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SUMMARY

Transcription factor-based biosensors naturally occur in metabolic pathways to
maintain cell growth and to provide a robust response to environmental fluctua-
tions. Extended metabolic biosensors, i.e., the cascading of a bio-conversion
pathway and a transcription factor (TF) responsive to the downstream effector
metabolite, provide sensing capabilities beyond natural effectors for implement-
ing context-aware synthetic genetic circuits and bio-observers. However, the
engineering of such multi-step circuits is challenged by stability and robustness
issues. In order to streamline the design of TF-based biosensors in metabolic
pathways, here we investigate the response of a genetic circuit combining a TF-
based extended metabolic biosensor with an antithetic integral circuit, a feed-
back controller that achieves robustness against environmental fluctuations.
The dynamic response of an extended biosensor-based regulated flavonoid
pathway is analyzed in order to address the issues of biosensor tuning of the
regulated pathway under industrial biomanufacturing operating constraints.

INTRODUCTION

Natural cells maintain robust growth and withstand environmental fluctuations by dynamically adjusting

cellular metabolism through complex regulatory networks (Liu et al., 2018). Since nature has optimized

metabolite production for its needs, these specific optimal solutions are usually not compatible with indus-

try-level overproduction demands. Major improvements in yield, titer, and productivity of engineered

metabolic pathways can be accomplished by balancing pathway gene expression (Liu et al., 2018). The

objective is to increase production of the target product through reducing potential flux imbalances in

the host organism. This is mainly accomplished by eliminating the production of excessive intermediate

metabolites and precursors leading to efficient conversion of intermediates, substrates, and co-factors

to desired products. There exist several metabolic pathway-balancing approaches that optimize gene

expression and flux distribution based on in silico predictions provided by static constraint-based meta-

bolic genome-scale models (Purdy and Reed, 2017), using regulatory elements (DNA copy number,

promoter and ribosome binding site [RBS] engineering) (Nielsen et al., 2016), synthetic scaffolds, compart-

mentalization, and flux diversion (silencing, knockouts, alternative carbon sources) (Chae et al., 2017).

These pathway regulation strategies optimizing for a particular condition are static, so they are unable

to respond to growth and environmental changes that occur in a bioreactor setup (Shi et al., 2018; Wehrs

et al., 2019). Moreover, these static control systems may not be suitable when piecing together a compli-

cated pathway with biosynthetic modules with mismatched input/output levels or when there is a need to

minimize the accumulation of potentially toxic intermediates (Shi et al., 2018).

Dynamic balancing addresses the robustness pitfalls of static control through the application of feedback

and feedforward regulation. This makes it possible to attain higher titers as compared with static regulation

(Stevens and Carothers, 2015). However, it is not until recent years that metabolic engineers have used

dynamic regulation to redirect endogenous flux toward product formation, balance the production and

consumption rates of key intermediates, and suppress production of toxic intermediates in the fermenta-

tion (Doong et al., 2018). The main reason is that, in order to implement a dynamic regulation strategy, bio-

sensors are needed. Indeed, a dynamic regulation system consists of a sensing component, which can

detect the metabolite of interest or physiological state (e.g., growth, stress signals), and a regulator

component, which converts the sensor signal into a transcriptional signal, often resulting in the upregula-

tion or downregulation of a key pathway gene (Paepe et al., 2018; Huyett et al., 2018; Liu and Zhang, 2018).
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Despite a growing number of success stories, engineeringdynamic control remains extremely challenging (Chen

and Liu, 2018; Gao et al., 2019). Among these challenges, one can count cell resource allocation, microorganism

population heterogeneity, and fluctuating industry-scale bioreactor environment. Moreover, the performance

specifications for synthetic gene circuits and components change significantly with variations in parameters

such as temperature, host organism, growth media formulation, and position of the genes in the genome (Se-

gall-Shapiro et al., 2018). To address these challenges, model-based design relying on the principles of control

engineering can provide a powerful formalism to engineer dynamic control circuits. These, together with the

tools of synthetic biology, can lead to robust and efficient microbial production at industrial levels (Liu et al.,

2018; Segall-Shapiro et al., 2018; Hsiao et al., 2018; Shopera et al., 2017; Boada et al., 2017a, 2017b).

Biosensor mechanisms that translate information about a chemical signal (the concentration of a natural

product) into a measurable output are being increasingly used in engineering and synthetic biology (John-

son et al., 2017; Shi et al., 2018; D’Ambrosio and Jensen, 2017). Intracellular biosensors can be broadly

grouped into three categories, RNA switchers (aptamers) (McKeague et al., 2016), reporter-proteins

leading to signal generation (Agrawal et al., 2020), and transcription factors (TF) leading to transcriptional

regulation (Mahr and Frunzke, 2015), on the basis of their biomolecular make-up andmechanism. TF-based

biosensors present advantages in terms of specificity and sensitivity (Lin et al., 2017). However, the use of

biosensors in synthetic circuits to control gene expression is in its beginnings, as the tunability of the

biosensor is essential for dynamic control systems to appropriately function in industrial conditions (Liu

et al., 2018; Wang et al., 2019). Only recently, libraries of TF-based biosensors have been created by varying

regulatory elements such as RBS (Paepe et al., 2018). Also, the biosensor dynamic range and thresholds can

nowadays be modified through directed evolution (Snoek et al., 2019) or with the use of model-based

design for the constraints of dose-response curves (Mannan et al., 2017). However, reported chemicals

that can be detected by TF-based biosensors are generally focused on some specific classes of compounds

such as amino acids and do not cover the entire range of nature’s chemical diversity. SensiPath (Delépine

et al., 2016) has been recently introduced to develop extended TF-based biosensors through metabolic

pathways, thus expanding the observable chemical space spanned by biosensors.

Extended metabolic biosensor-based circuits considerably enlarge the ability of sensing target molecules

for pathway screening and regulation. Such type of genetic circuits can be computationally designed

through an in silico screening of the extended metabolic space (Carbonell et al., 2014; Delépine et al.,

2016). As the number of characterized transcription factors that are responsive to effector molecules is

constantly increasing, the number of possible ways of setting up a genetic circuit encoding an extended

metabolic biosensor for the desired target increases as well. Currently, the number of known small-mole-

cule chemical effectors for transcription factors is close to 750 (Koch et al., 2018) providing a large design

space that can be explored in order to select the optimal biosensor circuit depending on the objectives.

Given the set of reachable metabolites, i.e., chemicals that can be produced through enzymatic transfor-

mations, and the set of effector metabolites that can induce or modulate the response of a transcription

factor, we define the set of biosensor circuits as all possible biosynthetic metabolic pathways that can

convert the desired target into one of the metabolites within the effectors set.

In order to streamline the design and use of TF-based biosensors for dynamic regulation of metabolic path-

ways, in this study we aimed at introducing an extended metabolic biosensor-based antithetic control for

regulating the heterologous pathway of the flavonoid naringenin production in the Escherichia coli host.

