost of a DR process (e)

CV gdm Variable cost of a DR process (e/h)

EMaxgdm Maximum number of DR events

DMaxgdm Maximum duration of all DR events (h)

AUXILIARY VARIABLES
Stgdm Binary to express the start of a DR event

DECISION VARIABLES
Argdm Starting time of a DR event
Drgdm Duration of a DR event

I. INTRODUCTION
Integration of Renewable Energy Sources (RES) to generate
electricity has become a global priority. Renewable Energy
Sources (RES) represent a key measure to reduce CO2 emis-
sions by replacing fossil fuel combustion with renewable
electricity production. Nevertheless, RES are unpredictable,
not dispatchable and present large variabilities in their gener-
ation profile due to their reliance on natural resources. This
variability creates a major issue for traditional power sys-
tems and the security of supply. To overcome generation and
consumption mismatches with massive integrations of RES,
power systems will require three major changes: network
reinforcement, deployment of storage and untapping demand
response resources [1]. These actions will allow power sys-
tems to increase their flexibility and integrate a larger share
of RES without jeopardizing their security [2].

Demand Response (DR) can be defined as changes in the
use of electricity of end consumers from normal patterns
to respond with economic incentives or price changes [3].
The scientific literature agrees that unlocking DR benefits
both consumers and the power system due to its faster and
more reliable response [4]–[7]. DR can also provide ancil-
lary services in a fast and reliable way in comparison with
conventional generation. In this sense, the European Clean
Energy Package launched in 2016 established the foundations
to unlock the potential of DR in Europe. The European
Commission (EC) estimates a demand flexibility potential
of 100 GW increasing up to 160 GW in 2030.

The industrial sector represents around of a third of the
World’s electricity consumption and it is the fastest growing
energy demanding sector [8]. However, most of industrial
consumers do not use their flexibility to obtain an additional

income in order to reduce their energy cost, especially in the
case of small and medium-sized enterprises (SMEs). Despite
the existence of some DR programs in several countries, this
resource is currently used below its potential [5]. This is
related to the complexity and uniqueness of the underlying
specific production processes of industry [6], [9]. Neverthe-
less, previous studies keep stating how industrial DR can
provide significant benefits not only to the power system as
a whole, but also to DR providers [10]. Moreover, different
studies show how SMEs can deliver a large variety of flex-
ible resources to the power system [11], especially through
aggregators [2]. However, to facilitate the participation of
SMEs, it remains essential to develop and make available
analysis tools to industrial consumers and other agents such
as aggregators or Virtual Power Plants (VPP). Clear analysis
and data can optimize the potential profit associated with
the use of their flexible resources and can help the industrial
sector to participate in DR programs.

In [12], the authors present a tool for simulating the par-
ticipation of industrial consumers in operation markets. This
tool presents an adequate flexibility characterization of indus-
trial processes. It considers all the technical and economic
parameters associated with flexible processes, including their
impact on the electricity supply cost [13]. The tool deals with
flexible processes that must return to their normal conditions
just after a DR event occurs to avoid any problem in the
production process. The characterization considers the pro-
duction experts’ recommendations to avoid any impact on
the final product or on the production performance. Other
methods and tools coordinate both production schedule and
DR actions in the daily energy planning of specific types of
factories [14], [15]. However, these methods need essential
data for companies associated with their productive know-
how. This knowledge sharing makes companies extremely
reluctant to cooperate and hence blocks the use of their
flexibility.

In contrast, the inputs of the abovementioned tool were
defined to avoid the provision of critical information of com-
panies, trying to ease companies’ collaboration. The weak
point of the presented tool is the incapability to guarantee
the maximum possible profit of using flexible processes [12].
The absence of any optimization algorithm does not allow the
tool to capture all the benefits associated with load shifting
and market participation. Therefore, it is necessary to choose
on a daily basis, for each flexible process, the most profitable
time periods to offer flexibility in reserve markets.

As presented in [12], [13], the flexibility of industrial
processes has a complex response with several links between
decision variables and intermediate dynamic information.
This condition makes it difficult to achieve the formulation
of the required optimization algorithm as a linear problem
without altering its original features. To overcome this issue,
we have selected a metaheuristic approach to maintain all
the characteristics of a parametrized industrial process. Meta-
heuristic approaches are a valid alternative and a promising
method to solve this type of optimization problem [16], [17],
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since they allow us to include all the links between variables
without compromising computability.

Among the different metaheuristic methods, we selected
the Particle Swarm Optimization (PSO) algorithm due to
several positive features. Authors use it to solve electrical
engineering problems, it can solve nonlinear problems, it has
a high computation efficiency, it is robust and it can be easily
adapted to solve any optimization problem [18].

