
Algorithms for the mapping of genome

sequences in GPGPU

Author: David Seide(dasei@upv.es)
Codirector: José Salavert Torres(josator@�v.upv.es)

Director: Ignacio Blanquer Espert(iblanque@dsic.upv.es)

July 2012

1

Contents

1 Introduction 3

2 Objectives 4

3 State of the art in sequence alignment 4

3.1 Format . 5

3.2 Long reads . 5

3.3 Short reads . 6

4 The platform of choice - CUDA 7

4.1 Architecture . 9

4.2 Memory layout . 10

4.3 Programming a CUDA GPU . 11

5 The Burrows-Wheeler Transformation 14

5.1 Necessary data structures . 14

5.2 Optional velocity improvement . 16

6 Implementation 16

6.1 Theoretic approach to the search algorithm 16

6.2 Recursive exact search algorithm 18

6.3 Iterative exact search algorithm . 19

6.4 Complete exact search algorithm 20

6.5 Complete search algorithm allowing up to 1 error 23

7 Experimental results 26

7.1 Hardware Speci�cation . 26

7.2 Pro�ling of the GPU algorithm . 27

7.3 Speed-Up analysis . 30

8 Conclusions 31

2

1 Introduction

Since the advent of NGS (New/Next Sequencing Algorithms) at the end of
the 2000s decade the speed at which new genomes were sequenced has been
increased several orders of magnitudes. In addition, cheaper methods have
risen the amount of genomic sequence data exponentially [11]. Unfortunately
there is still a drawback. The obtained sequences (reads) produced with these
techniques are much shorter than before (usually called short-reads), this
fact encourages the need for new processing algorithms to cope with these
biological data avalanches. To be more precise, NGS produce reads with an
average length of up to 100 nt (nucleotides), whereas conventional methods
produce reads with an average length of 1000 nt. However, the number of
reads produced in NGS have the order of hundreds of millions, meanwhile
conventional methods only reach magnitudes of a few hundred thousand.

The most common objective in this �eld consists in mapping newly ob-
tained DNA information onto a full reference DNA of an already sequenced
genome to �nd, for example, indication of homologies.

Nowadays, there exist several tools (BLAST, BWA, Bowtie, Soap, etc.)
that allow biologists to perform short-read alignments. Apart from these,
the research group for grid and high performance computations (GRyCAP)
from the institute I3M of the Polytechnic University of Valencia (UPV) has
also come up with an approach [18] that supports the exact alignment of
short-read nucleotide sequences and takes advantage of the GPGPU parallel
architecture.

The objective of this project is to extend this implementation, so that it
allows one error between the reference and the mappings.

We present in this work an implementation on GPU of a BWT inexact
aligner, that allows 1 error. The program guarantees to �nd all possible results
in GPU and our implementation works about 7 times faster than the same
algorithm in CPU.

Section 2 de�nes the objectives of the development presented in this �nal
year project. In section 3 we overview current solutions in the �eld of work
of sequence alignment. Section 4 gives an insight of the equipment that was
employed during this project. Section 5 explains what the BWT is and how
the necessary FM-Index is created. Section 6 describes how we can make use
of the BWT for sequence alignment and how we implemented it. Section 7
depicts the results of several experiments that show the potential of the GPU
implementation. Section 8 contains the conclusions reached with this work.

3

2 Objectives

This project focuses on using GPGPUs for solving the inexact alignment of
short-reads with respect to a reference indexed using the Burrows-Wheeler
Transform. To be more speci�c we dealt with a solution of an alignment that
allows up to one error. It follows the work presented in the article [18].

This main objective implies several sub-objectives that have guided the
work.

• Get familiar with the CUDA environment.

• Adapt the algorithm allowing one error to be e�cient on GPU.

• Find an adequate data structure to store the results for each read and
test it on the CPU version before porting it to GPU.

• Measure and compare the gained speed-up from the GPU to the CPU
version.

3 State of the art in sequence alignment

The alignment of DNA sequences consists basically in comparing tons of
query strings stored in an array W to a reference string X and to process
the results in the desired form. In our case the average length of the query
strings (|W | ≈ 100) is a fraction of |X| ≈ 3× 109.

To give you an overview about the di�erent result types that can occur,
let X be AGGAGC and W accordingly to each line of Table 1. As you can
see, we consider four types of results that can occur; exact match, mismatch,
insertion and deletion. The already existing program mentioned above allows
to align only exact mapping of reads. The target of this project is to create
a gpu version of this search algorithm, that considers one of the four types
of results during the alignment.

4

Result
types

W Found
String

Description

Match AGC AGC W appears in X
Mismatch GCA GGA W does not appear exactly in X

but with one symbol changed for
another.

Insertion AGA AGGA W does not appear exactly in X
but with one symbol inserted af-
ter the �rst or before the last
symbol.

Deletion AGC GC W does not appear exactly in
X but with one symbol being
deleted.

Table 1: Examples of di�erent result types when X=AGGAGC and W ac-
cordingly to each line of the table.

3.1 Format

3.1.1 FASTA

FASTA [13] [17] is a program used for the alignment of DNA sequences and
proteins. The name FASTA is derived from FAST-ALL because it allows
searches with any alphabet. It is an extension from FAST-P for proteins and
FAST-N for nucleotides. The principal advantages of the FASTA package
are its variety of possible input types (di�erent alphabets) and the statistical
possibilities that it o�ers by default. This partly all-in-one solution is easy
to use even for a biologist with little computer engineering background.

