

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/168945

Chen, L.; Li, X.; Ruiz García, R. (2020). Resource Renting for Periodical Cloud Workflow
Applications. IEEE Transactions on Services Computing. 13(1):130-143.
https://doi.org/10.1109/TSC.2017.2677450

https://doi.org/10.1109/TSC.2017.2677450

Institute of Electrical and Electronics Engineers

1

Resource renting for periodical cloud workflow
applications

Long Chen, Xiaoping Li, Senior Member, IEEE , Rubén Ruiz

Abstract—Cloud computing is a new resource provisioning mechanism, which represents a convenient way for users to access
different computing resources. Periodical workflow applications commonly exist in scientific and business analysis, among many other
fields. One of the most challenging problems is to determine the right amount of resources for multiple periodical workflow applications.
In this paper, the periodical workflow applications scheduling problem with total renting cost minimization is considered. The novelty of
this work relies precisely on this objective function, which is more realistic in practice than the more commonly considered makespan
minimization. An integer programming model is constructed for the problem under study. A Precedence Tree based Heuristic (PTH) is
developed which considers three types of initial schedule construction methods. Based on the initial schedule, two improvement
procedures are presented. The proposed methods are compared with existing algorithms for the related makespan based multiple
workflow scheduling problem. Experimental and statistical results demonstrate the effectiveness and efficiency of the proposed
algorithm.

Index Terms—Resource Allocation, Long-term Resources Renting, Periodical Multiple Workflows, Cloud Computing.

F

1 INTRODUCTION

C LOUD computing is a novel market-oriented distributed
computing model enabling convenient access to a pool of

sharable computing resources (e.g., networks, servers, storage)
potentially distributed and in a seamless and straightforward way.
In the Cloud, resources are owned by Cloud Service Providers
(CSP) and are encapsulated as services. Basically, users do not
need to own resources which effectively spares them from expen-
sive purchases and no less expensive run and maintenance costs.
By renting resources from service providers for their requirements,
users need to pay whenever they make use of the cloud computing
services. In other words, cloud computing makes it convenient
for users to access resources from anywhere and anytime with
significant enhanced convenience and greatly reduced costs.

Generally, users’ requirements are represented by workflow
applications which describe a wide range of complex scientific and
business analysis applications [1]. Besides complex precedences
among tasks in workflow applications, there are many resource
types, different resource provisioning alternatives and alternative
renting resources which make workflow scheduling in cloud com-
puting a hard to solve. In addition, most users lack professional
skills and knowledge on how to rent resources from CSPs in a cost
effective way (e.g., which resources are to be rented, how many
and for how long). Therefore, cloud workflow scheduling is very
complex. If this problem is not properly addressed, users end up

Long Chen and Xiaoping Li are with the School of Computer Science
and Engineering, Southeast University, Nanjing 211189, P.R. China, and also
with the Key Laboratory of Computer Network and Information Integration,
Southeast University, Ministry of Education, 211189, Nanjing, China (Tel: 86-
25-52090916; Fax: 86-25- 52090916; e-mail: xpli@seu.edu.cn).
R. Ruiz is with Grupo de Sistemas de Optimización Aplicada, Instituto
Tecnológico de Informática, Ciudad Politécnica de la Innovación, Edifico
8G, Acc. B. Universitat Politècnica de València, Camino de Vera s/n, 46021,
València, Spain (e-mail: rruiz@eio.upv.es).
Manuscript received ; revised .

spending large amounts of money to solve their cloud computing
problems than needed.

Among workflow applications, periodical workflows are a
typical type of applications which commonly exist in complex
scientific and business analysis. For example, weather is forecasted
every day; profit growth rates of companies are analyzed every
month; gravitational waves in the universe are calculated every
year, etc. (LIGO [2]). Such applications are periodically carried
out, e.g., the weather forecasting model (workflow application)
is calculated every hour to analyze the weather information and
weather forecasting users collect the weather information every
hour. Figure 1 shows the relationships between users and CSPs.
Users send their periodical workflow applications to the CSPs.
Each workflow in the period arrives at the system with some QoS
(Quality of Service) constraints.

Usually workflow applications are constrained by deadlines,
i.e., all tasks are scheduled to meet deadline requirements and
they need to be appropriately assigned to CPSs’ resources in
order to minimize the total renting cost. Because of different
characteristics, tasks require different types of resources (virtual
machine instances). In addition, CSPs offer alternative services
for each task. This means that each task might be performed in
alternative ways or modes. Furthermore, tasks can be executed
on several resources of the same or different types in parallel.
Basically, depending of the type of resource we assign to a task, its
execution time can be shortened or extended. Furthermore, tasks
might be executed by different resources in parallel so in the end
there are many potential combinations by which a task might be
carried out. At the same time, resources can be shared between
tasks inside a renting period, i.e., resources can be used by other
tasks if the current task finishes during the resource renting period.
Note that rented resources are paid by period and if a rented
resource is not used for the whole period, that capacity is lost.
Therefore, resource sharing that unused rented resources can be
further used for other tasks. Therefore, tasks of complex workflow
applications can be carried out in different ways or modes, using

2

Task 1 Task 2

Uses

Task-Resource

Mapping

Periodical

Workflow

Applications

Application 1

Application 3

Application 2Application 4

...

Resource Renting

Cloud Service Providers

Fig. 1. Relationships between users and cloud service providers.

different types of cloud resources and potentially with different
processing and completion times. As a result, there are a lot of
potential savings for users if efficient methods are employed to
appropriately select and rent the needed resources.

Generally, there are two resource renting alternatives provided
by CSPs: on-demand and reserved [3]. The on-demand choice
allows users to pay for computing capacity by the hour with short-
term commitments which is suitable for real time applications.
This liberates users from the costs and complexities of hardware
planning, purchase and maintenance. Large fixed costs can be
transformed into much smaller variable costs. The reserved option
is a long-term strategy which enables users to make a low, one-
time payment for each resource they need and keep the rented
resources for a relatively long time. Users receive a significant
discount on the hourly charge for each resource in the reserved
option mainly due to the long time commitment. However, the
resource utilization rate is usually low as it is hard to keep the
rented resources busy all the time. This is a fact exploited by
CSPs and is main reason why discounts are offered for long time
reserved options. A different planning horizon results in different
renting alternatives, i.e., long-term (year/months) planning with
the reserved alternative and/or short-term (hour/minutes) with
the on-demand alternative. Due to the nature of the considered
periodical workflow applications, it is natural to adopt the reserved
alternative as it is more cost effective to run in the long term.
Renting the appropriate resources in different intervals of a time
horizon is critical for minimizing the total resource renting cost of
cloud computing resources.

In this paper, we consider scheduling periodical workflow
applications on cloud resources with the objective of minimizing
the total renting cost. This objective is closer to actual applica-
tion scenarios, specially when compared to other more studied
objectives that deal with the minimization of the completion time
of the workflow application (makespan). This related makespan
objective multiple workflow scheduling problem was studied in [4]
and [5]. However, in the Cloud, while makespan can be reduced
almost arbitrarily by renting more and more resources from the

CSPs, users are usually concerned about total renting costs rather
than in finishing their workflow applications as soon as possible.
To the best of our knowledge, the problem under study is NP-
hard and has not been considered yet in the literature. The main
challenges are: (i) Determining the actual start times for multiple
periodical workflow applications with different QoS constraints.
(ii) Determining the appropriate amounts of reserved resources
for tasks of different workflow applications. (iii) Mapping tasks
with different modes to rented resources in order to minimize the
total renting cost. The problem is mathematically modeled using
Integer Programming. A Precedence Tree based Heuristic (PTH)
is developed for the considered problem which consists of three
components: workflow combination, initial schedule construction
and schedule improvement. Three types of sink nodes are estab-
lished for the workflow construction. Based on the enumeration
tree scheme, a dynamic one-step rule considering both extra
cost and freedom is developed for the schedule construction.
Two main schedule improvement procedures considering both
execution mode and resource type are presented. The multi-factor
analysis of variance technique is used to find the best construction
rules and improvement procedures. Comparisons with algorithms
for the similar workflow scheduling problem show that PTH saves
a lot of total renting cost for periodical workflow applications.

The rest of the paper is organized as follows. Related works
are described in Section 2. Section 3 gives the definition and
proposes a mathematical model for the LRRP. In Section 4, the
PTH algorithm is described. Computational results are shown in
Section 5, followed by conclusions and future research directions
in Section 6.