Particle Swarm Optimization (PSO) is a nature-inspired
technique developed by Eberhart and Kennedy [19]. In con-
trast with other genetic algorithms, each particle establishes
its new position based on its own previous experience
and those of its neighbors. The particle i at iteration d
has a position defined by an n-dimension vector xid =
(xid1, xid2, . . . , x idn)T and particles’ velocity is another n-
dimension vector vid = (vid1, vid2, . . . , vidn)T . The parameter
pid shows the best visited position (pid1, pid2, . . . , pidn)

T and
pgd represents the particle that had the best result of the swarm
at iteration d . After a proposal to improve exploitation made
by Shi and Erbehart [20], the velocity and position of the
resulting particles commonly applied is:

vi(d+1) = w ∗ vid + c1r1 (pid − xid )+ c2r2
(
pgd − xid

)
(1)

xi(d+1) = xid + vi(d+1) (2)

where the characteristic parameters are inertia weight (w),
the cognitive and social scaling parameters (C1 and C2) and
random numbers from a normal distribution (r1 and r2), these
parameters must be specifically tuned for solving the targeted
optimization problem.

Based on a real meat processing factory, the tool opti-
mizes and evaluates the participation of four flexible pro-
cesses (drying, maturing, freeze storing and slicing) in the
Spanish tertiary reserve market. The operation results and the
cost-benefit analysis involved largely improve the solution
obtained with the previous tool [13], which used a margin
of profit to decide whether or not to perform a DR event.

The optimization method included in the tool for the par-
ticipation of industrial consumers in operation markets pre-
sented in this paper provides two main contributions to the
existing literature:

- A new tool for evaluating the participation of flexible
consumers in operation markets. The proposed solution
respects the mathematical complexity of the original
problem and optimizes the consumer profit through a
tailored Parallel Particle Swarm Optimization (PPSO)
algorithm. Furthermore, we applied it to a real case, and
the results obtained validate the profitable participation
of flexible processes of SMEs in reserve markets and
the efficiency of a PPSO algorithm to model electrical
engineering problems.

- A new mathematical codification of decision variables
related to physical parameters of DR events in matrix
format. This codification replaces the classical binary
representation. The selected parameters are the starting
time and the duration of each DR event, which allow

movement from a non-linear binary problem to a non-
linear integer problem.

The rest of the paper presents the following organi-
zation: Section 2 describes the problem description and
mathematical approach of the problem. Section 3 describes
the PSO algorithm and presents how it is tuned for this
problem. Section 4 shows a real case application. Finally,
Section 5 summarizes the main conclusions.

II. PROBLEM DESCRIPTION AND
MATHEMATICAL APPROACH
This section presents the problem and mathematical descrip-
tions. Subsection A briefly describes the discussed problem.
Subsection B deals with the decision variables and other
parameters involved in the proposed optimization problem.
Subsection C presents the objective function to be maximized
and subsection D enumerates the constraints that apply in the
calculation process.

A. PROBLEM DESCRIPTION
Flexibility is going to be essential in future power systems
and demand side management will be a key part of it.
These resources will participate under competition in oper-
ation markets. SMEs can offer their demand flexibility to
the system in a cost-effective way, but they tend to lack
the technical and human resources to effectively offer it.
There is a need to assess how consumers could maximize
the benefits associated with the participation of this flexibility
based on technical and economic parameters. These param-
eters include power demand profiles, technical restrictions
of flexible processes (maximum duration of reduction and
minimum time between them), power available for flexi-
bility (capacity band), reserve market price and electricity
supply price. It is also important to prepare these analyses
for future changes such as future quarter-hourly markets and
contractual restrictions. In this sense, the tool aims to solve
this problem and optimize the potential profits of providing
the flexibility of SME’s processes in reserve markets and
at the same time shifting electricity usage to periods when
electricity is cheaper.

B. DESCRIPTION OF THE VARIABLES
To optimize the participation of DR processes in reserve
markets the decision makers need different parameters. First,
the energy delivery (πEDtdm) and capacity (πCBtdm) prices of the
involved reserve market for the evaluation period. Second,
the power reduction that a DR event may imply during,
before and after the events. Third, the electricity prices (πetdm)
associated with the flexible consumer’s electricity supply
contract. Fourth, the initial investment (CFg) to adapt an
industrial flexible process to participate actively in reserve
markets. Fifth, the variable cost (CVgdm) associated with the
implementation of flexibility.

