

GUNNEBO GROUP

Development of an

universal computer

configuration application
Escuela Técnica Superior de Ingeniería Informática / Gunnebo

Cash Automation Trier

04.07.2012

Tutors: Germán Moltó / Bernhard Grüger

Author: Hugo Casero

i

ii

Acknowledgements

I would like to give my most sincere gratitude to all the people that

helped me during the process of this project. First, to my tutor Germán

Moltó, professor at the Universidad Politécnica de Valencia, for helping me

with all my doubts and being one of the best teachers I’ve ever had. Also

Bernhard Grüger, programmer at Gunnebo Cash Automation, for his

understanding, help and patience in the time period of my internship and

thesis at the company. Worth mentioning also is the labor of Dieter Gilz, R&D

manager at Gunnebo Cash Automation Trier who helped me to get into this

year working at Trier and of course, the rest of the team of this department.

Thanks also to my family and friends, who supported as much as they

were able to during the whole period in my studies, something that without

them would not have been possible. Obviously, to all my German, Spanish,

French, Polish…and in general, not German friends that I met in Trier, whose

friendship, hospitality and help will never be forgot. I’ve been able to meet

some of the most interesting people in my life here, and they managed to

make me a better person and enjoy one of the best times in my life in this

small city, not only professionally, but also personally.

1

Table of Contents

Acknowledgements ... ii

i. Introduction ... 6

a. Motivations ... 6

b. Objectives .. 7

c. Structure of this document ... 8

1. Concepts and Technologies ... 10

1.1. Concepts .. 10

1.1.1. Designs Patterns ... 10

1.1.2. Unit Testing .. 12

1.1.3. Control ... 13

1.1.4. UML .. 14

1.2. Technologies .. 15

1.2.1. C# Programming Language ... 15

1.2.2. .NET Framework .. 16

1.2.3. Visual Studio 2010 Professional .. 18

1.2.4. Windows Registry .. 19

1.2.5. XPath ¡Error! Marcador no definido.

1.2.6. XML .. 20

1.2.7. LINQ ... 21

1.2.8. Git .. 23

2. Development of the Configuration Manager 26

2.1. Specification, design and prototyping 26

2.1.1. Specification ... 26

2.1.2. Design .. 36

2.1.3. Prototyping ... 41

2

2.2. Implementation .. 45

2.2.1. CustomControls .. 45

2.2.2. Relation Managers ... 49

2.2.3. Util folder classes .. 52

2.2.4. Views folder .. 58

2.2.5. Control Factory ... 59

2.2.6. Object Definition Manager .. 61

2.2.7. Model .. 65

2.2.8. Forms ... 66

3. Study case .. ¡Error! Marcador no definido.

3.1. Creation of UI ... 69

3.2. Interaction with the configuration file 73

3.3. Results ... 75

4. Conclusions ... 76

Annex: ObjectDescription.xml file from the study case 78

Bibliography .. 103

3

Table of Code

THE SINGLETON PATTERN IMPLEMENTED IN C# .. 12

THE CLASSIC “HELLO WORLD” EXAMPLE IN C# .. 16

XPATH QUERY CONTAINING TOKEN CONTROL TRANSLATOR SYNTAX¡ERROR! MARCADOR NO

DEFINIDO.

XML EXAMPLE .. 21

EXAMPLE OF LINQ STANDARD QUERY ... 22

EXAMPLE OF THE GIT FOLDER STRUCTURE .. 23

EXAMPLE OF CLASS FOR CLABEL CONTROL ... 47

PROPERTY MODIFYING THE CONTROL DESCRIPTION AND THE ACTUAL CONTROL 48

MANAGER HANDLERS FOR THE COUPLED CONTROL RELATIONS ... 50

EXAMPLE OF SECTION IN THE OBJECT DEFINITION FILE ... 61

EXAMPLE OF CONTROL IN THE OBJECT DEFINITION FILE .. 62

4

Table of Figures

FIGURE 1- A USER INTERFACE SHOWING CONTROLS AS TEXTBOX AND LABELS. 14

FIGURE 2 – VISUAL OVERVIEW OF THE COMMON LANGUAGE INFRASTRUCTURE 18

FIGURE 3 – SCREEN CAPTURE OF VISUAL STUDIO 2010 PROFESSIONAL 19

FIGURE 4 - GIT EXTENSIONS TOOL ... 25

FIGURE 5 - FOLDER STRUCTURE OF THE CONFIGURATION MANAGER 28

FIGURE 6 - BASIC USER INTERFACE ... 29

FIGURE 7 – EDITOR SCREEN FOR A CUSTOM LABEL CONTROL ... 31

FIGURE 8 - TABLE OF CALL PARAMETERS .. 33

FIGURE 9 - TABLE OF CONTROL RELATIONS ... 36

FIGURE 10 - CLASS DIAGRAM OF THE CUSTOM CONTROL DESIGN 38

FIGURE 11 - CONFIGURATION MANAGER’S BASIC CLASS MAP ... 39

FIGURE 12 - BASIC LOGIC OF THE FACTORY PATTERN .. 40

FIGURE 13 - CANVAS OF THE UI EDITION PROTOTYPE .. 42

FIGURE 14 - EDITOR OF THE UI CREATION PROTOTYPE .. 43

FIGURE 15 – TABLE OF CONTENTS FOR THE CUSTOM CONTROL FOLDER 46

FIGURE 16 - MODEL - VIEW - CONTROLLER STRUCTURE ... 65

FIGURE 17 – GENERAL SECTION IN THE STUDY CASE ... 70

FIGURE 18 – EDITING THE CONFIGURATION VALUE LABELS OF THE STUDY CASE 71

FIGURE 19 – CONFIGURATION FILE FOR THE STUDY CASE ... 73

FIGURE 20 - CHANGES MADE TO THE CONFIGURATION OF HOPPER 5 75

5

6

i. Introduction

The purpose of this project is to create a main configuration tool for cash

machines for a German company that manufactures this kind of device. As

the clients require personalized versions of this tool, it must be a piece of

software that completely allows the user to modify its user interface in an

easy and WYSIWYG1 approach, without the need of any kind of programming

knowledge.

The project was built in and for the Gunnebo Security Group2, a global

provider of security solutions present in more than 30 countries around the

world. The plant is located in the small and beautiful city of Trier, Germany,

where the cash automation solutions are developed.

a. Motivations

There are several motivations that resulted in the consideration of this

Configuration Manager project:

First, there was the need of creating a tool focused on the

configuration for different machines that Gunnebo Cash Automation

manufactures. This tool should be able to access and modify information,

providing a way.

Second, Gunnebo Cash Automation is currently shifting to a second

generation of devices and software. Because of this, the tools require to be

updated with modern capabilities and new programming languages. The

previous package of tools was developed with Borland Builder and C++. The

newer package will be developed with Visual Studio 2010 and C#.

1 What you see is what you get.
2 http://www.gunnebo.com

http://www.gunnebo.com/

7

 The third motivation, but also important, is the need of a

Configuration Manager tool with the possibility of customizing the user

interface without requiring to modify the source code or programming skills.

This is because the machines are distributed to different customers with

different needs, and the ability to change the user interface in a graphical

way eases the process.

b. Objectives

The main objective of this project is the development of the

Configuration Manager tool, following the requisites of the specification

document provided by Gunnebo Cash Automation, which will be discussed

and explained later on.

As it was said before, the tool must provide a way to configure

different aspects of the devices manufactured in Gunnebo Cash Automation

Trier, and also giving the option of a complete redesign of the user interface

without requiring programming skills. The advantages of this are that the

user does not need to test the production code and internal logic of the

custom tool, obtaining faster and trustworthy results in a much shorter time.

Aside of creating the tool, which is the main interest for the company

where the project is being developed, acquiring and raising the skills during

programming is another of the biggest objectives. Aspects such as better

understanding the cycle of development process, applying methodologies

and patterns that where studied at the university, getting practice in the use

of the C# language and the .NET Framework, developing roadmaps and UML

based diagrams and, in general, gaining more knowledge at every aspect

involved during the typical development cycle of an application.

8

c. Structure of this document

This document is structured in several chapters, following a logical

order that defines and analyzes each step during the development of the

Configuration Manager.

Chapter 1 is completely focused at giving an introduction to the

project, describing the most important concepts and technologies used

during the process, needed to situate the reader in the right context.

Chapter 2 is the chapter where the development of the tool is

described. Inside the first subchapter, the previous trainings and

documentation procedures before actually starting to code the real software

are explained. The specification is the starting section, which contains a

short explanation of the real requisites for the tool such as the main

structure of the file system, the expected user interface, the different modes

and behaviors depending on the user rights, definition of call parameters for

the executable file, creation of logs, translation modules and the relation

system to create coherence between the several components inside the UI.

This chapter also contains a description of the design process of the

project. The first subsection depicts the reasoning behind the planning for

the user interface creation model. Explaining the different decisions and

solutions adopted during the first steps of designing a class structure for the

Configuration manager is the main objective of the second subsection.

Second chapter contains also some examples of prototyping during the first

stages of the trial and error process to design the tool.

After defining the planning, the implementation is detailed in the next

subsection, numbering and delineating the main classes, methods and

objects that compose the Configuration manager, separated by folders and

looking at its structure.

Once the implementation of the tool has been described, the document

describes a small case study where most of the features are shown. This case

9

study is meant to explain the process of UI creation, the interaction with the

actual tool once configured, and the results after that interaction.

Finally, the conclusions for the project are described, giving a personal

view and final thoughts from the author about this period of time during the

development.

10

1. Concepts and Technologies

In this section, a list showing the different important concepts and

technologies used in the project will be cited and explained. It is required to

have an overview of the concepts to better understand the basics of how the

project was built and which definitions became relevant in its design. It is

also interesting to describe an overview of the technologies that helped to

implement those concepts.

1.1. Concepts

Here it is presented a short overview of the main concepts used in this

project. The following list became relevant because they were directly applied

to the development of the Configuration Manager tool. It is important not

only to mention them but also to describe them, as the references to these

definitions and vocabulary will often appear during this document.

1.1.1. Designs Patterns

A design pattern describes a problem which occurs over and over again in

our environment, and then describes the core of the solution to that

problem, so you will be able to reuse this solution as much as you want (1).

Basically they are templates that can be applied in many different situations

and usually have four essential elements:

11

 Pattern name, which helps the programmers to use a common

vocabulary not only when talking with colleagues but also to use it in

the documentation.

 The problem, were it is described when to apply the pattern. An

explanation of the problem and its context.

 The solutions, specifying the elements and relationships between them

that solve the problem. In fact, a pattern is an abstract description of a

design problem.

 The consequences once the pattern is applied, which help us to

understand not only the implementation issues but also the trade-offs.

A good analysis of the consequences beforehand the implementation

of the pattern in our project is critical to obtain an idea of the benefits

and trade-offs.

Inside the implementation of the Configuration Manager it can be found

such implementations as the Factory Pattern, which helps a client to create

products without caring about the implementation and encapsulating the

process of creation. Also the Singleton Pattern, which assures the

programmer that only one and no more instances of an object is going to

exist at the same time for a single class.

using System;

public class Singleton
{
 private static Singleton instance;
 private Singleton() {}

 public static Singleton Instance
 {
 get
 {
 if (instance == null)
 {
 instance = new Singleton();
 }
 return instance;
 }
 }
}

12

The Singleton Pattern implemented in C#

The fact that Design Patterns aren’t implemented per se, but they are just

a description of a typical problem and an approximate solution, makes clear

that they are not a patch fix for every problem in the process of designing

the implementation of our tools. They must be applied carefully, and one of

the main reasons to have this kind of help is to create a common vocabulary

between the people involved in the development of a tool.

1.1.2. Unit Testing

As defined in (2), a Unit Test is a piece of code written by a developer that

exercises a very small, specific area of functionality of the code being tested.

Those tests are being created so that somebody can prove if a piece of code

does what it is supposed to do. In (3), a Unit Test is defined as piece of code

(usually a method) that invokes another piece of code and checks the

correctness of some assumptions after-ward. If the assumptions turn out to

be wrong, the unit test has failed. A “unit” is a method or a function.

It must be clear that unit testing is not going to fix the problems of the

code. This practice will help the programmer to find out where and which is

the problem in the code, and of course, to help understanding which are the

ways to fix it. In order to a create unit test that does what it should do, there

are several guidelines and properties that define a “good unit test”:

 It should be automated and repeatable.

 It should be easy to implement.

 Once written, it should remain for future use.

 Anyone should be able to run it.

13

 It should run quickly.

 It should be isolated from other tests.

One of the most used methodologies and guides to help to know what to

test with unit testing is “CORRECT” which means that we should take care of

Conformance, Ordering, Range, Reference, Existence, Cardinality and Time.

As previously said, a unit test should be easy to implement. This easiness

is commonly described as a basic structure that every test must contain. The

structure is defined in three parts:

 Arrange; where the instances of the objects to be tested are created.

 Act; where you act on the object you want to test, i.e. call a method.

 Assert; so you are sure that something happened. Without assert, the

test is meaningless.

In this project, and following the recommendations of Roy Osherove (3),

the naming convention adopted is as follows:

MethodName_StateUnderTest(Scenario)_ExpectedBehaviour/ReturnValue

In example:

Add_LessThanZero_ThrowsException()

Later on, some examples of unit testing will be shown, taken directly from

the source code of the Configuration Manager tool.

1.1.3. Control

A control in the .NET Framework is the basic unit of the user interface. It

is a child window that applications use together to allow user interaction. For

example, they provide a way to type text, choose options and initiate actions.

14

The library of controls that windows implements, is located in Comtl32.dll,

which is a DLL included in the Windows operating system (4). Some examples

of typical controls are text boxes, labels, buttons, tab controls, panels, check

boxes, radio buttons…

The common way to create user interfaces is based on the controls that

Windows provides. However, in the Configuration Manager tool most of the

controls are slightly modified components, based on the actual controls.

Figure 1- A User Interface showing controls as TextBox and Labels.

1.1.4. UML

15

The Unified Modeling Language or UML is a modeling language specified

by the Object Management Group (OMG) that became the most-used in the

industry. It models application structure, behavior, architecture and business

process and data structure (5).

In software development it is analogous to the blueprints for the building

of a skyscraper. It helps defining a structure, and provides readability before

the code implementation. UML helps you specify, visualize and document

models of software systems.

One example of UML diagram would be the Flow Chart, which represents

algorithms or processes in a sequence of operations. They are used in

designing and analyzing a process. Another example would be a Class

Diagram which represents the structure of a system by a view of its classes,

their relationship among them and the attributes and operations.

