
Universitat Politècnica de València

Departamento de Sistemas Informáticos y Computación

Doctorado en Informática

Ph.D. Thesis

Model Integration in Data Mining:
From Local to Global Decisions

Candidate:

Antonio Bella Sanjuán

Supervisors:

Cèsar Ferri Ramı́rez,
José Hernández Orallo and
Maŕıa José Ramı́rez Quintana.

– June 2012 –

This work has been partially supported by the EU (FEDER) and the Spanish
MICINN, under grants TIN2010-21062-C02-02, TIN2007-68093-C02-02; the
Generalitat Valenciana under grant GV06/301 and project PROMETEO/2008/051;
the UPV under grant TAMAT; and the Spanish project “Agreement Technolo-
gies” (Consolider Ingenio CSD2007-00022).

Author’s address:

Departamento de Sistemas Informáticos y Computación
Universitat Politècnica de València
Camino de Vera, s/n
46022 Valencia
España

A mis padres.
A mis hermanas.

A Maŕıa.

Acknowledgments

Echo la vista atrás y me acuerdo de aquel primer d́ıa en que empecé mi carrera
en la UPV. Recuerdo que pensé: “al menos durante los 5 próximos años
tendré que hacer este mismo recorrido todos los d́ıas”. Y aśı fue, pero lo que
no pensaba es que después de la ingenieŕıa vendŕıa el doctorado, aśı que he
seguido haciendo ese mismo camino, pero en coche en vez de en tranv́ıa.

Esta tesis, que tiene entre sus manos, en la pantalla de su ordenador o
dispositivo móvil, es la culminación de todos estos años de investigación con
un grupo de personas con las que muchas veces he compartido más tiempo
que con mi familia y a los que les doy las gracias. Con ellos he compartido
esos momentos de frustración en los que no sale nada y en los que lo más
fácil seŕıa abandonar, pero siempre me han apoyado para seguir adelante. Y,
por supuesto, también hemos compartido los buenos momentos de alegŕıa y
satisfacción, que al final son los que más se recuerdan. Todo esto para decirles
que si no fuese por ellos no estaŕıan leyendo lo que están leyendo.

En particular, gracias a Salvador Lucas que empezó toda esta aventura
enviándome un correo para una beca. A Maŕıa Alpuente, ĺıder del grupo ELP,
que me dio la oportunidad de pertenecer a este grupo. A mis directores de
tesis: José, Maŕıa José y César, por toda la ayuda que me han brindado y por
su paciencia y dedicación en las revisiones de los trabajos que hemos realizado
juntos. A Bea por todo el tiempo que hemos compartido juntos, por todo lo
que hemos llorado y sobre todo por todo lo que hemos réıdo. A Vicent por
todos sus buenos consejos. A Josep por su “introducción a la investigación”.
A Raquel por nuestras charlas. A Tama, Sonia, Rafa, Michele y Vesna porque
las comidas de esa época llegaron a ser el momento más divertido del d́ıa. Y
a todos los compañeros que han pasado por el grupo ELP durante estos años
y que no enumero porque prefiero no olvidarme de ninguno.

Y en especial, muchas gracias a mis padres, a mis hermanas y a mi novia
Maŕıa que saben todo lo que ha costado llegar hasta este momento y que a
partir de hoy van a estar un poco más orgullosos de su hijo/hermano/novio.

No se que me deparará el futuro, eso sólo el tiempo lo dirá, pero de lo
que estoy seguro es que estaŕıa encantado de seguir recorriendo cada d́ıa este
mismo camino.

Junio 2012,
Antonio Bella.

Abstract

Machine Learning is a research area that provides algorithms and techniques
that are capable of learning automatically from past experience. These tech-
niques are essential in the area of Knowledge Discovery from Databases (KDD),
whose central stage is typically referred to as Data Mining. The KDD process
can be seen as the learning of a model from previous data (model generation)
and the application of this model to new data (model deployment). Model de-
ployment is very important, because people and, very especially, organisations
make decisions depending on the results of the models.

Usually, each model is learned independently from the others, trying to
obtain the best (local) result. However, when several models have to be used
together, some of them can depend on each other (e.g., outputs of a model are
inputs of other models) and constraints appear on their application. In this
scenario, the best local decision for each individual problem could not give
the best global result, or the result could be invalid if it does not fulfill the
problem constraints.

Customer Relationship Management (CRM) is an area that has originated
real application problems where data mining and (global) optimisation need to
be combined. For example, prescription problems deal about distinguishing or
ranking the products to be offered to each customer (or simetrically, selecting
the customers to whom we should make an offer). These areas (KDD, CRM)
are lacking tools for a more holistic view of the problems and a better model
integration according to their interdependencies and the global and local con-
straints. The classical application of data mining to prescription problems has
usually considered a rather monolitic and static view of the process, where
we have one or more products to be offered to a pool of customers, and we
need to determine a sequence of offers (product, customer) to maximise profit.
We consider that it is possible to perform a better customisation by tuning or
adapting several features of the product to get more earnings. Therefore, we
present a taxonomy of prescription problems based on the presence or absence
of special features that we call negotiable features. We propose a solution for
each kind of problem, based on global optimisation (combining several models
in the deployment phase) and negotiation (introducing new concepts, prob-
lems and techniques). In general, in this scenario, obtaining the best global
solution analytically is unreachable and simulation techniques are useful in

order to obtain good global results.
Furthermore, when several models are combined, they must be combined

using an unbiased criterion. In the case of having an estimated probability for
each example, these probabilities must be realistic. In machine learning, the
degree to which estimated probabilities match the actual probabilities is known
as calibration. We revisit the problem of classifier calibration, proposing a new
non-monotonic calibration method inspired in binning-based methods. More-
over, we study the role of calibration before and after probabilistic classifier
combination. We present a series of findings that allow us to recommend
several layouts for the use of calibration in classifier combination.

Finally, before deploying the model, making single decisions for each new
individual, a global view of the problem may be required, in order to study the
feasibility of the model or the resources that will be needed. Quantification is a
machine learning task that can help to obtain this global view of the problem.
We present a new approach to quantification based on scaling the average
estimated probability. We also analyse the impact of having good probability
estimators for the new quantification methods based on probability average,
and the relation of quantification with global calibration.

Summarising, in this work, we have developed new techniques, methods
and algorithms that can be applied during the model deployment phase for
a better model integration. These new contributions outperform previous
approaches, or cover areas that have not already been studied by the machine
learning community. As a result, we now have a wider and more powerful
range of tools for obtaining good global results when several local models are
combined.

Keywords: classifier combination, global optimisation, negotiable features,
simulation, calibration, quantification.

Resumen

El aprendizaje automático es un área de investigación que proporciona al-
goritmos y técnicas que son capaces de aprender automáticamente a partir
de experiencias pasadas. Estas técnicas son esenciales en el área de descu-
brimiento de conocimiento de bases de datos (KDD), cuya fase principal es
t́ıpicamente conocida como mineŕıa de datos. El proceso de KDD se puede ver
como el aprendizaje de un modelo a partir de datos anteriores (generación del
modelo) y la aplicación de este modelo a nuevos datos (utilización del modelo).
La fase de utilización del modelo es muy importante, porque los usuarios y,
muy especialmente, las organizaciones toman las decisiones dependiendo del
resultado de los modelos.

Por lo general, cada modelo se aprende de forma independiente, intentando
obtener el mejor resultado (local). Sin embargo, cuando varios modelos se usan
conjuntamente, algunos de ellos pueden depender los unos de los otros (por
ejemplo, las salidas de un modelo pueden ser las entradas de otro) y aparecen
restricciones. En este escenario, la mejor decisión local para cada problema
tratado individualmente podŕıa no dar el mejor resultado global, o el resultado
obtenido podŕıa no ser válido si no cumple las restricciones del problema.

El área de administración de la relación con los clientes (CRM) ha dado
origen a problemas reales donde la mineŕıa de datos y la optimización (global)
deben ser usadas conjuntamente. Por ejemplo, los problemas de prescripción
de productos tratan de distinguir u ordenar los productos que serán ofrecidos
a cada cliente (o simétricamente, elegir los clientes a los que se les debeŕıa de
ofrecer los productos). Estas áreas (KDD, CRM) carecen de herramientas para
tener una visión más completa de los problemas y una mejor integración de
los modelos de acuerdo a sus interdependencias y las restricciones globales y
locales. La aplicación clásica de mineŕıa de datos a problemas de prescripción
de productos, por lo general, ha considerado una visión monoĺıtica o estática
del proceso, donde uno o más productos son ofrecidos a un conjunto de clien-
tes y se tiene que determinar la secuencia de ofertas (producto, cliente) que
maximice el beneficio. Consideramos que es posible realizar una mejor perso-
nalización del proceso ajustando o adaptando varios atributos del producto
para obtener mayores ganancias. Por lo tanto, presentamos una taxonomı́a
de problemas de prescripción de productos basada en la presencia o ausencia
de un tipo de atributos especiales que llamamos atributos negociables. Pro-

ponemos una solución para cada tipo de problema, basada en optimización
global (combinando varios modelos en la fase de utilización de los modelos)
y negociación (introduciendo nuevos conceptos, problemas y técnicas). En ge-
neral, en este escenario, obtener la mejor solución global de forma anaĺıtica
es intratable y usar técnicas de simulación es una manera de obtener buenos
resultados a nivel global.

Además, cuando se combinan varios modelos, éstos tienen que combinarse
usando un criterio justo. Si para cada ejemplo tenemos su probabilidad es-
timada, esta probabilidad tiene que ser realista. En aprendizaje automático,
el grado en el que las probabilidades estimadas se corresponden con las pro-
babilidades reales se conoce como calibración. Retomamos el problema de la
calibración de clasificadores, proponiendo un método de calibración no mo-
notónico inspirado en los métodos basados en “binning”. Por otra parte, es-
tudiamos el papel de la calibración antes y después de combinar clasificadores
probabiĺısticos. Y presentamos una serie de conclusiones que nos permiten re-
comendar varias configuraciones para el uso de la calibración en la combinación
de clasificadores.

Por último, antes de usar el modelo, tomando decisiones individuales pa-
ra cada nuevo ejemplo, puede ser necesaria una visión global del problema,
para estudiar la viabilidad del modelo o los recursos que serán necesarios. La
cuantificación es una tarea de aprendizaje automático que puede ayudar a ob-
tener esta visión global del problema. Presentamos una nueva aproximación
al problema de cuantificación basada en escalar la media de la probabilidad
estimada. También se analiza el impacto de tener un buen estimador de pro-
babilidades para estos nuevos métodos de cuantificación, y la relación de la
cuantificación con la calibración global.

En resumen, en este trabajo, hemos desarrollado nuevas técnicas, métodos
y algoritmos que se pueden aplicar durante la fase de utilización de los mo-
delos para una mejor integración de éstos. Las nuevas contribuciones mejoran
las aproximaciones anteriores, o cubren áreas que aún no hab́ıan sido estu-
diadas por la comunidad de aprendizaje automático. Como resultado, ahora
tenemos una gama más amplia y potente de herramientas para obtener buenos
resultados globales cuando combinamos varios modelos locales.

Palabras clave: combinación de clasificadores, optimización global, atri-
butos negociables, simulación, calibración, cuantificación.

Resum

L’aprenentatge automàtic és una àrea d’investigació que proporciona algorit-
mes i tècniques que són capaços d’aprendre automàticament a partir d’expe-
riències passades. Estes tècniques són essencials en l’àrea de descobriment de
coneixement de bases de dades (KDD), la fase principal de la qual és t́ıpicament
coneguda com a mineria de dades. El procés de KDD es pot veure com l’a-
prenentatge d’un model a partir de dades anteriors (generació del model) i
l’aplicació d’este model a noves dades (utilització del model). La fase d’uti-
lització del model és molt important, perquè els usuaris i, molt especialment,
les organitzacions prenen les decisions depenent del resultat dels models.

Generalment, cada model s’aprén de forma independent, intentant obtin-
dre el millor resultat (local). No obstant això, quan diversos models s’usen
conjuntament, alguns d’ells poden dependre els uns dels altres (per exemple,
les eixides d’un model poden ser les entrades d’un altre) i apareixen restric-
cions. En aquest escenari, la millor decisió local per a cada problema tractat
individualment podria no donar el millor resultat global, o el resultat obtingut
podria no ser vàlid si no complix les restriccions del problema.

L’àrea d’administració de la relació amb els clients (CRM) ha donat origen
a problemes reals on la mineria de dades i l’optimització (global) han de ser
usades conjuntament. Per exemple, els problemes de prescripció de productes
tracten de distingir o ordenar els productes que seran oferits a cada client (o
simètricament, triar els clients a qui se’ls deuria d’oferir els productes). Estes
àrees (KDD, CRM) no tenen ferramentes per a tindre una visió més comple-
ta dels problemes i una millor integració dels models d’acord amb les seues
interdependències i les restriccions globals i locals. Generalment, l’aplicació
clàssica de mineria de dades a problemes de prescripció de productes ha con-
siderat una visió monoĺıtica o estàtica del procés, on un o més productes són
oferits a un conjunt de clients i s’ha de determinar la seqüència d’ofertes (pro-
ducte, client) que maximitze el benefici. Considerem que és possible realitzar
una millor personalització del procés ajustant o adaptant diversos atributs del
producte per a obtindre majors guanys. Per tant, presentem una taxonomia de
problemes de prescripció de productes basada en la presència o absència d’un
tipus d’atributs especials que cridem atributs negociables. Proposem una so-
lució per a cada tipus de problema, basada en optimització global (combinant
diversos models en la fase d’utilització) i negociació (introduint nous concep-

tes, problemes i tècniques). En general, en aquest escenari, obtindre la millor
solució global de forma anaĺıtica és intractable i usar tècniques de simulació
és una manera d’obtindre bons resultats a nivell global.

A més, quan es combinen diversos models, estos han de combinar-se usant
un criteri just. Si per a cada exemple tenim la seua probabilitat estimada, esta
probabilitat ha de ser realista. En aprenentatge automàtic, el grau en què les
probabilitats estimades es corresponen amb les probabilitats reals es coneix
com a calibració. Reprenem el problema de la calibració de classificadors,
proposant un mètode de calibració no monotònic inspirat en els mètodes basats
en “binning”. D’altra banda, estudiem el paper de la calibració abans i després
de combinar classificadors probabiĺıstics. I presentem una sèrie de conclusions
que ens permeten recomanar diverses configuracions per a l’ús de la calibració
en la combinació de classificadors.

Finalment, abans d’usar el model, prenent decisions individuals per a cada
nou exemple, pot ser necessària una visió global del problema, per a estudiar la
viabilitat del model o els recursos que seran necessaris. La quantificació és una
tasca d’aprenentatge automàtic que pot ajudar a obtindre aquesta visió global
del problema. Presentem una nova aproximació al problema de quantificació
basada a escalar la mitjana de la probabilitat estimada. També s’analitza
l’impacte de tindre un bon estimador de probabilitats per als nous mètodes
de quantificació, i la relació de la quantificació amb la calibració global.

En resum, en aquest treball, hem implementat noves tècniques, mètodes i
algoritmes que es poden aplicar durant la fase d’utilització dels models per a
una millor integració d’aquests. Les noves contribucions milloren les aproxi-
macions anteriors, o cobrixen àrees que encara no havien sigut estudiades per
la comunitat d’aprenentatge automàtic. Com a resultat, ara tenim una varie-
tat més àmplia i potent de ferramentes per a obtindre bons resultats globals
quan combinem diversos models locals.

Paraules clau: combinació de clasificadors, optimització global, atributs
negociables, simulació, calibració, quantificació.

Contents

1 Introduction 1

1.1 Machine Learning and Data Mining 1

1.2 Motivation . 3

1.3 Research objectives . 7

1.4 Structure of this dissertation 8

I Summary of the Contributions 11

2 Global Optimisation and Negotiation in Prescription Prob-
lems 13

2.1 A taxonomy of prescription problems 15

2.2 Cases with fixed features . 16

2.3 Cases with negotiable features 18

2.3.1 Inverting problem presentation 18

2.3.2 Negotiation strategies 19

2.3.3 Solving cases with negotiable features 22

2.4 Results . 24

3 Similarity-Binning Averaging Calibration 25

3.1 Calibration methods and evaluation measures 26

3.1.1 Calibration methods . 27

3.1.2 Evaluation measures . 28

3.1.3 Monotonicity and multiclass extensions 29

3.2 Calibration by multivariate Similarity-Binning Averaging . . . 30

3.3 The relation between calibration and combination 33

3.4 Results . 34

4 Quantification using Estimated Probabilities 37

4.1 Notation and previous work . 38

4.2 Quantification evaluation . 39

4.3 Quantifying by Scaled Averaged Probabilities 40

4.4 Quantification using calibrated probabilities 42

4.5 Results . 43

ii Contents

5 Conclusions and Future Work 45
5.1 Conclusions . 45
5.2 Future work . 46

Bibliography 49

II Publications Associated to this Thesis 55

6 List of Publications 57

7 Publications (Full Text) 59
7.1 Joint Cutoff Probabilistic Estimation using Simulation: A Mail-

ing Campaign Application . 59
7.2 Similarity-Binning Averaging: A Generalisation of Binning Cal-

ibration . 70
7.3 Calibration of Machine Learning Models 80
7.4 Data Mining Strategies for CRM Negotiation Prescription Prob-

lems . 98
7.5 Quantification via Probability Estimators 109
7.6 Local and Global Calibration. Quantification using Calibrated

Probabilities . 121
7.7 Using Negotiable Features for Prescription Problems 131
7.8 On the Effect of Calibration in Classifier Combination 168

List of Figures

1.1 Example of models combined in committee. 4
1.2 Example of chained models. 5

2.1 Real probability of buying a product depending on its price. . . 13
2.2 Petri net for a mailing campaign. 17
2.3 Left: Example of a normal distribution â = 305, 677.9 and σ =

59, 209.06. Right: Associated cumulative distribution function. 19
2.4 Examples of the MEP (top), BLEP (centre) and MGO (down)

strategies. Left: Estimated probability. Right: Associated ex-
pected profit. 21

2.5 Left: Example of estimated probabilities. Right: Associated
expected profit. The minimum and maximum price are also
shown. 22

2.6 Probabilistic buying models of 3 different customers approxi-
mated by 3 normal distributions with µ1 = 250, 000 and σ1 =
30, 000, µ2 = 220, 000 and σ2 = 10, 000, and µ3 = 200, 000 and
σ3 = 50, 000. Left: Probability distribution function. Right:
Associated expected profit. 23

3.1 Taxonomy of calibration methods in terms of monotonicity (strictly
monotonic, non-strictly monotonic, or non-monotonic meth-
ods), linearity (linear or nonlinear methods). 30

3.2 Left: Stage 1 of the SBA method. Right: Stage 2 of the SBA
method. 32

4.1 Scaling used in the SPA method. The limits in the training set
are placed at 0.3 and 0.9. The estimated value for the training
set is 0.54 whereas the actual proportion in the training set is
0.4. The scaling would move a case at 0.4 to 0.23 and a case at
0.8 to 0.83. 42

iv List of Figures

List of Tables

2.1 Different prescription problems that consider the number of dif-
ferent kinds of products to sell, whether the net price for the
product is fixed or negotiable, and the number of customers. . . 15

3.1 Different methods to calculate weights. 34
3.2 Experimental layouts that arrange combination and calibration.

CombMet is the combination method and CalMet is the cali-
bration method. 35

vi List of Tables

1
Introduction

1.1 Machine Learning and Data Mining

The amount of information recorded by individuals, companies, governments
and other institutions far surpasses the human capacity of exploring it in
depth. Computer-aided tools are necessary to help humans find many use-
ful patterns that are hidden in the data. Machine Learning is the field of
computer science that is concerned with the design of systems which auto-
matically learn from experience [Mit97]. This is a very active research field
that has many real-life applications in many different areas such as medi-
cal diagnosis, bioinformatics, fraud detection, stock market analysis, speech
and handwriting recognition, game playing, software engineering, adaptive
websites, search engines, etc. Moreover, machine learning algorithms are the
base of other research fields, such as data mining, knowledge discovery from
databases, natural language processing, artificial vision, etc.

Data mining is usually seen as an area which integrates many techniques
from many different disciplines, including, logically, machine learning. Data
mining usually puts more emphasis on the cost effectiveness of the whole pro-
cess and, very especially, on all the stages of the process, from data preparation
to model deployment.

Depending on the kind of knowledge to be obtained there are several tech-
niques, such as decision trees, support vector machines, neural networks, linear
models, etc. Depending on the problem presentation, we may distinguish be-
tween supervised (predictive) modelling and unsupervised (descriptive) mod-
elling. In this dissertation, we will mostly focus on predictive modelling. Two
of the most important supervised data mining tasks are classification and
regression. Both classification and regression techniques are usually widely
employed in decision making.

Classification can be seen as the clarification of a dependency, in which

2 1. Introduction

each dependent attribute can take a value from several classes, known in ad-
vance. Classification techniques are used when a nominal (categorical) value
is predicted (positive or negative, yes or no, A or B or C, etc.). Moreover,
some classifiers can accompany the predicted value by a level of confidence or
probability. They are called Probabilistic Classifiers.

Example 1
An organisation wants to offer two new similar products (one e-book with Wi-
Fi and another e-book with bluetooth and 3G) to its customers. Using past
selling data experiences of similar customers and/or products, a probabilistic
classifier can be learned. This model obtains the probability, for each customer,
of buying each product. The organisation can deploy this learned model in
the design of a mailing campaign to select the best customers for receiving an
offer for each product.

The goal of regression techniques is to predict the value of a numerical
(continuous) variable (567 metres, 43 years, etc.) from other variables (which
might be of any type).

Example 2
A hospital information system (HIS) stores past data of the activity of the
hospital. From these data, a regression model can be learned to predict the
number of admissions in a day. Estimating the number of admissions in ad-
vance is useful to plan the necessary resources in the hospital (operating the-
atres, material, physicians, nurses, etc.).

As we have seen in these examples, the next step, after learning a model
(in the model generation phase), is to apply it to new instances of the problem.
This crucial phase is called model deployment. Several things may happen at
this stage. For instance, we can realise that the result of a model depends on
the result of other models or does not fulfill the constraints of the problem,
we may need to obtain further information from the model, etc. In general,
discarding the current model and learning another model is not a solution to
sort out these problems. On one hand, discarding the model will be a waste
of time and money. On the other hand, learning another model would give
the same result.

Some machine learning techniques have been developed to be applied dur-
ing the model deployment phase such as classifier combination, calibration
and quantification. Some of these techniques will be very relevant in this work
and will be introduced in subsequent sections.

1.2. Motivation 3

1.2 Motivation

Examples 1 and 2 show how data mining can help to make a single decision.
Typically, however, an organisation has to make several complex decisions,
which are interwoven with the rest and with a series of constraints.

In Example 1, a constraint could be that both products cannot be offered
to the same customer, because they are quite similar and a customer will not
buy both products together. If we have marketing costs and/or a limited stock
of products, as usual, the best decision will not be to offer the most attractive
product to each customer. For instance, it could be better to offer product B,
which is less desirable, to a customer that could probably buy both products,
and offer product A to a more difficult customer that would never buy product
B.

In Example 2, bed occupation depends on the number of admissions as well
as some constraints, such as the working schedule of nurses and physicians,
that have to be fulfilled. A local decision might assign the same physician (a
very good surgeon) to all the surgeries in a hospital, which is clearly unfeasible.

Therefore, in real situations, as we have seen in these examples, making
the best local decision for every problem does not give the best global result.
Models must be integrated with the objective of obtaining a good global result,
which follows all the constraints.

One particular view of combining multiple decisions from a set of classi-
fiers is known as classifier combination or classifier fusion [Kun04]. The need
for classifier combination is well-known. On one hand, more and more appli-
cations require the integration of models and experts that come from differ-
ent sources (human experts models, data mining or machine learning models,
etc.). On the other hand, it has been shown that an appropriate combination
of several models can give better results than any of the single models alone
[Kun04][TJGD08], especially if the base classifiers are diverse [KW02].

Basically, each model gives an output (a decision) and then, the outputs
are weighted in order to obtain a single decision. This integrated model is
known as ensemble [Die00a][Kun04], i.e., a committee model. Different tech-
niques have been developed depending whether the set of base classifiers are
homogeneous (a single algorithm is used and diversity is achieve through some
form of variability in the data): boosting [FS96], bagging [Bre96], randomisa-
tion [Die00b], etc.; or heterogeneous (multiple algorithms are used in order to
obtain diversity): stacking [Wol92], cascading [GB00], delegating [FFHO04],
etc.

For instance, following with Example 2, in Figure 1.1 we show an ensemble
that combines three different models in committee: opinion of a human expert,

4 1. Introduction

a linear regression model and a neural network model. Each model obtains
the number of hospital admissions per day. The ensemble method combines
the result of the three models obtaining the global result (number of hospital
admissions per day).

However, in real applications, models are not only combined in committee,
but they can also be combined or related to each other in very different ways
(outputs of the models are inputs of other models, possibly generating cycles
or other complex structures). We use the term chained models to distinguish
them from committee models. In this context, several computational tech-
niques (linear programming, simulation, numerical computation, operational
research, etc.) can be used to approach the optimisation task. The problem
is that data mining models are usually expressed in a non-algebraic way (e.g.
decision trees) or even as a black-box (e.g. neural networks). Moreover, in
many situations, there is no on-purpose generation of a set of classifiers and
we have to combine opinions from many sources (either humans or machines),
into a single decision. Consequently, many optimisation techniques are no
longer valid because the mathematical properties (continuity, monotonicity,
etc.) of the functions that describe the data mining models are unknown.

!"#$%&'()'*+#,--,(.-'

/.-%#$0%'

!
"
#
$
%
&'
(
)'
'

*
+
#
,-
-,
(
.
-'

!
"
#
$
%
&'
(
)'
'

*
+
#
,-
-,
(
.
-'

!
"
#
$
%
&'
(
)'
'

*
+
#
,-
-,
(
.
-'

123'

Figure 1.1: Example of models combined in committee.

In Figure 1.2, we show three chained models: opinion of a human expert,
a neural network model and a decision tree model. Using the data in the
HIS and her/his own knowledge, the expert says who the best surgeon is for
a surgery. The output of this first model (the surgeon) is used as an input
to the second model. Here, using the data in the HIS and using the surgeon
selected by the first model, a neural network is applied, in order to obtain an
anesthetist for the surgery. And finally, the output of the second model (the

1.2. Motivation 5

anesthetist) is used as an input for the third model, a decision tree. Using the
data from the HIS and using the anesthetist given by the second model, the
decision tree assigns the operation theatre for the surgery.

!"#$

#%&'()*$+),(-$.*(/01(2/0$+),(-$ 34(&52)*$01(50&($$

+),(-$

#%&'()*$.*(/01(2/0$
34(&52)*$

01(50&($

Figure 1.2: Example of chained models.

As we can see in Figure 1.2, bad decisions are now more critical than in
committee (or isolated) models. A bad choice of the surgeon has strong impli-
cations on the rest of models and predictions. Even a minor maladjustment
can have a big impact on the global system. Figure 1.2 also suggests a more
holistic approach to the problem. For instance, we can ask questions such
as: “How would the operation theatre allocation change if we had a new sur-
geon?”. Or, in Example 1, “how many more products would we sell if we
reduced the price of product A by a 25%?”. All these questions are related to
the problem of determining the output of a model if one or more input features
are altered or negotiated. These negotiable features are the key variables for a
global optimisation. One way of tackling this problem is through the notion
of problem inversion, i.e., given the output of a data mining model, we want
to get some of the inputs.

We have seen that a decision can depend on the combination of several
models (either in committee or chained) but, also, a decision can depend on
the total or the sum of each individual decision. In machine learning, this task
is known as quantification and was introduced and systematised by George
Forman [For05][For06][For08]. Quantification is defined as follows: “given a
labelled training set, induce a quantifier that takes an unlabelled test set as
input and returns its best estimate of the class distribution.”[For06].

For instance, following with Example 1, where the organisation wants to
know which customers will buy its products, it makes sense to start with a
more general question for the mailing campaign design: the organisation needs
to know how many products it is going to sell. This quantification is critical
to assign human and economical resources, to fix stock of products or, even,
to give up the campaign, if the estimated number of products to be sold is

6 1. Introduction

not appropriate for the organisation. In Example 2, for instance, we may
have a maximum number of surgeries per surgeon and we need to quantify
whether the model is going to exceed this maximum, and gauge the model
appropriately.

It is important to use an unbiased mechanism when several predictions are
integrated. For example, if we have two probabilistic models and we want to
obtain a list sorted by the estimated probability of both models, it is impor-
tant that these probabilities are realistic. In machine learning terminology,
these probabilities are said to be calibrated. Calibration is important when
we are combining models in committee, because if the outputs of the mod-
els are not reliable, the output of the combined models would be a disaster.
Nonetheless, depending on the ensemble method, the result could still be good
if the ensemble method still gives more weight to the most accurate models
(while ignoring the probabilities). However, when we are chaining models, a
bad calibrated output is usually magnified, making the whole system diverge
much more easily. This is more manifest when the relation between inputs and
outputs is not monotonic. For instance, if we have a system handling stocks
and the model predicting each product expenditure usually underestimates,
we will have common stockouts.

The problem of integrating several models (in different ways) and using
them for several tasks requires a much deeper analysis of how models perform
in an isolated way but, more importantly, of how they work together (either
as a committee or a chain) or how they can be used for aggregated decisions
(e.g., quantification). Apart from the analysis of local issues, it is necessary
to understand the problems in a global optimisation setting.

In the literature, we find works where the conjunction of data mining and
(global) optimisation is studied [BGL07][PdP05][PT03]. These works address
specific situations such as rank aggregation [FKM+04] and cost-sensitive learn-
ing. A more general “utility-based data mining”1 also addressed this issue,
but the emphasis was placed on the economic factors of the process, rather
than a global integration of data models.

Much of this work originates from real application problems which appear
in the area of Customer Relationship Management (CRM) [BST00][BL99].
CRM is an application field where econometrics and mainstream data min-
ing can merge, along with techniques from simulation, operational research,
artificial intelligence and numerical computation.

Decisions in the context of prescription problems deal about distinguish-
ing or ranking the products to be offered to each customer (or, symmetrically,

1http://storm.cis.fordham.edu/∼gweiss/ubdm-kdd05.html

1.3. Research objectives 7

selecting the customers to whom we should make an offer), establishing the
moment or sequence of the offers, and determining the price, warranty, fi-
nancing or other associated features of products and customers. The classical
application of data mining for prescription problems has usually considered a
partial view of the process, where we have one or more products to be offered
to a pool of customers, and we need to determine a sequence of offers (product,
customer) to maximise profit. These and related problems (e.g. cross-selling
or up-selling) have been addressed with techniques known as “mailing/selling
campaign design” [BL99] or from the more general view of recommender sys-
tems [AT05], which are typically based on data mining models which perform
good rankings and/or good probability estimations.

However, in more realistic and interactive scenarios, we need to consider
that a better customisation has to be performed. It is not only the choice of
products or customers which is possible, but several features of the product
(or the deal) can be tuned or adapted to get more earnings.

Moreover, all these approaches can be very helpful in specific situations,
but most of the scenarios we face in real data mining applications do not
fit many of the assumptions or settings of these previous works. In fact,
many real scenarios are so complex that the optimal decision cannot be found
analytically. In this situation, we want to obtain the best global solution,
but in real problems it is usually impossible to explore all the solution space.
Therefore, techniques based on simulation are needed in order to obtain the
best possible solution in a feasible period of time.

To sum up, we have seen that making the best local decision for every prob-
lem does not give the best global result, which can even be invalid in some cases
(due to problem constraints). We have detected that there is a lack of general
methods and techniques, in the model deployment phase, to address all these
situations mentioned above. Therefore, we want to propose model integration
and deployment methods that obtain good and feasible global results.

1.3 Research objectives

The main hypothesis of this work is that it is possible to get much better
global results when dealing with complex systems if we integrate several data
mining models in a way that takes global issues (constraints, costs, etc.) into
account. This thesis is supported by the fact that techniques and models are
generally specialised to obtain a local optimum result, instead of obtaining a
global optimum result.

From the previous statement, the main objective of this thesis is to develop

8 1. Introduction

new techniques and strategies in the model deployment phase, in order to
obtain good global results when several local models are integrated.

In particular, we focus on:

• Techniques that combine local models obtaining good global decisions
and fulfilling constraints.

• Better understanding of the relation between input and output features,
the problem inversion approach and the use of input features for global
optimisation and negotiation.

• More powerful calibration techniques and their relation with classifier
integration.

• Methods that make a global decision from the sum of individual deci-
sions, such as quantification.

Furthermore, all the developed methods and techniques have to be applicable,
in the end, to real problems, especially, in the areas of CRM (prescription
models, campaigns, cost quantification, ...), recommender systems, complex
systems, etc.

1.4 Structure of this dissertation

The thesis is organised in two parts:

• Part I reviews the main contributions of this thesis. It is arranged in
four chapters:

– In Chapter 2, we present a taxonomy of prescription problems that
considers whether the price of the product is fixed or negotiable,
and the number of products and customers. We propose a solution,
for each kind of problem, based on global optimisation (combining
several models in the deployment phase) and negotiation (intro-
ducing new concepts, problems and techniques such as negotiable
feature, problem inversion and negotiation strategies).

– In Chapter 3, we revisit the problem of classifier calibration. We
propose a new non-monotonic calibration method inspired in binning-
based methods. We study the effect of calibration in probabilistic
classifier combination.

1.4. Structure of this dissertation 9

– Chapter 4 deals with the quantification problem. We present a new
quantification method based on scaling probabilities, i.e., the av-
erage probability of a dataset is scaled following a normalisation
formula. We analyse the impact of calibration in this new quan-
tification method, and the relation of quantification with global
calibration.

– The last chapter of this part contains the conclusions and future
work (Chapter 5).

• Part II starts with Chapter 6, which includes the list of publications
associated with this thesis. Finally, Chapter 7 has the full text of the
publications.

10 1. Introduction

Part I

Summary of the
Contributions

2
Global Optimisation and

Negotiation in Prescription
Problems

Examples 1 and 2 in Chapter 1 illustrate that, in real situations, making
the best local decision for every problem does not give the best global result
which satisfies all the constraints. In this scenario, there are many data mining
problems in which one or more input features can be modified at the time the
model is applied (model deployment phase), turning the problem into some
kind of negotiation process. For instance, in Example 1, the price of a product
changes the decision of buying it or not. In Figure 2.1, we show the actual
probability of buying a product depending on its price. Only if the price of
the product is less or equal than a maximum price, will the customer buy the
product.

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

price

pr
ob
ab
ili
ty

Figure 2.1: Real probability of buying a product depending on its price.

14 2. Global Optimisation and Negotiation in Prescription Problems

We call these attributes negotiable features. In Section 7.7 there is a for-
mal definition of negotiable features with its properties. Here, we will just
introduce a simpler and more intuitive definition. A negotiable feature is an
input attribute that fulfils three conditions:

1. it can be varied at model application time,

2. the output value of the instance changes when the negotiable feature
changes, while fixing the value of the rest of input attributes,

3. the relation between its value and the output value is monotonically
increasing or decreasing.

For example, in a loan granting model, where loans are granted or not
according to a model that has been learned from previous customer behaviours,
the age of the customer is not a negotiable feature, since we cannot modify
it (condition 1 is violated). The bank branch office where the contract can
take place is also an input, which we can modify, but it is not a negotiable
feature either since it rarely affects the output (condition 2 is violated). The
number of meetings is also modifiable and it frequently affects the result, but
it is usually non-monotonic, so it is not a negotiable feature either (condition 3
is violated). In contrast, the loan amount, the interest rate or the loan period
are negotiable features since very large loan amounts, very low interest rates
and very long loan periods make loans unfeasible for the bank.

This chapter will use a running (real) example: a CRM retailing problem
dealing with houses handled by an estate agent. In what follows, the negotiable
feature will be the price (denoted by π) and the problem will be a classification
problem (buying or not).

In our problem, we know that customers (buyers) have a maximum price
per property they are not meant to surpass. This maximum price is not
known by the seller, but estimated with the data mining models. Conversely,
the seller (real estate agent) has a minimum price (denoted by πmin) for each
type of product, which typically includes the price the owner wants for the
house plus the operational cost. This minimum price is not known by the
buyer. Any increment over this minimum price is profitable for the seller.
Conversely, selling under this value is not acceptable for the seller. Therefore,
the seller will not sell the product if its price is under this minimum price. This
means that the profit obtained by the product will be the difference between
the selling price and the minimum price (Formula 2.1).

Profit(π) = π − πmin (2.1)

2.1. A taxonomy of prescription problems 15

Clearly, only when the maximum price is greater than the minimum price,
there is a real chance of making a deal, and the objective for the seller is to
maximise the expected profit (Formula 2.2).

E(Profit(π)) = p̂(c|π) · Profit(π) (2.2)

where p̂(c|π) is the probability estimated by the model, for the class c and
price π.

2.1 A taxonomy of prescription problems

Typically, data mining models are used in prescription problems to model the
behaviour of one individual for one item, in a static scenario (all the problem
attributes are fixed). In this thesis, we also consider the case where the items
can be adapted to the individual, by adjusting the value of some negotiable
features. We begin by devising a taxonomy of prescription problems which
considers the number of products and customers involved as well as the fixed
or negotiable nature of the features of each product (Table 2.1). This will
help to recognise the previous work in this area and the open problems we
aim to solve. We consider the different kinds of products (N), the presence
or absence of negotiation and the number of customers (C). The last column
shows several approaches that have been proposed for solving these problems.
In each row where this case is (first) addressed in this dissertation, we indicate
the section where the full paper can be consulted. We discuss each case in
detail in the next sections.

Table 2.1: Different prescription problems that consider the number of differ-
ent kinds of products to sell, whether the net price for the product is fixed or
negotiable, and the number of customers.

Case Kinds of Features Number of Approach
products customers

1 1 fixed 1 Trivial
2 1 fixed C Customer ranking [BL99]
3 N fixed 1 Product ranking [BL99]
4 N fixed C Joint Cutoff (Section 7.1)
5 1 negotiable 1 Negotiable Features (Section 7.7)
6 1 negotiable C Negotiable Features (Section 7.7)
7 N negotiable 1 Negotiable Features (Section 7.7)
8 N negotiable C Negotiable Features (Section 7.7)

16 2. Global Optimisation and Negotiation in Prescription Problems

2.2 Cases with fixed features

The case with one kind of product, fixed features, and one customer (case 1
in Table 2.1) is trivial. In this scenario, the seller offers the product to the
customer with fixed conditions/features and the customer may buy or not the
product.

The case with one kind of product, fixed features, and C customers (case
2 in Table 2.1) is the typical case, for example, of a mailing campaign design.
The objective is to obtain a customer ranking to determine the set of cus-
tomers to whom the mailing campaign should be directed in order to obtain
the maximum profit. Data mining can help in this situation by learning a
probabilistic classification model from previous customer data that includes
information about similar products that have been sold to them. This model
will obtain the buying probability for each customer. Sorting them by de-
creasing buying probability, the most desirable customers will be at the top of
the ranking. Using a simple formula for marketing costs (more details can be
seen in Section 7.1), we can establish a (local) threshold/cutoff in this ranking.
The customers above the threshold will receive the offer for the product.

The case with N kinds of products, fixed features, and one customer (case 3
in Table 2.1) is symmetric to case 2. Instead of N customers and one product,
in this case, there are N different products and only one customer. Hence, the
objective is to obtain a product ranking for the customer.

The case with N kinds of products, fixed features, and C customers (case 4
in Table 2.1) is more complex than cases 2 and 3, since there is a data mining
model for each product. In other words, there areN customer rankings (one for
each product) and the objective is to obtain the set of pairs customer-product
that gives the maximum overall profit. Note that, normally, the best local
cutoff of each model (the set of customers that gives the maximum profit for
one product) does not give the best global result. Moreover, there are several
constraints that are frequently required in real applications (limited stock of
products, the customers may be restricted to only buying one product).

Two different methods are proposed in order to obtain the global cutoff:

• Single approach: It is a very simple method. It is based on averaging
the local cutoffs.

1. For each product i = 1...N , we use the customers ranking to find
the local cutoffs Ti, as in case 2 in Table 2.1.

2. We join the rankings for all the products into one single ranking,
and we sort it downwards by their expected profit.

2.2. Cases with fixed features 17

3. The global cutoff is the average of the local cutoffs, i.e., 1
N

∑N
i=1 Ti.

• Joint simulation approach: It is based on obtaining the global cutoff by
simulation, taking all the constraints into account. It consists of:

1. Sorting (jointly) the customers downwards by their expected profit
for all the products (as in point 2 above).

2. Calculating by simulation, using a Petri net, the accumulated profit
for each threshold or cutoff (i.e., for each pair customer product).
The first cutoff considers the first element of the ranking, the second
cutoff the two first elements, and so on. Therefore, N × C cases
(cutoffs) are simulated. In each of them all the constraints are
satisfied and the accumulated profit is calculated, i.e., the sum of
the profit for the elements in the ranking above the cutoff.

3. The cutoff that gives the best accumulated profit is the global cutoff.

Figure 2.2: Petri net for a mailing campaign.

We adopted Petri nets as a framework to formalise the simulation because
they are well-known, easy to understand and flexible. In Figure 2.2 we show

18 2. Global Optimisation and Negotiation in Prescription Problems

the Petri net used for simulating a mailing campaign in our paper “Joint Cutoff
Probabilistic Estimation using Simulation: A Mailing Campaign Application”
that can be consulted in Section 7.1. More details can be obtained in the paper,
but, basically, a Petri net has places (represented by circles) and transitions
(represented by black boxes). A transition is fired when all the input places
have at least one token into them. When a transition is fired, it puts one token
into its output places. In this way, putting the tokens into the right places in
each moment, we achieve a way to calculate the accumulated profit for each
cutoff, where the constraints are fulfilled

The experimental results from our paper “Joint Cutoff Probabilistic Es-
timation using Simulation: A Mailing Campaign Application” that can be
consulted in Section 7.1 show that using simulation to set model cutoff ob-
tains better results than classical analytical methods.

2.3 Cases with negotiable features

Before starting with the cases with negotiable features, we are going to define
the techniques used to solve these cases.

2.3.1 Inverting problem presentation

Imagine a model that estimates the delivery time for an order depending on
the kind of product and the units which are ordered. One possible (traditional)
use of this model is to predict the delivery time given a new order. However,
another use of this model is to determine the number of units (provided it is
a negotiable feature) that can be delivered in a fixed period of time, e.g. one
week. This is an example of an inverse use of a data mining model, where all
inputs except one and the output are fixed, and the objective is to determine
the remaining input value. A formal definition of inversion problem can be
consulted in Section 7.7.

For two classes, we assume a working hypothesis which allows us to derive
the probabilities for each value of the negotiable feature in an almost direct
way. First, we learn a model from the inverted problem, where the datasets
outputs are set as inputs and the negotiable feature is set as output. In the
example, the inverted problem would be a regression problem with the kind
of product and delivery time as input, and the number of units as output.
Second, we take a new instance and obtain the value for the learned model.
In our example, for each instance, we would obtain the number of units â of a
kind of product that could be manufactured in a fixed delivery time. Third,
we make the reasonable assumption of giving to the output (the negotiable

2.3. Cases with negotiable features 19

feature) the probability of 0.5 of being less or equal than â. Fourth, we assume
a normal distribution with mean at this value â and the relative error (of the
training set) as standard deviation. And fifth, from the normal distribution
we calculate its associated cumulative distribution function and, in this way,
we obtain a probability for each value of the negotiable feature.

Figure 2.3 shows an example where the value obtained by the inversion
problem is 305, 677.9 and the relative error is 59,209.06. On the left hand side
we show a normal distribution with centre at â = 305, 677.9 and standard
deviation σ = 59, 209.06, and on the right had side we show the cumulative
distribution function associated to this normal distribution. In the cumulative
distribution function we can observe that it is possible to obtain the probability
value (Y axis) for each price (X axis).

Figure 2.3: Left: Example of a normal distribution â = 305, 677.9 and σ =
59, 209.06. Right: Associated cumulative distribution function.

2.3.2 Negotiation strategies

The novel thing in this retailing scenario is not only that we allow the seller
to play or gauge the price to maximise the expected profit, but we also allow
several bids or offers to be made to the same customer. This means that if an
offer is rejected, the seller can offer again. The number of offers or bids that
are allowed in an application is variable, but it is usually a small number, to
prevent the buyer from getting tired of the bargaining.

We propose three simple negotiation strategies in this setting. For cases
with one single bid, we introduce the strategy called Maximum Expected Profit
(MEP). For cases with more bids (multi-bid) we present two strategies: the

20 2. Global Optimisation and Negotiation in Prescription Problems

Best Local Expected Profit (BLEP) strategy and the Maximum Global Opti-
misation (MGO) strategy. Let us see all of them in detail below:

• Maximum Expected Profit (MEP) strategy (1 bid). This strategy is
typically used in marketing when the seller can only make one offer to the
customer. Given a probabilistic model each price for an instance gives
a probability of buying, as shown in Figure 2.4 (top-left). This strategy
chooses the price that maximises the value of the expected profit (Figure
2.4, top-right). The expected profit is the product of the probability and
the price. In Figure 2.4 (top-right), the black dot is the MEP point (the
maximum expected profit point). Note that, in this case, this price is
between the minimum price (represented by the dashed line) and the
maximum price (represented by the dotted line), which means that this
offer would be accepted by the buyer.

• Best Local Expected Profit (BLEP) strategy (N bids). This strategy
consists in applying the MEP strategy iteratively, when it is possible to
make more that one offer to the buyer. The first offer is the MEP, and if
the customer does not accept the offer, his/her curve of estimated proba-
bilities is normalised taking into account the following: the probabilities
of buying that are less than or equal to the probability of buying at this
price will be set to 0; and the probabilities greater than the probability
of buying at this price will be normalised between 0 and 1. The next
offer will be calculated by applying the MEP strategy to the normalised
probabilities. More details are given in Section 7.7.

Figure 2.4 (centre-left) shows the three probability curves obtained in
three steps of the algorithm and Figure 2.4 (centre-right) shows the
corresponding expected profit curves. The solid black line on the left
chart is the initial probability curve and the point labelled by 1 on the
right chart is its MEP point. In this example, the offer is rejected by the
customer (this offer is greater than the maximum price), so probabilities
are normalised following the process explained above. This gives a new
probability curve represented on the left chart as a dashed red line and
its associated expected profit curve (also represented by a dashed red line
on the chart on the right), with point 2 being the new MEP point for this
second iteration. Again, the offer is not accepted and the normalisation
process is applied (dotted green lines in both charts).

• Maximum Global Optimisation (MGO) strategy (N bids). The objective
of this strategy is to obtain the N offers that maximise the expected
profit. The optimisation formula can be consulted in Section 7.7. The

2.3. Cases with negotiable features 21

17

E
(P

ro
fi

t)

.

20

E
(P

ro
fi

t)

23

E
(P

ro
fi

t)

Figure 2.4: Examples of the MEP (top), BLEP (centre) and MGO (down)
strategies. Left: Estimated probability. Right: Associated expected profit.

rationale of this formula is that we use a probabilistic accounting of what
happens when we fail or not with the bid. Consequently, optimising the
formula is a global approach to the problem.

Computing the N bids from the formula is not direct but can be done
in several ways. One option is just using a Montecarlo approach [MU49]
with a sufficient number of tuples to get the values for the prices that

22 2. Global Optimisation and Negotiation in Prescription Problems

maximise the expected profit. Figure 2.4 (down-right) shows the three
points given by the MGO strategy for the probability curve on Figure
2.4 (down-left). As we can see, the three points are sorted in decreasing
order of price.

2.3.3 Solving cases with negotiable features

After stating the negotiation strategies, we can explain how the four new
problems with negotiable features (the last four cases in Table 2.1) are solved.

We start with the simplest negotiation scenario, where there are only one
seller and one buyer who both negotiate for one product (case 5 in Table 2.1).
The buyer is interested in one specific product. S/he likes the product and
s/he will buy the product if its price is below a certain price that s/he is
willing to pay for this product. It is clear that in this case the price meets the
conditions to be a negotiable feature.

On the other hand, the goal of the seller is to sell the product at the max-
imum possible price. Logically, the higher the price the lower the probability
of selling the item. So the goal is to maximise the expected profit (probability
multiplied by profit). If probabilities are well estimated, for all the range of
possible prices, this must be the optimal strategy if there is only one bid. In
Figure 2.5 we show an example of the plots that are obtained for the estimated
probabilities and expected profit.

Figure 2.5: Left: Example of estimated probabilities. Right: Associated
expected profit. The minimum and maximum price are also shown.

In the case with one kind of product, negotiable price, and C customers
(case 6 in Table 2.1), there is a curve for each customer (Figure 2.6, Left),
being all of them similar to the curve in case 5. If the seller can only make one

2.3. Cases with negotiable features 23

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Price

P
ro
ba
bi
lit
y

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0
50
00
0

10
00
00

15
00
00

20
00
00

Price
E
(B
en
ef
it)

Figure 2.6: Probabilistic buying models of 3 different customers approximated
by 3 normal distributions with µ1 = 250, 000 and σ1 = 30, 000, µ2 = 220, 000
and σ2 = 10, 000, and µ3 = 200, 000 and σ3 = 50, 000. Left: Probability
distribution function. Right: Associated expected profit.

offer to the customers, the seller will offer the product at the price that gives
the maximum expected profit (in relation to all the expected profit curves)
to the customer whose curve achieves the maximum. However, if the seller
can make several offers, the seller will distribute the offers along the curves
following a negotiation strategy. In this case, the seller not only changes the
price of the product, but the seller can also change the customer that s/he is
negotiating with, depending on the price of the product (that is, by selecting
the customer in each bid who gives the greatest expected profit at this price).
Therefore, these curves can be seen as a ranking of customers for each price.

The case with N kind of products, a negotiable price, and one customer
(case 7 in Table 2.1) is symmetric to case 6. Instead of one curve for each
customer, there is one curve for each product. In this case, the curves represent
a ranking of products for that customer.

The case with N kind of products, a negotiable price, and C customers
(case 8 in Table 2.1) is the most complete (and complex) of all. The objective
is to offer the products to the customers at the best price in order to obtain the
maximum profit. Multiple scenarios can be proposed for this situation: each
customer can buy only one product; each customer can buy several products; if
the customer buys something, it will be more difficult to buy another product;
there is a limited stock; etc.

In cases 6, 7 and 8, we typically work with only one data mining model
that has the customer’s features and the product’s features (one of them being
the negotiable feature) as inputs. We can, of course, define C different models

24 2. Global Optimisation and Negotiation in Prescription Problems

in case 6, N different models in case 7, or even C, N or CxN different models
for case 8. Nonetheless, this is not necessary and the higher the number of
models is the more difficult is to learn and use them and is prone to overfitting.

Graphically, the most appropriate customer or product for each price is
represented by the envelope curve. Therefore, in the cases 6, 7 and 8 there are
several curves, but the envelope curve must be calculated giving as a result
only one curve. Consequently, we can use the same negotiation strategies
applied to the case 5 to the envelope curve of cases 6, 7 and 8.

2.4 Results

In this chapter, we have studied eight different prescription problems. Cases
1, 2 and 3 are classical prescription problems studied in the literature. Case 1
is trivial, and cases 2 and 3 correspond to the ranking of customers and prod-
ucts, respectively. In case 4 we have analysed the problem of having several
rankings of customers or products. In this case, the best results have been ob-
tained using a simulation method (Joint simulation approach) to calculate the
global cutoff. The results of this study are in our paper “Joint Cutoff Proba-
bilistic Estimation using Simulation: A Mailing Campaign Application” that
can be consulted in Section 7.1. Cases 5, 6, 7 and 8 have afforded the problem
of having negotiable features. We have introduced the concept of negotiable
feature and developed new negotiation strategies in order to solve these prob-
lems. The negotiation strategy based on global optimisation (MGO) obtained
the best results. This experimental study is in our paper “Using Negotiable
Features for Prescription Problems” [BFHORQ11] that can be consulted in
Section 7.7.

3
Similarity-Binning Averaging

Calibration

In Chapter 2 we saw that when several decisions are integrated, they must be
integrated using a fair criterion. For instance, in Example 1 in Chapter 1, we
can calculate, for each customer, the probability of buying the product A and
obtain the ranking of the best buyers for this product. In this case, since we
only have one model and we want to perform a ranking, it is not important
the magnitude of the probability, it is only important the order. That is, it
does not matter if the probability of buying the product for customer 1, 2
and 3 is 0.98, 0.91 and 0.78, respectively, or 0.82, 0.80 and 0.75, because the
ranking will be the same. However, if we have calculated another ranking for
product B, and we want to combine both models in order to obtain a unified
ranking for both products, the probabilities of both models must be realistic.
In machine learning language, these probabilities must be calibrated.

