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ABSTRACT In this work, the parametric identification of a cooling system in a PEM (proton exchange
membrane) fuel cell is carried out. This system is multivariable and nonlinear. In this type of system
there are different objectives and the unmodeled dynamics cause conflicting objectives (prediction errors in
each output). For this reason, resolution is proposed using a multi-objective optimization approach. Nearly
optimal alternatives can exist in any optimization problem. Among them, the nearly optimal solutions that
are significantly different (that we call nearly optimal solutions nondominated in their neighborhood) are
potentially useful solutions. In identification problems, two situations arise for consideration: 1) aggregation
in the design objectives (when considering the prediction error throughout the identification test). When an
aggregation occurs in the design objectives, interesting non-neighboring (significantly different) multimodal
and nearly optimal alternatives appear. These alternatives have different trade-offs in the aggregated
objectives; 2) new objectives in decision making appear. Some models can, with similar performance in
the design objectives, obtain a significant improvement in new objectives not included in the optimization
phase. A typical case of additional objectives are the validation objectives. In these situations, nearly optimal
solutions nondominated in their neighborhood play a key role. These alternatives allow the designer to
make the final decision with more valuable information. Therefore, this work highlights, as a novelty,
the relevance of considering nearly optimal models nondominated in their neighborhood in problems of
parametric identification of multivariable nonlinear systems and shows an application in a complex problem.

INDEX TERMS Multi-objective, nearly optimal, multivariable nonlinear system identification, PEM
fuel cell.

I. INTRODUCTION
Many engineering problems are usually solved using opti-
mization techniques [1]–[4]. Often these problems have
different and conflicting objectives. Therefore, it is use-
ful to treat them as multi-objective optimization problems
(MOP [5]–[8]). The solution to an MOP is a set of optimal
solutions (Pareto front) where the designer can analyze the
performance balance of each to decide the solution that he
considers most adequate [7].

The associate editor coordinating the review of this manuscript and

approving it for publication was Di He .

For the parametric identification of multivariable models,
the objectives to be optimized are related to the errors on each
of the outputs. These errors are obtained by comparing the
model predictions with experimental data from the process.
Typically, tests are carried out to identify and validate the
model parameters [9]. The input signals for the process are
planned (multistep, for example) to enable the system to reach
the different desired operating points. Multivariable models
have several outputs, and therefore different objectives nat-
urally arise for simultaneous optimization. Due to unmod-
eled dynamics, these objectives typically conflict. Therefore,
an MOP enables the designer to analyze the exchange of
performance for each model for each design objective.
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In an MOP, in addition to the optimal solutions, there are
nearly optimal alternatives that can be useful for the designer
(also called approximate or ε-efficient solutions [10]–[12])
but these alternatives are ignored in a classic MOP resolu-
tion. Among them, the solutions with similar performance
to the optimal ones in the objective space, and that differ
significantly in the parameter space, are the really useful
alternatives for the designer [13]–[15]. Under our approach,
these solutions are the nearly optimal solutions nondominated
in their neighborhood (potentially useful alternatives [14]).
These alternatives provide diversity to the set of solutions
obtained without excessively increasing the number of alter-
natives to be analyzed in the decision stage. In [16], [17],
the multi-objective approach when considering these alter-
natives has demonstrated its usefulness for control tuning
problems. For example, in [16], the nearly optimal solutions
nondominated in their neighborhood have different charac-
teristics than the optimal ones (robustness to uncertainty in
the model, performance in a new scenario, etc.) and, in this
particular case, the designer preferred a nearly optimal solu-
tion rather than an optimal one. In any case, these alternatives
provide valuable information for the designer. This greater
diversity enables the designer to make the final decision
wisely. In this work we propose to use this methodology
in the field of system identification. Specifically, in the
parametric identification of nonlinear multivariable dynamic
systems.

From an optimization point of view, there are two situations
where the nearly optimal solutions nondominated in their
neighborhood are especially useful:

1) When the design objectives are formed with the
aggregation of partial objectives. When this occurs,
the appearance of multimodalities and nearly opti-
mal non-neighboring solutions is common. This is
due to the apparition of significantly different alter-
natives (shown by different performance in the partial
objectives) that present the same or similar value for
the design objectives. In fact, these alternatives could
be optimal solutions if the partial objectives were opti-
mized independently.

2) When new objectives are incorporated in the decision-
making phase. There are usually different solutions
with similar values for the design objectives. In this
scenario, the designer can take into account new objec-
tives, not contemplated in the optimization phase,
tomake a better informed final decision. In this context,
the nearly optimal alternatives nondominated in their
neighborhood can provide a significant improvement in
these new objectives, and obtain a similar performance
in the design objectives.

Therefore, in both cases, the nearly optimal solutions non-
dominated in their neighborhood can be potentially useful.
Therefore, these solutions are worthy of study at the decision-
making stage. These two situations also occur when we
approach the identification of nonlinear multivariable sys-
tems using multi-objective optimization:

1) The phenomenon due to the aggregation of par-
tial objectives appears naturally when, for example,
the error is evaluated at different operating points in
the same test. It is to be expected that there are always
unmodelled dynamics and this may cause a model to fit
well at one operating point, but not so well at another
point. Therefore, there is an aggregation of the error on
each different operating point. The model could never-
theless be an interesting solution but it may not be in
the Pareto front solutions because of small differences
in the objective functions.