1.2. Technologies

This section presents a short overview about the main technologies used

during the development of the Configuration Manager tool. It includes

programming languages, components such as LINQ and the Visual Studio

2010 Professional IDE.

1.2.1. C# Programming Language

16

C#, pronounced C Sharp, is defined as a general-purpose, type-safe,

object-oriented programming language. The main goal of this programming

language is productivity, searching for a balance in simplicity, expressiveness

and performance. It implements the Object-oriented paradigm, including

features such as encapsulation, inheritance and polymorphism. It relies on

the runtime to perform automatic memory management (6).

It was developed by Microsoft and later approved as a standard by ECMA

(7) and ISO. It was defined by its creator as an evolution of C/C++ but others

point more to its obvious similarities with Java.

using System;
namespace HelloWorld
{
 class Hello
 {
 static void Main()
 {
 Console.WriteLine("Hello World!");

 // Keep the console window open in debug mode.
 Console.WriteLine("Press any key to exit.");
 Console.ReadKey();
 }
 }
}

The classic “Hello world” example in C#

Although C# is platform independent, it is often strongly tied to the .NET

Framework. This meants that the total amount of resources dedicated to the

support of non-Windows platform is small.

1.2.2. .NET Framework

17

C# is the language and by itself it can not do everything. This is where

.NET Framework – pronounced dot net – comes to help. It runs primarily on

Microsoft Windows and is designed to fulfill the following objectives:

 Provide a consistent object-oriented programming environment.

 Provide a code-execution environment that minimizes the software

deployment and versioning conflicts.

 Provide a code-execution environment that promotes safe execution of

code.

 Provide a code-execution environment that eliminates the performance

problems of scripted or interpreted environments.

 Make the developer experience consistent across widely varying types

of applications.

 Build all communication on industry standards to ensure that code

based on the .NET Framework can be integrated with any other code.

The framework has two main components: the .NET Framework class

library and the Common Language Runtime (CLR) which is the core and

provides services such as memory management, threading and safety. CLR is

Microsoft’s implementation of the CLI standard (8) whose structure is defined

as seen in Figure 2.

18

Figure 2 – Visual overview of the Common Language Infrastructure

1.2.3. Visual Studio 2010 Professional

Microsoft Visual Studio 2010 is an Integrated Development Environment

(IDE). It supports different programming languages, such as Visual C++ and

C#, and it is used to develop console and graphical user interface

applications. Microsoft offers the “Express” versions of Visual Studio for free,

but also the Professional versions are free of charge for students via the

DreamSpark3 program.

3 https://www.dreamspark.com/

https://www.dreamspark.com/Product/Product.aspx?productid=4

19

Figure 3 – Screen capture of Visual Studio 2010 Professional

It includes the basic features for an IDE: code editor, debugger and

designer, but hast the possibility of extending its functionality with add-ons

like NUnit4 and Pex5 (the last one under the Microsoft Research network),

used during this project for unit testing purposes.

The code editor supports syntax highlighting and code completion,

thanks to the IntelliSense engine.

1.2.4. Windows Registry

The windows registry is a database meant to store configuration

settings and options on the Microsoft Windows operating systems. It contains

values relevant for the behavior of applications and low-level operating

4 http://www.nunit.org/

5 http://research.microsoft.com/en-us/projects/pex/

http://www.nunit.org/
http://research.microsoft.com/en-us/projects/pex/

20

system features. The history of windows registry comes from its introduction

in Windows 3.1 for COM-based components. Later on, this functionality

would be expanded and generalized as previously described, helping to solve

the problem of the large number of untidy INI files employed as

configuration settings containers for Windows software.

The registry is located in several files and hidden from the user-mode

APIs which vary depending on the version of the operating system. The user-

specific HKEY_CURRENT_USER registry is stored inside the user profile and

there is one of these per user.

Since the Configuration Manager is a tool which should allow to set up

the inner computer that manages the cash machine, it must be able to read

and modify the Windows’ registry.

1.2.5. XML

Extensible Markup Language (XML) is a markup language that was

developed by the XML Working Group (10), formed under the auspices of the

World Wide Web Consortium6 (W3C) in 1996. The design goals for XML are:

 Usable over the Internet.

 Support a wide variety of applications.

 Compatible with SGML.

 Easy to write programs which process XML documents.

 The optional features in XML are to be kept to the absolute minimum.

 Human legible and reasonably clear.

 XML design should be prepared quickly in a formal and concise way.

 XML documents should be easy to create.

6 http://www.w3.org

http://www.w3.org/

21

 Terseness in XML markup is of minimal importance.

XML has a Node-tree structure, containing the name of the node and

possibly attributes. The value is contained between the opening and closing

node. It was supposedly focused on documents, but because of this

structure, XML became very popular in the use of data representation for web

services.

<breakfast_menu>
 <food>

<name>Belgian Waffles</name>
<price>$5.95</price>
<description>
 two of our famous Belgian Waffles with plenty of syrup
</description>
<calories>650</calories>

</food>
</breakfast_menu>

 XML example

In the Configuration Manager tool, XML is used extensively for the

translations of the texts, storing the configuration of the application and to

serialize the user interface designed inside the tool. This option was chosen

because Microsoft encourages the use of XML files in .NET against the old INI

configuration files. In fact there isn’t any kind of parser in the .NET

framework for them.

One of the most useful tools for working with XML files in C# and .NET

Framework is the LINQ language.

1.2.6. XPath

22

XPath is a query language for processing data inside an XML file (9). It

is currently in the 2.0 version, it was defined by the W3C and became a

Recommendation on 14th of December 2010.

As a query language, the expression, a string of Unicode characters

becomes the way to operate with it. XPath provides syntax tools for static

and dynamic context, serialization and error handling. During the

development of the Configuration Manager, XPath will be required and

proposed as the way to access the configuration files in XML format. This will

be computed by the Read and Write relation managers in order to set the

path to a concrete value.

/ConfigurationManager/Text[@id='##CComboBox8##']

XPath query containing token control translator syntax

1.2.7. LINQ

Language-Integrated Query (LINQ) was introduced in Visual Studio 2008

and .NET 3.5 and extends the query capabilities to the language syntax of C#

and Visual Basic. It introduces standard patterns for querying and modifying

data and supports SQL Server databases, ADO.NET datasets and XML

Documents (11).

The syntax of a standard query in LINQ looks as follows:

var customersFromLondon =
 from cust in customers
 where cust.City == "London"
 orderby cust.Name ascending
 select cust;

Example of LINQ standard query

23

While the syntax for this query remains the same, the data source could

be a database or an XML file. This is one of the main advantages of LINQ.

During this project, the use of LINQ in its LINQ to XML variant is used to

access every configuration file required for the manager. This means that the

main set up file for the tool, the text files used for the translations inside the

user interface and the definition of each control contained in it, are read and

modified with LINQ to XML.

1.2.8. Git

Git is a free & open source DVCS (Distributed Version Control System)

that was specifically designed thinking on speed and efficiency. Git is a SCM

(Source Code Management) system that was developed by Linus Torvalds for

the Linux Kernel development (12)

The local repository in Git is structured as a folder. All the history of

the code is contained here as “commits”, that would be the equivalent of a

snapshot of the code. The working directory contains the current commit as

a temporary checkout place. The main structure of the Git folder looks like

this:

|-- HEAD # pointer to your current branch
|-- config # your configuration preferences
|-- description # description of your project
|-- hooks/ # pre/post action hooks
|-- index # index file (see next section)
|-- logs/ # a history of where your branches have been
|-- objects/ # your objects (commits, trees, blobs, tags)
`-- refs/ # pointers to your branches

Example of the Git folder structure

Some Git’s highlights are:

24

 Distributed development, like most of the modern VCS (Version control

Systems), Git creates a local copy of and afterwards, you can publish

your repository optionally using SSH for security.

 Strong support for non-linear development, that allows creation of

branches and merges of different commits of the same project.

 Efficient handling of large projects. Git is faster than most other

version control systems. This is because of the use of its extremely

efficient packed format.

 Cryptographic authentication of history. In Git, the history is stored in

such a way that the newer commits depend on the older ones. This

means that you can’t change the older commits without noticing it.

 Toolkit design, following the Unix philosophy of “Write programs that

do one thing and do it well”, Git is composed of many small tools

written in C.

During the development of this project, Git was used almost

exclusively as a backup system, storing the local repository into the main

server of Gunnebo Cash Automation Trier and a personal DropBox folder.

As a supporting tool we used Git Extensions, which not only gives a

more user-friendly interface to work with Git, but also contains better

integration with Visual Studio thanks to an add-on, mainly focused on fast

commits, pull, and push operations (13)

25

Figure 4 - Git Extensions tool

26

2. Development of the Configuration Manager

This chapter will be the main section in this document and the one

which analyzes in a very detailed way the full development of the

Configuration Manager tool. The different stages during the completion of

the project are going to be dissected, explaining which decisions were made

and why. It also covers the main problems found in each stage.

Several examples, schematics and code explanations will help the

reader to better understand the meanings and implications of the processes

described to achieve the requirements for this tool.

2.1. Specification, design and prototyping

An important task in creating software is extracting the requirements.

In this section, the briefing stages of development for the project will be

presented and described. The first one is the specification of the project,

where the developer is given the requirements for the tool. The second one is

planning the stage where the main structural decisions of a project are

evaluated. The third one is prototyping, where small examples of the main

requirements are put in practice based on the decisions taken during the

planning section.

2.1.1. Specification

27

The specification of the project is the stage where the complete

requirements for the release are defined. It is commonly given in a

documented way and this was also the case for the Configuration Manager.

Obviously, and because of the constant iteration of the software development

cycle, this document can be modified, adding or deleting content or features.

However, a good specification document is most of the times the best way to

understand the problem to solve and the needs of the customer. The

developer of the specification document for the Configuration Manager tool

in this project is Mr. Bernhard Grüger and also the tutor at Gunnebo Cash

Automation.

First of all, the Configuration Manager is defined as a universal

computer configuration application oriented mainly for the configuration of

several kinds of automated cash machines. It should be able to read from

different sources such as XML files in order to display them on a graphical

user interface and also provide the ways to modify them. The tool needs to

be language independent, so a way to show values from different translation

files is required and the main user interface language should be configurable

by the user.

One of the main features of the Configuration Manager is that almost

the whole UI should be customizable. This allows setting up different layouts

for different customers and machines, without losing the standard way of

communication with the computer and the configuration files but adding the

advantage of not needing programming skills to change and personalize the

main application. Entering a programming mode, it is provided to the user a

set of custom controls and tools to modify the interface in a “what you see is

what you get” view, providing of course, the required tools to edit the inner

logic for each control that will allow the user to build a functional software

with related components.

28

2.1.1.1. Main structure folder

The tree structure of folders for the application contains all the

required files to boot, configure, apply language to the tool and set up the

previously defined user interface in case there exists one.

Figure 5 - Folder structure of the Configuration Manager

The app folder should contain the main executable of the

Configuration Manager. The config folder should contain the configuration

for the tool itself and also the state of the last saved user interface set up.

The log folder contains log.txt files for analysis purposes only and the texts

folder contains all the files for the translation of the tool in different

languages.

29

2.1.1.2. User interface

Configuration Manager is a tool that allows the user to customize the

interface in a certain programming mode, but the user needs a basic canvas

where to place the controls and tools to create them. In this section, the

basic Configuration Manager UI is described.

By default and at the first start, the UI is completely empty. This is

because no previous UI configuration has been created and saved by the

user. Configuration Manager should provide a way to store the previous

layout of the customized UI, enabling it to use and modify without problem.

Following it is described the behavior of the graphic editor.

Figure 6 - Basic user interface

30

On the left side, a navigation bar is found where different sections are

selected for the same layout. The user, in programmer mode, should be able

to create and delete sections, each one independent of the others, but with

the possibility of having related controls on different sections. Furthermore

to the sections, the navigation bar must include a small area where hints

about the current control are shown. This area will show a defined by the

user text based on the position of the mouse. When the user hovers a

control, this shape will show that text, that the user would have previously

defined for that precise control inside the editor form. This area is shown just

behind the currently selected section, in this case, the one named as Tesla.

The right area is where most of the controls will be placed. It is built as

a tab-sheet control, containing one tab for each created section. It should

allow the user the ability to create, edit and delete controls from a predefined

set, as can be seen in Figure 6 - Basic user interface.

Edition menus are only accessible with a mouse right-click over the

canvas, when the programming mode is activated, and they adapt to the

context, depending on whether the area clicked is empty or it has another

custom control inserted in it.

When a new custom control is created, or the user wants to edit an

already existing control, the Editor window is shown. This window is an

independent form that lets the user to modify almost all the properties of the

custom control – such as the text, font, background color, position and size,

hint - and also the ones contained inside the ControlDescription – such as

rights, relations with other controls, files -. The name of the control is

automatically assigned, and the parent is given depending on where the user

clicked and created the new instance of that custom control class.

31

Figure 7 – Editor screen for a Custom Label Control

2.1.1.3. Programming mode

The programming mode of the Configuration Manager is the mode

where the user can edit the UI. When it is active, all the options to modify,

create and delete custom controls are available and when the option is not

active, the user can only interact with the current UI.

The programming mode is activated by a hotkey. The fact of activating

or deactivating should give as feedback to the user a change in the color of

the section navigation bar, showing that the programming mode is on.

32

2.1.1.4. Parameters

The Configuration Manager application should be started with or

without call-parameters. It should allow the technician to add parameters

that modify the behavior or properties of the tool. Those values must

override the ones defined inside the ConfigurationManager.xml file, in the

configuration folder during that current session.

The parameters are:

Parameter Value Impact

StayOnTop

(-st)

Yes/No In case of “yes” the window will be on the top-layer.

No other window will be able to superimpose it.

Default value: “no”.

Movable

(-m)

Yes/No In case of “no” it will not be possible to move the

window.

Default value: “yes”.

ModificationRight

(-mr xx)

Hex

value

Defines the operator access-rights to work with the

program regarding the modification of the

configuration.

Default value is “0x00000000”.

DisplayRight

(-dr xx)

Hex

value

Defines the operator access-rights to work with the

program regarding the displaying of the

configuration.

Default value is “0x00000000”.

Left

(-l x)

Integer

value

Initial Left-position of the main form.

Default value is “0”.

Top

(-t x)

Integer

value

Initial Top-position of the main form.

Default value is “0”.

ProgrammingMode

(-p)

Yes/No If it is set to “yes”, the hot-key for entering the

programming mode is available.

Default value is “no”.

33

Width

(-w x)

Integer

value

Width of the main window.

Default value is “800”.

Height

(-h x)

Integer

value

Height of the main window.

Default value is “600”.

Resizable

(-r)

Yes/No Defines whether or not the operator should be able

to resize the main window.

Default value is “no”.

Language

(-l x)

EN, DE,

FR…

Defines the language setting for the GUI.

Default value is “EN”.

Figure 8 - Table of call parameters

Call parameters have a higher priority than the same parameters stored

into the configuration file. In case no call parameter is passed, the one inside

the configuration becomes active. In case that a parameter is neither found in

call or in configuration file, the default value becomes active.