Calibration is defined as the degree of approximation of the predicted prob-
abilities to the actual probabilities. If we predict that we are 99% sure, we
should expect to be right 99% of the time. A calibration technique is any
postprocessing technique which aims at improving the probability estimation
of a given classifier. Given a general calibration technique, we can use it
to improve class probabilities of any existing machine learning method: deci-
sion trees, neural networks, kernel methods, instance-based methods, Bayesian
methods, etc., but it can also be applied to hand-made models, expert systems
or combined models.

In the paper “Calibration of Machine Learning Models” [BFHORQ10a],
which can be consulted in Section 7.3, we present the most common calibration
techniques and calibration measures. Both classification and regression are
covered, and a taxonomy of calibration techniques is established. Special
attention is given to probabilistic classifier calibration.

26 3. Similarity-Binning Averaging Calibration

Moreover, in classifier combination, weighting is used in such a way that
more reliable classifiers are given more weight than other less reliable classi-
fiers. So, if we combine probabilistic classifiers and use weights, we can have a
double weighting combination scheme, where estimated probabilities are used
as the second weight for each classifier. This suggests to study the relation
between calibration and combination.

This chapter is motivated by the realisation that existing calibration meth-
ods only use the estimated probability to calculate the calibrated probability
(i.e., they are univariate). And, also, they are monotonic; they do not change
the rank (order) of the examples according to each class estimated probability.
We consider that these restrictions can limit the calibration process.

In this chapter, on one hand, we introduce a new multivariate and non-
monotonic calibration method, called Similarity-Binning Averaging (SBA).

On the other hand, we also study the role of calibration before and after
classifier combination. We present a series of findings that allow us to recom-
mend several layouts for the use of calibration in classifier combination. In this
study, we analyse also the effect of the SBA calibration method in classifier
combination.

3.1 Calibration methods and evaluation measures

In this section we review some of the most-known calibration methods, intro-
duce the evaluation measures we will employ to estimate the calibration of a
classifier, present a taxonomy of calibration methods in terms of monotonicity
and comment the multiclass extensions for calibration methods.

We use the following notation. Given a dataset T , n denotes the number of
examples, and c the number of classes. The target function f(i, j) represents
whether example i actually belongs to class j. Also, nj =

∑n
i=1 f(i, j) denotes the

number of examples of class j and p(j) = nj/n denotes the prior probability
of class j. Given a classifier l, pl(i, j) represents the estimated probability
of example i to belong to class j taking values in [0,1]. If there is only one
classifier we omit the subindex l, and in case of binary classifiers we omit the
j index (that indicates the class), i.e., we only represent the probability of
one class (the positive class), because the probability of the other class (the
negative class) is: p(i,−) = 1−p(i,+). Therefore, we use f(i) and p(i), instead
of fl(i,+) and pl(i,+), respectively.

3.1. Calibration methods and evaluation measures 27

3.1.1 Calibration methods

The objective of calibration methods (as a postprocessing) is to transform
the original estimated probabilities. Some well-known calibration methods for
binary problems are:

• The Binning Averaging method: it was proposed by [ZE02] as a method
where a (validation) dataset is split into bins in order to calculate a
probability for each bin. Specifically, this method consists in sorting
the examples in decreasing order by their estimated probabilities and
dividing the set into k bins. Thus, each test example i is placed into
a bin t, 1 ≤ t ≤ k, according to its probability estimation. Then the
corrected probability estimate for i (p∗(i)) is obtained as the proportion
of instances in t of the positive class.

• The Platt’s method [Pla99]: Platt presented a parametric approach for
fitting a sigmoid function that maps SVM predictions to calibrated prob-
abilities. The idea is to determine the parameters A and B of the sigmoid
function:

p∗(i) =
1

1 + eA·p(i)+B

that minimise the negative log-likelihood of the data, that is:

argminA,B{−
∑

i

f(i)log(p∗(i)) + (1− f(i))log(1− p∗(i))}

This two-parameter minimisation problem can be performed by using an
optimisation algorithm, such as gradient descent. Platt proposed using
either cross-validation or a hold-out set for deriving an unbiased sigmoid
training set for estimating A and B.

• The Isotonic Regression method [RWD88]: in this case, the calibrated
predictions are obtained by applying a mapping transformation that is
isotonic (monotonically increasing), known as the pair-adjacent violators
algorithm (PAV) [ABE+55]. The first step in this algorithm is to order
the n elements decreasingly according to estimated probability and to
initialise p∗(i) = f(i). The idea is that calibrated probability estimates
must be a decreasing sequence, i.e., p∗(i1) ≥ p∗(i2) ≥ . . . ≥ p∗(in). If
this is not the case, for each pair of consecutive probabilities, p∗(i) and

28 3. Similarity-Binning Averaging Calibration

p∗(i + 1), such that p∗(i) < p∗(i + 1), the PAV algorithm replaces both
of them by their probability average, that is:

a← p∗(i) + p∗(i+ 1)

2
, p∗(i)← a, p∗(i+ 1)← a

This process is repeated (using the new values) until an isotonic set is
reached.

3.1.2 Evaluation measures

Classifiers can be evaluated according to several performance metrics. These
can be classified into three groups [FHOM09]: measures that account for a
qualitative notion of error (such as accuracy or the mean F-measure/F-score),
metrics based on how well the model ranks the examples (such as the Area
Under the ROC Curve (AUC)) and, finally, measures based on a probabilistic
understanding of error (such as mean absolute error, mean squared error (Brier
score), LogLoss and some calibration measures).

• Accuracy is the best-known evaluation metric for classification and is
defined as the percentage of correct predictions. However, accuracy is
very sensitive to class imbalance. In addition, when the classifier is
not crisp, accuracy depends on the choice of a threshold. Hence, a good
classifier with good probability estimations can have low accuracy results
if the threshold that separates the classes is not chosen properly.

• Of the family of measures that evaluate ranking quality, the most repre-
sentative one is the Area Under the ROC Curve (AUC), which is defined
as the probability that given one positive example and one negative ex-
ample at random, the classifier ranks the positive example above the
negative one (the Mann-Whitney-Wilcoxon statistic [FBF+03]). AUC is
clearly a measure of separability since the lower the number of misranked
pairs, the better separated the classes are. Although ROC analysis is
difficult to extend to more than two classes ([FHoS03]), the AUC has
been extended to multiclass problems effectively by approximations. In
this thesis, we will use Hand & Till’s extension [HT01], which is based
on an aggregation of each class against each other, by using a uniform
class distribution.

• Of the last family of measures, Mean Squared Error (MSE) or Brier
Score [Bri50] penalises strong deviations from the true probability:

3.1. Calibration methods and evaluation measures 29

MSE =

c∑
j=1

n∑
i=1

(f(i, j)− p(i, j))2

n · c
Although MSE was not a calibration measure originally, it was decom-
posed by Murphy [Mur72] in terms of calibration loss and refinement
loss.

• A calibration measure based on overlapping binning is CalBin [CNM04].
This is defined as follows. For each class, we must order all cases by
predicted p(i, j), giving new indices i∗. Take the 100 first elements (i∗

from 1 to 100) as the first bin. Calculate the percentage of cases of class
j in this bin as the actual probability, f̂j . The error for this bin is:

∑

i∗∈1..100

|p(i∗, j)− f̂j |

Take the second bin with elements (2 to 101) and compute the error in
the same way. At the end, average the errors. The problem of using 100
(as [CNM04] suggests) is that it might be a much too large bin for small
datasets. Instead of 100 we set a different bin length, s = n/10, to make
it more size-independent.

3.1.3 Monotonicity and multiclass extensions

The three calibration methods described in Section 3.1.1 are monotonic; they
do not change the rank (order) of the examples according to each class es-
timated probability. In fact, Platt’s method is the only one that is strictly
monotonic, i.e, if p(i1) > p(i2), then p∗(i1) > p∗(i2), implying that AUC and
refinement loss are not affected (only calibration loss is affected). In the other
two methods, ties are generally created (i.e, p∗(i1) = p∗(i2) for some examples
i1 and i2 where p(i1) > p(i2)). This means that refinement is typically reduced
for the binning averaging and the PAV methods.

Monotonicity will play a crucial role in understanding what calibration
does before classifier combination. Nevertheless, the extensions of binary
monotonic calibration methods to multiclass calibration (one-against-all and
all-against-all schemes) do not ensure monotonicity (more details can be con-
sulted in the paper “On the effect of calibration in classifier combination”, Sec-
tion 7.8). This will motivate the analysis of the non-monotonic SBA method.
Based on the concept of monotonicity, we propose a taxonomy of calibration

30 3. Similarity-Binning Averaging Calibration

strictly monotonic!

non-strictly monotonic!

non-monotonic!

calibration!

linear!

nonlinear!

Affine fusion !

and calibration!

Platt!

PAV, Binning!

SBA!

global!

calibration!

local!

calibration!

Figure 3.1: Taxonomy of calibration methods in terms of monotonicity
(strictly monotonic, non-strictly monotonic, or non-monotonic methods), lin-
earity (linear or nonlinear methods).

methods (Figure 3.1) including classical calibration methods (PAV, Binning
and Platt), the SBA method and the Brümmer’s affine fusion and calibration
methods [Brü10].

Another important issue is whether the calibration methods are binary
or multiclass. The three methods presented in Section 3.1.1 were specifically
designed for two-class problems. For the multiclass case, Zadrozny and Elkan
[ZE02] proposed an approach that consists in reducing the multiclass problem
into a number of binary problems. A classifier is learned for each binary
problem and, then, its predictions are calibrated.

Some works have compared the one-against-all and the all-against-all
schemes, concluding in [RK04] that the one-against-all scheme performs as
well as the all-against-all schemes. Therefore, we use the one-against-all ap-
proach for our experimental work because its implementation is simpler.

3.2 Calibration by multivariate Similarity-Binning
Averaging

As we have shown in the Section 3.1.1, most calibration methods are based on
a univariate transformation function over the original estimated class probabil-
ity. In binning averaging, isotonic regression or Platt’s method, this function
is just obtained through very particular mapping methods, using p(i, j) (the
estimated probability) as the only input variable. Leaving out the rest of in-
formation of each instance (e.g., their original attributes) is a great waste of
information which would be useful for the calibration process. For instance,
in the case of binning-based methods, the bins are exclusively constructed by

3.2. Calibration by multivariate Similarity-Binning Averaging 31

sorting the estimated probability of the elements. Binning can be modified in
such a way that bins overlap or bins move as windows, but it still only depends
on one variable (the estimated probability).

The core of our approach is to change the idea of “sorting” for creating
bins, into the idea of using similarity to create bins which are specific for each
instance. The rationale for this idea is as follows. If bins are created by using
only the estimated probability, calibrated probabilities will be computed from
possibly different examples with similar probabilities. The effect of calibration
is small, since we average similar probabilities. On the contrary, if we construct
the bins using similar examples according to other features, probabilities can
be more diverse and calibration will have more effect. Additionally, it will be
sensitive to strong probability deviation given by small changes in one or more
original features. This means that if noise on a variable dramatically affects
the output, probabilities will be smoothed and, hence, they will be more noise-
tolerant. For instance, if (3, 2, a) has class true and (2, 2, a) has class false,
the estimated probability for (3, 2, a) should not be too close to 1.

Based on this reasoning, we propose a new calibration method that we
called Similarity-Binning Averaging (SBA). In this method the original at-
tributes and the estimated probability are used to calculate the calibrated
one.

The method is composed of two stages. The left side of Figure 3.2 shows
Stage 1. In this stage, a given model M gives the estimated probabilities
associated with a dataset. This dataset can be the same one used for training,
or an additional validation dataset V D. The estimated probabilities p(i, j)
1 ≤ j ≤ c are added (as new attributes) to each instance i of V D, creating a
new dataset V DP .

The right side of Figure 3.2 shows Stage 2 of the SBA method. To calibrate
a new instance I, first, the estimated probability for each class is obtained
from the classification model M , and these probabilities (one for each class)
are added to the instance, thus creating a new instance (IP). Next, the
k-most similar instances to this new instance are selected from the dataset
V DP (for example, using the k-NN algorithm). This creates a bin. Finally,
the calibrated probability of I for each class j is the average predicted class
probability of this bin (i.e., the probability estimated by the k-NN algorithm
for each class j of the instance I).

Let us see how the SBA algorithm works with an example. Consider
that we learn a decision tree from the Iris dataset. In “Stage 1”, we add
the estimated probability for each class (Iris-setosa, Iris-versicolor and Iris-
virginica) to each instance creating the V DP dataset:

In “Stage 2”, we have a new instance I for which we want to obtain its

32 3. Similarity-Binning Averaging Calibration

X11, X12 … X1n, p(1,1), p(1,2) … p(1,c), Y1

X21, X22 … X2n, p(2,1), p(2,2) … p(2,c), Y2

…

Xr1, Xr2 … Xrn, p(r,1), p(r,2) … p(r,c), Yr

Validation Dataset (VD)

Validation Dataset with

Estimated Probabilities (VDP)

X11, X12 … X1n, Y1

X21, X22 … X2n, Y2

…

Xr1, Xr2 … Xrn, Yr

Calibrated Probabilities

New Instance with Estimated Probabilities (IP)

VDP

p*(I,1), p*(I,2) … p*(I,c)

k most similar (SB)

XI1, XI2 … XIn

XI1, XI2 … XIn, p(I,1), p(I,2) … p(I,c)

New Instance (I)

M

M

Figure 3.2: Left: Stage 1 of the SBA method. Right: Stage 2 of the SBA
method.

inst# sepall. sepalw. petall. petalw. p(setosa) p(versicolor) p(virginica) class

1 5.1 3.5 1.4 0.2 0.962 0.019 0.019 setosa
2 4.9 3.0 1.4 0.2 0.962 0.019 0.019 setosa
...
150 5.9 3.0 5.1 1.8 0.02 0.041 0.939 virginica

calibrated probabilities. First, we obtain the estimated probability for each
class of the instance from the decision tree. This is IP :

sepall. sepalw. petall. petalw. p(setosa) p(versicolor) p(virginica)

7.0 3.2 4.7 1.4 0.02 0.941 0.039

Next, a k-NN algorithm is learned from the V DP dataset, and the instance
IP is classified obtaining a probability for each class, as the proportion of
examples of each class from the k nearest neighbours. These are the calibrated
probabilities of the instance I by the SBA method.

p(setosa) p(versicolor) p(virginica)

0.001 0.998 0.001

3.3. The relation between calibration and combination 33

3.3 The relation between calibration and combina-
tion

One of the most common methods of classifier combination is Bayesian Model
Averaging [HMRV99]. It consists in weighting each classifier, giving more
credit to more reliable sources. However, this rationale does not necessarily en-
tail the best combination ([Kun02][Kun04]). An alternative (and generalised)
option is the weighted average combination [Kun04], using probabilities.

The estimated probability of an item i belonging to class j given by a
weighted average combination of L classifiers is:

p̃(i, j) =
L∑

k=1

wkpk(i, j) (3.1)

where
∑L

k=1wk = 1.

Formula (3.1) defines a linear combination of the classifier outputs and
can be instantiated to more specific schemas depending on how wk and pk are
chosen. In general, the use of a performance (or overall reliability) weight per
classifier wk is justified because some classifiers are more reliable than others.
However, a proper calibration would give each prediction its proper weight
depending on the reliability of pk(i, j) (high reliability for pk(i, j) closer to 0
and 1, and lower reliability for pk(i, j) closer to 0.5 or to the class proportion
for imbalanced problems). The use of both wk and pk may lead to a double
weighting, where the importance of a classifier prediction depends on the clas-
sifier quality but also on the quality (or calibration) of the specific probability
estimation.

In order to better understand the relation between weights and probabil-
ities, we firstly need to understand the meaning of the weights. There are
many ways of calculating weights. A very common option is to estimate the
accuracy on a validation dataset D, followed by a normalisation [Kun04], i.e.,
if acck is the accuracy of model lk on D, then:

wk =
acck∑L

m=1 accm

If we use AUC (or MSE) as a measure, the question of whether a double
weighting is going to be too drastic depends on how the weights are derived
from these measures. For instance, a weight equal to the AUC is an option,
but since AUC=0.5 means random behaviour, perhaps the GINI index (which
equals (AUC−0.5)×2) would be a better option, since it goes from 0 to 1. In

34 3. Similarity-Binning Averaging Calibration

the same way, using the MSE, the expression (1−MSE) is a natural option,
but a more extreme 1/MSE could also be considered.

Consequently, there are many open questions when mixing together prob-
abilities and weighted combinations. Are both things redundant or even in-
compatible? Is calibration a good idea to get better probability estimations?
If calibration is used, would weights become useless?

3.4 Results

In the paper “Similarity-Binning Averaging: A Generalisation of Binning Cal-
ibration” [BFHORQ09], which can be consulted in Section 7.2, we present
the SBA calibration method in detail. We compare this method with three
well-known and baseline calibration techniques: non-overlapping binning av-
eraging, Platt’s method and PAV. The experimental results show a significant
increase in calibration for the two calibration measures considered (MSE and
CalBin). It is true that this better calibration is partly obtained because of
the increase of AUC. It is, consequently, non-monotonic. In many applications
where calibration is necessary the restriction of being monotonic is not only
applicable, but it is an inconvenience. In fact, when calibrating a model, the
original model and class assignments can be preserved, while only modifying
the probabilities. In other words, the predictions of a comprehensible model
composed of a dozen rules can be annotated by the estimated probabilities
while preserving the comprehensibility of the original model.

Table 3.1: Different methods to calculate weights.

Method Definition

WCUnif wk = 1
L

WCAcc wk = acck∑L
m=1 accm

WCAUC wk = AUCk∑L
m=1 AUCm

WCMSE wk = (1−MSEk)∑L
m=1(1−MSEm)

WCGINI wk = max(0,(AUCk−0.5)×2)∑L
m=1max(0,(AUCm−0.5)×2)

WCIMSE wk = (1/MSEk)∑L
m=1(1/MSEm)

In the paper “On the Effect of Calibration in Classifier Combination”
[BFHORQ], that can be consulted in Section 7.8, we analyse theoretically and

3.4. Results 35

Table 3.2: Experimental layouts that arrange combination and calibration.
CombMet is the combination method and CalMet is the calibration method.

Layout Description and Variants

BaseModel BaseModel ∈ {J48, Logistic, NB, IBk}
plus a random model.

Base The average of all the base models

CombMet CombMet ∈ {WCUnif, WCAcc,
WCAUC, WCGINI, WCMSE, WCIMSE}.

CalMet CalMet ∈ { PAV, Platt, Binning, SBA}.
CalMet + CombMet For different calibration and combination methods.

CombMet + CalMet For different calibration and combination methods.

CalMet + CombMet + CalMet For different calibration and combination methods.

experimentally the effect of four calibration methods (Binning, PAV, Platt
and SBA) in the weighted average combination of classifiers, with six different
methods to calculate the weights (see Table 3.1); four evaluation measures:
MSE, CalBin, AUC and accuracy; and seven different layouts that can be
seen in Table 3.2. From this analysis, we would like to highlight some clear
messages, as follows:

• Calibration is beneficial before combination as the experimental results
show, in general.

• The combination of classifiers does not typically give a calibrated re-
sult, as we have studied by analysing the probability distributions using
truncated normal models for them. This has been confirmed by the
experimental results.

• We advocate for AUC as the right measure to evaluate combination per-
formance, precisely because the combination is generally uncalibrated.

• We recommend calibration after combination, if we are interested in
good results in terms of MSE or in terms of accuracy.

• Weighted combination is compatible with probabilities even when we
use calibration with the same dataset from which we derive the weights.
This has been shown by the experiments. Therefore, the double weighting
(weights and probabilities) does not show up, or at least it is counter-
acted by other benefits.

• The weighting methods which are best when using probabilities are GINI
and IMSE, even in conjunction with calibration.

36 3. Similarity-Binning Averaging Calibration

• Monotonic calibration methods are good for combination, but their in-
fluence is limited.

• SBA, the non-monotonic calibration method, is better for combination
according to the experimental results.

Therefore, to summarise this chapter, we conclude that, in order to obtain
good global results, it is important to calibrate the probabilities when several
local models are combined. Non-monotonic methods, such as SBA, can un-
leash all the potential of calibration and, additionally can be directly applied
to multiclass problems, for which all the other monotonic methods lose their
monotonicity.

4
Quantification using Estimated

Probabilities

In Chapter 1, we saw how quantification can help to make global decisions,
during the model deployment phase, before making individual decisions for
each problem instance. For instance, an organisation may know, by quantifi-
cation methods, how many products it is going to sell, before knowing exactly
which customers will buy its products. This information (quantification) is
important to the organisation, because depending on this result human and
economical resources can be better arranged, or the organisation might even
cancel the campaign, if the estimated number of products to be sold is not
profitable for the company.

Quantification is the name given to this novel machine learning task which
deals with correctly estimating the number of elements of one class in a set
of examples. Hence, the output of a quantifier is a real value. George For-
man [For05][For06][For08] introduced and systematised this new supervised
machine learning task. Since in quantification training instances are the same
as in a classification problem, a natural approach is to train a classifier and
to derive a quantifier from it. Forman’s works have shown that just classify-
ing the instances and counting the examples belonging to the class of interest
(classify & count) typically yields bad quantifiers, especially when the class
distribution may vary between training and test. Hence, adjusted versions of
classify & count have been developed by using modified thresholds.

However, these works have explicitly discarded (without a deep analysis)
any possible approach based on the probability estimations of the classifier.
In this chapter, we present a method based on averaging the probability esti-
mations of a classifier with a very simple scaling that does perform reasonably
well, showing that probability estimators for quantification capture a richer
view of the problem than methods based on a threshold. Moreover, since the

38 4. Quantification using Estimated Probabilities

new quantification method that we propose is based on probability estimators,
we are interested in studying the impact that calibrated probabilities may have
for quantification.

4.1 Notation and previous work

Given a dataset T , n denotes the number of examples, and c the number
of classes. We will use i to index or refer to examples, so we will express
i = 1 . . . n or i ∈ T indistinctly. f(i, j) represents the actual probability of
example i to be of class j. We assume that f(i, j) always takes values in {0,1}
and is not strictly a probability but a single-label indicator function. With

nj =
n∑
i=1

f(i, j), we denote the number of examples of class j. π(j)1 denotes the

prior probability of class j, i.e., π(j) = nj/n. When referring to a particular
dataset T , we will use the equivalent expression:

πT (j) =

∑
i∈T f(i, j)

|T |
Given a classifier, p(i, j) represents the estimated probability of example i

to be of class j taking values in [0,1]. π̂(j) denotes the estimated probability
of class j which is defined as:

π̂T (j) =

∑
i∈T p(i, j)

|T |
when referring to a dataset T . For the sake of readability, when c = 2, we will
use the symbols ⊕ for the positive class and 	 for the negative class. Since the
probabilities are complementary for two classes, we will focus on the positive
class. Cθ(i, j) is 1 iff j is the predicted class obtained from p(i, j) using a
threshold θ. We can omit θ when it is embedded in the classifier or clear from
the context. When c = 2, we will use the following measures:

TP =
n∑

i=1

f(i,⊕)C(i,⊕), TN =
n∑

i=1

f(i,)C(i,),

FP =
n∑

i=1

f(i,)C(i,⊕), FN =
n∑

i=1

f(i,⊕)C(i,);

we will also use the ratios:
1Note that in this chapter we have slightly changed the notation from the previous chap-

ter, following the notation used in each paper.

4.2. Quantification evaluation 39

tpr = TP/(TP + FN) and fpr = FP/(FP + TN).

We will use pos for the actual proportion of positives, i.e., π(⊕); and we will
use neg for the actual proportion of negatives, i.e., π(). Finally, the function
clip(X, a, b) truncates a real value X inside an interval [a, b]. We represent the
elements of T of class ⊕ and 	 with T⊕ and T	, respectively.

Forman introduced several quantification methods that we arrange into
the following three groups:

• Methods based on counting the positive predicted examples. The classify
& count (CC) and the adjusted count (AC) methods belong to this
group.

• Methods based on selecting a classifier threshold, but in this case, the
threshold is determined from the relationship between tpr and fpr in
order to provide better quantifier estimates. For instance, some methods
choose one particular threshold, such as: the X method, which selects
the threshold that satisfies fpr = 1− tpr; the Max method, which selects
the threshold that maximises the difference tpr− fpr; or those methods
like T50 that select a particular rate between tpr and fpr. The Median
Sweep (MS) method2 is another method that tests all the thresholds in
the test set, estimates the number of positives in each one, and returns
a mean or median of these estimations.

• Methods based on a mixture of distributions. The Mixture Model (MM)
[For05] is included in this group. It consists of determining the distribu-
tions from the classifier scores on the training positive (D⊕) and negative
examples (D) and then modelling the observed distribution D on the
test set as a mixture of D⊕ and D	.

The best results are obtained with AC in general; however, when the training
sets are small and the number of positives is small, other methods such as T50
or MS can get better results (at the cost of performing worse in other more
balanced situations).

4.2 Quantification evaluation

Quantification outputs a real value and hence can be evaluated by the classical
error measures for continuous variables, the Mean Absolute Error (MAE) and

2It is proposed when the tpr and fpr are estimated from cross-validation.

40 4. Quantification using Estimated Probabilities

the Mean Squared Error (MSE). Forman only used the absolute error in
his experiments, but we consider that the MSE measure is a better way to
quantify differences between estimations for real values. Let us formalise these
measures in order to better establish the quantification problem and goal.

Consider that we have a method that estimates the proportion of elements
for each class (π̂T (j)). By calculating the absolute difference of these two
values, we have the global MAE for each class:

GMAEj(T) = |πT (j)− π̂T (j)| ,
and for all the classes we have:

GMAE(T) =
1

c
·
∑

j=1..c

GMAEj(T)

Similarly, we calculate:

GMSEj(T) = (πT (j)− π̂T (j))2 and

GMSE(T) =
1

c
·
∑

j=1..c

GMSEj(T)

For binary problems, we have that:

GMAE⊕ = GMAE	 = GMAE and

GMSE⊕ = GMSE	 = GMSE

Therefore, for binary problems, we will only evaluate the error for the
proportion of positives.

4.3 Quantifying by Scaled Averaged Probabilities

The idea of using an average of the probability estimations is supported by
the issue that probabilities represent much richer information than just the
decisions. After this rationale, the use of probabilities shapes a family of
methods that we call probability estimation & average. The simplest method
in this family is called Probability Average (PA). First, a probabilistic classifier
is learned from the training data, such as a Probability Estimation Tree or
a Näıve Bayes model. Then, the learned model is applied to the instances
in the test set, obtaining a probability estimation for each one. Finally, the

4.3. Quantifying by Scaled Averaged Probabilities 41

average of the estimated probabilities for each class is calculated. Although
this definition is multiclass, for the rest of the explanation we will concentrate
on binary datasets. In this case, we only need to care about one class (the
positive class), and the method is defined as follows:

π̂PATest(⊕) =

∑
i∈Testp(i,⊕)

|Test| (4.1)

Logically, if the proportion of positive examples in the training set is dif-
ferent from the proportion of positive examples in the test set, the result will
not be satisfactory in general. The solution comes precisely from the analysis
of the extreme case when all the elements in the test set are of one class. In
this case, we will get the average probability for the positive cases alone, which
can only be 1 for a perfect classifier (which is not frequently the case). As in
the AC method, the idea is to use a proper scaling.

Nevertheless, from the training set, it is possible to calculate:

• the actual proportion of positive examples (πTrain(⊕)),

• the positive probability average (π̂Train(⊕)),

• the positive probability average for the positives (π̂Train⊕(⊕)),

• and the positive probability average for the negatives (π̂Train	(⊕)).

From the definitions, it is easy to check the following equality:

π̂Train⊕(⊕) · πTrain(⊕) + π̂Train	(⊕) · (1− πTrain(⊕)) = π̂Train(⊕) (4.2)

From which the following equation is derived:

πTrain(⊕) =
π̂Train(⊕)− π̂Train	(⊕)

π̂Train⊕(⊕)− π̂Train	(⊕)
, (4.3)

which yields a probabilistic version of Forman’s adjustment (see Fig.4.1).
When all instances are positive, π̂Train⊕(⊕) sets the maximum, and we scale
this to 1. When all instances are negative, π̂Train	(⊕) sets the minimum, and
we scale this to 0.

Thus, we propose a new quantification method, which we call Scaled Prob-
ability Average (SPA), applying Formula 4.3 in the same way as Forman to
the value obtained with the PA method (Formula 4.1), i.e.,

42 4. Quantification using Estimated Probabilities

we will get the average probability for the positive cases alone, which can only

be 1 for a perfect classifier (which is not frequently the case). As in the Adjusted

Count (AC) method, the idea is to use a proper scaling.

Nevertheless, from the training set, it is possible to calculate the actual pro-

portion of positive examples (πTrain(⊕)), the positive probability average (π̂Train(⊕)),

the positive probability average for the positives (π̂Train⊕(⊕)), and the positive

probability average for the negatives (π̂Train"(⊕)).

From the definitions, it is easy to check the following: π̂Train⊕(⊕)·πTrain(⊕)+

π̂Train"(⊕) · (1− πTrain(⊕)) = π̂Train(⊕).

From this equation, we derive πTrain(⊕) =
π̂T rain(⊕)−π̂T rain" (⊕)

π̂T rain⊕ (⊕)−π̂T rain" (⊕) , which

yields a probabilistic version of Forman’s adjustment (see Fig.1). When all are

positives, π̂Train⊕(⊕) sets the maximum, and we scale this to 1. When all are

negatives, π̂Train"(⊕) sets the minimum, and we scale this to 0.

Thus, we propose a new quantification method, which we call Scaled Prob-

ability Average (SPA), applying this last formula (scaling) in the same way as

Forman to the value obtained with the PA method (π̂PA
Test(⊕)), i.e., π̂SPA

Test (⊕) =

π̂P A
T est(⊕)−π̂T rain" (⊕)

π̂T rain⊕ (⊕)−π̂T rain" (⊕) .

0

0

1

10.3 0.540.4 0.8 0.9

0.23 0.4 0.83

πTrain(⊕)

π̂Train⊕(⊕)π̂Train(⊕)π̂Train"(⊕)

Fig. 1. Scaling used in the SPA method. The limits in the training set are placed at 0.3 and 0.9.
The estimated value for the training set is 0.54 whereas the actual proportion in the training set is
0.4. The scaling would move a case at 0.4 to 0.23 and a case at 0.8 to 0.83.

In the same way as in the SPA method the proportion of positive examples

estimated by the PA method is scaled, also this scaling can be applied to the

10

Figure 4.1: Scaling used in the SPA method. The limits in the training set
are placed at 0.3 and 0.9. The estimated value for the training set is 0.54
whereas the actual proportion in the training set is 0.4. The scaling would
move a case at 0.4 to 0.23 and a case at 0.8 to 0.83.

π̂SPATest (⊕) =
π̂PATest(⊕)− π̂Train	(⊕)

π̂Train⊕(⊕)− π̂Train	(⊕)
(4.4)

In the same way as in the SPA method, the proportion of positive examples
estimated by the PA method is scaled. This scaling can also be applied to the
proportion of positive examples estimated by the CC method. Therefore, we
propose the Scaled Classify & Count (SCC) method:

π̂SCCTest (⊕) =

∑
i∈Test C(i,⊕)

|Test| − π̂Train	(⊕)

π̂Train⊕(⊕)− π̂Train	(⊕)
(4.5)

4.4 Quantification using calibrated probabilities

The new quantification methods that we have proposed in the previous sec-
tion are based on averaging the probability estimations of classifiers. This
suggests to study the impact of having good probability estimators for quan-
tification. [For05][For06][For08] discusses that some bad classifiers can be
good quantifiers, but also (and frequently) that some good classifiers can be
very bad quantifiers. The key issue to understand this when we use clas-
sify & count and related methods is how the threshold is chosen. The key
issue to understand this when we use average probability methods is calibra-
tion [Bri50][DF83][Pla99][ZE01][BFHORQ10a]. A random, but well-calibrated
classifier can give very good results with the SPA method, when training and
test class distributions match. On the contrary, a very good classifier, with
high separability (e.g., a high AUC) can have a very bad calibration and give

4.5. Results 43

very bad quantification results with the SPA method. But there are some
other, more surprising cases. Consider the worst classifier possible, which in
the binary case outputs p(i,⊕) = 1 for every example i of class 	 and outputs
p(i,⊕) = 0 for every example i of class ⊕. If the dataset is balanced, quan-
tification will be perfect. But calibration in this case is extremely poor. As a
result, calibration plays a very important role for quantification using proba-
bilities, but the phenomenon is more complex than it seems at first sight, even
in the easy cases where training and test class distributions are equal.

The first intuition from the previous discussion is that we do not need
to have good calibration for every single prediction to have an overall good
quantification result. This suggests the distinction of what we call local (tra-
ditional) calibration and global calibration.

In Section 7.6, we formalise the notions of local and global calibration over
a dataset. Global calibration is key to the success of quantification meth-
ods using probabilities. However, the relation of local to global calibration
suggests that when the class distribution is the same (and especially when
the dataset is imbalanced), having good local calibration implies having good
global calibration (at least it sets some bounds on the error), but when class
distribution changes dramatically, it is not so clear that a very good local cal-
ibration ensures good global calibration. To answer the question on whether
better local calibration (alone) can make quantification improve, we experi-
mentally analyse several classical (local) calibration methods and their effect
over quantification methods.

4.5 Results

The results of these new quantification methods based on probability estima-
tors have been published in the paper “Quantification via Probability Estima-
tors” [BFHORQ10c] that can be consulted in Section 7.5.

The experiments show that the behaviour of the SPA method is more ro-
bust than the methods AC and T50. These methods are designed for situations
where the proportion of classes is imbalanced. Even when the experimental
setting is more favourable for the AC and T50 methods, the SPA method still
obtains good results.

Therefore, we can conclude that the results are highly positive and show
that the use of probability estimators for quantification is a good pathway to
pursue, which can lead to new methods in the future.

In the paper “Local and Global Calibration. Quantification using Cali-
brated Probabilities” [BFHORQ10b], which can be consulted in Section 7.6,

44 4. Quantification using Estimated Probabilities

we show a preliminary study of the effect of calibration methods for quantifi-
cation. We obtain, at first sight, that (local) calibration does not improve the
quantification methods. However, there are still some cases where the results
for the quantification methods based on probabilities (PA and SPA) are better
when the probabilities are calibrated. This is a first step that encourages the
study of the effect of calibration in quantification in more depth.

5
Conclusions and Future Work

5.1 Conclusions

Machine learning and data mining techniques are frequently used by organ-
isations to make decisions. Typically, these techniques have been focused
on obtaining the best results in an idealistic environment (isolated models,
without constraints, etc.). However, when these models are applied in a real
environment, they need to be related to other models, with constraints that
have to be fulfilled. However, some other integration techniques need to be
used, in the model deployment phase, to obtain good global results. In this
dissertation we have seen that it is important to have a global view of the prob-
lem, instead of only focusing on improving single results, as usually one cannot
see the forest for the trees. We have presented new methods and techniques
that belong to this group of deployment techniques.

First, we have introduced new techniques that combine local models in
order to obtain good global decisions which meet a set of constraints. Con-
cretely, we have developed new techniques in a general prescription problem
scenario. Here, the seller has to offer several products to several customers,
trying to obtain the maximum profit possible. In this scenario, one data min-
ing model is learned for each product (or customer) and the new combination
techniques are used to obtain good global results.

Second, we have studied the relation between input and output features,
the problem inversion approach and the use of input features for global optimi-
sation and negotiation. The key point of this study has been the new concept
of negotiable feature. It has opened a new way of looking at a prescription
problem. Concretely, we have proposed a new taxonomy of prescription prob-
lems depending on whether the problem has or not negotiable features. Using
the problem inversion approach we have transformed a classification problem
into a regression problem, learning a model for each product and customer

46 5. Conclusions and Future Work

and obtaining a probability of buying the product for each value of the nego-
tiable feature. We have developed multi-bid negotiation strategies that obtain
good global results combining these individual models. From our studies we
have concluded that techniques and negotiation strategies based on simula-
tion (Joint Simulation Approach and Maximum Global Optimisation) obtain
better results than other analytical techniques.

Third, we have developed more powerful calibration techniques, and we
have studied their relation to classifier combination. Concretely, we have
implemented a new multivariate, non-monotonic and multiclass calibration
method (Similarity Binning Averaging). It is different to the classical cali-
bration methods, which are univariate and monotonic, and has outperformed
their results. Also, the experimental results have shown that this new cal-
ibration method improves the overall results, in terms of AUC, in classifier
combination.

Fourth, we have presented methods that make a global decision from the
sum of individual decisions. Concretely, we have developed a new quantifica-
tion method based on probabilities. It has outperformed other quantification
methods based on thresholds. Moreover, we have analysed the impact of hav-
ing good probability estimators for the new quantification methods based on
probability average estimation, and the relation of quantification with global
calibration.

Overall, in this dissertation, we have developed techniques that can be
applied in the model deployment phase, in order to obtain good global results
when several local models are combined. However, on the one hand, there
are new related issues that have appeared during this research and have not
already been studied, so we will consider them as future work in the next
section. On the other hand, as a more ambitious work, new techniques could
be studied in order to obtain a global optimisation framework and view for all
the data mining processes in an organisation.

5.2 Future work

As future work, we want to study the extension of the negotiation process
to multiple negotiable features. When we have only one negotiable feature
we have two dimensions (negotiable feature and probability). In the case of
multiple negotiable features we have one dimension for each negotiable feature
plus one (probability).

We also want to study quantification methods for regression problems. For
instance, a bank may offer a new investment product. Given a regression model

5.2. Future work 47

learned from a subsample or a previous customer sample, we want to know the
total amount of money that all the customers will invest, globally. Again, we
may not require the particular amount of money for each particular customer,
but the total amount. This is the case for quantification in regression, where
it is not class probabilities which matters but prediction distributions. Also,
another topic we want to follow, as we mentioned at the end of Chapter 3, is
the effect of calibration in quantification methods based on probabilities.

In this dissertation we have studied global optimisation techniques that can
be applied during the deployment phase. However, if the need for integrating
several data mining models is known beforehand, the optimisation process
would start in early phases of the KDD process. For example, in a hospital a
model may predict the number of admissions in the emergency department and
another model may predict the bed occupation. These two models are related
to each other and other models are also related to them. All these models could
be combined from the beginning, possibly using simulation strategies in order
to integrate (connect) the models and fulfilling the problem constraints. In
this way, we could have a global view of all the processes in an organisation.
Changes in one model would influence automatically on the other models,
always having a global optimisation of all the events in mind.

In the end, this work has emphasised that better model integration tech-
niques must be based on optimising global decisions over local ones.

48 5. Conclusions and Future Work

Bibliography

[ABE+55] M. Ayer, H.D. Brunk, G.M. Ewing, W.T. Reid, and E. Sil-
verman. An empirical distribution function for sampling with
incomplete information. Annals of Mathematical Statistics,
5:641–647, 1955.

[AT05] G. Adomavicius and A. Tuzhilin. Toward the next generation
of recommender systems: A survey of the state-of-the-art and
possible extensions. IEEE Trans. on Knowl. and Data Eng.,
17(6):734–749, 2005.

[BFHORQ] A. Bella, C. Ferri, J. Hernández-Orallo, and M.J. Ramı́rez-
Quintana. On the Effect of Calibration in Classifier Combi-
nation. (Submitted to Applied Intelligence).

[BFHORQ09] A. Bella, C. Ferri, J. Hernández-Orallo, and M.J. Ramı́rez-
Quintana. Similarity-Binning Averaging: A Generalisation
of Binning Calibration. In Intelligent Data Engineering and
Automated Learning - IDEAL 2009, volume 5788 of Lecture
Notes in Computer Science, pages 341–349. Springer Berlin /
Heidelberg, 2009.

[BFHORQ10a] A. Bella, C. Ferri, J. Hernández-Orallo, and M.J. Ramı́rez-
Quintana. Calibration of Machine Learning Models. In
Handbook of Research on Machine Learning Applications and
Trends: Algorithms, Methods, and Techniques, pages 128–146.
IGI Global, 2010.

[BFHORQ10b] A. Bella, C. Ferri, J. Hernández-Orallo, and M.J. Ramı́rez-
Quintana. Local and Global Calibration. Quantification using
Calibrated Probabilities. Technical report, DSIC-ELP. Uni-
versitat Politècnica de València, 2010.

[BFHORQ10c] A. Bella, C. Ferri, J. Hernández-Orallo, and M.J. Ramı́rez-
Quintana. Quantification via Probability Estimators. IEEE
International Conference on Data Mining, 0:737–742, 2010.

50 5. Bibliography

[BFHORQ11] A. Bella, C. Ferri, J. Hernández-Orallo, and M.J. Ramı́rez-
Quintana. Using Negotiable Features for Prescription Prob-
lems. Computing, 91:135–168, 2011.

[BGL07] M. Better, F. Glover, and M. Laguna. Advances in analytics:
integrating dynamic data mining with simulation optimiza-
tion. IBM J. Res. Dev., 51(3):477–487, 2007.

[BL99] M.J.A. Berry and G.S. Linoff. Mastering Data Mining: The
Art and Science of Customer Relationship Management. Wi-
ley, 1999.

[Bre96] L. Breiman. Bagging predictors. Machine Learning,
24(2):123–140, 1996.

[Bri50] G.W. Brier. Verification of forecasts expressed in terms of
probabilities. Monthly Weather Review, 78:1–3, 1950.

[Brü10] N. Brümmer. Measuring, refining and calibrating speaker and
language information extracted from speech. PhD thesis, Uni-
versity of Stellenbosch, 2010.

[BST00] A. Berson, S. Smith, and K. Thearling. Building Data Mining
Applications for CRM. McGraw Hill, 2000.

[CNM04] R. Caruana and A. Niculescu-Mizil. Data mining in metric
space: an empirical analysis of supervised learning perfor-
mance criteria. In KDD, pages 69–78, 2004.

[DF83] M.H. DeGroot and S.E. Fienberg. The comparison and eval-
uation of forecasters. The statistician, pages 12–22, 1983.

[Die00a] T.G. Dietterich. Ensemble methods in machine learning. In
First International Workshop on Multiple Classifier Systems,
pages 1–15, 2000.

[Die00b] T.G. Dietterich. An experimental comparison of three meth-
ods for constructing ensembles of decision trees: Bagging,
Boosting, and Randomization. Machine Learning, 40(2):139–
157, 2000.

[FBF+03] P. Flach, H. Blockeel, C. Ferri, J. Hernández-Orallo, and
J. Struyf. Decision support for data mining: An introduc-
tion to ROC analysis and its applications. In Data Mining

5.2. Bibliography 51

and Decision Support: Integration and Collaboration, pages
81–90. Kluwer Academic Publishers, Boston, 2003.

[FFHO04] C. Ferri, P.A. Flach, and J. Hernández-Orallo. Delegating
classifiers. In Proc. of the 21st International Conference on
Machine learning, page 37, New York, 2004. ACM.

[FHOM09] C. Ferri, J. Hernández-Orallo, and R. Modroiu. An experi-
mental comparison of performance measures for classification.
Pattern Recogn. Lett., 30(1):27–38, 2009.

[FHoS03] C. Ferri, J. Hernández-orallo, and M.A. Salido. Volume under
the roc surface for multi-class problems. Exact computation
and evaluation of approximations. In Proceedings of 14th Eu-
ropean Conference on Machine Learning, pages 108–120, 2003.

[FKM+04] R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, and E. Vee.
Comparing and aggregating rankings with ties. In PODS,
pages 47–58, 2004.

[For05] G. Forman. Counting positives accurately despite inaccurate
classification. In ECML, pages 564–575, 2005.

[For06] G. Forman. Quantifying trends accurately despite classifier
error and class imbalance. In KDD, pages 157–166, 2006.

[For08] G. Forman. Quantifying counts and costs via classification.
Data Min. Knowl. Discov., 17(2):164–206, 2008.

[FS96] Y. Freund and R.E. Schapire. Experiments with a new boost-
ing algorithm. In Proc. 13th International Conference on Ma-
chine Learning, pages 148–146. Morgan Kaufmann, 1996.

[GB00] J. Gama and P. Brazdil. Cascade generalization. Machine
Learning, 41(3):315–343, 2000.

[HMRV99] J.A. Hoeting, D. Madigan, A.E. Raftery, and C.T. Volinsky.
Bayesian model averaging: A tutorial. Statistical Science,
14(4):382–417, 1999.

[HT01] D.J. Hand and R.J. Till. A simple generalisation of the area
under the ROC curve for multiple class classification problems.
Machine Learning, 45(2):171–186, 2001.

52 5. Bibliography

[Kun02] L.I. Kuncheva. A theoretical study on six classifier fusion
strategies. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 24:281–286, February 2002.

[Kun04] L.I. Kuncheva. Combining Pattern Classifiers: Methods and
Algorithms. Wiley, 2004.

[KW02] L.I. Kuncheva and Christopher J. Whitaker. Measures of di-
versity in classifier ensembles and their relationship with the
ensemble accuracy. Submitted to Machine Learning, 2002.

[Mit97] T.M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[MU49] N. Metropolis and S. Ulam. The monte carlo method. Journal
of the American Statistical Association (American Statistical
Association), 1949.

[Mur72] A.H. Murphy. Scalar and vector partitions of the probability
score: Part ii. n-state situation. Journal of Applied Meteorol-
ogy, 11:1182–1192, 1972.

[PdP05] A. Prinzie and D. Van den Poe. Constrained optimization
of data-mining problems to improve model performance: A
direct-marketing application. Expert Systems with Applica-
tions, 29(3):630–640, 2005.

[Pla99] J.C. Platt. Probabilistic outputs for support vector machines
and comparisons to regularized likelihood methods. In Ad-
vances in Large Margin Classifiers, pages 61–74. MIT Press,
1999.

[PT03] B. Padmanabhan and A. Tuzhilin. On the use of optimization
for data mining: Theoretical interactions and ecrm opportuni-
ties. Management Science, 49(10, Special Issue on E-Business
and Management Science):1327–1343, 2003.

[RK04] R. Rifkin and A. Klautau. In defense of one-vs-all classifica-
tion. Journal of Machine Learning Research, 5:101–141, De-
cember 2004.

[RWD88] T. Robertson, F.T. Wright, and R.L. Dykstra. Order Re-
stricted Statistical Inference. John Wiley & Sons, 1988.

5.2. Bibliography 53

[TJGD08] S. Tulyakov, S. Jaeger, V. Govindaraju, and D. Doermann.
Review of classifier combination methods. In Machine Learn-
ing in Document Analysis and Recognition, volume 90 of Stud-
ies in Computational Intelligence, pages 361–386. Springer
Berlin / Heidelberg, 2008.

[Wol92] D.H. Wolpert. Stacked generalization. Neural Networks,
5(2):241–259, 1992.

[ZE01] B. Zadrozny and C. Elkan. Obtaining calibrated probability
estimates from decision trees and naive bayesian classifiers. In
ICML, pages 609–616, 2001.

[ZE02] B. Zadrozny and C. Elkan. Transforming classifier scores into
accurate multiclass probability estimates. In Int. Conf. on
Knowledge Discovery and Data Mining, pages 694–699, 2002.

54 5. Bibliography

Part II

Publications Associated to
this Thesis

6
List of Publications

1. A. Bella, C. Ferri, J. Hernández-Orallo, and M.J. Ramı́rez-Quintana.
Joint Cutoff Probabilistic Estimation using Simulation: A Mail-
ing Campaign Application. In Intelligent Data Engineering and
Automated Learning - IDEAL 2007, volume 4881 of Lecture Notes in
Computer Science, pages 609–619. Springer Berlin / Heidelberg, 2007.

• Conference ranking: CORE C.

2. A. Bella, C. Ferri, J. Hernández-Orallo, and M.J. Ramı́rez-Quintana.
Similarity-Binning Averaging: A Generalisation of Binning Cal-
ibration. In Intelligent Data Engineering and Automated Learning -
IDEAL 2009, volume 5788 of Lecture Notes in Computer Science, pages
341–349. Springer Berlin / Heidelberg, 2009.

• Conference ranking: CORE C.

3. A. Bella, C. Ferri, J. Hernández-Orallo, and M.J. Ramı́rez-Quintana.
Calibration of Machine Learning Models. In Handbook of Research
on Machine Learning Applications and Trends: Algorithms, Methods,
and Techniques, pages 128–146. IGI Global, 2010.

4. A. Bella, C. Ferri, J. Hernández-Orallo, and M.J. Ramı́rez-Quintana.
Data Mining Strategies for CRM Negotiation Prescription Prob-
lems. In Trends in Applied Intelligent Systems (IEA/AIE), volume 6096
of Lecture Notes in Computer Science, pages 520–530. Springer Berlin
/ Heidelberg, 2010.

• Conference ranking: 46 among 701 conferences in the Computer
Science Conference Ranking (Area: Artificial Intelligence / Machine
Learning / Robotics / Human Computer Interaction), and CORE
C.

58 6. List of Publications

5. A. Bella, C. Ferri, J. Hernández-Orallo, and M.J. Ramı́rez-Quintana.
Quantification via Probability Estimators. IEEE International
Conference on Data Mining, 0:737–742, 2010.

• Conference ranking: CORE A+.

6. A. Bella, C. Ferri, J. Hernández-Orallo, and M.J. Ramı́rez-Quintana.
Local and Global Calibration. Quantification using Calibrated
Probabilities. Technical report, DSIC-ELP. Universitat Politècnica de
València, 2010.

7. A. Bella, C. Ferri, J. Hernández-Orallo, and M.J. Ramı́rez-Quintana.
Using Negotiable Features for Prescription Problems. Comput-
ing, 91:135–168, 2011.

• Journal ranking: JCR 0.959 (50 of 97, Theory and Methods).

8. A. Bella, C. Ferri, J. Hernández-Orallo, and M.J. Ramı́rez-Quintana.
On the Effect of Calibration in Classifier Combination. (Sub-
mitted to Applied Intelligence).

7
Publications (Full Text)

7.1 Joint Cutoff Probabilistic Estimation using Sim-
ulation: A Mailing Campaign Application

1. A. Bella, C. Ferri, J. Hernández-Orallo, and M.J. Ramı́rez-Quintana. Joint
Cutoff Probabilistic Estimation using Simulation: A Mailing Campaign Appli-
cation. In Intelligent Data Engineering and Automated Learning - IDEAL 2007,
volume 4881 of Lecture Notes in Computer Science, pages 609–619. Springer
Berlin / Heidelberg, 2007.

Joint Cutoff Probabilistic Estimation using
Simulation: A Mailing Campaign Application?

Antonio Bella, Cèsar Ferri, José Hernández-Orallo, and Maŕıa José
Ramı́rez-Quintana

Universitat Politècnica de València, DSIC, Valencia, Spain

Abstract. Frequently, organisations have to face complex situations
where decision making is difficult. In these scenarios, several related deci-
sions must be made at a time, which are also bounded by constraints (e.g.
inventory/stock limitations, costs, limited resources, time schedules, etc).
In this paper, we present a new method to make a good global decision
when we have such a complex environment with several local interwoven
data mining models. In these situations, the best local cutoff for each
model is not usually the best cutoff in global terms. We use simulation
with Petri nets to obtain better cutoffs for the data mining models. We
apply our approach to a frequent problem in customer relationship man-
agement (CRM), more specifically, a direct-marketing campaign design
where several alternative products have to be offered to the same house
list of customers and with usual inventory limitations. We experimen-
tally compare two different methods to obtain the cutoff for the models
(one based on merging the prospective customer lists and using the local
cutoffs, and the other based on simulation), illustrating that methods
which use simulation to adjust model cutoff obtain better results than a
more classical analytical method.

1 Introduction

Data mining is becoming more and more useful and popular for decision making.
Single decisions can be assisted by data mining models, which are previously
learned from data. Data records previous decisions proved good or bad either by
an expert or with time. This is the general picture for predictive data mining.
The effort (both in research and industry) is then focussed on obtaining the best
possible model given the data and the target task. In the end, if the model is
accurate, the decisions based on the model will be accurate as well.

However, in real situations, organisations and individuals must make several
decisions for several given problems. Frequently, these decisions/problems are
interwoven with the rest, have to be made in a short period of time, and are
accompanied with a series of constraints which are also just an estimation of the

? This work has been partially supported by the EU (FEDER) and the Spanish MEC
under grant TIN 2007-68093-C02-02, Generalitat Valenciana under grant GV06/301,
UPV under grant TAMAT and the Spanish project ”Agreement Technologies” (Con-
solider Ingenio CSD2007-00022)

60 7. Publications (Full Text)

real constraints. In this typical scenario, making the best local decision for every
problem does not give the best global result. This is well-known in engineering
and decision making, but only recently acknowledged in data mining. Examples
can be found everywhere: we cannot assign the best surgeon to each operation
in a hospital, we cannot keep a fruit cargo until their optimal consumption point
altogether, we cannot assign the best delivering date for each supplier, or we
cannot use the best players for three matches in the same week.

