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Mean Li-Yorke chaos in Banach spaces

N. C. Bernardes Jr., A. Bonilla and A. Peris

Abstract

We investigate the notion of mean Li-Yorke chaos for operators on Banach spaces.
We show that it differs from the notion of distributional chaos of type 2, contrary to
what happens in the context of topological dynamics on compact metric spaces. We
prove that an operator is mean Li-Yorke chaotic if and only if it has an absolutely
mean irregular vector. As a consequence, absolutely Cesàro bounded operators are
never mean Li-Yorke chaotic. Dense mean Li-Yorke chaos is shown to be equivalent
to the existence of a dense (or residual) set of absolutely mean irregular vectors.
As a consequence, every mean Li-Yorke chaotic operator is densely mean Li-Yorke
chaotic on some infinite-dimensional closed invariant subspace. A (Dense) Mean
Li-Yorke Chaos Criterion and a sufficient condition for the existence of a dense
absolutely mean irregular manifold are also obtained. Moreover, we construct an
example of an invertible hypercyclic operator T such that every nonzero vector is
absolutely mean irregular for both T and T−1. Several other examples are also
presented. Finally, mean Li-Yorke chaos is also investigated for C0-semigroups of
operators on Banach spaces.1

1 Introduction

In recent years, it has become popular in the area of dynamical systems to investi-
gate notions related to averages involving orbits or pseudo-orbits, such as mean Li-Yorke
chaos [24, 29], mean equicontinuity and mean sensitivity [31], and notions of shadowing
with average error in tracing [39].

Our goal in this work is to investigate the notion of mean Li-Yorke chaos for operators
on Banach spaces. It turns out that this notion is intimately related to the notion of
absolutely mean irregular vector. Moreover, we also establish some results on absolutely
Cesàro bounded operators.

Let us now present the relevant definitions for our work.

Definition 1. An operator T on a Banach space X is said to be mean Li-Yorke chaotic
if there is an uncountable subset S of X (a mean Li-Yorke set for T ) such that every pair
(x, y) of distinct points in S is a mean Li-Yorke pair for T , in the sense that

lim inf
N→∞

1

N

N∑
j=1

‖T jx− T jy‖ = 0 and lim sup
N→∞

1

N

N∑
j=1

‖T jx− T jy‖ > 0.

If S can be chosen to be dense (resp. residual) in X, then we say that T is densely (resp.
generically) mean Li-Yorke chaotic.
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Definition 2. Given an operator T and a vector x, we say that x is an absolutely mean
irregular (resp. absolutely mean semi-irregular) vector for T if

lim inf
N→∞

1

N

N∑
j=1

‖T jx‖ = 0 and lim sup
N→∞

1

N

N∑
j=1

‖T jx‖ =∞ ( resp. > 0).

Definition 3. [28] An operator T is said to be absolutely Cesàro bounded if there exists
a constant C > 0 such that

sup
N∈N

1

N

N∑
j=1

‖T jx‖ ≤ C‖x‖ for all x ∈ X.

Also related to our work is the notion of distributional chaos. Actually, there are at
least four different notions of distributional chaos, namely DC1, DC2, DC21

2
and DC3

(see Section 2 for the definitions). For (nonlinear) dynamical systems on compact metric
spaces, mean Li-Yorke chaos is equivalent to DC2 [20], which is not equivalent to DC1
[36]. The situation is different in our context. Indeed, we saw in [13] that DC1 and DC2
are always equivalent for operators on Banach spaces, but we will show that DC2 is not
equivalent to mean Li-Yorke chaos in this context. The paper is organized as follows.

Section 2 recalls some definitions and fixes the notation.

In Section 3 we prove that an operator is mean Li-Yorke chaotic if and only if it has
an absolutely mean irregular vector. As a consequence, no absolutely Cesàro bounded
operator is mean Li-Yorke chaotic. We also establish a Mean Li-Yorke Chaos Criterion
and present several examples, including an example of a DC1 (= DC2) operator which is
not mean Li-Yorke chaotic. Finally, we show that the Frequent Hypercyclicity Criterion
implies mean Li-Yorke chaos.

Section 4 is devoted to show that dense mean Li-Yorke chaos is equivalent to the
existence of a dense (or residual) set of absolutely mean irregular vectors. As a conse-
quence, every mean Li-Yorke chaotic operator is densely mean Li-Yorke chaotic on some
infinite-dimensional closed invariant subspace. We also establish a Dense Mean Li-Yorke
Criterion and several sufficient conditions for dense mean Li-Yorke chaos. As an applica-
tion, we give an example of a densely mean Li-Yorke chaotic operator which is not Cesàro
Hypercyclic.