We chose the naringenin pathway as our case study because of the availability of both direct and indirect

TF-based biosensors for intermediates and derivatives involved in the production of this class of com-

pounds of industrial biomanufacturing interest. Flavonoids are an important subclass of phenylpropanoids,

a major family of plant natural products with applications as food supplements, antioxidants, aroma and

flavoring agents, pharmacological drugs, insecticides, and dyes. Clear market opportunities exist for flavo-

noids with enhanced bioavailability and bioactivity profiles used as flavors and bioactive compounds for

nutraceutical applications among others. The flavonoid compound naringenin is predominantly found in

grapefruits and oranges and has been reported to have many pharmacological properties, including

anti-dyslipidemic, anti-obesity and anti-diabetic, and anti-fibrotic (Liu et al., 2008; Rahigude et al., 2012;

Zygmunt et al., 2010). It also has a central place in the biosynthesis of all flavonoids, as naringenin plays

an important role as backbone scaffold that can be further derivatized. Downstream pathways may add

biochemical groups on it. These molecular modifications (derivatizations) are responsible for functionaliza-

tion and diversification of end products in the broad families of flavonoids.
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Althoughmicrobial fermentation of naringenin has been achieved, current titers do not render its microbial

production economically feasible. Current maximum reported titers for production of naringenin in indus-

trial hosts are close to 200 mg L�1 (Zhou et al., 2019). However, industrial levels above 1 g L�1 might be

possible to reach through further optimization toward the maximum theoretical yield. Notably, Juminaga

et al. (2011) optimized the production of the L-tyrosine precursor in E. coli, achieving a yield of 0.44 g L-tyro-

sine/g glucose, which was determined to correspond to 80% of the maximum theoretical yield. The ob-

tained yield allowed the production of 2.2 g L�1 of L-tyrosine in 48 h. Moreover, a titer of 474 mg L�1 of

naringenin has been reported when feeding p-coumarate by host optimization (Xu et al., 2011). Therefore,

we expect that the titers can go still up, especially because of the high efficiency of the conversion of L-tyro-

sine into p-coumarate, and should be able to reach at least 0.4 g naringenin/g glucose and a titer of

800 mg L�1 in 48 h in a fermenter, with still some room for further optimization through additional strain

optimization, chromosome integration, and process optimization. Besides the increase in the amount of

molecules per cell, the final titers of naringenin in E. coli can also be significantly increased by using

high-density culture bioreactors, which can reach cell concentrations above 100 OD (Choi et al., 2006).

The naringenin pathway consists of four enzymatic steps from the L-tyrosine precursor. The third step, cata-

lyzed by naringenin chalcone synthase (CHS) requires malonyl-CoA, an essential metabolite that is used in

fatty acid production and plays an important role in cell metabolism. Intracellular concentrations of

malonyl-CoA are typically low (4–40 mM in E. coli) (Johnson et al., 2017; Xu et al., 2014). Moreover, its con-

centration is subject to fluctuations caused by cell environmental heterogeneities. Several strategies have

been used in order to channel the malonyl-CoA flux into the desired production pathway, including over-

expression of the enzyme that synthetizes it or down-regulation (Yang et al., 2015). However, accumulation

of malonyl-CoA leads to growth inhibition. Therefore, just-in-time dynamic production of malonyl-CoA ap-

pears as a desired goal.

Dynamic redistribution of cellular resources and optimal control of pathway expression offer alternative

strategies for engineering metabolic pathways with high productivity and yield. In Xu et al. (2014) the

FapR TF-based malonyl-CoA biosensor (Johnson et al., 2017) is used to design a metabolic switch that

enables dynamic regulation of both the malonyl-CoA source pathway and its sink pathway in order to

dynamically regulate malonyl-CoA concentration. The engineered strain improved fatty acids production

as it reached a better trade-off between cell growth and heterologous pathway expression. As an alterna-

tive, Dinh et al. (2020) obtained a 60% titer increase in the production of naringenin by controlling the

composition of a co-culture using a quorum sensing-based growth-regulation circuit.

Here, we will use a different approach where a naringenin biosensor is used to establish a feedback control

system that will regulate the levels of expression of the naringenin chalcone synthase enzyme in order to

provide a robust response to the fluctuations in malonyl-CoA availability and maximize the production

of the naringenin target. Notably, our strategy, as depicted in Figure 1, will consist of initially establishing

a baseline production pathway for naringenin and to use an extended biosensor-based feedback control

system to regulate naringenin production around its nominal level while coping with fluctuations in the

malonyl-CoA availability.

RESULTS

Response of the Naringenin TF-based Extended Metabolic Biosensor

The FdeR transcription factor is responsive to naringenin and has been used as a biosensor for high-

throughput screening. However, its dynamic range is 0.001–0.15 mM, i.e., it saturates around 40 mg L�1,

whichmeans that, even if that biosensor could be used during the prototyping stage to implement pathway

regulation, its use for feedback regulation is not viable at the desired industrial levels. Therefore, it is neces-

sary to search for a transcription factor-based flavonoid biosensor, such as those reported in the literature

(Cheng et al., 2018), that performs an indirect measurement allowing tuning of the dynamic range.

A promising case is a biosensor circuit based on the transcription factor QdoR for kaempferol and quer-

cetin, two flavonols that can be derived from naringenin in two and three conversion steps, respectively.

This transcription factor, with a similar dynamic range than the one for naringenin, can provide an extended

metabolic biosensor-based solution for naringenin high-producer strains. Conversion ratios for quercetin

of 13:1 in E. coli (Leonard et al., 2006) and of 100:3 in yeast (Trantas et al., 2009) have been reported;

therefore, it is possible to extend the net dynamic range for naringenin above 1 g L�1 even if the use of
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a QdoR-based biosensor compared with a FdeR-based one would introduce some additional challenges.

One challenge of this approach is that, in order to produce kaempferol or quercetin, naringenin needs to

be consumed and some of the intermediates might accumulate at high concentrations. However, a recent

study has shown that, through appropriate selection of the enzymes in the pathway, it is possible to tune

the levels of accumulation of each intermediate (Rodriguez et al., 2017). In that study, production for each

intermediate was optimized by trying to reduce accumulation of the other compounds. For the biosensor

case, the goal would be to keep naringenin at high levels with a low conversion ratio to kaempferol, and a

minimal accumulation of the intermediate dihydrokaempferol.

The TF-based extended metabolic biosensor proposed in this work, depicted in Figure 2, uses the down-

stream metabolite kaempferol as proxy of naringenin. Kaempferol in turn captures the QdoR transcription

factor, which represses the expression of the anti-smolecule by means of the qdoR-PqdoI promoter region

(Siedler et al., 2014). In this way, increasing values of naringenin will produce increasing values of anti�s.

Thus, the naringenin TF-based extended biosensor starting from naringenin generates the sensor input

signal, and the sensor output signal coming from anti�s is fed back to the controller. The resulting

extended biosensor was modeled as described in Transparent Methods section in the Supplemental

Information.