In this context, some recent works have tried to find optimal global solutions
where the local solutions given by local models are not good. These works address
specific situations: rank aggregation [3] and cost-sensitive learning are examples
of this, a more general “utility-based data mining”1 also addresses this issue,
but also some other new data mining tasks, such as quantification [5], are in this
line. Data mining applied to CRM (Customer-Relationship Management) [1] is
also one of the areas where several efforts have also been done.

Although all these approaches can be of great help in specific situations,
most of the scenarios we face in real data mining applications do not fit many
of the assumptions or settings of these previous works. In fact, many real sce-
narios are so complex that the “optimal” decision cannot be found analytically.
Approximate, heuristic or simplified global models must be used instead. One
appropriate non-analytic way to find good solutions to complex problems where
many decisions have to be made is through simulation.

In this work, we connect inputs and outputs of several data mining mod-
els and simulate the global outcome under different possibilities. Through the
power of repeating simulations after simulations, we can gauge a global cutoff
point in order to make better decisions for the global profit. It is important to
highlight that this approach does not need that local models take the constraints
into account during training (i.e. models can be trained and tested as usual).
Additionally, we can use data which has been gathered independently for train-
ing each model. The only (mild) condition is that model predictions must be
accompanied by probabilities (see e.g. [4]) or certainty values, something that
almost any family of data mining algorithms can provide. Finally, probabilities
and constraints will be used at the simulation stage for estimating the cutoff.

In order to do this, we use the basic Petri Nets formalism [6], with additional
data structures, as a simple (but powerful) simulation framework and we use
probabilistic estimation trees (classical decision trees accompanied with proba-
bilities [4]). We illustrate this with a very frequent problem in CRM: we apply
our approach to a direct-marketing campaign design where several alternative
products have to be offered to the same house list of customers. The scenario is
accompanied, as usual, by inventory/stock limitations. Even though this prob-
lem seems simple at the first sight, there is no simple good analytic solution for
it. In fact, we will see that a reasonable analytic approach to set different cutoffs
for each product leads to suboptimal overall profits. In contrast, using a joint
cutoff probabilistic estimation, which can be obtained through simulation, we
get better results.

1 (http://storm.cis.fordham.edu/˜gweiss/ubdm-kdd05.html)

2

7.1. Joint Cutoff Probabilistic Estimation using Simulation: A Mailing Campaign Application61

The paper is organised as follows. Section 2 sets the problem framework, some
notation and illustrates the analytical (classical) approach. Section 3 addresses
the problem with more than one product and presents two methods to solve
it. Section 4 includes some experiments with the presented methods. The paper
finishes in Section 5 with the conclusions.

2 Campaign Design with One Product

Traditionally, data mining has been widely applied to improve the design of
mailing campaigns in Customer Relationship Management (CRM). The idea is
simple: discover the most promising customers using data mining techniques,
and in this way, increase the benefits of a selling campaign.

The process begins by randomly selecting a sample of customers from the
company database (house list). Next, all these customers receive an advertise-
ment of the target product. After a reasonable time, a minable view is con-
structed with all these customers. In this table, every row represents a different
customer and the columns contain information about customers; the predictive
attribute (the target class) is a Boolean value that informs whether the corre-
sponding customer has purchased or not the target product. Using this view as
a training set, a probability estimation model is learned (for instance a proba-
bility estimation tree). This model is then used to rank the rest of customers
of the database according to the probability of buying the target product. The
last step is to select the optimal cutoff that maximises the overall benefits of the
campaign, i.e. the best cutoff of the customer list ranked by customer buying
probability.

The optimal cutoff can be computed using some additional information about
some associated costs: the promotion material cost (edition costs and sending
cost)(Icost), the benefit from selling one product (b) and the cost to send an
advertisement to a customer (cost). Given all this information, the accumulated
expected benefit for a set of customers is computed as follows. Given a list C
of customers, sorted by the expected benefit (for ck ∈ C,E benefit(ck) = b ×
p(ck)−cost), we calculate the accumulated expected benefit as −Icost+∑j

k=1 b×
p(ck)− cost, where p(ck) is the estimated probability that customer ck buys the
product and j is the size of the sample of customers to which a pre-campaign has
offered the product. The optimal cutoff is determined by the value k, 1 ≤ k ≤ j
for which the greatest accumulated expected benefit is obtained.

The concordance between the real benefits with respect to the expected ben-
efits is very dependent on the quality of the probability estimations of the model.
Therefore, it is extremely important to train models that estimate accurate prob-
abilities (e.g. see [4]). A more reliable estimation of the cutoff can be obtained by
employing different datasets of customers (or by spliting the existing dataset): a
training dataset for learning the probability estimation models, and a validation
dataset to compute the optimal cutoff. With this validation dataset the latter
estimation of the accumulated expected benefit turns into a real calculation of the
accumulated benefit, where p(ck) is changed by f(ck) in the formula, being f(ck)

3

62 7. Publications (Full Text)

the response of ck wrt. the product, such that f(ck) = 0 if customer ck does not
buy the product and f(ck) = 1 if ck buys it. Then, the cutoff is determined by
the greatest accumulated benefit.

Let us see an example where the benefit for the product is 200 monetary
units (m.u.), the sending cost is 20 m.u. and the investment cost is 250 m.u.
In Table 1 we compare the results obtained with each method. According to
the accumulated expected benefit we will set the cutoff at 90% of the customers,
which clearly differs from the maximum accumulated benefit (located at 70%).

Table 1. Accumulated expected benefit vs. Accumulated benefit

Customer Buys Probability E(Benefit) Acc. Exp. Benefit Acc. Benefit

-250 -250

3 YES 0.8098 141.96 -108.04 -70

10 YES 0.7963 139.26 31.22 110

8 YES 0.6605 112.10 143.31 290

1 YES 0.6299 105.98 249.30 470

4 NO 0.5743 94.86 344.15 450

6 NO 0.5343 86.85 431.00 430

5 YES 0.4497 69.94 500.94 610

7 NO 0.2675 33.50 534.44 590

9 NO 0.2262 25.24 559.68 570

2 NO 0.0786 -4.29 555.39 550

3 Using Simulation and Data Mining for a Campaign
Design with More than One Product

The approach shown at the previous section has been successfully applied to
very simple cases (i.e. one single product for each campaign), but computing
optimal cutoffs by analytic methods is impossible for more complex scenarios
(more than one product, constraints for the products, etc.). Therefore, in this
section we develop two different approaches: one is an extension of the analytic
method, and the other is a more novel and original method based on simulation.

Back on our marketing problem, the objective now is to design a mailing
campaign offering N products to a customer list, but taking the following con-
straints into consideration: there are stock limits (as usual), each product has a
different benefit, and the products are alternative, which means that each cus-
tomer would only buy one of them (or none). As we have seen at Section 2,
a good solution, at least apriori, could be to determine a cutoff point defining
the segment of customers we have to focus on. But now, since there are several
products, it is not clear how this cutoff can be defined/determined. Based on the
idea of sorting the customers by their expected benefit, one possibility (what we
call the single approach) is to combine (in some way, like adding or averaging)
the optimal cutoffs which are analytically calculated for each product, in order

4

7.1. Joint Cutoff Probabilistic Estimation using Simulation: A Mailing Campaign Application63

to obtain a unique cutoff for the global problem. An alternative method, that
we call joint simulation approach, is to determine in a dynamic way the global
cutoff. We use a validation set to simulate what will happen in a real situation
if the customer receives the advertisement (of any of the N products).

Considering that all products have the same sending cost (cost), we define
the following two alternative ways for obtaining a global cutoff using a validation
set C:

1. Single Approach: For each product i, we downwardly sort C by the ex-
pected benefit of the customers, obtaining N ordered validation sets Ci (one
for each product i). Now, for each Ci, 1 ≤ i ≤ N , we determine its local
cutoff point as we have explained in Section 2. Then, the global cutoff T is
obtained by averaging the local cutoffs. In order to apply it, we now jointly
sort the customers by their expected benefit considering all products at the
same time (that is, just one ranked list obtained by merging the sets Ci).
That produces as a result a single list SC where each customer appears N
times. Finally, the cutoff T is applied over SC. Then, the real benefit ob-
tained by this method will be the accumulated benefit for the segment of
customers that will receive the advertisement for the total house list, which
will be determined by this cutoff T .

2. Joint Simulation Approach: Here, from the beginning, we jointly sort
the customers downwarded by their expected benefit of all the products, i.e.
we merge the N sets Ci. However, we do not use local cutoffs to derive the
global cutoff, but we calculate the cutoff by simulating N × |C| accumulated
benefits considering all the possible cutoffs Tj , 1 ≤ j ≤ N × |C|, where T1 is
the cutoff that only considers the first element of SC, T2 is the cutoff that
considers the two first elements of SC, and so on. Then, the best accumulated
benefit gives the global cutoff.

To illustrate these two approaches consider a simple example consisting of 10
customers, 2 products (p1 and p2) and the parameters Icostp1

= 150, Icostp2
=

250, b1 = 100, b2 = 200, and cost = 20. Table 2 Left shows for each product
the list of customers sorted by its expected benefit as well as the local cutoffs
marked as horizontal lines. As we can observe, the cutoffs for products p1 and p2
are 90% and 70% respectively. Table 2 Right shows the global set and the global
cutoff, which is marked by an horizontal line, computed by each approach. Note
that the cutoff computed by the single and joint simulation methods is different.
For the single approach, the global cutoff is 80% (the average of 90% and 70%),
whereas the cutoff computed by the joint simulation approach is 90%.

We have adopted Petri nets [6] as the framework to formalise the simulation.
Petri nets are well-known, easy to understand, and flexible. Nonetheless, it is
important to highlight that the method we propose can be implemented with
any other discrete simulation formalism. We used a unique Petri net to simulate
the behaviour of all the customers, but we also implemented additional data
structures to maintain information about customers and products (e.g. remaining
stock for each product, remaining purchases for each customer). The Petri net

5

64 7. Publications (Full Text)

Table 2. Left: Customers sorted by their expected benefit for the case of two products.
Right: Customers and cutoff for the Single and Joint Simulation Approaches

Product p1 Single & Joint Approaches

Customer E(Benefit) fp1 Acc. Benefit Customer Product Acc. Benefit

-150 -400

2 76.61 1 -70 3 p2 -220

8 75.71 1 10 10 p2 -40

9 60.37 0 -10 8 p2 140

5 48.19 1 70 1 p2 320

1 44.96 1 150 4 p2 300

7 30.96 0 130 6 p2 280

10 24.58 1 210 2 p1 360

3 23.04 0 190 8 p1 440

6 7.81 1 270 5 p2 620

4 -4.36 0 250 9 p1 600

5 p1 680

Product p2 1 p1 760

Customer E(Benefit) fp2 Acc. Benefit 7 p2 740

-250 7 p1 720

3 141.96 1 -70 9 p2 700

10 139.26 1 110 Single 10 p1 780

8 112.10 1 290 3 p1 760

1 105.98 1 470 6 p1 840 Joint

4 94.86 0 450 2 p2 820

6 86.85 0 430 4 p1 800

5 69.94 1 610

7 33.50 0 590

9 25.24 0 570

2 -4.29 0 550

can work with as many products and customers as we need with no change
in the Petri net structure. Other similar problems, as mailing campaigns with
non-alternative products, can also be handled without changes. Figure 1 shows
our Petri net which has 24 places and 10 transitions. Each customer arrives to
the Petri net and, thanks to the additional data structures created, the suitable
number of tokens are put in each place to allow for the suitable transitions to
be enabled/disabled and fired or not. E.g. if the remaining stock of the product
is not zero a place P12 is updated with as many tokens as the current stock is,
and place P11 is put to zero. The first place enables the transition T4 that can
be fired if the rest of conditions are fulfilled (place P14 has a token), while the
second place disables the transition T5 that cannot be fired. Only two arcs have
a weight not equal to one, the arc with the product benefit and the arc with the
sending cost. The first arc finishes in the place P1 (Total gross benefit) and the
second one finishes in the place P15 (Total loss). The total (or net) benefit for
each cutoff is calculated subtracting the number of tokens accumulated in the
places P1 and P15 (that is, Total gross benefit -Total loss).

6

7.1. Joint Cutoff Probabilistic Estimation using Simulation: A Mailing Campaign Application65

Fig. 1. Petri net for our mailing campaign

In this scenario, we consider that, at the most, only one of the N products can
be bought since they are alternative products (e.g. several cars or several houses
or different brands for the same product). This constraint suggests to offer to
each customer only the product with the higher probability of being bought. If
we impose this condition then we say that the approach is with discarding. In an
approach with discarding, only the first appearance of each customer is taken
into account. For instance, in the single approach, only the first occurrence of
each customer in the customer segment determined by the global cutoff is pre-
served. Analogously, in the joint simulation approach, the simulation process
does not consider customers that have been already processed. However, since
a prospective customer who receives an offer might finally not buy the prod-
uct, we consider an alternative option which allows several offers to the same
customer. This approach is called without discarding. The combination of the
two approaches and the two options for considering customer repetitions give
four scenarios that will be experimentally analysed in the following section. The
notation used for referring to these four different methods is: Single WO (Sin-
gle approach without discarding), Single WI (Single approach with discarding),
Joint WO (Joint simulation approach without discarding), and Joint WI (Joint
simulation approach with discarding).

4 Experiments with N products

For the experimental evaluation, we have implemented the four methods ex-
plained at Section 3 and the Petri net in Java, and have used machine learning
algorithms implemented in the data mining suite WEKA [7].

7

66 7. Publications (Full Text)

4.1 Experimental settings

For the experiments we have taken a customers file (newcustomersN.db) from
the SPSS Clementine2 samples, as a reference. This file has information about
only 200 customers, with 8 attributes for each one, 6 of them are nominal and the
rest are numeric. The nominal attributes are the sex of the customers (male or
female), region where they live (inner city, rural, town, suburban), whether they
are married, whether they have children, whether they have a car and whether
they have a mortgage. The numeric attributes are the age of the customers and
their annual income.

Since 200 customers are too few for a realistic scenario, we have implemented
a random generator of customers. It creates customers keeping the attribute
distributions of the example file, i.e. for numeric attributes it generates a random
number following a normal distribution with the same mean and deviation as
in the example file, and for nominal attributes it generates a random number
keeping the original frequency for each value of the attributes in the example
file.

Also, to assign a class for each customer (wether s/he buys the product or
not), we implemented a model generator. This model generator is based on a
random decision tree generator, using the attributes and values randomly to
construct the different levels of the tree. We have two parameters which gauge
the average depth of the tree and most importantly, the probability of buying
each product. We will use these latter parameters in the experiments below.

So, the full process to generate a customer file for our experiments consists
of generating the customer data with our random generator of customers and to
assign the suitable class with a model obtained by our model generator.

Finally, these are the parameters we will consider and their possible values:

– Number of customers: 10000 (60% training, 20% validation and 20% testing)
– Number of products: 2, 3 and 4
– Probability of buying each product: 0.01, 0.05, 0.2, 0.5, 0.8, 0.95 or 0.99
– Benefits for each product: 100 monetary units (m.u.) for the product 1 and

100, 200, 500 or 1000 m.u. for the other products
– Sending cost (the same for all products): 10, 20, 50 or 90 m.u.
– Stock for each product: 0.1, 0.2, 0.5 or 1 (multiplied by number of customers)
– Investment cost for each product: benefits of the product multiplied by stock

of the product and divided by 20
– Correlation (how similar the products are): 0.25, 0.5, 0.75 or 1

4.2 Experimental results

The three main experiments consist in testing 100 times the four approaches for
2, 3 and 4 products, where all the parameters are selected randomly for the cases
where there are several possible values.

2 (http://www.spss.com/clementine/)

8

7.1. Joint Cutoff Probabilistic Estimation using Simulation: A Mailing Campaign Application67

If we look at overall results, i.e. averaging all the 100 experiments, as shown
in Table 3, the results for 2, 3 and 4 products are consistent. As suggested in [2]
we calculate a Friedman test and obtain that the four treatments do not have
identical effects, so we calculate a post-hoc test (with a probability of 99.5%)
This overall difference is clearly significant, as the significant analysis shown in
Table 3, illustrates that the joint simulation approaches are better than the single
ones. About the differences between with or without discarding methods, in the
case of 2 products there are no significant differences. For 3 products the Single
WI method wins the Single WO method, and the Joint WO method wins the
Joint WI method. In the case of 4 products the approaches with discarding win
the approaches without them. Moreover, in the case of 3 products, the Joint WO
method clearly outperforms the other 3 methods and, in the case of 4 products
is the Joint WI method which wins the rest of methods.

However, it is important to highlight that these values average many different
situations and parameters, including some extreme cases where all the methods
behave almost equally. This means that in the operating situations which are
more frequent in real applications, the difference may be higher than the one
reported by these overall results.

Moreover, in the case of 2 products, from the results of the 100 iterations we
create three groups taking into account the probability of buying each product
(probability of buying the product 1 is greater, equal or less than probability of
buying the product 2) and 3 groups taking into account the stocks for the prod-
ucts (stock for the product 1 is greater, equal or less than stock for the product
2). The results obtained are shown in Figure 2. On one hand, the maximum
benefit is obtained for all the methods and results are quite similar when the
popularity (probability of buying) of both products is the same. On the other
hand, the maximum benefit is obtained for all the methods and results are quite
similar too when both products have the same stock. The results differ between
the four methods especially when probabilities or stocks are different.

Table 3. Friedman test: wins (
√
) /loses (X)/draws(=)

2 products 3 products 4 products

S.WO S.WI J.WO J.WI S.WO S.WI J.WO J.WI S.WO S.WI J.WO J.WI

Benefits 165626 164568 171225 169485 182444 184077 186205 185694 220264 228483 231771 233724

S.WO - =
√ √

-
√ √ √

-
√ √ √

S.WI = - =
√

X -
√

= X - =
√

J.WO X = - = X X - X X = -
√

J.WI X X = - X =
√

- X X X -

5 Conclusion

In this paper, we have presented a new framework to address decision making
problems where several data mining models have to be applied under several
constraints and taking their mutual influence into account. The method is based
on the conjunction of simulation with data mining models, and the adjustment
of model cutoffs as a result of the simulation with a validation dataset. We have

9

68 7. Publications (Full Text)

Fig. 2. Left: Variations in probability of buying. Right: Variations in stocks

applied this framework to a direct marketing problem, and we have seen that
simulation-based methods are better than classical analytical ones.

This specific direct marketing problem is just an example where our frame-
work can be used. Almost any variation of a mailing campaign design problem
could be solved (without stocks, with other constraints, non-alternative prod-
ucts, time delays, joint replies, etc.) in some cases with no changes in the pre-
sented Petri net and, in the worst case, by just modifying the Petri net that
models the constraints and the relations between models. If not only the cutoff
is to be determined but also the optimal stock or other important variables,
then other techniques, such as evolutionary computation might be used to avoid
a combinatorial explosion of the simulation cases. In our example, though, the
combinations are not so huge to allow for an exhaustive analysis of all of them.

Out from marketing, we see prospective applicability in many other domains.
In particular, the ideas presented here were originated after a real problem we
addressed recently in colaboration with a hospital, where resources and data
mining models from different services were highly interwoven. Other domains
which we are particular familiar with and we plan to use these ideas are the
academic world (e.g. university), where we are using data mining models to
predict the number of registered students per course each year, but until now
we were not able to model the interdependencies between several courses.

References

1. M. Berry and G. Linoff. Mastering Data Mining: The Art and Science of Customer
Relationship Management. John Wiley & Sons, Inc., 1999.

2. J. Demsar. Statistical comparisons of classifiers over multiple data sets. JMLR,
7:1–30, January 2006.

3. R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, and E. Vee. Comparing and
aggregating rankings with ties. In PODS ’04: Proceedings of the 32nd symp. on
Principles of database systems, pages 47–58. ACM Press, 2004.

4. C. Ferri, P. Flach, and J. Hernández. Improving the AUC of Probabilistic Estimation
Trees. In Proc. of the 14th European Conf. on Machine Learning, volume 2837 of
Lecture Notes in Computer Science, pages 121–132, 2003.

5. G. Forman. Counting positives accurately despite inaccurate classification. In
ECML, volume 3720 of LNCS, pages 564–575. Springer, 2005.

6. T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4):541–580, 1989.

7. I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations. Elsevier, 2005.

10

7.1. Joint Cutoff Probabilistic Estimation using Simulation: A Mailing Campaign Application69

70 7. Publications (Full Text)

7.2 Similarity-Binning Averaging: A Generalisation
of Binning Calibration

2. A. Bella, C. Ferri, J. Hernández-Orallo, and M.J. Ramı́rez-Quintana. Similarity-
Binning Averaging: A Generalisation of Binning Calibration. In
Intelligent Data Engineering and Automated Learning - IDEAL 2009, volume
5788 of Lecture Notes in Computer Science, pages 341–349. Springer Berlin /
Heidelberg, 2009.

Similarity-Binning Averaging: A Generalisation
of Binning Calibration

A. Bella, C. Ferri, J. Hernández-Orallo, and M.J. Ramı́rez-Quintana

Universitat Politècnica de València, DSIC, València, Spain

Abstract. In this paper we revisit the problem of classifier calibration,
motivated by the issue that existing calibration methods ignore the prob-
lem attributes (i.e., they are univariate). These methods only use the
estimated probability as input and ignore other important information,
such as the original attributes of the problem. We propose a new calibra-
tion method inspired in binning-based methods in which the calibrated
probabilities are obtained from k instances from a dataset. Bins are con-
structed by including the k-most similar instances, considering not only
estimated probabilities but also the original attributes. This method has
been experimentally evaluated wrt. two calibration measures, including a
comparison with other traditional calibration methods. The results show
that the new method outperforms the most commonly used calibration
methods.

1 Introduction

Many machine learning techniques used for classification are good in discrimi-
nating classes but are poorer in estimating probabilities. One reason for this is
that when many of these techniques were developed, the relevance and need of
good probability estimates was not so clear as it is today. Another reason is that
learning a good classifier (a model which tells accurately between two or more
classes, i.e., with high accuracy) is usually easier than learning a good class prob-
ability estimator. In fact, in the last decade, there has been an enormous interest
in improving classifier methods to obtain good rankers, since a good ranker is
more difficult to obtain than a good classifier, but still simpler than a good class
probability estimator. There are, of course, some other approaches which have
addressed the general problem directly, i.e., some classification techniques have
been developed and evaluated using probabilistic evaluation measures into ac-
count, such as the Minimum Squared Error (MSE) or LogLoss, in the quest for
good class probability estimators.

In this context, and instead of redesigning any existing method to directly ob-
tain good probabilities, some calibration techniques have been developed to date.
A calibration technique is any postprocessing technique which aims at improv-
ing the probability estimation of a given classifier. Given a general calibration
technique, we can use it to improve class probabilities of any existing machine
learning method: decision trees, neural networks, kernel methods, instance-based

7.2. Similarity-Binning Averaging: A Generalisation of Binning Calibration 71

methods, Bayesian methods, etc., but it can also be applied to hand-made mod-
els, expert systems or combined models.

This work is motivated by the realisation that existing calibration methods
only use the estimated probability to calculate the calibrated probability (i.e.,
they are univariate). In fact, most calibration methods are based on sorting the
instances and/or making bins, such as binning averaging [10] or isotonic regres-
sion [3], where the only information which is used to sort or create these bins
is the estimated probability. The same happens with other “mapping” methods,
such as Platt’s method [8]. However, more information is usually available for
every instance, such as the original attributes of the problem.

In this paper, we introduce a new calibration method, called Similarity-
Binning Averaging (SBA), which is similar to binning methods in the sense that
the calibrated probability is calculated from k elements. Instead of sorting the
examples in order to compute the bins, we use similarity to compute the k-most
similar instances to conform one unique bin for each example. For that purpose,
our approach uses not only the estimated probability but the instance attributes
too. As a consequence, the resulting learned function is non-monotonic. That
means that not only calibration will be affected, but discrimination will also be
affected (and hence measures such as the Area Under the ROC Curve (AUC) or
even qualitative measures such as accuracy).

The paper is organised as follows, in Section 2, some of the most-known cali-
bration evaluation measures and calibration methods are reviewed. Next, Section
3 presents our calibration method based on binning. An experimental evaluation
of the different calibration methods wrt. several measures is included in Section
4. Finally, Section 5 concludes the paper and points out the future work.

2 Calibration Methods and Evaluation Measures

In this section we review some of the most-known calibration methods and in-
troduce the evaluation measures we will employ to estimate the calibration of
a classifier. We use the following notation. Given a dataset T , n denotes the
number of examples, and c the number of classes. f(i, j) represents the actual
probability of example i to be of class j. p(j) denotes the prior probability of class
j, i.e., p(j) = nj/n. Given a classifier, p(i, j) represents the estimated probability
of example i to be of class j taking values in [0,1].

2.1 Calibration Methods

As we have mentioned in the introduction, the objective of calibration methods
(as a postprocessing) is to transform the original estimated probabilities1 Some
well-known calibration methods are:

– The binning averaging method [10] consists in sorting the examples in de-
creasing order by their estimated probabilities and dividing the set into k

1 Scores can also be used [11].

2

72 7. Publications (Full Text)

bins (i.e., subsets of equal size). Then, for each bin l, 1 ≤ l ≤ k, the cor-
rected probability estimate for a case i belonging to class j (p∗(i, j)) is the
proportion of instances in l of class j.

– For two-class problems, [3] presented a pair-adjacent violators algorithm
(PAV) for calculating the isotonic regression. The first step is to order de-
creasingly the n elements according to estimated probability and to initialise
p∗(i, j) = f(i, j). The idea is that calibrated probability estimates must be a
monotone decreasing sequence, i.e., p∗1 ≥ p∗2 ≥ . . . ≥ p∗n. If it is not the case,
the PAV algorithm each time that a pair of consecutive probabilities, p∗(i, j)
and p∗(i + 1, j), does not satisfy the above property (p∗(i, j) < p∗(i + 1, j))
replaces both of them by their probability average. This process is repeated
(using the new values) until an isotonic set is reached.

– Platt [8] presents a parametric approach for fitting a sigmoid that maps
estimated probabilities into calibrated ones2.

2.2 Calibration Evaluation Measures

Several measures have been proposed and used for evaluating the calibration of
a classifier:

– Mean Squared Error (MSE) or Brier Score penalises strong deviations from
the true probability.

MSE =

c∑
j=1

n∑
i=1

(f(i, j)− p(i, j))2

n · c
Although originally MSE is not a calibration measure, it was decomposed in
[7] in terms of calibration loss and refinement loss.

– A calibration measure based on overlapping binning is CalBin [2]. This is
defined as follows. For each class, we must order all cases by predicted p(i, j),
giving new indices i∗. Take the 100 first elements (i∗ from 1 to 100) as the
first bin. Calculate the percentage of cases of class j in this bin as the actual
probability, f̂j . The error for this bin is

∑
i∗∈1..100 |p(i∗, j)− f̂j |. Take the second

bin with elements (2 to 101) and compute the error in the same way. At the
end, average the errors. The problem of using 100 (as [2] suggests) is that
it might be a much too large bin for small datasets. Instead of 100 we set a
different bin length, s = n/10, to make it more size-independent.

– There exist other ways of measuring calibration such as Calibration Loss
[5], chi-squared test through Hosmer-Lemeshow C-hat (decile bins) or H-hat
(fixed thresholds), or through LogLoss.

For a more extensive survey of classification measures we refer the reader to [4].

2 Originally, Platt proposed this method to be applied to SVM scores.

3

7.2. Similarity-Binning Averaging: A Generalisation of Binning Calibration 73

3 Calibration by Multivariate Similarity-Binning
Averaging

As we have shown in the previous section, most calibration methods are based
on a univariate transformation function over the original estimated class proba-
bility. In binning averaging, isotonic regression or Platt’s method, this function
is just obtained through very particular mapping methods, using p(i, j) (the esti-
mated probability) as the only input variable. Leaving out the rest of information
of each instance (e.g., their original attributes) is a great waste of information
which would be useful for the calibration process. For instance, in the case of
binning-based methods, the bins are exclusively constructed by sorting the esti-
mated probability of the elements. Binning can be modified in such a way that
bins overlap or bins move as windows, but it still only depends on one variable
(the estimated probability).

The core of our approach is to change the idea of “sorting” for creating bins,
into the idea of using similarity to create bins which are specific for each instance.
The rationale for this idea is as follows. If bins are created by using only the
estimated probability, calibrated probabilities will be computed from possibly
different examples with similar probabilities. The effect of calibration is small,
since we average similar probabilities. On the contrary, if we construct the bins
using similar examples according to other features, probabilities can be more
diverse and calibration will have more effect. Additionally, it will be sensitive
to strong probability deviation given by small changes in one or more original
features. This means that if noise on a variable dramatically affects the output,
probabilities will be smoothed and, hence, they will be more noise-tolerant. For
instance, if (3, 2, a) has class true and (2, 2, a) has class false, the estimated
probability for (3, 2, a) should not be too close to 1.

Based on this reasoning, we have implemented a new calibration method:
Similarity-Binning Averaging (SBA). In this method the original attributes and
the estimated probability are used to calculate the calibrated one.

We have split the method into 3 stages. The “Stage 0” is the typical learn-
ing process. A classification technique is applied to a training dataset to learn
a probabilistic classification model (M). In the training dataset, Xij are the
attributes and Yi is the class. This stage may not exist if the model is given
beforehand (a hand-made model or an old model).

On the left of figure 1 we can observe the “Stage 1” of the SBA method.
In this stage, the trained model M gives the estimated probabilities associated
with a dataset. This dataset can be the same used for training, or an additional
validation dataset V D, as we have shown in figure 1. The estimated probabilities
p(i, j) 1 ≤ j ≤ c are joined as new attributes for each instance i of V D, creating
a new dataset V DP . Finally, on the right of figure 1 shows the “Stage 2” of the
SBA method. To calibrate a new instance I, first, the estimated probabilities are
estimated from the classification model M , and these probabilities are added to
the instance creating a new instance (IP). Next, the k-most similar instances
to this new instance are selected from the dataset V DP . Finally, the calibrated
probability of this instance I for each class j is the predicted class probability

4

74 7. Publications (Full Text)

Fig. 1. Left: Stage 1 of the SBA method. Right: Stage 2 of the SBA method.

of the k-most similar instances using their attributes.
Our method is similar to “cascading” [6]. The main difference is that in our

method the calibrated probability is the predicted class probability of the k-most
similar instances using their attributes and class, i.e., in the first stage instead
of adding the class to the instance (as cascading would do), the estimated prob-
abilities of each class are added.

4 Experimental Results

For the experimental evaluation, we have implemented the evaluation measures
and the calibration methods explained at Sections 2 and 3, and we have used
machine learning algorithms implemented in the data mining suite WEKA [9].

Initially, we have selected 20 (small and medium-sized) binary datasets (table
1) from the UCI repository [1]. We evaluate the methods in two different settings:
training and test set, and training, validation and test set. The reason is because
the calibration methods can use or not an additional dataset to calibrate. In the
training/test setting, (we add a “T” at the end of the name of the methods) ran-
domly, each dataset is split into two different subsets: the training and the test
sets (75% and 25% of the instances, respectively). In the training/validation/test
setting, (we add a “V” at the end of the name of the methods) randomly, each
dataset is split into three different subsets: the training, the validation and the
test sets (56%, 19% and 25% of the instances, respectively). Four different meth-
ods for classification have been used (with their default parameters in WEKA):
NaiveBayes, J48 (a C4.5 implementation), IBk (k = 10) (a k-NN implementa-
tion) and Logistic (a logistic regression implementation). A total of 400 repeti-

5

7.2. Similarity-Binning Averaging: A Generalisation of Binning Calibration 75

tions have been performed for each dataset (100 with each classifier). In each
repetition, for the training/test setting, the training set is used to train a classi-
fier and calibrate the probabilities of the model, and the test set is used to test
the calibration of the model, while for the training/validation/test setting, the
training set is used to train a classifier, the validation set is used to calibrate
the probabilities of the model, and the test set is used to test the calibration
of the model. Furthermore, in each repetition the same training, validation and
test sets are used for all methods.

Table 1. Datasets used in the experiments. Size and number of nominal and numeric
attributes.

Datasets Size Nom. Num. # Datasets Size Nom. Num.

1 Breast Cancer 286 9 0 11 House Voting 435 16 0

2 Wisconsin Breast Cancer 699 0 9 12 Ionosphere 351 0 34

3 Chess 3196 36 0 13 Labor 57 8 8

4 Horse Colic 368 15 7 14 Monks1 556 6 0

5 Credit Rating 690 9 6 15 Mushroom 8124 22 0

6 German Credit 1000 13 7 16 Sick 3772 22 7

7 Pima Diabetes 768 0 8 17 Sonar 208 0 60

8 Haberman BreastW 306 0 3 18 Spam 4601 0 57

9 Heart Statlog 270 0 13 19 Spect 80 0 44

10 Hepatitis 155 13 6 20 Tic-tac 958 8 0

The calibration methods used in the experiments are: binning averaging
(with 10 bins), PAV algorithm, Platt’s method, and Similarity-Binning Aver-
aging (SBA) (with k = 10). All of them have been evaluated for the CalBin and
MSE calibration measures. Apart from comparing the results of the calibration
methods, we also compare them with two reference methods:

– Base: is the value obtained with the classification techniques without cali-
bration.

– 10-NN3: is the value of using the 10 most similar instances (just with the orig-
inal attributes) to directly estimate the calibrated probability. This method
is just to show the importance of using the estimated probabilities as inputs
to compute the similarity.

In tables 2 and 3 we show the results with respect to CalBin and MSE measures
for each method (for both measures the lower the better). These values are the
average of the 400 repetitions for each dataset.

As we can see in the last row of tables 2 and 3, with both calibration measures
our method SBA with the training/test setting has obtained the best results and
our method SBA with the training/validation/test setting has obtained good re-
sults as well.

3 Implemented by an IBk with k = 10 in WEKA

6

76 7. Publications (Full Text)

Table 2. Results by dataset: Measure CalBin. Training/test setting (T) and Train-
ing/validation/test setting (V).

ClassT 10-NNT BinT PAVT PlattT SBAT BinV PAVV PlattV SBAV

1 0.1953 0.1431 0.2280 0.2321 0.1856 0.1827 0.3092 0.2928 0.2446 0.1924
2 0.0494 0.0374 0.0647 0.0447 0.0623 0.0408 0.0791 0.0538 0.0775 0.0423
3 0.0698 0.1472 0.0501 0.0397 0.0434 0.0491 0.0548 0.0448 0.0479 0.0628
4 0.1517 0.1216 0.1533 0.1535 0.1421 0.1164 0.1996 0.1853 0.1563 0.1244
5 0.1220 0.0882 0.1060 0.1035 0.1132 0.0848 0.1408 0.1293 0.1269 0.0874

6 0.1250 0.1340 0.1263 0.1393 0.1268 0.1233 0.1933 0.1855 0.1227 0.1233
7 0.1192 0.1049 0.1220 0.1351 0.1205 0.1105 0.1889 0.1861 0.1267 0.1199
8 0.1984 0.2028 0.2316 0.2400 0.1998 0.1994 0.2877 0.2798 0.2777 0.2149
9 0.1476 0.1412 0.1690 0.1587 0.1529 0.1443 0.2247 0.1995 0.1834 0.1432
10 0.1632 0.1359 0.1643 0.1673 0.1727 0.1332 0.2082 0.1999 0.2597 0.1358

11 0.0665 0.0625 0.0777 0.0542 0.0791 0.0516 0.0945 0.0672 0.1006 0.0588
12 0.1380 0.1588 0.1179 0.0990 0.1358 0.1064 0.1701 0.1428 0.1854 0.1303
13 0.1876 0.2996 0.1984 0.1464 0.2110 0.1820 0.2914 0.1940 0.4478 0.2792
14 0.1442 0.2794 0.1618 0.1355 0.1046 0.1443 0.2067 0.1740 0.1340 0.1730
15 0.0395 0.0366 0.0418 0.0358 0.0468 0.0368 0.0434 0.0359 0.0494 0.0367

16 0.0296 0.0158 0.0270 0.0236 0.0250 0.0194 0.0297 0.0264 0.0285 0.0265
17 0.2606 0.1916 0.2343 0.2376 0.2374 0.2007 0.3207 0.2924 0.2750 0.1844
18 0.0945 0.0471 0.0636 0.0568 0.0951 0.0466 0.0733 0.0658 0.0964 0.0910
19 0.3138 0.3497 0.2995 0.2911 0.3110 0.3110 0.3615 0.3380 0.4265 0.3117
20 0.1240 0.2094 0.1260 0.1198 0.0906 0.0934 0.1736 0.1621 0.0971 0.0824

AVG. 0.1370 0.1453 0.1382 0.1307 0.1328 0.1188 0.1826 0.1628 0.1732 0.1310

There are some differences between the results when calibration methods are
evaluated with each measure (CalBin and MSE) (tables 2 and 3). These differ-
ences come from the different nature of the measures. While CalBin is a measure
that only evaluates calibration, MSE also evaluates other components.

It is important to remark that we are making general comparisons between
methods in equal conditions. First of all we are comparing to classification meth-
ods without calibration (Base). Logically, calibration would not have had any
sense if we had not improved the results. The second comparison is with the 10-
NN method, which is related to our method, but only uses the original attributes
of the problem to make the bin of the 10 elements which are more similar and
to obtain the calibrated probability. The other three methods we compare to
only use the estimated probability to calculate the calibrated probability. The
most interesting comparison is with the binning averaging method, because our
method is also based on the idea of binning.

If we observe table 3, it is important to remark how our method improves
significantly the other calibration methods in terms of MSE.

Additional experiments: grouped by classification method, suitable statisti-
cal tests to confirm the differences in the results are significant and multiclass
experiments can be found at: http://users.dsic.upv.es/∼abella/MulticlassExperiments.pdf.

7

7.2. Similarity-Binning Averaging: A Generalisation of Binning Calibration 77

Table 3. Results by dataset: Measure MSE. Training/test setting (T) and Train-
ing/validation/test setting (V).

ClassT 10-NNT BinT PAVT PlattT SBAT BinV PAVV PlattV SBAV

1 0.2086 0.1912 0.2086 0.2095 0.2016 0.1998 0.2123 0.2136 0.2081 0.1982
2 0.0353 0.0262 0.0510 0.0343 0.0362 0.0306 0.0635 0.0375 0.0380 0.0316
3 0.0465 0.0648 0.0467 0.0387 0.0391 0.0227 0.0515 0.0424 0.0423 0.0332
4 0.1506 0.1351 0.1503 0.1449 0.1442 0.1336 0.1641 0.1535 0.1513 0.1371
5 0.1347 0.1121 0.1244 0.1203 0.1262 0.1160 0.1320 0.1239 0.1287 0.1176

6 0.1889 0.1795 0.1888 0.1883 0.1877 0.1814 0.1849 0.1832 0.1821 0.1800
7 0.1790 0.1749 0.1795 0.1786 0.1777 0.1821 0.1818 0.1779 0.1756 0.1835
8 0.1926 0.1992 0.1924 0.1936 0.1906 0.2005 0.1966 0.1982 0.1974 0.1957
9 0.1491 0.1435 0.1580 0.1503 0.1470 0.1469 0.1675 0.1534 0.1522 0.1390
10 0.1473 0.1294 0.1460 0.1483 0.1397 0.1305 0.1546 0.1505 0.1585 0.1271

11 0.0554 0.0568 0.0646 0.0482 0.0538 0.0456 0.0816 0.0574 0.0599 0.0524
12 0.1266 0.1297 0.1118 0.0981 0.1094 0.0996 0.1311 0.1071 0.1186 0.1141
13 0.1120 0.1233 0.1582 0.1128 0.1044 0.0907 0.2109 0.1419 0.2288 0.1196
14 0.1214 0.1047 0.1172 0.1030 0.1065 0.0517 0.1362 0.1164 0.1244 0.0819
15 0.0083 0.0006 0.0174 0.0040 0.0079 0.0001 0.0198 0.0045 0.0088 0.0003

16 0.0310 0.0311 0.0355 0.0266 0.0307 0.0241 0.0370 0.0275 0.0277 0.0370
17 0.2545 0.1760 0.2343 0.2286 0.2285 0.2080 0.2305 0.2157 0.2225 0.1847
18 0.1027 0.0814 0.0765 0.0721 0.0878 0.0690 0.0800 0.0746 0.0895 0.1042
19 0.2829 0.2459 0.2776 0.2637 0.2437 0.2692 0.2639 0.2482 0.2568 0.2276
20 0.1579 0.1141 0.1480 0.1448 0.1468 0.0817 0.1571 0.1522 0.1526 0.1108

AVG. 0.1343 0.1210 0.1343 0.1254 0.1255 0.1142 0.1428 0.1290 0.1362 0.1188

5 Conclusions

In this work we have revisited the problem of class probability calibration. We
have generalised the idea of binning by constructing the bins using similarity
to select the k-most similar instances. In this way, we have a different bin for
each example and, of course, bins can overlap. Similarity is not computed by
only using the estimated probabilities but also with the problem attributes. Our
hypothesis was that calibration would be more effective the more information we
are able to provide for computing this similarity. Leaving the problem attributes
out (as traditional calibration methods do) is like making the problem harder
than it is.

The implementation of the method is straightforward through any off-the-
shelf k-NN algorithm. Consequently, our method is closely related to the cascade
generalisation method [6].

The experimental results we have presented here confirm the previous hy-
pothesis and show a significant increase in calibration for the two calibration
measures considered, over three well-known and baseline calibration techniques:
non-overlapping binning averaging, Platt’s method and PAV. It is true that
this calibration is partly obtained because of the increase of AUC and it is,
consequently, non monotonic, but in many applications where calibration is nec-
essary the restriction of being monotonic is not only applicable, but it is an

8

78 7. Publications (Full Text)

inconvenience. In fact, when calibrating a model, the original model and class
assignments can be preserved, while the only thing that has to be modified is
the new probabilities. In other words, the predictions of a comprehensible model
composed of a dozen rules can be annotated by the estimated probabilities while
preserving the comprehensibility of the original model.

As future work we are working on attribute-weighted k-NN to form the bins
in order to gauge the importance of attributes for cases when there is a great
number of attributes or a great number of classes. Similarly, we want to use
locally-weighted k-NN, where closer examples have more weight, in order to
make the method more independent from k.

Another future work is the analysis of the method for multiclass problems,
because as we have seen in the definition of our method, it can be applied to
multiclass problems. We have to compare with other approximations like [11]
and find some other calibration methods, since binning, Platt’s and PAV cannot
deal directly with multiclass problems.

References

1. C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.
2. R. Caruana and A. Niculescu-Mizil. Data mining in metric space: an empirical

analysis of supervised learning performance criteria. In Proc. of the 10th Intl.
Conference on Knowledge Discovery and Data Mining, pages 69–78, 2004.

3. M. Ayer et al. An empirical distribution function for sampling with incomplete
information. Annals of Mathematical Statistics, 5:641–647, 1955.

4. C. Ferri, J. Hernández-Orallo, and R. Modroiu. An experimental comparison of
performance measures for classification. Pattern Recogn. Lett., 30(1):27–38, 2009.

5. P. Flach and E. Matsubara. A simple lexicographic ranker and probability estima-
tor. In 18th European Conference on Machine Learning, pages 575–582, 2007.

6. J. Gama and P. Brazdil. Cascade generalization. Machine Learning, 41:315–343,
2000.

7. A. H. Murphy. Scalar and vector partitions of the probability score: Part ii. n-state
situation. Journal of Applied Meteorology, 11:1182–1192, 1972.

8. J. C. Platt. Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods. In Advances in Large Margin Classifiers, pages
61–74. MIT Press, Boston, 1999.

9. I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations. Elsevier, 2005.

10. B. Zadrozny and C. Elkan. Obtaining calibrated probability estimates from deci-
sion trees and naive bayesian classifiers. In Proc. of the 18th Intl. Conference on
Machine Learning, pages 609–616, 2001.

11. B. Zadrozny and C. Elkan. Transforming classifier scores into accurate multiclass
probability estimates. In The 8th ACM SIGKDD Intl. Conference on Knowledge
Discovery and Data Mining, pages 694–699. ACM, 2002.

9

7.2. Similarity-Binning Averaging: A Generalisation of Binning Calibration 79

80 7. Publications (Full Text)

7.3 Calibration of Machine Learning Models

3. A. Bella, C. Ferri, J. Hernández-Orallo, and M.J. Ramı́rez-Quintana. Calibra-
tion of Machine Learning Models. In Handbook of Research on Machine
Learning Applications and Trends: Algorithms, Methods, and Techniques, pages
128–146. IGI Global, 2010.

Calibration of Machine Learning Models

ABSTRACT

Evaluation of machine learning methods is a crucial step before application, because it is essential
to assess how good a model will behave for every single case. In many real applications, not only
the "total" or the "average" of the error of the model is important but it is also important to know
how this error is distributed or how well confidence or probability estimations are made. However,
many machine learning techniques are good in overall results but have a bad distribution
/assessment of the error.

In these cases, calibration techniques have been developed as postprocessing techniques which aim
at improving the probability estimation or the error distribution of an existing model.

In this chapter, we present the most usual calibration techniques and calibration measures. We cover
both classification and regression, and we establish a taxonomy of calibration techniques, while
then paying special attention to probabilistic classifier calibration.

INTRODUCTION

One of the main aims of machine learning methods is to build a model or hypothesis from a set of
data (also called evidence). After this learning process, it is usually necessary to evaluate the quality
of the hypothesis as precisely as possible. For instance, if prediction errors have negative
consequences in a certain application domain of a model (for instance, detection of carcinogenic
cells) it is important to know exactly the accuracy the model has. Therefore, the model evaluation
stage is crucial for the real application of the machine learning techniques. Generally, the quality of
predictive models is evaluated using a training set and a test set (which are usually obtained by
partitioning the evidence into two disjoint sets), or using some kind of cross-validation or bootstrap
if more reliable estimations are desired. These evaluation methods work for any kind of estimation
measure. It is important to mention that different measures can be used depending on the model.
The most common measures are, for classification models, accuracy (or, inversely error), f-
measure, or macro-average. In probabilistic classification, besides the percentage of correctly
classified instances, other measures like logloss, mean squared error (MSE) or Brier's score, or area
under the ROC curve (AUC) are used. For regression, the most common ones are to use MSE or the
mean absolute error (MAE).

With a same result for a quality metric (e.g. MAE), two different models might have a different
error distribution. For instance, a regression model R1 always predicting the true value plus 1 has a
MAE of 1 but it is different to a model R2 that predicts the true value for each n examples but one,
where the error for this one is n. The first seems to be more reliable or stable, or in other words, its
error is more predictable. Similarly, with the same result for a quality metric (e.g. accuracy), two
different models might have different error assessment. For instance, a classification model C1
which is correct 90% of the cases with confidence 0.91 for every prediction is preferable to model
C2 which is correct 90% of the cases with confidence 0.99 for every prediction. The error self-
assessment, i.e. the purported confidence is more accurate in the first case than in the second one.

In both cases above, an overall picture of these results, i.e. an empirical behaviour of how it
behaves, is helpful to improve its reliability or confidence in many cases. In the first case, the
regression model R1 which always predicts the true value plus 1 is clearly uncalibrated, since
predictions are usually 1 unit above the real value. Subtracting 1 unit to all prediction would
calibrate R1. Interestingly, R2 is calibrated in the same way. For the second case, a global calibration

7.3. Calibration of Machine Learning Models 81

requires confidence estimation to be around 0.9 since the models are right 90% of the time.

So, calibration might be understood in many ways, but it is usually built around two issues: how
error is distributed, and how self-assessment (confidence or probability estimation) is performed.
Although both ideas can be applied for both regression and classification, the first one has been
mainly discussed for regression and the second one for classification.

Both are closely related, since for a regular, predictable model such as R1 the one which always
predicts the true value plus 1, it is much easier to estimate a probability (since it is a continuous
value, a probability density function). In this case, the probability estimation can be just a density
function which includes all the probability to the interval between the predicted value minus 1 and
the predicted value.

Estimating probabilities or confidence values is crucial in many real applications. For example, if
we have accurate probabilities, decisions can be made with a good assessment of risks and costs,
using utility models or other techniques from decision making. Additionally, their integration with
other models (e.g. multiclassifiers) or with previous knowledge becomes more robust. In
classification, probabilities can be understood as confidence degrees, especially in binary
classification, thus accompanying every prediction with a reliability score (DeGroot & Fienberg,
1982). Regression models might accompany predictions by confidence intervals or by probability
density functions.

In this context, and instead of redesigning any existing method to directly obtain good probabilities
or a better error distribution, some calibration techniques have been developed to date. A calibration
technique is any postprocessing technique which aims at improving the probability estimation or to
improve error distribution of a given predictive model. Given a general calibration technique, we
can use it to improve any existing machine learning method: decision trees, neural networks, kernel
methods, instance-based methods, Bayesian methods, etc., but it can also be applied to hand-made
models, expert systems or combined models

Depending on the task, different calibration techniques can be applied, and the definition of
calibration can be stated more precisely. The most usual calibration techniques are listed below,
including different names we give them in order to clarify the rest of this chapter, as well as a type
code:

• TYPE CD. Calibration techniques for discrete classification ("(class) distribution calibration
in classification" or simply "class calibration"): a typical decalibration arises when the model
predicts examples of one or more classes in a proportion which does not fit the original proportion,
i.e., the original class distribution. In the binary case (two classes) it can be expressed as a mismatch
between the expected value of the proportion of classes and the actual one. For instance, if a
problem has a proportion of 95% of class 'a' and 5% of class 'b', a model predicting 99% of class 'a'
and 1% of class 'b' is uncalibrated, although it could have a low error (ranging from 4% to 5%) .
This error distribution can be clearly seen on a confusion or contingency table. So, class calibration
is defined as the degree of approximation of the true or empirical class distribution with the
estimated class distribution. The standard way to calibrate a model in this way is by changing the
threshold that determines when the model predicts ‘a’ or ‘b’, making this threshold stricter with
class ‘a’ and milder with class ‘b’ to balance the proportion. Note that this type of calibration, in
principle, might produce more error. In fact, it is usually the case when one wants to obtain a useful
model for problems with very imbalanced class distribution, i.e. the minority class has very few
examples. Note that we are usually interested in a match between global proportions, but this
calibration can also be studied and applied locally. This is related to the problem of "repairing
concavities" (Flach & Wu, 2005).

82 7. Publications (Full Text)

 TYPE CP. Calibration techniques for probabilistic classification ("probabilistic calibration
for classification"): a probabilistic classifier is a classifier which accompanies each prediction with
a probability estimation. If we predict that we are 99% sure, we should expect to be right 99% of
the times. If we are only right 50% of the times, this is not calibrated because our estimation was
too optimistic. Similarly, if we predict that we are only 60% sure, we should expect to be right 60%
of the times. If we are right 80% of the times, this is not calibrated because our estimation was too
pessimistic. In both cases, the expected value of the number or proportion of right guesses (in this
case the probability or the confidence assessment) does not match the actual value. Calibration is
then defined as the degree of approximation of the predicted probabilities to the actual probabilities.
More precisely, a classifier is perfectly calibrated if for a sample of examples with predicted
probability p, the expected proportion of positives is close to p. Note that accuracy and calibration,
although dependent, are very different things. For instance, a random classifier (a coin tosser) which
always assigns 0.5 probability to their predictions is perfectly calibrated. On the other side, a very
good classifier can be uncalibrated if correct positive (resp. negative) predictions are accompanied
by relative low (resp. high) probabilities. Also note that good calibration usually implies (except
from the random coin tosser) that estimated probabilities are different for each example. For some
examples, confidence will be high and for other more difficult ones, confidence will be low. This
implies that measures to evaluate this type of calibration must evaluate agreement between the
expected value and the real value in a local way, by using partitions or bins of the data.

 TYPE RD. Calibration techniques to fix error distribution for regression ('distribution
calibration in regression'): in this case the errors are not distributed regularly along the output value.
The error is concentrated in the big values or it is gone over to positive or negative values. The
expected value which should be close to the actual value can be defined in several ways. For
instance, the expected value of the estimated value (yest) should be equal (or close) to the real value
(y), i.e. E(yest) = E(y) or, equivalently, E(yest – y) = 0. In the example R1 above, E(yest) = E(y) + 1.
The mean error (its expected value) would be 1 and not 0. Another equation that shows that a model
might be uncalibrated is the expected value of the quotient between the estimated value and the real
value, E(yest / y) which should be equal or close to 1. If this quotient is greater than one, the error
used to be positive for high values and negative for low values. Typically, these problems are
detected and penalised by typical measures for evaluating regression models, and many technique
(e.g. linear regression), generate calibrated models (at least in these two aspects mentioned above).
Other kind of more sophisticated techniques or, more frequently, hand-made models, might be
uncalibrated and might require a calibration.