2 RELATED WORKS

Workflow scheduling is a relevant problem both for users as well
as for CSPs and therefore it has been studied thoroughly. Tasks
are usually mapped to suitable resources so as to optimize some
performance criterion. In the traditional distributed field (utility
Grids), resources were usually geographically dispersed clusters.
Resources were encapsulated as services and services were not
shareable between tasks of the workflow. Only mapping was
required and timetabling was not necessary during the scheduling
process. There are two main objectives: cost optimization under
deadline constraints and execution time optimization under budget
constraints [6]. Common methods for time optimization include
dynamic programming [7], branch and bound [8], decomposition-
based methods [9], list scheduling algorithm [10], critical path
based allocation [11], greedy randomized adaptive search [12]
and ant colony optimization approach [13]. Methods for cost
optimization include the deadline-MDP algorithm [14], DET
(Deadline Early Tree) algorithm [15], PCP (Partial Critical Paths)
algorithm [16] and the CPI (Critical Path-based Iterative) heuristic
[17]. Other related works on allocating resources to workflow
applications include improving QoS in computational grids [18],
market-oriented hierarchical scheduling strategy [19], workflow
applications with security constraints [20], double auction-based
scheduling of scientific applications [21] and workflow scheduling
with multiple objectives [22][23]. However, only a few papers
have focused on the scheduling of workflow applications in cloud
computing, in which resources (virtual machines) were usually
geographically concentrated and shared by tasks and workflows.
In cloud computing, Alexandru Iosup et al. [24] analyzed the
performance of cloud computing services for scientific computing

3

workloads. Byun et al. [25] proposed a Balanced Time Scheduling
(BTS) algorithm to allocate homogeneous resources to a workflow
within a user-specified finish time according to the reserved strat-
egy. Allocating heterogeneous resources to workflow applications
was not considered. In a following work [26], the Partitioned
Balanced Time Scheduling (PBTS) algorithm was presented for
homogeneous resources in which resources were provided with
the On-demand option. PBTS considered time partitions in the
algorithm and minimized the amount of resources for each time
partition. Abrishami et al. [16] proposed a QoS-based Partial Crit-
ical Paths (PCP) workflow scheduling algorithm on utility Grids,
and the PCP algorithm was modified for the on-demand cases [27]
in a cloud environment. The two proposed algorithms, IC-PCP and
IC-PCPD2, were different from utility Grids in three ways: on-
demand resource provisioning, homogeneous networks, and the
pay-as-you-go pricing model. Followed by Cai et al. [28], the
workflow scheduling problem with heterogeneous resources and
On-demand resource provisioning was considered. The problem
was divided into two sub-problems: service mapping and task
tabling on sharable resources. Two heuristics CPIS (Critical Path
based Iterative heuristic with Shortest services) and LHCM (List
based Heuristic considering Cost minimization and Match degree
maximization) were developed for the sub-problems. Chaisiri et
al. [29] formulated a stochastic programming model for the On-
demand cloud resource provisioning with uncertain demand and
price. Zuo et al. [30] proposed a self-adaptive learning parti-
cle swarm optimization for minimizing the cost of outsourcing
deadline constrained tasks in hybrid IaaS clouds. The short-term
resources provisioning for workflow applications with the on-
demand option is usually considered in the existing literature.

In addition, little work has considered the multiple work-
flows scheduling problem. Xu et al. [4] proposed an algorithm
for scheduling multiple workflows with several QoS constrains
in cloud. Resources were encapsulated as services and are not
sharable between workflows. Bittencourt et al. [5] proposed four
different strategies for scheduling multiple workflows on fixed
resources of Grids and evaluated them in terms of makespan and
fairness. Each task of workflows was executed only on one re-
source (processor). Resources were limited and cost minimization
was not considered. Therefore, the problem of scheduling multiple
periodical workflow application with different arrival times has
not been considered yet in cloud where resources are regarded as
unlimited and shareable.

3 PROBLEM DESCRIPTION AND FORMULATION

A workflow application is commonly depicted by a task-on-node
Directed Acyclic Graph (DAG), in which tasks are denoted by
nodes and dependencies between tasks are represented by edges.
Suppose there are g workflow applications G = {G1, . . . , Gg}
arriving at the period D. Each workflow application Gw, w ∈
{1, . . . , g} is represented by Gw = (V w, Ew). There are nw

tasks in the workflow applicationGw, i.e., V w = {vw1 , . . . , vwnw}.
Edge (vwi , v

w
j) ∈ Ew denotes the precedence relationship from

task vwi to vwj . The arrival time and deadline of each workflow
Gw are Aw and Tw respectively. Different types of resources
(virtual machines) provided by the CSP are represented by R =
{R1, . . . , Ra}. The unit cost of resource Rk is ck. For each task
vwj of the workflow Gw, vwj can be executed by a mode Mw

jo.
Each mode includes the corresponding processing time dwjo and
the units of resources (rwjok units for Rk) required by vwj . Since

resources are charged by hour, all the processing times are integer
and measured in hours in this paper. We suppose that there are
mjw number of execution modes for the task vwj , i.e., vwj has
Mw
j = {Mw

j1, . . . ,M
w
jmjw} different execution modes.

Let the schedule π be a solution for the considered prob-
lem, in which Hk is the units of resource Rk allocated during
the period. Since the reserved alternative is adopted, the total
renting cost is calculated as C(π) =

∑a
k=1 ckHkD. Let xwjot

be a binary variable. xwjot takes value one if the j-th task vwj ,
j ∈ {1, . . . , nw} of workflow Gw is carried out in the o-th mode
Mw
jo, o ∈ {1, . . . ,mjw} and starts at time t, t ∈ {0, . . . , Tw}.

Then, the considered problem can be modeled as follows:

min
a∑
k=1

ckHkD (1)

s.t.

xwjot ∈ {0, 1}, ∀w ∈ {1, . . . , g}, ∀j ∈ {1, . . . , nw},
∀o ∈ {1, . . . ,mjw}, ∀t ∈ {0, . . . , Tw} (2)

Hk > 0, ∀k ∈ {1, . . . , a} (3)
mjw∑
o=1

Tw∑
t=0

xwjot = 1, ∀j ∈ {1, . . . , nw}, ∀w ∈ {1, . . . , g} (4)

mjw∑
o=1

Tw∑
t=0

xwiot(t+ dwio) 6
mjw∑
o=1

Tw∑
t=0

xwjott, ∀j ∈ {1, . . . , nw}

∀i ∈ {1, . . . , nw} i 6= j, ∀w ∈ {1, . . . , g}, ∀(vwi , vwj) ∈ Ew
(5)

mjw∑
o=1

Tw∑
t=0

xw1ott > Aw, ∀w ∈ {1, . . . , g} (6)

mjw∑
o=1

Tw∑
t=0

xwnwot(t+ dwnwo) 6 Tw, ∀w ∈ {1, . . . , g} (7)

Tw 6 D, ∀w ∈ {1, . . . , g} (8)

Hk >
g∑

w=1

nw∑
j=1

mjw∑
o=1

rwjok

t+dwjo−1∑
τ=t

xwjoτ ,

∀k ∈ {1, . . . , a}, ∀t ∈ {0, . . . , D} (9)

Binary variables xwjot for each task are defined in Equation
(2). Formula (3) ensures that the units of each resource Rk are
nonnegative. Formula (4) ensures that each task of a workflow
starts at exactly one time period and with only one mode. Prece-
dence constraints for each workflow are given by Formula (5). The
arrival time constraints of the workflow are presented in Formula
(6). Each workflow can only start after the arrival time of the
workflow. The deadline constraints of the workflow are denoted
in Formula (7). Formula (8) shows the renting period constraint.
Equation (9) specifies the resource availability constraints, in
which

∑t+dwjo−1
τ=t xwjoτ is the task being processed at time t and

Hk is the maximum amount of resourceRk over the whole renting
period.

Figure 2 shows an example of the considered problem with
two workflow applications and one resource type. The number
to the right of the node represents the execution modes of each
task. Each mode contains the required units of resource and the
corresponding processing times (days). e.g., node v21 of workflow
G2 can be executed with 3 units of resource for 6 days (6× 24 =
144 hours) or with 6 units of resource for 3 days. Each workflow

4

arrives at time 0. The deadline of workflow G1 is 30 days and that
of G2 is 25 days. Let the reserved period D be 30 days (1 month)
and the unit cost of the resource be 5. Figure 3 shows an example
schedule for this considered problem. After scheduling the tasks
of workflow G1, task 1 of workflow G2 could start at (a), (b)
or (c) with different modes Since resources are shared between
workflows. Figure 4 shows the best solution for the example with
3 units of resource. The resource renting cost is 5×3×30 = 450.

1 2

3

(3,3) (1,12)

(3,6)

(num1, num2)=(resource,duration)

1

2

(3,6)

(2,15)

Workflow Workflow

Reserved Period D=30

(2,7) (6,3)

1G 2G
301 T 252 T

Fig. 2. An example of the considered problem.

0 3 6 9 12 15 18 21 24 27 30

1

2

3

4

t

D(a)

(b)
(c)

1
R

1
A

1

1
v

1

2
v

1

3
v

2

1
v

Fig. 3. A schedule for the example.

0 3 6 9 12 15 18 21 24 27 30

1

2

3

t

D

1

1
v

1

2
v

1

3
v2

1
v

2

2
v

1
R

1
A

Fig. 4. The optimal schedule for the example.

In reality, the SaaS provider receives hundreds of workflows
in a renting period. For each workflow, tens of tasks may be
included. Hundreds of execution modes are available for each
task. According to the mathematical model, the amount of binary
variables xwjot is very large. Exact methods or meta-heuristics are
impractical. Therefore, as the only realistic solution procedure,
heuristic approaches are presented in the next section.