2) New objectives appear naturally in the decision-making
phase when the models obtained must be validated.
In this phase, the prediction errors of the models can
be analyzed using an experimental validation dataset
and this can be considered as a new objective. There
could be nearly optimal models nondominated in their
neighborhood with a significant improvement in these
non-optimized objectives, and obtaining a similar per-
formance in the design objectives. Therefore, these
models are especially relevant alternatives.

This work shows as a novelty the usefulness of the
nearly optimal solutions nondominated in their neighbor-
hood in the parametric identification of nonlinear multivari-
able systems. In this paper, we model a cooling system for
a proton exchange membrane (PEM [18], [19]) fuel cell
(also named PEMFC). The experimental data and nonlinear
model described in [20] are employed. The PEMFC stack is
part of a micro-combined heat and power (µ-CHP) system
[21]–[24].µ-CHP systems are cogeneration systems oriented
to domestic use and produce thermal and electrical energy
simultaneously. Fuel cells are a promising technology for
such systems [25]. The durability, cost, reliability, and energy
efficiency of the stack largely depend on the correct design of
its cooling control system [26]–[29]. For an adequate design
of the control system it is necessary to have an accurate
nonlinear model [30]–[33]. By using the methodology pre-
sented in this paper, optimal and nearly optimal models that
are nondominated in their neighborhood are obtained using
the evolutionary nevMOGA [14]. These models provide the
designer with significantly different but relevant alternatives
and the designer can make a final decision using this addi-
tional valuable information. This methodology can deal with
problems that have a large number of objectives and deci-
sion variables. In this context, it is necessary to define an
appropriate configuration of nevMOGA so that the number
of solutions to be obtained is not excessive, otherwise the
computational cost increases considerably. This can be done,
for example, by reducing the nearly optimal zone, or by
increasing the neighborhood, among others. The MOP dis-
cussed in this work has a large number of decision variables.

This work is structured as follows. In Section II some basic
multi-objective backgrounds are presented. In Section III,
the nevMOGA algorithm used in this work is described.
The utility of the nearly optimal solutions nondominated in
their neighborhood in some particular cases are demonstrated
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in Section IV. In Section V, the parametric identification
of nonlinear multivariable dynamic system as MOPs and
the results obtained using nevMOGA are presented. Finally,
the conclusions are presented in Section VI.

II. MULTI-OBJECTIVE BACKGROUND
A multi-objective optimization problem can be defined as
follows:1

min
x∈Q

f (x) (1)

where x = [x1, . . . , xk ] is defined as a decision vector in the
domain Q ⊂ <k and f : Q→ <m is defined as the vector of
objective functions f (x) = [f1(x), . . . , fm(x)]. The domain Q
is defined by the set of constraints on x. For instance (but not
limited to2):

xi ≤ xi ≤ xi, i = [1, . . . , k] (2)

xi and xi are the lower and upper bounds of x components.
An MOP obtains, as a result, a set of optimal solutions

(Pareto set, PQ). PQ contains solutions which are nondom-
inated by any other.

Definition 1 (Dominance [34]): A decision vector x1 is
dominated by any other decision vector x2 if fi(x2) ≤ fi(x1)
for all i ∈ [1, . . . ,m] and fj(x2) < fj(x1) for at least one j,
j ∈ [1, . . . ,m]. This is denoted as x2 � x1.
Definition 2 (Pareto Set PQ): is the set of solutions in Q

that is nondominated by another solution in Q:

PQ := {x ∈ Q| 6 ∃x′ ∈ Q : x′ � x}

Definition 3 (Pareto Front f (PQ)): given a set of Pareto
optimal solutions PQ, the Pareto front is defined as:

f (PQ) := {f (x)|x ∈ PQ}

In addition to Pareto set solutions, there are a set of nearly
optimal solutions (PQ,ε Definition 5) that might be interesting
for the designer.
Definition 4 (−ε-Dominance [35]): define ε = [ε1, . . . ,

εm] as the maximum acceptable performance degradation.
A decision vector x1 is −ε-dominated by another decision
vector x2 if fi(x2) + εi ≤ fi(x1) for all i ∈ [1, . . . ,m] and
fj(x2) + εi < fj(x1) for at least one j, j ∈ [1, . . . ,m]. This is
denoted by x2 �−ε x1.
Definition 5 (Set of Nearly Optimal Solutions, PQ,ε [15]):

is the set of solutions in Q which are not −ε-dominated by
another solution in Q:

PQ,ε := {x ∈ Q| 6 ∃x′ ∈ Q : x′ �−ε x}

Nearly optimal solutions that differ significantly from the
optimal (in the parameters space) are potentially useful alter-
natives. We define potentially useful alternatives as nearly

1A maximization problem can be converted into a minimization problem.
For each objectives to be maximized max fi(x) = −min(−fi(x))will be
performed.

2Any other constraints could be introduced in a general MOP

optimal solutions nondominated in their neighborhood (PQ,n
Definition 8). With them, the designer can obtain greater
diversity which translates into better informed decision
making.
Definition 6 (Neighborhood): define n = [n1, . . . , nk ]

as the maximum distance between neighboring solutions.
Two decision vectors x1 and x2 are neighboring solutions
(x1 =n x2) if |x1i − x

2
i | < ni for all i ∈ [1, . . . , k].