 TYPE RP. Calibration techniques to improve probability estimation for regression
('probabilistic calibration for regression'): This is a relatively new area (Carney & Cunningham,
2006) and is applicable when continuous predictions are accompanied or substituted by a
probability density function (or, more restrictively, confidence intervals). This kind of regression
models are usually referred as "density forecasting" models. Instead of saying that temperature is
going to be 23.2º Celsius, we give a probability density function from which we can calculate that
the probability of the temperature to be between 21º and 25º is 0.9 and the probability of the
temperature to be between 15º and 31º is 0.99. If our predictions are very accurate, density
functions (and hence confidence intervals) should be narrower. If our predictions are bad, density
functions should be broader, in order to approximate the estimated probabilities to the real
probabilities. As in the type CP, a good calibration requires in general that these density functions
are particular for each prediction, i.e., for some cases where the confidence is high, confidence
intervals will be narrower. For difficult cases, confidence intervals will be broader. As in the type
CP, measures to evaluate this type of calibration must evaluate agreement between the expected
value and the real value in a local way, by using partitions or bins of the data.

Table 1 summarises these four types of calibration.

7.3. Calibration of Machine Learning Models 83

TYPE Task Problem Global/Local What is calibrated?
CD Classification Expected class

distribution is different
from real class
distribution

Global or
local

Predictions

CP Classification Expected/estimated
probability of right
guesses different from
real proportion.

Local Probability/confidence

RD Regression Expected output is
different from real
average output.

Global or
local

Predictions

RP Regression Expected/estimated error
confidence intervals or
probability density
functions are too narrow
or too broad.

Local Probability/confidence

Table 1. A taxonomy of calibration problems.

Note that types CD and RD necessarily must modify predictions in order to calibrate the results. In
type CD, if we move the class threshold, some predictions change. In RD if we try, let us say, to
reduce high values and increase low values, predictions also change. In contrast, for types CP and
RP, calibration can be made without (necessarily) modifying predictions: only confidence
assessments or probabilities need to be touched. For CP, in particular, these kinds of calibrations are
known as isotonic. Consequently, some measures as average error will not be affected by these two
types of calibrations.

Additionally, since we want to improve calibration, we need measures to evaluate this
improvement. A calibration measure is any measure which is able to quantify the degree of
calibration of a predictive model. For each type of calibration model, some specific measures are
useful to evaluate the degree of calibration, while others are only partially sensitive or completely
useless. For instance, for CP, the most common measure, accuracy (or % of errors), is completely
useless. For RP, the most common measure, MSE, is completely useless. We will review some of
these calibration measures in the following section.

For all the types in Table 1, type CP is the one which has devoted more attention recently. In fact,
for many researchers in machine learning, the term "calibration" usually refers to this type, without
the need of specifying that there are other types of calibration. Additionally, this is the type which
has developed more techniques and more specific measures. Furthermore, regression techniques
and measures have been traditionally developed to obtain calibrated models, so less improvement is
expected from calibration techniques. For this reason, we will devote much more space to
classification, and very especially to type CP.

Overall, in this chapter we give a general overview about calibration and review some of the most-
known calibration evaluation measures and calibration methods which have been proposed for
classification and regression. We conclude analysing some open questions and challenges which
can constitute the research on calibration in the future.

84 7. Publications (Full Text)

CALIBRATION EVALUATION MEASURES

As mentioned in the introduction, a calibration measure is any measure which is able to quantify the
degree of calibration of a classifier. As we can see in Table 2, many classical quality metrics are not
useful to evaluate calibration techniques. In fact, new and specific measures have been derived or
adapted to evaluate calibration, especially for types CP and RP.

TYPE Calibration measures Partially sensitive measures Insensitive measures
CD Macro-averaged

accuracy, proportion
of classes.

Accuracy, mean F-measure, ... Area Under the ROC
Curve (AUC), MSEp,
Logloss, ...

CP MSEp, LogLoss,
CalBin, CalLoss

 AUC, Accuracy, mean
F-measure, ...

RD Average error,
Relative error

MSEr, MAE, ...

RP Anderson-Darling
(A2) test

 Average error, relative
error, MSEr, MAE, ...

Table 2. Calibration measures (second column) for each type of calibration problem. On the third
and fourth columns we show measures which are partially sensitive (but not very useful in general)
or completely insensitive to each type of calibration.

The second column in the above table shows the calibration measures. This does not mean, though,
that these measures only measure calibration. For instance, for type CP, CalBin and CalLoss only
evaluate calibration, while MSE or Logloss evaluate calibration and other components at the same
time. We will refer to these two types of measures as pure and impure calibration measures,
respectively. Pure calibration measures have the risk that a classifier which always predicts the
positive prior probability is perfectly calibrated according to these measures. Following with the
type CP, some other metrics are insensitive to calibration, such as qualitative measures (accuracy,
mean F-measure, etc.), provided the calibration function is also applied to the threshold, or
measures of ranking (such as AUC), provided that calibration modifies the value of the probabilities
but not their order. This is the reason-why calibration has emerged as an important issue, since for
many traditional quality metrics, calibration issues are completely disregarded. Hence, many
machine learning techniques generate uncalibrated models.

Note that we use two different terms for Mean Square Error, MSEp and MSEr. The reason-why is
that the first one is used for classification and compares the estimated probabilities with the actual
probability (0 or 1), while the second one is used for regression and compares two continuous
values.

From the measures in the second column, Macro-averaged accuracy, proportion of classes, MSEp,
LogLoss, CalBin, CalLoss, Average error, Relative error, Anderson-Darling (A2) test, some of
them are very well-known and do not need any further definition, but a few words: macro-averaged
accuracy is the average of the partial accuracies for each class, the proportion of classes is
computed for the predictions on a dataset and can be compared with the real proportion. Average
error and relative error are well-known in regression. Consequently, we will devote the rest of this
section to explain MSEp, LogLoss, CalBin, CalLoss for type CP and Anderson-Darling (A2) test for
RP.

We will first start with the measures that are applicable to probabilistic classifiers. We use the
following notation. Given a dataset T, n denotes the number of examples, and C the number of
classes. f(i, j) represents the actual probability of example i to be of class j. We assume that f(i, j)

7.3. Calibration of Machine Learning Models 85

always takes values in {0,1} and is strictly not a probability but an indicator function. With

()∑
=

=
n

i
j jifn

1
, , we denote the number of examples of class j. p(j) denotes the prior probability of

class j, i.e., p(j) = nj / n. Given a classifier, p(i, j) represents the estimated probability of example i
to be of class j taking values in [0,1].

With these definitions, we can define the measures as follows.

Mean Squared Error

Mean Squared Error (MSE) is a measure of the deviation from the true probability. We have used
MSEp to distinguish this measure with the homonym used in regression. In classification it is also
know as Brier Score. It is defined as

() ()()
∑∑
= = ×

−
=

C

j

n

i Cn
jipjifMSE

1 1

2,,

Although originally MSE is not a calibration measure, it was decomposed in (Murphy, 1972) in
terms of calibration loss and refinement loss. An important idea of the decomposition is that data is
organised into bins, and the observed probability in each bin is compared to the predicted
probability or to the global probability. As we will see, some kind of binning will be present in
many calibration methods and measures. The calibration component is the only one which is
affected by isotonic calibrations, since discrimination and uncertainty components are not modified
if probabilities are calibrated in such a way that the order is not modified (i.e. isotonic), since bins
will not be altered. For the decomposition, T is segmented in k bins.

() () ()
Cn

jfjfjfjifnjifjipn
MSE

C

j

k

l

n

lii

k

l
lll

l

×

−×+−×−−×

=
∑∑ ∑ ∑
= = ∈= =1 1 ,1 1

2
)(1)()(),(),(),(

where ∑
∈=

=
ln

lii l
l n

jifjif
,1

),(),(and ∑
=

=
n

i n
jifjf

1

),()(. The first term measures the calibration of the

classifier while the rest of the expression measures other components usually grouped under the
term "refinement ".

LogLoss

Logloss is a similar measure, and it is also known as probabilistic cost or entropy. It is very related
with the Kullback-Leibler distance between the real model and the inferred model (Good, 1952;
Good, 1968; Dowe, Farr, Hurst, & Lentin, 1996). It is defined as follows:

 () ()()
∑∑
= =

×
=

C

j

n

i n
jipjifLogloss

1 1

,log,

Calibration by Overlapping Bins

86 7. Publications (Full Text)

One typical way of measuring classifier calibration is that the test set must be split into several
segments or bins, as the MSE decomposition shows (although MSE does not need to use bins to be
computed). The problem of using bins is that if too few bins are defined, the real probabilities are
not properly detailed to give an accurate evaluation. If too many bins are defined, the real
probabilities are not properly estimated. A partial solution to this problem is to make the bins
overlap.

A calibration measure based on overlapping binning is CalBin (Caruana & Niculescu-Mizil, 2004).
This is defined as follows. For each class, we must order all cases by predicted p(i, j), giving new
indices i*. Take the 100 first elements (i* from 1 to 100) as the first bin. Calculate the percentage of

cases of class j in this bin as the actual probability,
^

jf . The error for this bin is

∑ ∈
−

100..1

^

*),(
i jfjip . Take the second bin with elements (2 to 101) and compute the error in the

same way. At the end, average the errors. The problem of using 100 as Caruana and Niculescu-
Mizil (2004) suggest is that it might be a much too large bin for small datasets. Instead of 100 we
might set a different bin length, s = n/10, to make it more size-independent. Formally:

∑ ∑
∑−

=

−+

=

−+

=−
−

=
sn

b

sb

bi

sb

bi

s

jif
jip

sn
jCalBin

1

1

1
*

*

*

*

),(
),(1)(

Calibration Loss

In (Fawcett & Niculescu-Mizil, 2007) and, independently, in (Flach & Matsubara, 2007), the
relationship between the AUC-based measures,and ROC analysis in general, with calibration was
clarified. The receiver operating characteristic curve (ROC curve) is a graphical depiction of
classifiers based on their performance, It is generally applied to binary classifiers. The ROC space
is a two-dimensional graph in which the True positive rate (the fraction of positives correctly
classified or tp rate) is plotted on the Y axis and the False positive rate (the fraction of negatives
incorrectly classified or fp rate) is plotted on the X axis.. Each discrete classifier produces an (fp
rate, tp rate) pair that corresponds to a single point in the ROC space. Probabilistic classifiers
provide a value (probability or score) that represents the degree to which an instance belongs to a
class. In combination with a threshold, the classifier can behave as a binary classifier assigning a
class (for instance, positive) if the produced score is above the threshold and the other class
(negative) otherwise. In these cases, each threshold produces one point in the ROC space, and
drawing a line crossing all the points, a ROC curve is generated. The area under a ROC curve is
abbreviated as AUC. "The AUC has an important statistical property: the AUC of a classifier is
equivalent to the probability that the classifier will rank a randomly chosen positive instance higher
than a randomly chosen negative instance. This is
equivalent to the Wilcoxon test of ranks" (Fawcett, 2006, p. 868). So, in some way, the AUC is a
class separability or instance ranking measure because it evaluates how well a classifier ranks its
predictions.

A perfectly calibrated classifier always gives a convex ROC curve. However, a classifier can
produce very good rankings (high AUC), but probabilities might differ from the actual probabilities.
A method for calibrating a classifier is to compute the convex hull or, equivalently, to use isotonic
regression. Flach and Matsubara (2007) derive a decomposition of the Brier Score into calibration
loss and refinement loss. Calibration loss is defined as the mean squared deviation from empirical
probabilities derived from slope of ROC segments.

7.3. Calibration of Machine Learning Models 87

∑∑ ∑
= ∈ ∈

−=

j

bj bj

r

b si si bjs
jifjipjCalLoss

1 ,, ,

),(),()(

where rj is the number of segments in the ROC curve for class j, i.e. the
number of different estimated probabilities for class j: |{p(i, j)}|. Each ROC
segment is denoted by sj,b, with jrb …1∈ , and formally defined as:

{ }bdsijkpjipnknis djbj <∀∉∧≥∈∀∈= ,,,),(),(:11 ……

Anderson-Darling (A 2) test

From type CP, we move now to type RP, where the task is usually referred to as density forecasting,
where instead of predicting a continuous value, the prediction is a probability density function.
Evaluating this probability density function in terms of calibration cannot be done with typical
measures such as MSEr, relative quadratic error or other classical measures in regression. (Carney
& Cunningham 2006) adapt an old measure, the Anderson-Darling (A 2) test over the probability
integral transform, as a measure of pure calibration. This measure is used to evaluate whether the
probability density functions estimated by the regression model are accurate. For the specific
definition, we refer the reader to (Carney & Cunningham, 2006).

CALIBRATION METHODS FOR TYPE CD

In the case of discrete classification, the best way to know whether a model is uncalibrated
according to the number of instance per class (type CD) is to analyse the confusion matrix. The
confusion matrix is a visual way of showing the recount of cases of the predicted classes and their
actual values. Each column of the matrix represents the instances in a predicted class, while each
row represents the instances in an actual class. One benefit of a confusion matrix is that it is easy to
see if the system is confusing two classes (i.e. commonly mislabelling one as another). For
example, if there are 100 test examples and a classifier, an example of a confusion matrix with three
classes a, b and c could be as follows:

Pr
ed

ic
te

d

 Real
 a B c
a 20 2 3
b 0 30 3
c 0 2 40

In this matrix from 100 examples, 20 were from class a and all of them were well classified, 34
were from class b, 30 of them were well classified as b, 2 were misclassified as a and 2 were
misclassified as c. Finally, 46 of the examples were from class c, 40 of them were well classified as
c, 3 were misclassified as a and 3 were misclassified as b. If we group by class, we have a
proportion of 20, 34, 46 for the real data, and a proportion of 25, 33, 42 for the predicted data. As
we can see, these proportions are quite similar and, therefore, the classifier is calibrated regarding
the original class distribution. On the contrary, the following matrix can be considered:

Pr
ed

ic
te

d Real
 a B
a 60 2
b 40 23

88 7. Publications (Full Text)

In this matrix the proportion of real data are 100, 25, while the proportion of predicted data are 62,
63. So, in this case the model is uncalibrated. One question would be if this type of disproportion is
quite common. The answer is that this situation is very common, and normally the disproportion
used to be in favour of the majority classes. The second question is whether there are any
techniques to solve the problem after obtaining the model. And the answer is ‘yes’, in general. To
do so, the predictions of the models must be accompanied by probabilities or reliability values (or
simply, scores). In this case the threshold that splits into the classes can be changed.

We can consider the technique presented by (Lachiche & Flach, 2003). That work is specialized in
Bayesian classifiers, but the technique can be applied to any classification model which
accompanies its predictions by probabilities or reliabilities. A naïve Bayes classifier estimates the
probabilities for each class independently. So, for example, we can have the following probabilities
for each class: p(a|x) = 0,2 and p(b|x) = 0,05, and there are no more classes, so, the sum of the
probabilities is not 1. In general, the naïve Bayes classifiers assigns very low probabilities, because
the probability is the product of several factors that, at the end, reduce the absolute values of the
probabilities. Nevertheless, this is not the problem. The problem is that the decision rule that is used
to apply the model is the next one:

If p(a|x) > p(b|x) then predicts a
else predicts b

The previous rule has as consequence that the result is not calibrated in most of the cases. It is
possible that the previous rule produces much more examples of the class a (or vice versa) that there
were in the original distribution. The solution to this problem is to estimate a threshold fitted to the
original distribution.

If there are only two classes the solution is very easy, we can calculate a ratio of the two
probabilities: r = p(a|x)/p(b|x). This ratio comes from 0 to infinite. We can normalise it between 0
and 1 with a sigmoid, if we want. The aim is to obtain a threshold u with the test set where the
distribution of the model will be similar to the original distribution. So, the rule changes to:

If r > u then predicts a
else predicts b

Lachiche and Flach (2003) shows that only with an adjustment like this (in that work the threshold
adjustment is based in the ROC analysis and it is extended to multiclass) the results of the models
can be improved significantly. In particular, from 25 analyzed datasets, this simple optimization
improved significantly the accuracy in 10 cases and was reduced only in 4 of them.

Apart from that simple approximation, there are other works where the optimum threshold fitted to
the original distribution is calculated.

CALIBRATION METHODS FOR TYPE CP

Another case is the calibration of probabilistic classification models (type CP) and it requires more
sophisticated techniques. In this case, the aim is that when the model predicts that the probability of
the class a is 0.99, this means that the model is more confident that the class is a that when it is
predicted 0.6. Determining the reliability of a prediction is fundamental in a lot of applications:
diagnosis, instance selection and model combination.

7.3. Calibration of Machine Learning Models 89

Apart from the measures introduced in previous sections (MSE, logloss, CalBin and CalLoss), the
fundamental tool to analyze the calibration of this type of models is the reliability diagrams
(DeGroot & Fienberg, 1982). In those diagrams, the prediction space is discretised into 10 intervals
(from 0 to 0.1, from 0.1 to 0.2, etc.). The examples whose probability is between 0 and 0.1 go into
the first interval, the examples between 0.1 and 0.2 go into the second, etc. For each interval, the
mean predicted value (in other words, the mean predicted probability) is plotted (x axis) in front of
the fraction of positive real cases (y axis). If the model is calibrated the points will be near to the
diagonal.

The following Figure 1 shows an example of an uncalibrated model and one calibrated model.

Figure 1. Reliability diagrams. Left: uncalibrated model. Right: calibrated model.

For example, in the left model there are not cases with predicted probability lower than 0.1. The
next interval, where the examples have an assigned probability between 0.1 and 0.2 for the positive
class (with a mean of 0.17) there are not examples of the positive class. So, these predictions have
too high estimated probability. It should be nearer to 0, instead of nearer to 0.17. On the contrary, if
we goes to the end of the curve, we will see that the examples with assigned probabilities between
0.7 and 0.8, all of them are from the positive class. Probably, they should have higher probability,
because they are surer cases.

On the other hand, in the model on the right, we can see that the correspondence is righter: there are
probabilities distributed from 0 to 1 and, moreover, they used to be the same as the percentage of
examples.

There are several techniques that can calibrate a model like the left one and transform it in a model
like the right one. The most common are: binning averaging, isotonic regression and Platt’s method.
The objective of these methods (as a postprocessing) is to transform the original estimated
probabilities (scores can also be used (Zadrozny & Elkan, 2002)) p(i, j) into calibrated probability
estimates p*(i, j). It is important to remark that all of these general calibration methods can only be
used (directly, without approaches) in binary problems, because all of them use the sorted estimated
probability to calculate the calibrated probability.

When the calibration function is monotonically nondecreasing (also called isotonic). Most
calibration methods presented in the literature are isotonic. This makes it reasonable to use MSE or
LogLoss as measures to evaluate calibration methods, since the ‘separability components’ are not
affected. This is clearly seen through the so-called "decompositions of the Brier score" (Sanders,
1963; Murphy, 1972) included in a previous section in this chapter.

90 7. Publications (Full Text)

Binning Averaging

The first calibration method is called binning averaging (Zadrozny & Elkan, 2001) and consists in
sorting the examples in decreasing order by their estimated probabilities and dividing the set into k
bins (i.e. subsets of equal size). Then, for each bin l, kl ≤≤1 , the corrected probability estimate for
a case i belonging to class j, p*(i, j), is the proportion of instances in l of class j. The number of bins
must be small in order to reduce the variance of the estimates. In their paper, Zadrozny and Elhan
fixed k=10 in the experimental evaluation of the method.

Example: Consider the following training set sorted by its probability of membership to positive
class grouped in 5 bins.

bin instance score

1

e1
e2
e3
e4

0.95
0.94
0.91
0.90

2

e5
e6
e7
e8

0.87
0.85
0.80
0.76

3

e9
e10
e11
e12

0.70
0.66
0.62
0.62

4

e13
e14
e15
e16

0.51
0.49
0.48
0.48

5

e17
e18
e19
e20

0.45
0.44
0.44
0.42

Then, if a new example is assigned a score of 0.68, then it belongs to bin 3 and its corrected

probability is 65.0
4

62.062.066.070.0
=

+++ .

This is just how binning averaging works.

Isotonic Regression (PAV)

A slightly more sophisticated technique also for two-class problems is isotonic regression. (Ayer,
Brunk, Ewing, Reid, & Silverman, 1955) presented a pair-adjacent violators algorithm (PAV) for
calculating the isotonic regression. The idea is that calibrated probability estimates must be a
monotone decreasing sequence, i.e., nppp ≥≥≥ ...21 . If it is not the case, the PAV algorithm each
time that a pair of consecutive probabilities, p(i, j) and p(i + 1, j), does not satisfy the above
property p(i, j) < p(i + 1, j) replaces both of them by their probability average, that is:

7.3. Calibration of Machine Learning Models 91

2
),1(),(),1(),(** jipjipjipjip ++

=+=

This process is repeated (using the new values) until an isotonic set is reached.
Example. The next table shows in the first column the initial scores of one dataset composed by 10
examples. The following columns represent the results obtained in the steps given by the PAV
method where the last one contains the calibrated probabilities.

instance initial

score
PAV
step 1

PAV
step 2

e1 0.76 0.765 0.765
e2 0.77 0.765 0.765
e3 0.70 0.705

0.705
0.705
0.705 e4 0.71

e5 0.66 0.685
0.685

0.686
0.686
0.686

e6 0.71
e7 0.69 0.69
e8 0.68 0.68 0.68
e9 0.48 0.485

0.485
0.485
0.485 e10 0.49

Platt’s Method

(Platt, 1999) presents a parametric approach for fitting a sigmoid that maps estimated probabilities
into calibrated ones. This method was developed to transform the outputs of a support vector
machine (SVM) from the original values []∞∞− , to probabilities, but can be extended to other
types of models or probabilities variations. The idea consists on passing to the values a sigmoid
function of the form:

BjipAe
jip

+×+
=),(

*

1
1),(

The parameters A and B are determined such that minimise the negative log-likelihood of the data.

Platt’s method is most effective when the distortion in the predicted probabilities has a sigmoid
form (as in the previous example). Isotonic regression is more flexible and can be applied to any
monotonic distortion. Nevertheless, isotonic regression used to present overfitting problems in some
cases. Also, all the above methods can use the training set or an additional validation set for
calibrating the model. The quality of the calibration might depend on this possibility and the size of
the dataset. This is a recurrent issue in calibration, and it has been shown that some methods are
better than others for small calibration sets (i.e. Platt’s scaling is more effective than isotonic
regression when the calibration set is small (Caruana & Niculescu-Mizil, 2004)).

Other Related Calibration Methods

Apart from the methods for obtaining calibrated probabilities, there exits other calibration
techniques only applicable to specific learning methods. For instance, smoothing by m-estimate
(Cestnik, 1990) and Laplace (Provost & Domingos, 2000) are another alternative ways of
improving the probability estimates given by an unpruned decision tree. Probabilities are generated
from decision trees as follows. Let T be a decision tree and l a leaf which contain n training

92 7. Publications (Full Text)

instances. If k of these instances are of one class (for instance, of positive class), then when T is

applied to classify new examples it assigns a probability of
n
kp = that each example i in l belongs

to the positive class. But using the frequencies derived from the count of instances of each class in a
leaf might not give reliable probability estimates (for instance, if there are few instances in a leaf).
So, for a two-class problem, the Laplace correction method replaces the probability estimate by

2
1'

+

+
=
n
kp . For a more general multiclass problem with C classes, the Laplace correction is

calculated as
Cn

kp
+

+
=

1' . As Zadrozny and Elkan (2001) say "the Laplace correction method adjusts

probability estimates to be closer to 1/2, which is not reasonable when the two classes are far from
equiprobable, as is the case in many real-world applications. In general, one should consider the
overall average probability of the positive class, i.e. the base rate, when smoothing probability
estimates" (p. 610). Thus, smoothing by m-estimate consists in replacing the above mentioned

probability estimate by
mn
mbkp

+

⋅+
=' where b is the base rate and m is the parameter for controlling

the shift towards b. Given a base rate b, Zadrozny and Elkan (2001) suggest using m such that
10=⋅mb .

Another related technique also applicable to decision trees is curtailment (Zadrozny & Elkan,
2001). The idea is to replace the score of a small leaf (i.e., a leaf with few training instances) by the
estimate of its parent node, if it contains enough examples. If the parent node still have few
examples, we proceed with its parent node and so on until to reach either a node sufficiently
populated or the tree root.

CALIBRATION METHODS FOR RD

The regression case when the goal is to have that the expected output to be equal (or close) to the
real average output (type RD), has been implicitly or explicitly considered in most regression
techniques to date. This is so, because there are two numeric outputs (the predicted value and the
real value), so, there is more variety of corrective functions to apply. First we are going to see
which the problem is in this case. The idea can be depicted (see Figure 2) if we compare the
behaviour of the test data, denoted by "real", and the model that we want to calibrate ("predicted").
In the figure, we show the behaviour of two models with a similar squared error.

Figure 2. Calibration of regression models. Left: an uncalibrated model. Right: a calibrated model.

7.3. Calibration of Machine Learning Models 93

As we said in the introduction, the characteristic of a calibrated model for type RD is that the errors
are equally distributed for the different output values, in other words, the expected value from
distinct functions between the predicted value and the real value must be the right according to the
function. For example, the expected value of the difference between the estimated value (yest) and
the real value (y) must be near to zero, so E(yest – y) = 0. If this value is less than 0, then the real
values are a little higher that the estimated ones, in average, if this value is greater than 0, the real
values are a little lower than the estimated ones. Most regression models used to have this
difference quite well calibrated. On contrary, the expected value of the quotient between the
estimated value and the real value should be near to one, so E(yest / y) = 1. If this quotient is greater
than one, the error used to be positive for high values and negative for low values. Techniques such
as linear regression use to give calibrated models, but others (nonlinear regression, local regression,
neural networks, decision trees, etc.) can give uncalibrated models.

Logically, in both cases, the errors can be corrected, for example, by decreasing the high values and
increasing the low values. In general, the solution comes from obtaining some type of estimation of
the decalibration function between the real values and the predicted values. One of the most
common approximations consists on calculate a linear regression as in the previous plots in the
Figure 2 and apply it to the model, with the aim of fitting the calibration. These calibrations used to

increase the mean squared error
n
yy est

2)(− , but can achieve to reduce the relative mean squared

error
nymeany

yy
est

est

×−
−

))((
)(2

 or the error tolerance.

When the decalibration function is nonlinear (but it has a pattern), the problem of calibration
becomes more complex, and some kind of nonlinear or local regression is needed to calibrate the
model. In these cases, it is not properly a calibration process but a meta-learner, with several stages
(stacking, cascading, etc.).

CALIBRATION METHODS FOR RP

On type RP, the prediction is a probability density function, and it is this function what we need to
improve. This is a much more complex problem since improving this type of calibration can be
done by mangling the prediction estimates (i.e. the MSE can be increased as the result of
calibrating). Consequently, a trade-off must be found. In (Carney & Cunningham, 2006), they
approach the problem by formulating it as a multi-objective problem. The two objectives of
sharpness (a classical quality criterion based on negative log-likelihood (NLL) and the Anderson-
Darling (A 2) test over the probability integral transform, as a measure of pure calibration.

FUTURE TRENDS

Future trends on calibration include a clearer recognition of the effects calibration has and when and
how the four types of calibration are related as well as how they relate to classical quality metrics.
In particular, calibration and traditional measures are sometimes conflicting, and we need to use a
couple of metrics (such as A2 and NLL in the case of type RP), or a hybrid one (such as MSEp in
the case of type CP), to select the best model.

In classification, most calibration methods we have analysed work for binary problems. As we have
seen, most calibration methods are based on sorting the instances and/or making bins. But for more
than two classes it is not so clear how to sort the instances or, more generally, how to make the bins.
This is one of the reasons for which.the calibration problem has been less discussed. There are some
works like (Zadrozny & Elkan, 2002) where the multiclass calibration problem has been studied,

94 7. Publications (Full Text)

but using approaches for reducing a multiclass problem to a set of binary problems and for finding
an approximate solution for this problem.

Another interesting research line consists in to study in depth the relationship between ROC
analysis (or its counterpart for regression, REC analysis) and calibration. For instance, the use of
repairing concavities techniques in ROC analysis (Flach & Wu, 2005) to solve conflicts between
the original class ranking and the new estimated probabilities.

Finally, type RP is a future trend on its own, since it is the most complex case which has been paid
attention much more recently.

CONCLUSIONS

In this chapter we have addressed the problem of predictive model calibration and we have
presented the most known calibration techniques for classification and regression.

We have shown that for classification, there are evaluation measures which are suitable for
calibration (such as logloss, MSE, ...). And, also, there are another measures (for instance,
accuracy) which are not good. Other measures are used in conjunction with calibration measures,
especially the separability measures (AUC). Similarly, in regression, specific measures are needed
to evaluate calibration, although must be usually accompanied by measures of sharpness.

Calibration techniques are usually based on deriving a transformation which converts the values (on
types CD and RD) or the probabilities (on types CP and RP) to better estimates. Very different
transformation techniques have been devised in the literature, but they usually include some kind of
binning or sorting in discrete cases (classification) or some kind of integral in the continuous cases
(regression).

REFERENCES

Ayer, M., Brunk, H., Ewing, G., Reid, W., & Silverman, E. (1955). An empirical distribution
function for sampling with incomplete information. Annals of Mathematical Statistics, 5, 641–647.

Carney, M., & Cunningham, P. (2006). Making good probability estimates for regression. 17th
European Conference on Machine Learning, LNCS: Vol. 4212 (pp. 582-589).

Caruana, R., & Niculescu-Mizil, A.(2004). Data mining in metric space: an empirical analysis of
supervised learning performance criteria. Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (pp 69–78).

Cestnik, B. (1990). Estimating probabilities: A crucial task in machine learning. Ninth European
Conference on Artificial Intelligence (pp. 147–149).

DeGroot, M. & Fienberg, S. (1982). The comparison and evaluation of forecasters. Statistician,
31(1), 12–22.

Dowe, D. L., Farr, G. E., Hurst, A. J., & Lentin, K. L. (1996). Information-theoretic football
tipping. 3rd Conference on Maths and Computers in Sport (pp 233-241).

Fawcett, T. (2006), An introduction to ROC analysis. Pattern Recognition Letters, 27, 861–874.

7.3. Calibration of Machine Learning Models 95

Fawcett, T. & Niculescu-Mizil, A. (2007) PAV and the ROC convex hull. Machine
Learning, 68(1), 97–106.

Flach, P. A., & Matsubara, E. T. (2007). A simple lexicographic ranker and probability estimator.
18th European Conference on Machine Learning (pp. 575–582).

Flach, P.A., & Wu, S. (2005). Repairing concavities in ROC curves. International Joint Conference
on Artificial Intelligence (IJCAI'05) (pp. 702–707).

Good, I. J. (1952). Rational decisions. Journal of the Royal Statistical Society. Series B 14, 107-
114.

Good, I. J. (1968). Corroboration, explanation, evolving probability, simplicity, and a sharpened
razor. British Journal of the Philosophy of Science. 19, 123-143.

Lachiche, N., & Flach, P.A. (2003) Improving Accuracy and Cost of Two-class and Multi-class
Probabilistic Classifiers Using ROC Curves. International Conference on Machine Learning (pp.
416-423).

Murphy, A. H. (1972). Scalar and vector partitions of the probability score: Part ii. n-state situation.
Journal of Applied Meteorology, 11:1182–1192.

Platt, J. C. (1999). Probabilistic outputs for support vector machines and comparisons to regularized
likelihood methods. In P. J. Bartlett, B. Schölkopf, D. Schuurmans, and A. J. Smola, editors,
Advances in Large Margin Classifiers (pp. 61–74). MIT Press, Boston.

Provost, F., & Domingos, P. (2000). Well-trained PETs: Improving probability estimation trees
(Technical Report CDER #00-04-IS). Stern School of Business, New York University.

Sanders, F. (1963). On subjective probability forecasting. Journal of Applied Meteorology, 2, 191-
201.

Zadrozny, B., & Elkan, C. (2001). Obtaining calibrated probability estimates from decision trees
and naive bayesian classifiers. Eighteenth International Conference on Machine Learning (pp. 609–
616).

Zadrozny, B., & Elkan, C. (2002). Transforming classifier scores into accurate multiclass
probability estimates. Eighth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (pp. 694–699).

KEY TERMS AND THEIR DEFINITIONS

Calibration technique: is any postprocessing technique which aims at improving the probability
estimation or to improve error distribution of a given model.

Distribution calibration in classification (or simply "class calibration"): the degree of approximation
of the true or empirical class distribution with the estimated class distribution.

Probabilistic calibration for classification: the degree of approximation of the predicted probabilities
to the actual probabilities.

96 7. Publications (Full Text)

Distribution calibration in regression: the relation between the expected value of the estimated value
and the mean of the real value must be unbiased at the global and local levels.

Probabilistic calibration for regression: when we have "density forecasting" models, a good
calibration requires in general that these density functions are particular for each prediction, narrow
when the prediction is confident and broader when it is less so.

Calibration measure: any kind of quality function which is able to assess the degree of calibration of
a predictive model.

Confusion matrix: is a visual way of showing the recount of cases of the predicted classes and their
actual values. Each column of the matrix represents the instances in a predicted class, while each
row represents the instances in an actual class.

Reliability diagrams. In these diagrams, the prediction space is discretised into 10 intervals (from 0
to 0.1, from 0.1 to 0.2, etc.). The examples whose probability is between 0 and 0.1 go into the first
interval, the examples between 0.1 and 0.2 go into the second, etc. For each interval, the mean
predicted value (in other words, the mean predicted probability) is plotted (x axis) in front of the
fraction of positive real cases (y axis). If the model is calibrated the points will be near to the
diagonal.

BIOGRAPHY

Antonio Bella finished his degree in Computer Science at the Technical University of Valencia in
2004 and started PhD studies in Machine Learning at the Department of Information System and
Computation in the same university. At the same time, in 2005 he obtained a MSc in Corporative
Networks and Systems Integration and in 2007 he started a degree in Statistical Science and
Technology at the University of Valencia.

Cèsar Ferri is an associate professor of computer science at the Department of Information Systems
and Computation, Technical University of Valencia, Spain, where he has been working since
1999. He obtained his BSc at the Technical University of Valencia, and his MSc at the University
of Pisa, Italy. His research interests include machine learning, cost-sensitive learning, relational data
mining, and declarative programming. He has published several journal articles, books, book
chapters and conference papers on these topics.

José Hernández-Orallo, BSc, MSc (Computer Science, Technical University of Valencia, Spain),
MSc (Computer Science, ENSEA, Paris), Ph.D. (Logic, University of Valencia). Since 1996, he has
been with the Department of Information Systems and Computation, Technical University of
Valencia, where he is currently an Associate Professor. His research interests centre on the areas of
artificial intelligence, machine learning, data mining, data warehousing and software engineering,
with several books, book chapters, journal and conference articles on these topics.

María José Ramírez-Quintana received the BSc from the University of Valencia (Spain) and the
Msc and PhD in Computer Science from the Technical University of Valencia (Spain). She is
currently an associate professor at the Department of Information Systems and Computation,
Technical University of Valencia. She has lectured several courses on software engineering,
functional and logic programming, and multiparadigm programming. Her research interest include
mutiparadigm programming, machine learning, data mining algorithms, model combination and
evaluation, and learning from structured data, with more than 60 publications in these areas,
including journal articles, books, book chapters and conference contributions.

7.3. Calibration of Machine Learning Models 97

98 7. Publications (Full Text)

7.4 Data Mining Strategies for CRM Negotiation
Prescription Problems

4. A. Bella, C. Ferri, J. Hernández-Orallo, and M.J. Ramı́rez-Quintana. Data
Mining Strategies for CRM Negotiation Prescription Problems. In
Trends in Applied Intelligent Systems (IEA/AIE), volume 6096 of Lecture Notes
in Computer Science, pages 520–530. Springer Berlin / Heidelberg, 2010.

Data Mining Strategies for CRM Negotiation
Prescription Problems ?

A. Bella, C. Ferri, J. Hernández-Orallo, and M.J. Ramı́rez-Quintana

DSIC-ELP, Universidad Politécnica de Valencia, Camı́ de Vera s/n, 46022 Valencia,
Spain

Abstract. In some data mining problems, there are some input fea-
tures that can be freely modified at prediction time. Examples happen
in retailing, prescription or control (prices, warranties, medicine doses,
delivery times, temperatures, etc.). If a traditional model is learned,
many possible values for the special attribute will have to be tried to
attain the maximum profit. In this paper, we exploit the relationship
between these modifiable (or negotiable) input features and the output
to (1) change the problem presentation, possibly turning a classification
problem into a regression problem, and (2) maximise profits and derive
negotiation strategies. We illustrate our proposal with a paradigmatic
Customer Relationship Management (CRM) problem: maximising the
profit of a retailing operation where the price is the negotiable input
feature. Different negotiation strategies have been experimentally tested
to estimate optimal prices, showing that strategies based on negotiable
features get higher profits.

1 Introduction

In data mining, problem features (or attributes) have been usually classified as
input and output features. A problem is said to be supervised if it has output
features, and it is said to be unsupervised if it does not have output features.
Input features can be of many kinds: numerical, nominal, structured, etc. In
fact, many data mining methods have been specialised to specific kinds of input
features. In supervised learning, it is usually assumed that the goal of a model
is to predict an output value given an input. Consequently, a function is learned
from inputs to outputs, which is eventually applied to new cases.

However, in many application areas not all input feature values are given.
This does not mean that they are unknown (i.e., null), but that they can be mod-
ified or fine-tuned at prediction time. Consider a typical data mining problem: a
loan granting model where loans are granted or not according to a model which
has been learnt from previous customer behaviours. It is generally assumed that
given the input feature values (the customer’s personal information, the loan
amount, the operation’s data, etc.) the model will provide an output (yes/no, a
probability, a profit, etc.). But in real scenarios, the decision of whether the loan

? This work has been partially supported by the EU (FEDER) and the Spanish
MEC/MICINN, under grant TIN 2007-68093-C02 and the Spanish project ”Agree-
ment Technologies” (Consolider Ingenio CSD2007-00022).

7.4. Data Mining Strategies for CRM Negotiation Prescription Problems 99

must be granted or not might change if one or more of the input feature values
can be changed. Perhaps, a loan cannot be granted for 300,000 euros, but it can
be granted for 250,000 euros. If the customer asks the bank’s clerk “what is the
maximum amount you can grant for this operation?”, we have a sort of inverse
problem. Since the model is not generally an analytical one (it is not generally a
linear regression model but a neural network, SVM, decision tree or other kind
of difficult-to-inverte models), the only possibility to give a precise answer to the
customer is to try all the possible input combinations for the loan amount and
find out the maximum value which is granted. After this inefficient and ad-hoc
process, the clerk can give an answer such as: “According to our loan models,
we can grant a maximum of 278,304 euros”. Apart from this inefficiency, there
is another more serious problem: the clerk knows that the model will give a neg-
ative answer to any amount above this maximum, for instance, 278,305 euros,
which makes this loan a quite risky one.

This typical example shows that some input features are crucial in the way
that they can be freely modified at prediction time. The existence of these special
attributes makes it quite inefficient to develop a classification/regression model
in the classical way, since whenever there is a new instance hundreds of possible
values have to be tried for the special attribute in order to see which combination
can attain the maximum profit, or, as the previous example, the maximum risk.
Additionally, these features are frequently associated to negotiation scenarios,
where more than one attempt or offer have to be made, by suitably choosing
different values for this special input feature.

In this paper we analyse these special features that we call “negotiable fea-
tures”, and how they affect data mining problems, its presentation and its use
for confidence probability estimation and decision making. As we will see, we can
exploit the relation between these input features and the output to change the
problem presentation. In this case, a classification problem can be turned into
a regression problem over an input feature [1]. Also, we present a first general
systematic approach on how to deal with these features in supervised models and
how to apply these models in real negotiation scenarios where there are several
attempts for the output value.

The paper is organised as follows. In Section 2 we focus on classification
problems with one numerical negotiable feature, since this is the most frequent
and general case, and it also includes prototypical cases, when the negotiable
feature is price or time. We present a general approach to the inversion prob-
lem which transforms the classification problem into a regression one, where the
negotiable feature is placed as the output. In Section 3, we describe a specific
real scenario (an estate agent’s) where negotiation can take place. We also de-
velop some negotiation strategies using the previous approaches in Section 4. In
Section 5, we experimentally evaluate models and negotiation strategies with a
baseline approach. Section 6 includes the conclusions and future work.

2 Inverting Problem Presentation

As we have mentioned in the introduction, there are many data mining problems
where one or more input attributes, we call negotiable features, can be modified

2

100 7. Publications (Full Text)

at application time. Imagine a model which estimates the delivery time for an
order depending on the kind of product and the units which are ordered. One
possible (traditional) use of this model is to predict the delivery time given a
new order. However, another use of this model is to determine the number of
units (provided it is possible to play with this value) that can be delivered in a
fixed period of time, e.g. one week. This is an example of an “inverse use” of a
data mining model, where all inputs except one and the output are fixed, and
the objective is to determine the remaining input value.

The inversion problem can be defined as follows. Consider a supervised prob-
lem, where input attribute domains are denoted by Xi, i ∈ {1, . . . ,m}, and the
output attribute domain is denoted by Y . We denote the target (real) function
as f : X1 × X2 × . . . × Xm → Y . Values for input and output attributes will
be denoted by lowercase letters. Hence, labelled instances are then tuples of the
form 〈x1, x2, . . . , xm, y〉 where xi ∈ Xi and y ∈ Y . The inversion problem con-
sists in defining the function f I : X1× . . .×Xi−1× Y ×Xi+1× . . .×Xm → Xi,
where Xi is the negotiable feature. In the above example, f is the function that
calculates the delivery time of an order, the negotiable feature Xi is the number
of delivered units and f I calculates this number by considering fixed the delivery
time.

In the inverting problem the property that we call sensitive is satisfied.
Fixing the values of all the other input attributes Xj 6= Xi for at least n examples
from the dataset D (n ≤ |D| being n determined by the user depending on
the problem, the presence of noise, . . .), there are two different values for Xi

producing different output values.

We also assume a monotonic dependency between the input attribute Xi

and the output. This dependency is defined under the assumption that there
is a strict total order relation for the output, denoted by ≺, such that for ev-
ery two different possible values ya, yb ∈ Y , we have that either ya ≺ yb or
yb ≺ ya. This order usually represents some kind of profit, utility or cost. For
numerical outputs, ≺ is usually the order relation between real numbers (either
< or >, depending on whether it is a cost or profit). For nominal outputs, ≺
usually sets an order between the classes. For binary problems, where POS and
NEG represent the positive and negative class respectively, we can just set that
NEG ≺ POS. For more than two classes, the order relation can be derived from
the cost of each class. Analogously, there is also a total order relation for the
input denoted as �. Based on this order, we can establish a monotonic depen-
dency between the input and the output features. Thus, ∀a, b ∈ Xi, if a � b
then f(x1, . . . , xi−1, a, xi+1, . . . , xm) ≺ f(x1, . . . , xi−1, b, xi+1, . . . , xm) (mono-
tonically increasing) or ∀a, b ∈ Xi, if a � b then f(x1, . . . , xi−1, a, xi+1, . . . , xm) �
f(x1, . . . , xi−1, b, xi+1, . . . , xm) (monotonically decreasing).

The inversion problem is well-known [1] and seems simple at first sight, but
many questions arise. First, is f I also a function? In other words, for two different
values for Xi we may have the same value for Y which will ultimately translate
into two inconsistent examples for f I (two equal inputs giving different outputs).
Second, the fact that we have an example saying that a given loan amount

3

7.4. Data Mining Strategies for CRM Negotiation Prescription Problems 101

was granted to a customer does not mean that this is the maximum amount
that could be granted to the customer. Third, deriving probabilities to answer
questions such as “which loan amount places this operation at a probability
of 0.95 of being a profitable customer?” seem to be unsolvable with this new
presentation.

But if we take a closer look at these issues, we see that although relevant,
there is still a possibility behind this problem presentation change. First, many
regression techniques work well for inconsistent examples, so this is not a big
practical problem. Second, it is true that cases do not represent the maximum
amount, but in many cases the examples represent deals and they are frequently
not very far away from the maximum. Or, in the worst case, we can understand
the new task as “inferring” the typical value for Xi such that the loan is granted
to the customer. And third, we can also obtain probabilities in a regression
problem. We extend this idea further below.

If we invert the problem, how can we address the original problem again?
With the original model and for only two classes, it can be done by calculating
p(POS|〈x1, . . . , xi−1, a, xi+1, . . . , xm〉), for any possible value a ∈ Xi. From the
inverted (regression) problem, we get: â = f I(x1, . . . , xi−1, POS, xi+1, . . . , xm).
If we think of â as the predicted maximum or minimum for a which makes a
change on the class, a reasonable assumption is to give 0.5 probability for this,
that is p(POS|〈x1, . . . , xi−1, âxi+1, . . . , xm〉) = 0.5.

The next step is to assume that the output for f I follows a distribution with
centre at â. For instance, we can assume a normal distribution with mean at
â and use the standard error (mean absolute error, mae, on the training set)
as standard deviation σ. In other words, we use N(â,mae2). Figure 1 shows an
example of a normal distribution with centre at â = 305, 677.9 and standard
deviation σ = 59, 209.06 and its associated cumulative distribution function.

Fig. 1. Left: Example of a normal distribution â = 305, 677.9 and σ = 59, 209.06.
Right: Associated cumulative distribution function.

From here, we can derive the probability for any possible value a as the
cumulative distribution function derived from the above normal, i.e., Φâ,mae2 .

Consequently, for solving the original problem, (1) we solve the inversion
problem directly and (2) we use the predicted value of the negotiable feature as

4

102 7. Publications (Full Text)

mean of a normal distribution with the standard error as standard deviation.
We call this model negotiable feature model.

3 Negotiation using Negotiable Feature Models: A Real
Scenario

We are going to illustrate the approach we have presented in the previous section
in a real example. In particular, we have studied the problem of retailing, where
the (negotiable) input feature is the price (denoted by π) and the problem is a
classification problem (buying or not).

We present an example using real data from an estate agent’s, which sells flats
and houses they have in their portfolio. We have several conventional attributes
describing the property (squared metres, location, number of rooms, etc.), and
a special attribute which is our negotiable feature, price. We will use the term
“product” for properties to make it clear that the case is directly extensible to
virtually any retailing problem where price is negotiable.

We start with the simplest negotiation scenario, where there are only one
seller and one buyer who both negotiate for one product. One buyer is interested
in one specific product. S/he likes the product and s/he will buy the product if
its price is under a certain price that s/he is willing to pay for this product.In
fact, if we reduce price to 0, the probability of having class POS approaches 1
and if we increase price to a very large amount, the probability of having class
NEG approaches 1. Moreover, the relation between price and the class order
NEG ≺ POS is monotonically decreasing.

Additionally, in our problem, the seller has a “minimum price” (denoted by
πmin), which corresponds to the price that the owner has set when the product
was included in the portfolio plus a quantity that the seller sets as fixed and
variable costs. Any increment over this minimum price is profitable for the seller.
Conversely, selling under this value is not acceptable for the seller. Therefore,
the seller will not sell the product if its price is under this minimum price that
s/he knows. Finally, the profit obtained by the product will be the difference
between the selling price minus the minimum price: Profit(π) = π − πmin.

Obviously, the goal of the seller is to sell the product at the maximum possible
price (denoted by πmax) which is the value such that the following equalities hold:

f(x1, . . . , xi−1, πmax, xi+1, . . . , xm) = POS
f(x1, . . . , xi−1, πmax + ε, xi+1, . . . , xm) = NEG,∀ε > 0

In other words, the use for the model is: “Which is the maximum price that I can
sell this product to this customer?”. Logically, the higher the price the lower the
probability, so the goal is more precisely to maximise the expected profit, which
is defined as follows:

E Profit(π) = p̂(POS|〈x1, . . . , xi−1, π, xi+1, . . . , xm〉) · Profit(π) (1)
where p̂ is the estimated probability given by the negotiable feature model.

To ease notation we will denote p̂(POS|〈x1, . . . , xi−1, π, xi+1, . . . , xm〉) as
p̂(POS|π), consequently, we can express (1) as:

E Profit(π) = p̂(POS|π) · Profit(π) (2)
with the additional constraint, as mentioned, that π ≥ πmin.

5

7.4. Data Mining Strategies for CRM Negotiation Prescription Problems 103

Fig. 2. Left: Example of estimated probabilities. Right: Associated expected profit.
The minimum and maximum price are also shown.

So, if we have a model which estimates probabilities for the positive class, we
can use formula (2) to choose the price that has to be offered to the customer.
If probabilities are well estimated, for all the range of possible prices, this must
be the optimal strategy. In Figure 2 an example of the plots that are obtained
for the estimated probabilities and expected profit is shown.

But this is the case where we have one bid (one offer). In many negotiation
scenarios, we have the possibility of making several bids, as in bargaining. In this
situation, it is not so direct how to use the model in order to set a sequence of
bids to get the maximum overall expected profit. For instance, if we are allowed
three bids, the overall expected profit of a sequence of bids is defined as:

E Profit(〈π1, π2, π3〉) = p̂(POS|π1) ·Profit(π1)+(1− p̂(POS|π1)) · p̂(POS|π2) ·Profit(π2)+

(1− p̂(POS|π1)) · (1− p̂(POS|π2)) · p̂(POS|π3) · Profit(π3),

where π1 > π2 > π3 ≥ πmin.

4 Negotiation Strategies

In the scenario described in Section 3 the seller is the agent who uses the nego-
tiable feature models to guide the negotiation, while the buyer can only make
the decision of buying or not the product.

When we have one possible offer, it is not sensible to set the price at the
maximum price that our model predicts it can be sold, because in many cases,
because of the prediction error, it will be overestimated and we will not sell the
product. On the contrary, selling at the minimum price ensures that we sell as
many products as possible, but we get minimum profit as well. In Section 3 we
saw that an appropriate way of doing this is by using the expected profit.

Obviously, if the maximum price for the buyer is lower than the minimum
price for the seller, the product is not sold. We will exclude these cases, since
any strategy is not going to work well for them and it is not going to make any
difference to include them or not in terms of comparison.

When we have more than one possible offer, we start with a first offer and if
the price is less or equal than a price which is accepted by the buyer, s/he will

6

104 7. Publications (Full Text)

buy the product. Otherwise, the seller can still make another offer and follow
the negotiation.

It is clear that there exists an optimum solution to this problem when the
seller can make “infinite” offers to the buyer, but it is inefficient and unfeasible.
This idea consists in beginning the negotiation with a very high offer and make
offers of one euro less each time, until the (patient and not very intelligent) buyer
purchases the product or until the price of the product is the minimum price.
In this case the product would be sold by its maximum price, because the buyer
purchases the product when the price offered was equal to the maximum price
considered by the buyer.

In what follows we propose several strategies. One is the “baseline” method
which is typically used in real estate agent’s. For cases with one single bid, we
introduce the strategy called “Maximum Expected Profit” (MEP), which is just
the application of the expected profit as presented in the previous section. For
cases with more bids (multi-bid) we present two strategies: “Best Local Expected
Profit” (BLEP) strategy and “Maximum Global Optimisation” (MGO) strategy.
Let us see all of them in detail below:

– Baseline method (1 bid or N bids). One of the simplest methods to price a
product is to increase a percentage to its minimum price (or base cost). In-
stead of setting a fix percentage arbitrarily, we obtain the percentage (called
α) such that it obtains the best result for the training set. For example if
we obtain that the best α is 0.4, it is expected that the best profit will be
obtained increasing in 40% the minimum price of the properties. If we have
only 1 bid, we will increase the minimum price of the flat by α. But, if we
have N bids, we will have one half of the bids with a value of α less than
the calculated α and the other half of the bids with a value of α greater
than the calculated α. In particular, the value of α will increase or decrease
by α/(N + 1) in each bid. For example, for 3 bids and the previous sample
the three values of α for three bids would be 50%, 40% and 30%. Therefore,
the first offer would be an increase of 50% over the minimum price of the
product, the second an increase of 40% and the third an increase of 30%.

– Maximum Expected Profit (MEP) strategy (1 bid). This strategy is typ-
ically used in marketing when the seller can only make one offer to the
customer. Each price for an instance gives a probability of buying. This
strategy chooses the price that maximises the value of the expected profit.
πMEP = argmaxπ(E Profit(π)).

– Best Local Expected Profit (BLEP) strategy (N bids). This strategy con-
sists in applying the MEP strategy iteratively, when it is possible to make
more that one offer to the buyer. The first offer is the MEP, and if the
customer does not accept the offer, his/her curve of estimated probabilities
is normalised taking into account the following: the probabilities of buying
that are less than or equal to the probability of buying at this price will be
set to 0; and the probabilities greater than the probability of buying at this
price will be normalised between 0 and 1. The next offer will be calculated
by applying the MEP strategy to the normalised probabilities. In the case

7

7.4. Data Mining Strategies for CRM Negotiation Prescription Problems 105

of the probability of buying which is associated to the price is the maximum
probability, it will not be set to 0, because the expected profit would always
be 0. Instead of this, the next offer is directly the half of the price. The
pseudo-code is in Algorithm 1.