The main features to characterize a flexible process are
illustrated in Figure 1. Based on the tool and technical

VOLUME 8, 2020 24723



J. Rodríguez-García et al.: Maximizing the Profit for Industrial Customers of Providing Operation Services

FIGURE 1. Parameters’ description of a DR event.

requirements previously developed by authors in [12], the fig-
ure shows the power variations during, before and after a DR
event, as well as their timings. Following the methodology
illustrated in [14], the parameters of each process are charac-
teristic for eachmonth of a year considering the particularities
of each process, the type of day and the potential seasonality
linked to the effect of external weather conditions or the vari-
ations in production. This allows us to obtain the maximum
power capacity to offer (1P1

gdm), the maximum duration of
a DR event (TMax

gdm ) and the minimum time between two
consecutive DR events (TMin

gdm).
The power required during the preparation (1P2

rgdm) and
recovery (1P3

rgdm) periods of a DR event depends on the
duration of the event, type of day and flexible process, as well
as the month. Consequently, a set of formulas describe how
these parameters vary according to the mentioned variables,
but all of them depend on the duration of each specific DR
event. This feature provides the mathematical formulation
enough flexibility to optimize different types of nonlinear
responses. In the same way, similar restrictions apply to the
duration of the preparation (T2

rgdm) and recovery (T3
rgdm)

periods, as shown below:

1P2
rgdm = f

(
Drgdm

)
(3)

T2
rgdm = f

(
Drgdm

)
(4)

1P3
rgdm = f

(
Drgdm

)
(5)

T3
rgdm = f

(
Drgdm

)
(6)

Therefore, the dependency among all these variables causes
a nonlinearity in the optimization process which makes it
impossible to use linear programming algorithms without
modifying the proposed formulation.

The optimization of a flexible process occurs daily
considering the results from the previous day. Regard-
ing decision variables represented in Figure 1, two types
of variables define a DR event, Argdm and Drgdm. Argdm
holds the number of the period when the event starts,
while Drgdm represents the duration of the event expressed
as the number of time intervals. Moreover, Stgdm is an
auxiliary binary variable that indicates the start of a DR
process.

C. OBJECTIVE FUNCTION
The objective function considers the consequences of the
participation in the reserve markets to maximize the indus-
trial consumer’s performance. The first term of the objective
function relates to all income obtained for the participation
in the market. This participation can provide revenues asso-
ciated with both capacity and energy delivery. The second
term represents the variable costs which the customer incurs
for participating in the market. The final three elements
characterize the shifts in electricity consumption. While the
reduction during the event generates a net profit, the increase
of electricity consumed for preparing and recovering of the

24724 VOLUME 8, 2020



J. Rodríguez-García et al.: Maximizing the Profit for Industrial Customers of Providing Operation Services

event has a net cost.

Max

Rdm∑
r

t=Argdm+Drgdm−1∑
t=Argdm

((
πCBtdm + π

ED
tdm ∗ tPTU

)
∗1P1

gdm − CVgdm ∗ tPTU+πetdm ∗1P
1
gdm ∗ tPTU

)
−

t=Argdm−1∑
t=Argdm−T2

rgdm−1

πetdm ∗1P
2
rgdm ∗ tPTU

−

t=Argdm+Drgdm+T3
rgdm∑

t=Argdm+Drgdm

πetdm ∗1P
3
rgdm ∗ tPTU


 (7)

The objective function applies to each flexible process
(∀gεG) every day during a whole year (∀dεDm,∀mεM) in
chronological order, considering the result of the previous
day, the availability of the reducible power and the market
prices one day ahead.

D. CONSTRAINTS
The participation of the industrial consumer in the reserve
market needs to fulfill the physical constraints of the pro-
cesses, expert’s recommendations and some economic con-
straints decided by the consumer. First, the duration of any
event must be shorter than its technical time restriction.

Drgdm ≤ TMax
gdm , ∀r ∈ Rdm, g ∈ G, d ∈ Dm, m ∈ M (8)

Consecutive events must occur respecting the minimum time
between events. Therefore, the first event of the day will have
to consider the last event of the previous day, the rest of them
will consider the minimum duration between events, while
the last one will have to occur inside the day d.