3.2 Long reads

3.2.1 BLAST

BLAST [3] [4] stands for Basic Local Alignment Search Tool and is a program
for comparing a query of primary sequence information, such as amino-acid
or nucleotide sequences, against a database of queries. It enables scientists to
�nd the most resembling sequences in the database, listed by their grade of
similarity to the query. Because BLAST is a heuristic adaption of the Smith-
Waterman [19] [7] algorithm, it is signi�cantly faster than a non-heuristic

5

approach, but can never guarantee to �nd neither all solutions, nor the best
one. It is the most used and quoted algorithm in bioinformatics and can be
accessed freely through the NCBI (National Center of Biotechnology Infor-
mation) server.

3.3 Short reads

3.3.1 BWA

The name of this algorithm is an abbreviation of the term Burrows-Wheeler
Alignment [10]. and includes a Burrows-Wheeler Transformation within the
process. Here it is used to pre-process the reference string and make the real
search more simple and less time-consuming afterwards. The BWA allows
an unlimited number (de�ned by parameter) of errors (mismatch, insertion,
deletion), though its time comsumption will also increase signi�cantly when
incrementing the number of allowed errors. The original publication presents
a CPU solution and states that it is especially e�cient for the alignment of
short-reads against a large reference. It is an interesting approach because
while being fast it does not lose its reliability for the fact of not being heuristic
by any means in comparison to BLAST.

3.3.2 Bowtie

Bowtie [8] is a rapid short-read aligner for DNA sequences that also makes use
of the BWT, it is open-source software and available under [1]. In the publica-
tion article the authors state that it has a maximum memory footprint of 1.3
GB during execution time, while aligning more than 25 million reads per CPU
hour. This results are named in context of the human genome serving as the
reference sequence. The algorithm makes use of a �novel quality-aware back-
tracking algorithm� that limits the backward steps in an intelligent way to
speed up the algorithm, although excluding possible possible results with this
technique. The creators of Bowtie furthermore introduced a multithreading
CPU version which shows signi�cant speed ups compared to the sequential
version.

6

3.3.3 SOAP

SOAP stands for Short Oligonucleotide Alignment Package [11], it is available
under [2] as open-source. There are di�erent implementations of the SOAP
algorithm. For example SOAP2 [12] is a multithreading CPU implementation
that allows �either a certain number of mismatches or one continuous gap for
aligning a read onto the reference sequence�. SOAP3 [14] however is a GPU-
based software that allows up to 4 mismatches and implements a dynamic
programming approach.

4 The platform of choice - CUDA

In this section a general overview of the NVIDIA CUDA technology [16]
is given. CUDA stands for Compute Uni�ed Device Architecture and of-
fers general-purpose computing on general purpose graphics processing units
(GPGPU), the said technique is available on NVIDIA graphics cards exclu-
sively. CUDA extends the GPUs �eld of application from only processing
and displaying graphics to more general tasks. To be more precise, such a
graphics card can serve for highly intensive computations like compression
of audio or video, acceleration of mathematical algorithms or rendering com-
puter graphics.

The structure and methodology of CUDA and how programs can be de-
veloped with CUDA are explained in this section. The main idea is that
the highly computing intensive parts of a program, that can be executed in
parallel, are outsourced to the graphics card using a SIMD-like architecture
(Single Instruction Multiple Data). Such an outsourced function on the GPU
is called a kernel. A kernel will be executed by up to thousands of threads
at the same time, using intelligent scheduling algorithms. These threads are
extremely lightweight, the context change produces practically no overhead
and the graphics card needs hundreds of threads to run at full capacity. The
graphics card has its own memory of a few gigabytes and as a whole can be
seen as a very potent and intelligent coprocessor.

7

(a) A kernel is a grid of blocks of threads, that
executes the same instructions over possibly
di�erent data.

(b) One of the ten Texture/Pro-
cessor Clusters that form part of
a GeForce GTX280.

(c) Correlations of the memory model of a CUDA graphics card.

Figure 1

8

4.1 Architecture

In this project a CUDA graphics card of the second generation series was
employed. Cards of this series still have the ability to output images to a
display and are not exclusively designed for high-performance computing
like the Tesla series for example.

These graphics cards in general consist of Streaming Multiprocessors
(SM) that are spread out on Texture/Processor Clusters (TPC). Figure 1b
shows a single TPC of a GeForce GTX280. Each TPC consists of various
SMs, that share the same bus to access the global memory and caches (Con-
stant and texture cache). A number of Streaming Processors (SP) comprises
each SM. All SPs inside of one SM have access to the same shared memory.

A SP in particular is a single processing core, that has ALUs and FPUs. It
does not have any cache and therefore it is only e�ective when processing the
same piece of data intensively. Each SM also includes Special Function Units
(SFU). The instructions for the SPs and SFUs within one SM are dispatched
by the MT Issue.

One of the reasons, why this architecture can be so powerful, lies in the
scheduling algorithm that governs the threads. The thread scheduler intents
to execute groups of 32 threads (called warps) with the same instructions
over di�erent data. The basic idea is to execute warps, which are prepared
to continue immediatley and have no pending read/write operations.

So the order in which warps are executed is unknown while developing
the code. It is mandatory to be able to guarantee that for example a memory
copy operation has �nished, before another warp accesses the same data.
This can be achieved with a call to __syncthreads(). This command causes
the thread scheduler to pause every thread at this line of code, until every
thread has reached it. So if placed after a copy operation, the code developer
can guarantee, that the memory access in the next line will not be performed
until the previous copy operation was �nished by all threads.

The above mentioned thread scheduler allows to take pro�t of the cards
full computing power capacity, provided that there are enough threads acces-
sible to the scheduler, so that there is enough chance to have a warp ready to
execute in every moment. Various warps are managed (creation, scheduling,
execution) by one SM. The belonging threads start with the same instruction
code, but can follow di�erent branches during execution due to conditional
statements in the code. Given the case of threads within a warp following
di�erent branches, they are executed sequential, however di�erent warps can

9

follow di�erent branches in parallel. Therefore using conditional statements
in the kernel code is a possible performance killer, forcing the code to be exe-
cuted sequentially in a non-optimal case. Following the term SIMD, NVIDIA
calls the just described functionality �Single-Instruction, Multiple-Thread�
(SIMT).