– Maximum Global Optimisation (MGO) strategy (N bids). The objective of
this strategy is to obtain the N offers that maximise the expected profit by
generalising the formula that we have presented in Section 3:
πMGO = argmax〈π1,...,πN 〉(E Profit(〈π1, . . . , πN 〉) = argmax〈π1,...,πN 〉(p̂(POS|π1) ·
Profit(π1) + (1 − p̂(POS|π1)) · p̂(POS|π2) · Profit(π2) + . . . + (1 − p̂(POS|π1)) · . . . · (1 −
p̂(POS|πN−1)) · p̂(POS|πN) · Profit(πN)).
Getting the N bids from the previous formula is not direct but can be done
in several ways. One option is just using a Montecarlo approach with a
sufficient number of tuples to get the values for the prices that maximise the
expected profit.

Algorithm 1: BLEP strategy

Require: N , epf (estimated probability function or curve)
Ensure: πBLEB
∀x, epf(x)← p̂(POS|x)
π1 ← πMEB
π ← π1

for πi, i ∈ 2..N do
if epf(π) 6= maxx∈0..∞(epf(x)) then
∀x, epf(x)← 0
if epf(x) 6 epf(π) then
epf ← normalise(epf, epf(π),maxx∈0..∞ epf(x))
{normalise(f(x),mix,max): returns normalised function of f(x) from values min and
max to [0..1]}

end if
πi ← πMEB
π ← πi

else
πi ← π ÷ 2
π ← πi

end if
end for
πBLEB ← 〈π1, . . . , πN 〉

5 Experiments

5.1 Experimental Settings

Experiments have been performed by using real data collected from an estate
agent’s. We have information of 2,800 properties (flats and houses) that were
sold in the last months, for which we have the following attributes (“district”,
“number of rooms”, “square metres” and the “owner’s price”). The “owner’s
price” is the price which the owner wants to obtain for the property.

In the experiments we have assumed that the “owner’s price” is some kind of
“market price” and we have considered that it is the “maximum price”. Although
it is not always true because in some cases the buyer could have paid more than
this for the property.

We have randomly split the dataset into a training set and a test set. 10%
of the data are for training and the rest to test. This tries to simulate a realistic

8

106 7. Publications (Full Text)

situation when there are not too many data for training. Therefore, the results
refer to 2,520 properties, and learning is made from 280 flats. We applied the
solutions proposed in Section 2 to the data. In particular we have used a J48
decision tree1 (with Laplace correction and without pruning) implemented in
the data mining suite WEKA [3]. Since the predicted probability curve given
by a classifier (such as the J48 classifier) typically shows discontinuities and
strong steps when varying a negotiable feature, we have smoothed it with a low-
pass filter with Bartlett overlapping window [2]. The parameter of the window
has been set to the “minimum price” divided by 400. The “inversion problem”
solution has been implemented with the LinearRegression and M5P regression
techniques, also from WEKA.

These three learning techniques have been used to guide the three negotiation
strategies explained in Section 4 (for the MGO strategy we used a Montecarlo
approach using 1,000 random triplets) and they are compared to the two baseline
methods also mentioned in Section 4. In the experiments the number of bids is
either one or set to three, i.e., N = 3. Summing up, we have nine negotiation
methods based on learning techniques and also two baseline methods (without
learning process) using the best possible α (80% for one bid and the triplet
〈100%, 80%, 60%〉 for three bids).

5.2 Experimental Results

In Table 1 we can observe the results obtained for each method, in terms of
number of sold properties, total sold price (in euros) and total profit (in euros).

Table 1. Results obtained by the negotiation strategies, baseline methods and reference methods
(minimum and maximum profit). Sold price and profit measured in euros.

Method Sold flats Sold price Profit

All flats sold at πmin 2,520 356,959,593 0
All flats sold at πmax 2,520 712,580,216 355,620,623

1 bid
Baseline (80%) 1,411 200,662,464 89,183,317

MEP (J48) 1,360 302,676,700 129,628,471
MEP (LinearRegression) 1,777 354,973,300 159,580,109

MEP (M5P) 1,783 358,504,700 161,736,313

3 bids
Baseline (100%, 80%, 60%) 1,588 264,698,467 124,483,288

BLEP (J48) 1,940 382,921,400 173,381,116
BLEP (LinearRegression) 2,056 400,953,200 174,832,025

BLEP (M5P) 2,063 404,009,700 176,874,221
MGO (J48) 1,733 390,529,770 176,020,611

MGO (LinearRegression) 1,918 475,461,200 232,600,223
MGO (M5P) 1,906 476,171,900 234,259,509

As we see in Table 1 all the negotiation methods outperform the baseline
methods. For one bid, MEP is clearly better than the baseline method. For
three bids, both BLEP and MGO are much better than the baseline method.
Overall, MGO makes a global optimisation and hence get better results.

1 In this problem, we only have data of sold properties (positive class), therefore, we
have generated examples of the negative class with a price higher than the “owners’s
price”.

9

7.4. Data Mining Strategies for CRM Negotiation Prescription Problems 107

On the other hand, the regression techniques outperform the J48 decision
tree, so, for this problem the solution of inverting problem presentation out-
performs the improved classifier solution. This is especially dramatic for MGO,
which is the method that depends most on a good probability estimation. This
means that the inversion problem using a normal distribution to get the esti-
mated probabilities turns out to be a very useful approach.

6 Conclusions

This paper introduces a number of new contributions in the area of data mining
and machine learning which can be useful for many application areas: retailing,
control, prescription, and others where negotiation or fine-tuning can take place.
Nonetheless, the implications can affect other decision-making problems where
data mining models are used.

The first major contribution is the analysis of the relation between negotiable
features and problem presentation, and more specifically the inversion problem
which happens naturally when we have to modify or play with the negotiable
attribute. We have seen that using the monotonic dependency we can change of
problem presentation to do the inversion problem (such as changing a classifi-
cation problem into a regression), where the original problem is now indirectly
solved by estimating probabilities using a normal distribution.

The second major contribution is its application to real negotiation problems.
We have developed several negotiation strategies and we have seen how they
behave for one or more bids in a specific problem of property selling. We have
shown that our approach highly improves the results of the classical baseline
method (not using data mining) which is typical in this area. In the end, we
show that the change of problem presentation (from classification into regression
problem, using the negotiable feature, price, as output) gets the best results for
the case with one bid but also for the case with three bids.

Since this work introduces new concepts and new ways of looking at some
existing problems, many new questions and ideas appear. For instance, we would
like to analyse how to tackle the problem when there are more than one nego-
tiable feature at a time, especially for the inversion problem approach (since we
would require several models, one for each negotiable feature).

Finally, more complex negotiation strategies and situations can be explored
in the future: the customer can counter-offer, several customers, etc.

References

1. L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition
(Stochastic Modelling and Applied Probability). Springer, 1997.

2. E.W. Weisstein. CRC concise encyclopedia of mathematics. CRC Press, 2003.
3. I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and

Techniques with Java Implementations. Elsevier, 2005.

10

108 7. Publications (Full Text)

7.5. Quantification via Probability Estimators 109

7.5 Quantification via Probability Estimators

5. A. Bella, C. Ferri, J. Hernández-Orallo, and M.J. Ramı́rez-Quintana. Quan-
tification via Probability Estimators. IEEE International Conference on
Data Mining, 0:737–742, 2010.

Quantification via Probability Estimators ?

A. Bella, C. Ferri, J. Hernández-Orallo, and M.J. Ramı́rez-Quintana

DSIC-ELP, Universitat Politècnica de València, Camı́ de Vera s/n, 46022 València,
Spain

Abstract. Quantification is the name given to a novel machine learning
task which deals with correctly estimating the number of elements of one
class in a set of examples. The output of a quantifier is a real value; since
training instances are the same as a classification problem, a natural ap-
proach is to train a classifier and to derive a quantifier from it. Some
previous works have shown that just classifying the instances and count-
ing the examples belonging to the class of interest (classify & count)
typically yields bad quantifiers, especially when the class distribution
may vary between training and test. Hence, adjusted versions of classify
& count have been developed by using modified thresholds. However,
previous works have explicitly discarded (without a deep analysis) any
possible approach based on the probability estimations of the classifier.
In this paper, we present a method based on averaging the probability
estimations of a classifier with a very simple scaling that does perform
reasonably well, showing that probability estimators for quantification
capture a richer view of the problem than methods based on a threshold.

1 Introduction

George Forman [4][5][6] has introduced and systematised a new supervised ma-
chine learning task called ‘quantification’. Quantification is defined as follows:
“given a labeled training set, induce a quantifier that takes an unlabeled test set
as input and returns its best estimate of the class distribution.”[5]. For instance,
consider a bank that has a credit risk assessment model (possibly a machine
learning classifier), and it is assigned a new portfolio of customers (e.g., 100,000
new customers who originated from an agreement with a retailing company).
A very important (and classical) question is to determine which customers the
credits will be granted to. However, before resolving all of these specific decision
making problems, the bank will typically require an assessment of how many
credits it will grant, i.e., the bank will need to quantify how many of the cus-
tomers in the portfolio will have their credit approved. The accuracy of this
quantification is critical to assigning human and economical resources, long be-
fore any specific decision is made. Also, the result of this estimation may affect

? This work has been partially supported by the EU (FEDER) and the Spanish
MEC/MICINN, under grant TIN 2007-68093-C02, the Spanish project “Agreement
Technologies” (Consolider Ingenio CSD2007-00022) and the GVA project PROME-
TEO/2008/051.

110 7. Publications (Full Text)

the thresholds that may be established for each particular operation since the
assessment of the global risk can affect the way in which each local risk is man-
aged (e.g. the policies will probably change if the plan was to work with 25,000
positive results but we expect 50,000). The quantification problem can be found
in almost any area in data mining, such as failure detection, medical diagnosis,
customer-relationship management, and retailing.

The task is closely related to classification since examples have the same
presentation (several input features and a nominal output feature), but it is
different in that we are not interested in the specific predictions for each instance
of an application dataset, but on the overall count of elements of a particular
class. Consequently, quantification is applied to a batch of examples, and not to
a single example alone. Since the output of the quantification problem is a real
value, it has a relation to regression, but the input of the regressor would be a
single example rather than a set of examples.

Quantification is a very frequent problem in real applications, so it is some-
what surprising that nobody in the data mining community, until George For-
man, recognised, baptised, and addressed this task on its own. In [4][5][6], Forman
develops several methods and defines new experimental settings to evaluate the
task, especially focussing on the cases where the training class distribution is
different to the test class distribution.

One of the first conclusions from these works is that the näıve solution called
classify & count (CC) does not work well. Consequently, several other methods
are introduced, by properly adjusting the threshold and also scaling the result.
Other methods are not based on CC but are still based on thresholds. However,
there is another way to address the problem, which is to consider probability
estimators instead of crisp classifiers. If a classifier estimates a class probability
for each example, the CC method becomes the probability estimation & average
(P&A) method. Surprisingly, this approach is considered a “non-solution” in
Section 3.4 in [4] and an “ill-conceived method” in Section 2.4 in [6]. The reason
for this is clearly shown with an example: “For a well-calibrated classifier, the
output value y = 70% indicates that, of the training cases that score similarly,
approximately 70% were positive. Supposing a large test set contains the same
proportion of positives, as among those cases that score y = 70% ± ε, roughly
70% would be positive. However, if we repeat the test with most of the negative
cases removed at random, then the proportion of positives among the remaining
test cases scoring in this bin (y = 70% ± ε) would be much greater. Thus, the
output of 70% would greatly underestimate the new P (+|y = 70%); and likewise
for every bin. Again, the end effect is that this method would underestimate at
high prevalence and overestimate at low prevalence, just like the CC method.
As a result, the use of probability estimators has not been explored since it has
been considered a “non-solution”.

We agree with the rationale, but this does not necessarily imply that we
should not give adjusted versions of P&A a chance. If adjusted versions of CC
work, such as Forman’s AC and T50, we think we could explore similar (or
different) adjusting methods for P&A. In this paper, we present a simple scal-

2

7.5. Quantification via Probability Estimators 111

ing method over P&A, called “Scaled Probability Average”, which shows very
good performance. A quantifier based on probability estimation is not based
on a threshold, so the appraisal of this threshold is not so critical. In fact, our
method depends on the quality of all the probabilities since it considers all the
information that the classifier gives us about the dataset.

Summing up, the main contributions of this paper are that we introduce
probability estimation to the scene of quantification, and we derive a simple
scaling method that shows good performance.

The paper is organised as follows. Section 2 introduces basic notation and
terminology for the quantification problem and sets the quality measures for
quantification. Section 3 derives the methods based on P&A, presents the plain
version Probability Average (which is actually a bad solution in general) and
then introduces the Scaled Probability Average method. These two methods are
evaluated in Section 4 with a range of test class imbalances and then compared
to other quantification methods. Finally, Section 5 wraps up the paper with the
conclusions and future work.

2 Notation and Previous Work

Given a dataset T , n denotes the number of examples, and c the number of
classes. We will use i to index or refer to examples, so we will express i = 1 . . . n
or i ∈ T indistinctly. f(i, j) represents the actual probability of example i to be
of class j. We assume that f(i, j) always takes values in {0,1} and is not strictly a

probability but a single-label indicator function. With nj =
n∑
i=1

f(i, j), we denote

the number of examples of class j. π(j) denotes the prior probability of class j,
i.e., π(j) = nj/n. When referring to a particular dataset T , we will use the

equivalent expression πT (j) =
∑

i∈T f(i,j)

|T | . Given a classifier, p(i, j) represents

the estimated probability of example i to be of class j taking values in [0,1].
π̂(j) denotes the estimated probability of class j which is defined as π̂T (j) =∑

i∈T p(i,j)
|T | when referring to a dataset T . For the sake of readability, when c = 2,

we will use the symbols ⊕ for the positive class and 	 for the negative class.
Since the probabilities are complementary for two classes, we will focus on the
positive class. Cθ(i, j) is 1 iff j is the predicted class obtained from p(i, j) using a
threshold θ. We can omit θ when it is embedded in the classifier or clear from the

context. When c = 2, we will use the following measures TP =
n∑
i=1

f(i,⊕)C(i,⊕),

TN =
n∑
i=1

f(i,)C(i,), FP =
n∑
i=1

f(i,)C(i,⊕), FN =
n∑
i=1

f(i,⊕)C(i,); we

will also use the ratios, tpr = TP/(TP + FN) and fpr = FP/(FP + TN).
We will use pos for the actual proportion of positives, i.e., π(⊕); and we will
use neg for the actual proportion of negatives, i.e., π(). Finally, the function
clip(X, a, b) truncates a real value X inside an interval [a, b]. We represent the
elements of T of class ⊕ and 	 with T⊕ and T	, respectively.

3

112 7. Publications (Full Text)

2.1 Quantification

Forman [4][5][6] was the first to identify and name the quantification prob-
lem: “quantification is accurately estimating the number of positives in the test
dataset as opposed to classifying individual cases accurately.” Therefore, the
main objective in a quantification task is to estimate the class distribution in
the target population from the distribution observed in the training dataset. This
problem is especially important in many application areas, such as medicine, risk
assessment, diagnosis, etc., where the training dataset does not represent a ran-
dom sample of the target population (because population changes over time or
the classes are highly imbalanced, with the positive class as a minority).

As Forman pointed out, quantification is a machine learning task that is quite
different from classification. In quantification, we are interested in the test set
as a whole in order to determine its class distributions and not in the individual
predictions for each example. In fact, although accurate classifications generally
give accurate class counting, an inaccurate classifier can also be a good quantifier
if false positives and false negatives cancel each other. In [6], Forman introduced
several quantification methods that we arrange into the following three groups:

– Methods based on counting the positive predicted examples. The classify &
count (CC) and the adjusted count (AC) methods belong to this group.

– Methods based on selecting a classifier threshold, but in this case, the thresh-
old is determined from the relationship between tpr and fpr in order to
provide better quantifier estimates. For instance, some methods choose one
particular threshold, such as: the X method, which selects the threshold that
satisfies fpr = 1 − tpr; the Max method, which selects the threshold that
maximises the difference tpr − fpr; or those methods like T50 that select a
particular rate between tpr and fpr. The Median Sweep (MS) method1 is
another method that tests all the thresholds in the test set, estimates the
number of positives in each one, and returns a mean or median of these
estimations.

– Methods based on a mixture of distributions. The Mixture Model (MM)[4] is
included in this group. It consists of determining the distributions from the
classifier scores on the training positive (D⊕) and negative examples (D)
and then modelling the observed distribution D on the test set as a mixture
of D⊕ and D	.

The best results are obtained with AC in general; however, when the train-
ing sets are small and the number of positives is small, other methods such as
T50 or MS can get better results (at the cost of performing worse in other
more balanced situations). Of the above-mentioned methods proposed by For-
man, the simplest one is the CC method. It consists of learning a classifier from
the training dataset and counting the examples of the test set that the clas-
sifier predicts positive (

∑
i∈Test C(i,⊕)). This method gives poor results since

it underestimates/overestimates the proportion of positives, unless the classifier

1 It is proposed when the tpr and fpr are estimated from cross-validation.

4

7.5. Quantification via Probability Estimators 113

is perfect (tpr = 1 and fpr = 0). The AC method is an improvement of the
CC method, which estimates the true proportion of positives p̂os by applying

the equation p̂os = p̂os′−fpr
tpr−fpr , where p̂os

′
is the proportion of predicted positives

∑
i∈Test C(i,⊕)

|Test| . Forman proposed estimating tpr and fpr by cross-validation on

the training set. Since this scaling can give negative results or results above 1,
the last step is to clip p̂os to the range [0..1]. Finally, T50 is another method
that selects the threshold where tpr = 50% and the rest works the same as AC.
This method supposedly behaves better when the denominator in the formula of
p̂os is unstable with AC. We have implemented these three methods in order to
fairly compare the performance of our proposals with them. The reason for this
choice is that these methods are the ones that are most related to ours and their
performance is good, or very good, with respect to other quantification methods
such as X, Max, or MS. In other words, they are representative of the state-of-
the-art in quantification. Motivated by the fact that in quantification only one
result per dataset is produced, Forman proposed an experimental methodology
to evaluate quantification that is different from the one that is normally used for
classification. It consists in varying the class distribution between the training
set and the test set. For the training set, Forman randomly selected the number
of positive and negative examples from a range. For the test set, he varied the
percentage of positive examples to also cover scenarios with imbalanced classes.

As we have mentioned in the introduction, a natural approach to solve the
quantification problem that Forman disregarded is to use a probability estimator
instead of a classifier. But, we will show that there is a different way to estimate
the positive proportion by using probability estimations sharing the spirit of the
CC method.

Moreover, our proposal is supposed to be more robust to variations in the
probability estimation of few examples than other methods based on thresholds
because we take into account all the information from the dataset. For exam-
ple, consider a test set with probabilities and actual classes as follows: (0.90,+),
(0.55,+), (0.53,−), (0.51,−) and (0.21,−). If we set the threshold at 0.6, the pro-
portion of positives is 20%; however, if the threshold is 0.5, then the proportion
of positives is 80%. Note that this is a good classifier, with perfect ordering,
i.e., AUC=1. Therefore, methods that use thresholds are less robust in the sense
that a change in the estimation of few examples could cause a small shift in the
threshold but a large variation in the positive count estimation. However, re-
garding the probabilities of all the examples, the proportion of positives is 54%.
In order to have a large change here, many probability estimations would have
to change significantly.

2.2 Quantification Evaluation

We use two global evaluation measures from the classical error measures for
continuous variables, the Mean Absolute Error (MAE) and the Mean Squared
Error (MSE) for quantification. Forman only used the absolute error in his
experiments, but we consider that the MSE measure is a better way to quantify

5

114 7. Publications (Full Text)

differences between estimations for real values. Let us formalise these measures
in order to better establish the quantification problem and goal.

Consider that we have a method that estimates the proportion of elements
for each class (π̂T (j)). By calculating the absolute difference of these two values,
we have the global MAE for each class, GMAEj(T) = |πT (j)− π̂T (j)|, and for
all the classes we have GMAE(T) = 1

c ·
∑
j=1..cGMAEj(T). Similarly, we cal-

culate GMSEj(T) (πT (j)− π̂T (j))
2

and GMSE(T) = 1
c ·

∑
j=1..cGMSEj(T).

For binary problems, we have that GMAE⊕ = GMAE	 = GMAE and also
that GMSE⊕ = GMSE	 = GMSE. Therefore, for binary problems, we will
only evaluate the error for the proportion of positives.

3 Quantifying by Scaled Averaged Probabilities

The idea of using an average of the probability estimations is supported by
the issue that probabilities represent much richer information than just the de-
cisions, which are simply derived information from the probability estimation
using a threshold. After this rationale, the use of probabilities shapes a family
of methods that we call probability estimation & average. The simplest method
in this family is called Probability Average (PA). First, a probabilistic classifier
is learned from the training data, such as a Probability Estimation Tree or a
Näıve Bayes model. Then, the learned model is applied to the instances in the
test set, obtaining a probability estimation for each one. Finally, the average of
the estimated probabilities for each class is calculated. Although this definition
is multiclass, for the rest of the paper we will concentrate on binary datasets.
In this case, we only need to care about one class (the positive class), and the

method is defined as follows: π̂PATest(⊕) =
∑

i∈Testp(i,⊕)

|Test| .

Logically, if the proportion of positive examples in the training set is different
from the proportion of positive examples in the test set, the result will not be
satisfactory in general. The solution comes precisely from the analysis of the
extreme case when all the elements in the test set are of one class. In this case,
we will get the average probability for the positive cases alone, which can only
be 1 for a perfect classifier (which is not frequently the case). As in the AC
method, the idea is to use a proper scaling.

Nevertheless, from the training set, it is possible to calculate the actual pro-
portion of positive examples (πTrain(⊕)), the positive probability average (π̂Train(⊕)),
the positive probability average for the positives (π̂Train⊕(⊕)), and the positive
probability average for the negatives (π̂Train	(⊕)).

From the definitions, it is easy to check the following: π̂Train⊕(⊕)·πTrain(⊕)+
π̂Train	(⊕) · (1− πTrain(⊕)) = π̂Train(⊕).

From this equation, we derive πTrain(⊕) =
π̂Train(⊕)−π̂Train	 (⊕)

π̂Train⊕ (⊕)−π̂Train	 (⊕) , which

yields a probabilistic version of Forman’s adjustment (see Fig.1). When all are
positives, π̂Train⊕(⊕) sets the maximum, and we scale this to 1. When all are
negatives, π̂Train	(⊕) sets the minimum, and we scale this to 0.

6

7.5. Quantification via Probability Estimators 115

Thus, we propose a new quantification method, which we call Scaled Prob-
ability Average (SPA), applying this last formula (scaling) in the same way as
Forman to the value obtained with the PA method (π̂PATest(⊕)), i.e., π̂SPATest (⊕) =
π̂PA
Test(⊕)−π̂Train	 (⊕)

π̂Train⊕ (⊕)−π̂Train	 (⊕) .

π̂SCCTest (⊕) =

∑
i∈Test C(i,⊕)

|Test| −π̂Train	 (⊕)

π̂Train⊕ (⊕)−π̂Train	 (⊕)

we will get the average probability for the positive cases alone, which can only

be 1 for a perfect classifier (which is not frequently the case). As in the Adjusted

Count (AC) method, the idea is to use a proper scaling.

Nevertheless, from the training set, it is possible to calculate the actual pro-

portion of positive examples (πTrain(⊕)), the positive probability average (π̂Train(⊕)),

the positive probability average for the positives (π̂Train⊕(⊕)), and the positive

probability average for the negatives (π̂Train"(⊕)).

From the definitions, it is easy to check the following: π̂Train⊕(⊕)·πTrain(⊕)+

π̂Train"(⊕) · (1− πTrain(⊕)) = π̂Train(⊕).

From this equation, we derive πTrain(⊕) =
π̂T rain(⊕)−π̂T rain" (⊕)

π̂T rain⊕ (⊕)−π̂T rain" (⊕) , which

yields a probabilistic version of Forman’s adjustment (see Fig.1). When all are

positives, π̂Train⊕(⊕) sets the maximum, and we scale this to 1. When all are

negatives, π̂Train"(⊕) sets the minimum, and we scale this to 0.

Thus, we propose a new quantification method, which we call Scaled Prob-

ability Average (SPA), applying this last formula (scaling) in the same way as

Forman to the value obtained with the PA method (π̂PA
Test(⊕)), i.e., π̂SPA

Test (⊕) =

π̂P A
T est(⊕)−π̂T rain" (⊕)

π̂T rain⊕ (⊕)−π̂T rain" (⊕) .

0

0

1

10.3 0.540.4 0.8 0.9

0.23 0.4 0.83

πTrain(⊕)

π̂Train⊕(⊕)π̂Train(⊕)π̂Train"(⊕)

Fig. 1. Scaling used in the SPA method. The limits in the training set are placed at 0.3 and 0.9.
The estimated value for the training set is 0.54 whereas the actual proportion in the training set is
0.4. The scaling would move a case at 0.4 to 0.23 and a case at 0.8 to 0.83.

In the same way as in the SPA method the proportion of positive examples

estimated by the PA method is scaled, also this scaling can be applied to the

10

Fig. 1. Scaling used in the SPA method. The limits in the training set are placed at 0.3 and 0.9.
The estimated value for the training set is 0.54 whereas the actual proportion in the training set is
0.4. The scaling would move a case at 0.4 to 0.23 and a case at 0.8 to 0.83.

In the same way as in the SPA method, the proportion of positive examples
estimated by the PA method is scaled. This scaling can also be applied to the
proportion of positive examples estimated by the CC method. Therefore, we
propose the Scaled Classify & Count (SCC) method.

4 Experiments

In this section, we present an experimental evaluation of several quantification
methods: those based on classification (i.e., on a threshold), namely CC, AC, T50
(explained in Section 2); our two methods based on probability average, namely
PA and SPA; and a hybrid method (SCC), which is explained in Section 3. We
have not used an internal cross-validation process with the training set to better
estimate the thresholds, tpr and fpr, as Forman does. Instead, we have used an
additional validation set to estimate the thresholds, tpr and fpr. In other words,
the methods are the same, but instead of using a 50 fold cross-validation process
with the training set, we have used two different sets (training and validation)
and repeated the process 100 times.

The experimental setting is based on the common case where we train a
classifier or probability estimator on a training dataset and we want to quantify
the number of examples of one class for a different test dataset. We are especially
interested in cases where class distributions vary between training and test. In
order to get this variation (and being able to consider cases where the majority
class examples are increased or reduced), for each problem, we divided the whole
dataset into 37.5% for training, 37.5% for validation, and 25% for test. With
this original test set, we constructed six different variations test sets: the whole

7

116 7. Publications (Full Text)

0 20 40 60 80 100

0.
00

0.
02

0.
04

0.
06

0.
08

3−CreditR., GMSE, Pi_{Train}(+)=45%

^Pi_{Test}(+)

G
M

S
E

^ ^ ^ ^ ^

CC
AC
T50
SCC
PA
SPA

0 20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

Mean all datasets, GMSE, Pi_{Train}(+)=39%

^Pi_{Test}(+)

G
M

S
E

^ ^ ^ ^ ^

CC
AC
T50
SCC
PA
SPA

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Mean all datasets, GMSE, Pi_{Train}(+)=7%

^Pi_{Test}(+)

G
M

S
E

^ ^ ^ ^ ^

CC
AC
T50
SCC
PA
SPA

0 20 40 60 80 100

0
20

40
60

80
10

0

3−CreditR., GMSE, Pi_{Train}(+)=45%

^Pi_{Test}(+)*100

P
i_

{T
es

t}
(+

)*
10

0

^ ^ ^ ^ ^

CC
AC
T50
SCC
PA
SPA
Diag.

0 20 40 60 80 100

0
20

40
60

80
10

0

Mean all datasets, GMSE, Pi_{Train}(+)=39%

^Pi_{Test}(+)*100

P
i_

{T
es

t}
(+

)*
10

0

^ ^ ^ ^ ^

CC
AC
T50
SCC
PA
SPA
Diag.

0 20 40 60 80 100

0
20

40
60

80
10

0

Mean all datasets, GMSE, Pi_{Train}(+)=7%

^Pi_{Test}(+)*100

P
i_

{T
es

t}
(+

)*
10

0

^ ^ ^ ^ ^

CC
AC
T50
SCC
PA
SPA
Diag.

Fig. 2. Upper-Left: GMSE results with variable test positive ratios for the dataset CreditR. Upper-
Centre: GMSE results with variable test positive ratios for the average of all the datasets. Upper-
Right: GMSE results with variable test positive ratios for the average of all the datasets, with the
proportion of positive examples in the training and validation sets reduced by 90%. Lower-(Left,
Centre and Right): The value of each quantification method for each test setting. The diagonal
shows the perfect value.

8

7.5. Quantification via Probability Estimators 117

Table 1. GMSE measure for each dataset and the average result of all the datasets for each quan-
tification method, and MSE, AUC, CalBin and Accuracy measures for each dataset.

Datasets Size πTr(⊕) CC AC T50 SCC PA SPA MSE AUC CalBin Acc.

1 W.B. Cancer 699 0.34 0.0022 0.0008 0.0667 0.0008 0.0032 0.0006 0.04 0.82 0.04 0.95
2 Chess 3196 0.48 0.0033 0.0002 0.0155 0.0024 0.0116 0.0001 0.06 0.82 0.09 0.93
3 Credit R. 690 0.45 0.0219 0.0046 0.0115 0.0070 0.0286 0.0037 0.15 0.76 0.16 0.82
4 German C. 1000 0.31 0.0921 0.0265 0.0277 0.0598 0.0878 0.0176 0.24 0.65 0.26 0.65
5 Pima D. 768 0.35 0.0572 0.0160 0.0247 0.0332 0.0642 0.0099 0.21 0.69 0.23 0.70
6 House V. 435 0.38 0.0044 0.0018 0.0522 0.0018 0.0048 0.0014 0.07 0.81 0.07 0.92
7 Monks1 556 0.49 0.0449 0.0072 0.0186 0.1025 0.0487 0.0057 0.16 0.72 0.23 0.79
8 Mushroom 8124 0.48 0.0268 0.0004 0.0380 0.0022 0.0211 0.0003 0.12 0.80 0.13 0.84
9 Spam 4601 0.39 0.0118 0.0003 0.0284 0.0006 0.0156 0.0003 0.10 0.80 0.10 0.88
10 Tic-tac 958 0.34 0.0626 0.0107 0.0127 0.0525 0.0671 0.0062 0.19 0.71 0.23 0.72
11 Breast C. 286 0.29 0.1280 0.1118 0.1171 0.1638 0.1057 0.0829 0.28 0.60 0.31 0.62
12 Haberman B. 306 0.27 0.2045 0.1478 0.1265 0.2555 0.1316 0.1049 0.28 0.59 0.31 0.60
13 Heart D. 303 0.45 0.0236 0.0108 0.0235 0.0116 0.0291 0.0083 0.15 0.75 0.17 0.80
14 Heart S. 270 0.43 0.0251 0.0141 0.0352 0.0152 0.0320 0.0111

¯
0.15 0.75 0.18 0.80

15 Ionosphere 351 0.35 0.0429 0.0075 0.0446 0.0068 0.0487 0.0053 0.17 0.75 0.19 0.81
16 Monks2 601 0.34 0.2386 0.1826 0.2146 0.3087 0.1168 0.1732 0.27 0.55 0.31 0.52
17 Monks3 554 0.48 0.0010 0.0004 0.0151 0.0069 0.0151 0.0006 0.05 0.82 0.13 0.97
18 Hepatitis 155 0.19 0.1536 0.1241 0.1329 0.1454 0.1226 0.0885 0.27 0.66 0.30 0.66
19 Sonar 208 0.46 0.0525 0.0460 0.0622 0.0521 0.0572 0.0400 0.26 0.67 0.27 0.69
20 Spect 80 0.49 0.1009 0.0921 0.1308 0.1530 0.0722 0.0879 0.24 0.68 0.27 0.70

AVG. 0.39 0.0649 0.0403 0.0599 0.0691 0.0542 0.0324 0.17 0.72 0.2 0.77

test set with the original proportion of classes, and five test sets changing the
proportion of classes (100% of examples of positive class and 0% of negative class,
75% and 25%, 50% and 50%, 25% and 75%, and 0% and 100%). The proportions
were obtained by random undersampling using a uniform distribution.

In order to have a broad range of classifiers and probability estimators, we
used four different methods from WEKA [7]: NäıveBayes, J48 (a C4.5 implemen-
tation), IBk (k = 10) (a k-NN implementation), and Logistic (a logistic regres-
sion implementation). We used the WEKA default parameters in the methods
(except the parameter k in the IBk method that is set to 10). A total of 100
repetitions were performed for each dataset (25 for each classifier). We selected
20 binary datasets (Table 1) from the UCI repository [1]. We adopted the same
criterion as Forman, and the positive class is the minority class.

In Table 1, we show the results with respect to the GMSE measure2 for each
method. These values are the average of the 100 repetitions for each dataset.
We also include MSE, AUC, CalBin and Accuracy measures (see, e.g. [3] for a
definition of these measures). For each dataset, as suggested in [2], we calculated
a Friedman test and showed that the six methods do not have identical effects, so
we calculated the Nemenyi post-hoc test to compare all the methods with each
other (with a probability of 99.5%). The values in bold show that this method
outperforms the others and that the difference is statistically significant. Also, if
several values are underlined, this indicates that these methods outperform the

2 GMAE results portray a similar picture.

9

118 7. Publications (Full Text)

rest with a statistically significant difference, but the difference between the two
is not significant.

The results are categorical as far as the use of probability estimators. Not only do
they work, but they outperform all the other methods. Of course, as we expected,
a proper scaling is the key to success. In the same way that AC dramatically
improves CC, SPA also improves PA. However, by looking at the table in more
detail we can get more insight. For instance, while CC and PA are relatively
close, SPA is able to improve PA more than AC is able to improve CC (in
relative terms). The reason may be found in the way that SPA is not based
on thresholds (or measures such as tpr or fpr which depend on them), but on
averages. Thus, the results show that SPA is more robust. Regarding the other
methods, SCC is a hybrid method that uses classification to estimate the base
proportion and uses the probability average to scale it. The result shows no clear
improvement over CC or PA. This supports the thesis that, for SPA, it is the
conjunction of PA with the scaling what makes the results good. The behaviour
of T50 is expected, since it highly depends on the threshold and this is a method
oriented to cases where the original training set is highly imbalanced.

In order to analyse the effect of imbalance (in the training set), we repeated
the experiments but reduced the number of examples of the positive class by
90% in the training and validation sets. In this situation, the SPA method still
obtains good results, but, in most cases, the differences between the SPAmethod
and the AC and T50 methods are not statistically significant. We want to remark
that AC and T50 methods are designed for situations where the proportion of
classes are imbalanced. Even though, this second experimental setting is more
favourable for the AC and T50 methods, SPA method still obtains good results.
These results are summarised in Fig.2 (right).

Finally, in order to analyse the effect with respect to test imbalance, for
each dataset, we analysed the results for the six different test set imbalances.
The conclusion was that the behaviour is similar in all the datasets. The best
results (as expected) are obtained with class proportions that are close to the
original class proportion or close to 0.5, and much worse as we get closer to 0
or 1 proportions. In Fig.2 (left), we show a typical case of a dataset where the
errors are much lower when the test proportion is close to the original training
proportion. In Fig.2 (centre), we show the average results for the 20 datasets
without reducing the proportion of examples of the positive class in the training
set. In Fig.2 (right), we show the results of reducing the proportion of examples
of the positive class by 90% in the training and validation sets. Fig.2 (centre)
shows that when the proportion of examples of the positive class in the test set
is more or less between 20% and 60%, the AC method is the one that obtains
the best results. In the rest of proportions, the SPA is the best method because
its behaviour is always quite similar. With this in mind, it is logical to think in
terms of a new “mixed” method, which uses the method that obtain the best
results in each interval. We have not implemented this method, but we propose
its implementation and experimental evaluation as an interesting topic for future
work.

10

7.5. Quantification via Probability Estimators 119

5 Conclusions and Future Work

Quantification is an old and frequent problem that has only very recently re-
ceived proper attention as a separate machine learning task. In our opinion, one
of the most natural ways to address the problem is to average the probability
estimations for each class because we use all the information provided by the
probability estimator and because we do not rely so much on a good threshold
choice. However, in the same way that CC does not work, this easy approach
does not work. Since CC can be adjusted, we have seen that a simple probability
average method can also be adjusted. We have derived a generalisation of For-
man’s scaling for probabilities, and we have derived a new method from it. The
results are highly positive and show that the use of probability estimators for
quantification is good to pursue, which can lead to new methods in the future.

As further future work, there are obviously several areas (cost quantification
[6]) and experimental settings (very imbalanced training datasets) that are bor-
rowed from Forman’s seminal works for which a more exhaustive evaluation of
our methods and the derivation of specialised ones should be addressed. One of
these extensions is quantification for more than two classes. Our PA method is
originally multiclass, but the scaling used in SPA is not. We think that proper
methods (different to indirect 1vs1 or 1vsall) could be derived using probability
averaging.

Finally, quantification for regression is also a machine learning task that
should be investigated (as we stated in the introduction with the credit assess-
ment problem, where an estimation of the total amount for a customer portfolio
and not the number of granted credits would be the goal). In fact, quantification
for regression might be closer to quantification through probability averaging
than through classification.

References

1. C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.
2. J. Demsar. Statistical comparisons of classifiers over multiple data sets. Journal of

Machine Learning Research, 7:1–30, January 2006.
3. C. Ferri, J. Hernández-Orallo, and R. Modroiu. An experimental comparison of

performance measures for classification. Pattern Recogn. Lett., 30(1):27–38, 2009.
4. G. Forman. Counting positives accurately despite inaccurate classification. In

ECML, pages 564–575, 2005.
5. G. Forman. Quantifying trends accurately despite classifier error and class imbal-

ance. In KDD, pages 157–166, 2006.
6. G. Forman. Quantifying counts and costs via classification. Data Min. Knowl.

Discov., 17(2):164–206, 2008.
7. I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and

Techniques with Java Implementations. Elsevier, 2005.

11

120 7. Publications (Full Text)

7.6. Local and Global Calibration. Quantification using Calibrated Probabilities121

7.6 Local and Global Calibration. Quantification
using Calibrated Probabilities

6. A. Bella, C. Ferri, J. Hernández-Orallo, and M.J. Ramı́rez-Quintana. Local and
Global Calibration. Quantification using Calibrated Probabilities. Technical
report, DSIC-ELP. Universitat Politècnica de València, 2010.

Local and Global Calibration. Quantification
using Calibrated Probabilities

A. Bella, C. Ferri, J. Hernández-Orallo, and M.J. Ramı́rez-Quintana

DSIC-ELP, Universitat Politècnica de València, Camı́ de Vera s/n, 46022 València,
Spain

Abstract. In this document we present an study of calibration meth-
ods for quantification that complements the paper “Quantification via
Probability Estimators” [3].

1 Quantification and Calibration

Given the results of the Section IV in [3], a question that arises is the impact of
having good probability estimators for quantification, since the method proposed
in Section III in [3] is based on a probability average. [7][8][9] discusses that some
bad classifiers can be good quantifiers, but also (and frequently) that some good
classifiers can be very bad quantifiers. The key issue to understand this when
we use classify & count and related methods is how the threshold is chosen.
The key issue to understand this when we use average probability methods is
calibration [4][5][11][14][2]. A random, but well-calibrated classifier can give very
good results with the SPA method, when training and test class distributions
match. On the contrary, a very good classifier, with high separability (e.g. a high
AUC) can have very bad calibration and give very bad quantification results with
the SPA method. But there are some other, more surprising cases. Consider
the worst classifier possible, which in the binary case outputs p(i,⊕) = 1 for
every example i of class 	 and outputs p(i,⊕) = 0 for every example i of class
⊕. If the dataset is balanced, quantification will be perfect. But calibration
in this case is extremely poor. As a result, calibration plays a very important
role for quantification using probabilities, but the phenomenon is more complex
than it seems at first sight, even in the easy cases where training and test class
distributions are equal.

1.1 Local and Global Calibration

The first intuition from the previous discussion is that we do not need to have
good calibration for every single prediction to have an overall good quantification
result. This suggests the distinction of what we call local (traditional) calibration
and global calibration. Let us see local calibration first.

A probability estimator is said to be perfectly calibrated [5] if as the number
of predictions goes to infinity, the predicted probability p(i, j) goes to the em-
pirical probability. In other words, the expectation of example i to be of class j

122 7. Publications (Full Text)

is indeed p(i, j). Note that this does not mean that a classifier derived from the
estimator is always correct. In fact, an estimator always outputting p(i,⊕) = 0.5
for every i for a balanced binary problem (with classes ⊕ and) is completely
useless but perfectly calibrated.

Since the previous definition is based on an expectation or an empirical prob-
ability, this logically depends on a distribution. This means that a classifier can
be perfectly calibrated with respect to a distribution but not with respect to
a different distribution. For instance, the previous perfectly calibrated classi-
fier always outputting p(i,⊕) = 0.5 becomes poorly calibrated if the problem
distribution changes to a situation where classes are now highly imbalanced.

Instead of distributions, we will talk about datasets, and we will define perfect
calibration in a more specific way using the notion of bin:

Definition 1. Given a dataset D, a set B ⊂ D is an ε-bin if ∀j ∈ C and
∀i, k ∈ B, |p(i, j)− p(k, j)| ≤ ε, where C are the classes of the dataset.

A 0-bin is any set such that all the elements in the bin have the same estimated
probability. An ε-bin B is maximal if there is no other ε-bin B′ such that B ⊂ B′.
The value ε is called the calibration width and it is naturally assumed to be less
than or equal to 1. From here we define perfect calibration as follows:

Definition 2. A probability estimator is ε-calibrated for a dataset D with a
tolerance τ iff for every maximal ε-bin B we have that:

∀j
∣∣∣
P
i∈B p(i,j)
|B| −

P
i∈B f(i,j)
|B|

∣∣∣ ≤ τ

We need to explain the meaning of both τ and ε. The meaning of τ is a degree
of accordance or tolerance between the expected frequency in a bin and the
actual probability. This is, then, a calibration measure. When τ = 0 we talk
about perfect calibration. The meaning of τ is hence similar to existing measures
of degrees of calibration, such as ‘calbin’ and the calibration component in the
Brier’s score [12][10], which are also based on the notion of binning (as well as
some calibration methods (see e.g. [14][6])).

The meaning of ε is different and regulates the granularity/strictness of the
bins. In fact, we can talk about local (traditional) calibration when ε = 0 and
we can talk about global calibration when ε = 1. Or, more precisely, we can
talk about different degrees of local/global calibration, with 0-calibration being
the extreme point for local calibration and 1-calibration being the other extreme
point for global calibration.

Let us see some examples. Consider for instance a binary probability estima-
tor with values:

Example 1.
p(1,⊕) = 1 with f(1,⊕) = 1 p(5,⊕) = 0.75 with f(5,⊕) = 1
p(2,⊕) = 0.75 with f(2,⊕) = 1 p(6,⊕) = 1

3 with f(6,⊕) = 1
p(3,⊕) = 0.75 with f(3,⊕) = 0 p(7,⊕) = 1

3 with f(7,⊕) = 0
p(4,⊕) = 0.75 with f(4,⊕) = 1 p(8,⊕) = 1

3 with f(8,⊕) = 0

2

7.6. Local and Global Calibration. Quantification using Calibrated Probabilities123

The previous estimator is perfectly 0-calibrated, since the maximal 0-bins are
B1 = {1}, B2 = {2, 3, 4, 5}, B3 = {6, 7, 8}. It can be seen that the average
frequency for class ⊕ in B1 is 1, the average frequency for class ⊕ in B2 is 0.75
and the average frequency for class ⊕ in B3 is 1

3 .

And now consider the following example

Example 2.
p(1,⊕) = 5/6 with f(1,⊕) = 1 p(6,⊕) = 5/6 with f(6,⊕) = 1
p(2,⊕) = 5/6 with f(2,⊕) = 1 p(7,⊕) = 0.7 with f(7,⊕) = 1
p(3,⊕) = 5/6 with f(3,⊕) = 0 p(8,⊕) = 0.7 with f(8,⊕) = 0
p(4,⊕) = 5/6 with f(4,⊕) = 1 p(9,⊕) = 0.6 with f(9,⊕) = 1
p(5,⊕) = 5/6 with f(5,⊕) = 1

This example is 0-calibrated (i.e. locally calibrated) with any tolerance τ ≥
0.4) (with bins B1 = {1, 2, 3, 4, 5, 6}, B2 = {7, 8} and B3 = {9}). It is 0.1-
calibrated with any tolerance τ ≥ 0 (with bins B′′1 = {1, 2, 3, 4, 5, 6} and B′′2 =
{7, 8, 9}). It is 0.2-calibrated with any tolerance τ ≥ 0.05 (with bins B′′1 =
{1, 2, 3, 4, 5, 6, 7, 8} and B′′2 = {7, 8, 9}). It is 1-calibrated (i.e. globally calibrated)
with any tolerance τ ≥ 0 (with bin B′′′1 = {1, 2, 3, 4, 5, 6, 7, 8, 9}).

Figure 1 shows the evolution of the minimum tolerance (τ) for different de-
grees of locality/globability (ε). As we can see the curve is typically decreasing,
but not necessarily monotonic. The graph shows the behaviour of a model for
classification (leftmost part of the curve, ε = 0) and for quantification (rightmost
part of the curve).

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

globality

to
le

ra
nc

e

Fig. 1. A local/global calibration plot for example 2. The graph shows the minimum
tolerance (tau) for each degree of globability (ε).

3

124 7. Publications (Full Text)

Although we can see from the previous example that the curve is not mono-
tonically decreasing, we are interested in discovering any relation between local
and global calibration. The following two propositions show this:

Proposition 1. If a probability estimator is 0-calibrated with tolerance τ for
dataset D then it is γ-calibrated with tolerance τ for every 0 ≤ γ ≤ 1.

Proof. Let us call B0 the set of maximal 0-bins and Bγ the set of maximal γ-bins.
If B is a bin in Bγ then it is clear that it can be decomposed into a new

disjunct set B of bins B1, B2, ..., Bn in B0. Logically
⋃
Bk∈B = B. For every B

in Bγ we need to prove that: ∀j
∣∣∣
P
i∈B p(i,j)
|B| −

P
i∈B f(i,j)
|B|

∣∣∣ ≤ τ .

The left term can be decomposed into:∣∣∣∣∣
P
Bk∈B |Bk|

P
i∈Bk p(i,j)

|Bk|P
Bk∈B |Bk|

−
P
Bk∈B |Bk|

P
i∈Bk f(i,j)

|Bk|P
Bk∈B |Bk|

∣∣∣∣∣

and reduced into:

∣∣∣∣∣∣

P
Bk∈B |Bk|

„P
i∈Bk p(i,j)

|Bk| −
P
i∈Bk f(i,j)

|Bk|

«
P
Bk∈B |Bk|

∣∣∣∣∣∣
And, since that for any sum of real numbers we have that

∑
i xi ≤

∑
i |xi|,

we have that this is lower than or equal to:

∣∣∣∣∣∣∣

∑
Bk∈B |Bk|

∣∣∣
P
i∈Bk

p(i,j)

|Bk| −
P
i∈Bk

f(i,j)

|Bk|

∣∣∣
∑
Bk∈B |Bk|

∣∣∣∣∣∣∣
(1)

But we know from the definition of ε-calibration that:∣∣∣
P
i∈Bk

p(i,j)

|Bk| −
P
i∈Bk

f(i,j)

|Bk|

∣∣∣ ≤ τ and we also have that
⋃
Bk∈B = B.

So we have that 1 is lower than or equal to:∣∣∣
P
Bk∈B |Bk|τP
Bk∈B |Bk|

∣∣∣ = τ

Proposition 2. If a probability estimator is ε-calibrated with tolerance τ for
dataset D with 0 ≤ ε ≤ 1 then it is 1-calibrated with tolerance τ .

Proof. From the definition of ε-calibration we have that for every maximal ε-

bin Bk: ∀j
∣∣∣
P
i∈Bk

p(i,j)

|Bk| −
P
i∈Bk

f(i,j)

|Bk|

∣∣∣ ≤ τ . We can construct a set of bins Bε
with all the maximal ε-bins. Consequently, the definition of 1-calibration can be
decomposed as follows:

∀j
∣∣∣∣∣
P
Bk∈Bε |Bk|

P
i∈Bk p(i,j)

|Bk|P
Bk∈Bε |Bk|

−
P
Bk∈Bε |Bk|

P
i∈Bk f(i,j)

|Bk|P
Bk∈Bε |Bk|

∣∣∣∣∣ ≤ τ

Operating as in the proof for proposition 1 we get the desired result.

In Example 1, which is perfectly 0-calibrated, it is easy to see that it is also
perfectly 0.5-calibrated, since the 0.5-bins in this case are B′1 = {1, 2, 3, 4, 5},
B′2 = {2, 3, 4, 5, 6, 7, 8}, with average predictions and average frequencies for
class ⊕ matching with values 0.8 and 4

7 respectively. But consider again example

4

7.6. Local and Global Calibration. Quantification using Calibrated Probabilities125

2. This example is perfectly 0.1-calibrated (with bins B1 = {1, 2, 3, 4, 5, 6} and
B2 = {7, 8, 9}), but is not perfectly 0.2-calibrated (with bins B′1 = {1, 2, 3, 4,
5, 6, 7, 8} and B′2 = {7, 8, 9}). Consequently, the previous propositions cannot be
extended to the general case stating that if a probability estimator is ε-calibrated
for dataset D then it is γ-calibrated for every γ ≥ ε, as we also saw in Figure 1.
We only have that this is true when ε = 0 or γ = 1.

Additionally, any reverse implication (from global to local calibration) is
not true in general as the following example shows, even with a perfect global
calibration we can have a very bad local calibration:

Example 3.
p(1,⊕) = 1 with f(1,⊕) = 0, p(2,⊕) = 0 with f(2,⊕) = 1

So, local calibration (ε = 0) gives us an upper bound of the tolerance for any
other calibration degree (ε > 0), and global calibration (ε = 1) is a lower bound
of the tolerance for any other calibration degree (ε < 1). This is relevant, since
it shows that good local calibration should be beneficial for global calibration,
and hence, for quantification. But it also suggests that global calibration is an
easier problem than local calibration, so perhaps focussing on local calibration
is not the way to go.

The previous results help us understand the role of calibration and the
quantification results for a dataset. But, what happens when class distribution
changes? It is clear that Example 1 will behave better than Example 3. In order
to better understand why, we can adapt the previous definition to each class
subset of the dataset. In particular, let us call D⊕ the subset of D which in-
cludes all the examples in class ⊕, while D	 is the subset of D which includes
all the examples in class 	. We can see that Example 1 will behave better than
Example 3, since for the first example in D⊕ we construct the bins B1 = {1},
B2 = {2, 4, 5}, B3 = {6} with average probabilities 1, 0.75 and 1/3 respectively.
For D	 we construct the bins B4 = {3}, B5 = {7, 8} with average probabilities
0.75 and 1/3 respectively. For Example 3, though, we have one single bin for D⊕,
B1 = {1} with average probability 0 and a single bin for D	, B2 = {2} with
average probability 1. For any reasonable loss function 1 seems better calibrated
than Example 3. But note that when we use datasets with elements of only one
class, then we have:

Proposition 3. If all the elements of a dataset D are from the same class, for
every ε and γ such that 0 ≤ ε ≤ 1 and 0 ≤ γ ≤ 1 then a classifier is perfectly
ε-calibrated for dataset D iff it is perfectly γ-calibrated.

Proof. If all the elements are from the same class c, we have that f(i, j) = 1 iff
j = c, and 0 otherwise. This means that if a classifier is perfectly ε-calibrated
for this dataset, all the elements in all the maximal ε-bins must have p(i, j) = 1
iff j = c, and 0 otherwise. Consequently, the classifier is perfectly γ-calibrated
for any γ.

5

126 7. Publications (Full Text)

This means that when we check with a dataset with examples of only one class,
we get that global and local calibration are the same, but only if this calibration
is perfect, which is not generally the case. This can also be seen in the way
that the higher the class imbalance the closer global and local calibration are,
especially when calibration is high. And this means that for extreme imbalances
good local calibration must be important. However, it is also clear that a scaling
is necessary since:

Proposition 4. Given a dataset D with elements of several classes, if we re-
move the elements of all classes but j into a new dataset D′, then any perfectly
0-calibrated classifier for D which does not estimate p(i, j) = 1 for every instance
for which f(i, j) = 1, is not a perfectly 1-calibrated classifier for D′.

Proof. Trivial, since by definition, the classifier does not estimate p(i, j) = 1 for
every instance for which f(i, j) = 1, which is the case for every instance in D′.
Consequently, the classifier cannot be perfectly 1-calibrated.