A1gdm − T2
1gdm ≥ TE

gdm,

∀g ∈ G, d ∈ Dm, m ∈ M

(9)

A(r+1)gdm ≥ Argdm + Drgdm + TMin
gdm,

∀r ∈ Rdm, g ∈ G, d ∈ Dm, m ∈ M

(10)

A(r+1)gdm ≥ Argdm + Drgdm + T2
(r+1)gdm + T

3
rgdm,

∀r ∈ Rdm, g ∈ G, d ∈ Dm, m ∈ M

(11)

1 ≤ Argdm ≤ Td − Drgdm,

∀r ∈ Rdm, g ∈ G, d ∈ Dm,m ∈ M

(12)

On each day, a maximum number of DR events per process
(EMaxgdm ) and their total duration DMaxgdm is set before starting the
calculation process, considering consumers’ preferences and
market rules.

T∑
t

Stgdm ≤ EMax
gdm , ∀g ∈ G, d ∈ Dm, m ∈ M (13)

Rdm∑
r

Drgdm ≤ DMax
gdm , ∀g ∈ G, d ∈ Dm, m ∈ M (14)

The reducible power of each flexible process is available
during a specific period on a day d in a month m, and hence
the process is not able to deliver the reducible power outside
of this period.

1 ≤ Tava
tgdm, ∀t ∈

{
Argdm, Argdm + Drgdm−1

}
,

∀r ∈ Rdm , g ∈ G, d ∈ Dm,m ∈ M (15)

It is important to highlight that metaheuristic algorithms do
not work directly with constraints, and hence it is necessary
to include a penalty in the objective function if the solution is
not a feasible solution of the problem.

III. PSO’S PARAMETER ADJUSTMENTS
Metaheuristic algorithms greatly depend on the adjustment
of certain parameters to ensure efficient optimizations. It is
necessary to carry some tests to tune the algorithm. Damp-
ing factor, inertia coefficient, cognitive and social scaling
parameters (C1 and C2 respectively) are the main adjustment
parameters in the PSO algorithm. Additionally, two other
parameters have been studied to solve the problem described
above:

- Percentage of particles without movement (stop crite-
rion). This parameter expresses the number of particles
with a zero-velocity vector in an iteration. Meaning that
this swarm has reached themaximum in the iteration and
allowing us to avoid unnecessary iterations. Tuning this
parameter aims to reduce calculation time.

- Percentage of initialized particles inside the feasible
solution space. Due to the nature of the presented prob-
lem, particle initialization highly correlates with the
probability of finding a global maximum as a problem
solution. To improve it, a loop ensures a certain number
of initialized particles inside the feasible solution space.

Different tests with real data of energy and market prices
have determined the adjustment of these parameters in four
flexible adjustment processes. Each process has a different
correlation between event duration and duration of recovery
period. In this sense, process 1 has no recovery period, but
it has a cost of impact on the productivity of the process.
Processes 2, 3 and 4 have respectively a recovery period of
three, two and one times the duration of the event.

The next subsections present and discuss the obtained
results for each different test. At each comparable configu-
ration, 100 tests determined the optimal value depending on
its success rate, defined as the finding of a global maximum
of each process and the total (previously calculated using
deterministic methods). This analysis also considers other
parameters such as the total daily profit, the successful first
iteration and calculation time.

All the tests performed in this section considered the fol-
lowing default values: each swarm has 100 particles, the cog-
nitive and social scaling parameters are equal to 2, social

VOLUME 8, 2020 24725



J. Rodríguez-García et al.: Maximizing the Profit for Industrial Customers of Providing Operation Services

TABLE 1. Cognitive scaling parameter sensitivity analysis.

FIGURE 2. Daily net profit with respect to C1.

inertia coefficient value is 1 with a damping factor of 0.99,
the number of initialized particles in the feasible region and
the percentage to stop the algorithm are both 100% and the
maximum iterations are 500.

A. COGNITIVE AND SOCIAL SCALING PARAMETERS
Kennedy et al., state that the sum of both cognitive and
social scaling parameters should be a value close to four [21].
Nevertheless, in a previous work [19], the same author did
some testing and concluded that the social scaling parameter
tends to increase the probability to get caught in a local
maximum. Therefore, he proposed a solution based on the
asymmetry of the components, giving more weight to the
cognitive component.

Regarding these premises, it is necessary to adjust both
parameters considering that the feasibility space of the solu-
tions is unknown. A sensitivity analysis varying these coeffi-
cients from 0.5 to 2 showed the success rate and the dispersion
of the total net profit. The results presented in TABLE 1 vali-
date how better results arise from setting the cognitive scaling
parameter to 2 and 1.75, obtaining for both a total success rate
of 11%.

In FIGURE 2, a box and whisker plot represents the daily
net profit for each calculation. This representation shows how
with larger values of the cognitive scale parameter (2 and
1.75), the simulations present highermedians and smaller dis-
persion. In conclusion, these values provide better simulating
results. The maximum daily net profit is 195.96 e/day. For
the case of C1 equal to 2, the median value is 191.7 e/day
with a standard deviation of 3.27 e/day, while the median

TABLE 2. Social scaling parameter sensitivity analysis.