2.1.1.5. Log creation

Configuration Manager is able to create log files and delete them. It

should create those reports at each start, in case it is configured.

Inside the configuration file, a value indicates a threshold in number of

days, after which, the log files should be deleted. If the log folder contains

files older than that value, then the next time the Configuration Manager is

started, or once a day, should be deleted.

34

2.1.1.6. Text translation

The software is going to be used by customers all around the world, so

a way to provide translation for different languages is needed. For this

purpose, the complete UI of the Configuration Tool needs to be dependent

on the current translation file selected. It is important to note that this will

not only affect the editing tools menus, but also the customized interface.

The translation of the static texts inside the Configuration Tool will be

processed by the main translation module created for this purpose. But the

customized interface needs a way to dynamically select those text lines. For

this purpose, a value replacement engine must be created, that is able to

translate tokens “on the fly”.

The user could write the text inside the hint field, for example “This

combo box changes the time”, but that would remain static no matter if the

language has changed. With this text replacement functionality, we can

define a token like @@number@@, making possible to access a certain line

inside a text file, defined by that number, that searches the hint text in

German language when this main language is changed.

The values to be translated should be contained by delimiting tokens

and this token symbol must be specified inside the configuration file.

2.1.1.7. Value replacement

Configuration Manager needs a module that allows the communication

and the exchange of information between different controls in order to

35

create a coherent user interface experience. The value replacement feature

will solve this.

For example, showing the value selected inside a ComboBox as a usual

Label in another section would be possible with this feature. The value

translator should be something similar to the Text translator but focusing on

the value selected inside a control. Of course, the use should not only be

limited to labels. We need to write values inside files that usually come from

the user selection in the interface, or even those values can part of

thedestination path in a file.

2.1.1.8. Relations between controls

Once the user creates a new control, it could be related to some other

components inside the UI. This sort of relation is stored in the object

definition file and can be defined from the editor window.

There are different kinds of relations, each kind of relations has its

behavior or result for the control. It must be clear that not all the controls

allow all of the relations.

 Read relations mean that the content of the current custom control is

related in some way to the content of other control. For example,

having a label showing the complete name of the main currency,

should change if the user switches to a different currency. This means

that the label should read again that value being shown from its

source. When a control contains one or more different controls in the

read relation list, if this changes, it must notify the ones in the list so

they can be updated, re-translating all the tokens in case of need.

 Visibility relations are similar to the write and read relation, but in this

case the effect is a change in the visibility of the control. The definition

36

for the visibility dependency is only relevant for controls such as

combo-boxes and checkboxes. Furthermore, in case a control of this

kind has another control dependent in its visibility relation list, this

other object will be invisible. ¡

 Coupled controls are relevant only for combo-box and check-box type

controls and implies that they have the same amount of items. The

index of the selected item is also relevant, as it must be the same in

each coupled combo-box. This can be useful for example if there are

two combo-boxes, one showing the main currency coin, such as Euro,

and another one showing a sub currency, such as Cent. In the case that

the Euro combo-box item is changed from Euro to Pound, the second

one should change from Cent to Pence, something that is defined by

the index of the mentioned items.

As different controls mean different relations possibilities, here it

is presented a table showing which controls allow which relations:

C
o
m

b
o
B
o
x

L
a
b
e
l

T
e
x
tB

o
x

P
a
n
e
l

G
ro

u
p

B
o
x

T
a
b
P
a
g
e

T
a
b
C

o
n
tr

o
l

C
h
e
c
k
B
o
x

Related Read X X X

Related Visibility X X

Coupled Controls X X

Figure 9 - Table of Control Relations

2.1.2. Design

Once the requirements are defined, the design of the project should

start. During this stage of the development cycle the process of solving and

37

planning the solutions for the problems given by the requirements will be

explained.

2.1.2.1. UI Creation design

One of the main requirements of the Configuration Manager is the

possibility for the user to create and modify the user interface. As one of the

main features, it required more time to plan and design.

The basic unit for a UI in the .NET Framework is the Control. The first

step was to think about a way to store more info inside the controls, such as

a list with the relations with other controls inside the same UI. Those

relations will be used afterwards as a way to interact with other controls.

To achieve this, the first approach was to think about using a custom

control, created with the help of the base control and the decorator pattern.

The decorator pattern is defined as a way to add functionality to an existing

object in a dynamic way, adding this own behavior before and / or after

delegating to the object it decorates, to do the rest of the job (14).

The second approach was to use standard controls with the control

description object referenced in the “tag” property. The “tag” property is a

value that most of the controls of .NET Framework define and that is used for

secondary or not so important information. This solution was considered not

very elegant, so it was rejected too.

Another approach was creating some sort of data structure like a

Dictionary, containing the custom control and the control description related

but not encapsulated. This was rejected because the access of the values

inside a Dictionary, although fast, requires more code and the sense of better

looking design was found.

38

In this project, it is not really interesting to have dynamic functionality

added to the controls – since when the option has been chosen, the control

would remain as it is until deleted -, it resulted on discussing a different

approach, which combined inheritance, a common interface for every custom

control and a new type object named ControlDescription where the extra

information for the controls was going to be stored.

From there, we created a new class for every new custom control. This

class inherited from a specific base which is the actual control that .NET

provides, each containing an instance of the ControlDescription class and

implementing the interface ICustomControl. The process of creation and

setting up the custom controls for its modification is managed by a control

factory, following some sort of Factory Pattern design that will be explained

in the following implementation section.

Figure 10 - Class diagram of the Custom Control design

39

Thanks to inheritance, type matching and behavior are obtained. The

ICustomControl interface provides a common way to access the custom

controls special info and type matching between different kinds of custom

controls. Later on, this will help to create a main list of controls inside the

whole tool.

2.1.2.2. Configuration Manager Draft

As a first idea, the Configuration Manager was designed as a Model-

Controller-View pattern, latter on adding the required modules to realize

different tasks.

Figure 11 - Configuration Manager’s basic class map

In a Model-View-Controller pattern, the Model acts as a global and

single object where data is stored and manipulated. The Views are a way to

show in the interface the information that the Model contains, and the

Controllers are the ones that trigger the event which change the Model

information (14).

40

In this case, only two main Views where planned: one for the menu of

sections that appears on the left of the Figure 6, and another one for the tab

control that acts as a canvas during the Programmer Mode. From there, the

refresh of the information once something inside the Model has changed will

be managed. The Model needs to be unique during the execution of the

process. This is why the implementation of the Model will follow the

Singleton Pattern, which precisely ensures that this object is not duplicated

or has more than one instance.

The two main modules left that have a capital importance are the

Object Definition Manager and the Control Factory.

Object Definition Manager is fundamental in the use of Configuration

Manager. It is the module that is in charge of storing the customized UI

created, which using LINQ to XML, creates the ObjectDefinition.xml file inside

the configuration folder. This file contains a special serialization of the

custom controls indicating its section, its parent, and all the information

contained inside the ControlDescription object in a human readable way. The

purpose of this file is, obviously, being able to build the same UI during

another session of the Configuration Manager. The process of reading and

building the previously stored interface is also managed by the Object

Definition Manager with the help of LINQ. The procedures during this task

are complex and will be explained deeper in the implementation section of

the module.

On the other hand, we have the Control Factory class. This is a static

class based on the Factory Pattern.

Figure 12 - Basic logic of the Factory Pattern

41

The Factory Pattern is a member of the so named creational patterns,

and lets the client to completely forget about the instantiation and

initialization of the product. In this way, the factory allows the client to

produce objects, but without the need of being aware of how the object is

created, configured and provided, something that results in a better

encapsulation and maintainability (14).

When the user clicks on the New > Custom Control context menu, the

Control Factory will be the responsible of creating a control, wrapping it with

the custom control and adding the control description object, initializing the

event handlers, setting the basic information so that the control appears

correctly in the canvas while the user edits it and adding it to the main list of

controls inside the Model. Afterwards, the custom object completely ready

will be given to the editor form, so the user is able to modify the information

as he pleases.

2.1.3. Prototyping

Prototypes often simulate some aspects of the final product and are

useful to try different approaches for the software specification, getting

feedback, learning and having an idea about the estimated time of

development.

During the first development stages of Configuration Manager, two

different prototypes were created. One was directly oriented towards the UI

Creation part of the project. The second one was focused on learning and

understanding Unit Testing and Test Driven Development, which was later

put on practice during the implementation of the Text Replacement module.

42

2.1.3.1. UI Creation prototype

The creation of this prototype was completely oriented to find the best

implementation of the UI Creation system. It involved the first draft of the

canvas and the editor. Thanks to this small piece of software, it was found

that the most confortable implementation was the one described in section

2.1.2.1.

The idea of custom controls inheriting from an actual .NET Framework

control was developed during this trial and error prototype. The same

happened with the interface regarding the basic behavior of the custom

control giving that standard way to interact with them. Still, something like

the encapsulation of the additional properties to the controls, finally

contained inside the ControlDescription class, was an idea that came later on

during the development of the real tool but that provided a better

maintainability to the whole design.

Figure 13 - Canvas of the UI Edition prototype

43

Figure 14 - Editor of the UI Creation prototype

In such a project, where the user interaction is crucial and the edition

of the UI depends so much on the actions of the user, prototyping is a big

benefit for the programmer. It helps to get feedback about the usability and

structure from the interface.

2.1.3.2. Unit Testing prototype

The second prototype was more oriented to learning and

experimentation with the results of processing data. It was oriented to learn

and understand the concepts of Unit Testing. The main sources of

information where books such as Pragmatic Unit Testing in C# (2) ,

recommended by the professor Tanja Vos (15) from the Universidad

Politécnica de Valencia: The art of unit testing (3) and videos from Polimedia

(16) like the Unit Testing lessons (17) also produced by the professor Tanja

Vos. A complementary support for the study of software testing was the set

44

of videos from the writer of The art of unit testing which can be found in its

personal webpage (18).

The prototype involved creating different functions to manipulate

numeric vectors and strings, in order to practice on the application of unit

testing with this kind of algorithm. As the Text replacement module is

intended to be used by other pieces of software in the R&D Department of

Gunnebo it is important to create a trustworthy behavior.

45

2.2. Implementation

In this section, the implementation of the project will be described in a

more concise way, showing an overview of the class structure, its behavior

and a deeper analysis for the most important modules.

The classes inside the code of the Configuration Manager are

distributed in folders following the relation of their use.

2.2.1. CustomControls

The folder CustomControl contains the main classes related to the

customized controls, which are:

Class name Function Graphic

CCheckBox.cs

Defines the custom CheckBox

control, allowing the user to

define between two states as

checked and unchecked.

CComboBox.cs

Defines the custom ComboBox

control, allowing the user to

select a concrete item between

a list of them.

CGroupBox.cs

Defines the custom GroupBox

control, a container to hold

and separate controls for

organization, look and feel.

CLabel.cs

Defines the custom Label

control commonly used to

show information to the user.

46

CPanel.cs

Defines the custom Panel

control. Similar to the

GroupBox.

CTabControl.cs

Defines the custom

TabControl. A tool that allows

the user to navigate between

different tabs for different

views.

CTabPage.cs

Defines the custom TabPage

control, which contained inside

a CTabControl creates the

navigating menu.

CTextBox.cs

Defines the custom TextBox

control allowing the user to

input text.

ControlDescription.cs

Class that encapsulates all the

information from the control

where it is contained. Adds

fields relevant for the tool that

help in, for example, right

management, relations or file

destinations.

ICustomControl.cs

Common interface for all the

controls to implement,

defining the control

description field and the way to

access it.

CustomHandler.cs

Class containing all the

functions that act as handlers

for the special events triggered

during the edition or use of the

custom controls.

Figure 15 – Table of contents for the custom control folder

The basic way to create a Custom Control is defined inside the

constructor, while the real set up is realized on the beforehand mentioned

47

Control Factory, which will be explained later on. Here we can see the

example of the class for the CLabel control:

class CLabel : Label, ICustomControl
{
 public static int count = 0;
 public ControlDescription cd;

 public CLabel()
 {
 this.Name = "CLabel" + count;
 this.Text = this.Name;
 this.DoubleBuffered = true;
 count++;
 }

 public void SetControlDescription()
 {
 cd = new ControlDescription(this);
 }
//…
}

Example of class for CLabel control

As it is shown in this example, the class CLabel inherits its behavior

from the actual class Label provided by .NET Framework and implements the

ICustomControl interface.

The naming convention for the custom controls was defined as the

name of the class together with unique number as id tag, aiming at searching

purposes. The double buffering property helps the .NET libraries to avoid

flickering, a problem that makes controls flash when refreshing them.

Another noticeable aspect would be the instantiation of the control

description property in a separated function, not inside the constructor of the

control.

Inside this folder, there is also the ControlDescription class. This is one

of the most important classes of the structure defined in the design stage of

the project. It contains the most relevant information for the custom controls

48

and keeps the data consistency between the real control and the actual

information contained in the object. The last part is thanks to the use of

properties, a flexible method that C# provides to read, write and access the

private members of a class.

public String Name
{
 get { return this.name; }
 set
 {
 this.control.Name = value; // Property of the control
 this.name = value; // Property of the control description
 }
}

Property modifying the control description and the actual control

The information that the ControlDescription class contains, is the data

that later will be stored inside the Object Description file, which consists in

the description of each control placed inside the UI. From the name, the text

and the coordinates to the list of related controls, the items or the state of

the object is always reflexed in the control description object. This means

having all the relevant information to manipulate and define the UI

component inside a single instance.

The CustomHandler.cs class defines most of the handlers related to the

controls that will be placed over the canvas in runtime. It manages for

example, the configuration of the context menu strip that appears when you

right-click over the canvas in programmer mode, deciding if it should allow

to create new controls in the current position or just opening the editor in

case the mouse is hovering a control. The handlers are assigned from the

control factory class, described later in this section.

49

2.2.2. Relation Managers

The relation manager folder contains the classes focused on managing

the relation between controls. Those are:

 Visibility relation, which switches the visibility of the indicated controls

depending on the selection.

 Coupled controls, managing the equality of selection between different

controls.

 Read relation, telling the controls to re-read the content from the

source file.

 Write relation, not a relation “per se” but taking care of saving the

information from the files inside the destination files.

The static class defined in VisibilityRelationManager.cs is focused on

two main controls – ComboBox and CheckBox - that are able to change the

visibility property with user interaction. In the case of the Combobox, the

visibility depends directly on the index of the item selected. The first item

will always mean that the visibility of the related control is turned off,

meanwhile the rest of the items mean that the control will be visible for the

user. This dependence of visibility is considered at startup, after editing a

control and of course, when the user interacts with the UI.