4 PRECEDENCE TREE BASED HEURISTIC

In this section, the Precedence Tree based Heuristic (PTH) is pro-
posed for the considered problem. PTH consists of three phases:

Workflows Combination and Parameters Initialization (WCPI),
initial schedule Construction Methods (CM) and Schedule Im-
provement Procedure (SIP). WCPI considers the features and
constraints of different workflows and combines them into a big
single workflow. Relative parameters will be initialized and used
in CM and SIP. Different types of rules are proposed in CM to
construct the initial schedule for the considered problem. SIP
contains two main improvement procedures, which decrease the
resource renting cost by mode and resource adjustments.

The complete PTH include three main steps. For each step
there are several different procedures. The full sketch of the
algorithm is shown in Figure 5.

Workflows Combination and

Parameters Initialization

(WCPI)

Initial Schedule Construction

Methods (CM)

 Schedule Improvement

Procedure (SIP)

Three-step rule

Two-step rule

One-step rule

Moving and Mode based Peak

Elimination procedure (MMPE)

Resource based Adjustment

Procedure (RAP)

1
CM

2
CM

3
CM

Fig. 5. The sketch of the SCIP.

4.1 Workflows Combination and Parameters Initializa-
tion (WCPI)

Given a set of workflows with different resource requirements
and deadline constraints, a Synchronization based Workflows
Combination procedure (SWC) is proposed to combine multiple
workflows into a big single workflow. Resources are unlimited and
shareable between tasks of different workflows, tasks of different
workflows can be considered as parallel tasks and be executed
concurrently. In the synchronization procedure, two dummy syn-
chronization nodes are added. The start synchronization node vw0
of workflow Gw, w ∈ {1, . . . , g} is a node with zero resource
requirements but with a processing time equal to Aw. The end
synchronization node vwnw+1 of workflow Gw, w ∈ {1, . . . , g}
is a node with zero resource requirements but with a processing
time equal to D − Tw. By adding the start and end synchro-
nization node to the workflow, the start time of each workflow
is synchronized to 0 while the deadline is synchronized to D.
The characteristic (precedence and deadline constraints, resource
requirements) of the workflow is not changed during the SWC. A
dummy unique source node v0 (with 0 resource requirements and
0 processing times) is added to all the workflows to enable them
to start concurrently. Then, the dummy unique sink node vn+1 is
appended to all workflows to make a big single workflow. Details
of the procedure are formally described in Algorithm 1.

Using SWC, a big single workflow G = (V,E) is obtained.
The time complexity of SWC is O(g), where g is the number of
workflows.

5

Algorithm 1: Synchronization based Workflows Combina-
tion mechanism (SWC)

1 begin
2 G← (V,E), V ← V 1 ∪ V w ∪ . . . ∪ V g ,

E ← E1 ∪ Ew ∪ . . . ∪ Eg;
3 Initialize v0, m0 ← 1, d01 ← 0,

r01k ← 0,∀k ∈ {1, . . . , a};
/* Initialization of the dummy source
node v0 */;

4 Initialize vn+1, mn+1 ← 1, d(n+1)1 ← 0;
5 for k = 1 to a do
6 r(n+1)1k ← 0;

/* Initialization of the dummy source
node vn+1 */;

7 w ← 1;
8 repeat
9 Initialize vw0 , m0 ← 1, dw01 ← Aw;

10 for k = 1 to a do
11 rw01k ← 0;

12 E ← E ∪ (vw0 , v
w
1);

/* Initialization of the start
synchronization node */;

13 Initialize vwnw+1, mnw+1 ← 1,
dw(nw+1)1 ← D − Tw;

14 for k = 1 to a do
15 rw(nw+1)1k ← 0;

16 E ← E∪(vwnw , vwnw+1)∪(v0, vw0)∪(vwnw+1, vn+1);
/* Initialization of the end

synchronization node */;
17 w ← w + 1;
18 until (w > g);
19 return G;

Figure 6 shows an example of workflow combination. For the
two workflows in Figure 2, three nodes are added, dummy source
node, dummy sink node, and dummy synchronization node which
are nodes 0, 7 and 6 respectively. The numbers at each node in the
big workflow are rearranged for simplicity.

Let vj be the tasks of G, the mode of vj is simplified as
Mj = {Mj1, . . . ,Mjoj}. Resources requirements of Mjo are
rjok for each resource Rk, and the corresponding processing
time is djo. Finding a schedule π for G consists of deter-
mining the start time sj =

∑D
t=0 xjott and execution mode

Mj =
∑mj

o=1 xjoto of each task vj . The finish time of task vj is
fj = sj + djo. Pj and Oj denote the immediate predecessor and
immediate successor sets of vj , i.e., Pj = {vi|∀(vi, vj) ∈ E)},
Oj = {vk|∀(vj , vk) ∈ E)}. Let estj be the earliest start time
of task vj , lstj be the latest start time of task vj and tlstj be
the latest threshold start time of task vj . The earliest and latest
start times are calculated based on the assumptions that all tasks
are executed with the shortest duration mode (mode with minimal
processing time). The earliest start time of task vj is defined as
estj = maxvi∈Pj

{fi}, and the latest start time of task vj is
defined as lstj = minvk∈Ok

{sk−djo}. The latest threshold start
time is calculated by using the longest duration mode for each
task and is defined as tlstj = minvk∈Ok

{sk−djo}. The interval
[estj , lstj] defines the time-window of the start time of task vj .

1 2

3

(3,3) (1,12)

(3,6)

4

5

(3,6)

(2,15)

(2,7) (6,3)

0

7

6 (0,5)

(0,0)

(0,0)

(num1, num2)=(resource,duration)

Workflow Workflow

Reserved Period D=30

1G 2G
301 T 252 T

Fig. 6. An example of workflow combination.

vj cannot start earlier than estj and must start before lstj in
order to meet the deadline. tlstj represents the freedom or slack
for the successors of vj . If vj starts before tlstj , the successors
of vj are free to have other modes. Using the critical-path based
Forward and Backward Pass Calculations [31], parameters estj ,
lstj , tlstj along with Pj andOj of vj (∀vj ∈ V) can be obtained
in O(|E|) time. Relations betwen the temporal parameters of vj
are illustrated in Figure 7.

jest js j
lst

ĵ

j

j
f

jv

j
tlst

jm
d

Fig. 7. The temporal parameters of vj .

4.2 Initial Schedule Construction Methods (CM)

To construct a schedule π for the considered problem, the main
aspect is to determine the execution mode and start time for each
task. A precedence tree based enumeration scheme is established
in this section to find one possible solution. Based on the enumer-
ation scheme, different types of rules are proposed to construct a
schedule.

4.2.1 Precedence Tree based Enumeration Scheme
(PTES)
The precedence tree based enumeration procedure starts from the
dummy start task v0. Two sets including the complete set CS and
the eligible set ES are calculated at each level of the enumeration
tree. The complete set CS contains all scheduled tasks. Activities
vj with all the predecessors in the complete set CS are added to
the eligible set ES. Then, a task vj is selected from the eligible
set ES and its relative mode Mjo and start time sj are also
determined. i.e., sj takes a value from the interval [estj , lstj].

6

The solution for the considered problem is completed when the
dummy end task vn+1 is added to the set ES. Details about the
precedence tree based enumeration scheme are given in Algorithm
2.

Algorithm 2: Precedence Tree based Enumeration Scheme
(PTES)

1 begin
2 CS ← ∅, ES ← ∅;
3 Compute estj and lstj for each task vj ;
4 Initialize state of the start task vj ,

j ← 0,Mj ← 1, sj ← 0;
5 repeat
6 CS ← CS ∪ vj ;
7 for each vk ∈ Oj do
8 if Pk ⊆ CS then
9 ES ← ES ∪ vk;

/* Update the complete set CS
and eligible set ES */;

10 Using heuristics rules: Select an task vj from the
Eligible set ES, decide its execution modeMj

and determine the appropriate start time
sj ∈ [estj , lstj];

11 for each vk ∈ Oj do
12 estk ← max{estk, sj + djo};

/* For all the successors of vj,
dynamic update the earliest
start time estk */;

13 until (vn+1 ∈ CS);
14 return;

To depict the precedence tree enumeration scheme for the
considered problem, the simple example of Figure 6 is used.
Figure 8 shows the procedure for node 1. Different selections of
tasks from the eligible set result in different branches for the tree.
The construction method starts from node 0 and explores a path
from node 0 to node 7.

1 2

2

4

0

4

3 4

4 3

5

5

6

7

5

6

7

3

6

7

6

3

7

...

... ...

Fig. 8. Example of the Precedence Tree based Enumeration Scheme.

The enumeration scheme is an iterative process. At each
iteration, the three branch factors (task, mode and start time) are

determined. An inner branch is generated at each node of Figure
8. Take node 1 for example. The sketch is shown in Figure 9.
Heuristic rules proposed in Line 7 of Algorithm 2 are used to
determine the three branch factors which will lead to a better initial
schedule.