FIGURE 3. Daily net profit with respect to C2.

TABLE 3. Cognitive & social scaling parameter sensitivity analysis.

value for C1 equal to 1.75 is 191.2 e/day with a standard
deviation of 3.42 e/day.

TABLE 2 shows how the social scaling parameter (C2) is
more influential in the success rate than C1. Smaller values of
C2 considerably reduce this rate. Therefore, the best value for
C2 will be 2, which provides an average success rate of 11%.

FIGURE 3 represents the same box and whisker plot for
C2. As well as for C1, higher values (2 and 1.75) present
higher medians and smaller dispersion. These values provide
better simulating results. For the case of C2 equal to 2, the
median value is 191.9 e/day with a standard deviation of
3.42 e/day, while the median value for C2 equal to 1.75 is
191 e/day with a standard deviation of 3.32 e/day.
The last analysis of this subsection considers a matched

variation of both C1 and C2 parameters to see the effect of
their reduction. The obtained results are clearer, and the algo-
rithm obtains the best adjustment if both scaling parameters
are set in 2. Table 10 shows an average success rate of 9%,
while setting both at 1.75 will diminish it to 3%.

However, the variation between 2 and 1.75 does not affect
the total profits. As can be seen in FIGURE 4 for the case of
C2 equal to 2, themedian value is 191.3e/daywith a standard
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FIGURE 4. Inertia coefficient evolution.

TABLE 4. Computational time sensitivity analysis.

deviation of 3.41 e/day, while the median value for C2 equal
to 1.75 is 191 e/day with a standard deviation of 3.41 e/day.
Showing that not much difference in the result is observed for
this problem.

Finally, TABLE 4 shows the different time values for each
simulation. It can be concluded that varying these paraments
does not affect the computational time.

Regarding the different values obtained and following the
recommendations of Kennedy et al. [21], both cognitive and
social scaling parameters were set at 2 for the simulations in
the case study.

B. DAMPING FACTOR
The first version of the PSO algorithm did not include
this coefficient [19], which was included afterwards by its
authors [20]. The damping factor tries to balance the explo-
ration of possible optimums and the capacity of the particles
to converge into a solution. Shi and Eberhart [22] stated
that large inertia coefficients enhance the global search of
solutions, while a smaller ones improves local search. Many
authors have tried to find the best dynamic adjustment of this
coefficient.

A comparison of different strategies to dynamically obtain
this coefficient occurs in [18]. The results of this study show
that the better strategies to obtain the minimum error are
‘‘Constant Inertia Weight’’ and ‘‘Linear decreasing Inertia
Weight’’, while the least average error can be obtained with
‘‘Chaotic Inertia Weight’’. Nevertheless, the presented algo-
rithm uses a different controlled inertia weight. In this case,
a constant damping factor multiplies the inertia coefficient in
each iteration as shown in Eq (16).

ωi+1 = λωωi (16)

FIGURE 5. Daily net profit with respect to C1&C2.

TABLE 5. Dumping factor parameter sensitivity analysis.

This method provides different ways to dynamically modify
the inertia coefficient depending on the selected damping
factor. Some authors propose a damping factor of λω equal
to 1, but Kalivarapu et al. [23] propose a damping of 0.95 as
the optimal. The use of different damping factors explores the
best strategies to obtain the inertia coefficient in the presented
problem. FIGURE 4 shows the evolution of the inertia coef-
ficient at each iteration applying different damping factors.

TABLE 5 shows the best damping factor with a value
of 0.99, which provides a success rate of 19%. However,
process 2 has long recovery periods and the best damping
factor for it resulted in 0.999. This shows an interesting
research point to determine why some processes are better
suited for different damping factors.

In FIGURE 6 a box and whisker plot represent the daily
net profit for each damping factor. For all cases the median
and the standard deviation values are very similar. Therefore,
we select a value of λω equal to 0.99 with a median value
of 192 e/day and a standard deviation of 3.58 e/day. As in
the case of cognitive and social scaling factors, no mean-
ingful computational time differences exist between damping
factors.

C. INITIALIZED PARTICLES WITHIN THE FEASIBLE ZONE
Aiming to reduce the computational time of each simulation,
we performed an analysis of each of the described tests divid-
ing the algorithm in two parts. First, the algorithm initializes
the particles. Then, the algorithm performs an iterative pro-
cess to find a global maximum that ends after reaching the
maximum number of iterations or other stop criteria.