The file CoupledControlsManager.cs contains also a static class which

manages the coupled controls. This relation is also focused on the controls

of type ComboBox and CheckBox, switching the selected item and selected

status respectively. As the one described before, this dependence is

considered at startup, after editing and after interaction from the user.

static class CoupledControlsManager
{
 // *** Coupled ComboBox Management ***
 // When a combo box is coupled with another one, the

50

 // index of those must change at the same time to the same value.
 public static void ComboBoxCoupled(object sender, EventArgs e)
 {
 CComboBox control = sender as CComboBox;

 foreach (CComboBox related in control.cd.CoupledControls
 .Where(r => r.cd.Type == "CComboBox"))
 {
 if (related.Items.Count == control.Items.Count)
 (related as CComboBox).SelectedIndex
 = control.SelectedIndex;
 }
 }

 // *** Coupled CheckBox Management ***
 // When a CheckBox is coupled with another one, the
 // state of those must change at the same time to the same value.
 public static void CheckBoxCoupled(object sender, EventArgs e)
 {
 CCheckBox control = sender as CCheckBox;

 foreach (CCheckBox related in control.cd.CoupledControls
 .Where(r => r.cd.Type == "CCheckBox"))
 {
 related.CheckState = control.CheckState;

 if (control.Checked) related.Enabled = false;
 else related.Enabled = true;
 }
 }
}

Manager handlers for the Coupled Control Relations

The ReadRelationManager class is the one that takes care of the read

relations. It is a fairly more complex relation because it involves getting data

from a file or from the Windows Registry. Also, it can require the action of

the TokenTextTranslator and the TokenControlTranslator, two modules that

will be described later on. The destination file of the secondary control

defines where to reach the data, and the main control that points to the

secondary one, indicates when to re-read that data. If the data is not found,

the secondary control sets the content as empty. This is something that is

better explained with a graphic example:

51

The WriteRelationManager.cs element inside the project implements

the code focused on rewriting or adding values to the configuration – or main

destination, inside the editor form – files. It is not a “real” relation between

controls, as it only depends on the definition of this source or destination file

path. Writing the files will be only possible in cases when,obviously, there is a

destination file defined for that control and the Boolean property indicating

that the control or its content has been modified is set to true.

This property indicates that something relevant on this control has

been changed. It could be a matter of adding a new item to a combo box

during the programming mode, or it could be that the combo box is

selecting a different value during the operator mode. The existence of this

flag value is decisive for knowing which files will be written, something that

results in a better performance - not every value has to be rewritten – and

that adds the possibility of a better analysis in case of failure, as the modified

dates for those files would be affected only for the last changes inside the

configuration.

The structure of the class is based on the methods that manage the

save action:

SaveControlChanges(ICustomControl c);
SaveXMLFile(ICustomControl c, String path, String value);
SaveINIFile(ICustomControl c, String path, String value);
SaveRegistryKey(ICustomControl c, String path, String value);

And the ones defined to obtain and update the information to save,

which are:

GetValueToSave(ICustomControl c);
ReReadControl(ICustomControl c);

By reading again the information inside the control, something that the

last function cares about, we can be sure that the feedback of something

changed inside the configuration file, is shown to the user.

52

After the process of saving has been completed successfully, the flag

“changed” described previously of that control will be set with the value false.

2.2.3. Util folder classes

The Util folder contains several files implementing utilities needed for

the correct behavior of the Configuration Manager. Is a folder for classes

destined as an add-on that not only are useful in this project, but could work

separately or could be interesting for other projects.

The classes are:

 IniFile.cs, which eases the reading and modification of .INI files in C#

 LogDeletion.cs and LogCreation.cs, destined to the creation of log files

during the execution of the software.

 RegistryManager.cs, easing the access and modification of the

Windows Registry.

 TokenControlTranslator.cs, in charge of checking for key tokens and

translating them to the desired value.

 TokenTextTranslator.cs, searching for key tokens and translating them

to a specific line inside a text file.

 StringFormatter.cs, giving the possibility of formatting a value that is

being read from a file.

Microsoft encourages the XML files as configuration files for software

programmed in C#, forcing the deprecation of previous INI files as

configuration databases. This starts with the lack of support from C# and

.NET Framework for reading or modifying this kind of format. Therefore, a

helper class that manages this requirement must be implemented in order to

be fully compatible with the older tools still using them in configuration

53

purposes. The IniFile class defines a way to access the values and keys of the

files, allowing to modifying them. The access to those files is possible thanks

to the Windows libraries “kernel32”. The functions contained in this class that

make possible the manipulation of ini files are:

IniWriteValue(string Section, string Key, string Value);
IniReadValue(string Section, string Key);

If the file path is incorrect, or the file does not exist, the class will

throw an exception as FileNotFound, notifying this in the log file, and

indicating the control where the problem was located.

The Log Creation module helps to create a consistent looking log files

to report status and problems during the execution of the Configuration

Manager. It provides a way of writing lines inside a file in a very simple way

with the possibility of decorating with frames. Another feature is the ability

of created the lines with a specific length, so they are printed in a wrapped

way.

The log files are mainly a way of forensic investigation in case there is

a problem with the machine’s behavior. All the lines without a frame inside

the log will contain a time tag at the beginning so the programmer can check

when the process happened. The formatting result is a simple .txt file, with

for example, the following aspect:

10:24:57.838 : # This is an example log line #
10:24:57.915 : # All lines have the same length... #
10:24:57.938 : # ...regardless how long the message itself will be #

The naming convention for the Log files is a string containing the

abbreviation of the tool - for example, Configuration Manager would be the

54

“CM” string - combined with the Log word and the date. An example of this

convention could be:

CM_Log_2012_5_22.txt

Indicating that the log file was created on the 22th of May of 2012, for

the Configuration Manager (CM) tool. The log lines will be appended to the

file during the same day. After the clock changes the day, those lines will be

added to a new file with a new name according to the convention.

The LogDeletion class is the way of assuring that the machine does not

get completely overloaded with log files filling the main storage. The class is

designed as a timed event that checks the files inside the log folder. If the

LogDeletion module finds a log file older than the threshold set inside the

main configuration file, it will be deleted when application starts. It will

search for a certain file name structure and check the date of the file in order

to determine if the file must be deleted.

As a sort of timed event, it does not need any special code aside of the

instantiation of the class at boot.

RegistryManager.cs is a class focused on easing the access to the

windows registry. The .NET Framework provides the namespace

Microsoft.Win32; which contains the tools to access the registry and modify

it. Thanks to this library of utilities, the registry manager can easily

implement the two main functions that will be used in this project for

manipulating specific values inside the registry.

GetValue(string path);
SetValue(String path, String value);

These two methods will be enough to operate with the data from the

registry. Configuration Manager does not manipulate the windows registry

55

internally. This module has the unique purpose of giving the user the

possibility of manipulating it.

This can be defined inside the editor form of the control, where the

root key and the sub destination path to the key can be specified. It must be

clear that also the possibility of combining this path with control tokens and

text token is accepted, creating a very flexible environment for the

programmer and therefore, the final user. For example:

Main Destination: HKEY_CURRENT_USER

Sub Destination: /Software/Paint.NET/##CComboBox9##

With this set up, RegistryManager would search inside the root key

defined by the main destination field and search the path for the sub

destination string. But before that, the ##CComboBox9## token would be

replaced by the value selected inside the comboBox with that name, thanks

to the TokenControlTranslator.

TokenControlTranslator is one of the most important classes inside the

Util folder. This is a very critical functionality of the Configuration Manager

project and here it will be explained.

In order to create a relation with the selected values between different

controls, a way to communicate between them must be implemented. Not

only that, but also allowing to represent this information in different places

of the designed UI for the tool. Those are the main purposes of the

TokenControlTranslator class. Basically, this module analyzes a string and

searches for tokens that can be identified by the special characters defined

inside the main configuration file of the tool. Once found one of those

tokens, it will replace the value between them - that must be the name of a

control already placed inside the UI - by the current selected value of that

control whose name is between the tokens. Depending on the kind of control

it will replace the token by the selected value, the text field or even the state.

56

The check for searching this kind of token is always performed during

three processes: startup of the tool, after editing a control and after

interacting with the control. When some of these actions happen, the

TokenControlManager will search for the possible tokens to replace.

First of all we have to set up the kind of token that will enclose the

value to be replaced, this is, the name of the control. By default it is “##”, but

we can set it up from the main configuration file using the function that this

module provides:

SetTokenKey(String tokenKey)

Once the token is defined, we can use the function:

TranslateFromControl(String textToTranslate)

to feed the TokenControlTranslator with strings of text to translate,

and it will return the string with the translated values. The procedure to

translate is basically taking care of the number of tokens, so if it is even,

means that the formatting of the string is correct. After the previous checks

the module searches for values to translate, translates them in order, and

then replaces the obtained result into the original string.

It is important to make clear that both strings are kept, that means that

the translated and the real string of text are stored inside the control

description. Also important is to note that the information regarding the

control stored in the object definition file is always the real string of text, the

one with the values still to translate, for obvious reasons.

A similar module is the TokenTextTranslator, a class with the same

behavior as the control translator but with focused on translating values from

the current text file for the selected language.

57

In this class, the use is also similar: first we have to set up the token

that will serve as delimiter for the value. By default, it is defined as “@@” but

it can also be configured inside the configuration file of the main application.

Once the token is defined, the function in charge of translating text can be

called,

TranslateFromTextFile(String textToTranslate)

And as a result, a string with the new text will be returned. In this case,

the module is not searching for controls but id numbers as identifiers of a

text line inside the translation file. This way, the common token to be

replaced will have the next look:

Everything is @@21@@!

Where “@@21@@” is the token to search for, and 21 the id of the text

“OK” inside the text file. This will result in a string like

Everything is OK!

As the control translator, the controls can contain this kind of token in

almost every field of its configuration, this is: text field, main destination file,

sub destination path, hint and ComboBox items. The values stored inside the

object description file will be always the ones not translated. This means that

of course, it has to check for tokens and replace them on boot, as it will do

when the control is edited or the content of a control is changed.

Another useful class for the development of Configuration Manager, is

the StringFormatter. This class is in charge of modifying the resources

obtained from a certain file location and returning them in a more adequate

way to representing it for the user.

The text received will be compared to the format string, defined inside

the editor screen, and then this text will be trimmed according to the needs

of the programmer. In general terms, the programmer needs to specify the

58

string and the section of the string that will be selected as value with the

token “##This##”.

For example, having the value:

WinXP, EN, SP3

And defining the format string as:

WinXP, ##This##, SP3

The returned value would be “EN”.

2.2.4. Views folder

The Views folder contains the two views managing the interface of the

Configuration Manager. The views are a basic element in the implementation

following the Model – View – Controller pattern, they are in charge of

representing the information contained in the model and modified by the

controllers. In this case, two of them are present: one for the section menu

and another for the section tabs containing each one a canvas for placing UI

elements. Furthermore, both views implement a basic interface, named

IView.cs, in order to keep a standard way to operate with them.

The Section Menu View, as its name says, is the view that manages the

left menu bar for the navigation between different sections or tabs. As both

views, it implements the interface IView, which means that the two methods

readAndShow() and saveToModel() are present. This class will manage also

the information board present in the section menu. The content of this info

board will vary depending on the components where the mouse is hovering.

59

The section menu view class manages the addition and deletion of new

sections. When it builds the new section, adds it to the list of sections and

then creates the button and the new tab inside the canvas.

AddNewSection(String text);

When deleting the section, it removes it from the list of sections,

removes all the contained controls and then deletes the tab and the button.

RemoveSection();

It also is in charge of managing the maximum of sections allowed,

something we can define inside the main configuration file of the tool. It

takes care of highlighting the selected button and refreshing the list each

time we modify it, something that is executed from the implementation of

the readAndShow() method.

Concerning the Section Tabs View, it is much simpler, as it only

manages refreshing the tabs already created during the edition in the last

described class. In this case, the only task for the readAndShow() method is

to read the list of sections and set up the handlers for the actual tab

contained in it.

2.2.5. Control Factory

The control factory class is where the custom controls are built and set

up, so it is one of the most important components of the project. It is a static

class designed around the Factory Pattern, as previously described in the

design section.

60

For each kind of control, the class contains a method that requires the

control’s parent. This method returns the control itself once built. The basic

procedure is:

 Check which id for the control is the next:

The way to avoid the creation of several controls with the same name.

 Create the instance of the custom control:

Call the constructor of the custom control with no parameters.

 Link the new control to its parent:

Assign the new control to its future parent as a child control.

 Set the control description object:

Instantiate the control description object that encapsulates the custom

information.

 Set the common handlers for all the controls:

Assign the common handlers for every control like the click handler

and the update the information label handler when the mouse is

hovering.

 Add the control to the main list of controls:

The model contains a main list with all the controls referenced in it.

Adding the new control to this list is necessary to retrieve it if it is

required.

 Notify inside the log:

Append the line that warns about a new control being added to the

user interface.

 Return the control:

Give back the ready control.

61

Aside of the main handlers, some controls also need more additional

functions to manage events. For example, the ComboBox, TextBox and

CheckBox which need a way to know that the user modified their values. This

is done thanks to a property inside the control description class. This

property is useful to know when a file has been modified and therefore,

needs to be saved. Thanks to this, we know what files to modify and what

not, so the consistency on the last modification date for those files is

guaranteed.

2.2.6. Object Definition Manager

The object definition manager class is the one that takes care of

reading and writing the object definition file, where all the information about

the structure of the user interface is stored. It is a crucial module in the

development of the configuration manager, and therefore, a clear

explanation is required.

The object definition file contains detailed information about every

control and section of the user interface. It is saved in a human-readable way

and structured as two main parts: one describing the sections and other

describing each control. On startup, this information is read thanks to LINQ

and the user interface is built.

<Sections>
 <Section id="0">
 <Name>Section0</Name>
 <Selected>false</Selected>
 <Text>Tesla</Text>
 </Section>
</Sections>

Example of section in the object definition file

62

The sections are defined in a very basic way, but the controls need a lot

more information and have special cases where specific content as the items

for the ComboBox must be stored.

<Control id="3" type="CLabel">
 <Name>CLabel1</Name>
 <Text>Example label</Text>
 <Hint />
 <Parent>CGroupBox1</Parent>
 <Section>Section0</Section>
 <Settings>
 <Top>20</Top>
 <Left>7</Left>
 <Width>100</Width>
 <Height>23</Height>
 <Visible>true</Visible>
 Microsoft Sans Serif; 9pt
 <FontColor>Black</FontColor>
 <BackColor>Control</BackColor>
 <DisplayRight>0x00000000</DisplayRight>
 <ModificationRight>0x00000000</ModificationRight>
 </Settings>
 <Paths>
 <DestinationType />
 <DestinationFile />
 <SubDestination />
 </Paths>
 <Relations>
 <Write />
 <Read />
 <Visibility />
 <Coupled />
 </Relations>
 </Control>

Example of control in the object definition file

A control always contains information about the parent, the location,

rights, visibility and look and feel, but also a list containing the relations and

paths to source or destination files.