Figure 3 shows the dynamic range of the biosensor according to its dose-response curve. For instance, to

sense 1 g L�1 of naringenin, the extended biosensor needs to convert only 5 mg L�1 of kaempferol. This

means that the extended biosensor has a very low gain, allowing the biosensor promoter to work in the

non-saturated region while responding to changes of naringenin concentration in the g L�1 range. To

that end, the metabolic part of the extended biosensor had to be tuned in such a way that it produces

very low amounts of kaempferol for large amounts of naringenin. This can be achieved, for instance, by tun-

ing for a very low affinity to the substrate. This is particularly relevant for the first enzyme of the biosensor. In

a similar fashion, the rest of the enzymes of the extended pathway need to show low efficiency. Based on

such designated enzyme configuration, parameters in the system were adjusted as described in Metabolic

pathway and Table S1 in the Supplemental Information, and the corresponding dynamic response of the

biosensor was analyzed. The insets of Figure 3 show the time response of the naringenin extended meta-

bolic biosensor. Figure 3C shows the time response of kaempferol to a sudden change in the naringenin

concentration, whereas Figure 3D shows the time response of anti-s, the sensor output signal. As ex-

pected, similar dynamics between a change in the naringenin concentration and the response to that

change were found in both concentrations of kaempferol and anti-s. The apparent delay introduced by

the slow dynamics can be mainly attributed to the dilution of kaempferol due to cell growth. Interestingly,

as detailed later, the integral antithetic controller is able to provide the desired robust response, despite

this extra dynamics in the loop. Notice also that the low gain of the biosensor contributes to reduce the

metabolic burden it introduces.

Metabolic
pathway xp(t)

Metabolic
circuit xm(t)

Biosensor
circuit xb(t)

Controller
circuit xc(t)

Host
x(t)

Target
xT(t)

Precursors
xP(t)

Effector
xE(t)

Actuator
xA(t)

Reference
xr(t)

Regulator
xR(t)

Extended metabolic biosensor

Figure 1. Schematic Diagram of the Proposed Strategy

A target-producer metabolic pathway is expressed in the host, where the fluctuating availability of precursors xp(t) act as

perturbations that eventually affect the target metabolite production xT(t). This is sensed using an extended metabolic

biosensor device comprising a metabolic pathway that converts the target into an effector metabolite xE(t) and an

associated transcription factor-based biosensor that provides the regulation signal xR(t). This one is fed back to a gene

regulatory circuit that expresses the actuator signal xA(t) driving the target metabolite toward the specified set-point xr(t).

In our case, the actuator signal xA(t) consists of a parallel expression system for the limiting precursor xp(t).
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Response of the Antithetic Integral Feedback Regulator

To adopt the use of extended metabolic biosensor circuits in pathway regulation, important effects may

impact their performance; therefore, they need to be considered. Such effects appear because of the de-

lays and nonlinearities introduced by the metabolic circuit. For screening applications, they can often be

compensated through calibration of the biosensor. In pathway dynamic regulation nevertheless, the effects

can have a strong impact on the performance of the pathway and even bring it to unstable behavior (Hsiao

et al., 2018). Hence, it is necessary to establish a control strategy for counteracting the inherent uncer-

tainties of the response for a given design and to determine the conditions and ranges that must be verified

by the extended metabolic biosensor parameters in order to guarantee a stable and robust response.

To that end, integral feedback control appears as a promising solution for robust output regulation against

perturbations. The antithetic feedback control is a type of integral control that has been recently shown to

be a universal genetic topology that can achieve robust perfect adaptation (Briat et al., 2016) and has

already been considered for regulation of metabolic pathways (Briat and Khammash, 2018). Therefore,

the use of a genetic circuit implementing an antithetic integral feedback controller in combination with

an extended metabolic biosensor seems a promising genetic system for pathway regulation.

Here we use the antithetic control structure, as depicted in Figure 2, to dynamically express the enzyme

CHS catalyzing the conversion from p-coumaric acid to naringenin chalcone. The decrease in naringenin

PLux
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σ

PqdoI

aσ
B0030 B0015

J23106
B0030 B0015

Qdor.Kampf

Kaempferol

CHS
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QdoR

chs

P20
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B0015

B0015

LuxR AHL (Reference
input)

(LuxR.AHL)
2

Reference

An the c Controller

Actuator

TF-based extended metabolic biosensor

Output

CHS
3 Malonyl-CoA

Dihidrokaempferol

Naringenin

Kaempferol

Naringenin
Chalcone

p-Coumaroyl-CoA

p-Coumaric acid

L-tyrosine

4CL

TAL

CHI

F3H

FLS

σ/Anti-σ
complex

qdoR

Metabolic Pathway

Figure 2. Naringenin Pathway, Antithetic Controller and TF-Based Extended Metabolic Biosensor

Production of the naringenin target is proxied by a metabolic circuit through the downstream metabolite kaempferol,

which is sensed by the QdoR transcription factor and feeds back to an antithetic controller. The controller is activated

upstream by the external AHL inducer, and its actuating signal overdrives the expression of the CHS enzyme in the

pathway, in order to compensate for malonyl-CoA depletion.
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implies less amount of both kaempferol and anti�s factor (Rhodius et al., 2013), and its s cofactor will no

longer be suppressed. Mutual annihilation of the antithetic s/Anti-s cofactors provide negative integral

feedback (Aoki et al., 2019) to regulate CHS enzyme production under the s�P20 promoter region. s

Cofactor is activated by the upstream protein LuxR together with the external inducer AHL. Figure 4A illus-

trates how the CHS enzyme expression is reduced when the s/Anti-s negative feedback acts (increasing

expression of anti-s).

Notice that the global amount of CHS in the cell directly modulates the conversion flux from p-coumaric

acid to naringenin chalcone (see Metabolic pathway in the Supplemental Information). The antithetic

controller dynamically provides a variable amount of CHS additional to its basal level of expression. This

way the controller compensates for fluctuations affecting the production of naringenin. The dynamics of

the controller was modeled as described in section Antithetic controller in the Supplemental Information.

Putting together the previous three dose-response curves one can obtain the dose-response curve (static

relationship) of the combined TF-based extended biosensor controller (Figure 4B). This combined dose-

response is the complete input-output relationship of the feedback representing how the level of CHS

enzyme expression will change upon changes in the naringenin levels. Within the same Figure 4B we

also represented in dashed colored lines the production curves that represent the relationship between

the production of naringenin and the amount of CHS enzyme for different fixed amounts of malonyl-

CoA (for fixed pathway conditions). Note that there is a threshold in the transition above 1 g L�1. As the

production curves are calculated for fixed pathway conditions that were selected for nominal levels of

1 g L�1, for higher production values, the rest of the pathways turn to be the limiting process and prevents

higher levels of naringenin from being produced.

Once the amount of enzyme is selected, for instance, the amount shown in dotted black line in Figure 4B

(representing the open-loop strategy, see Figure S1 in the Supplemental Information for more details, i.e.,

a fixed amount of enzyme), the intersection of this line with the dashed lines representing the production

gives the amount of naringenin produced with that amount of enzyme. Here we see that the open loop

strategy results in a decrease of levels of production upon malonyl-CoA reduction. Similarly, the closed-

loop equilibrium is the intersection of the closed-loop dose-response curve with the production lines. In
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Figure 3. Naringenin TF-based Extended Metabolic Biosensor Dose-Response

(A–D) (A) Naringenin to kaempferol dose-response showing the kaempferol concentration (g L�1) corresponding to a

varying range of naringenin production concentrations (g L�1). The inset (C) shows the time response of kaempferol to a

sudden step-like change in the concentration of naringenin concentration. (B) TF-based extended metabolic biosensor

input-output dose-response. The amount of anti-smolecules is shown for a varying range of naringenin production levels

(g L�1). The inset (D) shows the time response of anti-s to a sudden step-like change in the concentration of naringenin

concentration. In both graphs solid lines are the mean values and dots correspond to the dose-responses under a 15%

uncertainty in the biosensor parameters for a plasmid copy number of ten.
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that case, it is possible to see how the closed loop can recover from a reduction in malonyl-CoA availability

thanks to the dynamical regulation of the amount of enzyme.