2
(1,12)

4
(3,6)

(2,7) (6,3)

1

Mode 1 Mode 2

Mode 1 Mode 2 Mode 1

Mode 1 Mode 2

Mode 1 Mode 1 Mode 2

2est 1t
2t

2lst 4est 4lst

Fig. 9. Example of the inner branch.

4.2.2 Three-step Rule (CM3)

The selection of the task, execution mode and start time results in
a path from the root node to the leaf node in Figure 9. Generally,
three-step rules are required to decide the three branch factors of
the tree. Take Figure 9 for example, the three-step rule can first
select an task v2, and then mode 1 is selected from the possible
execution modes of v2. A time decision rule selects time t2 as
the start time. At every decision point, a branch is selected and
other branches are not considered. So the three-step rule can find
an acceptable solution quickly.

In fact, lots of rules can be used to select the three branch
factors, and there are many possible combinations. In this paper,
besides one three-step rule is established, we mainly focus on the
one-step rules for effectiveness consideration. i) Activity decision:
The minimal slack time rule (minvj∈ES{`j}) is used for task
decision (Ties are broken arbitrarily). ii) Mode decision: The min-
imal product rule which selects the mode with the minimal product
of processing time, resource demand and per unit cost is proposed
(ties are broken arbitrarily). i.e., minm

j

o=1{
∑a
k=1 ckdjorjok}. iii)

Start time decision: The Minimal Extra Cost (MEC) rule. Let the
Partial Schedule PS be the schedule of the complete set CS
during the enumeration process. Let hkt be the requirements of
resource Rk at time t in PS, and Hk = maxDt=0{hkt} be the
maximum amount of resource Rk used in PS. The minimal extra
cost rule is defined as
min

lstj
t=estj{

∑a
k=1 ckmax{Hk, rjok+max

t+djo
τ=t {hkτ}}}. (Ties

are broken with the minimal start time).
Figure 9 shows an example of the minimal product rule for

mode decision. After node 1, if node 2 is selected. Node 2 has
two modes (1,12) and (2,7) in Figure 6. For mode 1, the product
is 5 × 1 × 12 = 60 (5 is the unit cost of the resource), and for
Mode 2 it is 5× 2× 7 = 70. So mode 1 of v2 is selected. Figure
10 shows an example of the minimal extra cost rule for start time
decision. The area in gray is the partial schedule PS. Node 4 can
select a start time from est4 to lst4. MEC is calculated for each
possible start time. When node 4 starts at time s4, the minimal
extra cost is obtained.

7

t

4
MEC

R

4
s4est 4lst

Fig. 10. Example of the minimal extra cost rule.

4.2.3 Two-step Rule (CM2)
The three-step rule ignores the internal relationship between the
three factors. Start time decision is commonly based on the
execution mode. Therefore, some additional two-step rules are
given in this section. The two-step rule first selects the task to be
branched next, and then decides the mode and start time together.

As shown in Figure 7, two rules for task selection are estab-
lished. Let the slack time `j of vj be `j = lstj − estj . The
threshold slack time ˆ̀

j is defined as ˆ̀
j = lstj − tlstj . The

slack time `j defines the size of the available time window while
the threshold slack time represents the freedom time window of
vj . The larger the ˆ̀

j , the bigger the effect on its successors,
and the less freedom there is for the successors. The minimal
slack time rule minvj∈ES{`j} and the maximal threshold slack
time rule maxvj∈ES{ ˆ̀j} are adopted to select tasks. For mode
and start time decisions, the Minimal Extra Cost rule (MEC)
is also used. MEC in the two-step rule tests all available start
times for all the possible modes and the best combination of
mode and start time is selected. The two-step MEC is defined
as min∀m,t{

∑a
k=1 ckmax{Hk, rjok +max

t+djo
τ=t {hkτ}}}.

4.2.4 One-step Rule (CM1)
The one-step rule sets task, execution mode and start time together
based on visiting all leaf nodes in Figure 9. The maximal freedom
rule and the minimal extra cost rule are modified to select all three
factors at the same time. Each leaf node represents one selection
of task vj , mode Mjo and start time t.

Figure 7 demonstrates that if t 6 dlstj , modes of successors
of vj are all available. If t > tlstj , modes of successors of vj
depend on t and the execution mode Mjo. Therefore, the freedom
rule is defined as min∀j,m,t{t + djo − tlstj}. The earlier the
start time t and the smaller the processing time djo, the more
freedom. Also, the minimal extra cost rule (MEC) is adapted
to the one-step version. Unlike MEC in the three-step or two-
step rule which just applies MEC to one or several leaf nodes in
Figure 9, the MEC in the one-step rule explores all the possible
leaf nodes and selects the best one. The one-step MEC is defined
as min∀j,m,t{

∑a
k=1 ckmax{Hk, rjok+max

t+djo
τ=t {hkτ}}}. For

MEC, the less resource requirement and the longer execution time,
the smaller extra cost.

There are some conflicts for the two rules in mode and
start time decision. A single priority rule is proposed to inte-
grate the advantage of the two one-step rules. First, the two
rules are normalized so that they can be combined with each
other. For the freedom rule, lstj is the latest possible start
time of t. Let mf be the mode with the longest process-
ing time of vj . The freedom rule is normalized as osr1 =

min∀j,m,t{(t + djo − dlstj)/(lstj + djof − dlstj)}. Let the
max value of MEC be MECmax. The minimal extra cost rule
is normalized as osr2 = min∀j,m,t{

∑a
k=1 ckmax{0, rjok +

max
t+djo
τ=t {hkτ}−Hk)}/(MECmax−

∑a
k=1 ckHk)}. The com-

bined single priority rule is defined as osr = (1−β)osr1+βosr2,
in which β is the bias index of the rule. If β is close to 1,
the more important the minimal extra cost rule is, and vice-
versa. A dynamic β is also proposed based on the simple idea
that the freedom rule often plays a big role at the beginning of
the schedule construction while the minimal extra cost rule is
preferred at the end. Let β be the ratio of the total cost of the
Partial Schedule PS and the whole schedule. β is defined as
β =

∑
vj∈ES

∑a
k=1 ckrjok/

∑
vj∈V maxm

j

o=1{
∑a
k=1 ckrjok}.

With the increase in the number of scheduled tasks in PS, β
is increased from 0 to 1 during the schedule construction process.

4.3 Schedule Improvement Procedure (SIP)
Resources are always used in an unbalanced way in the initial
schedule, i.e., a great number of resources are required in some
periods while a small amount of resources are needed in other ones
which may result in high resource renting costs. Therefore, the
Schedule Improvement Procedure (SIP) is developed to balance
the resource utilization. SIP consists of two processes: Moving and
Mode based Peak Elimination procedure (MMPE) and Resource
based Adjustment Procedure (RAP). The MMPE eliminates the
peak demand of the resources by adjusting the schedule and mode
of the initial solution. RAP reduces the renting cost by decreasing
the amount of expensive resources and by increasing the amount
of cheaper resources.

4.3.1 Moving and Mode based Peak Elimination procedure
(MMPE)
The main idea of MMPE is to relocate tasks in the most resource
demanding slots. The MMPE tries to relocate each task vj between
estj and lstj or to change its available execution mode in order
to reduce the peak demand of the resource. In other words, tasks
are moved from busy time slots to relatively idle time slots and
eventually the total resource utilization is balanced.

There are two procedures inside MMPE: Backward Moving
(BM) and Forward Moving (FM). In the Backward Moving, all
tasks are sorted in a non-increasing order of the finish times of
the current schedule and kept in priority list LB . The head task
L[1]
B (the current task with the biggest finish time) is denoted

as v[1] and is removed from LB (the second one becomes the
head task L[1]

B now). From the current point s[1] to lst[1], there
are lst[1] − s[1] + 1 feasible starting points for v[1]. The start
time t is decreased one by one from lst[1] to s[1]. Each available
mode of v[1] is tried and relocated to the possible start point. Let
the H

′

k be the new the maximum amount of resource Rk. The
corresponding resource renting costs

∑a
k=1 ckH

′

k are calculated
for the possible schedules. The start time and the execution mode
with the minimum costs are set as the new ones and the current v[1]
is removed from LB . The procedure is repeated until LB is empty.
According to LB , all successors of v[1] have been calculated be-
fore the calculation of v[1]. In other words, precedence constraints
are always satisfied and there is no need to check them. Forward
Moving performs in an opposite manner to BM. The priority list
LF is built according to the non-decreasing order of the start times
of the current schedule obtained by BM. The decreasing strategy
of start time is similar to the increasing one in BM, where the new

8

start time t is increased one by one from s[1] to est[1]. The start
time and execution modes with the minimum costs are set as the
new ones. MMPE starts from the initial schedule and iteratively
conducts BM and FM until no better schedule can be found.

Let πbest be the best schedule found so far and πc be the best
solution of the current generation. For each schedule π, MMPE(π)
is described in Algorithm 3 and 4.