The way that the object describer manager proceeds to read and build

the previously stored user interface configuration is as follows:

 Read the sections part:

63

We build as a first instance the sections according to the object

description file.

 Build a preview of the controls:

We have to build the controls one by one, but probably, we are going

to build, for example, a label whose parent is still not created,

resulting on a reference problem. This is solved by creating a preview

of the controls, defining as a parent just the section where they are

located. Something similar happens with the TabControls and the

TabPages: they depend on the first ones, so during this loop, only the

TabControls will be created.

 Build the TabPages:

Once the TabControls are built and in place, the tabs should be added.

 Fill the preview controls with the actual information:

Here the user interface takes its real form. In this loop, it will iterate

through all the preview controls and add the real information that

defines them inside the configuration. The methods defined for this

procedure in order of execution are:

- SetRealParent: where the real parent of the control is assigned.

- SetRealProperties: where the actual properties for the control, such

as location, text, hint, font and display rights are inserted.

- SetControlSpecyficProperties: controls like ComboBox or CheckBox

have special properties that require additional treatment. Here they

will be computed and assigned.

- SetRelatedReadList, SetRelatedVisibility, SetCoupledControls: the

required relations defined are built and assigned here. The list is

read, the related control is searched inside the list of all controls,

and then it is added to the respective list of relation.

- ReadMachineConfiguration: is the method where the last

configuration of the machine is applied to the controls. Here we

check the main destination files for every control containing them

64

and search for the information selected that is stored in those files.

Afterwards, the values are applied to the control depending on the

information obtained.

- ApplyRights: after loading all the information, computing the rights

of the controls and applying it to the current configuration or state

of the interface must be done. This is the task of the ApplyRights

function.

- ApplyRelations: of course, the status of the interface also depends

on relations like the coupled or visibility relations. We have to take

care of this state for the controls or for example, a component that

should not be visible could be incorrectly configured and shown to

the user.

With this procedure, the whole user interface would be built and

operative, allowing the complete load without errors. Now, how the current

configuration is stored inside the object definition file will be described. This

process consists in a serialization of the information inside the controls.

Selecting different fields, taken directly from the control description object,

we build the definition for each control and section.

The object definition file is rewritten from scratch every time the

programmer saves the user interface. It is done thanks to the LINQ to XML

library that the .NET Framework provides.

Most of complexity of this process is contained in the function

SerializeObjectDefinition(). Here, iterating through the list of sections and the

list of controls, the information required is taken and write directly to an XML

file. In the case of controls, there are special cases as it was said before. For

example, the ComboBox is a type of control that contains a list of items. This

is stored in two different lists: one contains the items without any kind of

translation from control property or text file, and the other contains the value

65

that is linked to that item, but as it is represented inside the configuration

files of the machine. Each of those lists is written inside the

WriteComboBoxItems and WriteComboBoxConfigItems functions.

2.2.7. Model

The model is the heart of the application. It is a class that contains

several relevant properties and public methods to modify the main status of

the software. It is the core of the Model-View-Controller design pattern,

which helps creating a clear division between the real information inside the

application and the one that the user sees and interacts with.

Figure 16 - Model - View - Controller structure

At the same time, the Model is based on the Singleton Pattern that

defines a way to obtain one and only one instance of the same class during

the lifetime of the application. This not only helps us to have a common

66

access point to the model, but also creates the safety of no replicated data

and therefore inconsistency.

One of the main purposes of the model is to load and keep the

configuration of the tool. This means, reading the configuration files at

startup and apply those properties such as the rights for the current session.

The model also manages the call parameters of the applications and the

switching between programming and user mode.

Aside of setting up the session for the Configuration Manager, the

Model has capital importance in other tasks as removing sections and

controls and applying the correct rights to the components as well as

performing checks about the relations list.

2.2.8. Forms

There are four different forms that can appear in the project, only one

of them is accessible if you are not in programmer mode.

The Configuration Manager form is the main screen of the tool. It acts

as the canvas and where all the user interface components are placed. During

programming mode it becomes completely editable and the access to the

context menu both in the canvas and the section list is open. With this

context menu it is possible to edit and modify the tool interface: add, modify

and delete controls. Adding a section would require the help of the

previously described Section Menu View class, meanwhile modifying the main

canvas of the application, would require the help of the Section Tabs View,

etc. During the user mode, it is only allowed to interact with the already

placed components. This would be the normal way to use the Configuration

Manager for operating with cash machines.

67

The second main form is the Control Editor. This menu is only available

when the software is in programmer mode. It is automatically opened and

filled out when the user creates a new control, allowing modification of its

properties in a convenient way. The Editor is also shown when the

programmer wants to edit the attributes of an already created control. When

this happens, it loads the attributes from the control clicked, showing the

last configuration saved for that control. The properties that the user can

modify in this menu are:

 Text field of the control (except in TabControl)

 Items (only in CComboBox)

 Font

 Background color

 Text hint that appears in the Section Menu board

 Width, Height, Top, Left

 Destination Type, File Destination and Sub Destination of the file.

 Configuration values (only in CCheckBox)

 Display Right

 Modification Right

 Related read list, Related visibility list, Coupled control list.

Editing the relation lists is possible thanks to the relation list combo

box, where the user can select the kind of relation to modify and later on,

check the controls he wants to add to relate to the current one.

68

Figure 17 - Control Editor form

69

3. Case Study

In this section, the development of a case study using the

Configuration Manager, with a real configuration file will be explained. The

configuration used is the one regarding the product SafeCash – R and the

study case will be centered in the setup of the coin module, containing the

values that define the properties for the hoppers. Later on the section of this

file that served as a test will be presented and explained.

The study case is composed of three clearly separated steps:

 Creation of the UI.

 Interaction with the configuration file

 Results.

3.1. Creation of UI

As the first step, obviously, the UI should be created with the

Configuration Manager, as this is one of the main features of this project.

What it was created was two main sections, differenced by purpose: one

would be testing the read from configuration files and visibility relations. The

other would test writing into files and reading relations controlled.

Starting the preparation, it was created a new text translation file for

the English language of the UI. This file was created with the tool Text File

Editor, which eases the process of creating multiple translation files and was

also developed by Hugo Casero during the internship period in this same

company.

To begin with the case study, of course, the programming mode

should be activated. This mode is only accessible pressing a hotkey

combination and allows the administrator to modify and set up the UI.

70

The general section is the one that shows a basic information table of

the Cash Module in case this is activated. In case it is deactivated, the table is

disabled by a visibility relation. This is controlled by a checkbox that reads

and writes an attribute named “availability” in the Cash Module’s description

of the configuration file.

Figure 18 – General section in the study case

In this section the hint system – as the mouse, even not visible because

of the windows screencap feature, is over the information groupbox – can be

seen working as expected, also the checkbox defining the availability of the

Cash Module CM1 at the top of the canvas. The labels naming each

configuration value come from the text file described at the beginning of this

section, thanks to the TokenTextTranslator module, and the values of those

configuration objects are read from the configuration file.

71

For example, the editor screen that defines the first label showing

configuration values looks like this:

Figure 19 – Editing the configuration value labels of the study case

As it can be seen, the text field of the label is the default one during

creation, but the actual content, which shows “PersistentData\ctc” in Figure

18 – General section in the study case, is actually coming from the

72

configuration file thanks to the main destination and sub destination

definitions.

The second section is the one that tests the modification of values

inside a file. It was built around the idea of being able to choose different

configurations for different coin hoppers - thanks to the selector on the

superior right area of the canvas -, so the user could select those values

between a range of pre-set configuration. Of course, those values are

defined also by the programmer thanks to the ComboBox editor. In the case

of the currency value, the visible tags for the items are taken from the main

text file. But the actual values that are written inside the set-up, are just a

three letter code that identify the kind of coinage. The other values are

stored as it can be seen in the several ComboBoxes in the canvas.

Figure 20 - Hoppers section in study case

73

3.2. Interaction with the configuration file

Once the UI has been built thanks to the interface editor, it is time to

actually test the behavior.

As the first section is reading the existing setup in the content of the

configuration file, we must understand how this document is structured. It is

an XML file containing several nodes that define the behavior of the machine.

These nodes have attributes that the Configuration Manager is able to

navigate through thanks to XPath and reading modules. The part of the

module that is being interacted with is this one:

Figure 21 – Configuration file for the study case

From the first line, where the component is defined, is where the

information shown in the general section is taken from. For this purpose, the

programmer has to set up the File and Subdestination fields inside the

74

control editor. As an example, to obtain the Errors File value, that label

contains the following configuration:

Main Destination: C:\SafeCash-R\RecyclerConfig.xml
SubDestination: /configuration/component[@name='CM1']/@errors_file

This means that the label will show the value contained in attribute

“errors_file” from the node “component”, subnode of “configuration”, which

has an attribute “name” configured as “CM1”. As a result and thanks to the

XPath syntax inside the SubDestination field and the

ReadConfigurationManager.cs module, we obtain the expected value:

languages\cm_err.csv

The second section, containing the information related to the coin

hoppers, is built around the idea of not only reading the configuration file,

but also modifying it. Obviously, this is thanks to the values contained inside

the ComboBoxes which represent the attributes of each coin hopper.

When the user selects the number id for the hopper, those

ComboBoxes will be updated and will read the current value of the labeled

attributes for that specific ComboBox. Then, it will be possible to change

those values, allowing the selection in a range of pre-set defined amounts.

The new configuration will be stored once the save command is called,

something that the user should execute. There is also the possibility that this

new set up is stored before leaving the application, as it will automatically

detect the changes and the warning message, asking about saving the

changes will be prompted.

 In this case, the fifth hopper will receive some changes, the ones

shown in the figure below:

75

Figure 22 - Changes made to the configuration of Hopper 5

With this case, and after saving the configuration for the hopper 5, the

next section will analyze the results of the test.

3.3. Results

The modifications to the configuration file should already show the

new values specified in the previous section. Navigating through the XML

configuration file until the “hopper5” definition, it can be seen that indeed,

the changes were made without problem:

76

Meanwhile, the rest of the configuration remains as it was expected.

This means that with the Configuration Manager tool, the user is able to set

up a universal configuration tool for any kind of machine that works with this

kind of files. Not only that, but the software allows the user to create its own

interface menu in a very convenient way. The interface built for the study

case is also saved inside an xml file. It is saved in a human-readable way and

it can be found in this same document as an Appendix A.

4. Conclusions

As the last chapter of this document, the conclusions from the author

after the development will be exposed.

The main objectives defined at the specification of this project were

fulfilled. The Configuration Manager was built around those specifications

and the result is having a tool that simplifies vastly the way a personalized

version for the different customers is built.

Furthermore, the tool is able to work with every kind of machine that

works under a personal computer environment, which obviously provides a

huge range of compatibility along the manufactured products by Gunnebo.

During the development of the Configuration Manager, it was

necessary to establish a better understanding about the software

development life cycle. At the first weeks of documentation, the objectives

were raise the skills obtained during the studies in topics like planning,

design and testing, defining a basic roadmap, thinking about the best

solution for the custom control class structure and finding an intuitive way of

giving the user a friendly interface.

77

For the actual realization and implementation, the previous experience

with C#, .NET Framework and Visual Studio 2010 Professional was crucial.

Thanks to this project, the experience with all these tools gained several

points, acquiring the confidence for getting directly into the job market.

Other utilities and technologies like LINQ, which resulted in a very

confortable way of working with data, didn’t suppose any important problem

while developing the Configuration Manager, but getting in touch with them

was definitely a good choice.

There are more aspects that resulted useful and were new for the

author, like the use of a repository system like Git, something that required

also documentation but will be often used from now on in personal projects.

From a personal point of view, this project was an excellent experience for a

certainly relevant tool inside the company. Not only for learning new

concepts and technologies but also for establishing the knowledge obtained

during the study. This was one of the main objectives, as learning about the

development process per se. It also gave the author the chance to experience

the lifestyle and job culture in Germany, giving the opportunity to stay in

employment market.

78

Annex: ObjectDescription.xml file from the study case

 <?xml version="1.0" encoding="utf-8" standalone="yes" ?>

- <ObjectDefinition>

- <Sections>

- <Section id="0">

 <Name>Section0</Name>

 <Selected>false</Selected>

 <Text>General</Text>

 <DisplayRight>00000000</DisplayRight>

 <ModificationRight>00000000</ModificationRight>

 </Section>

- <Section id="1">

 <Name>Section1</Name>

 <Selected>true</Selected>

 <Text>Hoppers</Text>

 <DisplayRight>00000000</DisplayRight>

 <ModificationRight>00000000</ModificationRight>

 </Section>

 </Sections>

- <Controls>

- <Control id="0" type="CLabel">

 <Name>CLabel0</Name>

 <Text>@@65@@:</Text>

 <Hint />

 <Parent>Section0</Parent>

 <Section>Section0</Section>

- <Settings>

 <Top>10</Top>

 <Left>10</Left>

 <Width>120</Width>

 <Height>23</Height>

 <Visible>true</Visible>

 Microsoft Sans Serif; 11,25pt; style=Bold

 <FontColor>Black</FontColor>

 <Format />

 <BackColor>Control</BackColor>

 <DisplayRight>0x00000000</DisplayRight>

 <ModificationRight>0x00000000</ModificationRight>

 </Settings>

- <Paths>

 <DestinationType>.INI</DestinationType>

 <DestinationFile />

 <SubDestination />

 </Paths>

- <Relations>

 <Read />

 <Visibility />

 <Coupled />

 </Relations>

 </Control>

- <Control id="2" type="CCheckBox">

 <Name>CCheckBox0</Name>

 <Text>@@66@@</Text>

 <Hint />

 <Parent>Section0</Parent>

file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml

79

 <Section>Section0</Section>

- <Settings>

 <Top>48</Top>

 <Left>14</Left>

 <Width>104</Width>

 <Height>24</Height>

 <Visible>true</Visible>

 Microsoft Sans Serif; 8,25pt

 <FontColor>ControlText</FontColor>

 <Format />

 <BackColor>Control</BackColor>

 <DisplayRight>0x00000000</DisplayRight>

 <ModificationRight>0x00000000</ModificationRight>

 <CheckedValue>true</CheckedValue>

 <UncheckedValue>false</UncheckedValue>

 </Settings>

 <Checked>True</Checked>

- <Paths>

 <DestinationType>.XML</DestinationType>

 <DestinationFile>C:\SafeCash-R\RecyclerConfig.xml</DestinationFile>

 <SubDestination>/configuration/component[@name='CM1']/@available</SubDestination>

 </Paths>

- <Relations>

 <Read />

 <Visibility>CGroupBox0,</Visibility>

 <Coupled />

 </Relations>

 </Control>

- <Control id="3" type="CGroupBox">

 <Name>CGroupBox0</Name>

 <Text>@@67@@</Text>

 <Hint>Main information of the Cash Module CM1 from the Safe Cash - R Machine.</Hint>