Dynamic Regulation of the Naringenin Pathway

In order to analyze the pathway dynamic regulation and eventually design a robust feedback regulation,

the dynamic response of the two enzymatic steps in the extended biosensor in Figure 2 needs to be consid-

ered. The kinetics of the involved enzymes, however, have been less studied than of those in the naringenin

pathway, and therefore, it would be necessary to assume some level of uncertainty in the parameters asso-

ciated with the dynamic response of the biosensor. Here, we will assume typical kinetic values for the en-

zymes in the pathway extracted from the literature (seeMethods). Figure 5 depicts the performance assess-

ment of the regulated pathway assuming a model for the system as described in Methods. The output

response in closed loop (Figure 5, solid lines), i.e., regulation based on the kaempferol-mediated naringe-

nin biosensor driving an antithetic integral controller (see Figure 2) was compared with the output response

in open loop (Figure 5, dashed black line), i.e., without feedback regulation of the CHS concentration (see

Figure S1). Moreover, we also compared our strategy with a regulation based on a kaempferol-mediated

naringenin biosensor driving a direct feedback controller (Figure 5, dashed blue line), i.e., a repressible

promoter (cI regulated promoter) directly driving the expression of CHS enzyme (see Figure S2 and the

direct controller model in the Supplemental Information).

The open-loop response results by replacing the P20 promoter that responds to s (and in turn to naringe-

nin via the biosensor) with a constitutive promoter (see Figure S1 and the open-loop model in the Supple-

mental Information for more details). This promoter was selected in such way that for the same conditions

(same flux of L-tyrosine and malonyl-CoA) it provides the same amount of naringenin as the closed-loop

circuit (around 1 g L�1). The direct feedback controller (see Figure S2) involves a repressible promoter

(cI regulated promoter) directly driving the expression of the enzyme CHS. In turn, the repressor (cI) is ex-

pressed from the same PqdoI promoter of the biosensor. The values of the parameters of this direct

controller (see Table S2) were selected to provide the same amount of naringenin as the closed-loop circuit

(around 1 g L�1) for the same conditions (same flux of L-tyrosine and malonyl-CoA).

Figure 6 shows the transient responses for different values of malonyl-CoA decrease. The perturbation oc-

curs at time t = 1 h. In the regulated case, the levels of production of naringenin were successfully recovered

after a transient response of approximately 24–30 h, reaching the end of the experiment at 36 h with a

steady production.
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Figure 4. Antithetic Controller Input-Output Dose-Response

(A) The amount of CHS molecules is shown for a varying range of the amount of anti-s molecules produced by the

TF-based extended metabolic biosensor.

(B) Production curve and TF-based extended biosensor/controller combined dose-response. Closed (blue) and open

loop (black dotted) dose-responses. Dashed lines represent the relationship between the production of naringenin and

the amount of CHS enzyme for different amounts of malonyl-CoA (for fixed pathway conditions). In both graphs solid lines

are the mean values and dots correspond to the dose-responses under a 15% uncertainty in the biosensor parameters for

a plasmid copy number of ten.
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Figure 7 shows the predicted titers in naringenin production in open and closed loop obtained after 36 h.

An initial titer close to 1 g L�1 of naringenin production is assumed in the engineered strain under optimal

growth conditions. At time t = 1 h a perturbation occurs in the cell state leading to a decrease in the avail-

ability of the malonyl-CoA precursor. Such variability in malonyl-CoA intracellular concentration often oc-

curs in environments where the cells are subjected to stress and environmental conditions are not uniform,

as typically found in large fermenters. As expected, the depletion in a keymetabolite critically impacted the

naringenin pathway. For instance, a decrease of 40% in malonyl-CoA would lead to a decrease of about

25.0% in the concentration of naringenin. Such drop in production is, in turn, successfully attenuated by

the closed-loop system, where the typical decrease in the naringenin titers is kept below 15.0%, a variation

that is quite acceptable under industrial production conditions. Moreover, a 60% reduction in malonyl-CoA

leads to a 40% drop in the production of naringenin, which can be attenuated up to around 25% in the

closed-loop system. It is important to notice that these results were obtained for a set of parameters in

the closed-loop system that were not optimized. Indeed, the results we obtained for the closed-loop regu-

lation can be further improved by proper tuning of the controller and biosensor parameters. This is demon-

strated by the fact that, in the case of malonyl-CoA decreasing down to a 60% of its nominal value, it is

possible to keep the naringenin production over 96% of the nominal production for some values of param-

eters (see Supplemental Information).

Robustness of the Antithetic Integral Feedback Regulator and Comparison with the Direct

Controller

In order to analyze the robustness of the circuit, we performed a sensitivity analysis modifying themodel param-

eters for both the antithetic controller and the direct one. The values of the parameters were varied using the

ranges listed in Table S3 at the Supplemental Information, based on typical values found in the literature.

For the antithetic controller, of the 2,911 possible combinations of parameters, 776 resulted in a naringenin

production around the nominal level, 1G 0.05 g L�1 (Figure S3). Meanwhile, 15,700 combinations resulted
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Figure 5. Dynamic Response of the Regulation of the Naringenin Pathway in the Presence of Perturbations

Comparison among the dynamic responses of the antithetic controller (solid line), direct controller (colored dashed line),

and open-loop (black dashed line) for a malonyl-CoA perturbations of 60%. Time course variation in naringenin, CHS, and

cellular growth (OD) for the three cases. Time course variation of the kaempferol response for both controllers. Time

course variations of anti-s and s for the antithetic controller and cI for the direct controller. Perturbation occurs at t = 1 h.

The gray area corresponds to the response before the perturbation is applied, and white area afterward. See also

Figure S1 and Figure S2.
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in a production between 0.4 and 0.9 g L�1, whereas the production levels for the remaining 565 combina-

tions were found to be lower than 0.4 g L�1 (see Supplemental Information for further details on the Robust-

ness analysis). In contrast, for the cI promoter direct controller, of the 2,193 combinations of parameters

only 87 resulted in a naringenin production of 1 G 0.05 g L�1. Meanwhile, 507 combinations resulted in

a production between 0.4 and 0.9 g L�1 and the remaining 1,599 combinations in a production lower

than 0.4 g L�1. Notice the parameters were varied between one and two orders of magnitude. In spite

of such large variation, the antithetic controller successfully kept the output within the desired region of

production in a region of parameters much broader than in the case of the direct controller. In addition,

the antithetic controller demonstrates much less performance degradation, achieving a production over

0.4 g L�1 in more than 80% of the cases as compared with 27% cases with the direct controller.