A different thing is when we remove just a part of the elements of all classes
but j. In this case, a similar result can only be obtained if the subsample is
made with a uniform distribution. And this, as we mentioned in the previous
section is an assumption made by previous works and also by our scaling, but
it is not necessarily the case in every real application. Again, when we have a
distribution drift of a binary problem, when one class becomes rarer than it was,
then the dubious cases of the minority class have higher probability of not being
subsampled than the clear cases of the minority class. This means that in many
applications a class frequency change is made with a distribution which is not
uniform and perhaps we should use a softer scaling or no scaling at all.

Summing up, in this section we have formalised the notions of local and global
calibration over a dataset. Global calibration is key to the success of quantifi-
cation methods using probabilities. However, the relation of local to global cal-
ibration suggests that when when class distribution is the same (and especially
when the dataset is imbalanced), having good local calibration implies having
good global calibration (at least it sets some bounds on the error), but when
class distribution changes dramatically, it is not so clear that a very good local
calibration ensures good global calibration. To answer the question on whether
better local calibration (alone) can make quantification improve, in the following
subsection we experimentally analyse several classical (local) calibration meth-
ods and their effect over our method.

1.2 Analysis of Calibration Methods for Quantification

The objective of calibration methods (as a postprocessing) is to improve the
original estimated probabilities of a given classifier. These methods can also
be applied to transform scores into accurate probability estimates [11] [13]. In
this section we apply some well-known calibration methods in order to study
their effect on quantification. Concretely we employ three calibration techniques:
Binning [14], Platt [11] and PAV [1]. For a survey of calibration we refer to [2].

6

7.6. Local and Global Calibration. Quantification using Calibrated Probabilities127

The obtained results are included in Table 1. We use the methodology ex-
plained in Section IV in [3]. In this table we show the results for the 20 datasets,
and the four last rows show the average of all the datasets for each calibration
method and for each quantification method. For each quantification technique
and dataset (each square in the table) we conducted the same statistical test
used in the experimental section (so, no cross comparisons are made). The re-
sults in Table I in [3] and 1 (Before) are similar. They are not exactly the same
because the seeds in the experiments to split the sets are not the same and,
although we consider that the number of repetitions is enough (100 times for
each dataset), with more repetitions it is expected that the difference would be
lower. Another point is that there are few results in bold, so, at first sight, it
seems like calibration does not improve quantification methods. However, if we
observe the average of the calibration methods, the results in terms of GMSE
of the quantification methods based on probabilities (PA and SPA) are better
for the PAV and Binning calibration methods than for the case without cal-
ibration (Before), and this does not happen for other quantification methods.
Therefore, not only the SPA obtains good results but also it can be improved
using calibration or other techniques. These results are very preliminary and it
is clear that the effect of calibration in quantification must be studied in detail,
but they are a first encouraging step in a new open area. For example, designing
global calibration methods that improve the quantification results more than the
traditional local calibration methods.

References

1. M. Ayer, H.D. Brunk, G.M. Ewing, W.T. Reid, and E. Silverman. An empirical
distribution function for sampling with incomplete information. Annals of Mathe-
matical Statistics, 5:641–647, 1955.

2. A. Bella, C. Ferri, J. Hernandez-Orallo, and M.J. Ramirez-Quintana. Calibra-
tion of machine learning models. In Handbook of Research on Machine Learning
Applications. IGI Global, 2009.

3. A. Bella, C. Ferri, J. Hernández-Orallo, and M.J. Ramı́rez-Quintana. Quantifica-
tion via Probability Estimators. IEEE International Conference on Data Mining,
0:737–742, 2010.

4. G. W. Brier. Verification of forecasts expressed in terms of probabilities. Monthly
Weather Review, 78:1–3, 1950.

5. M.H. DeGroot and S.E. Fienberg. The comparison and evaluation of forecasters.
The statistician, pages 12–22, 1983.

6. C. Ferri, J. Hernández-Orallo, and R. Modroiu. An experimental comparison of
performance measures for classification. Pattern Recogn. Lett., 30(1):27–38, 2009.

7. G. Forman. Counting positives accurately despite inaccurate classification. In
European Conf. on Machine Learning, pages 564–575, 2005.

8. G. Forman. Quantifying trends accurately despite classifier error and class imbal-
ance. In KDD, pages 157–166, 2006.

9. G. Forman. Quantifying counts and costs via classification. Data Min. Knowl.
Discov., 17(2):164–206, 2008.

10. A.H. Murphy. A new vector partition of the probability score. Journal of Applied
Meteorology, 12(4):595–600, 1973.

7

128 7. Publications (Full Text)

11. J. C. Platt. In Advances in Large Margin Classifiers, pages 61–74. 1999.
12. F. Sanders. On subjective probability forecasting. Journal of Applied Meteorology,

2(2):191–201, 1963.
13. B. Zadrozny and C. Elkan. Transforming classifier scores into accurate multiclass

probability estimates. In Int. Conf. on Knowledge Discovery and Data Mining.
14. B. Zadrozny and C. Elkan. Obtaining calibrated probability estimates from deci-

sion trees and naive bayesian classifiers. In ICML, pages 609–616, 2001.

8

7.6. Local and Global Calibration. Quantification using Calibrated Probabilities129

Table 1. Calibration results.

CC AC T50 SCC PA SPA

1 Before 0.0022 0.0009 0.0660 0.0011 0.0032 0.0008
1 PAV 0.0019 0.0009 0.0986 0.0012 0.0026 0.0008
1 Platt 0.0021 0.0010 0.0660 0.0027 0.0081 0.0009
1 Binn. 0.0019 0.0010 0.0861 0.0011 0.0030 0.0009

2 Before 0.0031 0.0002 0.0105 0.0024 0.0114 0.0002
2 PAV 0.0028 0.0002 0.0530 0.0008 0.0050 0.0001
2 Platt 0.0027 0.0002 0.0115 0.0037 0.0116 0.0001
2 Binn. 0.0027 0.0002 0.0460 0.0008 0.0053 0.0001

3 Before 0.0221 0.0043 0.0114 0.0059 0.0288 0.0036
3 PAV 0.0151 0.0030 0.0137 0.0082 0.0254 0.0028
3 Platt 0.0208 0.0042 0.0114 0.0208 0.0365 0.0036
3 Binn. 0.0158 0.0050 0.0325 0.0086 0.0268 0.0028

4 Before 0.0889 0.0216 0.0219 0.0514 0.0859 0.0163
4 PAV 0.1369 0.0397 0.0282 0.1727 0.0973 0.0158
4 Platt 0.1461 0.0359 0.0219 0.1934 0.1015 0.0170
4 Binn. 0.1432 0.0503 0.0753 0.1926 0.0983 0.0163

5 Before 0.0594 0.0123 0.0232 0.0287 0.0653 0.0090
5 PAV 0.0632 0.0145 0.0277 0.0604 0.0676 0.0091
5 Platt 0.0658 0.0145 0.0232 0.0655 0.0728 0.0092
5 Binn. 0.0673 0.0227 0.0562 0.0705 0.0700 0.0102

6 Before 0.0043 0.0017 0.0517 0.0019 0.0048 0.0013
6 PAV 0.0045 0.0018 0.0867 0.0031 0.0056 0.0013
6 Platt 0.0039 0.0017 0.0517 0.0072 0.0143 0.0014
6 Binn. 0.0044 0.0019 0.0810 0.0032 0.0061 0.0013

7 Before 0.0444 0.0058 0.0199 0.1015 0.0483 0.0045
7 PAV 0.0421 0.0049 0.0795 0.0833 0.0315 0.0038
7 Platt 0.0401 0.0062 0.0199 0.0810 0.0435 0.0045
7 Binn. 0.0448 0.0092 0.0670 0.0767 0.0314 0.0041

8 Before 0.0270 0.0003 0.0348 0.0025 0.0210 0.0002
8 PAV 0.0070 0.0002 0.0649 0.0027 0.0091 0.0001
8 Platt 0.0137 0.0002 0.0359 0.0195 0.0230 0.0002
8 Binn. 0.0097 0.0003 0.0664 0.0048 0.0112 0.0002

9 Before 0.0121 0.0002 0.0275 0.0006 0.0160 0.0002
9 PAV 0.0058 0.0002 0.0013 0.0012 0.0107 0.0002
9 Platt 0.0121 0.0002 0.0275 0.0213 0.0239 0.0002
9 Binn. 0.0070 0.0003 0.0124 0.0015 0.0114 0.0002

10 Before 0.0627 0.0116 0.0128 0.0511 0.0659 0.0072
10 PAV 0.0691 0.0116 0.0142 0.0807 0.0567 0.0073
10 Platt 0.0574 0.0122 0.0128 0.0633 0.0635 0.0074
10 Binn. 0.0711 0.0201 0.0506 0.0849 0.0619 0.0081

11 Before 0.1308 0.1145 0.1158 0.1666 0.1076 0.0830
11 PAV 0.1479 0.1177 0.1214 0.2042 0.1096 0.0923
11 Platt 0.2270 0.1058 0.1157 0.2881 0.1204 0.0838
11 Binn. 0.1561 0.1450 0.1580 0.2013 0.1195 0.0920

12 Before 0.2266 0.1285 0.1085 0.2924 0.1367 0.0889
12 PAV 0.2028 0.1183 0.0966 0.2491 0.1333 0.0856
12 Platt 0.2654 0.1410 0.1082 0.3189 0.1367 0.0871
12 Binn. 0.2118 0.1365 0.1519 0.2634 0.1349 0.0876

13 Before 0.0240 0.0112 0.0223 0.0122 0.0299 0.0084
13 PAV 0.0254 0.0106 0.0361 0.0199 0.0331 0.0084
13 Platt 0.0238 0.0111 0.0222 0.0208 0.0437 0.0086
13 Binn. 0.0264 0.0166 0.0456 0.0225 0.0349 0.0087

14 Before 0.0250 0.0125 0.0212 0.0134 0.0316 0.0087
14 PAV 0.0287 0.0115 0.0347 0.0281 0.0347 0.0091
14 Platt 0.0242 0.0114 0.0212 0.0214 0.0449 0.0088
14 Binn. 0.0274 0.0151 0.0480 0.0226 0.0364 0.0100

15 Before 0.0465 0.0098 0.0396 0.0119 0.0517 0.0071
15 PAV 0.0272 0.0073 0.0715 0.0173 0.0258 0.0067
15 Platt 0.0276 0.0074 0.0396 0.0259 0.0410 0.0069
15 Binn. 0.0281 0.0086 0.0663 0.0188 0.0262 0.0066

16 Before 0.2307 0.1779 0.1793 0.2906 0.1175 0.1615
16 PAV 0.2492 0.2183 0.2127 0.3019 0.1152 0.1174
16 Platt 0.3010 0.1580 0.1796 0.3340 0.1211 0.1677
16 Binn. 0.1932 0.1904 0.1949 0.2696 0.1094 0.0915

17 Before 0.0009 0.0005 0.0147 0.0071 0.0148 0.0006
17 PAV 0.0010 0.0005 0.0819 0.0007 0.0016 0.0004
17 Platt 0.0008 0.0005 0.0147 0.0050 0.0078 0.0004
17 Binn. 0.0009 0.0005 0.0848 0.0006 0.0018 0.0004

18 Before 0.1500 0.0982 0.1027 0.1318 0.1256 0.0759
18 PAV 0.1289 0.0975 0.1045 0.1222 0.1082 0.0688
18 Platt 0.1700 0.0899 0.0983 0.1768 0.1214 0.0759
18 Binn. 0.1394 0.1118 0.1427 0.1383 0.1160 0.0847

19 Before 0.0597 0.0510 0.0626 0.0514 0.0635 0.0423
19 PAV 0.0625 0.0491 0.0686 0.0863 0.0648 0.0360
19 Platt 0.0683 0.0535 0.0626 0.1315 0.0821 0.0424
19 Binn. 0.0625 0.0632 0.1026 0.0902 0.0687 0.0443

20 Before 0.1009 0.0921 0.1308 0.1530 0.0722 0.0879
20 PAV 0.0765 0.0897 0.1407 0.1327 0.0656 0.0793
20 Platt 0.1027 0.0854 0.1309 0.1590 0.0838 0.0869
20 Binn. 0.0830 0.0999 0.1479 0.1318 0.0722 0.0909

AVG. Before 0.0661 0.0378 0.0539 0.0689 0.0551 0.0304
AVG. PAV 0.0649 0.0399 0.0718 0.0788 0.0502 0.0273
AVG. Platt 0.0788 0.037 0.0537 0.098 0.0601 0.0307
AVG. Binn. 0.0648 0.0449 0.0858 0.0802 0.0523 0.028

9

130 7. Publications (Full Text)

7.7. Using Negotiable Features for Prescription Problems 131

7.7 Using Negotiable Features for Prescription Prob-
lems

7. A. Bella, C. Ferri, J. Hernández-Orallo, and M.J. Ramı́rez-Quintana. Using
Negotiable Features for Prescription Problems. Computing, 91:135–168,
2011.

Using Negotiable Features for Prescription
Problems ?

A. Bella, C. Ferri, J. Hernández-Orallo, and M.J. Ramı́rez-Quintana

Universitat Politècnica de València, DSIC, València, Spain

Abstract. Data mining is usually concerned on the construction of ac-
curate models from data, which are usually applied to well-defined prob-
lems that can be clearly isolated and formulated independently from
other problems. Although much computational effort is devoted for their
training and statistical evaluation, model deployment can also represent
a scientific problem, when several data mining models have to be used
together, constraints appear on their application, or they have to be
included in decision processes based on different rules, equations and
constraints. In this paper we address the problem of combining several
data mining models for objects and individuals in a common scenario,
where not only we can affect decisions as the result of a change in one
or more data mining models, but we have to solve several optimisation
problems, such as choosing one or more inputs to get the best overall
result, or readjusting probabilities after a failure. We illustrate the point
in the area of Customer Relationship Management (CRM), where we
deal with the general problem of prescription between products and cus-
tomers. We introduce the concept of negotiable feature, which leads to
an extended taxonomy of CRM problems of greater complexity, since
each new negotiable feature implies a new degree of freedom. In this
context, we introduce several new problems and techniques, such as data
mining model inversion (by ranging on the inputs or by changing classifi-
cation problems into regression problems by function inversion), expected
profit estimation and curves, global optimisation through a Montecarlo
method, and several negotiation strategies in order to solve this maximi-
sation problem.

Keywords: data mining, profit maximisation, function inversion prob-
lem, global optimisation, negotiation, CRM, ranking, probability estima-
tion, negotiable features, Montecarlo method.

1 Introduction

Complex decisions are characterised by the search of a trade-off among a set of
constraints, models, rules and equations, where several computational techniques

? This work has been partially supported by the EU (FEDER) and the Spanish
MEC/MICINN, under grant TIN 2007-68093-C02, the Spanish project “Agreement
Technologies” (Consolider Ingenio CSD2007-00022) and the GVA project PROME-
TEO/2008/051.

132 7. Publications (Full Text)

(linear programming, simulation, numerical computation, operational research,
etc.) can be used to solve the optimisation problem. More and more frequently,
models are not derived by experts (from the business or scientific domain in-
volved) but automatically inferred by data mining techniques. In this context,
many optimisation techniques are no longer valid, since models are usually ex-
pressed in a non-mathematical way (e.g. decision tree) or even as a black-box
(e.g. neural networks). Consequently, many techniques are no longer valid be-
cause the mathematical properties (continuity, monotonicity, ...) of the functions
which describe the data mining models are unknown.

As a result of all this, the combination of data mining and (global) opti-
misation has recently received an increasing attention [6][22][20]. Much of this
work originates from real application problems which appear in the area of
Customer Relationship Management (CRM) [4][3]. CRM is an application field
where econometrics and mainstream data mining can merge, along with tech-
niques from simulation, operational research, artificial intelligence and numerical
computation.

Decisions in the context of prescription problems deal about distinguishing or
ranking the products to be offered to each customer (or, symmetrically, selecting
the customers to whom we should make an offer), establishing the moment or
sequence of the offers, and determining the price, warranty, financing or other
associated features of products and customers. The classical application of data
mining for prescription problems has usually considered a rather monolitic and
static view of the process, where we have one or more products to be offered to
a pool of customers, and we need to determine a sequence of offers (product,
customer) to maximise profit. These and related problems (e.g. cross-selling or
up-selling) have been addressed with techniques known as “mailing/selling cam-
paign design” [3] or from the more general view of recommender systems [1],
which are typically based on data mining models which perform good rankings
and/or good probability estimations.

However, in more realistic and interactive scenarios, we need to consider
that a better customisation has to be performed. It is not only the choice of
products or customers which is possible, but several features of the product (or
the deal) can be tuned or adapted to get more earnings. We call these features
‘negotiable features’, and are common in everyday applications: price, delivery
time, payment method, bonuses, warranties, etc. This suggests a negotiation
process over these features that we want to be automated and optimal on the
side of the seller.

The consequence of this more general and interactive view is that the already
complex prescription problem becomes much more difficult since we have much
more variables (degrees of freedom), which have to be taken into account in the
optimisation problem. And the key issue is that the relation between all these
variables (price, delivery time, payment method, bonuses, warranties, etc.) and
the dependent variable (e.g. buying or not) is the data mining model, which
can be incarnated in the form of decision trees, neural networks, support vector
machines, linear, non-linear or logistic regression, nearest neighbours, etc. Of

2

7.7. Using Negotiable Features for Prescription Problems 133

course we could devise a specific method to handle this when the model is,
e.g., a logistic regressor, but, in general, we would like to be able to use the
whole range of techniques which are available in the data mining suite at hand.
That means that we have to treat the models as black boxes, not assuming any
particular property. In this way, the strategies we present here are general and
do not need to be adapted to each type of learning algorithm.

The notion of negotiable feature in data mining models as it is presented
here is new in the literature. The term appears scarcely in the literature but
with other meanings [33][8]. In these works, the focus has been set on agent
negotiation strategies using a traditional data mining presentation, where the
specific relation between the feature and the output is not obtained. We propose
to consider negotiable features as input variables for a “general function inversion
problem”, i.e., given a function, calculate the input combinations which produce
a given output. For instance, if we have a model which gives us the probability
of buying a product by a customer, we would like to use the model to obtain
the possible pairs (or ranges of price and delivery time) such that the result is a
probability of 0.75 of the customer buying the product.

As a consequence of being able to adjust and customise some features of
the offer, it is expected that many different offers for the same product and
customer could be made, so, naturally, a negotiation process appears, where
seller and buyer can make bids and counteroffers. The rejection of an offer entails
a recomputation of the probabilities, something which must be done on the data
mining model.

The previous new family of open problems, which are common in CRM,
are also usual in other areas, where prescription has to be made. For instance,
medical prescription is another area where drugs and treatments have to be
customised. In this case, the “class” is not whether a patient will or not buy a
drug, but whether the treatment will work or not. The agents of negotiation here
are not the doctor and the patient, but the doctor and the illness. Data mining
models are about treatment effectivenes, and the profit is changed into a more
complex evaluation of treatment costs, counterindications and recovery periods.
Similarly, other areas such as education (teacher-student), social networks (rec-
ommendations), human resources (hiring), etc., can be understood and solved
under the paradigm we present in this work.

The major contributions of this work are then:

– A taxonomy of prescription problems embracing the classical static problems
without negotiable features and the new interactive problems which include
four new open problems depending on the number of kinds of items and
customers.

– The notion of negotiable feature, its formal definition and properties, which
generalises prescription problems as negotiation problems.

– The study of the function inversion problem for data mining models which,
in some cases, can turn a classification problem into a regression problem
(or viceversa).

3

134 7. Publications (Full Text)

– The notion of profit curves derived from probabilistic models, their normal-
isation after a bid and the use of envelope curves to compare and combine
several curves.

– Several new strategies for negotiation using data mining models, some of
them shown to be better than the baseline methods, especially the one based
on a global view of the negotiation.

A real scenario is used in the paper. In this scenario, a real estate agent has a
pool of housings to sell and a pool of customers. We have performed a thorough
series of experiments which show that the way in which the model is deployed
and applied is crucial to get good results. In fact, only with the set of techniques
developed in this paper, the results using data mining models surpass the results
of models based on an increment over the average (baseline methods).

The paper is organised as follows. In Section 2, we quickly survey the pre-
vious work on prescription problems and highlight a new family of prescription
problems which have not been addressed to date, those for which negotiable fea-
tures appear. The classical prescription problems and the new ones conform a
new taxonomy which is presented in this section. Section 3 introduces the notion
of negotiable feature in data mining models, its formalisation and properties. In
Section 4, we analyse the use of these properties to enhance data mining models
and we study several options for the inversion problem that takes place when
we want to determine the value for a negotiable feature given a probability or
a threshold for the output. Section 5 introduces three new different negotiation
strategies (maximum expected profit, best local expected profit and maximum
global optimisation) and the new scenarios derived from the taxonomy. In Sec-
tion 6, we analyse our methods with real data on our example domain (real
estate agent’s) and compare the total profit for each method and negotiation
strategy on several of the new scenarios introduced in the taxonomy. In Section
7, we analyse the connections between our work and some previous or related
approaches. Section 8 closes the paper with some concluding remarks and the
future work.

2 A Taxonomy of Prescription Problems

Prescription problems are a very common type of predictive problems where an
item is prescribed to an individual. The item can be a commercial product, a
drug, a webpage, blog or reading reference, an action, etc., depending on the
application. The individual can be a user, a customer, a patient, a student, a
robot, etc. Data mining models are used to model the behaviour of each individ-
ual in order to assess the appropriateness of each item for each user. Typically,
prescription problems are classified according to the number of kinds of items
and individuals, since the problem complexity depends on the number of combi-
nations. However, the prescription scenario using data mining models is static,
in the sense that once the prescription is made, the item is ruled out and any
subsequent prescription is made on other items (this does not mean, of course,

4

7.7. Using Negotiable Features for Prescription Problems 135

that the interaction of previous transactions is not used for subsequent prescrip-
tions or recommendations). In this work we do consider the case that the same
item (or the very prescription) can be adapted to the individual. In order to do
that, the items must present some adjustable features that we call “negotiable
features” (a more precise definition will be given in the following section). If
these features exist it is not only the item and the individual that we have to
match but also the best values for the negotiable features.

In this section we devise a taxonomy of prescription problems depending on
several variables involved in the process. This will help to recognise the previous
work in this area and the open problems we aim to solve. Since most of the related
work comes from the area of Customer Relationship Management (CRM), from
now on, instead of using the general terms ‘item’ and ‘individual’, we will use
the more specific terms ‘product’ and ‘customer’, which are typical in CRM.
As usual, we consider the number of customers (C) and the different kinds of
products (N). But we also study the presence or absence of negotiation in the
transaction. As we have stated in the introduction, if at least one feature is
negotiable, then we can introduce some kind of negotiation into the process;
however, if all the features are non-negotiable (fixed), then we are dealing with
a traditional prescription problem. In all these problems, there is an optimality
criterion (or utility function) which shapes the goal. In CRM, the goal is usually
the net profit (although other goals such as customer loyalty are possible). In
general, other possible criteria might depend on other resources (time, people
involved, security, etc.).

Table 1. Different prescription problems that consider the number of different kinds of products to
sell, whether the net price for the product is fixed or negotiable, and the number of customers.

Case Kinds of products Features Number of customers Approach

1 1 fixed 1 Trivial
2 1 fixed C Customer ranking [3]
3 N fixed 1 Product ranking [3]
4 N fixed C Joint Cut-off [2]
5 1 negotiable 1 -
6 1 negotiable C -
7 N negotiable 1 -
8 N negotiable C -

Table 1 shows eight different prescription problems that are defined by con-
sidering the number of products and customers involved as well as the fixed or
negotiable nature of the features of each product. The last column shows several
approaches that have already been proposed in the literature for solving some
of these problems. The rows with a “-” in this column indicate cases that are
(first) addressed in this paper. We discuss each of them in more detail below.

2.1 Case with one kind of product, fixed features, and one customer

Case 1 in Table 1 is trivial. In this scenario, the seller offers the product to the
customer with fixed conditions/features and the customer may or not buy the

5

136 7. Publications (Full Text)

product. The seller cannot do anything more because s/he does not have more
products to sell. S/he cannot negotiate the price, warranty, delivery time, etc.,
of the product with the customer, and s/he does not have any more customers
for the product.

2.2 Case with one kind of product, fixed features, and C customers

Case 2 in Table 1 is the typical case of a mailing campaign design. The objective
is to obtain a customer ranking to determine the set of customers to whom the
mailing campaign should be directed in order to obtain the maximum profit.
Data mining can help in this situation by learning a probabilistic classification
model1 from previous customer data that includes information about similar
products that have been sold to them. This model will obtain the buying prob-
ability for each customer. Sorting them by decreasing buying probability, the
most desirable customers will be at the top of the ranking. Using a simple for-
mula for marketing costs, we can establish a threshold/cut-off in this ranking.
The customers above the threshold will be offered the product. This is usually
plotted using the so-called lift charts (see e.g. [3]).

2.3 Case with N kind of products, fixed features, and one customer

Case 3 in Table 1 is symmetric to case 2. Instead ofN customers and one product,
in this case, there are N different products and only one customer. Hence, the
objective is to obtain a product ranking for the customer. Similarly, data-mining
can help to learn a probabilistic estimation model from previous product data
that have been sold to similar customers. This model will predict the buying
probability for each product, so by putting them in order of decreasing buying
probability, the most desirable products for the customer will be at the top of
the ranking. This case overlaps to a great extent with the typical applications
of recommender systems [1], so many techniques can be applied here, although
predictive models which show good probability estimation and ranking (typically
measured with the AUC, MSE or the logloss, see e.g. [11]) are custom here.

2.4 Case with N kinds of products, fixed features, and C customers

Case 4 in Table 1 is studied in [2]. This situation is more complex than the cases
2 and 3, since there is a data-mining model for each product. In other words,
there are N customer rankings (one for each product) and the objective is to
obtain the set of pairs customer-product that gives the maximum overall profit.
Note that, normally, the best local cut-off of each model (the set of customers
that gives the maximum profit for one product) does not give the best global
result. Moreover, several constraints are frequently required in real applications
(limited stock of products, the customers may be restricted to only buy one

1 A probabilistic classification model is a model which outputs the probability for the
class, e.g. [10].

6

7.7. Using Negotiable Features for Prescription Problems 137

product). Two different methods are proposed in [2] to obtain the global cut-
off: one is based on merging the prospective customer lists and using the local
cut-offs, and the other is based on simulation. The study in [2] shows that using
simulation to set model cut-off obtains better results than classical analytical
methods.

2.5 Cases with negotiable features

In this paper, we deal with cases 5, 6, 7 and 8, which, to our knowledge, have
not been addressed in the literature. These cases are similar to cases 1, 2, 3 and
4 but, in these cases, at least one feature is negotiable. This represents a com-
plete new scenario that introduces more degrees of freedom in the search space
for an optimal solution. Additionally, it usually entails a negotiation process,
which usually means an episode of offers and counter-offers from the negotiation
parts that makes the whole process more flexible, and logically, more difficult to
analyse. Before presenting our approaches to these scenarios, next we formalise
the idea of having features that can be modified for a prescription, known as
“negotiable features”, which make a negotiation process possible.

3 Negotiable Features

As we have already mentioned in previous sections, there are many data mining
problems in which one or more input features can be modified at the time the
model is applied, turning the problem into some kind of negotiation process. In
this section, we formally define the concept of negotiable feature, and we discuss
which properties are derived from their special nature and how these features
can be used.

3.1 Negotiable Feature Definition

Consider a supervised problem, where f : X1 ×X2 × ...×Xm → Y denotes the
target (real) function; Xi, i ∈ 1..m denote input feature (or attribute) domains,
and Y denotes the output attribute domain (or class). Values for input and
output attributes will be denoted by lowercase letters. Hence, labelled instances
are then tuples of the form 〈x1, x2, ..., xm, y〉 where xi ∈ Xi and y ∈ Y .

We assume that there is a (non-)strict total order for the output, i.e., there
is a relation � such that for every two different possible values ya, yb ∈ Y , we
have that either ya � yb or yb � ya. If the order is non-strict2, we denote it
as � . This order usually represents some kind of benefit, utility or cost. For
numerical outputs, � is usually the order relation between real numbers (either
< or >, depending on whether it is a cost or benefit). For nominal outputs, �
usually sets an order between the classes. For binary problems, where POS and
NEG represent the positive and negative class respectively, we can just set that

2 As usual, a strict total order relation can be defined from a non-strict total order.

7

138 7. Publications (Full Text)

POS � NEG. For more than two classes, the order relation can be derived from
the cost of each class. For instance, if we have three buying results (buy, does not
buy, chums), we can order them by their costs. Note that this does not mean that
classes are necessarily ordinal (such as e.g. {low,medium, high}). Analogously,
we also assume there is a non-strict total order relation for each input attribute
Xi denoted as �i. For readability, in what follows we will omit the subscript
when it is clear from the context.

With these definitions, we can now formalise the idea of negotiable feature.

Definition 1. (Negotiable Feature for an instance)
An attribute Xi is said to be a negotiable feature (or attribute) for an instance
〈x1, x2, ..., xm, y〉 iff

1. (adjustability) The values for Xi can be varied at model application time.
2. (sensitivity) Fixing the values of all the other input attributes Xj 6= Xi of

the instance, there are two different values for Xi producing different output
values.

3. (monotonicity) The relation between the input feature Xi and the output Y
is either
– monotonically increasing: for any two values a, b ∈ Xi, if a � b then
f(x1, x2, ..., a, ..., xm) � f(x1, x2, ..., b, ..., xm)
or

– monotonically decreasing: for any two values a, b ∈ Xi, if a � b then
f(x1, x2, ..., a, ..., xm) � f(x1, x2, ..., b, ..., xm).

Both conditions 2 and 3 define a monotonic dependency between the nego-
tiable attribute and the output.

Based on the previous definition, we introduce the concept of negotiable
feature for a problem.

Definition 2. (Negotiable Feature in a problem)
Let D be a set of instances defining a supervised problem f . We will say that a
feature is a negotiable feature in f , if conditions 1 and 3 hold for all the instances
in D, and 2 holds for a significant/relevant proportion 0 < τ ≤ 1 of instances in
D.

This value τ is determined by the user depending on the problem, the pres-
ence of noise, etc. Note that the relaxation of condition 2 (sensitivity) is due to
the fact that, especially in classification problems, for some instances, the out-
put cannot be changed by only changing the value of the negotiable attribute,
i.e., the attribute cannot be negotiable for some instances (but it is for the re-
maining). For example, if someone cannot pay more than 500 euros per year
for a life insurance, he will not sign a 1000-euro life insurance contract even if
he is offered an extra accident coverage. In some case, we can have dynamic
negotiable features, i.e., features that were not negotiable initially, but a special
condition or charge in other attributes can make these features negotiable. For
example, in the airline and railway industry, a drop in the price might make the
warranty-feature negotiable.

Next, we give an example of negotiable and non-negotiable features.

8

7.7. Using Negotiable Features for Prescription Problems 139

Example 1. In a loan granting model, where loans are granted or not according
to a model which has been learnt from previous customer behaviours, the age of
the customer is not a negotiable feature, since we cannot modify it (condition
1 is violated). The bank branch office where the contract can take place is also
an input, which we can modify, but it is not a negotiable feature either since it
rarely affects the output (property 2 is violated). The number of meetings is also
modifiable and it frequently affects the result, but it is usually non-monotonic,
so it is not a negotiable feature either (property 3 is violated). In contrast, the
loan amount, the interest rate or the loan period are negotiable features since
very large loan amounts, very low interest rates and very long loan periods make
loans unfeasible for the bank.

The definition of an order relation for inputs and outputs is usually straight-
forward and it allows different tasks to be seen in a uniform way. For instance,
we can have the following possibilities depending on the nominal or numerical
character of the input and output.

– Nominal negotiable feature and nominal output. In this classification task,
there is a relation between some particular values of the negotiable attribute
and some values of the class. For example, a travel agency survey will be
negative whenever the traveller finds overbooking at the airport. Negotiation
can take place if we ensure that no overbooking will take place.

– Numerical negotiable feature and nominal output. In this classification task,
there is a relation between the range of values of the negotiable attribute
and some values of the class. The loan amount, the interest rate and the
loan period are examples of negotiable features for the loan problem.

– Nominal negotiable feature and numerical output. In this regression task,
there is a relation between some particular values of the negotiable attribute
and the range of the output. For instance, the time for a delivery monoton-
ically depends on whether we use regular mail or fast courier. This feature
can be a negotiable feature.

– Numerical negotiable feature and numerical output. In this regression task,
there is a relation between the range of values of the negotiable attribute
and the range of the output. For example, the time for a cargo train trip
monotonically depends on the number of station stops or the cargo load.

Although we only show the four possible cases for supervised problems, the
first two cases are extensible to clustering, since if we have a model, we can
understand groups as classes, and use it as a classification model.

3.2 Negotiable Feature Properties

Given the previous definitions, we can analyse what we can do with negotiable
features and how we can exploit their special character.

The first interesting property is that, since they are monotonic and sensitive
(in general), i.e., they are monotonically dependent, the inversion problem is

9

140 7. Publications (Full Text)

possible. This means that questions such as: “tell me the maximum amount for
the loan” or “tell me the maximum number of items such that the order can be
delivered in one week” or “tell me the price such that there is a 0.75 probability
of selling” or “tell me the dose such that the blood pressure goes down to 12”
are not only sensible and useful, but solvable too. In the next section we will
explore some possible solutions.

The second interesting property is also directly derived from monotonicity,
and is related to the idea that negotiable features have a negotiation direction,
such that once reached a minimum or maximum output, it is useless to go on
negotiating on that feature. For instance, if we can grant a loan for 200,000
euros we can also grant a loan for 150,000 euros. It is especially advantageous
for classification problems, but it also happens for many regression problems.

In order to clarify this implication, consider that we have a minimum or max-
imum (or both) for the output feature, using the derived order. The maximum
is just defined as max(Y) = yi such that for all j we have that yi � yj . Similarly
we can define the minimum. For numerical outputs (i.e., regression), we usually
have one of them, e.g. minimum price, minimum delivery time, etc., but we can
also have both (e.g. minimum and maximum load). For nominal outputs, since
the number of classes is finite, we always have a minimum and a maximum. In
binary classification problems, the maximum is class POS and the minimum is
class NEG. With this definition, we can show the following results:

Proposition 1. Consider that there exists a maximum value for the output fea-
ture Y , denoted by ymax, and there is a negotiable feature Xi which is monoton-
ically increasing (respectively monotonically decreasing) wrt. Y .

If f(x1, . . . , xi−1, a, xi+1, . . . , xm) = ymax then for every b, such that b � a
(respectively a � b) we also have that f(x1, . . . , xi−1, b, xi+1, . . . , xm) = ymax.

Proof. If the relation is monotonically increasing, we have that for any two values
a, b for Xi, if b � a then

f(x1, . . . , xi−1, b, xi+1, . . . , xm) � f(x1, . . . , xi−1, a, xi+1, . . . , xm)

Since f(x1, . . . , xi−1, a, xi+1, . . . , xm) = ymax we have that

f(x1, . . . , xi−1, b, xi+1, . . . , xm) � ymax
but since ymax is the maximum, then f(x1, . . . , xi−1, b, xi+1, . . . , xm) = ymax. If
the relation is monotonically decreasing the proof is similar.

Proposition 2. Consider that there exists a minimum value for the output fea-
ture Y , denoted by ymin, and there is a negotiable feature Xi which is monoton-
ically increasing (respectively monotonically decreasing) wrt. Y .

If f(x1, . . . , xi−1, a, xi+1, . . . , xm) = ymin then for every b, such that a � b
(respectively b � a) we also have that f(x1, . . . , xi−1, b, xi+1, . . . , xm) = ymin.

Proof. The proof is similar to the previous proposition.

Let us see an example.

10

7.7. Using Negotiable Features for Prescription Problems 141

Example 2. Following with the loan problem, the loan amount (denoted by δ)
is a negotiable attribute which is monotonically decreasing wrt. the class (POS
means granting the loan and NEG means not granting it). In this case, � for the
negotiable attribute is the standard order relation for real numbers ≥. For the
class we have that POS � NEG. Consequently, from the previous propositions,
we can derive the following rules for this case:

– If f(x1, . . . , xi−1, δa, xi+1, . . . , xm) = POS then for every δb, such that δa ≥
δb we also have that f(x1, . . . , xi−1, δb, xi+1, . . . , xm) = POS, which means
that, for a given customer, if we can grant him a loan for a quantity δa we
can also grant him a loan for a lower quantity.

– If f(x1, . . . , xi−1, δa, xi+1, . . . , xm) = NEG then for every δb, such that δb ≥
δa we also have that f(x1, . . . , xi−1, δb, xi+1, . . . , xm) = NEG, which means
that, for a given customer, if we cannot grant him a loan for a quantity δa
we cannot grant him a loan for a higher quantity either.

These rules derived from the previous two propositions will be important in the
following approaches to address negotiable feature models and also to derive
negotiation strategies, as we will see below in Section 4.

4 Approaches to Negotiable Feature Models

In this section we will explore three possible data mining approaches to obtain
and use models in presence of negotiable features. We will focus on classification
models where the negotiable feature is numerical and continuous, since this case
is very frequent and its inversion problem is the most difficult one (we must
go from a small set of output categories to an infinite set of input values). In
the case of discrete numerical values (e.g. a discrete number of items) the model
prediction (or, more precisely, the chosen value by the negotiation strategy) must
be rounded up or down to the closest integer value.

Additionally, we will consider the classification model as a probabilistic model,
i.e., a model which outputs probability estimations for the classes.

We will present three general approaches that use negotiable features. At
first, traditional approach will be to treat the problem as a classical classifica-
tion problem. A second approach is similar but using the rules derived from
the negotiable feature properties in order to generate more examples and make
learning easier. Finally, a third approach transforms the classification problem
into a regression one, inverting the original problem.

4.1 Traditional Approach by Using the Monotonicity Property

The first approach just learns a model as usual, by using the available labelled
examples to train it, and then uses this model for predicting the output value of
future cases.

However, this approach has two drawbacks: (1) the inverse problem (that
is, to obtain the value of the negotiable attribute for which a certain output

11

142 7. Publications (Full Text)

value is obtained) must be solved by iteratively checking different values for the
negotiable feature and just selecting the one which produces the desired output,
and (2) in many situations we only have examples of one class available.

The first problem can be minimised since we know that the relation between
the negotiable feature and the output is monotonic. This means that instead of
making an exhaustive search, we only need a binary or gradient search.

The second problem, however, is more dangerous, since in many cases it
precludes from learning a useful model. Consider again the loan granting problem
presented in Examples 1 and 2. It is usually the case that the bank only records
past granted loans. If we use this information as it is, this means that we only
have examples from the positive class, so learning is impossible (at least as a
supervised problem). Usually, this is minimised by slightly changing the meaning
of the class. Instead of using whether a loan has been granted or not, we change
it into whether a past granted loan has been or not benefitial for the bank. But
even with this typical transformation, we have a quite biased apriori distribution
(a type of selection bias known as sample bias [15]), since many possible good and
bad customers who did not get the loan have been ruled out from the dataset.

So, in this case, asking questions such as “what is the maximum loan amount
we can grant to this customer?” or “which loan amount places this operation
at a probability of 0.95 of being a profitable customer?” are more difficult to
answer and more dangerous. Precisely, these questions fly around the limit be-
tween the information we have in the records and the information we do not
have. Typically, in order to answer the previous questions we can draw a curve
with the probability of being a profitable customer against the possible values of
the negotiable feature. But part of the curve has no supporting evidence. Con-
sequently, models constructed in this way are expected to behave bad for these
questions.

4.2 Traditional Approach by Deriving More Examples

According to the second problem formulated in the previous section, and the
rules that we can obtain by applying Propositions 1 and 2, we propose a new
way of generating more examples which can be used to learn the classifica-
tion model in a traditional approach. If we recall Proposition 1 we have that:
If f(x1, . . . , xi−1, a, xi+1, . . . , xm) = ymax then for every b, such that b � a (re-
spectively a � b) we also have that f(x1, . . . , xi−1, b, xi+1, . . . , xm) = ymax. That
means that if we have an example in the training set as: f(x1, . . . , xi−1, a,
xi+1, . . . , xm) = ymax we can generate as many new examples just changing a
for as many b as we like, just that b � a (respectively a � b). And the same for
the other property.

This means that for binary problems, we can always use one of the two prop-
erties and convert one example into hundreds or thousands of examples. In this
way, we introduce some knowledge about the relation between the negotiable
feature and the output in the training dataset and, as a consequence, into the
learnt model. Additionally, this generation can be done in such a way that we can

12

7.7. Using Negotiable Features for Prescription Problems 143

compensate the apriori class distribution bias. Consequently, probability estima-
tion can now take advantage of much more examples, much more information
and, hopefully, a less biased dataset.

4.3 Inverting Problem Presentation

A quite different approach is to think about the problem as an inversion problem
from scratch. Imagine a model which estimates the delivery time for an order
depending on the kind of product and the units which are ordered. One possible
(traditional) use of this model is to predict the delivery time given a new order.
However, another use of this model is to determine the number of units (provided
it is possible to play with this value) that can be delivered in a fixed period of
time, e.g. one week. This is an example of an “inverse use” of a data mining
model, where all inputs except one and the output are fixed, and the objective
is to determine the remaining input value.

Definition 3. (Inversion problem) Given a supervised problem f : X1×X2×
...×Xi× ...×Xm → Y , where Xi is the negotiable feature, the inversion problem
consists in defining the function f I : X1×. . .×Xi−1×Y ×Xi+1×. . .×Xm → Xi.

In the above example, f is the function that calculates the delivery time
of an order, the negotiable feature Xi is the number of delivered units and f I

calculates this number by considering the delivery time fixed. As mentioned in
Section 3.2, the conditions of monotonicity and sensitivity that are satisfied by
the negotiable attributes, will enable us to solve this problem, as we explain
below.

The inversion problem is well-known [9] and seems simple at first sight, but
many questions arise. First, is f I also a function? In other words, for two different
values for Xi we may have the same value for Y which will ultimately translate
into two inconsistent examples for f I (two equal inputs giving different outputs).
Second, the fact that we have an example saying that a given loan amount
was granted to a customer does not mean that this is the maximum amount
that could be granted to the customer. Third, deriving probabilities to answer
questions such as “which loan amount places this operation at a probability
of 0.95 of being a profitable customer?” seem to be unsolvable with this new
presentation.

Although, it may seem hard to overcome these problems, looking at these
issues more carefully, we see that there is still a possible solution which is to
consider the inverting problem as a regression one. This is so because, first, many
regression techniques work well for inconsistent examples, so this question is not
actually a big practical problem. Second, it is true that cases do not represent
the maximum amount, but in many cases the examples represent deals and they
are frequently not very far away from the maximum. Or, in the worst case, we
can understand the new task as “inferring” the typical value for Xi such that
the loan is granted to the customer. And third, we can also obtain probabilities
in a regression problem.

13

144 7. Publications (Full Text)

Then, if we invert the problem, how can we address the original problem
again? With the original model and for only two classes, it can be done by
calculating p(POS|〈x1, . . . , xi−1, a, xi+1, . . . , xm〉), for any possible value a ∈ Xi.
From the inverted (regression) problem, we get a prediction:

â = f I(x1, . . . , xi−1, POS, xi+1, . . . , xm)

If we think of â as the predicted maximum or minimum for a which makes a
change on the class, a reasonable assumption is to give 0.5 probability for this
point, namely p(POS|〈x1, . . . , xi−1, â, xi+1, . . . , xm〉) = 0.5.

The next step is to assume that the output for f I follows a distribution with
centre at â. For instance, we can assume a normal distribution with mean at â
and use the relative error (ρ) (on the training set) multiplied by â, as standard
deviation σ. In other words, we use N(â, ρ ∗ â). Our assumption that the values
of the negotiable attribute can be modelled by a normal distribution is a working
hypothesis which allows us to derive the probabilities in an almost direct way.
There are, of course, other alternative ways of estimating the distribution pa-
rameters by using a relative squared error as variance or we could use techniques
such as bootstrapping. Note that we estimate a different standard deviation for
each example (since this is relative to the predicted value â). It is difficult to
get a reliable and specific estimation for each example in that, assuming the use
of any particular kind of data mining techniques, since there are many methods
which do not output a reliability or expected error for each instance.

From here, we can derive the probability for any possible value a as the
cumulative distribution function derived from the above normal, i.e., Φâ,ρ∗â.

Figure 1 shows an example of a normal distribution with centre at â =
305, 677.9 and standard deviation σ = 59, 209.06 and its associated cumulative
distribution function.

Consequently, for solving the original problem, (1) we solve the inversion
problem directly and (2) we use the predicted value of the negotiable feature
as mean of a normal distribution with the relative error as a relative standard
deviation. We call this model negotiable feature model.

5 Prescription Problems with Negotiation

In this section, we propose a solution to solve the problems 5 to 8 that are
described in Table 1. Our solution is based on the ideas we have presented about
models that use negotiable features in the previous sections. The objective is to
integrate the induced models into a negotiation process such that these models
guide the negotiation. To do this, we first introduce the negotiation strategies we
will use and, then, we describe the different scenarios that cover all cases. We are
going to illustrate our proposals by using a general CRM problem of retailing
(prescription applied to a plot selling scenario), where the (negotiable) input
feature is the price (denoted by π) and the problem is a classification problem
(buying or not).

14

7.7. Using Negotiable Features for Prescription Problems 145

Fig. 1. Left: Example of a normal distribution â = 305, 677.9 and σ = 59, 209.06.
Right: Associated cumulative distribution function.

In our problem, we know that customers have a “maximum price” per flat
they are not meant to surpass. This maximum price is not known by the seller,
but estimated with the data mining models. Conversely, the seller (real estate
agent) has a “minimum price” (denoted by πmin) for each type of product, which
typically includes the price the owner wants for the house plus the operational
cost. This minimum price is not known by the buyer. Any increment over this
minimum price is profitable for the seller. Conversely, selling under this value is
not acceptable for the seller. Therefore, the seller will not sell the product if its
price is under this minimum price that s/he knows. This means that the profit
obtained by the product will be the difference between the selling price and the
minimum price: Profit(π) = π−πmin. Finally, in case that the maximum price
is greater than the minimum price, there is a real chance of making a deal, and
the objective for the seller is to maximise the expected profit, which is defined
as follows:

E Profit(π) = p̂(POS|〈x1, . . . , xi−1, π, xi+1, . . . , xm〉) · Profit(π) (1)

where p̂ is the estimated probability by the model.

5.1 Negotiation Strategies

The novel thing in this scenario is not only that we allow the seller to play or
gauge the price to maximise the expected profit, but we also allow several bids
or offers made to the same customer. This means that if an offer is rejected,
the seller can offer again. The number of offers or bids which are allowed in an
application is variable, but it is usually a small number, to prevail the buyer
from getting tired of the bargaining.

15

146 7. Publications (Full Text)

We propose three simple negotiation strategies in this setting. For cases with
one single bid, we introduce the strategy called “Maximum Expected Profit”
(MEP). For cases with more bids (multi-bid) we present two strategies: “Best
Local Expected Profit” (BLEP) strategy and “Maximum Global Optimisation”
(MGO) strategy. Let us see all of them in detail below:

– Maximum Expected Profit (MEP) strategy (1 bid). This strategy is typ-
ically used in marketing when the seller can only make one offer to the
customer. Each price for an instance gives a probability of buying. This
strategy chooses the price that maximises the value of the expected profit.
πMEP = argmaxπ(E Profit(π)). In Figure 2 right, the black dot is the
MEP point (the maximum expected profit point). Note that, in this case,
this price is between the minimum price (represented by the dashed line)
and the maximum price (represented by the dotted line), which means that
this offer would be accepted by the buyer.

– Best Local Expected Profit (BLEP) strategy (N bids). This strategy con-
sists in applying the MEP strategy iteratively, when it is possible to make
more that one offer to the buyer. The first offer is the MEP, and if the
customer does not accept the offer, his/her curve of estimated probabilities
is normalised taking into account the following: the probabilities of buying
that are less than or equal to the probability of buying at this price will
be set to 0; and the probabilities greater than the probability of buying at
this price will be normalised between 0 and 1. The next offer will be calcu-
lated by applying the MEP strategy to the normalised probabilities. When
the probability of buying which is associated to the price is the maximum
probability (this is an infrequent situation) we cannot use the model any
more, and the price will not be set to 0, because the expected profit would
always be 0. Instead of this, the next offer is directly the half of the bid price.
The pseudo-code is in Algorithm 1. Figure 3 left shows the three probability
curves obtained in three steps of the algorithm and Figure 3 right shows the
corresponding expected profit curves. The solid black line on the left chart
is the initial probability curve and the point labeled by 1 on the right chart
is its MEP point. In this example, the offer is rejected by the customer (this
offer is greater than the maximum price), so probabilities are normalised
following the process explained above. This gives a new probability curve
represented on the left chart as a dashed red line and its associated expected
profit curve (also represented by dashed red line on the chart on the right),
with point 2 being the new MEP point for this second iteration. Again, the
offer is not accepted and the normalisation process is applied (dotted green
lines in both charts). In order to illustrate the case where the normalisation
plummets the probabilities too, Figure 4 shows the BLEP strategy when the
probability associated to the MEP point in each iteration is the maximum
probability.

16

7.7. Using Negotiable Features for Prescription Problems 147

– Maximum Global Optimisation (MGO) strategy (N bids). The objective of
this strategy is to obtain the N offers that maximise the expected profit:

πMGO = argmax〈π1,...,πN 〉(E Profit(〈π1, . . . , πN 〉)
= argmax〈π1,...,πN 〉(p̂(POS|π1) · Profit(π1)

+(1− p̂(POS|π1)) · p̂(POS|π2) · Profit(π2) + . . .
+(1− p̂(POS|π1)) · . . . · (1− p̂(POS|πN−1))·

p̂(POS|πN) · Profit(πN))

The rational of the previous formula is that we use a probabilistic accounting
of what happens when we fail or not with the bid. Consequently, optimising
the previous formula is a global approach to the problem.
Computing the N bids from the previous formula is not direct but can be
done in several ways. One option is just using a Montecarlo approach [19]
with a sufficient number of tuples to get the values for the prices that max-
imise the expected profit. Figure 5 right shows the three points given by the
MGO strategy for the probability curve on Figure 5 left. As we can see, the
three points are sorted in decreasing order of price.

For the three previous strategies, it is clear that they will only work if the data
mining models perform relatively accurate predictions in terms of probability
estimation3.

Next, we will investigate the application of the previous three methods to
the last four cases in Table 1.

Algorithm 1: BLEP strategy

Require: N , epf (estimated probability function or curve)
Ensure: πBLEP

∀x, epf(x)← p̂(POS|x)
π1 ← πMEP

π ← π1

for πi, i ∈ 2..N do
if epf(π) 6= maxx∈0..∞(epf(x)) then
∀x, epf(x)← 0
if epf(x) 6 epf(π) then
epf ← normalise(epf, epf(π),maxx∈0..∞ epf(x))
{normalise(f(x),mix,max): returns normalised function of f(x) from values min and
max to [0..1]}

end if
πi ← πMEP

π ← πi

else
πi ← π ÷ 2
π ← πi

end if
end for
πBLEP ← 〈π1, . . . , πN 〉

3 In the last two strategies, we do not consider whether the offer is below the seller’s
minimum price. Strictly, this is not part of the strategy but it is rather more related
to ascertain which of cases 5, 6, 7 or 8 we are dealing with, and also with the issue
of whether we have other customers and we prefer to stop offering the product that
to get closer to the minimum price.

17

148 7. Publications (Full Text)

17

E
(P

ro
fi

t)

.

Fig. 2. Example of the MEP strategy. Left: Estimated probability. Right: Associated
expected profit.

5.2 Scenario with one Product and one Customer

We start with the simplest negotiation scenario, where there are only one seller
and one buyer who both negotiate for one product. The buyer is interested in
one specific product. S/he likes the product and s/he will buy the product if its
price is under a certain price that s/he is willing to pay for this product. It is
clear that in this case the price holds the conditions to be a negotiable feature.
It is sensitive, since if we reduce price to 0, the probability of having class POS
approaches 1 and if we increase price to a very large amount, the probability of
having class NEG approaches 1. And, finally, it is monotonic, since the relation
between price and the class order NEG ≺ POS is monotonically decreasing.
Since product and customer are fixed, we only have one degree of freedom: the
price.

Obviously, the goal of the seller is to sell the product at the maximum possible
price (denoted by πmax) which is defined as the value such that both the following
equalities hold:

f(x1, . . . , xi−1, πmax, xi+1, . . . , xm) = POS

f(x1, . . . , xi−1, πmax + ε, xi+1, . . . , xm) = NEG,∀ε > 0.

In other words, the use for the model is: “Which is the maximum price at which
I can sell this product to this customer?” Logically, the higher the price the
lower the probability. So the goal, as we said at the beginning of Section 5, is to
maximise the expected profit calculated by formula (1) where p̂ is the estimated
probability given by the negotiable feature model.