In Section 5 we establish a sufficient condition for the existence of a dense absolutely
mean irregular manifold. As an application, we obtain a dichotomy for unilateral weighted
backward shifts Bw, which says that either 1

N

∑N
j=1 ‖(Bw)jx‖ → 0 for all x ∈ X or Bw

admits a dense absolutely mean irregular manifold. By using this dichotomy, we give an
example of a densely mean Li-Yorke chaotic operator which is not hypercyclic.

In Section 6 we give some characterizations for generic mean Li-Yorke chaos and
construct an example of an invertible hypercyclic operator T such that both T and T−1

are completely absolutely mean irregular.

Finally, Section 7 is devoted to the study of mean Li-Yorke chaos for C0-semigroups
of operators on Banach spaces.

2 Notations and preliminaries

Throughout this paper X will denote an arbitrary Banach space, unless otherwise
specified, and L(X) is the space of all bounded linear operators on X.
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Let us recall that T ∈ L(X) is said to be Li-Yorke chaotic if there exists an uncountable
set Γ ⊂ X such that for every pair (x, y) ∈ Γ× Γ of distinct points, we have

lim inf
n→∞

‖T nx− T ny‖ = 0 and lim sup
n→∞

‖T nx− T ny‖ > 0.

Γ is called a scrambled set for T and each such pair (x, y) is called a Li-Yorke pair for T .
We easily observe that mean Li-Yorke chaos implies Li-Yorke chaos since the corresponding
conditions in Definition 1 expressed in terms of limits (inf and sup) of means obviously
imply the ones of Li-Yorke chaos without means.

We also recall that the lower and the upper densities of a set A ⊂ N are defined as

dens(A) := lim inf
n→∞

card(A ∩ [1, n])

n
and dens(A) := lim sup

n→∞

card(A ∩ [1, n])

n
,

respectively. Given T ∈ L(X), x, y ∈ X and δ > 0, the lower and the upper distributional
functions of x, y associated to T are defined by

Fx,y(δ) := dens({j ∈ N : ‖T jx− T jy‖ < δ}),

F ∗x,y(δ) := dens({j ∈ N : ‖T jx− T jy‖ < δ}),
respectively. If the pair (x, y) satisfies

(DC1) F ∗x,y ≡ 1 and Fx,y(ε) = 0 for some ε > 0, or

(DC2) F ∗x,y ≡ 1 and Fx,y(ε) < 1 for some ε > 0, or

(DC21
2
) There exist c > 0 and r > 0 such that Fx,y(δ) < c < F ∗x,y(δ) for all 0 < δ < r, or

(DC3) Fx,y(δ) < F ∗x,y(δ) for all δ in a nondegenerate interval J ⊂ (0,∞),

then (x, y) is called a distributionally chaotic pair of type k ∈ {1, 2, 21
2
, 3} for T . The

operator T is said to be distributionally chaotic of type k (DCk) if there exists an un-
countable set Γ ⊂ X such that every pair (x, y) of distinct points in Γ is a distributionally
chaotic pair of type k for T . In this case, Γ is a distributionally scrambled set of type k
for T . Distributional chaos of type 1 is often called simply distributional chaos.

For operators on Banach spaces, DC1 and DC2 are always equivalent [13, Theorem 2],
and imply Li-Yorke chaos. Li-Yorke chaos and distributional chaos for linear operators
have been studied in [6, 8, 10, 11, 12, 13, 14, 27, 28, 32, 33, 38, 40, 41, 42], for instance.

Let us also recall that T ∈ L(X) is frequently hypercyclic (FH), upper-frequently hy-
percyclic (UFH), reiteratively hypercyclic (RH) or hypercyclic (H) if there exists x ∈ X
such that for every nonempty open subset U of X, the set {n ∈ N : T nx ∈ U} has
positive lower density, has positive upper density, has positive upper Banach density or
is nonempty, respectively. T is Cesàro hypercyclic if there exists x ∈ X such that the
sequence

(
1
n

∑n−1
j=0 T

jx
)
n∈N is dense in X. Moreover, T is mixing if for every nonempty

open sets U, V ⊂ X, there exists n0 ∈ N such that T n(U) ∩ V 6= ∅ for all n ≥ n0, T is
weakly-mixing if T ⊕ T is hypercyclic, and T is Devaney chaotic if it is hypercyclic and
has a dense set of periodic points. See [4, 5, 15, 16, 25, 26], for instance.