4.2 Memory layout

A kernel is organized as a grid of blocks of threads (See �gure 1a). Table 2
presents a comparison of the di�erent memory types that can be found on
a CUDA graphics card. Each thread has exclusive access to its registers and
local memory. The hardware registers are extremely fast but small, whereas
the bigger local memory is also fast, but limited in size. Threads within a
block can cooperate via shared memory, which is fast and therefore the key
to fast parallel processing with CUDA. Threads of di�erent blocks can access
the global memory which is used to transfer data between CPU and GPU.
The global memory classes are the slowest. Both CPU and GPU have direct
read and write access to the global memory, whereas the constant cache and
the texture cache can only be read by the GPU. These caches are through
transmissions to the global memory. To read (GPU side) from the constant
cache shows the same latency as from the hardware registers, provided that
no page faults occur. The texture cache furthermore is optimized for 2D
spatial read access GPU wise.

Memory Type Read Write Access time
Register Hardware One thread One thread 1 Cycle
Local Hardware One thread One thread 1 Cycle
Shared Hardware One block One block 1 Cycle
Global DRAM CPU + GPU CPU + GPU Slow
Constant Cache CPU + GPU CPU Can vary (cache)
Texture Cache CPU + GPU CPU Can vary (cache)

Table 2: Comparison of the di�erent memory models of a GPU

10

4.3 Programming a CUDA GPU

Programming in CUDA is much simpler compared to the hardware back-
ground a graphics card underlies. CUDA is available for di�erent program-
ming languages such as C, C++, JAVA, Python, etc. . . This project was
realized in C. Regardless of what language is used, the CUDA framework
adds functionality necessary to manage the GPU, perform memory transfers
between CPU and GPU and to create and execute kernels on the device.
However programming e�cient algorithms is the most challenging part. Ben-
e�ting from the memory access locality requires a deep knowledge of the
hardware, the CUDA environment and the algorithm itself.

Let us take a look at a small code example written in C. In the �rst
listing, inside the main function we declare an array �a� with 16 values and
an integer �b�. These variables are passed to the increment_cpu() function
which is a routine that adds the value of �b� to every value of the array �a�.
This operation has a O(n) cost, where n is the number of elements in �a�.

Listing 1: CPU Increment

1 void increment_cpu (int ∗a , int b , int N)
2 {
3 for (int idx = 0 ; idx < N; idx++)
4 a [idx] = a [idx] + b ;
5 }
6
7 int main ()
8 {
9 int N = 16 ;
10 int ∗a = f i l l e d I n tA r r a y (N) ;
11 int b = 1 ;
12
13 increment_cpu (a , b , N) ;
14 }

The second listing shows a CUDA program, lines 1-5 are device code and
lines 7-23 are host code. In CUDA, Device and host refer to the place where
the code will be executed (The graphics card device or the host computer
respectively). CUDA device code stands out from plain C code because of its
precedent keyword �__global__�. In this example the kernel instructions
would be executed by 16 threads simultaneously (4 blocks of 4 threads each).

The following code calculates the global array index for each thread. Grids

11

Listing 2: GPU Increment

1 __global__ increment_gpu (int ∗a , int b , int N)
2 {
3 int idx = blockIdx . x ∗ blockDim . x + threadIdx . x ;
4 a [idx] = a [idx] + b ;
5 }
6
7 int main ()
8 {
9 int N = 16 ;
10 int ∗a = f i l l e d I n tA r r a y (N) ;
11 int b = 1 ;
12
13 f loat ∗d_a ;
14 cudaMalloc ((void∗∗)&d_a , N) ;
15
16 cudaMemcpy(d_a , h_a , N, cudaMemcpyHostToDevice) ;
17
18 dim3 dimBlock (4) ;
19 dim3 dimGrid (c e i l (N / (f loat) 4)) ;
20 increment_gpu<<<dimGrid , dimBlock>>>(a , b , N) ;
21
22 cudaMemcpy(h_a , d_a , N, cudaMemcpyDeviceToHost) ;
23 }

and blocks can have up to three dimensions whose boundaries (limited by
hardware) can be checked in the deviceQuery information of our card. The
�cuda.h� header �le also o�ers functions to verify this information during
runtime.

The desired dimensions are set by the programmer before launching a
kernel and they are included in the arguments for the kernel call.

dimGrid(x,y,z) Number of blocks in every dimension.
dimBlock(x,y,z) Number of threads per block in every dimension.

In the example we only set the �rst member of these variables (x). To
check the grid-position of a thread during runtime, we can consult several
variables. In our example, the array has only one dimension, so that the
members y and z of the following variables are not considered.

12

blockIdx.x The ID of the block, the current thread belongs to.
blockDim.x The number of threads per block.
threadIdx.x The local thread index.

The calculation in line 3 is a very common pattern and allows the pro-
grammer to map from the local index threadIdx.x to the global index. In line
4 each thread modi�es its element of the array �a� and returns to main. Every
thread does the same (no conditional statements and no diverging branches),
so this code would be executed by the 16 threads simultaneously.

In the main function we can see some of the drawbacks of CUDA, such
as less code legibility and possible performance trade-o�s, when applying
algorithms not best-�tting the CUDA model. The �rst 3 lines are equal to
the CPU version, but in line 14 we allocate memory on the device to copy
our data to. In lines 18 and 19 we set the grid dimensions. Finally in line
20 the kernel is executed over 4 blocks with 4 threads each. In line 22, after
having successfully executed the device code, we copy the results to the host
memory. Now we could check if the results are the same as in the CPU
version.