To ease notation we will denote p̂(POS|〈x1, . . . , xi−1, π, xi+1, . . . , xm〉) as
p̂(POS|π). Consequently, we can express formula (1) as:

E(Profit(π)) = p̂(POS|π) · Profit(π),

with the additional constraint, as mentioned, that π ≥ πmin.

18

7.7. Using Negotiable Features for Prescription Problems 149

20

E
(P

ro
fi

t)

Fig. 3. Example of the BLEP strategy. Left: Estimated probability. Right: Associated
expected profit.

So, if we have a model which can estimate probabilities for the positive class,
we can use the previous formula for the expected profit to choose the price that
has to be offered to the customer. If probabilities are well estimated, for all the
range of possible prices, this must be the optimal strategy if there is only one bid.
In Figure 6 we show an example of the plots that are obtained for the estimated
probabilities and expected profit.

5.3 Scenario with several Products and/or several Customers

In this section we are going to study the cases 6, 7 and 8 in Table 1. The cases
6 and 7 correspond to the cases with more than one product or more than one
customer, while in the case 8 there are several products and several customers.
As we will see, they can be understood as an extension of case 5 combined with
the rankings of customers and products that are used in cases 2 and 3 in Table
1.

In case 6 in Table 1 (one kind of product, negotiable price, and C customers),
there is a curve for each customer (Figure 7, Left), which are similar to the curve
in case 5. If the seller can only make one offer to the customers, the seller will offer
the product at the price that gives the maximum expected profit (in relation to all
the expected profit curves) to the customer whose curve achieves the maximum.
However, if the seller can make several offers, the seller will distribute the offers
along the curves following a negotiation strategy. In this case, the seller not only
changes the price of the product, but the seller can also change the customer
that s/he is negotiating with, depending on the price of the product (that is, by
selecting the customer in each bid who gives the greatest expected profit at this
price). Therefore, these curves can be seen as a ranking of customers for each
price.

19

150 7. Publications (Full Text)

21

E
(P

ro
fi

t)

Fig. 4. Example of the BLEP strategy. Left: Estimated probability. Right: Associated
expected profit.

Case 7 in Table 1 (N kind of products, a negotiable price, and one customer)
is symmetric to case 6. Instead of one curve for each customer, there is one curve
for each product. In this case, the curves represent a ranking of products for that
customer. The learned data-mining models will help the seller to make the best
decision about which product the seller offers to the customer and at what price.
Figure 7 is also an example of this case since the curves would represent three
different products to be offered to one customer.

Case 8 in Table 1 (N kind of products, a negotiable price, and C customers)
is the most complete of all.

The objective is to offer the products to the customers at the best price in
order to obtain the maximum profit. Multiple scenarios can be proposed for
this situation: each customer can buy only one product; each customer can buy
several products; if the customer buys something, it will be more difficult to buy
another product; there is limited stock; etc. But if we understood it as the other
two, the way in which it is solved does not differ to cases 6 and 7.

In cases 6, 7 and 8, we typically work with only one data mining model which
has the customer’s features and the product’s features (one of them being the
negotiable feature) as inputs. We can, of course, define C different models in
case 6, N different models in case 7, or even C, N or CxN different models for
case 8. Nonetheless, this is not necessary and the higher the number of models
is the more difficult is to learn and use them and is prone to overfitting.

As a result, to solve cases 6, 7 and 8, we propose extending the classical
concept of ranking customers or products to expected profit curves in order to
obtain a ranking of customers or products for each price (similar to cases 2 and
3). For example, Figure 7 shows that, for a price of 300,000 euros the most
appropriate customer is the one represented by the solid line, the second one
is the customer represented by the dotted line, and the least appropriate one

20

7.7. Using Negotiable Features for Prescription Problems 151

23

E
(P

ro
fi

t)

Fig. 5. Example of the MGO strategy. Left: Estimated probability. Right: Associated
expected profit.

is represented by the dashed line. The situation changes for a price of 200,000
euros; at that point the most appropriate customer is the one represented by the
dashed line, the second one is the customer represented by the solid line, and
the least one is the one represented by the dotted line. Therefore, an important
property of these probabilistic buying models is that there is a change in the
ranking at the point where two curves cross.

Graphically, the most appropriate customer or product (the top of the rank-
ing) for each price is represented by the envelope curve. Therefore, in the cases
6, 7 and 8 there are several curves, but the envelope curve must be calculated
having, as a result, only one curve. Consequently, we can apply the same nego-
tiation strategies applied to the case 5 to the envelope curve of cases 6, 7 and
8.

Example 3. We are going to explain the negotiation strategy that the seller will
follow by means of an example of the case 6 (one kind of product, a negotiable
price, and C customers), because the process will be the same for the cases 7 and
8, but with more curves. Therefore, we start with the simplest situation with
two customers and one product.

In Figure 8, there are two curves representing the buying probabilities of
two different customers. The buying probability of the first customer follows a
normal distribution with µ1 = 400 and σ1 = 100, and it is represented by a
dashed line. The buying probability of the second customer follows a normal
distribution with µ2 = 300 and σ2 = 200, and it is represented by a dotted line.
These are the probabilities; however, the actual values (unknown by the seller)
is that the maximum buying price for customer 1 is 100 euros and 150 euros for
customer 2.

We assume a simple negotiation process for this example. The negotiation
strategy that we use is the Best Local Expected Profit (BLEP) strategy explained

21

152 7. Publications (Full Text)

Fig. 6. Left: Example of estimated probabilities. Right: Associated expected profit.
The minimum and maximum price are also shown.

in section 5.1. The trace of the negotiation process is described in Table 2 (Left)
and shown graphically in Figures 9 and 10. In each iteration, the maximum of the
functions is calculated (the envelope curve). The envelope curve is represented
by a solid line in Figures 9 and 10.

Table 2. Left:Trace of the negotiation process. Right:Trace of the negotiation process with the
ordering pre-process.

Offer Price Customer Accepted

1 309 1 No
2 214 1 No
3 276 2 No
4 149 1 No
5 101 1 No
6 150 2 Yes

Offer Price Customer Accepted

1 309 1 No
2 276 2 No
3 214 1 No
4 150 2 Yes

Note that as Table 2 (Left) shows, the third offer is greater than the second
one. This is because there is more than one customer in the negotiation pro-
cess and the offer is made at the price that maximises the expected profit at
each iteration. Therefore, it is easy to propose an improvement for this negotia-
tion strategy with a limited number of offers, which is similar to BLEP with n
bids. This improvement is a pre-process that consists in calculating the n points
and ordering them by the price before starting the negotiation. Following the
example shown in Table 2 (Left), if there are only 4 bids no one will buy the
product. However, with this improvement (the pre-process) customer 2 will buy
the product at a price of 150 euros as shown in Table 2 (Right).

This negotiation scenario suggests that other negotiation strategies can be
proposed for application to problems of this type in order to obtain the maximum

22

7.7. Using Negotiable Features for Prescription Problems 153

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Price

P
ro
ba
bi
lit
y

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0
50
00
0

10
00
00

15
00
00

20
00
00

Price

E
(B
en
ef
it)

Fig. 7. Probabilistic buying models of 3 different customers approximated by 3 normal
distributions with µ1 = 250, 000 and σ1 = 30, 000, µ2 = 220, 000 and σ2 = 10, 000,
and µ3 = 200, 000 and σ3 = 50, 000. Left: Probability distribution function. Right:
Associated expected profit.

Fig. 8. Probabilistic buying models of 2 different customers approximated by 2 normal
distributions with µ1 = 400 and σ1 = 100 (dashed line), and µ2 = 300 and σ2 =
200 (dotted line). Left: Probability distribution function. Right: Associated expected
profit.

23

154 7. Publications (Full Text)

Fig. 9. Points 1, 2 and 3 in the negotiation process. Left: Probability distribution
function. Right: Associated expected profit.

24

7.7. Using Negotiable Features for Prescription Problems 155

Fig. 10. Points 4, 5 and 6 in the negotiation process. Left: Probability distribution
function. Right: Associated expected profit.

25

156 7. Publications (Full Text)

profit. One problem with the BLEP strategy is that it is very conservative. It
might be interesting to implement more aggressive strategies that make offers
at higher prices (graphically, more to the right). A negotiation strategy that
attempts to do this is the Maximum Global Optimisation (MGO) strategy (with
n bids). The objective of this strategy is to obtain the n offers that maximise
the expected profit by generalising an optimisation formula that was presented
in section 5.1.

In case 6 (One kind of product, a negotiable price, and C customers), we have
presented an example with two customers and one product, but it would be the
same for more than two customers. In the end, there would be one curve for each
customer or product, and the same negotiation strategies could be applied.

Case 7 (N kind of products, a negotiable price, and one customer) is the
same as case 6, but the curves represent the buying model of each product for
each customer, and a ranking of products will be obtained for each price.

Fig. 11. Example of probabilistic models of two customers and two products.

Case 8 (N kind of products, a negotiable price, and C customers) can be
studied using the same concept of expected profit curves, but there will be N×C
curves. For each of the N kind of products, there will be C curves that belong to
the buying model of each customer. Figure 11 presents a simple example with two
products and two customers. Several settings could be possible: each customer
can only buy one product, there is limited stock, etc. Therefore, the curves will
change or disappear in real time, depending on the setting of the problem. In

26

7.7. Using Negotiable Features for Prescription Problems 157

this work we are always offering the best product to the best customer, but
there is no problem in offering more than one product to the same customer
or to multiple customers4. If we only have one product, the first customer in
answering will obtain the product. For example in the case of offering the two
topmost ranked products to a customer, we would work as follows. First, we
would obtain the most desirable product, in the same way as case 7 in table 1
(N kinds of products, a negotiable price, and one customer). Second, the curve
of this product would be deleted. And third, the most desirable of the remaining
products would be obtained, again in the same way as case 7.

6 Experiments

Experiments have been performed by using real data collected from an estate
agent5. We have information of 2,800 properties (flats and houses) that were
sold during 2009 in the city of Valencia (Spain), for which we have the following
attributes (“district”, “number of rooms”, “square metres”, “owner’s price” and
“selling price”). “Owner’s price” is the price which the owner wants to obtain for
the property. “Selling price” is the final price at which the purchase took place.

We assume that the “selling price” is some kind of “market price”, which is
usually closer to the “maximum price”. Although this is not always true because
in some cases the buyer could have paid more than this for the property, it is
generally a good approximation as we discussed in Section 1. In any case, it is
almost impossible to obtain the real “maximum price”, because it is very difficult
that a customer says the maximum price that s/he could pay for a product.

We have randomly split the dataset, using a uniform distribution without
replacement, into a training set and a test set. 10% of the data are for training
and the rest to test. This tries to simulate a realistic situation when there are not
too many data for training. Therefore, the results refer to 2,520 properties, and
learning is made from 280 flats. We applied the solutions proposed in Section
4 to the data, namely the idea of populating the dataset to learn a better clas-
sification model and the idea of using regression models (inverted problem). In
particular we have used the “improved classifier” solution (presented in section
4.2. In particular we learnt a J48 (WEKA implementation of C4.5 algorithm
[26]) decision tree classifier (with Laplace correction and without pruning), im-
plemented in the data mining suite WEKA [31]. It has been learned using exam-
ple generation (10 positive examples and 10 negative examples for each original
example using the negotiable feature rules explained in Section 4.2, so condition
2 holds for all the instances and τ = 1). Since the predicted probability curve
given by a classifier (such as the J48 classifier) typically shows discontinuities
and strong steps when varying a negotiable feature, we have smoothed the curve
with a low-pass filter with Bartlett overlapping window [30]. The parameter of
the window has been set to the “minimum price” divided by 4. This value were

4 Note that we do not need a multinomial model for this. We only need to determine
when two offers are close in the ranking.

5 Data can be found at: “http://tinyurl.com/2usbdfj” in WEKA format.

27

158 7. Publications (Full Text)

set after making some experiments (divided by 2, 3, 4 and 5) with some flats
and observing that this value smoothed the curves properly. In Figure 12 we can
observe the difference between the original curve and the smoothed curve. The
“inverting problem presentation” solution (presented in Section 4.3) has been
implemented with the LinearRegression and M5P [25] regression techniques
(both with their default parameters), also from WEKA6.

Fig. 12. Left: Example of estimated probabilities. Right: Estimated probabilities which have been
smoothed by a low-pass filter with Bartlett overlapping window.

These three learning techniques have been used to guide the three negotia-
tion strategies explained in section 5.1. For the MGO strategy we have used a
Montecarlo approach [19]: 3 prices are selected using a uniform random distri-
bution from the range of prices and the value for these 3 points is calculated
using the formula in section 5.1, this operation is repeated 1,000 times and the
triplet that obtain the maximum value for the formula is chosen.

In Table 3 we can observe the results for case 5 in Table 1 (one kind of
product, a negotiable price, and one customer), obtained for each method, in
terms of number of sold properties, deal price (in euros) and profit (in euros).
In Table 4 we show the results for case 7 in Table 1 (N kinds of products,
a negotiable price, and one customer). Concretely, we have set the number of

6 The source code of the algorithm which computes the probability can be obtained
at: “http://tinyurl.com/3xxpxyp”. The version of the Java Development Kit used
is “jdk1.6.0 14” that can be downloaded at: “http://www.sun.com/java/”
and the learning algorithms come from the Weka API (version 3.6.1)
“http://www.cs.waikato.ac.nz/ml/weka/”. The negotiation strategies have
been implemented using version 2.9.2 of R (R-project statistical package)
“http://www.r-project.org/” and the script with these algorithms is accessible at:
“http://tinyurl.com/33e5up6”.

28

7.7. Using Negotiable Features for Prescription Problems 159

different products to five, i.e., N = 5. For these experiments with 1 customer
and 5 flats, we chose each group of 5 flats randomly using a uniform distribution
and without replacement. This means that we have grouped the 2,520 flats in
groups of 5 flats, having 504 groups of 5 flats. Each group of 5 flats is offered to
the customer and s/he can only buy one of the flats. As we have explained in
section 5.3, the envelope curve of the 5 curves is calculated and the negotiation
strategies are applied to it.

In Table 3 and Table 4 we compare the MEP, BLEP and MGO strategies
with these baseline methods:

– Baseline method (1 bid or N bids) (1 customer and 1 product). One of the
simplest methods to price a product is to add a margin (a percentage) to its
minimum price (or base cost). Instead of setting a fix percentage arbitrarily,
we obtain the percentage (called α) such that it obtains the best result for
the training set. For example, in our experiments, the best α is 0.8, so it is
expected that the best profit will be obtained by increasing the minimum
price of the properties in an 80%. If we have only 1 bid, we will increase the
minimum price of the flat by α. But, if we have N bids, we will have one half
of the bids with a value of α less than the calculated α and the other half of
the bids with a value of α greater than the calculated α. In particular, the
value of α will increase or decrease by α/(N + 1) in each bid. For example,
in our experiments for 3 bids, the three values of α for three bids would be
100%, 80% and 60%. Therefore, the first offer would be an increase of 100%
over the minimum price of the product, the second an increase of 80% and
the third an increase of 60%.

– Baseline method (the most expensive/the cheapest) (1 customer and M
products). When the seller has several products to offer to the customer,
it is not as clear as the previous case how to create a baseline method,
because there are several products with different prices. We have proposed
two baseline methods: one associated with the most expensive product of the
M products, and the other associated with the cheapest product of the M
products. In other words, the baseline methods in these cases are the same
as the baseline method (1 bid or N bids) (1 customer and 1 product), but
in these cases the increased price is the price of the most expensive product
or the price of the cheapest product.

In Table 3 we also show the results of two reference methods. The methods “All
flats sold at πmin” and “All flats sold at πmax” show the hypothetic cases when
all the flats are sold at the minimum price or at the maximum price. In Table 4
the methods “Selling the most expensive” and “Selling the cheapest” show the
hypothetic cases when, in all the groups of 5 flats, the most expensive flat of the
5 have been sold to its maximum price, or the cheapest flat of the 5 have been
sold to its maximum price.

In order to analyse the results, let us first focus on Table 3, which shows
results for one customer and one flat. For one possible bid, we have that all
the methods based on data mining get better results. The solution using an
extended dataset but preserving the original task (J48 classifier) is slightly better

29

160 7. Publications (Full Text)

1 customer and 1 flat

Method Sold flats Deal price Profit

Reference
All flats sold at πmin 2,520 534,769,904 0
All flats sold at πmax 2,520 712,580,216 177,810,312

1 bid
Baseline (80%) 290 74,664,508 33,184,226

MEP (J48) 1,094 244,102,200 42,034,896
MEP (LinearRegression) 1,681 341,147,000 38,372,983

MEP (M5P) 1,707 342,805,800 38,580,279

3 bids
Baseline (100%, 80%, 60%) 635 165,443,695 67,226,421

BLEP (J48) 1,211 260,298,700 43,474,928
BLEP (LinearRegression) 1,746 352,112,700 39,574,602

BLEP (M5P) 1,769 353,106,100 39,698,991
MGO (J48) 1,700 422,209,800 84,028,502

MGO (LinearRegression) 1,918 477,247,900 95,323,551
MGO (M5P) 1,939 487,771,600 98,376,548

Table 3. Results obtained for one product and one customer by the negotiation strategies, baseline
methods and reference methods (minimum and maximum profit). Deal price and profit measured in
euros.

than the problem inversion methods (Linear Regression and M5P regressor).
Taking a look at the number of flats sold, it suggests that MEP with regression
somehow underestimates the ideal price in this situation. For three bids, the
picture changes. The baseline method is now better than BLEP. This is expected
since BLEP just chooses the local optimum each time and disregards the overall
picture. On the contrary, the MGO clearly surpasses the other methods, which
shows that a global formulation is necessary to solve the case for several bids.
If we take a look at the method, regression (and M5P in particular) is the best
method for this case. As a wrapping-up of the results for one customer and one
flat we can say that for one bid, MEP with a J48 classifier gives the best results,
while the MGO with the M5P regressor is the best combination.

Now let us focus on Table 4, which shows results for one customer and 5 flats.
For one possible bid, we have that all the methods based on data mining get
better results than the “baseline (80%) (the cheapest)” but not for the “baseline
(80%) (the most expensive)”. Only the solution using an extended dataset but
preserving the original task (J48 classifier) is better than both baselines. Again,
taking a look at the number of flats sold, it suggests that MEP with regression
somehow underestimates the ideal price in this situation. For three bids, the
picture changes again. The “baseline method the cheapest” is the worst method
while “the baseline method the most expensive” is now better than BLEP using
regression, and comparable to BLEP using classification. This is again expected
since BLEP just chooses the local optimum each time and disregards the overall
picture. On the contrary, MGO clearly surpasses the other methods (with the
only exception that MGO with J48 is worse than BLEP with J48). This also
shows that a global formulation is necessary to solve the case for several bids.
If we take a look at the method, regression (and M5P in particular) is the best
method for this case. As a wrapping-up of the results for one customer and 5

30

7.7. Using Negotiable Features for Prescription Problems 161

1 customer and 5 flats

Method Sold flats Deal price Profit

Reference
Selling the most expensive 504 233,943,288 58,092,977

Selling the cheapest 504 85,385,709 22,641,094

1 bid
Baseline (80%) (the most expensive) 48 20,822,533 9,254,459

Baseline (80%) (the cheapest) 74 11,763,632 5,228,281
MEP (J48) 180 74,025,300 13,043,111

MEP (LinearRegression) 242 79,143,500 6,506,317
MEP (M5P) 226 72,390,900 5,613,714

3 bids
Baseline (100%, 80%, 60%) (the most expensive) 123 50,497,241 18,936,465

Baseline (100%, 80%, 60%) (the cheapest) 144 22,025,593 8,259,598
BLEP (J48) 354 116,478,000 20,468,778

BLEP (LinearRegression) 434 123,971,100 11,146,363
BLEP (M5P) 431 121,216,400 10,491,057
MGO (J48) 288 115,919,700 20,213,901

MGO (LinearRegression) 339 142,570,700 24,541,886
MGO (M5P) 344 147,656,200 25,109,410

Table 4. Results obtained for one customer and 5 products by the negotiation strategies, baseline
methods and reference methods. Deal price and profit measured in euros.

flats we can say that for one bid, MEP with a J48 classifier gives the best results,
while MGO with the M5P regressor is the best combination.

Consequently, the results for one customer and one flat are in agreement
with one customer and five flats (case 5 in Table 1). Since the problem with
C customers and one flat (case 6 in Table 1) is symmetrical wrt. one customer
and N flats (case 7 in Table 1), similar results are expected for the case of C
customers and N products (case 5 in Table 1), since its solution is similar to the
other two cases.

In conclusion, the MEP or BLEP negotiation strategies can obtain good
results, but the MGO method is more robust, because it is a global optimisation
method.

7 Related Work

This work incorporates ideas from data mining [14] (machine learning and statis-
tics), marketing research [7], negotiation [16], agent theory [27] and, decision
theory [21], in order to address a taxonomy of prescription problems with basic
negotiation issues in the area of marketing and customer-relationship manage-
ment. In this section we describe the possible connections between our work and
some previous or related approaches. One goal of this section is to clearly see
where we differ from other approaches. The difference may be found because we
address different (but related) problems or because we use different techniques
(and hence a comparison should be made). In both cases, however, we can take
some ideas for extending our approach to more complex or general problems or
to address the same problem with better techniques. Let us see this.

31

162 7. Publications (Full Text)

The first field we come up is decision theory. In prescription problems, we are
always concerned about what to sell and to whom. If we have a utility function,
and we have a probabilistic model for a set of decisions (choosing the product
or choosing the customer), we can derive an expected utility for each set of
decisions, and try to maximise this. If there is no interaction at all, we have a
list of expected utilities, from which we can construct a rank and, design, for
instance, a mailing campaign. If there is a finite sequence of interactions, we can
analyse that with a probabilistic decision tree or with transition graphs. If this
interaction may get larger or infinite, then we may require a Markov Decision
Process (MDP) [24], assuming that the Markov property holds. In this case,
many techniques from dynamic programming [5] and reinforcement learning [28]
can be used. Although our MGO method may resemble some of the methods
in reinforcement learning, we have used a Montecarlo approach, because we
have an infinite multidimensional set of inputs, and we want the probabilistic
model to be treated as a black box (it is a data mining model which can be
linear, non-linear, non-continuous). We could also study the application of linear
programming techniques for this problem.

A prescription problem with negotiable attributes not only depends on what
to sell and to whom. It also deals with features, such as prices. And these features
are typically continuous, so we cannot address this with discrete approaches
such as MDP, which are discrete-time and discrete-action decision processes,
unless we discretise these attributes in a reduced set of bins and we augment the
MDP framework to consider an order relation between the actions (as the order
relation we have defined for our inputs, and outputs). Although discrete-time
is not a problem here, we need to look to continuous-action decision processes,
as in control theory [17]. However, we fail to identify a good representation of
the problem here in such a way that we do not recognise the conditions which
are typically required in control problems. Additionally, we have few feedback
interactions from the customers (and very few if we only consider one customer
at a time), we do not have many continuous outputs from the system (just
a purchase or not, not even a degree of satisfaction), so the idea of gradually
adjusting and gauging which is typical in process control does not hold here
either.

The closest approaches are from the broader areas of game theory [12], ne-
gotiation policies [16] and multi-agent optimisation [32]. However, much of the
results and techniques have been specialised to very specific cases (see, e.g. [29]),
while there are only a few general principles from game theory, such as the Nash
equilibrium if the agent competes (as in our case). However, we are not con-
cerned about the global optimum, but the optimum for one agent (typically the
seller), and there are many games held at the same time sharing some issues
(products and customers).

Back to the field of CRM and marketing, it seems that cross-selling, up-selling
and recommender systems may be useful here, as we have already mentioned in
the introduction. There are some approaches that employ data mining techniques
to configure cross-selling campaigns. For instance [18] applies multinomial logit

32

7.7. Using Negotiable Features for Prescription Problems 163

on a CRM cross-sell application. Another example is [23]. This work presents
a structural multivariate probit model to investigate how customer demand for
multiple products evolves over time. However, it is not straightforward to apply
this kind of data mining techniques in our framework. The issue is the family
of problems we are addressing; we are not thinking about a long-term customer
relationship. The examples we are using are typically related to selling houses,
cars, or other products which are not repeatedly purchased by the same cus-
tomer. In fact, it is more likely (custom and acceptable) to negotiate and use
different prices on these products for each customer than to negotiate or use dif-
ferent prices for a bar of chocolate. At least at this moment of the taxonomy and
the kinds of problems we consider, there is no follow-up about the customer, no
real concern about customer’s churn, etc. The main goal is to maximise profits
for a buyer that will not been seen again after a purchase (unless a complaint or
a refund).

There is an interesting relation between the notion of negotiable feature and
Choice Based Conjoint (CBC) Analysis ([13]). The main objective of Conjoint
Analysis is to measure an individual’s or a population’s preference on a set of
parameters and levels. CBC Analysis is a special family of Conjoint Analysis
techniques that have to choose between a set of options for several parameters.
In the context of market research, subjects are customers and parameters are
product’s features. The output of the process is an ordinal scale which ranks all
the options or, more frequently, a scale in which every option is given a value.
In other words, Conjoint Analysis allows for a proper ranking of the features.
Conjoint analysis presents the problem that one option cannot compensate the
bad value of other options (e.g. we will not buy a flat at any price if it does not
have a lift). This is related to the parameter τ in our definition of negotiable
feature. An option (or feature) can be made irrelevant given the values of other
features. Adaptive Choice Based Conjoint (ACBC) Analysis is an extension of
Choice Based Analysis which allows for non-compensatory decision rules as in
the previous example. It is frequent to see a first ACBC analysis to define which
features are relevant, and second, to apply a CBC to rank them. This would
be appropriate in cases where we do not exactly know the attributes which are
negotiable. However, we have to clarify that CBC is based on examples which
are preference expressions (e.g. ‘I prefer flat A with feature values a1, a2, ..., an,
over flat B with feature values b1, b2, ..., bn’). In our case, our examples are like
‘Customer bought (or didn’t) flat A with feature values a1, a2, ..., an’. Even in
cases where the data does not come from choices (general Conjoint Analysis)
there is typically a pre-designed research survey, with preference questionnaires
that may take several minutes. This scenario is far from the assumptions we
are making here about a historical datasets with actual transactions, instead
of a survey to gather information. In our case, we would prefer to adapt a
classical feature selection method instead. Nonetheless, in cases where the survey
can be performed, CBC analysis can be good tool to determine the negotiable
attributes, especially in cases where we want to optimise the offer for more than
one negotiable feature at a time, because the ranking of feature relevance as

33

164 7. Publications (Full Text)

well as their range of acceptable values can help in the combinatorial problem
of finding the best set of values for the first and subsequent offers.

8 Conclusions

In this paper, we have investigated a new family of prescription problems using
data mining models, where one or more features are negotiable. These problems
have motivated the extension of the taxonomy of prescription problems, and the
development of a series of techniques to solve the optimisation problem of max-
imising the result that can be obtained with the models. A key notion has been
the handling of the inversion problem which appears when transforming an input
(negotiable) feature into an output feature, which can turn a classification prob-
lem into a regression problem and viceversa. The probabilistic estimation for the
new output feature has been solved for both cases (probabilistic classification
and regression), so producing probability estimation curves and profit curves.
Using these curves we have been able to devise several negotiation strategies,
which have been proven to behave better as long as a more global view is taken,
which usually implies more complex maximisation problems which, due to char-
acteristics of the data mining model, have been addressed with a Montecarlo
approach.

The scenario we have used as a guiding thread for the paper shows a real-
istic problem in the CRM field, where data mining can help a seller to make a
good decision about which product should be offered to which customer and at
what price, in order to obtain as much overall profit as possible. However, the
techniques presented here are applicable to many other prescription problems,
inside the CRM field or outside (e.g. medicine, education, law, ...), or many other
situations where some kind of negotiation takes place using data mining models.

This work has therefore been focused on the model deployment stage, which
is becoming a scientifical problem itself, with much more entity and shape than
some years ago, when data integration and processing, data modelling and eval-
uation were the data mining stages where the main computational effort and
techniques were developed. Data deployment in a context of global maximisation
requires the hybridisation of techniques from several fields, such as linear pro-
gramming, simulation, numerical computation, etc. This also implies that data
mining models have to be constructed and evaluated taking care of their appli-
cation context and their relation with several other models, rules, constraints
and goals.

As future work, many ideas follow from this work. For instance, we plan
to develop new evaluation metrics which consider the quality of a predictive
data mining model not only as the accuracy of its estimations given the inputs,
but also its quality when the model has to be inverted. For instance, in our
experiments we have found that regression trees are better than linear regression,
and, in some cases, better than the direct classification decision trees approach.
This suggests the development of evaluation metrics which can be used to select
the best models before application. Another issue for future analysis is the use of

34

7.7. Using Negotiable Features for Prescription Problems 165

more efficient techniques to compute the curves and the envelopes when we have
a high number of items and customers, since the combinations are quadratic.

In this work, we only have one negotiable feature at a time, but we are
studying the extension to multiple negotiable features. When we have only one
negotiable feature we have two dimensions (the negotiable feature and the prob-
ability). In the case of multiple negotiable features we have one dimension for
each negotiable feature plus one (the probability). For example, if we have two
negotiable features, we have three dimensions, and instead of having curves, in
this case, we have surfaces. MEP and MGO strategies can be applied to multiple
negotiable features without any problem, but the BLEP strategy needs changes,
because each negotiable feature is monotonic, but all the negotiable features
could not been monotonic at the same time, and this is a problem for the nor-
malisation phase of the BLEP algorithm. Finally, other areas of possible research
are the enrichment of the scenario with counteroffers from the customer, per-
ishable and/or limited stocks, as well as the application to other areas outside
CRM, such as medical research.

References

1. G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender
systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on
Knowl. and Data Eng., 17(6):734–749, 2005.

2. A. Bella, C. Ferri, J. Hernández-Orallo, and M.J. Ramı́rez-Quintana. Joint cut-
off probabilistic estimation using simulation: A mailing campaign application. In
IDEAL, volume 4881 of LNCS, pages 609–619. Springer, 2007.

3. M.J.A. Berry and G.S. Linoff. Mastering Data Mining: The Art and Science of
Customer Relationship Management. Wiley, 1999.

4. A. Berson, S. Smith, and K. Thearling. Building Data Mining Applications for
CRM. McGraw Hill, 2000.

5. D.P. Bertsekas. Dynamic programming and optimal control, 3rd Edition. 2005.
6. M. Better, F. Glover, and M. Laguna. Advances in analytics: integrating dynamic

data mining with simulation optimization. IBM J. Res. Dev., 51(3):477–487, 2007.
7. N. Bradley. Marketing Research. Tools and Techniques. Oxford University Press,

2007.
8. J. Carbo and A. Ledezma. A machine learning based evaluation of a negotiation

between agents involving fuzzy counter-offers. In AWIC, pages 268–277, 2003.
9. L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition

(Stochastic Modelling and Applied Probability). Springer, 1997.
10. C. Ferri, P.A. Flach, and J. Hernández-Orallo. Improving the AUC of probabilistic

estimation trees. In 14th European Conference on Machine Learning, Proceedings,
pages 121–132. Springer, 2003.

11. C. Ferri, J. Hernández-Orallo, and R. Modroiu. An experimental comparison of
performance measures for classification. Pattern Recogn. Lett., 30(1):27–38, 2009.

12. D. Fudenberg and J. Tirole. Game theory. MIT Press, 1991.
13. A. Gustafsson, A. Herrmann, and F. Huber. Conjoint analysis as an instrument

of market research practice. Conjoint measurement, pages 3–30, 2000.
14. J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kauf-

mann Publishers, 2006.

35

166 7. Publications (Full Text)

15. J. J. Heckman. Sample Selection Bias as a Specification Error. Econometrica,
1979.

16. N.R. Jennings, P. Faratin, A.R. Lomuscio, S. Parsons, M.J. Wooldridge, and
C. Sierra. Automated negotiation: Prospects, methods and challenges. Group
Decision and Negotiation, 10(2):199–215, 2001.

17. C. Kilian. Modern Control Technology. Thompson Delmar Learning, 2005.
18. S. Li, B. Sun, and R.T. Wilcox. Cross-selling sequentially ordered products: An

application to consumer banking services. Journal of Marketing Research, 2005.
19. N. Metropolis and S. Ulam. The monte carlo method. Journal of the American

Statistical Association (American Statistical Association), 1949.
20. B. Padmanabhan and A. Tuzhilin. On the use of optimization for data mining:

Theoretical interactions and ecrm opportunities. Management Science, 49(10, Spe-
cial Issue on E-Business and Management Science):1327–1343, 2003.

21. M. Peterson. An Introduction to Decision Theory. Cambridge University Press,
2009.

22. A. Prinzie and D. Van den Poe. Constrained optimization of data-mining problems
to improve model performance: A direct-marketing application. Expert Systems
with Applications, 29(3):630–640, 2005.

23. A. Prinzie and D. Van den Poel. Exploiting randomness for feature selection
in multinomial logit: A crm cross-sell application. In Advances in Data Mining,
volume 4065 of Lecture Notes in Computer Science, pages 310–323. Springer Berlin
/ Heidelberg, 2006.

24. M. L. Puterman. Markov Decision Processes. Wiley, 1994.
25. J. R. Quinlan. Learning with continuous classes. In 5th Australian Joint Conference

on Artificial Intelligence, pages 343–348. World Scientific, 1992.
26. J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San

Mateo, CA, 1993.
27. S.J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson

Education, 2003.
28. R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. The MIT

press, 1998.
29. I. Vetsikas and N. Jennings. Bidding strategies for realistic multi-unit sealed-

bid auctions. Autonomous Agents and Multi-Agent Systems, 21:265–291, 2010.
10.1007/s10458-009-9109-6.

30. E.W. Weisstein. CRC concise encyclopedia of mathematics. CRC Press, 2003.
31. I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and

Techniques with Java Implementations. Elsevier, 2005.
32. M. Wooldridge. An Introduction to MultiAgent Systems. John Wiley & Sons Ltd,

2002.
33. S. Zhang, S. Ye, F. Makedon, and J. Ford. A hybrid negotiation strategy mechanism

in an automated negotiation system. In ACM Conference on Electronic Commerce,
pages 256–257. ACM, 2004.

36

7.7. Using Negotiable Features for Prescription Problems 167

168 7. Publications (Full Text)

7.8 On the Effect of Calibration in Classifier Com-
bination

8. A. Bella, C. Ferri, J. Hernández-Orallo, and M.J. Ramı́rez-Quintana. On
the Effect of Calibration in Classifier Combination. (Submitted to Applied
Intelligence).

On the Effect of Calibration in Classifier
Combination

A. Bella, C. Ferri, J. Hernández-Orallo, and M.J. Ramı́rez-Quintana

Universitat Politècnica de València, DSIC, València, Spain

Abstract. A general approach to classifier combination considers each
model as a probabilistic classifier which outputs a class membership pos-
terior probability. In this general scenario, it is not only the quality and
diversity of the models which are relevant, but the level of calibration
of their estimated probabilities as well. In this paper, we study the role
of calibration before and after classifier combination, focusing on evalu-
ation measures such as MSE and AUC, which better account for good
probability estimation. We present a series of findings that allow us to
recommend several layouts for the use of calibration in classifier combi-
nation. We also analyse a new non-monotonic calibration method that
works better for classifier combination than other monotonic calibration
methods.

1 Introduction

The problem of combining multiple decisions from a set of classifiers is known as
classifier combination or classifier fusion[26]. The need for classifier combination
in many real applications is well-known. On the one hand, more and more appli-
cations require the integration of models and experts that come from different
sources (human expert models, data mining or machine learning models, etc.).
On the other hand, it has been shown that an appropriate combination of sev-
eral models can give better results than any of the single models alone [26][34],
especially if the base classifiers are diverse [28].

The term ‘ensembles’ [13][26] is used especially when the set of base classifiers
are created on purpose and are homogeneous. Some ensemble techniques show
an excellent performance, such as boosting [19], bagging [8], and randomisation
[14]. If the set of classifiers is created on purpose but not homogeneous, the term
‘ensemble’ is not so frequently used. Some of these techniques are stacking [36],
cascading [20] and delegating [17]. However, in many situations, there is no on-
purpose generation of a set of classifiers and we have to combine opinions from
many sources (either human or machines) into a single decision. In these cases,
we have no control over the set of classifiers that we have to work with and
heterogeneity is very high. In this paper, we cover these three types (or degrees)
of classifier combination. Since the latter case is more challenging and general,
no assumption will be made about the way in which the set of classifiers have
been obtained. Consequently, we will work with classifier combination from an

7.8. On the Effect of Calibration in Classifier Combination 169

uncontrolled and heterogeneous set of models, where some (or all) of them may
be machine learning models, or models that have been constructed by human
experts. The only (mild) assumption is that we expect all these classifiers to
be able to output a posterior probability, a score, or a reliability value for their
prediction.

Hence, given a set of (heterogeneous) classifiers, it is very important to assess
and use their individual quality for a proper classifier combination. Typically,
an overall weighting is used in such a way that more reliable classifiers are given
more weight than other less reliable classifiers. The way in which ‘reliability’ is
measured and the way in which it is used in the combination make up different
weighted combination schemes (see, e.g., [26]). In the same way, diversity has
typically been analysed in terms of qualitative measures, over a given dataset,
such as disagreement, Q-statistic, Kappa statistic, etc. [28][27].

When classifiers are considered as rankers or probability estimators there are
many more options to work with. If we understand probabilities as an indicator of
reliability, we can have a “double-weighting” combination scheme, where overall
classifier accuracy is used as a “first weight” while estimated class probabilities
are used as a “second weight”. For instance, given two classifiers al and am
with similar accuracies (or any other performance measure) where al < am, we
can still have that, for a particular item i, classifier l may be very sure (with
extreme probabilities) while classifier m may be more uncertain (with medium
probabilities). Of course, for other items, this might be the other way round. If
probabilities are well estimated, this “second weight” will give different levels of
credit to each classifier depending on the example at hand, and might be more
precise than the overall weight given to each classifier.

Therefore, the key point in this combination scheme is the quality of prob-
ability estimations. When the set of classifiers is heterogeneous and originates
from different sources, we cannot assume that these estimations are evenly accu-
rate and reliable. In fact some classifiers may output more extreme probabilities
(closer to 0 or to 1) than others, meaning that they will have more (second)
weight in the combination. This is the typical issue of integrating opinions from
several experts, when some experts express less or more confidence than they re-
ally have. We say these experts are uncalibrated. It is well-known that a bad clas-
sifier can have a negative influence in the combination. But it is not so frequently
realised that just a single bad classifier with extremely confident probabilities
can be disastrous for the combination.

It is then of the outmost importance to analyse the effect of calibration
in classifier combination by studying several combination layouts and several
calibration methods, and their impact on the quality of the combined classifier,
according to several evaluation metrics. This is the goal of the paper.

The paper is structured as follows. In Section 2, we give further motivation
for this study and we also point out to related (but partial) analyses on this issue
in the literature. Section 3 summarises the most common evaluation measures
and calibration methods. Section 4 includes a conceptual study on calibration
and classifier combination, using several examples and identifying several im-

2

170 7. Publications (Full Text)

portant factors. Section 5 presents the experimental evaluation of the previous
analysis. In Section 6, we show that monotonic calibration techniques are non-
monotonic when applied to more than two classes. This justifies the application
and analysis of a new non-monotonic calibration technique known as Multivari-
ate Similarity-Binning Averaging. The whole picture is studied in Section 7 with
several combination layouts. Finally, Section 8 gives an overall view of the mes-
sages that can be conveyed from this paper, leading to the conclusions and future
work.

2 Context and Objectives

Classifier combination has been extensively analysed in the last few decades, es-
tablishing very important results about the number of classifiers, their diversity,
the combination method, etc. In this paper, we focus on one factor that has not
been properly addressed to date: the role of probability calibration in classifier
combination.

This role has many aspects: different probability calibration measures, differ-
ent calibration methods, different layouts where calibration has to be arranged,
etc. In addition, we must consider the relation with other fundamental issues
in classifier combination, such as classification quality and diversity (which can
be evaluated by different families of evaluation measures). A few works have
tangentially addressed some of these issues.

There are, for instance, some approaches which use combination and cal-
ibration, but generally with a very specific layout. For example, in [31], the
Expectation-Maximization algorithm was used to modify the weights of a Bayesian
Model Averaging method and to obtain a calibrated ensemble, but the effect of
calibration methods before the combination was not studied.

Caruana et al [10] also used calibration and combination together. The exper-
imental setting in [10] analysed many other factors altogether but only, included
one calibration method (Platt), it was restricted to binary datasets, and the
double weighting effect was not evaluated (a uniform weighting was used for
Bayesian averaging).

In Bennett’s Ph.D. thesis [5], a methodology is introduced to build a meta-
classifier for classifying text documents by combining estimated probabilities of
base classifiers and using reliability indicators. These reliability indicators are
variables with additional information, not mere probabilities, and are applica-
tion specific.

Brümmer’s Ph.D. thesis [9] focuses on speaker and language recognisers.
Instead of calibrating the probabilities estimated by a classifier, he calibrates
the log-likelihood-ratio scores. However, the calibration and combination methods
studied are always affine (i.e., linear).

The combination of classifiers and their calibration has also been indirectly
addressed when trying to adapt binary calibration methods to multiclass cali-
bration methods, since multiclass calibration can be tackled by a combination
of binary calibration methods. For instance, in Gebel’s Ph.D. thesis [22], there

3

7.8. On the Effect of Calibration in Classifier Combination 171

is a study of several univariate calibration methods and their extensions to mul-
ticlass problems, but only individually, i.e., without combining them. Moreover,
Gebel introduced the “Dirichlet calibration” as a multivariate calibrator that is
applicable to multiclass problems directly, but its poor overall results make it
only recommendable for datasets that have a balanced or slightly imbalanced
class distribution.

In the end, this paper analyses the overall issue, bringing calibration to the
stage of classifier combination as another key dimension of study, jointly with the
well-known properties of classification accuracy and diversity. A general analysis
of classifier function and calibration cannot be found in the literature.

Therefore, the objective of this paper is to undertake this analysis. Along
the way, this work introduces different contributions that can be summarised as
follows:

– A conceptual analysis on how calibration affects the combination of classi-
fiers. This analysis is performed in terms of how classifier probability distri-
butions relate to the combination results depending on the separation of the
class distribution, the calibration and diversity of the base classifiers.

– An extensive experimental comparison on the effect of calibration on the
combination of classifiers, using many different layouts (calibration before,
after, and before and after combination), many different weighting schemes,
several calibration methods, and several performance metrics.

– The analysis of a new calibration technique: Multivariate Similarity-Binning
Averaging (SBA), recently introduced in [4], which is designed to be non-
monotonic while still preserving independence in such a way that its results
for classifier combination excel over those of other calibration methods. This
will be shown in a complete battery of experiments.

– A summary of findings and results from the previous items, and some rec-
ommendations on how to use calibration in classifier combination.

The overall contribution of this work is to provide a better understanding of the
role and possibilities of calibration for classifier combination, as well as the way
all this should be arranged in order to obtain appropriate results.

3 Classifier Calibration and Evaluation

Given a dataset T , n denotes the number of examples, and c the number of
classes. The target function f(i, j)→ {0, 1} represents whether example i actu-
ally belongs to class j. Also, nj =

∑n
i=1 f(i, j) denotes the number of examples of

class j and p(j) = nj/n denotes the prior probability of class j. Given a classifier
l, pl(i, j) represents the estimated probability of example i to belong to class j
taking values in [0,1].

Calibration is defined as the degree of approximation of the predicted proba-
bilities to the actual probabilities. If we predict that we are 99% sure, we should
expect to be right 99% of the time. More precisely, a classifier is perfectly cal-
ibrated if, for a sample or bin of examples with predicted probability p for the

4

172 7. Publications (Full Text)

positive class, the expected proportion of positives is close to p. Formally, for any

Br ⊆ T such that pl(i, j) = r for all i ∈ Br then
∑

i∈Br
f(i,j)

|Br| = r. Note that this
definition only says when a classifier is perfectly calibrated but does not give a
range of values between perfect and worst calibration. We will see in section 3.1
that calibration measures usually relax the condition for bin formation in order
to give a gradual measure.

Given a calibration method which modifies the probabilities, we denote the
(supposedly better calibrated) probability of example i to belong to class j by
p∗l (i, j). Note that accuracy and calibration, although dependent, are very differ-
ent things. For instance, a binary classifier that always assigns a 0.5 probability
to its predictions is perfectly calibrated for a balanced dataset, but its expected
accuracy is a poor 0.5. However, a very good binary classifier can be uncali-
brated if correct positive (respectively negative) predictions are accompanied by
relatively low (respectively high) probabilities, e.g., a classifier which is almost
always correct but its probabilities range between 0.45 and 0.55.

When the number of classes is 2 we use the special symbols ⊕ and 	 to
represent the positive class (j = 1) and the negative one (j = 2), respectively.
Also, in the binary case, we will only refer to the positive class, and we will de-
note the target function, the score, the estimated probability, and the calibrated
probability of an example i as fl(i,⊕), sl(i,⊕), pl(i,⊕) and p∗l (i,⊕) or simply
fl(i), sl(i), pl(i) and p∗l (i). For the sake of readability, we will omit the subindex
l when we refer to a single classifier.

A set of L classifiers will be denoted by l1, l2, . . . , lL. In order to simplify the
notation, sometimes we will use the indices k ∈ 1..L to denote the classifier lk.
Finally, p̃(i, j) (respectively, s̃(i, j)) denotes the estimated probability (respec-
tively the score) of example i to belong to class j given by a combination method
over the L classifiers.

3.1 Evaluation Measures

Classifiers can be evaluated according to several performance metrics. These
can be classified into three groups [15]: measures that account for a qualitative
notion of error (such as accuracy or the mean F-measure/F-score), metrics based
on how well the model ranks the examples (such as the Area Under the ROC
Curve (AUC)) and, finally, measures based on a probabilistic understanding of
error (such as mean absolute error, mean squared error (Brier score), LogLoss
and some calibration measures).

Accuracy is the best-known evaluation metric for classification and is defined
as the percentage of correct predictions. However, accuracy is very sensitive to
class imbalance. In addition, when the classifier is not crisp, accuracy depends
on the choice of a threshold. Hence, a good classifier with good probability
estimations can have low accuracy results if the threshold that separates the
classes is not chosen properly.

Of the family of measures that evaluate ranking quality, the most representa-
tive one is the Area Under the ROC Curve (AUC), the probability that given one
positive example and one negative example at random, the classifier ranks the

5

7.8. On the Effect of Calibration in Classifier Combination 173

positive example above the negative one (the Mann-Whitney-Wilcoxon statistic
[18]). AUC is clearly a measure of separability since the lower the number of
misranked pairs, the better separated the classes are. Although ROC analysis is
difficult to extend to more than two classes ([16]), the AUC has been extended
to multiclass problems effectively by approximations. In this paper, we will use
Hand & Till’s extension [23], which is based on an aggregation of each class
against each other, by using a uniform class distribution.

Of the last family of measures, Mean Squared Error (MSE) or Brier Score
penalises strong deviations from the true probability:

MSE =

c∑
j=1

n∑
i=1

(f(i, j)− p(i, j))2

n · c (1)

Although MSE was not a calibration measure originally, it was decomposed
by Murphy [29] in terms of calibration loss and refinement loss. For that, the
dataset T is segmented into k bins (i.e., subsets of equal size), with Bt being the
elements of bin t.

MSE =

c∑
j=1

k∑
t=1

∑
i∈Bt

|Bt| · (p(i, j)− f̄t(i, j))
2

n · c (2)

MSE =

c∑
j=1

k∑
t=1

∑
i∈Bt

|Bt| · (p(i, j)− f̄t(i, j))
2

n · c (3)

−

c∑
j=1

k∑
t=1
|Bt| · (f̄t(i, j)− f̄(j)) + f̄(j) · (1− f̄(j))

n · c

where f̄t(i, j) =
∑

i∈Bt

f(i,j)
|Bt| and f̄(j) =

∑n
i=1

f(i,j)
n

. The first term measures the

calibration (denoted by MSEcal) of the classifier while the rest of the expres-
sion measures other components that are grouped under the term “refinement”
(denoted by MSEref). The problem of measuring calibration in that way is
that the test set must be split into several segments or bins. If too few bins
are defined, the real probabilities are not properly detailed to give an accurate
evaluation. If too many bins are defined, the real probabilities are not properly
estimated. A partial solution is to make the bins overlap.

A calibration measure based on overlapping binning is CalBin [11]. For each
class, all cases must be ordered by predicted probability p(i, j), giving new indices
i∗. The 100 first elements (i∗ from 1 to 100) are taken as the first bin. Next, the
percentage of cases of class j in this bin is calculated as the actual probability,
f̂j . The error for this bin is

∑
i∗∈1..100 |p(i∗, j)− f̂j |. The second bin with elements

6

174 7. Publications (Full Text)

(2 to 101) is used to compute the error in the same way. At the end, the errors
are averaged. Formally:

CalBin(j) =
1

n− s

n−s∑

b=1

b+s−1∑

i∗=b

∣∣∣∣∣∣∣∣∣
p(i∗, j)−

b+s−1∑
i∗=b

f(i∗, j)

s

∣∣∣∣∣∣∣∣∣
(4)

Instead of 100 for the size of the bin (as [11] suggests) we set a different bin
length, s = n/10, to make it more size-independent.

3.2 Calibration Methods

In this paper, we will work with the most commonly used calibration methods:
binning averaging, Platt’s method and PAV calibration. There are other methods
based on assignment values [21], Bayesian approaches using asymmetric distri-
butions [6][5], and other more elaborate approaches, such as Dirichlet calibration
[22], but their performance, in general is worse than that of the three methods
above. For more details, we refer the reader to [3] where a survey of calibration
methods can be found.

Binning averaging was proposed by [37] as a method where a (validation)
dataset is split into bins in order to calculate a probability for each bin. Specifi-
cally, this method consists in sorting the examples in decreasing order by their
estimated probabilities (or scores) and dividing the set into k bins. Thus, each
test example i is placed into a bin t, 1 ≤ t ≤ k, according to its probability
estimation. Then the corrected probability estimate for i (p∗i) is obtained as the
proportion of instances in t of the positive class.

Platt [30] presented a parametric approach for fitting a sigmoid function
that maps SVM predictions to calibrated probabilities. The idea is to determine
the parameters A and B of the sigmoid function p∗i = 1

1+eA·pi+B that minimise
the negative log-likelihood of the data, that is: argminA,B{−

∑
i

filog(p∗i) + (1 −
fi)log(1− p∗i)}. This two-parameter minimisation problem can be performed by
using an optimisation algorithm, such as gradient descent. Platt proposed using
either cross-validation or a hold-out set for deriving an unbiased sigmoid training
set for estimating A and B.

In the Isotonic Regression [33] method, the calibrated predictions are ob-
tained by applying a mapping transformation that is isotonic (monotonically
increasing), known as the pair-adjacent violators algorithm (PAV) [2]. The first
step in this algorithm is to order the n elements decreasingly according to es-
timated probability and to initialise p∗(i) = f(i). The idea is that calibrated
probability estimates must be a decreasing sequence, i.e., p∗(1) ≥ p∗(2) ≥ . . . ≥
p∗(n). If this is not the case, for each pair of consecutive probabilities, p∗(i) and
p∗(i + 1), such that p∗(i) < p∗(i + 1), the PAV algorithm replaces both of them

by their probability average, that is, a← p∗(i)+p∗(i+1)
2 , p∗(i)← a, p∗(i+1)← a.

This process is repeated (using the new values) until an isotonic set is reached.
Table 1 shows an example of this calibration method applied to two classifiers.

7

7.8. On the Effect of Calibration in Classifier Combination 175

3.3 Monotonicity and Multiclass Extensions

The three calibration methods described above are monotonic; they do not
change the rank (order) of the examples according to each class estimated prob-
ability. In fact, Platt’s method is the only one that is strictly monotonic, i.e, if
p(i1) > p(i2), then p∗(i1) > p∗(i2), implying that AUC and refinement are not af-
fected. In the other two methods, ties are generally created (i.e, p∗(i1) = p∗(i2)
for some examples i1 and i2 where p(i1) > p(i2)) as shown in Table 1. This
means that refinement is typically reduced for the binning averaging and the
PAV methods.

Monotonicity will play a crucial role in understanding what calibration does
before classifier combination. However, as we will see in Section 6, the extension
of calibration methods to multiclass does not preserve monotonicity. In addi-
tion, apart from overfitting, there is no reason to impose monotonicity over a
caliberion method, which, in the most general case, is a transformation over the
scores that leads to good probability estimation. This will motivate the analysis
of a recently introduced non-monotonic calibration method called SBA.