Algorithm 3: Moving and Mode based Peak Eliminate
procedure (MMPE-part1)

1 begin
2 LB ← Sort tasks in π by non-increasing order of finish

times, πc ← π;
3 repeat
4 v[1] ← L

[1]
B , Remove L[1]

B from LB ;
/* Start from the first task of LB
*/;

5 π′ ← π, s′[1] ← lst[1], t′ ← s[1];
/* v[1] is scheduled to its latest

start time */;
6 repeat
7 m′[1] ← 1;

/* v[1] is executed with the first
mode */;

8 repeat
9 Calculate C(π′);

10 if C(π′) ≤ C(π) then
11 C(π)← C(π′), m[1] ← m′[1],

t′ ← s′[1];

12 m′[1] ← m′[1] + 1;
/* Update the mode of v[1] */;

13 until (m′[1] > m[1]);
14 s′[1] ← s′[1] − 1;

/* Moving v[1] forward, update the
start time of v[1] */;

15 until (s′[1] < s[1]);
16 s[1] ← t′;
17 until (Lenth(LB) = 0);
18 if C(πc) < C(π) then
19 C(πc)← C(π), πc ← π;
20 else
21 Go to step part2-2;

4.3.2 Resource based Adjustment Procedure (RAP)
RAP contains two main stages which adjust the resource amounts
between different types of resources with different prices. One
stage decreases the amount of expensive resources and the other
increases the use of cheap resources.

In the decreasing stage, resources are sorted in descending
order of their unit costs. For a solution π, let Hk be the resource
usage amount of each resource Rk. The amount of resource Rk
is reduced one by one. The solution is rescheduled based on the
current resource available amount Hk. In this case, the schedule π
might be unfeasible for some workflows exceeding their deadline.
The Feasibility Verification Procedure (FVP) is proposed to verify
the feasibility of the current Hk. FVP also adopts the Precedence
Tree based Enumeration Scheme (PTES). The two step rule is

Algorithm 4: Moving and Mode based Peak Eliminate
procedure (MMPE-part2)

1 begin
2 LF ← Sort tasks in π by non-decreasing order of start

times;
3 repeat
4 v[1] ← L

[1]
F , Remove L[1]

F from LF ;
/* Start from the first task of LF
*/;

5 π′ ← π, s′[1] ← est[1], t′ ← s[1];
/* v[1] is scheduled to its earliest
start time */;

6 repeat
7 m′[1] ← 1;

/* v[1] is executed with the first
mode */;

8 repeat
9 Calculate C(π′);

10 if C(π′) ≤ C(π) then
11 C(π)← C(π′), m[1] ← m′[1],

t′ ← s′[1];

12 m′[1] ← m′[1] + 1;
13 until (m′[1] > m[1]);
14 s′[1] ← s′[1] + 1;

/* Moving v[1] backward, update
the start time of v[1] */;

15 until (s′[1] > s[1]);
16 s[1] ← t′;
17 until (Lenth(LF) = 0);
18 if C(πc) < C(π) then
19 C(πc)← C(π), πc ← π, Go to Step part1-2;

20 if C(πc) < C(πbest) then
21 πbest ← πc, C(πbest)← C(πc);

22 return πbest;

used. The minimal slack time rule is also used to select tasks while
the earliest finish time is adopted to select mode and start times. If
the finish time of sink end node fn+1 is smaller than the reserved
period D, the current Hk is feasible. The procedure is repeated
until an unfeasible schedule is obtained. The increasing stage is
then performed. During this stage, all the tasks vi are sorted in
decreasing order of lsti−si. Activity vj with the maximal lstj−
sj indicates that sj is not particularly relative to lstj and vj is
selected as the increasing task. Suppose the execution mode of
vj is Mj , the current Hk is increased to Hk + rjMjk for each
resource Rk. Then FVP is called again to verify the feasibility. If
Hk is not feasible, the task with the second biggest lstj − sj is
selected as the increasing task. If Hk is feasible, the decreasing
stage is invoked. The procedure stops when no better solutions can
be found. Details of the resource based adjustment procedure are
given in Algorithm 5.

5 COMPUTATIONAL RESULTS

To the best of our knowledge, there’s no workflow scheduling
problem proposed in the literature with the same features as the

9

Algorithm 5: Resource based Adjustment Procedure (RAP)

1 begin
2 Initialize π, Hk;
3 if FV P (Hk) is false then
4 Go to step 13;

/* Check if Hk is feasible */;
5 Compute lsti − si for each task vi. Select task vj with

the maximum lstj − sj ;
/* If not feasible, increase Hk two

times */;
6 Hk ← Hk + rjMjk,∀k ∈ {1, . . . , a};
7 if FV P (Hk) is true then
8 Go to step 12;

9 Select task vj with the second maximum lstj − sj ;
10 Hk ← Hk + rjMjk,∀k ∈ {1, . . . , a};
11 if FV P (Hk) is false then
12 return;

13 k ← 1;
14 repeat
15 Hk ← Hk − 1;

/* If feasible, decrease Hk */;
16 if FV P (Hk) is false then
17 k ← k + 1;
18 Go to step 5;

19 until k > a;
20 return;

considered problem. To test the performance of the proposed algo-
rithm, methods for the related makespan based multiple workflows
scheduling problem [5] are adapted for the problem considered
in this paper. All the algorithms are implemented in Java and
executed on the same virtual machine with Intel i5-3470 CPU
(4 cores, 3.1GHz) and 1GB memory of RAM.

Being a new problem, there are no existing benchmarks for
the considered problem. To fairly compare different procedures,
instances are randomly generated according to the characteristic
of the problem. For the workflow, two important factors are con-
sidered: the number of tasks n and the network complexity NC .
n ∈ {10, 20, 30, 40} is the number of tasks in each workflow.
NC is the average number of immediate successors of an task
and is randomly generated from a uniform distribution U [1, 3].
For the resource, three important factors are considered: the types
of resources a ∈ {2, 4, 6, 8}, the unit cost c of each resource type
and the resource factor RF . c is randomly drawn from U [1, 10].
RF is the average number of types of resources needed by a task.
We assume that RF takes a value randomly from U [1, a]. For
the execution mode, there are three factors: the number of modes
o ∈ {5, 15, 25, 35}, the resource requirement r and the processing
time d. r and d are both randomly generated from U [1, 10]
(measured in hours). For the multiple workflows, four factors are
considered: the renting period D = 30 × 24 = 720 hours, the
number of workflows g ∈ {50, 100, 150, 200}, the start time Aw

and the deadline Tw of each workflow Gw. Let Iw = tlstwnw+1

(each task of Gw with the longest duration mode) be the maximal
processing time of a workflow Gw. The start time Aw is randomly
generated from U [0, D−Iw]. Accordingly, Tw is set asAw+Iw.
Generally, the number of tasks n, resource types a, modes o

and workflows g are the main factors. For each combination
of the above 4 factors, 10 instances are generated. Therefore,
4× 4× 4× 4× 10 = 2560 instances are created in total.

There are three main different comparisons in this section.
First, the different initial schedule construction methods are com-
pared. Based on the construction methods, different schedule
improvement procedures are tested next. The best resulting combi-
nation procedure (PTH) is compared with the existing method. As
the tested algorithms are for long-term resource renting, only the
performance (cost) is taken into account. The CPU time of each
algorithm is not considered. RPD (Relative Percentage Deviation)
is adopted to evaluate the performance. Let f(i) be a cost obtained
by algorithm f of instance i and f∗(i) be the best known result
for instance i. RPD is defined as:

RPD =
f(i)− f∗(i)

f∗(i)
× 100 (10)

5.1 Comparisons of the Initial Schedule Construction
Methods

Different initial schedule construction methods are compared
in this section. There are ten different construction methods
in total: one three-step heuristic CM3; two two-step heuris-
tics CM1

2 and CM2
2 ; six one-step heuristic CMβ

1 (β ∈
{0, 0.2, 0.4, 0.6, 0.8, 1}); and a dynamic one-step heuristicCMd

1 .
Table 1 shows the results of the ten initial schedule construc-

tion methods. From the average RPD, it can be easily seen that
CMd

1 is the best algorithm among all the comparing algorithms
for each size of instance. The one-step construction method is bet-
ter than the two-step construction methods and much better than
the three-step construction methods. For the two-step construction
methods, CM1

2 (minimal slack time, with the average 47.4) is
better than CM2

2 (maximal threshold slack time, with the average
65.3). CMd

1 is the best one-step rule and CM0.6
1 is the second

best one-step rule (with the average 5.4). While β = 0 represents
rule osr1 and β = 1 represents rule osr2, the fact that CM1

1

(with the average 17.1) is better than CM0
1 (with the average

24.5) indicates that the minimal extra cost rule is better than the
maximal freedom rule.