This is a very simple example on how to use CUDA code, although it does
not speed up the execution time compared to the sequential CPU version.
This program has an overhead for

• copying the data to the device,

• executing the kernel and

• copying the data back to the host

In total, the objective is to end up with a program that takes less time
than the CPU version. This can be accomplished by signi�cantly extending
the amount of calculations in the kernel and limiting the number of copy
operations between host and device and vice versa.

13

5 The Burrows-Wheeler Transformation

BWT stands for Burrows-Wheeler Transform [5] and has had its �rst com-
mercial success in the pre-processing parts of compression algorithms like
bzip2. It was developed by Michael Burrows and David Wheeler in the year
1994. The transformation takes a block of input data and creates a block of
output data of the same size. The output represents a permutation of the
input. This means that only the order of the symbols but not its distribution
will be modi�ed. The new obtained output sequence serves for Run-Length-
Encoding (RLE) compression algorithms because the same symbols now tend
to occur in succession [15]. The transformed data can be converted back to
its genuine version. In bioinformatics one application of the BWT is to create
indexes of big reference genomes, accelerating the alignment of short genome
sequences [10].

5.1 Necessary data structures

Let Σ = A,C,G, T be an alphabet. Let $ be a symbol not present in Σ that
is lexicographically smaller than all symbols in Σ. A string X = a0a1 . . . an−1
always ends with the symbol $ = an−1, this being the only incidence of $ in X
and has length of |X | = n. Furthermore we de�ne the following expressions:

X[i] = ai Refer to the i-th symbol of X

X[i, j] = ai . . . aj Describe a speci�ed subarray

Xi = ai . . . an−1 Refer to a su�x from X, starting at the
speci�ed position i

Now we create a matrix containing all possible su�xes of the reference
string X, by simply rotating its symbols and constructing the matrix M using
the string X = “AGGAGC$′′ results in:

M =



A G G A G C $
G G A G C $ A
G A G C $ A G
A G C $ A G G
G C $ A G G A
C $ A G G A G
$ A G G A G C


sort−−−→
rows

M ′ =



$ A G G A G C

A G C $ A G G

A G G A G C $

C $ A G G A G

G A G C $ A G

G C $ A G G A

G G A G C $ A



14

The second step of the BWT is sorting the rows alphabetically obtaining M',
now let vector B contain the last column of M'

B =
{
C G $ G G A A

}
and let vector S contain for every row in M' its original position in M.

S =
{

6 3 0 5 2 4 1
}

The BWT is now de�ned as follows [10]:

B[i] =

{
$ if S[i] = 0

X[S[i]-1] if S[i] 6= 0

Therefore vector S allows us to locate the exact original position in the reference
string X. B is the BWT transform of X. Take for example B[1] = C, which leads

to S[1]− 1 = 5, X[5]
!

= C.

Vector B will be stored in matrix O and vector C. This is called FM-Index [6]
and will serve us later to run the actual search algorithm.

Each position in vector C (|C | = |Σ |) stands for one symbol from the alphabet
Σ, ordered lexicographically. The actual value in every position states how many
symbols in X exist (excluding $), that are lexicographically smaller than the symbol
in that position. Following our example, the described vector results in:

A C G T
C = (0 2 3 6)

C shows us, that X holds 3 symbols lexicographically smaller than 'G', which
are two 'A' and one 'C'. Generally speaking, C[a] contains the number of symbols
present in X[0 : n− 2] (excluding $) that are lexicographically smaller than a ∈ A.

O[a, i] however is the number of occurences of symbol a ∈ A in B[0 : i].
Following our example, matrix O contains:

O =


0 0 0 0 0 1 2
1 1 1 1 1 1 1
0 1 1 2 3 3 3
0 0 0 0 0 0 0


A
C
G

T

As an example, O[′G′, 3] = 2 means that 'G' appears twice in the interval
B[0 : 3] = �CG$GGAA�.

15

5.2 Optional velocity improvement

Depending on the length of X, the process of sorting M' and therefore the whole
BWT X, can be computationally intensive. As we are sorting a su�x matrix the
complexity of sorting the rows of M can be reduced from O(n2log ∗n) to O(n(log ∗
n)2), as stated in [9]. Also, a ternary quicksort with a random pivot is necessary
to avoid ine�cient partitioning.

6 Implementation

6.1 Theoretic approach to the search algorithm

Once the FM-Index is calculated, the alignment can be performed. This solution
[18] is an adaptation of the algorithm present in [10]. In this section I will explain
the theoretical approaches to the exact search algorithm.

If string W appears multiple times in X, the position of these occurrences will
also be present in an continuous interval in vector S. This is because all rows of
M', that start with W are grouped together (they were sorted beforehand). Based
on this observation from [10] we de�ne the following:

bR(W)c = min(k : W is a pre�x in M ′(k)) (6.1)

dR(W)e = max(k : W is a pre�x in M ′(k)) (6.2)

So bR(W)c and dR(W)e describe the �rst and the last occurrence (e.g. lower
and upper limit) of W in X. The hereby obtained interval [bR(W)c, dR(W)e] is
called SA interval and includes all the positions of W in X. Having this information
we can use vector S to look up the original positions of W in X.

Being for example W = �AG�, we obtain the following:

bR(W)c = 2
dR(W)e = 3

Looking up the SA interval S[2 : 3] gives us 0 and 3, which are the two starting
positions of �AG� in X.

S =
{

6 0 3 5 2 4 1
}

X =
{
A G G A G C

}
As we can obtain the original string positions sequence from vector S, the

exact string alignment process consists in �nding an interval in vector S. It can be

16

determined in O(|W |) time. The exact matching problem, gives us exactly one S
interval, whereas the inexact matching problem can return more than one interval
(Described in section 6.5).