What is found to be one of the most influential parameters of the biosensor and actuator was the plasmid copy

number (Figure S4). Tomaintain the best performance (around 1 g L�1) we found that the plasmid copy number

of the biosensor (CNas) must be 1 copy (250 solutions), 5 copies (230 solutions), or 10 copies (180 solutions). All

together these three values represent more than 80% of the best solutions. With respect to the plasmid copy

number of the actuator (CNh) the results were 5 copies (407 solutions) and 10 copies (387 solutions). All together

these two values represent 100% of the best solutions (see Supplemental Information for further details).

DISCUSSION

Creating robust and stable microbial strains that produce large amounts of the target chemical for a long

period at fermenter cultivation is a desirable industrial goal. Successful implementations of this goal need

to start by finding suitable designs during the prototyping stage. Establishing feedback regulation in the

pathway brings better stability and reproducibility during the process scaling-up. To that end, the selection

of an appropriate biosensor in the feedback loop is necessary. Some biosensor-based proposals require

the direct measurement of the metabolite of interest (Liu et al., 2015) or are based on sensing growth

(Dinh et al., 2020). However, an issue at industrial production is the difficulty of measuring the concentration

of the target metabolite or signal of interest through a biosensor because of their typically limited dynamic

range, adapted to those levels found in natural environments. Therefore, adjusting the biosensor param-

eters remains challenging and a strategy that relies on model-based design has been recently proposed by

Mannan et al. (2017). Here, we introduce an approach that combines the indirect measurement of the

chemical target with an integral antithetic feedback controller, which has been demonstrated robust

against environmental variability (Briat et al., 2016). A circuit called extended metabolic biosensor is intro-

duced where a small amount of the chemical target is converted through several enzymatic steps into an

effector for some given transcription factor. In order to minimize biosensor consumption, our strategy con-

sists of engineering a production pathway that provides the nominal levels and an additional closed-loop

circuit intended to regulate small fluctuations in the baseline pathway due to changing environmental con-

ditions often found during the scaling-up.
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This approach not only opens up new venues to achieve robust pathway regulation but also involves several

challenges. Notably, the indirect measurement performed by the extended metabolic biosensor creates

some unavoidable delay in the feedback loop that can lead to instabilities. As shown in this study, a careful

design of the circuit parameters is necessary in order to ensure stability and robustness in the response.

Another innovation in the proposed feedback regulation approach is that the control circuit is performed at a

mid-point in the pathway, i.e., in the expression of the CHS enzyme to counterbalance the perturbation coming

from themalonyl-CoA availability.We have shown here that identifying the weakest step or the bottleneck in the

pathway is essential in order to design a feedback regulation-based strain. Other regulation points in the

pathway were possible, but choosing the regulation of expression of the CHS enzyme was the best choice

because it was directly involved in the response to the malonyl-CoA perturbation. Regulating the expression

of the four-gene naringenin pathway instead of the CHS gene could have been an alternative. However, this

strategy would have led to overshooting and bumped behavior because of the weak link between malonyl-

CoA availability and some of the enzymes and reactions involved in the pathway.

A promising improvement based on investigating the link between the availability of malonyl-CoA and

growth involves expanding the proposed regulation genetic circuit. Since the malonyl-CoA precursor is

mainly consumed in the cell in order to produce fatty acids that eventually will feed the cell for growth,

sensing malonyl-CoA could be considered as a proxy for cell growth as well as other cell phenotypic traits.

Therefore, widely usedmalonyl-CoA TF-based biosensors can provide the possibility of improving the pro-

posed regulation by coupling production to cell growth.

Our control strategy involves a continuous and low-proportion (106:1) consumption of the target chemical

through the extended metabolic biosensor in order to feed back the signal to the genetic controller. Tun-

ing this metabolic pathway involves both reducing the affinity of the enzyme F3H to its substrate by a factor

of 106 and reducing the catalytic activity by a factor of 60. In fact, these modifications are not an issue, as

they entail a reduction in the enzymatic activity (Arnold, 2018).

As shown in this study, the integration of metabolic circuits and TF-based biosensors in pathway regulation

is a robust solution for the high-performance production of target chemicals in the engineered microbial

strains that are currently designed in modern biofoundries (Carbonell et al., 2018). Our analysis of the dy-

namic response of a cell factory under an extended metabolic biosensor circuit and antithetic feedback

control has shown promising robust results against external and parametric perturbations compared

with a direct controller, allowing a more efficient experimental design. Such devices are expected to

become increasingly embedded as standard parts plugged into engineered strains for chemical produc-

tion, enabling rapid prototyping and robust scale-up of microbial production from microplate prototypes

to industrial levels.

Limitations of the Study

The present study analyzes an approach to synthetic pathway regulation based on indirect measurements

and the use of an integral antithetic feedback control. In order to simulate the dynamic response of the sys-

tem, we have focused on a study case for the production of the naringenin flavonoid and its enzyme

Figure 7. Naringenin Production Titers after 36 h under aMalonyl-CoA Perturbation in Open-loop Comparedwith

the Closed-Loop Biosensor-Based Regulation

Error bars represent standard deviations due to parameter uncertainty.
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dynamics has been approximated through Michaelis-Menten kinetics. Kinetic constants were obtained

from enzyme databases based on in vitro assays reported in the literature in order to define the value

ranges of the parameters. We might expect actual values to differ, and for that reason a range was defined

rather than constant values.

The study has focused on the main intermediates in the pathway, ignoring other effects such as co-factor

availability as well as environmental conditions. Therefore, the study provides a first approximation to the

problem that focuses on intrinsic properties rather than external factors, which were lumped on the single

effect of the malonyl-CoA as the main external perturbation. As accurate whole-cell models for E. Coli

become available (Goldberg et al., 2018), studies on dynamic pathway regulation will become more

detailed and will allow for a larger set of environmental conditions and cell states to be tested. Future

work includes extending the model to incorporate the malonyl-CoA dynamics and its relationship with

the central metabolism and nutrients availability in the bioreactor. However, our current model does not

include the metabolism of the cell and does not consider the possible implications in terms of genetic

or metabolic burden. It has been shown that incorporating a genetic circuit in the cell can lead to metabolic

burden reducing the overall performance of the cell (Ceroni et al., 2018). In this respect, we also foresee as

future work the integration of the proposed strategy with whole-cell models (Nikolados et al., 2019) taking

into account for the metabolic burden that the circuit and pathway incorporation add to the system. This

will allow us, along with an optimization-based tuning of the circuit parameters (Boada et al., 2019, 2016), to

seek for the set of parameters yielding the best naringenin production while introducing the minimal

metabolic burden.

Similarly, the present study did not take into consideration challenges such as stability of the genetic circuit

when expressed through a plasmid vector rather than through genome integration, especially in fermen-

tation processes where the strains are under mechanical and chemical stress and fluctuations in the envi-

ronmental conditions (Wehrs et al., 2019; Hicks et al., 2019). Inhibition effects of high producer strains might

also be taken into account when analyzing the robustness of the circuit. The present study did not take into

account stochastic fluctuations in enzyme abundance. However, it is becoming increasingly clear that

expression variation may propagate to metabolites (Evans et al., 2020) leading to a negative impact pro-

duction. It is expected that, in a stochastic scenario, our strategy including the antithetic controller would

have a good performance (Briat et al., 2016). Finally, another limitation that challenges the application of

the proposed approach is that it involves an invasive biosensor and therefore it is necessary to tune the

circuit not only in order to obtain an appropriate dynamic range and response but also in order to keep

a suitable conversion ratio of the product.