This process of analysis showed that simulation consumed
60% of the time in the loop for initializing the particles in the

VOLUME 8, 2020 24727



J. Rodríguez-García et al.: Maximizing the Profit for Industrial Customers of Providing Operation Services

FIGURE 6. Daily net profit by damping factors.

TABLE 6. Particle initialization sensitivity analysis.

FIGURE 7. Daily net profit respect initializations.

feasible zone. TABLE 6 shows how less initialized particles
reduce successful cases. This might seem obvious. However,
a closer analysis shows how passing from larger rates of
initialized particles to lower rates does not always imply a
reduction in the total number of successful cases. This might
occur because the proposed value of the initialized particles
fixes the lower limit but more particles than the proposed
number can be inside the feasible solution space.

FIGURE 7 shows the different studied parameters. Initial-
izing 100% or 75% of the particles in the feasible solution
space achieves a median daily profit of 192.2 e/day and
standard deviation of 3.41e/day and 3.21e/day respectively.
The rest of the options had values below these numbers.
Therefore, the rest of the options are only recommended to
be used when computational cost is a priority.

TABLE 7. Average particle initialization calculation time.

TABLE 8. Inactive particles sensitivity analysis.

FIGURE 8. Daily net profit with respect to Inactive particles.

TABLE 7 shows the different computing average times
for the different processes, as well as the sum of all of
them. In this respect, minor reductions in accuracy reduce
the computational time. This can help and speed up complex
models. In this case, 100% of initialized particles ensure the
reliability of the results.

D. INACTIVE PARTICLES
As previously discussed, we included an additional criterion
that revises the particle velocity in each iteration. If the
percentage of particles without movement is higher than a
set number, the algorithm considers that the search for a
global maximum has already finished. TABLE 8 represents
the success rate regarding the number of particles that must
stop in order to finish the algorithm. If fewer particles need to
have a zero velocity to stop it, success rate tends to diminish.
However, this does not seem to occur with the percentage
of 90%, which has a higher success rate than considering
100% of inactive particles.

The results are completely different when the analysis con-
siders the daily net profit. FIGURE 8 shows how in this case,
75% and 90% of inactive particles present the same median,
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TABLE 9. Inactive particles calculation time.

FIGURE 9. Daily net profit with respect to number of particles.

higher than the rest of the percentages chosen. Therefore,
both values are valid according to these results.

Finally, the analysis of the calculation time for each per-
centage of inactive particles in TABLE 9 shows that only a
significant reduction occurs if the rate is set to 25%. Never-
theless, this value considerably reduces the success rate. After
this analysis, it can be determined that a value between 75%
and 90% could be selected. Therefore, a value of 90% was
chosen according to the presented results.

E. NUMBER OF PARTICLES
The size of the swarm depends on the specific problem
solved [9]. Large numbers of particles are not necessary to
obtain good quality results. The same study states that 10 par-
ticles could be enough to solve almost any problem. However,
more complex problems need between 100 and 200 particles
to obtain reliable results. Following these considerations,
we tested swarms between 5 and 500 particles to show that
swarms with more than 200 particles do not improve the
results. However, less than 10 particles do not provide optimal
results.

TABLE 10 shows success rates regarding the number of
particles. In this case, there is a positive correlation between
number of particles and success rates. In process 1 not even
500 particles are enough to provide reliable results. More-
over, 500 particles do not guarantee a total success rate but
only 64%.

FIGURE 9 shows a similar pattern, the dispersion for
larger number of particles does not vary in excess. This
data reinforces the idea that populations of 100, 200 and
500 provide similar results. The three samples have the same

TABLE 10. Number of particles sensitivity analysis.

TABLE 11. Number of particles calculation time.

TABLE 12. Parallel computing calculation time.

median 192.2 e/day, and the standard deviation ranges from
3.44 e/day for 100 particles to 2.40 e/day for 500 particles.
These results show how the probability of obtaining the

global maximum of four processes only reached 65% with
500 particles. Moreover, the computational times invested
in each simulation showed that this time was proportional
to the swarm population in an average (0.25 s/particle) as
TABLE 11 presents.

To overcome the computational burden, parallel comput-
ing is used by sending an individual problem to each core.
Therefore, the premature convergence problem is solved by
distributing local maximums in the solution space with dif-
ferent initial positions using Parallel Particle Swarm Opti-
mization [24]. TABLE 12 presents the results obtained with
the application of parallel computing with four independent
cores. Four independent swarms of 200 particles present
much better results than one swarm of 500 particles in half
of the total computational time.