We can de�ne bR(aW)c and dR(aW)e using the FM-Index structures, vector
C and matrix O.

bR(aW)c = C(a) + O(a, bR(aW)c − 1) + 1 (6.3)

dR(aW)e = C(a) + O(a, dR(aW)e (6.4)

Also we de�ne the following properties.

bR(aW)c ≤ dR(aW)e if aW ∈ X (6.5)

bR(ε)c = 0 (6.6)

bR(ε)c = |X | − 1 (6.7)

These formulas o�er the possibility to test whether W is a substring of X and
if so, how many occurrences of W exist. This is achieved by calculating the SA
interval via (6.3) and (6.4). If the resulting SA interval-length is bigger 0 (6.5), we
can conclude that W ∈ X. The underlying process is not obvious and the formulas
are recursive, so we will explain them in an example. Matrix O has an additional
column which refers to -1 value, because (6.3) and (6.4) can return −1 as a result.

Assumed data structures:

X = “AGGAGC ′′

W = “AGC ′′

S = (6 3 0 5 2 4 1)

A C G T
C = (0 2 3 6)

O =


0 0 0 0 0 0 1 2
0 1 1 1 1 1 1 1
0 0 0 1 2 3 3 3
0 0 0 0 0 0 0 0


A
C
G
T

−1 0 1 2 3 4 5 6

Now we want to determine bR(W)c and dR(W)e, to verify W ∈ X and W =
X[3 : 5].

By calling bR(W)c, we get the following execution �ow with |W | levels of
recursion, the small arrows between the boxes point towards the direction of the
application �ow.

17

Detailed recursion steps for lower limit:

bR(AGC)c = C(A) + O(A, bR(GC)c − 1) + 1 bR(AGC)c = 1

↓ ↑

bR(GC)c = C(G) + O(G, bR(C)c − 1) + 1 bR(GC)c = 4

↓ ↑

bR(C)c = C(C) + O(C, bR(ε)c − 1) + 1 bR(C)c = 3

↓ ↑
bR(ε)c = 0

Searching for the upper limit is analogous.

Detailed recursion steps for upper limit:

dR(AGC)e = C(A) + O(A, dR(GC)e) dR(AGC)e = 1

↓ ↑

dR(GC)e = C(G) + O(G, dR(C)e) dR(GC)e = 5

↓ ↑

dR(C)e = C(C) + O(C, dR(ε)e) dR(C)e = 3

↓ ↑
dR(ε)e = 5

The obtained SA interval is S[1 : 1] and S[1] gives 3, consequently X[3] is the
starting position of W .

6.2 Recursive exact search algorithm

The pseudo-code presented in this subsection makes use of the theoretical approach
introduced beforehand although the formulas vary a little. The C language does
not allow negative array indexes like the �rst column of matrix O in the above
example. Because of that, we simply let the indexation of O begin with 0 and
delete the decrementing of 1 in (6.3), while incrementing the index by 1 on the
very same spot in (6.4). With these changes we achieve the same result, while
making the code more corresponding to the C language.

18

Algorithm 1 Recursive exact search algorithm

1: function exact_search(W,C,O, i, k, l)
2: if i < 0 then return [k, l]
3: k ← C(W [i]) + O(W [i], k) + 1
4: l← C(W [i]) + O(W [i], l + 1)
5: return exact_search(W,C,O, i− 1, k, l)
6: end function

The parameters of the function described in algorithm 1 are:

Parameter Description

W The search string (e.g. read)

C Vector C

O Matrix O with the shifted index

k k = 0→ Start value of bRc
l l = |B | − 1→ Start value of dRe

The algorithm returns a unique interval [k, l] which represents the �nal values
of bRc and dRe respectively.

6.3 Iterative exact search algorithm

The recursive algorithm, described in section 6.2, bears some problems when ex-
ecuted on a GPGPU. The recursion stack is stored in the global memory of the
graphics card, whose access times are very slow. Also the actual size of the recursion
stack is unknown until the whole algorithm has �nished its execution and there-
fore constitutes a lack of control. Finally the performance of iterative algorithms
is known to be better than its recursive versions.

These reasons make the implementation of recursive algorithms in CUDA in-
e�ective. In order to increase performance, the algorithm was converted into an
iterative version (See algorithm 2), leaving the same input parameters and return
values as in the recursive version.

19

Algorithm 2 Iterative exact search algorithm

1: function exact_iterative_search(W,C,O, k, l)
2: k2← k
3: l2← l
4: for i← |W | − 1 . . . 0 do
5: k2← C(W [i]) + O(W [i], k2) + 1
6: l2← C(W [i]) + O(W [i], l2 + 1)
7: if k2 > l2 then return ∅
8: end for
9: return [k2, l2]

10: end function

6.4 Complete exact search algorithm

In this section we will explain how the actual alignment of reads is done sequentially
and in parallel. Both approaches will use algorithm 2 to process a single read.

The sequential CPU version works as follows. The main idea is to �rstly load
BWT data structures of the reference string into the system memory then to repeat
a loop containing the following steps:

1. Obtain a read from the queries �le.

2. Align the read with the reference, using algorithm 2

3. Write the result to disk

This loop is repeated over all reads one by one, until there are no more reads
left.

20

The parallel GPU version of the program works di�erently. Instead of only
processing one read at a time, the kernel processes blocks of reads simultaneously.
To give an idea of the order of magnitude, in this program we perform alignments
of over 256000 reads at a time.