TABLE 1
Comparison of the Initial Schedule Construction Methods. RPD

measure employed.

g n CM0
1 CM0.2

1 CM0.4
1 CM0.6

1 CM0.8
1 CM1

1 CMd
1 CM3CM1

2 CM2
2

50 10 21.8 12.1 6.7 4.9 9.0 16.5 0.0 134.1 54.1 39.0
20 24.1 13.2 6.1 5.1 8.6 17.6 0.0 138.6 56.9 41.5
30 23.3 13.4 7.0 5.5 10.0 17.0 0.0 147.0 60.4 40.6
40 22.3 13.2 6.7 5.4 9.1 17.5 0.0 153.3 61.2 44.3

100 10 23.4 11.4 7.2 5.1 9.6 17.0 0.0 140.2 61.6 41.2
20 25.7 12.5 6.6 5.2 9.1 18.1 0.0 144.8 64.6 43.7
30 24.9 12.6 7.5 5.7 10.6 17.5 0.0 153.4 68.3 42.8
40 23.9 12.4 7.2 5.6 9.7 18.0 0.0 159.9 69.1 46.6

150 10 23.7 11.7 7.1 5.2 9.4 16.0 0.0 152.3 63.5 47.5
20 26.1 12.8 6.5 5.4 8.9 17.1 0.0 157.1 66.5 50.1
30 25.2 12.9 7.4 5.8 10.4 16.6 0.0 166.2 70.2 49.2
40 24.3 12.7 7.1 5.7 9.5 17.1 0.0 173.0 71.1 53.1

200 10 24.8 11.9 7.2 5.2 10.0 16.5 0.0 171.0 65.0 52.2
20 27.2 13.0 6.7 5.3 9.5 17.6 0.0 176.1 68.0 54.8
30 26.3 13.1 7.6 5.8 11.0 17.0 0.0 185.8 71.8 53.9
40 25.3 12.9 7.2 5.7 10.1 17.5 0.0 193.2 72.6 57.9

Average 24.5 12.6 7.0 5.4 9.7 17.2 0.0 159.1 65.3 47.4

10

To analyze the performance of each construction method on
different instance factors in detail, a multi-factor analysis of
variance (ANOVA) method is carried out. The response variable is
the RPD. First, the three main hypotheses (normality, homoscedas-
ticity, and independence of the residuals) are checked from the
residuals of the experiments. All three hypotheses are acceptable
from this analysis. Since all the p-values in the experiments
are close to zero, they are not given in this paper. Greater F -
Ratios imply factors with stronger effects. Interactions between
(or among) any two (or more than two) factors are not considered
because the observed F -Ratios are small in comparison.

The Means plot and Tukey HSD intervals of the one-step
heuristic CMβ

1 at the 95% confidence level are shown in Figure
11. CM0.6

1 and CMd
1 are the best and are selected for the

comparison with the other construction methods. The Means plot
and Tukey HSD intervals at the 95% confidence level for instances
with different workflow and task numbers are shown in Figure
12. For all the instances with different workflow and task values,
we observe similar trends. CMd

1 is the best while CM3 is the
worst. The performance of the two one-step heuristics does not
significantly change while the performance of the two-step or
three-step heuristics become worse with an increase in the number
of workflows or tasks. Figure 13 shows the Means plot and Tukey
HSD intervals at the 95% confidence level for instances with
different values of resource types and modes. CMd

1 is still the
best and CM3 is the worst. With the exception of the three-step
heuristic which becomes worse as the number of modes increases,
all the construction methods are not sensitive to the increase in the
number of resource types or modes.

-1

4

9

14

19

24

29

R
el

at
iv

e
P

er
ce

n
ta

g
e

D
ev

ia
ti

o
n
 (

%
)

0 0.2 0.4 0.6 0.8 1 d

Fig. 11. Means plot and Tukey HSD intervals at the 95% confidence level
for CMβ

1 .

5.2 Comparisons of the Schedule Improvement Proce-
dures

Comparisons of the schedule improvement procedure are also
based on the generated instances. The best three methods for
each category CM3, CM2

2 and CMd
1 are adopted as the initial

schedule construction methods. Three schedule improvement pro-
cedures MMPE, RAP and the combination of MMPE with RAP
are used to improve the initial schedules. SIP ji is used to denote
each Schedule Improvement Procedure (SIP), in which i is the
step of Construction Methods (CM) and j is the improvement
procedure (j = 1 for MMPE, j = 2 for RAP and j = 3 for

MMPE and RAP). Including the best initial schedule construction
methods CMd

1 , there are 10 methods for comparing in total.
The Means plot and Tukey HSD intervals at the 95% con-

fidence level of the ten compared methods are shown in Figure
14. SIP 3

i , i ∈ {1, 2, 3} are much better than the other methods,
which implies that SIP has a greater influence on the performance
of the schedule construction and improvement procedure. The
Means plot and Tukey HSD intervals at the 95% confidence level
for instances with different workflow and task values are shown in
Figure 15. There are similar trends for the instances with different
workflow and task values. SIP 3

1 is the best while SIP 2
3 is the

worst. The performance of each algorithm becomes worse with an
increase in the number of workflows or tasks. Figure 16 shows the
Means plot and the Tukey HSD intervals at the 95% confidence
level for instances with different numbers of resource types and
modes. The MMPE SIP 2

i , i ∈ {1, 2, 3} are much more sensitive
to an increase in the number of execution modes while RAP
SIP 3

i , i ∈ {1, 2, 3} are much more sensitive to an increase in the
types of resource. Although SIP 3

1 is still the best and SIP 2
3 is

the worst, this is not the case for other procedures with a different
number of resources types and modes. e.g., SIP 2

1 is better than
SIP 3

3 when a = 8 while it is worse than SIP 3
3 when o = 35.

5.3 Comparisons with existing methods
The best proposed algorithm SIP 3

1 is compared with the adapted
algorithms. The CloudSim toolkit developed by Calheiros et al.
[32] is used to simulate resource provisioning and scheduling in
a real public cloud, which is also extended to support periodical
workflow applications. Parameters used in CloudSim are listed as
follows: The processor speed of each host is considered to be 2000
MIPS. Nine general purpose types of VM instances from Amazon
EC2 are modeled (m4.large, m4.xlarge, m4.2xlarge, m4.4xlarge,
m4.10xlarge, m3.medium, m3.large, m3.xlarge, m3.2xlarge). The
CPU cores of each VM are listed in Table 2. Each VM requires
1024 MB of RAM and 10 GB of storage while the bandwidth is
set as 500 B/S. The times required for starting a host and creating a
VM are ignored for they are negligible comparing to the execution
time of a task. The price of on-demand and reserved virtual
machines resemble those of Amazon EC2. The virtual machine
instances are assumed to be reserved with no upfront cost. The
unit cost of reserved and on-demand instances are shown in Table
2.

TABLE 2
Unit cost of reserved and on-demand instances

Instance Type vCPU
Cost Per Hour

Discount
On-demand Reserved

m4.large 2 $0.120 $0.083 31%
m4.xlarge 4 $0.239 $0.164 31%

m4.2xlarge 8 $0.479 $0.329 31%
m4.4xlarge 16 $0.958 $0.658 31%

m4.10xlarge 40 $2.394 $1.645 31%
m3.medium 1 $0.067 $0.048 28%

m3.large 2 $0.133 $0.095 29%
m3.xlarge 4 $0.266 $0.190 29%

m3.2xlarge 8 $0.532 $0.380 29%

Workflow Applications: The two scientific workflow appli-
cations, Montage and LIGO [33] are adopted to analyze the
effectiveness of the proposed PTH in real environments. Figures
17 and 18 show an example of Montage and LIGO workflow

11

-10

30

70

110

150

190
Workflow

50
100
150
200

Activity
10
20
30
40

R
el

at
iv

e
P

er
ce

n
ta

g
e

D
ev

ia
ti

o
n

 (
%

)

6.0
1

CM dCM
1

2
2

CM1
2

CM3
CM 6.0

1
CM dCM

1
2
2

CM1
2

CM
3

CM

Fig. 12. Means plot and Tukey HSD intervals at the 95% confidence level for CM for instances with different number of workflows and tasks.

Mode
5
15
25
35

-10

30

70

110

150

190

230
Resource
2
4
6
8

R
el

at
iv

e
P

er
ce

n
ta

g
e

D
ev

ia
ti

o
n

 (
%

)

6.0
1

CM dCM
1

2
2

CM1
2

CM
3

CM 6.0
1

CM dCM
1

2
2

CM1
2

CM
3

CM

Fig. 13. Means plot and Tukey HSD intervals at the 95% confidence level for CM for instances with different number of resource types and modes.

-1

9

19

29

39

49

59

R
el

at
iv

e
P

er
ce

n
ta

g
e

D
ev

ia
ti

o
n

 (
%

)

dCM
1

2
2

SIP
1
3

SIP 1
2

SIP 1
1

SIP 2
1

SIP
3
3

SIP 3
2

SIP 3
1

SIP
2
3

SIP

Fig. 14. Means plot and Tukey HSD intervals at the 95% confidence level
of the schedule improvement procedures.

applications. During each test, the number of workflows are also
set as g ∈ {50, 100, 200, 300, 400}. For each type of Workflow
application, 50 tasks are generated using pegasus WorkflowGen-
erator. The start time and deadline of the workflow are set as the
previous section.

Compared Algorithms: Methods for the related makespan
based multiple workflow scheduling [5] are adapted for the con-
sidered problem. Three main strategies are adopted.

• Schedule the workflows one after another independently.
• Schedule parts of each workflow in turns independently.

• Combine the workflows into a big single workflow, and
schedule the big workflow.