To sum up, TABLE 13 shows the final values for the PSO
parameters, which will be used in the simulation of the case
study.

IV. APPLICATION AND CASE STUDY
We apply the PPSO optimization to the participation of a
meat factory in the Spanish tertiary reserve market during
a whole year. Selecting this period and factory allows us
to compare the novel solution with a profit margin decision
making methodology presented in [12].
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TABLE 13. PSO optimization values.

Currently, no market participation is allowed to DR
resources in the Spanish operation market apart from the
interruptible service for electro intensive consumers, which
have to provide at least 5 MW. However, with the European
integration directive [25], the Spanish regulator will have to
allow demand resources to participate in operation markets in
the same conditions as generators. In this regard, most small
and medium consumers will rely on the figure of aggregators
to participate in these markets [2]. Therefore, simulating a
typical DR contract with an aggregator was established with
limits for the number of events and total hours per day. In this
case study, the total hours per day for which the consumer can
be asked to provide flexibility was set at three hours, while the
total number of events per day was four. These numbers are
only the upper limits for the optimization algorithm, which
will calculate the optimal values depending on the profits
obtained in each case. On the one hand, four events per day
determined an upper limit that the optimized solution never
reached for any process in the completely modelled year.
In case this appeared as a limiting factor, the tool accepts
an increase in the number of events. On the other hand,
a maximum value of three hours per day intends not to
affect industrial production too much and to be similar to
other demand response contracts available in several markets,
as stated above.

The different flexible processes of the meat factory were
presented in [12] and its main characteristics are summarized
in TABLE 14. This factory focuses on the drying of ham and
slicing different products. The two other flexible processes
correspond to maturing and a controllable freezing store.
Each of them provided flexibility based on its characteristics:

-Drying: disconnection of the end units in charge of con-
trolling the drying process, whilemaintaining the temperature
and relative humidity between preestablished levels. This
process entails a production cost due to possible delays in the
industrial process even though no delay could be observed
during the different tests performed.

-Maturing: disconnection of the end units in charge of
maturing the ham. This stage is characterized by larger drying
periods.

-Freezing store: thermally controllable loads inside the
freezing store, which has thousands of tons of frozen product
inside it, providing a vast thermal inertia.

-Slicing: disconnection of the air handling units in the
slicing area allowed by the thermal inertia of the installations.

TABLE 14. DR processes characteristics.

TABLE 15. Electricity tariff prices (e/kWh).

To make the different simulations and compare, we use
data from 2013. A flexibility study in the factory provided
all the data. The electricity tariff contracted by the factory
has 6 different periods with fixed prices, corresponding to
a 6.1 contract under Spanish legislation [26]. The following
table shows the prices used in the simulation.

Although the studied company had an electricity supply
contract based on fixed prices, the simulation tool internally
works as if they were quarter-hourly prices, so there is no
difference in the search for the maximum daily profit when it
works with daily wholesale market prices.

Regarding the different prices in the operation, FIGURE 11
shows the monthly distribution of hourly prices of upwards
tertiary energy reserve in 2013 [27], although the tool also
works as if they were quarter-hourly prices. This resource
was active between 33% and 59% hours during different
months. The maximum price reached was 140 e/MWh in
January, while the maximum median price was reached in
December with 93 e/MWh.
With these parameters, the different PPSO evaluated the

results arising from optimizing the daily participation of each
one of the four processes throughout the 365 days of a year in
the market. FIGURE 10 shows the results obtained with the
methodology related to the margin of decision considering
20% profit over the flexibility implementation. This percent-
age allows us to adjust the minimum offer price for which
each flexible process triggers its participation in the market.
This rate obtained the best result in the profit margin tool.
The larger net profit by energy reduced in a month ascended
to 102.3 e/MWh in December, while the annual average is
76.2 e/MWh. This ratio is the difference between incomes
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TABLE 16. Main economic indicators summary.

FIGURE 10. Monthly profits without PSO optimization.

FIGURE 11. Monthly tertiary reserve prices.

and variable costs. In this case, the annual reduced energy is
513.4 MWh, which produces a total profit of 39,123 e after
earning 73,525 e and has a total variable cost of 34,402 e.
FIGURE 12 presents the results obtained with the PPSO

simulation tool. This figure also shows December as the most
profitable month. The net profit per energy reduced rises
to 151.4 e/MWh instead of the previous 102.3 e/MWh,
while the annual average increases from 76.2 e/MWh to
106 e/MWh. These results present an increase of approxi-
mately 40% of the unitary profit compared with the profit of
the previous tool. With the PPSO simulation tool, the annual

FIGURE 12. Monthly profits with PSO optimization.

reduced energy is 513.4 MWh, which produces a total profit
of 53,905 eafter earning 87,452 eand having a total variable
cost of 33,547e. The initial investment costs (

∑G
g CFg) nec-

essary to prepare the identified processes are approximately
44,500 e. These costs include the study and the flexibility
validation, the required monitoring and control equipment,
including the modification of existing control systems and
other costs on certification processes and documentation.