First of all, the FM-Index is loaded into the graphics card memory. Secondly
this loop is executed:

1. Obtain a block of reads from the queries �le and copy it to the GPU memory.

2. Launch the exact search kernel over the reads (Figure 2).

3. Copy the results back to the host computer and write them to disk.

This loop is also repeated until there are no more reads left. Take for example
a number of 2000000 reads and a data-block size of 256000, this will result in 8
repetitions of the main loop (2000000/256000 = 7.8). The kernel algorithm �ow is
illustrated in �gure 2.

First of all we calculate the global index of all threads to assign one read to
each of them. then the �rst 4 threads of each block (32 threads) copy vector C
to the their shared memory. The size of vector C is equal to the alphabet length
and can therefore be stored shared memory, matrix O however is too big and
resides in global memory. The array W contains all reads and nW the length of
each. Subsequently algorithm 2 can be executed in each thread respectively and if
present, the result is saved.

The pseudo-code and more details are explained in article [18], section 6.5.

21

Calculate global index

W
nW

Kernel Execution

The first 4 threads of
each block copy vector C

to its shared memory

Each thread references
(global index) to one word

and its length in the
vectors W and nW

Each thread realizes the
"iterative exact search algorithm"
in a loop for his word respectively

until it comes to an end

Global Memory

blockIdx.x
blockDim.x
threadIdx.x

Vector C

Matrix O

vector k
vector l

Each thread saves its result

global index

Local Memory

Shared Memory

Vector C

End:
The end of the algorithm is
either determined by the upper
limit being smaller than
the lower limit (read not found)
or by processing the whole
word while the upper limit is
still bigger or equal to the
lower limit (read found).

Figure 2: Execution �ow of the exact search kernel.

22

[Deletion, Mismatch, Insertion][Match]
Exact search for

the rest of W

[Found]

Save the
result

 [Not found]Process
next symbol

[No more
symbols]

Save result
if last symbol
was match

Figure 3: Execution �ow of the inexact search kernel.

6.5 Complete search algorithm allowing up to 1 error

Table 3: Parameters for algorithm 3

Parameter Description
W An array of search strings (e.g. reads)
nW The length of each read
C Vector C
O Matrix O with the shifted index
k_ini Start value of bRc(default: 0)
l_ini Start value of dRe(default: |B | − 1)
results Array of results, which will contain the SA-interval ob-

tained by each thread respectively

In this section we describe an algorithm that achieves 1 error alignment in
GPU. So far the program only returns a result to a read, when it exactly matches
a section in the reference string. Now we also want to return a result, where one
symbol of the read may di�er in a de�ned (Table 1) form. This complicates the
algorithm signi�cantly, because it needs to check in every position of W for all
types of errors respectively.

As shown in �gure 3 the inexact search will process W symbol by symbol,
searching for matches, until it �nds a deletion, mismatch or insertion. If so, it exe-
cutes the exact search discussed beforehand (Section 6.4) from there on to validate
the found sequence as a sequence with exactly one error and to save the result. If

23

Algorithm 3 GPU search algorithm allowing up to 1 error

1: function gpu_1_error(W,nW,C,O, k_ini, l_ini, result_list)
2: offset← blockIdx.x ∗ blockDim.x + threadIdx.x
3: if threadIdx.x<4 then
4: Cshared[threadIdx.x]← C[threadIdx.x]
5: end if
6: _syncthreads()
7: k_next← k_ini
8: l_next← l_ini
9: for i← nW [offset]− 1 . . . 0 do

10: k ← k_next
11: l← l_next
12: if k > l then return
13: symbol← W [offset][i]
14: k_next← Cshared[symbol] + O[symbol, k] + 1
15: l_next← Cshared[symbol] + O[symbol, l + 1]
16: result← exact_search(W,nW, start, i− 1, C,O)
17: if result.k <= result.l then . Deletion
18: add_to_results(deletion, k, l, i)
19: for symbol← [A,C,G, T] do
20: k_aux← Cshared[symbol] + O[symbol, k] + 1
21: l_aux← Cshared[symbol] + O[symbol, l + 1]
22: if k_aux > l_aux then continue
23: if symbol 6= W [offset][i] then . Mismatch
24: result← exact_search(W,nW, start, i− 1, C,O)
25: if result.k <= result.l then
26: add_to_results(mismatch, k_aux, l_aux, i, symbol)
27: end if
28: result← exact_search(W,nW, start, i, C,O)
29: if result.k <= result.l then . Insertion
30: add_to_results(insertion, k_aux, l_aux, i, symbol)
31: end for
32: end for
33: if result.k <= result.l then . Match
34: add_to_results(match, k_next, l_next, i)
35: end function

24

this is not the case, the algorithm carries on until the last symbol of W to either
save the SA interval of matches or just exits the function without �nding any result.

This opens 9 possible branches for every symbol of W, which are seperated by
conditional statements in the kernel code.

Description Number of pos-

sibilites

A symbol matches exactly the reference 1

A symbol is replaced by one of the other symbols 3

A symbol is deleted 1

Any symbol is inserted 4

So with each symbol of W the program code can follow a di�erent path, which
limits the potential parallelism. Let us take a look at the algorithm 3. Each condi-
tion in the algorithm can force the threads to take two di�erent code paths, meaning
that these sections may be executed sequentially. Take for example line 19, here
the algorithm checks for every of the 4 possible symbols if the query appears in the
reference or not. After this iteration, it checks if the found SA-interval is valid in
line 22. Now let us assume the following:

Reference: W = A
Reads: X1 = A

X2 = G
X3 = C

We start the execution at line 19 with symbol← A. When the execution reaches
line 22, thread 1 will continue with the next line of code, whether thread 2 and
3 return to the start of the loop and their execution is stopped. Later, thread 1
also reaches again the beginning of the loop. From there on all 3 threads will be
once again executed in parallel until the next condition branch, which they do not
comply equally.