Resource Availability

Lead Contact

Further information and requests for resources should be directed to and will be fulfilled by the Lead Con-

tact, Pablo Carbonell (pjcarbon@isa.upv.es).

Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

Code for the models and simulations is available through GitHub (https://github.com/sb2cl/EMBA).

All the data obtained from the implemented mathematical model has been published as a Mendeley data-

set (https://doi.org/10.17632/hpxhkyvctb.2).

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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1. Transparent Methods

1.1. Metabolic pathway
For every i−cell, the kinetics of the enzyme-catalyzed reactions involved in the metabolic pathway from

L-tyrosine to naringenin (see Figure 2 in the main text) were modeled as the set of rate equations (1)
obtained from mass balance equations and considering dilution due to cell growth rate µ.

d[Lt]
dt

= V0 − VLt − µ[Lt]

d[pC]
dt

= VLt − VpC − µ[pC]

d[pA]
dt

= VpC − VpA,Ma − µ[pA]

d[Nc]
dt

= VpA,Ma − VNc − µ[Nc] (1)

d[N ]
dt

= VNc − VN − µ[N ]

For each reaction, Vj are the fluxes (molecules·min−1). Lt is the number of molecules of L-tyrosine, pC
is p-coumaric acid, pA is p-coumaroyl-CoA, Nc is naringenin chalcone, and N is naringenin, the flavonoid
of interest. Ma is the number of molecules of malonyl-CoA, which is considered as a perturbation signal in
the system.

We assume the flux V0 corresponding to the precursor L-tyrosine keeps constant (see Table S1), and all
fluxes Vj obey Michaelis-Menten kinetics (Michaelis and Menten, 1913) as follows:

V0 = KLt

VLt = kcatTAL[TAL] [Lt]
KmLt + [Lt]

VpC = kcat4CL[4CL] [pC]
KmpC + [pC]

VpA = kcatCHS[CHS] [pA][Ma]
KmpA KmMa + KmMa[pA] + KmpA[Ma] + [pA][Ma]

VNc = kcatCHI[CHI] [Nc]
KmNc + [Nc]

VN = kcatF3H[F3H] [N ]
KmN + [N ]

where kcatj is the catalytic rate of each enzyme (min−1), and Kmj the Michaelis-Menten constant
for each substrate. The enzyme kinetic parameters, detailed in Table S1, were obtained from Brenda
(Schomburg et al., 2017).



Metabolic pathway
Parameter Description Value Unit
TAL Enzyme amount 3.2e5 molec
4CL Enzyme amount 6.48e5 molec
CHI Enzyme amount 3.54e5 molec
F3H Enzyme amount 2.81 molec
FLS Enzyme amount 5.84 molec
CHS Basal (open loop) enzyme amount 2.13e5 molec
KLt L-tyrosine flux 2e6 molec · min−1

M Malonyl-CoA initial amount 2.34e4 molec
kcatTAL TAL catalytic constant 1.2 min−1

kcat4CL 4CL catalytic constant 0.492 min−1

kcatCHS CHS catalytic constant 1.68 min−1

kcatCHI CHI catalytic constant 4.2 min−1

kcatF3H F3H catalytic constant 174 min−1

kcatFLS FLS catalytic constant 6 min−1

KmLt Michaelis constant TAL − Lt 1.9e4 molec
KmpC Michaelis constant 4CL − pC 1.4e4 molec
Ka constant CHS − M 1e-3 molec
Kb constant CHS − pC 1e-3 molec
KmNc Michaelis constant CHI − Nc 2.8e4 molec
KmN Michaelis constant F3H − N 5e8 molec
KmDi Michaelis constant FHS − Di 1e4 molec

Table S1: Parameters for the metabolic pathway from L-tyrosine to kaempferol (Schomburg et al., 2017). Related to Figures 3
and 5.

The amounts of the enzymes TAL, 4CL, CHI and CHS corresponding to the pathway between L-tyrosine
and naringenin were chosen so that the flux of precursor L-tyrosine can yield the targeted 1 g L−1 of
naringenin (see Table S2).

Intracellular malonyl-CoA concentration is usually tightly regulated and maintained at very low levels in
the cell (Yang et al., 2015). Therefore, for efficient production of malonyl-CoA derived molecules, enrichment
of the intracellular malonyl-CoA pool is the standard practice. We considered a basal value of malonyl-CoA
in the mid range of values reported in the literature (Wu et al., 2015; Takamura and Nomura, 1988; Xu
et al., 2014). We avoid accumulation of large amounts of malonyl-CoA that may lead to growth inhibition.

1.2. Feedback regulation using the extended metabolic TF-based biosensor and the antithetic
controller

Next we model the feedback loop comprising the extended metabolic TF-based biosensor and the
antithetic controller driving the co-expression of the enzyme CHS. Recall CHS is dynamically co-expressed
through this feedback path in addition to its basal constant co-expression.

In this study, we focus on metabolic circuits that connect a target chemical to a transcription factor
(TF)-based biosensor through their associated metabolic reactions. TF-based biosensors can be integrated
as a genetic device into advanced sensing systems, defined here as TF-based extended metabolic biosensors,
which consists of a proxy biosensor that detects changes in some target molecule by first transforming
the molecule through one or several enzymatic steps into the effector molecule that drives the TF-based
biosensor. Note that the target not necessarily has to be a single metabolite but is defined by a set of
chemicals, which can correspond for instance to biomarkers or can be a proxy for biomass growth or other
traits related to the strain phenotype and state. The extended biosensor space for a given target can be
algorithmically mined through a metabolic expansion based on reaction rules (Delépine et al., 2016; Duigou
et al., 2019). For an engineered production pathway involving n steps, each of the intermediates can be
considered as targets for biosensors as well. Generally such intermediates are heterologous metabolites that
do not interfere with other pathways in the host and therefore their detection through a biosensor can be
used to probe different points in the engineered pathway.

Modeling TF-based extended biosensors requires the combination of the metabolic circuit transforming
the target molecule T to the effector E and the TF-based biosensor. The dynamics of the circuit can be



approximated as the interconnection of two independent modules accounting for the metabolic circuit and
the TF-based biosensor.

The metabolic circuit is typically modeled either using law mass action if concentrations of the enzymes
are considered constant, or through Michaelis-Menten kinetics. We assume that gene expression of both the
metabolic circuit and the biosensor is controlled by a single promoter (inducible or non-inducible).

The TF-based extended biosensor proposed in this work ( Figure 2 in the manuscript) was modeled as
follows.