 <Parent>Section0</Parent>

 <Section>Section0</Section>

- <Settings>

 <Top>90</Top>

 <Left>15</Left>

 <Width>620</Width>

 <Height>460</Height>

 <Visible>true</Visible>

 Microsoft Sans Serif; 8,25pt

 <FontColor>ControlText</FontColor>

 <Format />

 <BackColor>Control</BackColor>

 <DisplayRight>0x00000000</DisplayRight>

 <ModificationRight>0x00000000</ModificationRight>

 </Settings>

- <Paths>

 <DestinationType>.INI</DestinationType>

 <DestinationFile />

 <SubDestination />

 </Paths>

- <Relations>

 <Read />

 <Visibility />

 <Coupled />

 </Relations>

 </Control>

file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml

80

- <Control id="4" type="CLabel">

 <Name>CLabel2</Name>

 <Text>@@75@@:</Text>

 <Hint />

 <Parent>CGroupBox0</Parent>

 <Section>Section0</Section>

- <Settings>

 <Top>25</Top>

 <Left>15</Left>

 <Width>100</Width>

 <Height>23</Height>

 <Visible>true</Visible>

 Microsoft Sans Serif; 8,25pt

 <FontColor>ControlText</FontColor>

 <Format />

 <BackColor>Control</BackColor>

 <DisplayRight>0x00000000</DisplayRight>

 <ModificationRight>0x00000000</ModificationRight>

 </Settings>

- <Paths>

 <DestinationType>.INI</DestinationType>

 <DestinationFile />

 <SubDestination />

 </Paths>

- <Relations>

 <Read />

 <Visibility />

 <Coupled />

 </Relations>

 </Control>

- <Control id="5" type="CLabel">

 <Name>CLabel3</Name>

 <Text>CLabel3</Text>

 <Hint />

 <Parent>CGroupBox0</Parent>

 <Section>Section0</Section>

- <Settings>

 <Top>25</Top>

 <Left>280</Left>

 <Width>100</Width>

 <Height>23</Height>

 <Visible>true</Visible>

 Microsoft Sans Serif; 8,25pt

 <FontColor>ControlText</FontColor>

 <Format />

 <BackColor>Control</BackColor>

 <DisplayRight>0x00000000</DisplayRight>

 <ModificationRight>0x00000000</ModificationRight>

 </Settings>

- <Paths>

 <DestinationType>.XML</DestinationType>

 <DestinationFile>C:\SafeCash-R\RecyclerConfig.xml</DestinationFile>

 <SubDestination>/configuration/component[@name='CM1']/@cassettes_file</SubDestination>

 </Paths>

- <Relations>

 <Read />

 <Visibility />

 <Coupled />

file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml

81

 </Relations>

 </Control>

- <Control id="6" type="CLabel">

 <Name>CLabel4</Name>

 <Text>@@76@@:</Text>

 <Hint />

 <Parent>CGroupBox0</Parent>

 <Section>Section0</Section>

- <Settings>

 <Top>55</Top>

 <Left>15</Left>

 <Width>100</Width>

 <Height>23</Height>

 <Visible>true</Visible>

 Microsoft Sans Serif; 8,25pt

 <FontColor>ControlText</FontColor>

 <Format />

 <BackColor>Control</BackColor>

 <DisplayRight>0x00000000</DisplayRight>

 <ModificationRight>0x00000000</ModificationRight>

 </Settings>

- <Paths>

 <DestinationType>.INI</DestinationType>

 <DestinationFile />

 <SubDestination />

 </Paths>

- <Relations>

 <Read />

 <Visibility />

 <Coupled />

 </Relations>

 </Control>

- <Control id="7" type="CLabel">

 <Name>CLabel5</Name>

 <Text>CLabel5</Text>

 <Hint />

 <Parent>CGroupBox0</Parent>

 <Section>Section0</Section>

- <Settings>

 <Top>55</Top>

 <Left>280</Left>

 <Width>100</Width>

 <Height>23</Height>

 <Visible>true</Visible>

 Microsoft Sans Serif; 8,25pt

 <FontColor>ControlText</FontColor>

 <Format />

 <BackColor>Control</BackColor>

 <DisplayRight>0x00000000</DisplayRight>

 <ModificationRight>0x00000000</ModificationRight>

 </Settings>

- <Paths>

 <DestinationType>.XML</DestinationType>

 <DestinationFile>C:\SafeCash-R\RecyclerConfig.xml</DestinationFile>

 <SubDestination>/configuration/component[@name='CM1']/@com_p2000</SubDestination>

 </Paths>

- <Relations>

 <Read />

file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml

82

 <Visibility />

 <Coupled />

 </Relations>

 </Control>

- <Control id="8" type="CLabel">

 <Name>CLabel6</Name>

 <Text>@@77@@:</Text>

 <Hint />

 <Parent>CGroupBox0</Parent>

 <Section>Section0</Section>

- <Settings>

 <Top>85</Top>

 <Left>15</Left>

 <Width>100</Width>

 <Height>23</Height>

 <Visible>true</Visible>

 Microsoft Sans Serif; 8,25pt

 <FontColor>ControlText</FontColor>

 <Format />

 <BackColor>Control</BackColor>

 <DisplayRight>0x00000000</DisplayRight>

 <ModificationRight>0x00000000</ModificationRight>

 </Settings>

- <Paths>

 <DestinationType>.INI</DestinationType>

 <DestinationFile />

 <SubDestination />

 </Paths>

- <Relations>

 <Read />

 <Visibility />

 <Coupled />

 </Relations>

 </Control>

- <Control id="9" type="CLabel">

 <Name>CLabel7</Name>

 <Text>CLabel7</Text>

 <Hint />

 <Parent>CGroupBox0</Parent>

 <Section>Section0</Section>

- <Settings>

 <Top>85</Top>

 <Left>280</Left>

 <Width>100</Width>

 <Height>23</Height>

 <Visible>true</Visible>

 Microsoft Sans Serif; 8,25pt

 <FontColor>ControlText</FontColor>

 <Format />

 <BackColor>Control</BackColor>

 <DisplayRight>0x00000000</DisplayRight>

 <ModificationRight>0x00000000</ModificationRight>

 </Settings>

- <Paths>

 <DestinationType>.XML</DestinationType>

 <DestinationFile>C:\SafeCash-R\RecyclerConfig.xml</DestinationFile>

 <SubDestination>/configuration/component[@name='CM1']/@com_pmd</SubDestination>

 </Paths>

file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml

83

- <Relations>

 <Read />

 <Visibility />

 <Coupled />

 </Relations>

 </Control>

- <Control id="10" type="CLabel">

 <Name>CLabel8</Name>

 <Text>@@79@@:</Text>

 <Hint />

 <Parent>CGroupBox0</Parent>

 <Section>Section0</Section>

- <Settings>

 <Top>145</Top>

 <Left>15</Left>

 <Width>100</Width>

 <Height>23</Height>

 <Visible>true</Visible>

 Microsoft Sans Serif; 8,25pt

 <FontColor>ControlText</FontColor>

 <Format />

 <BackColor>Control</BackColor>

 <DisplayRight>0x00000000</DisplayRight>

 <ModificationRight>0x00000000</ModificationRight>

 </Settings>

- <Paths>

 <DestinationType>.INI</DestinationType>

 <DestinationFile />

 <SubDestination />

 </Paths>

- <Relations>

 <Read />

 <Visibility />

 <Coupled />

 </Relations>

 </Control>

- <Control id="11" type="CLabel">

 <Name>CLabel9</Name>

 <Text>CLabel9</Text>

 <Hint />

 <Parent>CGroupBox0</Parent>

 <Section>Section0</Section>

- <Settings>

 <Top>115</Top>

 <Left>280</Left>

 <Width>100</Width>

 <Height>23</Height>

 <Visible>true</Visible>

 Microsoft Sans Serif; 8,25pt

 <FontColor>ControlText</FontColor>

 <Format />

 <BackColor>Control</BackColor>

 <DisplayRight>0x00000000</DisplayRight>

 <ModificationRight>0x00000000</ModificationRight>

 </Settings>

- <Paths>

 <DestinationType>.XML</DestinationType>

 <DestinationFile>C:\SafeCash-R\RecyclerConfig.xml</DestinationFile>

file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml

84

 <SubDestination>/configuration/component[@name='CM1']/@com_port</SubDestination>

 </Paths>

- <Relations>

 <Read />

 <Visibility />

 <Coupled />

 </Relations>

 </Control>

- <Control id="12" type="CLabel">

 <Name>CLabel10</Name>

 <Text>@@78@@:</Text>

 <Hint />

 <Parent>CGroupBox0</Parent>

 <Section>Section0</Section>

- <Settings>

 <Top>115</Top>

 <Left>15</Left>

 <Width>100</Width>

 <Height>23</Height>

 <Visible>true</Visible>

 Microsoft Sans Serif; 8,25pt

 <FontColor>ControlText</FontColor>

 <Format />

 <BackColor>Control</BackColor>

 <DisplayRight>0x00000000</DisplayRight>

 <ModificationRight>0x00000000</ModificationRight>

 </Settings>

- <Paths>

 <DestinationType>.XML</DestinationType>

 <DestinationFile />

 <SubDestination />

 </Paths>

- <Relations>

 <Read />

 <Visibility />

 <Coupled />

 </Relations>

 </Control>

- <Control id="13" type="CLabel">

 <Name>CLabel11</Name>

 <Text>CLabel11</Text>

 <Hint />

 <Parent>CGroupBox0</Parent>

 <Section>Section0</Section>

- <Settings>

 <Top>145</Top>

 <Left>280</Left>

 <Width>200</Width>

 <Height>23</Height>

 <Visible>true</Visible>

 Microsoft Sans Serif; 8,25pt

 <FontColor>ControlText</FontColor>

 <Format />

 <BackColor>Control</BackColor>

 <DisplayRight>0x00000000</DisplayRight>

 <ModificationRight>0x00000000</ModificationRight>

 </Settings>

- <Paths>

file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml

85

 <DestinationType>.XML</DestinationType>

 <DestinationFile>C:\SafeCash-R\RecyclerConfig.xml</DestinationFile>

 <SubDestination>/configuration/component[@name='CM1']/@counters_file</SubDestination>

 </Paths>

- <Relations>

 <Read />

 <Visibility />

 <Coupled />

 </Relations>

 </Control>

- <Control id="14" type="CLabel">

 <Name>CLabel12</Name>

 <Text>@@68@@:</Text>

 <Hint />

 <Parent>CGroupBox0</Parent>

 <Section>Section0</Section>

- <Settings>

 <Top>175</Top>

 <Left>15</Left>

 <Width>100</Width>

 <Height>23</Height>

 <Visible>true</Visible>

 Microsoft Sans Serif; 8,25pt

 <FontColor>ControlText</FontColor>

 <Format />

 <BackColor>Control</BackColor>

 <DisplayRight>0x00000000</DisplayRight>

 <ModificationRight>0x00000000</ModificationRight>

 </Settings>

- <Paths>

 <DestinationType>.INI</DestinationType>

 <DestinationFile />

 <SubDestination />

 </Paths>

- <Relations>

 <Read />

 <Visibility />

 <Coupled />

 </Relations>

 </Control>

- <Control id="15" type="CLabel">

 <Name>CLabel13</Name>

 <Text>CLabel13</Text>

 <Hint />

 <Parent>CGroupBox0</Parent>

 <Section>Section0</Section>

- <Settings>

 <Top>175</Top>

 <Left>280</Left>

 <Width>100</Width>

 <Height>23</Height>

 <Visible>true</Visible>

 Microsoft Sans Serif; 8,25pt

 <FontColor>ControlText</FontColor>

 <Format />

 <BackColor>Control</BackColor>

 <DisplayRight>0x00000000</DisplayRight>

 <ModificationRight>0x00000000</ModificationRight>

file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml

86

 </Settings>

- <Paths>

 <DestinationType>.XML</DestinationType>

 <DestinationFile>C:\SafeCash-R\RecyclerConfig.xml</DestinationFile>

 <SubDestination>/configuration/component[@name='CM1']/@currency</SubDestination>

 </Paths>

- <Relations>

 <Read />

 <Visibility />

 <Coupled />

 </Relations>

 </Control>

- <Control id="16" type="CLabel">

 <Name>CLabel14</Name>

 <Text>@@80@@:</Text>

 <Hint />

 <Parent>CGroupBox0</Parent>

 <Section>Section0</Section>

- <Settings>

 <Top>205</Top>

 <Left>15</Left>

 <Width>100</Width>

 <Height>23</Height>

 <Visible>true</Visible>

 Microsoft Sans Serif; 8,25pt

 <FontColor>ControlText</FontColor>

 <Format />

 <BackColor>Control</BackColor>

 <DisplayRight>0x00000000</DisplayRight>

 <ModificationRight>0x00000000</ModificationRight>

 </Settings>

- <Paths>

 <DestinationType>.XML</DestinationType>

 <DestinationFile />

 <SubDestination />

 </Paths>

- <Relations>

 <Read />

 <Visibility />

 <Coupled />

 </Relations>

 </Control>

- <Control id="17" type="CLabel">

 <Name>CLabel15</Name>

 <Text>CLabel15</Text>

 <Hint />

 <Parent>CGroupBox0</Parent>

 <Section>Section0</Section>

- <Settings>

 <Top>205</Top>

 <Left>280</Left>

 <Width>100</Width>

 <Height>23</Height>

 <Visible>true</Visible>

 Microsoft Sans Serif; 8,25pt

 <FontColor>ControlText</FontColor>

 <Format />

 <BackColor>Control</BackColor>

file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml

87

 <DisplayRight>0x00000000</DisplayRight>

 <ModificationRight>0x00000000</ModificationRight>

 </Settings>

- <Paths>

 <DestinationType>.XML</DestinationType>

 <DestinationFile>C:\SafeCash-R\RecyclerConfig.xml</DestinationFile>

 <SubDestination>/configuration/component[@name='CM1']/@device_name</SubDestination>