This algorithm guarantees to �nd every possible type of result along the search
process. During the search, the algorithm splits up the threads. Half of the group
enters a condiconal statement and is executed in parallel, while the other half jumps
over the condition and is paused to be executed together with the others again.

25

7 Experimental results

7.1 Hardware Speci�cation

All the tests in this section were executed on a machine with two Intel R© CoreTM2
Duo E7300 CPUs running at 2.66GHz and 2GB of RAM. It features a GeForce
GTX280 (See table 4) with 30 multiprocessors running at 1.30 GHz. In the exper-
iments we use only one Intel core with one thread.

The disk drive is a 250GB Seagate ST3250310AS, with 7200 RPM spin speed,
SATA 3GB/s serial connection, 8MB cache and a sustained data transfer rate of
106MB/s.

Device 0: "GeForce GTX 280"
CUDA Driver Version / Runtime Version 4.0 / 4.0
CUDA Capability Major/Minor version number: 1.3
Total amount of global memory: 4096 MBytes (4294770688 bytes)
(30) Multiprocessors x (8) CUDA Cores/MP: 240 CUDA Cores
GPU Clock Speed: 1.30 GHz
Memory Clock rate: 800.00 Mhz
Memory Bus Width: 512-bit
Max Texture Dimension Size (x,y,z) 1D=(8192), 2D=(65536,32768), 3D=(2048,2048,2048)
Max Layered Texture Size (dim) x layers 1D=(8192) x 512, 2D=(8192,8192) x 512
Total amount of constant memory: 65536
bytes Total amount of shared memory per block: 16384 bytes
Total number of registers available per block: 16384
Warp size: 32
Maximum number of threads per block: 512
Maximum sizes of each dimension of a block: 512 x 512 x 64
Maximum sizes of each dimension of a grid: 65535 x 65535 x 1
Maximum memory pitch: 2147483647 bytes
. . .

Figure 4: Device query of the GeForce GTX280, which shows a brief hardware
summary of the graphics card.

26

7.2 Pro�ling of the GPU algorithm

In this section we perform a pro�ling of the algorithm, measuring separately the
di�erent steps of the mapping process. These steps are the following:

• Read vector O from disk

• Copy O to GPU

• Read search strings from disk

• Copy search strings to GPU

• GPU kernel execution

• Copy results to CPU

• Write results to disk

Studying the time that takes each step, allows us to detect bottlenecks. Also, this
study allows us to separate the tasks that rely on the input/output capabilities of
the system from the time needed by the algorithm (Figure 6).

We executed a single threaded GPU version of the algorithm and aligned 2 mil-
lion reads with a length ranging from 30 to 200 nucleotides against the Drosophila
melanogaster genome. The tests were performed, allowing a maximum number of
50 hits per read. The reason for this is the unreasonably high number of hits,
which occur for a few reads. The majority of threads only obtains 20−25 results as
shown in �gure 5, nevertheless we need to allocate the same amount of memory for
a maximum number of hits for all threads. Consequently it is necessary to allocate
the same amount of memory for all threads depending on the maximum number of
hits that one read can return. This is not the most optimal approach but su�cient,
as seen in �gure 5. It would be more convenient to allocate memory for the hits
dynamically (which is not an option) or to organise the results in a di�erent way.

For example, we could save every result consecutively in the results array and
sort them post search. This opens the possibility to perform more parallel searches
with one kernel launch, but the results need to be sorted afterwards. This is because
the results of one thread can be distributed all over the results array, making it
computationally intensive to retrieve them. The time needed for sorting the results
afterwards however needs to be reasonable to still leave the whole process e�ective,
which has to veri�ed in that case. Also, atomic operations are needed to access the
global array positions. These operations are very expensive.

In the test case shown (Figure 5), we �nd ~12200000 results with a max hits
parameter of 25. During every kernel launch we allocate ~205MB on the device
to save the results. Increasing the max hits parameter only gives us a few more

27

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

Max hits

R
e

su
lts

Figure 5: Number of results obtained with increasing number of max hits.

results, which means that the majority of reads does not show more tan 25 results.
Trying to return all possible hits (Tests show that there are reads which show 209
hits) of every read obligates us to allocate ~1.700MB of memory. As the majority
of reads does not show more that ~25 results, we allocate ~1.500MB and copy it
back to the host afterwards for no reason.

The results depicted in �gure 6 show that reading the search strings from disk
and writing the results to disk together consume about 40% of the execution time.
The kernel execution with about 55% is he most time consuming part. To save
time, we could use a multi-threaded version of the program presented in [18]. One
thread for reading, one for writing operations and one to control the kernel. Using
2 di�erent hard disks, one for read and another for write operations respectively
would result in even more speed-up. With these improvements we could reduce the
time consumed by input/output operations to a minimum as they would overlap
with the time consumed by the kernel execution.

Figure 7 shows a comparison of kernel execution times when launched with
di�erent block sizes. A blocksize of 32 gives the best result with a time of ~30
seconds.

28

Read vector O from
disk
Copy O to GPU
Read search
strings from disk
Copy search
strings to GPU
GPU kernel
execution
Copy results to
CPU
Write results to disk

Figure 6: Pro�ling the algorithm with operative disk cache, permitting a
maximum number of 50 hits.

8 16 32 64 128 256

0

10

20

30

40

50

60

70

blocksize

s
e
co
n
d
s

Figure 7: Kernel execution times with di�erent blocksizes.

29

7.3 Speed-Up analysis

In this section we present the results of the speed-up analysis. The setting is the
same as in the Pro�ling section 7.2, but we ran di�erent tests. One with a max hits
parameter of 25 and one with 50. The times for I/O operations are not taken into
consideration, because they do a�ect both versions in the same way.

On the one hand we have the 1-thread CPU version and on the other hand the
GPU-CPU hybrid version. The times of the GPU version include copying the search
strings to the device, as well as retrieving the results. The measured speed-up of
the GPU version lays between 7,32 and 7,60.