1.2.1. Biosensor metabolic pathway stage
For every i−cell, and using the same assumptions as for the metabolic pathway between L-tyrosine and

naringenin, the kinetics of the enzyme-catalyzed reactions involved in the metabolic pathway from naringenin
to kaempferol (see Figure 2) were modeled as the set of rate equations (2):

d[Di]
dt

= VN − VDi − µ[Di]

d[Ka]
dt

= VDi − µ[Ka]
(2)

where Vj are the fluxes of each reaction (molecules·min−1), Di is Dihydrokaempferol, and Ka is kaempferol,
the effector flavonoid measured by the biosensor promoter. As for the pathway model (1), the flux VDi
obeys Michaelis-Menten kinetics:

VDi = kcatFLS[FLS] [Di]
KmDi + [Di]

The kinetic parameters, detailed in Table S1, were also obtained from Brenda (Schomburg et al., 2017). For
the case of the enzymes involved in the extended metabolic biosensor we selected parameters from similar
enzymes (eg. same product and different substrate ). From the initial parameter range we tuned the values
to achieve the desired gain for the biosensor. Directed evolution and statistical modeling can be used in
order to experimentally tune the affinity and kinetics of the corresponding enzymes (Arnold, 2018; Berepiki
et al., 2020).

1.2.2. Biosensor TF-based stage
Models describing the response of TF-based biosensors to changes in the effector concentration have

been focused on determining the parameters of the dose-response curve, generally through a Hill function
(Mannan et al., 2017; Trabelsi et al., 2018; Rogers et al., 2015, 2016). Performing a dose-response curve
fitting is useful in order to determine static properties of the biosensor such as sensitivity, specificity or
dynamic range, which are relevant for screening applications. However, employing a biosensor as part of a
feedback circuit requires characterizing its dynamic response. Modeling the dynamics of TF-based biosensors
has been less studied, with models either proposing apparent binding inhibition rate constants (with or
without Hill’s cooperativity) or data-driven models fitted to a linear system with delay.

Approaches to modeling the biosensor dynamics involve characterizing the time-dependent relationship
between the input concentrations of the effector molecule and the target gene of interest through the
dynamics of the biosensor internal states. Several dynamic models have been proposed in the literature. For
instance, Zhang et al. (2012) developed a fatty acid/acyl-CoA biosensor based on the naturally occurring
fatty acid-sensing protein FadR and its cognate regulator. The model for the biosensor in this study uses
apparent rate constants for association and dissociation for FadR-ligand binding, as well as for association
and dissociation of FadR-promoter complex. Gene expression, DNA replication and cell growth/species
dilution are given by pseudo-first order rate constants. In another study, Feher et al. (2015) modeled the
dynamic response of the malonyl-CoA biosensor considering production and dilution of the effector molecule
and TF-binding to malonyl-CoA and promoter. The dynamic response was approximated to a second order
linear system with a delay.



In our case, the TF-based stage of the biosensor uses the QdoR transcription factor, which represses the
expression of the anti−σ molecule by means of the qdoR-PqdoI promoter region (Siedler et al., 2014). The
constitutive promoter J23106 (Anderson, accessed April 22, 2020) is used to express the QdoR transcription
factor. Kaempferol captures the QdoR transcription factor, inactivating it. Equation (3) shows the resulting
model for the dynamics of QdoR and anti−σ as a function of QdoR and kaempferol.

d[Q]i

dt
= pQCNkQ

dmQ + µ
− (dQ + µ) [Q]

d[aσ]i

dt
= paσCNaσkaσ

dmaσ + µ

(
α+ (1 − α) (kdqCN)2 (kdk + [Ka])2

(kdqCN)2 (kdk + [Ka])2 + (kdk[Q])2

)
− k−c

kdc
[σ][aσ]

+ k−c[σ · aσ] − (daσ + µ) [aσ] (3)

where aσ is the antifactor of σ protein, σ · aσ is the complex generated after σ sequestration (see section
1.2.3 below), Q is QdoR, and Ka is the amount of free kaempferol. All the parameters are listed in Table
S1 and Table S2 .

To obtain the model (3), we considered the following assumptions for every i-cell:

• Transcription is fast enough as compared to translation, so it was assumed to be at quasi-steady state.
Therefore, only the dynamics of proteins are considered.

• Translation is not a simple process (Alberts et al., 2009). It was modeled as an irreversible reaction
with an average translation rate accounting for the fact that binding of ribosomes to the ribosome
binding site (RBS) is indeed reversible, and several ribosomes may translate a single messenger RNA
copy simultaneously.

• Degradation and dilution due to cells growth are considered for all species, including mRNA, with
corresponding degradation rates dj and specific growth rate µ.

• For each promoter, transcription activation or repression mediated by a transcription factor is modelled
using a Hill-like function with the modification proposed in Trabelsi et al. (2018). This one accounts
for the fact that the number of TFs and binding sites scale with the plasmid copy number.

1.2.3. Antithetic controller
Models based on ordinary differential equations for the antithetic feedback integral controller have been

proposed in (Olsman et al., 2019; Aoki et al., 2019). In essence, the antithetic motif relies on the key
mechanism of annihilation between the σ and anti−σ factor and cofactor proteins. In our case, we considered
the fact that the annihilation reaction, even though having a small dissociation constant, is reversible. As
shown in Figure 2 from the manuscript, we considered production of the σ factor is induced by means of
the dimer (LuxR.AHL)2 using the PLux promoter. This way, the externally added amount of AHL acts as
desired set-point for naringenin. Notice we do not assume the number of molecules of AHL needed to set
a desired value for the ones of naringenin must be equal to this one – implying an unnecessary metabolic
burden – but simply proportional. The free σ factor is a transcription factor for the promoter P20 used to
express the naringenin chalcone synthase CHS, the output signal of the controller.

We considered the same assumptions as those used to derive the TF-based biosensor dynamics. The
resulting model in equation (4) describes the dynamics of σ factor, the annihilation between σ and anti−σ,



and the production of CHS.

d[σ]i

dt
= pσCNkσ

dmσ + µ

α+ (1 − α) [A]2

kdlux

(
kd2CN

[R]

)2
+ [A]2

− k−c

kdc
[σ][aσ] + k−c[σ · aσ] − (dσ + µ) [σ]

d[σ · aσ]i

dt
= k−c

kdc
[σ][aσ] − k−c[σ · aσ] − (dc + µ) [σ · aσ] (4)

d[CHS]i

dt
= β

pHcCNkH

dmH + µ
+ pHCNkH

dmH + µ

(
α+ (1 − α) [σ]2

kd20 (kdσCN)2 + [σ]2

)
− (dH + µ) [CHS]

where A is the intracellular amount of AHL molecules (see below). All the parameters are listed in Table S2.
As mentioned above, we considered the desired set-point for naringenin is regulated by external addition

of AHL, though indeed other extra- or intracellular signals could be used. In our case, we took into account
that the interaction between AHL and AHLe represent the physical passive diffusion process for cell-to-cell
communication via quorum sensing. This was modelled as a reversible pseudo-reaction using mass-action
kinetics, resulting in the dynamics given by equation (5)

d[R]i

dt
= pRCNkR

dmR + µ
− (dR + µ) [R]

d[A]i

dt
= D (Vc[Ae] − [A]) − (dA + µ) [A] (5)

d[Ae]
dt

= D
(

−xVc[Ae] +
x∑
i=1

[A]
)

− dAe[Ae]

dx

dt
= µ

(
1 − x

xmax

)
x

where we also accounted for the dynamics of cell growth. R is LuxR protein; A and Ae are the intra and
extracellular AHL molecules, respectively; and x is the number of cells in the culture. The term Vc = Vcell

Vext
is the ratio between the cellular and the environment volumes. As before, all the parameters are listed in
Table S2.