Definition 7 (n−Dominance): a decision vector x1 is
n−dominated by another decision vector x2 if they are neigh-
boring solutions (Definition 6) and x2 � x1. This is denoted
by x2 �n x1.
Definition 8 (Set of Nearly Optimal Solutions Nondomi-

nated in Their Neighborhood PQ,n [14]): is the set of solu-
tions of PQ,ε which are not n−dominated by another solution
in PQ,ε :

PQ,n := {x ∈ PQ,ε | 6 ∃x′ ∈ PQ,ε : x′ �n x}

Obtaining the defined sets (PQ, PQ,ε and PQ,n) is often inac-
cessible computationally. This is because they can contain
infinite solutions. Therefore, we usually look for discrete sets
P∗Q, P

∗
Q,ε and P

∗
Q,n that adequately characterize PQ, PQ,ε and

PQ,n respectively.
Figure 1 shows an example of an MOP. There is a set of

optimal solutions (SET1 and SET3) located in neighborhood1
and neighborhood2. In addition, there is a set of nearly
optimal solutions (gray area). Both sets form PQ,ε . Among
them, as already mentioned, potentially useful solutions are
those nondominated in their neighborhood. In this example,
these alternatives are SET1, SET2, SET3 and SET4. It can be
seen that there are nearly optimal alternatives that are sig-
nificantly different from the optimal ones (neighborhood3).
A knowledge of this neighborhood gives the designer greater
diversity and enables a better informed final decision to be
made. In this article, for obtaining potentially useful solu-
tions, we use the algorithm nevMOGA [14] which will be
described in Section III.

III. nevMOGA ALGORITHM
nevMOGA [14] is an evolutionary algorithm that provides,
in addition to optimal solutions, nearly optimal solutions
nondominated in their neighborhood (P∗Q,n). This algorithm is
based on the ev-MOGA algorithm [36]. nevMOGA has four
populations: P(t); Front(t); SubFront(t); and G(t). P(t) is the
main population and has NindP individuals (user-defined).
This population should converge towardsPQ,n in a distributed
manner. Front(t) is the file where a discrete approximation of
the Pareto set (P∗Q). SubFront(t) contains a discrete approxi-
mation of the nearly optimal solutions nondominated in their
neighborhood (P∗Qn−Q = P∗Q,n \ P

∗
Q). The size of these two

populations is variable but linked to the number of boxes
defined by the user (n_box). G(t) is an auxiliary population
and has NindG individuals (user-defined taking into account
that it must be a multiple of 4). This population stores the new
individuals generated in each iteration.
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FIGURE 1. Visualization of an MOP in the objective space (on the left) and parameter space (on the right). The sets SET1 and SET3 are the
optimal solutions. SET2 and SET4 are the nearly optimal solutions nondominated in their neighborhood.

Algorithm 1 shows the main pseudocode of nevMOGA
(see all details in [14]). Initially, the empty Front(t) and
SubFront(t) sets are created. Subsequently, the population
P(t) is created randomly (the user may establish all or part of
this initial population). The inclusion of individuals of P(t) in
the Front(t) and SubFront(t) populations are then checked.
In each iteration, the following steps are then performed.
First, the population G(t) is created. Individuals from this
population are created by crossing and mutating individuals
fromFront(t), SubFront(t) andP(t) populations. The individ-
uals of P(t) are chosen taking into account density (sparsely
populated solutions are preferred). In this way, we encourage
the evolution of less populated areas. Second, the inclusion of
G(t) individual in the Front(t) and SubFront(t) populations
are checked. Finally, the population P(t) is updated.

Algorithm 1Main Pseudocode of nevMOGA
1: t := 0;
2: Front(t) := ∅; SubFront(t) := ∅;
3: Create initial population P(t) randomly
4: Include individuals from P(t) in Front(t) if applicable
5: Include individuals from P(t) /∈ Front(t) in SubFront(t)

if applicable
6: for t := 1:Number of iterations do
7: Create population G(t)
8: Include individuals from G(t) in Front(t) if applica-

ble
9: Include individuals from G(t) /∈ Front(t) in
SubFront(t) if applicable

10: Update P(t) with individuals from G(t)
11: end for

For the use of nevMOGA it is necessary to define some
parameters (see Table 1), and some have a default value
in the implementation. Two of these parameters depend
on problems and are especially important for a useful
characterization of nearly optimal set nondominated in

TABLE 1. Parameters of nevMOGA.

their neighborhood. First, parameter ε is required to define the
maximum acceptable objective degradation; second, parame-
ter n defines the size of the neighbourhood. If the knowledge
necessary for its definition is unavailable, there is a simple
procedure for calculating this parameter from a reference
solution [14]. Furthermore, it is recommended to define the
population sizes P(t) (NindP) and G(t) (NindGA), as well as
the number of generations to be carried out (Generations).
If these values are not defined the nevMOGAwill use default
values. The parameter n_box defines the spread of the Pareto
front in the objective space by dividing each dimension of
the objective space into as many boxes as desired. Only one
Pareto optimal solution can exist in each box. The definition
of an initial population (subpopIni) is optional and randomly
defined if not supplied.

IV. USEFULNESS OF THE PQ,n SET
Asmentioned, nearly optimal alternatives in anMOP solution
can be useful to the designer. However, its usefulness is even
more relevant to problems where:

1) There are design objectives formed by the aggregation
of partial objectives.

2) There are objectives not contemplated in the optimiza-
tion phase that are incorporated in the decision phase
(due to the designer’s decision to reduce computational
resources, or to help in the final decision).