The speed-up measured without copy operations shows, that these operations
do not play a huge role here.

CPU GPU
Algorithm 243430s Copy to device 284s

Kernel execution 30658s
Copy to host 1013s

Speed-Up 7,62
Without copies 7,94

Table 4: Speed-Up between CPU and GPU with a max hits parameter of 25.

CPU GPU
Algorithm 244703s Copy to device 284s

Kernel execution 31049s
Copy to host 2026s

Speed-Up 7,34
Without copies 7,88

Table 5: Speed-Up between CPU and GPU with a max hits parameter of 50.

30

8 Conclusions

In this work we have implemented an inexact DNA aligner based on the BWT in
GPUGPU. The program presents a solution to rapidly align billions of short-reads
to a reference sequence. Apart from the exact match, errors such as a mismatch,
insertion or a deletion of a symbol are supported. This work proves, that a parallel
GPGPU approach is justi�ed. It shows a reasonable speed-up of 7+ compared to
the CPU version, excluding input/output operations.

The project was realised with quite low-level computing, which is mandatory,
when dealing with data volumes in the area of tera- to petabytes. Starting point of
this �nal year project was a working implementation of the used algorithm (inexact
mapping - 1 error) in CPU. This algorithm shows maximum sensitivity, because it is
a non-heuristic approach. It would therefore perfectly serve for data-pre-processing
in a multi-stage processing environment, as it does not distort the result.

It is di�cult to compare this approach in an objective way with already existing
solutions such as Bowtie or SOAP as they function according to heuristic principles.
In addition their result sets are smaller because they consider lesser types of errors.
Still our program can compete with the just mentioned traditional tools in terms
of the speed with which the alignment is performed.

To give a general vision of possible future works to this �eld of work, we can
suggest the following. First of all the use of fast hard-disk drives is recommended
to reduce the dependence of input/output operations, which consume about 45%
of the alignment process, as stated in section 7.2. Furthermore the use of di�erent
threads (one for input, one for output operations and one to control kernel launches)
would cause signi�cant speed improvements. It is also conceivable to employ various
graphics cards, each processing a di�erent block of reads at the same time, to
increase speed. The next step will be developing an algorithm allowing more than
the change of a single symbol (more than one error), that terminates in a reasonable
amount of time.

31

References

[1] Bowtie Homepage. http://bowtie.cbcb.umd.edu, 2012. [Online; accessed
12-July-2012].

[2] SOAP Homepage. http://soap.genomics.org.cn, 2012. [Online; accessed
10-July-2012].

[3] Altschul et al. Basic local alignment search tool. J. Mol. Biol., pages 403�410,
1990.

[4] S. F. Altschul, T. L. Madden, A. A. Scha�er, J. Zhang, Z. Zhang, W. Miller,
and D. J. Lipman. Gapped Blast and Psi-Blast: a new generation of protein
database search programs. Nucleic Acids Res., 25:3389�3402, 1997.

[5] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression
algorithm. Technical Report 124, DEC SRC, 1994.

[6] Ferragina and Manzini. Opportunistic data structures with applications. In
FOCS: IEEE Symposium on Foundations of Computer Science (FOCS), 2000.

[7] O. Gotoh. An improved algorithm for matching biological sequences. J. Mol.
Biol., 162:705�708, 1982.

[8] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg. Ultrafast and memory-
e�cient alignment of short DNA sequences to the human genome. Genome
Biology, 10(R25), Mar. 2009.

[9] Larsson and Sadakane. Faster su�x sorting. TCS: Theoretical Computer
Science, 387, 2007.

[10] H. Li and R. Durbin. Fast and accurate short read alignment with burrows-
wheeler transform. Bioinformatics, 25(14):1754�1760, 2009.

[11] R. Li, Y. Li, K. Kristiansen, and J. Wang. SOAP: short oligonucleotide align-
ment program. Bioinformatics, 24(5):713�714, 2008.

[12] R. Li, C. Yu, Y. Li, T. W. Lam, S.-M. Yiu, K. Kristiansen, and J. Wang.
SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics,
25(15):1966�1967, 2009.

[13] D. J. Lipman and W. R. Pearson. Rapid and sensitive protein similarity
searches. Sci., 227:1435�1441, 1985.

[14] C.-M. Liu, T. K. F. Wong, E. Wu, R. Luo, S.-M. Yiu, Y. Li, B. Wang, C. Yu,
X. Chu, K. Zhao, R. Li, and T. W. Lam. SOAP3: ultra-fast GPU-based
parallel alignment tool for short reads. Bioinformatics, 28(6):878�879, 2012.

32

[15] Manzini. An analysis of the burrows-wheeler transform. JACM: Journal of
the ACM, 48, 2001.

[16] NVIDIA. Documentation in form of slides and videos. http://www.nvidia.
com/content/cuda/cuda-developer-resources.html, 2012. [Online; ac-
cessed 19-July-2012].

[17] W. R. Pearson and D. J. Lippman. Improved tools for biological sequence
comparison. Proc. Natl. Acad. Sci. USA, 85:2444�2448, Apr. 1988.

[18] J. Salavert Torres, I. Blanquer Espert, A. Tomas Dominguez, V. Hernendez,
I. Medina, J. Terraga, and J. Dopazo. Using gpus for the exact alignment
of short-read genetic sequences by means of the burrows�wheeler transform.
IEEE/ACM transactions on computational biology and bioinformatics / IEEE,
ACM, 2012 Mar 20 2012.

[19] T. F. Smith and M. S. Waterman. Identi�cation of common molecular subse-
quences. Journal of Molecular Biology, Vol. 147:195�197, 1981.

33