 </Paths>

- <Relations>

 <Read />

 <Visibility />

 <Coupled />

 </Relations>

 </Control>

- <Control id="18" type="CLabel">

 <Name>CLabel16</Name>

 <Text>@@81@@:</Text>

 <Hint />

 <Parent>CGroupBox0</Parent>

 <Section>Section0</Section>

- <Settings>

 <Top>235</Top>

 <Left>15</Left>

 <Width>100</Width>

 <Height>23</Height>

 <Visible>true</Visible>

 Microsoft Sans Serif; 8,25pt

 <FontColor>ControlText</FontColor>

 <Format />

 <BackColor>Control</BackColor>

 <DisplayRight>0x00000000</DisplayRight>

 <ModificationRight>0x00000000</ModificationRight>

 </Settings>

- <Paths>

 <DestinationType>.INI</DestinationType>

 <DestinationFile />

 <SubDestination />

 </Paths>

- <Relations>

 <Read />

 <Visibility />

 <Coupled />

 </Relations>

 </Control>

- <Control id="19" type="CLabel">

 <Name>CLabel17</Name>

 <Text>CLabel17</Text>

 <Hint />

 <Parent>CGroupBox0</Parent>

 <Section>Section0</Section>

- <Settings>

 <Top>235</Top>

 <Left>280</Left>

 <Width>100</Width>

 <Height>23</Height>

 <Visible>true</Visible>

 Microsoft Sans Serif; 8,25pt

 <FontColor>ControlText</FontColor>

file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml

88

 <Format />

 <BackColor>Control</BackColor>

 <DisplayRight>0x00000000</DisplayRight>

 <ModificationRight>0x00000000</ModificationRight>

 </Settings>

- <Paths>

 <DestinationType>.XML</DestinationType>

 <DestinationFile>C:\SafeCash-R\RecyclerConfig.xml</DestinationFile>

 <SubDestination>/configuration/component[@name='CM1']/@device_type</SubDestination>

 </Paths>

- <Relations>

 <Read />

 <Visibility />

 <Coupled />

 </Relations>

 </Control>

- <Control id="20" type="CLabel">

 <Name>CLabel18</Name>

 <Text>@@82@@:</Text>

 <Hint />

 <Parent>CGroupBox0</Parent>

 <Section>Section0</Section>

- <Settings>

 <Top>265</Top>

 <Left>15</Left>

 <Width>100</Width>

 <Height>23</Height>

 <Visible>true</Visible>

 Microsoft Sans Serif; 8,25pt

 <FontColor>ControlText</FontColor>

 <Format />

 <BackColor>Control</BackColor>

 <DisplayRight>0x00000000</DisplayRight>

 <ModificationRight>0x00000000</ModificationRight>

 </Settings>

- <Paths>

 <DestinationType>.INI</DestinationType>

 <DestinationFile />

 <SubDestination />

 </Paths>

- <Relations>

 <Read />

 <Visibility />

 <Coupled />

 </Relations>

 </Control>

- <Control id="21" type="CLabel">

 <Name>CLabel19</Name>

 <Text>CLabel19</Text>

 <Hint />

 <Parent>CGroupBox0</Parent>

 <Section>Section0</Section>

- <Settings>

 <Top>265</Top>

 <Left>280</Left>

 <Width>200</Width>

 <Height>23</Height>

 <Visible>true</Visible>

file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml

89

 Microsoft Sans Serif; 8,25pt

 <FontColor>ControlText</FontColor>

 <Format />

 <BackColor>Control</BackColor>

 <DisplayRight>0x00000000</DisplayRight>

 <ModificationRight>0x00000000</ModificationRight>

 </Settings>

- <Paths>

 <DestinationType>.XML</DestinationType>

 <DestinationFile>C:\SafeCash-R\RecyclerConfig.xml</DestinationFile>

 <SubDestination>/configuration/component[@name='CM1']/@errors_file</SubDestination>

 </Paths>

- <Relations>

 <Read />

 <Visibility />

 <Coupled />

 </Relations>

 </Control>

- <Control id="22" type="CLabel">

 <Name>CLabel20</Name>

 <Text>@@83@@:</Text>

 <Hint />

 <Parent>CGroupBox0</Parent>

 <Section>Section0</Section>

- <Settings>

 <Top>295</Top>

 <Left>15</Left>

 <Width>100</Width>

 <Height>23</Height>

 <Visible>true</Visible>

 Microsoft Sans Serif; 8,25pt

 <FontColor>ControlText</FontColor>

 <Format />

 <BackColor>Control</BackColor>

 <DisplayRight>0x00000000</DisplayRight>

 <ModificationRight>0x00000000</ModificationRight>

 </Settings>

- <Paths>

 <DestinationType>.XML</DestinationType>

 <DestinationFile>C:\SafeCash-R\RecyclerConfig.xml</DestinationFile>

 <SubDestination />

 </Paths>

- <Relations>

 <Read />

 <Visibility />

 <Coupled />

 </Relations>

 </Control>

- <Control id="23" type="CLabel">

 <Name>CLabel21</Name>

 <Text>CLabel21</Text>

 <Hint />

 <Parent>CGroupBox0</Parent>

 <Section>Section0</Section>

- <Settings>

 <Top>290</Top>

 <Left>280</Left>

 <Width>100</Width>

file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml

90

 <Height>23</Height>

 <Visible>true</Visible>

 Microsoft Sans Serif; 8,25pt

 <FontColor>ControlText</FontColor>

 <Format />

 <BackColor>Control</BackColor>

 <DisplayRight>0x00000000</DisplayRight>

 <ModificationRight>0x00000000</ModificationRight>

 </Settings>

- <Paths>

 <DestinationType>.XML</DestinationType>

 <DestinationFile>C:\SafeCash-R\RecyclerConfig.xml</DestinationFile>

 <SubDestination>/configuration/component[@name='CM1']/@file</SubDestination>

 </Paths>

- <Relations>

 <Read />

 <Visibility />

 <Coupled />

 </Relations>

 </Control>

- <Control id="24" type="CLabel">

 <Name>CLabel22</Name>

 <Text>@@84@@:</Text>

 <Hint />

 <Parent>CGroupBox0</Parent>

 <Section>Section0</Section>

- <Settings>

 <Top>325</Top>

 <Left>15</Left>

 <Width>200</Width>

 <Height>23</Height>

 <Visible>true</Visible>

 Microsoft Sans Serif; 8,25pt

 <FontColor>ControlText</FontColor>

 <Format />

 <BackColor>Control</BackColor>

 <DisplayRight>0x00000000</DisplayRight>

 <ModificationRight>0x00000000</ModificationRight>

 </Settings>

- <Paths>

 <DestinationType>.INI</DestinationType>

 <DestinationFile />

 <SubDestination />

 </Paths>

- <Relations>

 <Read />

 <Visibility />

 <Coupled />

 </Relations>

 </Control>

- <Control id="25" type="CLabel">

 <Name>CLabel23</Name>

 <Text>CLabel23</Text>

 <Hint />

 <Parent>CGroupBox0</Parent>

 <Section>Section0</Section>

- <Settings>

 <Top>320</Top>

file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml

91

 <Left>280</Left>

 <Width>100</Width>

 <Height>23</Height>

 <Visible>true</Visible>

 Microsoft Sans Serif; 8,25pt

 <FontColor>ControlText</FontColor>

 <Format />

 <BackColor>Control</BackColor>

 <DisplayRight>0x00000000</DisplayRight>

 <ModificationRight>0x00000000</ModificationRight>

 </Settings>

- <Paths>

 <DestinationType>.XML</DestinationType>

 <DestinationFile>C:\SafeCash-R\RecyclerConfig.xml</DestinationFile>

<SubDestination>/configuration/component[@name='CM1']/@number_of_cassettes</SubDesti

nation>

 </Paths>

- <Relations>

 <Read />

 <Visibility />

 <Coupled />

 </Relations>

 </Control>

- <Control id="26" type="CLabel">

 <Name>CLabel24</Name>

 <Text>@@85@@:</Text>

 <Hint />

 <Parent>CGroupBox0</Parent>

 <Section>Section0</Section>

- <Settings>

 <Top>355</Top>

 <Left>15</Left>

 <Width>250</Width>

 <Height>23</Height>

 <Visible>true</Visible>

 Microsoft Sans Serif; 8,25pt

 <FontColor>ControlText</FontColor>

 <Format />

 <BackColor>Control</BackColor>

 <DisplayRight>0x00000000</DisplayRight>

 <ModificationRight>0x00000000</ModificationRight>

 </Settings>

- <Paths>

 <DestinationType>.INI</DestinationType>

 <DestinationFile />

 <SubDestination />

 </Paths>

- <Relations>

 <Read />

 <Visibility />

 <Coupled />

 </Relations>

 </Control>

- <Control id="27" type="CLabel">

 <Name>CLabel25</Name>

 <Text>CLabel25</Text>

 <Hint />

 <Parent>CGroupBox0</Parent>

file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml

92

 <Section>Section0</Section>

- <Settings>

 <Top>355</Top>

 <Left>280</Left>

 <Width>100</Width>

 <Height>23</Height>

 <Visible>true</Visible>

 Microsoft Sans Serif; 8,25pt

 <FontColor>ControlText</FontColor>

 <Format />

 <BackColor>Control</BackColor>

 <DisplayRight>0x00000000</DisplayRight>

 <ModificationRight>0x00000000</ModificationRight>

 </Settings>

- <Paths>

 <DestinationType>.XML</DestinationType>

 <DestinationFile>C:\SafeCash-R\RecyclerConfig.xml</DestinationFile>

 <SubDestination>/configuration/component[@name='CM1']/@router_section</SubDestination>