Based on the concept of monotonicity, we propose a taxonomy of calibration
methods (Figure 1) including classical calibration methods (PAV, Binning and
Platt), the SBA method and Brümmer’s “affine fusion and calibration” methods
[9]. We are interested in calibration methods that lead to better local weights.
Consequently, we will not use Brümber’s method in this paper.

strictly monotonic!

non-strictly monotonic!

non-monotonic!

calibration!

linear!

nonlinear!

Affine fusion !

and calibration!

Platt!

PAV, Binning!

SBA!

global!

calibration!

local!

calibration!

Fig. 1. Taxonomy of calibration methods in terms of monotonicity (strictly mono-
tonic, non-strictly monotonic, or non-monotonic methods), linearity (linear or nonlin-
ear methods). We have also indicated the methods that can be used for global and
local calibration.

Another important issue is whether the calibration methods are binary or
multiclass. The three methods presented in Section 3.2 were specifically designed
for two-class problems. For the multiclass case, Zadrozny and Elkan [37] proposed
an approach that consists in reducing the multiclass problem into a number of

8

176 7. Publications (Full Text)

binary problems. A classifier is learnt for each binary problem and, then, its
predictions are calibrated.

Some works have compared the one-against-all and the all-against-all schemes,
concluding in [32] that the one-against-all scheme performs as well as the all-
against-all schemes. Therefore, in this paper, we will use the one-against-all
approach for our experimental work because its implementation is simpler.

4 The Relation between Calibration and Combination

In this section, we analyse the relation between model calibration and the per-
formance of the classifier combination. For simplicity, we restrict our conceptual
analysis to binary cases. Similar relations are expected to be found if we con-
sider the probability distribution of each class over another (so having c× (c−1)
distributions). In any case, the experimental analysis in Section 5 is performed
on multiclass datasets as well.

4.1 Weighted Average Combination

One of the most common methods of classifier combination is Bayesian Model
Averaging [24]. It consists in weighting each classifier, giving more credit to
more reliable sources. However, this rationale does not necessarily entail the best
combination ([25][26]). An alternative (and generalised) option is the weighted
average combination [26], using probabilities:

Definition 1. Weighted Average Combination. The estimated probability
of an item i belonging to class j given by a weighted average combination of L
classifiers is

p̃(i, j) =
L∑

k=1

wkpk(i, j) (5)

We assume
∑L

k=1 wk = 1. Formula (5) defines a fusion scheme that is a linear
combination of the classifier outputs and can be instantiated to more specific
schemas depending on how wk and pk are chosen. In general, the use of a per-
formance (or overall reliability) weight per classifier wk is justified because some
classifiers are more reliable than others. However, a proper calibration would give
each prediction its proper weight depending on the reliability of pk(i, j) (high
reliability for pk(i, j) closer to 0 and 1, and lower reliability for pk(i, j) closer to
0.5 or to the class proportion for imbalanced problems). This use of wk and pk
at the same time is what we refer to as “double weighting”.

Example 1. Two probabilistic classifiers l1 and l2 are evaluated over a dataset
with 10 examples as shown in Table 1, and combined using weights w1 = 0.75
and w2 = 0.25. The top three rows show their individual predictions and their
combination. The mid three rows show the results with two new classifiers l∗1 and

9

7.8. On the Effect of Calibration in Classifier Combination 177

l∗2, which have been obtained from l1 and l2 by using a strictly monotonic cali-
bration method over another dataset (their calibration is better but not perfect).
The bottom three rows show the results with two new classifiers lpav1 and lpav2 ,
which have been obtained from l1 and l2 by using PAV (a non-strictly monotonic
calibration method) over the same dataset (so their calibration is perfect). All
the accuracies are calculated with a threshold of 0.5, and when the probability
is exactly 0.5 the example is considered half a correct classification.

Example 1 shows the result of using the weighted average combination of
two classifiers with weights w1 = 0.75 and w2 = 0.25. In the combination, the
probabilities are also used, leading to different results depending on the degree
of calibration of these two classifiers. In this example, we see that weights can
counter-effect probabilities (and vice versa), as we see in example e6 (which is
finally a hit for p̃) and examples e2 and e8 (which are finally an error for p̃). So,
using both weights and good probabilities entails a “double-weighting”, which
in some cases might be beneficial but in other cases might not. Looking at the
extreme cases, with very bad probabilities, the weight wk should be used alone
(as in weighted majority voting) and, with perfect probabilities, the weights
should not be used.

Table 1. Variations corresponding to Example 1. Threshold is set on 0.5 to calculate
the accuracy (last column).

Examples Acc.

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10
True - + + + - - + - + -
class

p1 0.40 0.60 0.80 0.40 0.60 0.52 0.60 0.45 0.52 0.40 7 / 10

p2 0.90 0.10 0.20 0.20 0.20 0.00 0.20 1.00 0.20 0.10 3 / 10

p̃ 0.525 0.475 0.650 0.350 0.500 0.390 0.538 0.588 0.440 0.325 3.5 / 10

p∗1 0.20 0.80 0.90 0.20 0.80 0.60 0.80 0.30 0.60 0.20 7 / 10

p∗2 0.60 0.40 0.45 0.45 0.45 0.10 0.45 0.90 0.45 0.40 3 / 10

p̃∗ 0.300 0.700 0.788 0.263 0.713 0.475 0.713 0.450 0.563 0.250 8 / 10

ppav1 0.250 0.667 1.000 0.250 0.667 0.500 0.667 0.250 0.500 0.250 7 / 10

ppav2 0.571 0.500 0.571 0.571 0.571 0.000 0.571 0.571 0.571 0.500 6 / 10

p̃pav 0.330 0.625 0.893 0.330 0.643 0.375 0.643 0.330 0.330 0.518 7 / 10

In order to better understand the relation between weights and probabilities,
we firstly need to understand the meaning of the weights. There are many ways
of calculating weights. A very common option is to estimate the accuracy on a
validation dataset D, followed by a normalisation [26], i.e., if acck is the accuracy
of model lk on D, then wk = acck∑L

m=1 accm
. If we use AUC (or MSE) as a measure,

the question of whether a double weighting is going to be too drastic depends on
how the weights are derived from these measures. For instance, a weight equal

10

178 7. Publications (Full Text)

to the AUC is an option, but since AUC=0.5 means random behaviour, perhaps
the GINI index (which equals (AUC−0.5)×2) would be a better option. In the
same way, using the MSE, (1−MSE) is a natural option, but a more extreme
1/MSE could also be considered. Table 2 shows the definition for the five weights
we are going to use.

Table 2. Different methods to calculate weights.

Method Definition

WCUnif wk = 1
L

WCAcc wk = acck∑L
m=1 accm

WCAUC wk = AUCk∑L
m=1 AUCm

WCMSE wk = (1−MSEk)∑L
m=1(1−MSEm)

WCGINI wk = max(0,(AUCk−0.5)×2)∑L
m=1 max(0,(AUCm−0.5)×2)

WCIMSE wk = (1/MSEk)∑L
m=1(1/MSEm)

Another problem of weights is that they may overfit. Consequently, in some
experimental analyses [25][26], there are cases where the use of a uniform weight-
ing (WCUnif) gives better results. The question that arises is whether we can
also have an overfitting problem when probabilities are calibrated.

Consequently, there are many open questions when mixing together probabil-
ities and weighted combinations. Are both things redundant or even incompati-
ble? Is calibration a good idea to get better probability estimations? If calibration
is used, would weights become useless?

4.2 Probability Densities and Classifier Combination

After the toy example presented in Example 1, Figure 2 shows the probability
densities (for the positive class, p(i,⊕)) for three different classifiers (J48, Ran-
dom Forest and Näıve Bayes, which are built with Weka [35]) for two problems
(the credit and the chess datasets from the UCI repository [7]). Typically, the
positive cases cluster around a high probability and the negative cases cluster
around a low probability. When the two clusters are more distant and better
delineated (with a thinner shape) there is better separability (and, hence, higher
AUC). Also, in these charts, calibration can be easily traced because each bin in
the histogram should have a proportion of positive examples equal to its value
when the classifier is well calibrated.

A possible way of modelling the above probability distributions would be to
work with scores (assuming they are between −∞ and +∞) instead of probabil-
ities. In this case, we would observe that the positive and the negative examples
are normally distributed, with these two normals being more or less separated.
An alternative option is to work with probabilities as if they were scores clipped

11

7.8. On the Effect of Calibration in Classifier Combination 179

between 0 and 1 and to model them via a truncated normal distribution1. Note
that, although there are cases where probabilities do not strictly follow a (trun-
cated) normal distribution, the aggregation of several non-normal distributions
typically converges to a normal distribution. Therefore, at least for the com-
bined model, this representation is not a strong working hypothesis helping us
to conceptually analyse the effect of combining several classifiers.

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

0
20

0
40

0
60

0
80

0

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

0
10

0
20

0
30

0
40

0

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

0
20

40
60

80

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

0
10

20
30

40
50

60
70

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

0
20

40
60

80
10

0
12

0
14

0

Fig. 2. Probability densities for positive (clear grey) and negative (dark grey) classes,
using J48 (left), Random Forest (centre), and Näıve Bayes (right) in Weka. Top row:
probability distribution for the chess dataset from the UCI repository. Bottom row:
probability distribution for credit dataset.

It is easy to show that combining independent classifiers that follow normal
distributions leads to a combined classifier whose positive (respectively negative)
mean is the (weighted) average of the positive (respectively negative) mean of
the base classifiers, but the deviation is usually lower. This means that, by using
a weighted average combination, the distributions are narrowed, which implies
that the combination usually improves in terms of separability (provided the
original classifiers were better than random, i.e., the positive mean was greater
than the negative mean).

1 This distribution has been used to model probabilities for binary cases in the probit
model or in truncated regression [1].

12

180 7. Publications (Full Text)

4.3 Calibration and Classifier Combination

A näıve view of the effect of calibration in combination would conclude that
the better calibrated a classifier is, the better the reliability of its probability
estimations is and, hence, the better the combination will be. However, the
relationship between classifier calibration and combination is a bit more complex.
When we say better, we need to be more precise about the evaluation metric
that we are using.

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

0
20

0
40

0
60

0
80

0

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

0
50

0
10

00
15

00

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

0
50

0
10

00
15

00

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

0
50

0
10

00
15

00
20

00
25

00
30

00

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

0
10

00
20

00
30

00

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

0
50

0
10

00
15

00

Top Top Top Bottom Bottom Bottom
Left Centre Right Left Centre Right

MSE 0.3680 0.3386 0.2154 0.2209 0.2199 0.2142

MSE cal. 0.1519 0.1276 0.0028 0.0008 0.0001 0.0037

MSE ref. 0.2162 0.2126 0.2134 0.2222 0.2222 0.2107

AUC 0.5615 0.6038 0.6038 0.5615 0.6093 0.6093

Acc.(0.5) 0.3855 0.3378 0.6748 0.6667 0.6667 0.6820

CalBin 0.3726 0.3674 0.0452 0.0465 0.0648 0.0395

Fig. 3. Probability densities for positive (clear grey) and negative (dark grey) ex-
amples. Top plots: (Left) a single classifier with parameters: n⊕ = 4000, µ⊕ = 0.3,
σ⊕ = 0.2, n	 = 2000, µ	 = 0.15 and σ	 = 0.3, (Centre) the result of the combination
of 5 independent classifiers such as the one depicted on the left, using uniform weights,
(Right) Platt’s calibration over the combination. Bottom plots: (Left) the result of
Platt’s calibration over the single classifier on the left of top plot, (Centre) the combi-
nation of 5 independent classifiers such as the one depicted on the left, using uniform
weights, (Right) the post-calibration (using Platt’s calibration) over the combination.
The tables show the results of different metrics for all the cases.

13

7.8. On the Effect of Calibration in Classifier Combination 181

Figure 3 presents an example illustrating the effect of calibration and com-
bination over several measures. The top centre plot shows the combination of
five independent classifiers with bad calibration (as the one shown on the left)
using equal weight. AUC is improved, but other measures (such as accuracy)
are not necessarily improved. The reason-why is that the base classifiers are not
calibrated. The density histogram on the right shows a postprocessing over the
combination using Platt’s calibration, which is able to ‘unveil’ the quality of
the combined classifier also for accuracy. The bottom plot of Figure 3 presents
a similar process but now we calibrate the original base classifiers before their
combination (the density histogram, on the left side is a calibrated version, using
Platt’s method, of the classifier displayed on the left side of the top plot). Since
AUC is not very high, the probabilities are highly condensed in a small area of
the graph. Even though Platt’s calibration is not a linear scaling and we also
have some truncation here, we see that there are important differences in accu-
racy and calibration between the two charts, but the AUC of the combination
is almost the same for both cases. In addition, the two plots on the right are
surprisingly very similar (although this is not generally the case).

Monotonic transformations preserve the ranking and hence have a limited
effect on the results (in terms of AUC). In addition, again we see that the
result of the combination after calibrating the base classifiers does not necessarily
produce a better calibration of the result. This reinforces the idea of AUC as the
appropriate measure of quality, since other measures can be improved by this
post-calibration.

Example 2 shows the effect of calibration before and/or after combination,
as a specific example of a much more complete and comprehensive battery of
experiments that we will do in the following section. Now we focus on several
classifiers with different calibration degrees.

Example 2. Consider a problem with 500 positive examples and 1000 negative
examples and a diverse set of five classifiers with the following distribution pa-
rameters:

# µ⊕ (σ⊕k)2 µ	 (σ	k)2

1 0.4 0.04 0.3 0.07

2 0.5 0.3 0.3 0.2

3 0.2 0.1 0.3 0.2

4 0.8 0.04 0.2 0.3

5 0.8 0.3 0.7 0.3

Note that we have diversity of base classifiers: not only are they independent,
but they also have quite different distributions. There are also good classifiers
and bad classifiers (the third classifier is even worse than random). The best
single classifier has an AUC of 0.87. We now consider the following calibration
and combination layouts: the combination of the base classifiers (comb), the

14

182 7. Publications (Full Text)

combination of the calibrated base classifiers (combcal), the calibration of the
combination result (combpostcal) and the calibration of the combination of the
calibrated base classifiers (combcalpostcal). The results are presented in Table
3.

Table 3. Results for several calibration and combination methods in Example 2.

Method MSE MSEcal MSEref AUC Acc CalBin

comb 0.1933 0.0265 0.1703 0.8010 0.7553 0.1551

combcal 0.1502 0.0744 0.0778 0.9575 0.8026 0.2485

combpostcal 0.1658 0.0030 0.1633 0.8010 0.7646 0.0485

combcalpostcal 0.0749 0.0025 0.07338 0.957534 0.896 0.0326

This example shows the relevance of calibrating before, since only with a
proper pre-calibration can we align good and bad classifiers in an optimal way.
However, although calibration and combination entails an average of the means
and a reduced variance (which generally implies better AUC), this does not mean
that combining perfectly calibrated classifiers generates a perfectly calibrated com-
bination. Figure 3 also shows this.

Finally, with respect to the accuracy measure, we see that when classifiers
are well-calibrated before the combination, the resulting means will be placed
on either side of the centre value (the prior class proportion). This suggests
that calibration has to be considered as a necessary option after combination
to increase calibration and accuracy (as Example 2 shows). Nevertheless, this
centre value does not need to be 0.5, so accuracy would highly depend on the
decision threshold used.

In summary, the AUC measure is chosen as a reference for the quality of
combination, since calibration measures for the combination will generally not
be good and accuracy will greatly depend on a good threshold choice.

We now have a better understanding of how calibration affects the combi-
nation and we have identified the key factors involved: performance measures,
use of weights, measure used to derive the weights, calibration monotonicity and
moment of calibration (before and/or after combination). These and other issues
are addressed through an experimental analysis below.

5 Experimental Analysis

This section provides a comprehensive experimental analysis about the effect of
calibration and combination, focussing on the factors identified in the previous
section.

15

7.8. On the Effect of Calibration in Classifier Combination 183

5.1 Experimental Settings

For the experimental evaluation, we implemented the evaluation measures and
calibration methods (the PAV algorithm, Platt’s method, and binning averaging
with 10 bins) presented in Sections 3.1 and 3.2. We also defined all the weighted
combination schemes that use the weights shown in Table 2.

We selected 30 (small and medium-sized) datasets (Table 4) from the UCI
repository [7]. Each dataset was split randomly into four different subsets: one for
training, two for validation and one for test (25% of the instances for each set). To
simulate a diverse set of classifiers that come from different sources, we used four
different methods for classification implemented in the data mining suite WEKA
[35] (with their default parameters) to construct several models for each problem:
J48 (a C4.5 implementation), Logistic (a logistic regression implementation), IBk
(k = 10) (a k-NN implementation) and NäıveBayes. An additional random and
uncalibrated classifier (Random) was added (when necessary) to the experiments
in order to compare what happens when there is a bad classifier. It has also
very bad calibration, since probabilities are either 0 or 1. A uniform random
distribution was used to decide which probability was set to 1. A total of 100
repetitions were performed for each dataset and classifier. The training set was
used to learn each classifier. One validation set was used, in case, to calibrate
the probabilities of the original classification models. The other validation set
was used, in case, to calibrate the probabilities of the combined model. The
training and the first validation sets were also used to tune the weights of the
combination methods. The test set was used to validate the models. For each
repetition, the same training, validation and test sets were used for all methods.

We evaluated the results of the different layouts for the MSE, AUC, CalBin
and accuracy measures: without calibration and combination; with calibration
only; with combination only; with precalibration and combination; with combi-
nation and postcalibration; and with precalibration, combination and postcali-
bration, as shown in Table 5. In order to ease the reproducibility of results, all
the source code, scripts and datasets are available at a web page2.

5.2 Experimental Results

We will first study the effect of several combination methods when there is a
random classifier (i.e., a bad classifier) along with other more accurate classifiers.
We are interested in a first assessment of the weighting methods in Table 2.
Tables 6 and 7 show the results3 of applying the combination methods to the
four original classification models (J48, Log, IB10, and NB). The difference
between Tables 6 and 7 is that Table 7 shows the results when a random classifier
is added (Random). As a reference, we also include the average of all the base
classifiers (BaseAvg).

When a random classifier is included, the mean of the measures are expected
to be worse than with only the four original classifiers. In this situation, some

2 http://users.dsic.upv.es/∼abella/SBA.zip
3 These results are averages over datasets.

16

184 7. Publications (Full Text)

Table 4. Datasets used in the experiments. Size, number of classes, and number of nominal and
numeric attributes.

Datasets Size c Nom. Num.

1 Breast Cancer 286 2 9 0
2 Wisconsin Breast Cancer 699 2 0 9
3 Chess 3196 2 36 0
4 Credit Rating 690 2 9 6
5 German Credit 1000 2 13 7
6 Pima Diabetes 768 2 0 8
7 Haberman Breast 306 2 0 3
8 Heart Disease 303 2 7 6
9 Heart Statlog 270 2 0 13
10 House Voting 435 2 16 0
11 Ionosphere 351 2 0 34
12 Monks1 556 2 6 0
13 Monks2 601 2 6 0
14 Monks3 554 2 6 0
15 Mushroom 8124 2 22 0
16 Mammographic Masses 961 2 4 1
17 Sonar 208 2 0 60
18 Spam 4601 2 0 57
19 Spect 80 2 0 44
20 Tic-tac 958 2 8 0

21 Autos5c 202 5 10 15
22 Cmc 1473 3 7 2
23 Iris 158 3 0 4
24 Segmentation 2310 7 0 19
25 Tae 151 3 2 3
26 Waveform 5000 3 0 21
27 Wine 178 3 0 13
28 Vowel 990 11 3 11
29 Splice 3190 3 60 0
30 Vehicle 846 4 0 18

Table 5. Experimental layouts that arrange combination and calibration.

Layout Description and Variants

BaseModel BaseModel ∈ {J48, Logistic, NB, IBk}
plus a random model.

Base The average of all the base models

CombMet CombMet ∈ {WCUnif, WCAcc,
WCAUC, WCGINI, WCMSE, WCIMSE}.

CalMet CalMet ∈ { PAV, Platt, Binning Averaging}.
CalMet+CombMet For different calibration and combination methods.

CombMet+CalMet For different calibration and combination methods.

CalMet+CombMet+CalMet For different calibration and combination methods.

combination methods are more robust than others. Specifically, the WCGINI
and WCIMSE methods obtained the best results. In order to see whether
the difference between more than two methods is statistically significant, we
calculated the Friedman test. If there were differences between these methods,
we calculated the Nemenyi post-hoc test to compare all of the methods with each
other (with a probability of 99.5%) as suggested in [12]. The results depicted in

17

7.8. On the Effect of Calibration in Classifier Combination 185

Table 6. Results for the base classifiers and CombMet.

MSE AUC CalBin Acc.

J48 0.1397 0.8202 0.1062 0.7683
Log 0.1526 0.8316 0.1224 0.7752
IB10 0.1375 0.8453 0.1093 0.7590
NB 0.1487 0.8469 0.1278 0.7679

Base 0.1446 0.8360 0.1164 0.7676

Comb 0.1150 0.8718 0.1045 0.8052
WcombAcc 0.1143 0.8724 0.1037 0.8069
WcombAUC 0.1145 0.8726 0.1044 0.8065
WcombGINI 0.1141 0.8736 0.1043 0.8077∗

WcombMSE 0.1145 0.8722 0.1039 0.8063
WcombIMSE 0.1109 0.8735 0.0960 0.8104

Table 7. Results for the base classifiers and CombMet, with 1 random classifier.

MSE AUC CalBin Acc.

J48 0.1397 0.8202 0.1062 0.7683
Log 0.1526 0.8316 0.1224 0.7752
IB10 0.1375 0.8453 0.1093 0.7590
NB 0.1487 0.8469 0.1278 0.7679

Random 0.4676 0.5009 0.4398 0.4317

Base 0.2092 0.7690 0.1811 0.7004

Comb 0.1298 0.8520 0.1337 0.7932
WcombAcc 0.1196 0.8630 0.1175 0.8035
WcombAUC 0.1203 0.8627 0.1195 0.8026
WcombGINI 0.1141 0.8729 0.1048 0.8077
WcombMSE 0.1208 0.8623 0.1202 0.8019
WcombIMSE 0.1117 0.8697 0.0986 0.8096

bold in Tables 6 and 7 indicate that WCGINI and WCIMSE are the best
and that the difference with the rest of the methods is statistically significant.
The results that are underlined indicate that these results are the best and that
the difference with the other methods is statistically significant, even though the
difference between the underlined methods is not statistically significant.

We also studied whether the difference between the results with and without
a random classifier are statistically significant. In order to do so, we calculated
the Wilcoxon Signed-Ranks test with a probability of 99.5% as suggested in [12].
The result shows that the difference between the pairs of methods without and
with a random classifier is statistically significant, except in the case marked
with the symbol ∗. The greatest differences are shown when no weighting is used
(WCUnif). Therefore, the conclusion that comes from Tables 6 and 7 is that
weights are needed when classifiers of different quality are combined, which is
consistent with previous knowledge in the field [26]. However, these results show

18

186 7. Publications (Full Text)

that some weighting schemes such as WCGINI and WCIMSE are very robust
to very bad classifiers.

The next step was to evaluate the effect of calibration and combination to-
gether. First, we evaluated whether weighting was necessary when models were
well calibrated. Second, we evaluated whether calibration was good for combi-
nation. We also wanted to know whether it was better to calibrate the base
models first and combine them afterwards, or to combine the models first and
to calibrate the combination afterwards.

Table 8 shows the results for each pair of calibration and combination meth-
ods4 for the J48, Log, IB10 and NB classification models, and the random clas-
sifier5. We also include the average of each calibration method over the base
classifiers (PAV , Platt, and Binn) and the combination by WCGINI and
WCIMSE without calibration. We applied, again, the Friedman test to the
results in Table 8 using the same notation (bold and underlined).

Table 8. Results for CalMet, CalMet+CombMet and CombMet+CalMet, with 1 ran-
dom classifier.

MSE AUC CalBin Acc.

WCGINI 0.1141 0.8729 0.1048 0.8077
WCIMSE 0.1117 0.8697 0.0986 0.8096

PAV 0.1568 0.7642 0.0966 0.7086
Platt 0.1499 0.7665 0.0982 0.7223
Binn. 0.1568 0.7610 0.0980 0.7066

PAV+WCGINI 0.1075 0.8770 0.0916 0.8171
Platt+WCGINI 0.1173 0.8779 0.1293 0.8129
Binn.+WCGINI 0.1082 0.8777 0.0945 0.8171

PAV+WCIMSE 0.1061 0.8753 0.0923 0.8193
Platt+WCIMSE 0.1178 0.8768 0.1342 0.8134
Binn.+WCIMSE 0.1075 0.8761 0.0980 0.8194

WCGINI+PAV 0.1141 0.8627 0.0708 0.8088
WCGINI+Platt 0.1117 0.8720 0.1029 0.8117
WCGINI+Binn. 0.1177 0.8528 0.0753 0.8033

WCIMSE+PAV 0.1137 0.8600 0.0700 0.8098
WCIMSE+Platt 0.1109 0.8683 0.1006 0.8129
WCIMSE+Binn. 0.1177 0.8490 0.0755 0.8030

4 We tried the six weighting methods shown in Table 2, but the best results were
obtained with WCGINI and WCIMSE, so, in what follows, we only show these
results.

5 Apart from the magnitude in the results (values are generally better without a
random classifier, as expected), the relative differences are similar, so the conclusions
that can be drawn from one case (without random classifier) are similar to those that
can be drawn from the other case (with a random classifier). From hereon, we will
only show the results including the random classifier.

19

7.8. On the Effect of Calibration in Classifier Combination 187

We can see that MSE is not much better (or even worse when using Platt
before the combination) than an uncalibrated combination.The results for AUC
are slightly better. In CalBin and accuracy, the difference is a little bit higher,
except when Platt’s calibration is used, showing that combination produces an
uncalibrated classifier. When calibration is applied after combination, the results,
except for CalBin, are worse in general. Therefore, if we are only interested in
improving the calibration of the combined models, the best option is to calibrate
their probabilities after the combination. But if we want to improve the MSE,
AUC and accuracy measures (the performance of the model), it is better to first
calibrate the base classifiers and then combine them.

Finally, we are going to study the effect of calibration + combination +
calibration (Table 9). The idea is to check whether we can improve both the
calibration and the performance of the combined model. The results show that
calibrating the combined model improves the calibration, but does not improve
MSE, AUC and accuracy. To improve CalBin, the best layout seems to be any
calibration method + WCIMSE + PAV, but only the difference between the
layout PAV + WCIMSE + PAV is statistically significant compared to the rest
of the results (for CalBin measure) shown in Table 9 and the WCIMSE + PAV
layout (in Table 8).

Table 9. MSE, AUC, CalBin and accuracy measures for CalMet+CombMet+CalMet,
with 1 random classifier.

MSE AUC CalBin Acc.

PAV+WCGINI+PAV 0.1105 0.8680 0.0688 0.8145
PAV+WCGINI+Platt 0.1080 0.8764 0.0986 0.8176
PAV+WCGINI+Binn. 0.1147 0.8571 0.0748 0.8074

Platt+WCGINI+PAV 0.1117 0.8676 0.0699 0.8129
Platt+WCGINI+Platt 0.1091 0.8772 0.1005 0.8158
Platt+WCGINI+Binn. 0.1161 0.8553 0.0745 0.8057

Binn.+WCGINI+PAV 0.1108 0.8682 0.0685 0.8136
Binn.+WCGINI+Platt 0.1082 0.8773 0.0985 0.8171
Binn.+WCGINI+Binn. 0.1155 0.8559 0.0752 0.8058

PAV+WCIMSE+PAV 0.1093 0.8666 0.0671 0.8155
PAV+WCIMSE+Platt 0.1066 0.8747 0.0974 0.8194
PAV+WCIMSE+Binn. 0.1138 0.8538 0.0742 0.8091

Platt+WCIMSE+PAV 0.1098 0.8672 0.0682 0.8159
Platt+WCIMSE+Platt 0.1073 0.8757 0.0993 0.8188
Platt+WCIMSE+Binn. 0.1147 0.8536 0.0747 0.8076

Binn.+WCIMSE+PAV 0.1095 0.8671 0.0678 0.8156
Binn.+WCIMSE+Platt 0.1069 0.8751 0.0983 0.8188
Binn.+WCIMSE+Binn. 0.1144 0.8522 0.0749 0.8083

From the previous battery of experiments we can highlight some major find-
ings:

20

188 7. Publications (Full Text)

– The combined model is not calibrated, as it is also shown in Section 4.
– Calibration before combination makes a limited improvement for AUC and

accuracy, and no improvement (or even gets worse results) for MSE and
CalBin.

– Calibration after combination gives a better picture for calibration measures,
but, as expected, AUC is not increased. This is because the calibration meth-
ods are monotonic, and there is almost no increase in accuracy or MSE.

– Calibration + Combination + Calibration gives the best results in terms of
calibration, but it is clearly an elaborate layout, which requires two validation
datasets (one for each of the calibration processes).

From these results, it seems that calibration is only slightly effective for classifier
combination, and weighting can do almost as well. Nonetheless, this statement
might be more precise if we say that monotonic calibration (as given by PAV,
Platt and Binning Averaging) does not bring an important push in performance
for classifier combination. As a result, in the following section, we will focus on
the development of a non-monotonic calibration method which tries to integrate
more information from the dataset.

6 Nonmonotonic Calibration

Most calibration methods are based on a univariate transformation function over
the original estimated class probability, as we saw in Section 3.2. This function is
always monotonic (strictly monotonic for Platt’s method). One possible reason-
why is that if we were allowed to modify the probabilities in a non-monotonic
way, we would be prone to overfitting. In the end, calibration must be an ad-
justment of the estimated probability values, but not a complete change in the
model properties. For calibration methods, one way of doing this is to observe
the ordering of the examples (given by their estimated probability), which can
be achieved by using a monotone transformation.

However, is the previous rationale true for multiclass calibration? As we dis-
cussed in Section 3.3, PAV, binning averaging and Platt’s methods are binary
since they are only applied to one probability, i.e., they are univariate. Conse-
quently, we have to use a one-vs-all or all-vs-all schema to turn binary calibra-
tion methods into multiclass calibration methods. Nevertheless, the extensions
of binary monotonic calibration methods to multiclass calibration do not ensure
monotonicity, as the following example shows.

Example 3. Consider a classifier for a three-class problem with classes {a,b, c}
which outputs the following estimations for two examples 1 and 2:

p(1,a) = 0.2, p(1,b) = 0.6, p(1, c) = 0.2;

p(2,a) = 0.1, p(2,b) = 0.3, p(2, c) = 0.6

After a monotonic calibration for each class, we may have the following proba-
bilities:

p∗(1,a) = 0.7, p∗(1,b) = 0.9, p∗(1, c) = 0.4;

p∗(2,a) = 0.6, p∗(2,b) = 0.4, p∗(2, c) = 0.5

21

7.8. On the Effect of Calibration in Classifier Combination 189

The rankings are maintained for the three classes, that is, ∀ class ∈ {a,b, c} :
p∗(i, class) > p∗(j, class) iff p(i, class) > p(j, class). But when we normalise, we
have:

p∗(1,a) = 0.35, p∗(1,b) = 0.45, p∗(1, c) = 0.2;

p∗(2,a) = 0.4, p∗(2,b) = 0.27, p∗(2, c) = 0.33

which breaks the monotonicity for class a since now p∗(2,a) > p∗(1,a) and,
thus, example 2 is ranked above example 1 for class a.

The previous example shows that a one-vs-all approach using a monotonic
calibration method does not ensure a monotonic transformation. Similar results
can be obtained for the all-vs-all schema and other multiclass extensions from
binary transformations simply because of the normalisation.

Therefore, does it make sense to stick to monotonic methods when, in the
general multiclass case, they become non-monotonic in the end?

Following this argument, we propose the application of a calibration method
which was meant to be non-monotonic from scratch [4]. The core of this approach
is to change the idea of “sorting” the examples by its probability into the idea
of using similarity between examples to create bins that are specific for each
instance. This idea arises from the fact that if bins are created by only using the
estimated probability, calibrated probabilities will be computed from possibly
different examples with similar probabilities. Hence, the effect of calibration will
be small since we average similar probabilities. However, if we construct the bins
using similar examples according to their features, probabilities can be more
diverse and calibration will have more effect.

Based on this reasoning, we have adapted a new calibration method known as
Similarity-Binning Averaging (SBA) [4] for the combination setting (for which
it was never analysed before). In this method the original attributes and the
estimated probability are used to calculate the calibrated one.

The method is composed of two stages. The left side of Figure 4 shows “Stage
1” of the SBA method. In this stage, a given model M gives the estimated
probabilities associated with a dataset. This dataset can be the same one used
for training, or an additional validation dataset V D. The estimated probabilities
p(i, j) 1 ≤ j ≤ c are added (as new attributes) to each instance i of V D, creating
a new dataset V DP .

The right side of Figure 4 shows “Stage 2” of the SBA method. To calibrate
a new instance I, first, the estimated probability for each class is obtained from
the classification model M , and these probabilities (one for each class) are added
to the instance, thus creating a new instance (IP). Next, the k-most similar
instances to this new instance are selected from the dataset V DP (for example,
using the k-NN algorithm). This creates a bin. Finally, the calibrated probability
of I for each class j is the average predicted class probability of this bin (i.e.,
the probability estimated by the k-NN algorithm for each class j of the instance
I).

22

190 7. Publications (Full Text)

X11, X12 … X1n, p(1,1), p(1,2) … p(1,c), Y1

X21, X22 … X2n, p(2,1), p(2,2) … p(2,c), Y2

…

Xr1, Xr2 … Xrn, p(r,1), p(r,2) … p(r,c), Yr

Validation Dataset (VD)

Validation Dataset with

Estimated Probabilities (VDP)

X11, X12 … X1n, Y1

X21, X22 … X2n, Y2

…

Xr1, Xr2 … Xrn, Yr

Calibrated Probabilities

New Instance with Estimated Probabilities (IP)

VDP

p*(I,1), p*(I,2) … p*(I,c)

k most similar (SB)

XI1, XI2 … XIn

XI1, XI2 … XIn, p(I,1), p(I,2) … p(I,c)

New Instance (I)

M

M

Fig. 4. Left: Stage 1 of the SBA method. Right: Stage 2 of the SBA method.

7 Experimental Results of the SBA Calibration Method

In this section, we experimentally evaluate the results of the SBA calibration
method. We have seen that the calibration methods evaluated in Section 5 pro-
duce poor improvements (and do not improve the four studied measures equally
or at the same time). So, in this section we want to evaluate whether the SBA
method can change the picture in the context of classifier combination.

Tables 10 and 11 use the same datasets and methodology, showing the same
results as Tables 6 and 7, but here we include the four calibration methods.

Table 10. MSE, AUC, CalBin and accuracy measures for base classifiers without and
with calibration.

MSE AUC CalBin Acc.

J48 0.1397 0.8202 0.1062 0.7683
Log 0.1526 0.8316 0.1224 0.7752
IB10 0.1375 0.8453 0.1093 0.7590
NB 0.1487 0.8469 0.1278 0.7679

BaseAvg 0.1446 0.8360 0.1164 0.7676

PAV 0.1310 0.8301 0.0778 0.7779
Platt 0.1309 0.8333 0.1055 0.7749
Binn. 0.1316 0.8260 0.0807 0.7753
SBA 0.1205 0.8726 0.1022 0.7965

In terms of MSE, AUC and accuracy, the SBA method obtains the best
results for the 20 binary datasets and the 10 non-binary datasets. In terms of

23

7.8. On the Effect of Calibration in Classifier Combination 191

Table 11. MSE, AUC, CalBin and accuracy measures for base classifiers without and
with calibration, with one random classifier.

MSE AUC CalBin Acc.

J48 0.1397 0.8202 0.1062 0.7683
Log 0.1526 0.8316 0.1224 0.7752
IB10 0.1375 0.8453 0.1093 0.7590
NB 0.1487 0.8469 0.1278 0.7679

Random 0.4676 0.5009 0.4398 0.4317

BaseAvg 0.2092 0.7690 0.1811 0.7004

PAV 0.1568 0.7642 0.0966 0.7086
Platt 0.1499 0.7665 0.0982 0.7223
Binn. 0.1568 0.7610 0.0979 0.7066
SBA 0.1264 0.8648 0.1080 0.7841

CalBin, the calibration method that obtains the best results is the PAV method.
The results in bold mean that the differences are statistically significant.

The problem of non-monotonicity is that the more transformations we do,
the more overfitting may occur, and, more importantly, the correlation between
the classifiers may increase (loss of diversity). We calculated Pearson’s correla-
tion coefficient for the base classifiers before and after calibrating them with the
three traditional calibration techniques and SBA. While the traditional calibra-
tion techniques showed no significant increase in correlation, this was effectively
higher for SBA. A higher correlation is, in theory, worse (less diversity), unless
there is a general increase in classifier quality (when classifiers get better then
they necessarily must correlate more). This latter situation seems to be more
consistent here, as the results for AUC are much better. Nonetheless, a more
thorough analysis on the relation between non-monotonic calibration and clas-
sifier diversity should be done. In what follows, we will focus on whether the
overall results are better, since many factors counter-balance here.

Next, we study the effect of combination, calibration+combination, combi-
nation+calibration and calibration+combination+ calibration in Table 12 with
the SBA calibration method. We compare these results with the results in Tables
6, 7, 8 and 9, using the Friedman test.

This table shows that SBA gives the best results in terms of AUC. The
improvement is now much higher than it was for the other methods. The options
of using WCGINI or WCIMSE are not significant, but they are still better than
other weighting options (not shown in the table). The layouts with the best
results in terms of AUC are SBA + WCIMSE and SBA + WCIMSE + Platt.
The difference between these results and the rest of the results in Table 12 and
Table 8 are statistically significant according to the Friedman test. Otherwise,
the difference between the result of the layout SBA + WCIMSE + Platt and
PAV+WCIMSE (the best result in Table 8), in terms of MSE, is not statistically
significant. The difference between the result of the layout SBA + WCIMSE +
PAV and PAV + WCIMSE + PAV (the best result in Table 9), in terms of

24

192 7. Publications (Full Text)

Table 12. CombMet, CalMet+CombMet, CombMet+CalMet and Cal-
Met+CombMet+CalMet results, with 1 random classifier. ∗: difference non significant
respect PAV+WCIMSE+PAV. ?: difference non significant respect PAV+WCIMSE.
•: difference non significant respect PAV+WCIMSE and Binn.+WCIMSE.

MSE AUC CalBin Acc.

SBA+WCGINI 0.1145 0.8841 0.1124 0.8079
SBA+WCIMSE 0.1120 0.8846 0.1056 0.8104

WCGINI+SBA 0.1147 0.8781 0.0996 0.8081
WCIMSE+SBA 0.1141 0.8762 0.0975 0.8078

PAV+WCGINI+SBA 0.1123 0.8789 0.0969 0.8103
Platt+WCGINI+SBA 0.1131 0.8786 0.0978 0.8101
Binn.+WCGINI+SBA 0.1128 0.8777 0.0971 0.8086

PAV+WCIMSE+SBA 0.1100 0.8782 0.0933 0.8128
Platt+WCIMSE+SBA 0.1111 0.8781 0.0949 0.8119
Binn.+WCIMSE+SBA 0.1112 0.8765 0.0947 0.8108

SBA+WCGINI+PAV 0.1093 0.8732 0.0680 0.8161
SBA+WCGINI+Platt 0.1076 0.8842 0.1031 0.8185
SBA+WCGINI+Binn. 0.1135 0.8618 0.0734 0.8089
SBA+WCGINI+SBA 0.1149 0.8794 0.1021 0.8068

SBA+WCIMSE+PAV 0.1085 0.8732 0.0675∗ 0.8172
SBA+WCIMSE+Platt 0.1066? 0.8846 0.1023 0.8198•
SBA+WCIMSE+Binn. 0.1128 0.8620 0.0728 0.8106
SBA+WCIMSE+SBA 0.1140 0.8792 0.1002 0.8082

CalBin, is not statistically significant. And finally, the difference between the
result of the layout SBA + WCIMSE + Platt, PAV + WCIMSE and Binn +
WCIMSE (the best results in Table 8), in terms of accuracy, is not statistically
significant.

In addition, we see again that the use of weights is compatible with this cali-
bration method. Consequently, calibration and weighting for a wide range (mono-
tonic or not) of calibration methods (even using the same validation dataset) is
not only compatible but also beneficial.

8 Discussion and Conclusions

In general terms, we now have a better understanding of classifier combination
using probabilities. The separability and location of the probability distributions
is the key issue in understanding how classifier combination works. Measures such
as AUC, MSE and CalBin are very useful in distinguishing these separability and
location parameters.

Apart from all these findings, it is also worth considering whether the new
weighting methods, layouts, and calibration methods are able to improve the
state-of-the-art in classifier combination using probabilities. There is definitely

25

7.8. On the Effect of Calibration in Classifier Combination 193

a relevant increase in the quality of the combined models over the techniques
with traditional weighting.

In order to give a clearer picture of the overall improvement, Table 13 sum-
marises this evolution of results.

Table 13. Summary of Results (using 4 models + random classifier). Each result is accompanied
with some letters. For each column (MSE, AUC, CalBin, and accuracy measures) we have done
a significant statistical test between the rows with the same letter. If the difference between the
methods with the same letter is significant, we have put the letter of the best result in bold; and if
two or more methods are better than the rest, but the difference between them is not significant, we
have underlined the letters of these methods.

MSE AUC CalBin Acc.

Base 0.2092 a 0.7690 a 0.1811 a 0.7004 a
WCUnif 0.1298 a, b, d, e 0.8520 a, b, d, e 0.1337 a, b, d, e 0.7932 a, b, d, e
WCAcc 0.1196 b, c, d, e 0.8630 b, c, d, e 0.1175 b, c, d, e 0.8035 b, c, d, e

WCGINI 0.1141 c,d, e, f, g0.8729 c, d, e, f, g0.1048 c,d, e, f, g0.8077 c, d, e, f, g
Platt+WCUnif 0.1294 d, f 0.8745 d, f 0.1589 d, f 0.8063 d, f
Platt+WCGINI 0.1173 e, f 0.8779 e, f 0.1293 e, f 0.8129 e, f

Platt+WCGINI+Platt 0.1091 f , g 0.8772 f, g 0.1005 f , g 0.8158 f , g

SBA+WCGINI 0.1145 g 0.8841 g 0.1124 g 0.8079 g
SBA+WCGINI+SBA 0.1149 g 0.8794 g 0.1021 g 0.8068 g
SBA+WCGINI+PAV 0.1093 g 0.8732 g 0.0680 g 0.8161 g
SBA+WCGINI+Platt 0.1076 g 0.8842 g 0.1031 g 0.8185 g

Firstly, the WCUnif layout shows an unweighted combination of the base
classifiers (including one random classifier). There is a clear improvement in all
the parameters over the average of the base classifiers (Base). This is significantly
better if we use a weighted combination using a classical combination accuracy
(WCAcc). Up to this point, this is a state-of-the-art solution. If we modify the
weighting function to GINI (WCGINI), we get a significant improvement over
WCAcc.

Secondly, the use of a traditional (monotonic) calibration method (Platt’s)
is able to improve the results (both for the unweighted case and for the weighted
case using WCGINI). Nonetheless, as discussed in previous sections: using cali-
bration before combination typically yields better (but uncalibrated) combina-
tions, and the improvement is not applicable to MSE or CalBin. However, this
can be easily sorted out by also using a postcalibration (layout: Platt + WCGINI
+ Platt).

Thirdly, the SBA calibration method is able to get further improvement,
especially in terms of AUC. The layout SBA+WCGINI excels in AUC. Again,
if we are interested in a calibrated combination or in good accuracy, we can use
the layout SBA+WCGINI+PAV, which gives the best results in terms of MSE
and CalBin (AUC is worse for this layout because PAV is not strictly monotonic
and makes ties that may reduce the AUC). For accuracy, SBA+WCGINI+Platt
seems a better option, while keeping AUC at its best.

As final recommendations, we think that classifiers that are seen as proba-
bilistic estimators (and virtually any classifier can be converted into a probability
estimator) give a more complete view of their behaviour, allowing for a more de-

26

194 7. Publications (Full Text)

tailed combination, using their own reliabilities. The notions of diversity and
quality become more complex than for crisp (non-probabilistic), but this extra
complexity can pay off with an increase in the performance of the combined
model. Performance should be evaluated with several data metrics, but separa-
bility (measured in terms of AUC) is a good reference, since it is insensitive to
miscalibration. Pursuing a combined model with good AUC makes sense since
we know that we can calibrate a classifier with good AUC and get good accuracy
results from these calibrated probabilities, using the by default thresholds (e.g.
0.5 for binary datasets).

From all these results and analyses, we would like to highlight some clear
messages, as follows:

– Calibration is beneficial before combination as the experimental results show,
in general. Monotonic calibration methods have a more limited influence
than non-monotonic ones.

– The combination of classifiers does not typically give a calibrated result, as
we have shown by analysing the probability distributions using truncated
normal models for them. This has been confirmed by the experimental re-
sults.

– We advocate for AUC as the right measure to evaluate combination perfor-
mance, precisely because the combination is generally uncalibrated.

– We recommend calibration after combination, if we are interested in good
results in terms of MSE or in terms of accuracy.

– Weighted combination is compatible with probabilities even when we use
calibration with the same dataset from which we derive the weights. This
has been shown by the experiments. Therefore, the “double-weighting” is
not really a problem, or at least it is counteracted by other benefits.

– The weighting methods which are best when using probabilities are GINI
and IMSE, even in conjunction with calibration.

– SBA, the non-monotonic calibration method, is better for combination ac-
cording to the experimental results.

This better understanding of classifier combination using probabilities is not only
useful for the general case, but for specific applications and problems. We now
have tools to analyse how classifiers change with calibration and combination.
The distribution plots we used in section 4 can be used to analyse how calibration
and combination works with a specific set of classifiers. The use of several metrics
(such as AUC, MSE, accuracy, and CalBin) are a requirement to understand
what is really going on when classifiers are transformed and combined.

Finally, we have also raised many new questions. More elaborate tools could
be used to analyse probability distributions theoretically, especially to address
the general multiclass case. The use of other diversity measures, such as Spear-
man’s rank correlation would also be insightful. Empirical results can also be
extended with more layouts, different settings, datasets sizes and features, model
types, etc. In the end, calibration is a complex phenomenon by itself, which be-
comes even more convoluted when coupled with the already multifarious area of
model combination.

27

7.8. On the Effect of Calibration in Classifier Combination 195

References

1. Takeshi Amemiya. Regression Analysis when the Dependent Variable Is Truncated
Normal. Econometrica, 41(6):997–1016, 1973.

2. Miriam Ayer, H.D. Brunk, G.M. Ewing, W.T. Reid, and Edward Silverman. An
empirical distribution function for sampling with incomplete information. Annals
of Mathematical Statistics, 5:641–647, 1955.

3. A. Bella, C. Ferri, J. Hernandez-Orallo, and M.J. Ramirez-Quintana. Calibra-
tion of machine learning models. In Handbook of Research on Machine Learning
Applications, pages 128–146. IGI Global, 2009.

4. A. Bella, C. Ferri, J. Hernández-Orallo, and M.J. Ramı́rez-Quintana. Similarity-
Binning Averaging: A Generalisation of Binning Calibration. In Intelligent Data
Engineering and Automated Learning - IDEAL 2009, volume 5788 of Lecture Notes
in Computer Science, pages 341–349. Springer Berlin / Heidelberg, 2009.

5. Paul N. Bennett. Building Reliable Metaclassifiers for Text Learning. PhD thesis,
Carnegie Mellon University, 2006.

6. Paul N. Bennett, Susan T. Dumais, and Eric Horvitz. The Combination of Text
Classifiers Using Reliability Indicators. Information Retrieval, 8(1):67–98, 2005.

7. C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.
8. Leo Breiman. Bagging predictors. Machine Learning, 24:123–140, August 1996.
9. Niko Brümmer. Measuring, refining and calibrating speaker and language informa-

tion extracted from speech. PhD thesis, University of Stellenbosch, 2010.
10. Rich Caruana, Art Munson, and Alexandru N. Mizil. Getting the Most Out of En-

semble Selection. In ICDM ’06: Proceedings of the Sixth International Conference
on Data Mining, pages 828–833, Washington, DC, USA, 2006. IEEE Computer
Society.

11. Rich Caruana and Alexandru Niculescu-Mizil. Data mining in metric space: an
empirical analysis of supervised learning performance criteria. In Proceedings of
the tenth ACM SIGKDD international conference on Knowledge discovery and
data mining, KDD ’04, pages 69–78, New York, NY, USA, 2004. ACM.

12. Janez Demšar. Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research, 7:1–30, December 2006.

13. Thomas G. Dietterich. Ensemble methods in machine learning. In Proceedings of
the First International Workshop on Multiple Classifier Systems, MCS ’00, pages
1–15, London, UK, 2000. Springer-Verlag.

14. Thomas G. Dietterich. An experimental comparison of three methods for construct-
ing ensembles of decision trees: Bagging, boosting, and randomization. Machine
Learning, 40:139–157, August 2000.

15. C. Ferri, J. Hernández-Orallo, and R. Modroiu. An experimental comparison of
performance measures for classification. Pattern Recognition Letters, 30:27–38,
January 2009.

16. C. Ferri, J. Hernández-orallo, and M.A. Salido. Volume under the roc surface for
multi-class problems. Exact computation and evaluation of approximations. In
Proceedings of 14th European Conference on Machine Learning, pages 108–120,
2003.

17. César Ferri, Peter Flach, and José Hernández-Orallo. Delegating classifiers. In
Proceedings of the twenty-first international conference on Machine learning, ICML
’04, pages 37–45, New York, NY, USA, 2004. ACM.

18. P. Flach, H. Blockeel, C. Ferri, J. Hernández-Orallo, and J. Struyf. Decision sup-
port for data mining: An introduction to ROC analysis and its applications. In

28

196 7. Publications (Full Text)

Data Mining and Decision Support: Integration and Collaboration, pages 81–90.
Kluwer Academic Publishers, Boston, 2003.

19. Yoav Freund and Robert E. Schapire. Experiments with a New Boosting Algo-
rithm. In International Conference on Machine Learning, pages 148–156, 1996.

20. Joao Gama and Pavel Brazdil. Cascade generalization. Machine Learning, 41:315–
343, December 2000.

21. Ursula Garczarek. Classification Rules in Standardized Partition Spaces. PhD
thesis, Universitat Dortmund, 2002.

22. Martin Gebel. Multivariate calibration of classifier scores into the probability space.
PhD thesis, University of Dortmund, 2009.

23. David J. Hand and Robert J. Till. A simple generalisation of the area under the
roc curve for multiple class classification problems. Machine Learning, 45:171–186,
October 2001.

24. Jennifer A. Hoeting, David Madigan, Adrian E. Raftery, and Chris T. Volinsky.
Bayesian model averaging: A tutorial. Statistical Science, 14(4):382–417, 1999.

25. Ludmila I. Kuncheva. A theoretical study on six classifier fusion strategies. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24:281–286, February
2002.

26. Ludmila I. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms.
Wiley-Interscience, 2004.

27. Ludmila I. Kuncheva. Diversity in multiple classifier systems. Information Fusion,
6(1):3 – 4, 2005. Diversity in Multiple Classifier Systems.

28. Ludmila I. Kuncheva and Christopher J. Whitaker. Measures of diversity in classi-
fier ensembles and their relationship with the ensemble accuracy. Machine Learn-
ing, 51:181–207, May 2003.

29. A. H. Murphy. Scalar and vector partitions of the probability score: Part II. n-state
situation. Journal of Applied Meteorology, 11:1182–1192, 1972.

30. John C. Platt. Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods. In Advances in Large Margin Classifiers, pages
61–74. MIT Press, Boston, 1999.

31. Adrian E. Raftery, Tilmann Gneiting, Fadoua Balabdaoui, and Michael Po-
lakowski. Using bayesian model averaging to calibrate forecast ensembles. monthly
weather review 133, 2005.

32. Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all classification. Journal
of Machine Learning Research, 5:101–141, December 2004.

33. Tim Robertson, F. T. Wright, and R. L. Dykstra. Order Restricted Statistical
Inference. John Wiley & Sons, 1988.

34. Sergey Tulyakov, Stefan Jaeger, Venu Govindaraju, and David Doermann. Review
of classifier combination methods. In Hiromichi Fujisawa Simone Marinai, editor,
Studies in Computational Intelligence: Machine Learning in Document Analysis
and Recognition, pages 361–386. Springer, 2008.

35. Ian H. Witten and Eibe Frank. Data mining: practical machine learning tools and
techniques with java implementations. SIGMOD Record, 31:76–77, March 2002.

36. David H. Wolpert. Stacked generalization. Neural Networks, 5:241–259, 1992.
37. Bianca Zadrozny and Charles Elkan. Transforming classifier scores into accurate

multiclass probability estimates. In Proceedings of the eighth ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, KDD ’02, pages
694–699, New York, NY, USA, 2002. ACM.

29

7.8. On the Effect of Calibration in Classifier Combination 197