To show the profitability of industrial consumers partici-
pating in tertiary reserve markets, different economic indi-
cators analyzed the participation. The Net Present Value
(NPV), Internal Rate of Return (IRR) and the Discounted
Payback Period (DPP) are analyzed for a 3-year period.
TABLE 16 shows the different values obtained for each
process of these indicators. For a typical 10% investment
rate (r), the NPV has risen from 52,793 e to 89,553 e,
meaning a 70% increase on capital profitability. The values
obtained for the IRR show an improvement in all the pro-
cesses. In total, the IRR has grown from 70% to above one
hundred per cent (108%).

With the same discount rate, the DPP of all the processes
decreases, reaching in total an improvement from 1.3 years
to just 0.9 years. These results exhibit an easy commercial
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exploitation of these flexible resources by third agents such
as Virtual Power Plants or aggregators due to the large profit
margins observed.

Paying attention to each individual process, it is important
to note that the process with the largest improvement is the
one with the largest recovery period, maturing. For a typical
10% investment rate (r), the NPV of this process has risen
from 2,362 e to 12,420 e and the DPP has reduced from
2.5 years to 1.4 years, as well as the IRR having grown from
20% to around 60%. This is one of the stronger points of the
PPSO simulation tool compared with its predecessor.

The PSO algorithm was implemented in MATLAB from
scratch and solved with a machine with 8 GB RAM and
Intel(R) Core (TM) i7-7700 CPU clocked at 3.6 GHz with
4 main cores.

V. CONCLUSION
The massive integration of renewable energy sources in
power systems requires an increase in the use of flexible
resources from both the generation and demand side. These
resources will participate, in a competitive context, in oper-
ation markets to guarantee the security of supply of the
system. Small and medium industrial consumers can offer
their demand flexibility to the system in a cost-effective way.
However, it is still necessary to develop tools to evaluate and
exploit the potential profit associated with the participation
of industrial consumers in these markets.

This paper proposes a new simulation tool that maximizes,
for a very wide range of multi process flexible industries,
the profit obtained throughout the use of flexible demand of
industrial processes in operation markets. This tool selects
the best daily participation strategy using a metaheuristic
algorithm based on PPSO, which allows us to maintain
the technical and economic complexity associated with the
characterization of demand response of industrial processes.
Moreover, the use of a metaheuristic technique also facilitates
the inclusion in the optimization algorithm of any complex
function linked to flexible process behavior such as the ones
related to the preparation and the recovery periods of a DR
event shown in the section 2 mathematical approach.

The formulation of the proposed optimization algorithm
considers a new codification of the decision variables to move
from a non-linear binary problem to a non-linear integer
problem, in which the decision variables are the starting time
and the duration of each DR event. This codification allows
the use of a PSO algorithm that would otherwise be extremely
difficult to make use of and facilitates the consideration of the
technical constraints in the optimization algorithm associated
with flexible resources and restrictions of participating in
operation markets.

The article also presents a comparison with a previous
advanced tool used to solve the proposed problem in order
to validate the solution, by using a multi-process application
case in the industry. In this case study, both tools analyzed
the participation of a meat factory in the Spanish tertiary
reserve market during a whole year using a quarter-hourly

time resolution. According to the results of the case study,
the new tool can enhance the maximum profit per unit of
reduced energy up to 40%, which considerably improves the
economic results.

Regarding the results of each individual process, the simu-
lation tool based on PPSO significantly improved the eco-
nomic indicators associated with longer recovery periods.
This is because the previous tool only considered the possi-
bility to reduce the demand at time periods when additional
specific payment for reserve services was offered by the
system operator. In contrast, the new tool analyzes if it is
profitable to reduce the power also depending on the energy
prices, even if there is no payment for ancillary services.

The inclusion of the daily optimization algorithm logically
results in an increment in the overall simulation time in
comparison with the previous tool. Nevertheless, this incre-
ment does not represent any restrictive burden to the use of
the tool according to its main goal. Moreover, the parallel
computing was only applied to the optimization algorithm,
and hence the parallelization of other calculation processes
of the simulation tool will considerably improve this aspect.
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