The proposed Path Cluster Heuristic (PCH) in [5] supposes that
each task can only be processed on a single processor and uses
the clustering technique to generate a group of tasks. So the PCH
is not suitable for the mixed tasks in this paper. The Heteroge-
neous Earliest Finish Time (HEFT) [10] is a popular scheduling
heuristic for minimizing the makespan of a single workflow. HEFT
computes the rank value for each task which is the longest path
from the current task to the dummy sink task. The task with
the highest rank value is scheduled on the resource that gives
the earliest finish time. HEFT is modified to the Iterative HEFT
(IHEFT) for the renting cost minimization problem in this paper.
All the resources are sorted in a non-descending order of their
unit costs. Starting from the lower bound of each resource, HEFT
is iteratively called to calculate the makespan of each workflow.
If the deadlines of the workflows are not satisfied, the number of
resources is increased one by one according to the non-descending
order and HEFT is called again. The procedure stops when a
feasible solution is found. The IHEFT is combined with the three
multiple workflow scheduling strategies IHEFTi, i ∈ {1, 2, 3}.
The three adapted algorithms are compared with the best proposed
algorithm SIP 3

1 in this section. Besides IHEFTi, i ∈ {1, 2, 3},
the two lower bounds of the problem are also considered. LB− o
is the lower bound of the total renting cost with only on-demand
resources. All the rented resources are fully used, which is cal-

12

-1

9

19

29

39

49

59

R
el

at
iv

e
P

er
ce

n
ta

g
e

D
ev

ia
ti

o
n

 (
%

)

Workflow
50
100
150
200

Activity
10
20
30
40

dCM
1

2
2

SIP
1
3

SIP 1
2

SIP 1
1

SIP 2
1

SIP
3
3

SIP 3
2

SIP 3
1

SIP
2
3

SIP dCM
1

2
2

SIP
1
3

SIP 1
2

SIP 1
1

SIP 2
1

SIP
3
3

SIP 3
2

SIP 3
1

SIP
2
3

SIP

Fig. 15. Means plot and Tukey HSD intervals at the 95% confidence level for SIP for instances with different number of workflows and tasks.

-1

9

19

29

39

49

59
Resource
2
4
6
8

Mode
5
15
25
35

R
el

at
iv

e
P

er
ce

n
ta

g
e

D
ev

ia
ti

o
n
 (

%
)

dCM
1

2
2

SIP
1
3

SIP 1
2

SIP 1
1

SIP 2
1

SIP
3
3

SIP 3
2

SIP 3
1

SIP
2
3

SIP dCM
1

2
2

SIP
1
3

SIP 1
2

SIP 1
1

SIP 2
1

SIP
3
3

SIP 3
2

SIP 3
1

SIP
2
3

SIP

Fig. 16. Means plot and Tukey HSD intervals at the 95% confidence level for SIP for instances with different number of resource types and modes.

Fig. 17. An example of Montage workflow applications.

Fig. 18. An example of LIGO workflow applications.

culated as
∑g
w=1

∑nw

j=1

∑a
k=1(ckminm

jw

o=1 r
w
jokd

w
jo)/discountk

(discountk is the discount of virtual machine k obtained from

Table 2). LB− r is the lower bound with only reserved resources
and is calculated as

∑g
w=1

∑nw

j=1

∑a
k=1(ckminm

jw

o=1 r
w
jokd

w
jo).

The ANOVA technique is also used to analyze the results in a
sound and statistical way where RPD is the response variable.

For Montage instances, the interaction plot between the num-
ber of workflows and the compared algorithms with 95% Tukey
HSD confidence intervals is shown in Figure 19. For different
workflow values g, IHEFTi, i ∈ {1, 2, 3} and SIP 3

1 are
much better than LB − o and just a little higher than LB − r.
SIP 3

1 is better than the IHEFT algorithms. The total renting
cost of SIP 3

1 is about 40% higher than the lower bound with
reserved instances and 200% lower than the lower bound with
only on-demand instances. When the size g of the workflow is
very small, the RPD of IHEFTi, i ∈ {1, 2, 3} and SIP 3

1 are
almost the same. With the increase in g, the RPDs of IHEFT
increase fast while that of SIP 3

1 increases slowly. This implies
that the proposed SIP 3

1 is much more suitable for the Montage
applications in large instances.

For LIGO instances, the comparison results are shown
in Figure 20. We can observe that SIP 3

1 also outperforms
IHEFTi, i ∈ {1, 2, 3} and LB−o for different values of g. The
total renting cost of SIP 3

1 is about 20% higher than the lower
bound with reserved instances and 220% lower than the lower
bound with only on-demand instances. Regardless of the value of
g, SIP 3

1 is much better than IHEFTi, i ∈ {1, 2, 3}. With the
increase in the instance size, SIP 3

1 shows the best performance.
SIP 3

1 is suitable for LIGO applications of any size.

13

Interactions and 95.0 Percent Tukey HSD Intervals

g
-10

40

90

140

190

240
R

e
la

ti
v

e
P

e
rc

e
n

ta
g
e
 D

e
v

ia
ti

o
n

(%
)

50 100 200 300 400

LB-o

LB-r

IHEFT3

IHEFT2

IHEFT1

SIP1
3

Fig. 19. Comparison results of the algorithms on Montage instances with
different number of workflows.

Interactions and 95.0 Percent Tukey HSD Intervals

g
-10

40

90

140

190

240

50 100 200 300 400

R
e
la

ti
v
e
 P

e
rc

e
n
ta

g
e
 D

e
v
ia

ti
o
n
(%

)

LB-o

LB-r

IHEFT3

IHEFT2

IHEFT1

SIP1
3

Fig. 20. Comparison results of the algorithms on LIGO instances with
different number of workflows.

6 CONCLUSION AND FUTURE WORK

In this paper the multiple periodical workflow scheduling problem
with cost minimization is considered regarding the long-term
resource rental relationship between the users and the CSP. The
precedence tree based heuristic (PTH) is developed for the consid-
ered problem which contains a Synchronization based Workflows
Combination procedure (SWC), three types of precedence tree
based initial schedule Construction Methods (CM) and a mode
and resource based Schedule Improvement Procedure (SIP). The
proposed PTH is compared on randomly generated instances with
algorithms for the similar makespan based multiple workflow
scheduling problem. Experimental results demonstrate that the
one-step heuristic with dynamic β is the best initial schedule
construction method no matter the number of workflows, tasks,
modes or types of resource. The SIP has a greater influence on the
performance of the PTH. The performance of MMPE increases
with the rising in the number of execution modes while RAP
increases with the rising in the types of resource. The combination
of MMPE and RAP gives the best result when comparing to
other adapted algorithms. The proposed PTH is also compared
with the adapted algorithms on a simulated real public cloud.

PTH saves a lot of cost for both Montage and LIGO applications
while comparing with resource provisioning with only on-demand
instances.

Few works have been carried out on the multiple workflows
scheduling problem. The proposed schedule construction and
improvement procedures can be easily adapted to other workflow
based scheduling problems. Future work might include more
accurate models to predict the arrival of workflows. Problems with
resources that are not sharable between workflows are also worth
considering.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foun-
dation of China (No. 61572127, 61272377), the Key Research
& Development program in Jiangsu Province (No. BE2015728)
and Collaborative Innovation Center of Wireless Communications
Technology. Rubén Ruiz is partially supported by the Spanish
Ministry of Economy and Competitiveness, under the project
“SCHEYARD – Optimization of Scheduling Problems in Con-
tainer Yards” (No. DPI2015-65895-R) financed by FEDER funds.

REFERENCES

[1] E. Deelman, D. Gannon, M. Shields, and I. Taylor, “Workflows and
e-science: An overview of workflow system features and capabilities,”
Future Generation Computer Systems, vol. 25, no. 5, pp. 528–540, 2009.

[2] D. A. Brown, P. R. Brady, A. Dietz, J. Cao, B. Johnson, and J. McNabb,
“A case study on the use of workflow technologies for scientific analysis:
Gravitational wave data analysis,” in Workflows for e-Science. Springer,
2007, pp. 39–59.

[3] AmazonEC2, “Amazon elastic compute cloud (Amazon EC2),”
http://aws.amazon.com/ec2/pricing, 2014.

[4] M. Xu, L. Cui, H. Wang, and Y. Bi, “A multiple QoS constrained
scheduling strategy of multiple workflows for cloud computing,” in IEEE
International Symposium on Parallel and Distributed Processing with
Applications (ISPA 2009). IEEE, 2009, pp. 629–634.

[5] L. F. Bittencourt and E. R. Madeira, “Towards the scheduling of multiple
workflows on computational grids,” Journal of grid computing, vol. 8,
no. 3, pp. 419–441, 2010.

[6] J. Yu and R. Buyya, “Scheduling scientific workflow applications with
deadline and budget constraints using genetic algorithms,” Scientific
Programming, vol. 14, no. 3, pp. 217–230, 2006.

[7] E. Demeulemeester, W. S. Herroelen, and S. E. Elmaghraby, “Optimal
procedures for the discrete time/cost trade-off problem in project net-
works,” European Journal of Operational Research, vol. 88, no. 1, pp.
50–68, 1996.