In this section, we are going to carry out a detailed analysis
of these mentioned problems, where they can appear in model
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identification problems, andwhy nearly optimal solutions can
supply useful information. For this analysis, the benchmark
defined in [13] will be used because even if it is not derived
from a model identification problem it helps show the poten-
tial of nearly optimal solutions. In the next section, a real
identification problem is studied.

The benchmark is defined as:

min
x
f (x) (3)

f (x) = [f1(x), f2(x)]

f1(x) = (x1 − t1(c+ 2a)+ a)2 + (x2 − t2b)2 + δt
f2(x) = (x1 − t1(c+ 2a)− a)2 + (x2 − t2b)2 + δt (4)

where

t1 = sgn(x1)min
(⌈
|x1| − a− c/2

2a+ c

⌉
, 1
)

t2 = sgn(x2)min
(⌈
|x2| − b/2

b

⌉
, 1
)

and

δt =

{
0 for t1 = 0 and t2 = 0
0.1 else

subject to:

x = [−8 − 8]

x = [8 8]

using a = 0.5, b = 5 and c = 5.
This MOP contains one global Pareto set:

P0,0 = [−0.5, 0.5]x{0} = PQ (5)

as well as the following eight local Pareto sets:

P−1,−1 = [−6.5,−5.5]x{−5}
P0,−1 = [−0.5, 0.5]x{−5}
P1,−1 = [5.5, 6.5]x{−5}
P−1,0 = [−6.5,−5.5]x{0}
P1,0 = [5.5, 6.5]x{0}
P−1,1 = [−6.5,−5.5]x{5}
P0,1 = [−0.5, 0.5]x{5}
P1,1 = [5.5, 6.5]x{5}


PQn−Q (6)

Once the benchmark has been defined, it is necessary to
define the parameters of nevMOGA ε (maximum acceptable
degradation) and n (neighborhood). By knowing the global
and local Pareto set, the definition of these parameters is
easier. Since the design objectives lack physical meaning,
we define ε = [0.15 0.15] so that the eight local Pareto sets
in the objective space (f (PQn−Q)) are found in the nearly opti-
mal set. Secondly, we define n applying the process described
in [14]with the defined ε parameter and the reference solution
xR = [0 0]. Thus, n = [0.13 0.38] is defined. With
these parameters, the set PQ,n (set of nearly optimal solutions
nondominated in their neighborhood) is defined as:

PQ,n := PQ ∪ PQn−Q := P0,0 ∪ P−1,−1 ∪ P0,−1 ∪

P1,−1 ∪ P−1,0 ∪ P1,0 ∪ P−1,1 ∪ P0,1 ∪ P1,1 (7)

A. AGGREGATION OF OBJECTIVES
In systems identification problems, an experimental test is
performed to obtain the dynamic behaviour of the process.
In nonlinear process modelling, this test is usually made up
of multi-step input signals to drive the process through the
various operation points that the model must predict.

Design objectives usually measure the output prediction
error (differences between model behavior and experimental
test) throughout the defined identification test. Thus, each
design objectives is actually formed by an aggregation of the
errors at the different operation points covered by the test.
Especially, in nonlinear systems where the complexity of the
dynamic behavior means that the mathematical models have
unmodeled dynamics, and the models with a good fit for a
given operation point obtain a poorer behavior on different
operation points. This problem is even worse in multivariable
systems, the problem is increased by the number of variables.

Suppose we want to identify a system that has two outputs
and the designer has defined an identification test that covers
three different operation points. A simplifiedMOPwhere two
design objectives tominimize are defined to quantify the error
on each of the two outputs of the system. In this scenario,
an aggregation occurs in the design objectives. Each one,
in reality, is formed by the aggregation of the error on each
of the three operation points. To avoid this aggregation, each
operating point and variable should be evaluated separately
with dedicated objectives and test. However, this approach
increase the MOP size and complexity.

It is usual to obtain significantly different models with
similar values in design objectives. For example, amodel with
excellent performance on the first operation point could have
a worse performance on the third operation point, another
model with poor performance on the first operation point
could have an excellent performance on the second operation
point and so on. The main problem is that in the simplified
MOP (obtained by aggregation of objectives) most of these
alternatives could disappear from the Pareto set because of
small differences in the design objectives. Many of these
solutions could have been members of the Pareto set if the
MOP had not been simplified.

From the point of view of optimization, the aggregation
of partial objectives generates multimodalities and nearly
optimal non-neighboring solutions. Revealing some of these
hidden solutions can provide potentially useful alternatives
for the designer at the decision stage.

Let’s analyze the case of aggregated partial objectives
through the benchmark defined previously. The PQ,n defined
in the equation (7) is the set of optimal and nearly optimal
solutions nondominated in their neighborhood. To analyze
the aggregated partial objectives, we now define the problem
with a single design objective f (x), where the two objectives
previously defined (now playing the role of partial objectives)
in the benchmark are added:

min
x
f (x)

f (x) = f1(x)+ f2(x) (8)
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FIGURE 2. Benchmark solved as a single objective problem where f (x) = f1(x)+ f2(x). x1 is the optimal solution to the problem and the
yellow area is the nearly optimal area PQ,ε with the new approach. The gray area corresponds to the projection of the nearly optimal
solutions PQ,ε of the original MOP of two objectives, on the objective f (x).