 </Paths>

- <Relations>

 <Read />

 <Visibility />

 <Coupled />

 </Relations>

 </Control>

- <Control id="28" type="CLabel">

 <Name>CLabel26</Name>

 <Text>CLabel26</Text>

 <Hint />

 <Parent>Section0</Parent>

 <Section>Section0</Section>

- <Settings>

 <Top>10</Top>

 <Left>120</Left>

 <Width>100</Width>

 <Height>23</Height>

 <Visible>true</Visible>

 Microsoft Sans Serif; 11,25pt; style=Bold

 <FontColor>Black</FontColor>

 <Format />

 <BackColor>Control</BackColor>

 <DisplayRight>0x00000000</DisplayRight>

 <ModificationRight>0x00000000</ModificationRight>

 </Settings>

- <Paths>

 <DestinationType>.XML</DestinationType>

 <DestinationFile>C:\SafeCash-R\RecyclerConfig.xml</DestinationFile>

 <SubDestination>/configuration/component[@name='CM1']/@name</SubDestination>

 </Paths>

- <Relations>

 <Read />

 <Visibility />

 <Coupled />

 </Relations>

 </Control>

- <Control id="29" type="CLabel">

 <Name>CLabel33</Name>

 <Text>@@68@@:</Text>

file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml

93

 <Hint />

 <Parent>Section1</Parent>

 <Section>Section1</Section>

- <Settings>

 <Top>60</Top>

 <Left>15</Left>

 <Width>100</Width>

 <Height>23</Height>

 <Visible>true</Visible>

 Microsoft Sans Serif; 8,25pt

 <FontColor>ControlText</FontColor>

 <Format />

 <BackColor>Control</BackColor>

 <DisplayRight>0x00000000</DisplayRight>

 <ModificationRight>0x00000000</ModificationRight>

 </Settings>

- <Paths>

 <DestinationType>.INI</DestinationType>

 <DestinationFile />

 <SubDestination />

 </Paths>

- <Relations>

 <Read />

 <Visibility />

 <Coupled />

 </Relations>

 </Control>

- <Control id="30" type="CLabel">

 <Name>CLabel34</Name>

 <Text>@@69@@:</Text>

 <Hint />

 <Parent>Section1</Parent>

 <Section>Section1</Section>

- <Settings>

 <Top>100</Top>

 <Left>15</Left>

 <Width>100</Width>

 <Height>23</Height>

 <Visible>true</Visible>

 Microsoft Sans Serif; 8,25pt

 <FontColor>ControlText</FontColor>

 <Format />

 <BackColor>Control</BackColor>

 <DisplayRight>0x00000000</DisplayRight>

 <ModificationRight>0x00000000</ModificationRight>

 </Settings>

- <Paths>

 <DestinationType>.INI</DestinationType>

 <DestinationFile />

 <SubDestination />

 </Paths>

- <Relations>

 <Read />

 <Visibility />

 <Coupled />

 </Relations>

 </Control>

- <Control id="31" type="CLabel">

file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml

94

 <Name>CLabel35</Name>

 <Text>@@70@@:</Text>

 <Hint />

 <Parent>Section1</Parent>

 <Section>Section1</Section>

- <Settings>

 <Top>140</Top>

 <Left>15</Left>

 <Width>100</Width>

 <Height>23</Height>

 <Visible>true</Visible>

 Microsoft Sans Serif; 8,25pt

 <FontColor>ControlText</FontColor>

 <Format />

 <BackColor>Control</BackColor>

 <DisplayRight>0x00000000</DisplayRight>

 <ModificationRight>0x00000000</ModificationRight>

 </Settings>

- <Paths>

 <DestinationType>.INI</DestinationType>

 <DestinationFile />

 <SubDestination />

 </Paths>

- <Relations>

 <Read />

 <Visibility />

 <Coupled />

 </Relations>

 </Control>

- <Control id="32" type="CLabel">

 <Name>CLabel36</Name>

 <Text>@@71@@:</Text>

 <Hint />

 <Parent>Section1</Parent>

 <Section>Section1</Section>

- <Settings>

 <Top>180</Top>

 <Left>15</Left>

 <Width>100</Width>

 <Height>23</Height>

 <Visible>true</Visible>

 Microsoft Sans Serif; 8,25pt

 <FontColor>ControlText</FontColor>

 <Format />

 <BackColor>Control</BackColor>

 <DisplayRight>0x00000000</DisplayRight>

 <ModificationRight>0x00000000</ModificationRight>

 </Settings>

- <Paths>

 <DestinationType>.INI</DestinationType>

 <DestinationFile />

 <SubDestination />

 </Paths>

- <Relations>

 <Read />

 <Visibility />

 <Coupled />

 </Relations>

file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml

95

 </Control>

- <Control id="33" type="CLabel">

 <Name>CLabel37</Name>

 <Text>@@72@@:</Text>

 <Hint />

 <Parent>Section1</Parent>

 <Section>Section1</Section>

- <Settings>

 <Top>220</Top>

 <Left>15</Left>

 <Width>100</Width>

 <Height>23</Height>

 <Visible>true</Visible>

 Microsoft Sans Serif; 8,25pt

 <FontColor>ControlText</FontColor>

 <Format />

 <BackColor>Control</BackColor>

 <DisplayRight>0x00000000</DisplayRight>

 <ModificationRight>0x00000000</ModificationRight>

 </Settings>

- <Paths>

 <DestinationType>.INI</DestinationType>

 <DestinationFile />

 <SubDestination />

 </Paths>

- <Relations>

 <Read />

 <Visibility />

 <Coupled />

 </Relations>

 </Control>

- <Control id="34" type="CLabel">

 <Name>CLabel38</Name>

 <Text>@@73@@:</Text>

 <Hint />

 <Parent>Section1</Parent>

 <Section>Section1</Section>

- <Settings>

 <Top>260</Top>

 <Left>15</Left>

 <Width>100</Width>

 <Height>23</Height>

 <Visible>true</Visible>

 Microsoft Sans Serif; 8,25pt

 <FontColor>ControlText</FontColor>

 <Format />

 <BackColor>Control</BackColor>

 <DisplayRight>0x00000000</DisplayRight>

 <ModificationRight>0x00000000</ModificationRight>

 </Settings>

- <Paths>

 <DestinationType>.INI</DestinationType>

 <DestinationFile />

 <SubDestination />

 </Paths>

- <Relations>

 <Read />

 <Visibility />

file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml

96

 <Coupled />

 </Relations>

 </Control>

- <Control id="35" type="CLabel">

 <Name>CLabel39</Name>

 <Text>@@64@@:</Text>

 <Hint />

 <Parent>Section1</Parent>

 <Section>Section1</Section>

- <Settings>

 <Top>16</Top>

 <Left>500</Left>

 <Width>70</Width>

 <Height>23</Height>

 <Visible>true</Visible>

 Microsoft Sans Serif; 11,25pt; style=Bold

 <FontColor>Black</FontColor>

 <Format />

 <BackColor>Control</BackColor>

 <DisplayRight>0x00000000</DisplayRight>

 <ModificationRight>0x00000000</ModificationRight>

 </Settings>

- <Paths>

 <DestinationType>.INI</DestinationType>

 <DestinationFile />

 <SubDestination />

 </Paths>

- <Relations>

 <Read />

 <Visibility />

 <Coupled />

 </Relations>

 </Control>

- <Control id="36" type="CComboBox">

 <Name>CComboBox0</Name>

 <Text />

 <Hint />

 <Parent>Section1</Parent>

 <Section>Section1</Section>

- <Settings>

 <Top>14</Top>

 <Left>585</Left>

 <Width>50</Width>

 <Height>21</Height>

 <Visible>true</Visible>

 Microsoft Sans Serif; 11,25pt

 <FontColor>Black</FontColor>

 <Format />

 <BackColor>Window</BackColor>

 <DisplayRight>0x00000000</DisplayRight>

 <ModificationRight>0x00000000</ModificationRight>

 </Settings>

- <Items>

 <Selected>1</Selected>

 <Item>1</Item>

 <Item>2</Item>

 <Item>3</Item>

 <Item>4</Item>

file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml

97

 <Item>5</Item>

 <Item>6</Item>

 <Item>7</Item>

 <Item>8</Item>

 </Items>

- <ConfigItems>

 <Selected>hopper1</Selected>

 <Item>hopper1</Item>

 <Item>hopper2</Item>

 <Item>hopper3</Item>

 <Item>hopper4</Item>

 <Item>hopper5</Item>

 <Item>hopeer6</Item>

 <Item>hopper7</Item>

 <Item>hopper8</Item>

 </ConfigItems>

- <Paths>

 <DestinationType>.INI</DestinationType>

 <DestinationFile />

 <SubDestination />

 </Paths>

- <Relations>

 <Read>CComboBox1, CComboBox2, CComboBox3, CComboBox4, CComboBox5,

CComboBox6,</Read>

 <Visibility />

 <Coupled />

 </Relations>

 </Control>

- <Control id="37" type="CComboBox">

 <Name>CComboBox1</Name>

 <Text />

 <Hint />

 <Parent>Section1</Parent>

 <Section>Section1</Section>

- <Settings>

 <Top>58</Top>

 <Left>150</Left>

 <Width>121</Width>

 <Height>21</Height>

 <Visible>true</Visible>

 Microsoft Sans Serif; 8,25pt

 <FontColor>WindowText</FontColor>

 <Format />

 <BackColor>Window</BackColor>

 <DisplayRight>0x00000000</DisplayRight>

 <ModificationRight>0x00000000</ModificationRight>

 </Settings>

- <Items>

 <Selected>@@33@@</Selected>

 <Item>@@33@@</Item>

 <Item>@@34@@</Item>

 <Item>@@35@@</Item>

 <Item>@@36@@</Item>

 </Items>

- <ConfigItems>

 <Selected>EUR</Selected>

 <Item>EUR</Item>

 <Item>USD</Item>

 <Item>GBP</Item>

file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml

98

 <Item>SEK</Item>

 </ConfigItems>

- <Paths>

 <DestinationType>.XML</DestinationType>

 <DestinationFile>C:\SafeCash-R\RecyclerConfig.xml</DestinationFile>

<SubDestination>/configuration/component[@name='CM1']/hoppers/hopper##CComboBox0#

#/@currency</SubDestination>

 </Paths>

- <Relations>

 <Read />

 <Visibility />

 <Coupled />

 </Relations>

 </Control>

- <Control id="38" type="CComboBox">

 <Name>CComboBox2</Name>

 <Text />

 <Hint />

 <Parent>Section1</Parent>

 <Section>Section1</Section>

- <Settings>

 <Top>98</Top>

 <Left>150</Left>

 <Width>121</Width>

 <Height>21</Height>

 <Visible>true</Visible>

 Microsoft Sans Serif; 8,25pt

 <FontColor>WindowText</FontColor>

 <Format />

 <BackColor>Window</BackColor>

 <DisplayRight>0x00000000</DisplayRight>

 <ModificationRight>0x00000000</ModificationRight>

 </Settings>

- <Items>

 <Selected>1</Selected>

 <Item>1</Item>

 <Item>2</Item>

 <Item>5</Item>

 <Item>10</Item>

 <Item>20</Item>

 <Item>50</Item>

 <Item>100</Item>

 <Item>200</Item>

 </Items>

- <ConfigItems>

 <Selected>1</Selected>

 <Item>1</Item>

 <Item>2</Item>

 <Item>5</Item>

 <Item>10</Item>

 <Item>20</Item>

 <Item>50</Item>

 <Item>100</Item>

 <Item>200</Item>

 </ConfigItems>

- <Paths>

 <DestinationType>.XML</DestinationType>

 <DestinationFile>C:\SafeCash-R\RecyclerConfig.xml</DestinationFile>

file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml

99

<SubDestination>/configuration/component[@name='CM1']/hoppers/hopper##CComboBox0#

#/@denomination</SubDestination>

 </Paths>

- <Relations>

 <Read />

 <Visibility />

 <Coupled />

 </Relations>

 </Control>

- <Control id="39" type="CComboBox">

 <Name>CComboBox3</Name>

 <Text />

 <Hint />

 <Parent>Section1</Parent>

 <Section>Section1</Section>

- <Settings>

 <Top>138</Top>

 <Left>150</Left>

 <Width>121</Width>

 <Height>21</Height>

 <Visible>true</Visible>

 Microsoft Sans Serif; 8,25pt

 <FontColor>WindowText</FontColor>

 <Format />

 <BackColor>Window</BackColor>

 <DisplayRight>0x00000000</DisplayRight>

 <ModificationRight>0x00000000</ModificationRight>

 </Settings>

- <Items>

 <Selected>100</Selected>

 <Item>50</Item>

 <Item>100</Item>

 <Item>200</Item>

 </Items>

- <ConfigItems>

 <Selected>100</Selected>

 <Item>50</Item>

 <Item>100</Item>

 <Item>200</Item>

 </ConfigItems>

- <Paths>

 <DestinationType>.XML</DestinationType>

 <DestinationFile>C:\SafeCash-R\RecyclerConfig.xml</DestinationFile>

<SubDestination>/configuration/component[@name='CM1']/hoppers/hopper##CComboBox0#

#/@default_fill</SubDestination>

 </Paths>

- <Relations>

 <Read />

 <Visibility />

 <Coupled />

 </Relations>

 </Control>

- <Control id="40" type="CComboBox">

 <Name>CComboBox4</Name>

 <Text />

 <Hint />

 <Parent>Section1</Parent>

file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml

100

 <Section>Section1</Section>

- <Settings>

 <Top>178</Top>

 <Left>150</Left>

 <Width>121</Width>

 <Height>21</Height>

 <Visible>true</Visible>

 Microsoft Sans Serif; 8,25pt

 <FontColor>WindowText</FontColor>

 <Format />

 <BackColor>Window</BackColor>

 <DisplayRight>0x00000000</DisplayRight>

 <ModificationRight>0x00000000</ModificationRight>

 </Settings>

- <Items>

 <Selected>4800</Selected>

 <Item>4800</Item>

 <Item>3300</Item>

 <Item>2600</Item>

 <Item>2900</Item>

 <Item>2000</Item>

 <Item>1600</Item>

 <Item>1700</Item>

 <Item>1400</Item>

 </Items>

- <ConfigItems>

 <Selected>4800</Selected>

 <Item>4800</Item>

 <Item>3300</Item>

 <Item>2600</Item>

 <Item>2900</Item>

 <Item>2000</Item>

 <Item>1600</Item>

 <Item>1700</Item>

 <Item>1400</Item>

 </ConfigItems>

- <Paths>

 <DestinationType>.XML</DestinationType>

 <DestinationFile>C:\SafeCash-R\RecyclerConfig.xml</DestinationFile>

<SubDestination>/configuration/component[@name='CM1']/hoppers/hopper##CComboBox0#

#/@default_maximum</SubDestination>

 </Paths>

- <Relations>

 <Read />

 <Visibility />

 <Coupled />

 </Relations>

 </Control>

- <Control id="41" type="CComboBox">

 <Name>CComboBox5</Name>

 <Text />

 <Hint />

 <Parent>Section1</Parent>

 <Section>Section1</Section>

- <Settings>

 <Top>218</Top>

 <Left>150</Left>

 <Width>121</Width>

file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml

101

 <Height>21</Height>

 <Visible>true</Visible>

 Microsoft Sans Serif; 8,25pt

 <FontColor>WindowText</FontColor>

 <Format />

 <BackColor>Window</BackColor>

 <DisplayRight>0x00000000</DisplayRight>

 <ModificationRight>0x00000000</ModificationRight>

 </Settings>

- <Items>

 <Selected>250</Selected>

 <Item>250</Item>

 <Item>200</Item>

 <Item>180</Item>

 <Item>170</Item>

 <Item>110</Item>

 <Item>90</Item>

 <Item>100</Item>

 </Items>

- <ConfigItems>

 <Selected>250</Selected>

 <Item>250</Item>

 <Item>200</Item>

 <Item>180</Item>

 <Item>170</Item>

 <Item>110</Item>

 <Item>90</Item>

 <Item>100</Item>

 </ConfigItems>

- <Paths>

 <DestinationType>.XML</DestinationType>

 <DestinationFile>C:\SafeCash-R\RecyclerConfig.xml</DestinationFile>

<SubDestination>/configuration/component[@name='CM1']/hoppers/hopper##CComboBox0#

#/@dispense_limit</SubDestination>

 </Paths>

- <Relations>

 <Read />

 <Visibility />

 <Coupled />

 </Relations>

 </Control>

- <Control id="42" type="CComboBox">

 <Name>CComboBox6</Name>

 <Text />

 <Hint />

 <Parent>Section1</Parent>

 <Section>Section1</Section>

- <Settings>

 <Top>258</Top>

 <Left>150</Left>

 <Width>121</Width>

 <Height>21</Height>

 <Visible>true</Visible>

 Microsoft Sans Serif; 8,25pt

 <FontColor>WindowText</FontColor>

 <Format />

 <BackColor>Window</BackColor>

 <DisplayRight>0x00000000</DisplayRight>

file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml

102

 <ModificationRight>0x00000000</ModificationRight>

 </Settings>

- <Items>

 <Selected>10</Selected>

 <Item>1</Item>

 <Item>2</Item>

 <Item>3</Item>

 <Item>4</Item>

 <Item>5</Item>

 <Item>6</Item>

 <Item>7</Item>

 <Item>8</Item>

 <Item>9</Item>

 <Item>10</Item>

 </Items>

- <ConfigItems>

 <Selected>10</Selected>

 <Item>1</Item>

 <Item>2</Item>

 <Item>3</Item>

 <Item>4</Item>

 <Item>5</Item>

 <Item>6</Item>

 <Item>7</Item>

 <Item>8</Item>

 <Item>9</Item>

 <Item>10</Item>

 </ConfigItems>

- <Paths>

 <DestinationType>.XML</DestinationType>

 <DestinationFile>C:\SafeCash-R\RecyclerConfig.xml</DestinationFile>

<SubDestination>/configuration/component[@name='CM1']/hoppers/hopper##CComboBox0#

#/@address</SubDestination>

 </Paths>

- <Relations>

 <Read />

 <Visibility />

 <Coupled />

 </Relations>

 </Control>

 </Controls>

</ObjectDefinition>

file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml
file:///C:/Projects/Configuration%20Manager/Configuration%20Manager/bin/config/ObjectDefinition%20-%20Study%20Case.xml

103

Bibliography

1. Gamma, Erich. Design Patterns: Elements of Reusable Object-

Oriented Software.

2. Hunt, Andrew and Thomas, David. Pragmatic Unit Resting.

3. Osherove, Roy. The art of unit testing. s.l. : Manning.

4. Microsoft. Windows Desktop Development. Windows Desktop

Development. [Online] Microsoft. http://msdn.microsoft.com/en-

us/windows/desktop.

5. Group, Object Management. UML 2.4.1 Specification. UML 2.4.1

Specification. [Online]

http://www.omg.org/technology/documents/modeling_spec_catalog.htm#U

ML.

6. Albahari, Joseph and Albahari, Ben. C# 4.0 in a Nutshell.

7. Ecma. C# Language Specification. C# Language Specification.

[Online] http://www.ecma-international.org/publications/files/ECMA-

ST/Ecma-334.pdf.

8. Microsoft. CLI Standard. CLI Standard. [Online] http://www.ecma-

international.org/publications/files/ECMA-ST/ECMA-335.pdf.

9. W3C. XPath specification. [Online] http://www.w3.org/TR/xpath20/.

10. —. Extensible Markup Language (XML) 1.0 (Fifth Edition). [Online]

2008. http://www.w3.org/TR/REC-xml/.

11. Microsoft. MSDN - Getting Started with LINQ in C#. MSDN - Getting

Started with LINQ in C#. [Online]

http://msdn.microsoft.com/library/bb397933(v=VS.100).aspx.

12. Git Web site. Git Web site. [Online] http://git-scm.com/.

104

13. Git Extensions Web site. Git Extensions Web site. [Online]

http://code.google.com/p/gitextensions/.

14. Freeman, Eric and Freeman, Elisabeth. Head First Design Patterns.

s.l. : O'Reilly.

15. Vos, Tanja. Tanja Vos Homepage. [Online]

http://tanvopol.webs.upv.es.

16. València, Universitat Politècnica de. Polimedia. Polimedia. [Online]

http://polimedia.upv.es.

17. Vos, Tanja E. Polimedia. Unit Testing Lessons. [Online]

http://polimedia.upv.es/catalogo/modulo.asp?curso=c2bb007b-28b6-

264a-8b5f-27d4872e5fce&modulo=2d060490-c852-fc41-9918-

ff42a3d2e1e6.

18. Osherove, Roy. Roy Osherove Web Page. [Online]

http://osherove.com/videos/category/unit-testing.

19. Stellman, Andrew and Greene, Jennifer. Head First C#. s.l. : O'Reilly.