1.3. Static regulation in open-loop
In the open-loop production of naringenin, the enzyme CHS is expressed constitutively as shown in the

schematic in Figure S1.
For the i−cell, the same assumptions described in Methods section Biosensor TF-based stage and

Antithetic controller from the manuscript were taken to design the direct controller model. Equation (6)
describes expression of CHS enzyme.

d[CHS]i

dt
= pHcCNkH

dmH + µ
− (dH + µ) [CHS] (6)

Parameter pHc = 9.8239 min−1 was chosen to give the same level of expression than in the closed-loop
configuration for a fair comparison. All the other parameters are the ones listed in Table S2.

1.4. Feedback regulation using a direct controller
In the direct controller, cI protein replaces to σ and anti-σ cofactors from the antithetic controller as in

Figure S2. The CHS enzyme is inhibited by the lambda−cI promoter region, when the TF-based biosensor
detects an excess of naringenin and the subsequent kaempferol. This way, direct negative feedback regulates
CHS expression, although reaching naringenin levels up to the 1 g L-1 set point is not guaranteed.



Biosensor and Antithetic controller gene circuit
Parameter Description Value Unit
µ specific growth rate 8.5e−3 min−1

α tight basal expression 0.01 adim
β constitutive expression 1.5 adim
CN, CNaσ Plasmid copy number 10 copies
D AHL diffusion rate across cell membrane 2 min−1

kσ , kaσ transcription rate 1.98 min−1

kR transcription rate 0.78 min−1

kH transcription rate 3.67 min−1

kQ transcription rate 0.71 min−1

pσ translation rate 3 min−1

paσ translation rate 3.17 min−1

pR translation rate 2.34 min−1

pH translation rate 92.4 min−1

pHc constitutive translation rate 6.5e−4 min−1

pQ translation rate 2.55 min−1

dR protein degradation rate 0.02 min−1

dc degradation rate [σ · aσ] 1e−3 min−1

dA Intracellular degradation rate 4e−4 min−1

dAe Extra cellular degradation rate 4.8e−5 min−1

kd20 dissociation constant to p20 1000 molec
kdlux dissociation constant to plux 600 molec
kdσ dissociation constant σ dimer 1000 molec
kdq dissociation constant to pqdoI 150 molec
kdk dissociation constant QdoR to kaempferol 75 molec
kdc dissociation constant [σ · aσ] 0.01 molec
kd−c dissociation rate [σ · aσ] 0.018 min−1

kc association rate (σ · aσ) 1.8 min−1

dmσ , dmaσ , dmR, dmH, dmQ mRNA degradation rate 0.231 min−1

dσ , daσ , dH, dQ protein degradation rate 3e−4 min−1

Comparison with cI direct controller gene circuit
kdλcI dissociation constant to pλcI 1000 molec
CNcI Plasmid copy number 10 copies
phcI translation rate 54.89 min−1

pcI translation rate 3.17 min−1

Table S2: Gene circuit parameters were taken from (Boada et al., 2017; Annunziata et al., 2017) and (Siedler et al., 2014).
Related to Figures 3 and 5.



Figure S1: Open-loop configuration. Schematic of the naringerin biosynthesis pathway with constitutive CHS enzyme expression.
Related to Figures 5 and 6.

For the i−cell, the same assumptions described in sections Biosensor TF-based stage and Antithetic
controller from the manuscript were taken to design the direct controller model. Equation (7) describes the
cI protein expression when the naringenin and kaempferol amount increased. Then, cI will repress the CHS
production as in equation (8) until naringenin chalcone decreases. cI has a similar temporal dynamics of
anti-σ.

d[cI]i

dt
= pcICNcIkcI

dmcI + µ

(
α+ (1 − α) (kdqCN)2 (kdk + [Ka])2

(kdqCN)2 (kdk + [Ka])2 + (kdk[Q])2

)
− (dcI + µ) [cI] (7)

d[CHS]i

dt
= pHcCNkH

dmH + µ
+ pHCNkH

dmH + µ

(
α+ (1 − α) [cI]2

kd20 (kdcICN)2 + [cI]2

)
− (dH + µ) [CHS] (8)

where cI is the cI protein, Q is QdoR, and Ka is the amount of free kaempferol. All the parameters are
listed in Table 2 from the main text. Equations for QdoR production and for the naringerin metabolic
pathway remain the same.

1.5. Robustness analysis
In order to study how the different strategies respond to a variation on the values of the parameters, we

selected the following parameters and ranges enumerated in Table S3.
For each parameter combination we obtain the naringenin production level without perturbation and

with a 60% reduction in the available amount of malonyl-CoA. We performed this analysis for both the



Figure S2: Direct feedback controller. Schematic of the naringerin biosynthesis pathway, where cI protein regulates CHS
enzyme production. Related to Figure 5.

Robustness analysis
Parameter Range Nominal Value Unit
kd20, kdlamcI [250, 5500] 1000 molec
kdq [1, 500] 150 molec
CNaσ , CNcI [1, 100] 10 copies
CNCHS [1, 100] 10 copies
paσ , pcI [0.5, 10] 3.17 min−1

ph [1, 20] 15.62 min−1

phcI [3.5, 70] 54.3 min−1

Table S3: Range for the selected parameters. Related to Figure 2.

antithetic controller and the direct controller. The results are shown in Figure S3. There in the horizontal
axis is depicted the level of naringenin production for each combination. In the vertical axis we plot the
naringenin production with the perturbation relative to the unperturbed production. In this way, a point
with 1 g L−1 in the horizontal axis and a 100% in the vertical would have the same level of production
without and with the perturbation, note this would be an ideal situation.

As it is possible to see, the antithetic controller has more solutions in the upper part of the naringenin
production (x-axis) than the direct controller. In a tuning stage it would be possible to select the parameters
of the antithetic controller, corresponding to one of the solutions keeping large production values even under
perturbations. Therefore, this controller will have a very good performance. In contrast, the direct controller
has a big portion of its solutions grouped in the low producing end of the plot (low x-axis values), having an
additional upper limit for the naringenin production with perturbation of 90%.

In Figure S4 we show the distribution of parameter values for the solutions with good performance



Figure S3: Performance comparison between the antithetic controller and the direct controller. The dots represent the
production of certain parameter combination. The color of the dots, represent the distance to the nominal point (i.e. the one
used in the main body of the paper for all the simulations giving a production of 1 g L−1) where blue means short distance
and yellow means big distance. Related to Figure 5.

Figure S4: Number of solutions with good performance for each parameter value. Related to Figure 2.

(around 1 g L−1) to see which parameter has a bigger influence. Here, we found that the copy number
associated with most of the solutions with good performance are in the following ranges:

• The copy number of the plasmid of the biosensor (the one with the PqdoI promoter driving the
expression of Anti−σ) 1 plasmid (250 solutions), 5 plasmids (230 solutions) and 10 plasmids (180



solutions). All together these three values represent more than 80% of the good solutions.

• The copy number of the plasmid of the actuator (the one with the P20 promoter driving the expression
of CHS) 5 plasmid (407 solutions) and 10 plasmids (387 solutions). All together these two values
represent 100% of the good solutions.
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