FIGURE 3. Comparison of the set PQ,ε defined on the problem with a single objective (f (x) = f1(x)+ f2(x)) and multi-objective
(f (x) = [f1(x) f2(x)]).

In this problem x1 is the optimal solution. Figure 2 shows
this optimal solution and some additional information. Many
solutions from the original Pareto front (MOP with two
design objectives) become nearly optimal solutions in the new
scenario. For instance, with ε = 0.3 the nearly optimal set
(PQ,ε) is the yellow area. Additionally, in gray, the projection
of PQ,ε of the original 2D MOP is shown. Therefore, if only
the optimal set is obtained (in this case x1), many potentially
useful alternatives would be lost. By obtaining the nearly
optimal solutions nondominated in their neighborhood some
of this missed information can be recovered.

Figure 3 shows the zone of nearly optimal solutions PQ,ε
for the scenario of one objetive – but on the plane (f1, f2).
This area in the objective space is the zone defined between
the lines f1(x)+ f2(x) = f (x1) and f1(x)+ f2(x) = f (x1)+ ε

with ε = 0.3 (ε chosen to respect the area PQ,ε defined for
the original MOP gray area).

The neighborhood of the problem is the same as in the
original MOP (n = [0.13 0.38]). The neighborhood of
x1 is established (see Figure 4). Following our approach,
the solution neighbors to x1 are dispensable solutions (similar
to x1 but with a worse objective value). Of the remain-
ing nearly optimal solutions, the x2 and x3 solutions are
the best solutions (solutions with the lowest value of f (x),
see Figure 4).

This iterative process enables obtaining our set of interest
P∗Q,n for the proposed MOP (see Figure 5). As can be seen,
the set P∗Q,n obtained for the MOP with a single design
objective (f (x) = f1(x) + f2(x)), has managed to charac-
terize to a great extent the set PQ,n of the original MOP
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FIGURE 4. Procedure for obtaining the discrete set P∗Q,n.

FIGURE 5. Discrete set P∗Q,n = P∗Q ∪ P∗Qn−Q with ε = 0.3 and n = [0.13 0.38] obtained for the benchmark with a aggregated partial objectives.
Despite the aggregation, the ideal set PQ,n = PQ ∪ PQn−Q defined for the problem with two objectives, is largely characterized.

(f (x) = [f1(x) f2(x)]). In addition, this characterization could
have a greater number of solutions with a smaller neigh-
borhood. In this case, the weight of both partial objectives
is the same 1 · f1 and 1 · f2, and therefore both have the
same importance for the designer. However, the yellow area
(PQ,ε for the MOP with a single objective) can be balanced in
one sense or another, modifying the weights used to add the
partial objectives according to the designer’s preferences (see
Section IV-B for particular case of aggregation with weights
1 · f1 and 0 · f2).
Therefore, in an MOP when aggregating partial objectives,

useful information from the original MOP (without aggrega-
tion) is lost. However, some of this information is contained
in the set PQ,n, and can be retrieved by characterizing this set.

B. EXCLUSION OF DESIGN OBJECTIVES
When carrying out the final decision of anMOP it is common
to study characteristics not included in the design objectives

used for optimization. These new features or objectives are
not included in the optimization phase due to:
1) Designer decision: it is common to have objectives/

characteristics that you do not want to influence the
optimization process. This is the case, for example,
of the objectives related to a validation test in a model
identification problem.

2) Resource limitation: there are objectives that cannot
be included in the optimization phase due to resource,
time, or economic limitations. For instance, checking
robustness in model identification of nonlinear sys-
tems, or validating a real plant. These new objec-
tives can be computationally or economically very
expensive.

3) Help decision making: an MOP could have a large
number of objectives to consider. This fact, increases
the number of optimal solutions in the Pareto front and
makes it difficult to analyze. In this scenario, somemay
be of secondary or unknown importance.
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FIGURE 6. Comparison of the sets PQ,ε on the problem with a single objective (f (x) = f1(x)) and multi-objective (f (x) = [f1(x) f2(x)]).

In all these scenarios, analyzing these objectives in the
decision phase can provide relevant information for the
designer. Between two alternatives (for example, one optimal
and one nearly optimal) with very similar performances in
the design objectives, an improvement (which can be quite
significant) in some characteristic not included in the design
objectives can decide the final choice depending on designer
preferences.

Suppose we have again defined the benchmark in
Section IV. Now, a single design objective f (x) = f1(x) is
defined. The objective f2(x) does not take part in the opti-
mization process, and its evaluation will only be considered
after the optimization in the decision-making process:

min
x
f (x)

f (x) = f1(x) (9)

Again, in this scenario we only obtain a single optimal
solution (x1, see Figure 6). Therefore, if we only obtain the
optimal solution we would lose a lot of useful information.
In fact, there are nine neighborhoods (in the parameter space)
that produce similar values of f1(x) (yellow areas, PQ,ε).
All these solutions could be useful and could produce good
values of the objective not included in the optimization
phase (f2(x)).
For comparison with the original 2DMOP, Figure 6 shows

PQ,ε and f (PQ,ε) represented on the 2D objectives space
(yellow areas). This set, in the objective space, is delimited
by the optimal solution f (x1) and the line f1(x) = f (x1) + ε
with ε = 0.15 (ε chosen to respect the zone PQ,ε defined for
the original MOP).