[8] E. Demeulemeester, B. De Reyck, B. Foubert, W. S. Herroelen, and
M. Vanhoucke, “New computational results on the discrete time/cost
trade-off problem in project networks,” Journal of the Operational
Research Society, vol. 49, no. 11, pp. 1153–1163, 1998.

[9] Ö. Hazır, M. Haouari, and E. Erel, “Discrete time/cost trade-off prob-
lem: A decomposition-based solution algorithm for the budget version,”
Computers & Operations Research, vol. 37, no. 4, pp. 649–655, 2010.

[10] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 13, no. 3, pp.
260–274, 2002.

[11] A. Radulescu and A. J. Van Gemund, “A low-cost approach towards
mixed task and data parallel scheduling,” in International Conference on
Parallel Processing (ICPP2001). IEEE, 2001, pp. 69–76.

[12] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, and
K. Kennedy, “Task scheduling strategies for workflow-based applications
in grids,” in IEEE International Symposium on Cluster Computing and
the Grid (CCGrid 2005), vol. 2. IEEE, 2005, pp. 759–767.

[13] W.-N. Chen and J. Zhang, “An ant colony optimization approach to a
grid workflow scheduling problem with various qos requirements,” IEEE
Transactions on Systems, Man, and Cybernetics, Part C: Applications
and Reviews, vol. 39, no. 1, pp. 29–43, 2009.

[14] J. Yu, R. Buyya, and C. K. Tham, “Cost-based scheduling of scientific
workflow applications on utility grids,” in First International Conference
on e-Science and Grid Computing (e-Science 2005). IEEE, 2005, p. 8.

14

[15] Y. Yuan, X. Li, Q. Wang, and X. Zhu, “Deadline division-based heuristic
for cost optimization in workflow scheduling,” Information Sciences, vol.
179, no. 15, pp. 2562–2575, 2009.

[16] S. Abrishami, M. Naghibzadeh, and D. Epema, “Cost-driven scheduling
of grid workflows using partial critical paths,” IEEE Transactions on
Parallel and Distributed Systems, vol. 23, no. 8, pp. 1400–1414, 2012.

[17] Z. Cai, X. Li, and J. N. D. Gupta, “Critical path-based iterative heuristic
for workflow scheduling in utility and cloud computing,” in Service-
Oriented Computing. Springer, 2013, pp. 207–221.

[18] D. Klusácek and H. Rudová, “Improving qos in computational grids
through schedule-based approach,” in Scheduling and Planning Applica-
tions Workshop at the Eighteenth International Conference on Automated
Planning and Scheduling (ICAPS 2008), Sydney, Australia, 2008.

[19] Z. J. Wu, X. Liu, Z. W. Ni, D. Yuan, and Y. Yang, “A market-oriented
hierarchical scheduling strategy in cloud workflow systems,” Journal of
Supercomputing, vol. 63, no. 1, pp. 256–293, 2013.

[20] H. Liu, A. Abraham, V. Snášel, and S. McLoone, “Swarm scheduling
approaches for work-flow applications with security constraints in dis-
tributed data-intensive computing environments,” Information Sciences,
vol. 192, pp. 228–243, 2012.

[21] R. Prodan, M. Wieczorek, and H. M. Fard, “Double auction-based
scheduling of scientific applications in distributed grid and cloud en-
vironments,” Journal of Grid Computing, vol. 9, no. 4, pp. 531–548,
2011.

[22] Y. C. Lee, R. Subrata, and A. Y. Zomaya, “On the performance of
a dual-objective optimization model for workflow applications on grid
platforms,” IEEE Transactions on Parallel and Distributed Systems,
vol. 20, no. 9, pp. 1273–1284, 2009.

[23] H. M. Fard, R. Prodan, and T. Fahringer, “Multi-objective list scheduling
of workflow applications in distributed computing infrastructures,” Jour-
nal of Parallel and Distributed Computing, vol. 74, no. 3, pp. 2152–2165,
2014.

[24] A. Iosup, S. Ostermann, M. N. Yigitbasi, R. Prodan, T. Fahringer,
and D. Epema, “Performance analysis of cloud computing services for
many-tasks scientific computing,” IEEE Transactions on Parallel and
Distributed systems, vol. 22, no. 6, pp. 931–945, 2011.

[25] E. K. Byun, Y. S. Kee, J. S. Kim, E. Deelman, and S. Maeng, “BTS:
Resource capacity estimate for time-targeted science workflows,” Journal
of Parallel and Distributed Computing, vol. 71, no. 6, pp. 848–862, 2011.

[26] E. K. Byun, Y. S. Kee, J. S. Kim, and S. Maeng, “Cost optimized
provisioning of elastic resources for application workflows,” Future
Generation Computer Systems, vol. 27, no. 8, pp. 1011–1026, 2011.

[27] S. Abrishami, M. Naghibzadeh, and D. H. Epema, “Deadline-constrained
workflow scheduling algorithms for infrastructure as a service clouds,”
Future Generation Computer Systems, vol. 29, no. 1, pp. 158–169, 2013.

[28] Z. Cai, X. Li, and J. N. D. Gupta, “Heuristics for provisioning services to
workflows in XaaS clouds,” IEEE Transactions on Services Computing,
vol. DOI10.1109/TSC.2014.2361320, 2014.

[29] S. Chaisiri, B. S. Lee, and D. Niyato, “Optimization of resource pro-
visioning cost in cloud computing,” IEEE Transactions on Services
Computing, vol. 5, no. 2, pp. 164–177, 2012.

[30] X. Zuo, G. Zhang, and W. Tan, “Self-adaptive learning pso-based
deadline constrained task scheduling for hybrid iaas cloud,” IEEE Trans-
actions on Automation Science and Engineering, 2013.

[31] E. Demeulemeester and W. S. Herroelen, Project scheduling: a research
handbook. Kluwer Academic Pub, 2002, vol. 49.

[32] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya,
“Cloudsim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,” Soft-
ware: Practice and Experience, vol. 41, no. 1, pp. 23–50, 2011.

[33] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su, and
K. Vahi, “Characterization of Scientific Workflows,” in 2008 THIRD
WORKSHOP ON WORKFLOWS IN SUPPORT OF LARGE-SCALE
SCIENCE (WORKS 2008), 2008, pp. 11–20, 3rd Workshop on Workflows
in Support of Large-Scale Science, Austin, TX, NOV 17, 2008.

Long Chen received his B.Sc. degrees in Com-
puter Science and Engineering from Southeast
University, Nanjing, China, in 2009. He is cur-
rently a Ph.D. student at the School of Computer
Science and Engineering, Southeast University,
Nanjing, China. He is a student member of the
IEEE. His main interests focus on Dynamic Ca-
pacity Management, Task Scheduling in Cloud
Computing, Service-oriented Computing, Evolu-
tionary Computation, Project Scheduling.

Xiaoping Li (M09-SM12) received his B.Sc. and
M.Sc. degrees in Applied Computer Science
from the Harbin University of Science and Tech-
nology, Harbin, China, in 1993 and 1999 respec-
tively. He obtained his Ph.D. degree in Applied
Computer Science from the Harbin Institute of
Technology, Harbin, China, in 2002. He joined
Southeast University, Nanjing, China, in 2005,
and is currently a professor at the School of
Computer Science and Engineering. From Jan.
2003 to Dec. 2004, he did postdoctoral research

at the Department of Automation at Tsinghua University, Beijing, China.
From Mar. 2009 to Mar. 2010, he was a visiting professor at the National
Research Council, London, Ontario, Canada. He is the author or co-
author over more than 100 academic papers, some of which have
been published in international journals such as IEEE Transactions
on Services Computing, IEEE Transactions on Automation Science
and Engineering, Omega, European Journal of Operational Research,
Information Sciences, International Journal of Production Research,
Expert Systems with Applications, Journal of Network and Computer
Applications and Engineering Optimization. His research interests focus
on Scheduling in Cloud Computing, Scheduling in Cloud Manufacturing,
Machine Scheduling, Project Scheduling, Terminal Container Schedul-
ing, Learning Effects in Scheduling, and Manufacturing Software Inter-
operability.

Rubén Ruiz is full professor of Statistics and
Operations Research at the Polytechnic Univer-
sity of Valencia, Spain. He is co-author of more
than 60 papers in International Journals and
has participated in presentations of more than
a hundred papers in national and international
conferences. He is editor of the Elseviers jour-
nal Operations Research Perspectives (ORP)
and co-editor of the JCR-listed journal European
Journal of Industrial Engineering (EJIE). He is
also associate editor of other important journals

like TOP or Applied Mathematics and Computation as well as mem-
ber of the editorial boards of several journals most notably European
Journal of Operational Research and Computers and Operations Re-
search. He is the director of the Applied Optimization Systems Group
(SOA, http://soa.iti.es) at the Instituto Tecnolgico de Informtica (ITI,
http://www.iti.es) where he has been principal investigator of several
public research projects as well as privately funded projects with indus-
trial companies. His research interests include scheduling and routing in
real life scenarios.