We define the same neighborhood as in the multi-objective
problem (n = [0.13 0.38]), and so the neighborhood of
x1 is established around x1. These solutions are similar to
x1 in their parameters, and have a worse objective value
f (x) and are therefore discarded. The solutions with the
best performance from among the rest of the nearly optimal

solutions are chosen. This iterative process (analogous to the
process carried out in the previous section) enables obtain-
ing the discrete set P∗Q,n. This set can characterize, broadly,
the set PQ,n of the original MOP with two design objectives
(see Figure 7).
In P∗Q,n there are solutions that are worse for the design

objective, but better than x1 with respect to the objective
not included in the optimization phase f2, for example x4

and x5. In fact, x4 achieves a significant improvement over
f2 in exchange for a slight loss over f1. x5 is very different
from x1 and x4 in the parameter space, and yet has a similar
performance to both. Therefore, these solutions (x4 and x5)
are significantly different from each other and are worthy
of study as they have nearly optimal behavior on the design
objective and achieve a better performance (even significantly
better) for the objective not optimized f2(x).

V. IDENTIFICATION OF THE COOLING SUBSYSTEM OF
A µ-CHP SYSTEM BASED ON A PEMFC
In this section, the cooling system of a PEMFC will be iden-
tified. The dynamic and nonlinear model to be identified is
based on first principles. The model is completely described
in [20].3 The PEMFC cooling system to be identified is part
of a real process that simulates a µ-CHP system [37], [38].
The model parameters will be adjusted and validated with
experimental data.

The model inputs are (represented in red in Figure 8):
• Fa: PEMFC air flow, m3/s.
• Tamb: Ambient temperature, ◦C .
• Tain : PEMFC air inlet temperature, ◦C .
• v: Voltage supplied by the PEMFC, V .
• i: Current supplied by the PEMFC, A.
• Fw1 : Primary circuit flow rate, m3/s.
• Fw2 : Secondary circuit flow rate, m3/s.
• R: Radiator, on/off.

3Available in https://riunet.upv.es/handle/10251/118336
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FIGURE 7. Discrete set P∗Q,n = P∗Q ∪ P∗Qn−Q with ε = 0.15 and n = [0.13 0.38] with a single objective. Despite the exclusion of the optimization
phase of f2, the ideal set PQ,n = PQ ∪ PQn−Q defined for the problem with two objectives, is largely characterized.

FIGURE 8. Inputs and outputs of the cooling system of a µ-CHP system.

The outputs of the model are (represented in blue in the
Figure 8):
• Twout : PEMFC water outlet temperature, ◦C .
• Twin : PEMFC water inlet temperature, ◦C .
• Tt2: Temperature inside the tank 2, ◦C ,
• Taout : PEMFC outlet air temperature, ◦C .
• Tsin : Shell exchanger inlet water temperature, ◦C .
• Tsout : Shell exchanger outlet water temperature, ◦C .
The model has 30 parameters to estimate (see Table 2,

parameters described in detail in [20]). To adjust the
model parameters, an identification test (approximately 2.5 h
long) that was carried out on the real plant will be used
(see Figure 9). In this test, steps are introduced at different
inputs (electricity demand, the flows of the primary and sec-
ondary circuits of the cooling system, and demand for thermal
energy). The MOP is defined as follows:

min
x
f (x) = [f1(x) f2(x) f3(x)] (10)

subject to:

x ≤ x ≤ x

FIGURE 9. Identification test of the cooling process of a µ-CHP system.

where:

f1 =
1
T

∫ T

0

∣∣∣T̂wout (t)− Twout (t)∣∣∣ dt (11)

f2 =
1
T

∫ T

0

∣∣∣T̂win (t)− Twin (t)∣∣∣ dt (12)

f3 =
1
T

∫ T

0

∣∣∣T̂t2(t)− Tt2(t)∣∣∣ dt (13)

T = 8087s is the duration of the identification test, variables
with circumflex accent are process outputs, variables without
circumflex accent are the model outputs, x the parameter
vector:

x = [Vt1 htmin htmax hsmin hsmax Vp1 hp1loss Vw Va ka
hfc2max hfc2min hfcloss hamaxhamin hwmax hwmin haw
calTwout calTaout Vp4 hp4loss calTp4out hrOFFmin hrOFFmax
hrONmin hrONmax Vt2 Vr Tambr ] (14)
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TABLE 2. Parameters of the model to estimate.

TABLE 3. Lower (x) and upper (x) limits of the cooling system parameters.

and x and x (see Table 3) the lower and upper limits of the
parameter vector x.
The model have six outputs. An MOP with six objec-

tives (based on the error throughout of the identification
test on each of the six outputs) complicates the optimization
and decision stages because of the large number of Pareto
optimal models. However, analyzing the system, there are
three outputs considered to be essential. These outputs are
the water temperatures: inlet and outlet of the stack (Twin
and Twout respectively), and tank 2 (Tt2). For this reason,

we consider three design objectives to measure the error on
the identification test for these outputs. However, the error
on the secondary outputs (the outlet air temperature of the
stack Taout , and inlet Tsin and outlet temperatures of the heat
exchanger shell Tsout ) can also be interesting when faced with
models with similar performance in the design objectives.
Therefore, the errors in these outputs are calculated in the
objectives f4, f5 and f6 (see Equation 15). In this way, they
can be analyzed in the decision phase although they are not
included in the optimization stage.

f4 =
1
T

∫ T

0

∣∣∣T̂aout (t)− Taout (t)∣∣∣ dt
f5 =

1
T

∫ T

0

∣∣∣T̂sout (t)− Tsout (t)∣∣∣ dt
f6 =

1
T

∫ T

0

∣∣∣T̂sin (t)− Tsin(t)∣∣∣ dt (15)

To optimize the defined MOP, nevMOGA with the following
configuration is used:

• NindGA = 4 (size population G)
• NindP = 250 (size population P)
• Generations = 1000
• ε = [0.01 0.01 0.01] (objective degradation accepted)
• n = [0.0005 10 20 10 40 0.0003 4 0.0005 0.0001 1000
15 15 3 15 10 15 15 15 0.5 0.5 0.0005 4 0.2 5 7 7 10
0.002 0.0004 3] (neighborhood definition)
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FIGURE 10. Discrete set of optimal (orange) and nearly optimal models nondominated in their neighborhood (green). The models
are represented by means of the LD tool, using 2-norm (|| · ||2). Above, the objective space. Down, the decision space (x1 to x30).
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TABLE 4. Models x1, x2, x3, x4, x5 and x6.

In this MOP, the parameters to be estimated and the design
objectives have a physical meaning. This fact makes it easy
to choose the ε and n parameters of nevMOGA. With the
defined nevMOGA configuration, the objective function is
evaluated 16250 times (Generations · NindGA + NindP).
With a standard CPU,4 one evaluation of the objective func-
tion has a computational cost of approximately 2.1 seconds
(16250 evaluations have an approximate computational cost
of 9.5 hours). nevMOGA obtains P∗Q,n at a computational
cost of approximately 9.8 hours. Figure 10 shows P∗Q,n
(discrete set of models obtained) using nevMOGA for the
definedMOP. Given the great number of parameters, the level
diagrams tool (LD [39], [40]) has been used for graphical
representation.

The LD tool is based on level diagrams, where each design
objective and parameter is represented on a separate diagram.
This representation is based on two ideas: 1) classification of
individuals according to their proximity to the ideal points
measured with a specific norm (norm 1, norm 2, or infinite
norm, in this example the norm 2 || · ||2) with the nor-
malized objectives; 2) synchronization of design objectives
and parameters. In this way, each level diagram represents
the objective value or parameter on the abscissa axis and
its norm value on the ordinate axis. In addition, thanks to
synchronization, by selecting one or more alternatives in any
diagram, its representation in the remainder is automatically
selected. To set designer preferences and aid decisionmaking,
the points in the level diagrams can be colored.

When analyzing the P∗Q,n set obtained, the objectives f1
and f3 conflict. That is, the models that perform better for
the objective f1, obtain worse performances for objective f3
and vice versa. In addition, there are a many nearly optimal
models (green solutions) with similar performances to the
optimal ones. To compare their performance, we select three
pairs of solutions in three different zones in the objective
space.

4DELL computer, Windows 10, processor Intel Core i7-8700, 3.2 GHz
and 16GB RAM.

TABLE 5. Value of the defined objectives for the models x1, x2, x3, x4, x5

and x6 for the identification test.

First, we select the models x1 and x2 (represented in
black in Figure 10). x1 is an optimal model while x2 is a
nearly optimal model slightly dominated by x1. The param-
eter values of these models and their objective values can
be seen in Tables 4 and 5 respectively. Some parameters
of these models differ significantly (represented in bold in
the Table 4). For example, the parameters hamin (air side
heat transfer parameter in the stack at minimum air flow
range) and Va (volume of air inside the stack) of both models
are significantly different. The model x1 has a volume of
air inside the stack significantly less than x2. In addition,
x1 has a significantly lower heat transfer parameter hamin
than x2. Furthermore, these models also differ significantly
in the parameters Vt1, Vw, hfc2max , hwmax and Vr . Therefore,
both models are significantly different. Figure 11 shows the
temporal response of both models on the identification test.

When analyzing the response in depth, there are some time
intervals where x1 better adjusts the behavior of the process
than x2. For example, this occurs on all outputs in most of
the interval [6200 7500] seconds. However, in some intervals
the opposite can be observed (better behavior of the nearly
optimal model x2). For the outputs Twout and Twin this hap-
pens, for example, in most of the interval [0 2500] seconds.
Furthermore, with respect to the output Tt2, this happens in
the interval [3500 5000] seconds. Because the objectives
contemplate the error throughout the entire experiment, this
effect is masked. This is due, as previously mentioned, to the
aggregation that occurs in the design objectives when adding
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FIGURE 11. Outputs Twout , Twin and Tt2 obtained for the models x1 and x2 on the identification test. The errors of these outputs are
evaluated in the design objectives (see Table ??).

the error throughout different operating points. Thus, it is
shown that significantly different models can produce sig-
nificant differences in different intervals of the experiment.
However, they can obtain similar values of the design objec-
tives. Therefore, the identification problem is a multimodal
optimization problem. Despite this, neither model compared
shows a clear advantage over the other. In addition, it is
necessary to validate these models. For these reasons, we will
analyze new objectives in order to make a decision with more
information.

We now analyze the objectives not included in the opti-
mization phase. Figure 12 shows the response of the models
on the secondary outputs (Taout , Tsin and Tsout ) under the
identification test. The nearly optimal model x2 obtains a
smaller error in all secondary outputs than the optimal model
x1 (see also the objective values f4, f5 and f6 in Table 5).
This improvement is not significant (but is greater than that
observed on the design objectives) in the outputs Tsin and
Tsout . However, the improvement is significant for the output
Taout (objective f4). In fact, in this output, the optimal model
x1 has an inadequate response from 5500 to 7500 seconds
(see Figure 12).

Subsequently, we defined a validation test (see Figure 13).
Figure 14 shows the time response of the models on this new
scenario. Table 6 shows the objective values for the validation
test. As expected in the validation test, some deterioration

of the fitting is obtained. Assuming this deterioration, with
respect to the analyzed models, x2 obtains a smaller error
than x1 on the six outputs. Among these outputs, Taout
(objective f4) stands out again. The nearly optimal model x2

significantly improves on the optimal model x1 in this output.
Therefore, x1 and x2 are two significantly different models

with very similar performance on design objectives, where x1

obtains slightly better performance. However, regarding other
objectives (errors related to the secondary outputs), the model
x2 achieves a better performance than x1. This improvement
is significant with respect to the output Taout . Furthermore,
regarding the validation test, the model x2 improves on the
optimal model x1 in all the outputs. Again, this improvement
is significant with respect to Taout . Therefore, between these
two models, we chose the nearly optimal model x2 as the
designer’s preferred solution.

Repeating this analyze for two additional pairs of solutions
we obtain similar results:
• For the pair of models x3 and x4. The optimal model
x3 slightly dominates the nearly optimal model x4

in the design objectives (see Figure 10 and Table 5).
However, again, the nearly optimal model x4 produces
an improvement in the objectives not included in the
optimization phase (f4, f5, and f6). This improvement
is quite significant in the objective f4. Subsequently,
we analyzed the objectives defined on the validation
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FIGURE 12. Outputs Taout , Tsin and Tsout obtained for the models x1 and x2 on the identification data set. The errors of these outputs
are evaluated in the objectives f4, f5 and f6 (see Table 5).

FIGURE 13. Validation test of the cooling process of a µ-CHP system.

test (see Table 6). In this scenario, the nearly optimal
model x4 improves in all the defined objectives. Again,
this improvement is a significant improvement over f4.
Therefore, between these two models, we chose the
nearly optimal model x4 as the designer’s preferred
solution.

TABLE 6. Value of the defined objectives for the models x1, x2, x3, x4, x5

and x6 for the validation test.

• For the pair of models x5 and x6. The optimal model x5

slightly dominates the nearly optimal model x6 in the
design objectives (see Figure 10 and Table 5). In addi-
tion, the nearly optimal model x6 is better than f5, while
f6 (errors in the outputs Tsin and Tsout ) is worse than f4
(errors in the output Taout ). Subsequently, we analyzed
the objectives defined on the validation test (see Table 6).
In this scenario, the nearly optimal model x6 improves
in all the defined objectives. This improvement is signif-
icant when compared to f4.

Therefore, with the nearly optimal solutions nondominated
in their neighborhood, the designer can carry out a detailed
analysis with more diverse solutions and take a final deci-
sion with better information. Also, this analysis may cause
the designer to rethink the MOP. In the analyzed scenario,
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FIGURE 14. Outputs of the system obtained for the models x1 and x2 on the validation test. The errors of these outputs are evaluated in the
objectives f1 to f6 (see Table 6).
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the designer can now define a new MOP including a new
objective in the optimization phase. For example, the objec-
tive f4 can be included in design objectives since several
optimal solutions obtain an undesirable performance on this
objective. It is also possible to contemplate this objective as
a constraint in a new MOP (for example, only models with
f4 < 0.5 will be considered). In this way, the designer could
obtain only models with an acceptable response on the output
Taout . In addition, in the selected models, the advantage of
the nearly optimal models over the optimal ones seems clear
(especially for x2 and x4 models). These models obtain a
similar performances on the design objectives. Furthermore,
they obtain a better performance on the analyzed objectives
not included in the optimization phase (but interesting for the
designer) and on the validation scenario.

VI. CONCLUSIONS
This article has presented the parametric identification of a
cooling system in a PEM fuel cell using a multi-objective
approach. This design has as a novelty the consideration,
in addition to the optimal solutions, of the nearly optimal
solutions nondominated in their neighborhood. These alter-
natives, ignored in a classic MOP, provide greater diversity
without excessively increasing the number of alternatives to
be analyzed at the decision stage.

In the system identification, the design objectives mea-
sure the errors between the prediction model and the real
system for each system output. To measure this difference,
the designer must define the input signals (identification test)
to reach different operating points. Thus, in reality, an indirect
aggregation occurs in the design objectives: aggregation of
the error on each operation point that makes up the identifi-
cation test. This fact, especially in nonlinear systems, causes
the appearance of nearly optimal models. These models have
similar performances in the design objectives but present
different trade-offs in the aggregate objectives. Thus, it is
common to obtain models that perform well at one operating
point and obtain worse performances at another.

Furthermore, in the systems identification, it is necessary
to validate the models obtained. Therefore, new objectives for
this purpose arise naturally. In this scenario, it is possible to
obtain models that, with a similar performance in the design
objectives, obtain a significantly better performance in the
new validation objectives.

In both scenarios, as shown in the results obtained, nearly
optimal models nondominated in their neighborhood provide
potentially useful new information. Thanks to the presented
methodology, the designer can make a final decision with
additional valuable information (ignored in the classicMOP).
Therefore, this work has highlighted the relevance of taking
into account the nearly optimal alternatives nondominated in
their neighborhood in the identification of the multivariable
system.
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