Finally, the orbit of x is distributionally near to 0 if there is A ⊂ N with dens(A) = 1
such that limn∈A T

nx = 0. We say that x has a distributionally unbounded orbit if there
is B ⊂ N with dens(B) = 1 such that limn∈B ‖T nx‖ = ∞. If the orbit of x has both
properties, then x is a distributionally irregular vector for T . It was proved in [11] that
T is distributionally chaotic if and only if T has a distributionally irregular vector.
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3 Mean Li-Yorke chaotic operators and absolutely

mean irregular vectors

We begin with some useful characterizations of absolutely Cesàro bounded operators.

Theorem 4. For every T ∈ L(X), the following assertions are equivalent:

(i) T is not absolutely Cesàro bounded;

(ii) There is a vector x ∈ X such that

sup
N∈N

1

N

N∑
j=1

‖T jx‖ =∞;

(iii) The set of all vectors y ∈ X such that

sup
N∈N

1

N

N∑
j=1

‖T jy‖ =∞

is residual in X.

Proof. The implications (iii) ⇒ (ii) ⇒ (i) are trivial.

(i) ⇒ (ii): Since T is not absolutely Cesàro bounded, given δ > 0 and C > 0, there exist
x ∈ X and N ∈ N so that

‖x‖ < δ and
1

N

N∑
j=1

‖T jx‖ > C.

Then, we can define inductively sequences (xn) in X and (Nn) increasing in N so that
‖xn‖ < 2−n for all n, and

1

Nk

Nk∑
j=1

‖T j(x1 + · · ·+ xn)‖ > k whenever 1 ≤ k ≤ n.

Indeed, let x1, . . . , xn−1 in X and (Nk)
n−1
k=1 be chosen so that

‖xk‖ < 2−k and
1

Nk

Nk∑
j=1

‖T j(x1 + · · ·+ xn−1)‖ > k for 1 ≤ k ≤ n− 1.

We select yn ∈ X and Nn > Nn−1 with ‖yn‖ < 2−n,

1

Nk

Nk∑
j=1

‖T j(x1 + · · ·+ xn−1 + yn)‖ > k for 1 ≤ k ≤ n− 1, and
1

Nn

Nn∑
j=1

‖T j(yn)‖ > 2n.

Now, two cases may happen: If N−1n
∑Nn

j=1 ‖T j(x1 + · · · + xn−1)‖ > n, we select xn = 0.
Otherwise, xn = yn, and we are done.
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Let x :=
∑∞

n=1 xn ∈ X. Then

1

Nk

Nk∑
j=1

‖T jx‖ ≥ k for all k ∈ N,

which gives (ii).

(ii) ⇒ (iii): Let A denote the set considered in (iii). Since

A =
∞⋂
k=1

∞⋃
N=1

{
y ∈ X :

1

N

N∑
j=1

‖T jy‖ > k
}
,

we have that A is a Gδ set. If z ∈ X\A then

sup
N∈N

1

N

N∑
j=1

‖T jz‖ <∞.

Let x ∈ X be a vector given by (ii). Then

sup
N∈N

1

N

N∑
j=1

‖T j(z + λx)‖ =∞ whenever λ 6= 0,

which implies that z ∈ A. Thus, A is dense in X.

Let us now prove that mean Li-Yorke chaos is equivalent to the existence of an abso-
lutely mean irregular vector.

Theorem 5. For every T ∈ L(X), the following assertions are equivalent:

(i) T is mean Li-Yorke chaotic;

(ii) T has a mean Li-Yorke pair;

(iii) T has an absolutely mean semi-irregular vector;

(iv) T has an absolutely mean irregular vector;

(v) The restriction of T to some infinite-dimensional closed T -invariant subspace Y has
a residual set of absolutely mean irregular vectors.

Proof. The implications (v) ⇒ (iv) ⇒ (iii) are trivial.

(iii) ⇒ (ii): If x is an absolutely mean semi-irregular vector for T , it is clear that (x, 0) is
a mean Li-Yorke pair for T .

(ii) ⇒ (i): If (x, y) is a mean Li-Yorke pair for T , then u := x− y is an absolutely mean
semi-irregular vector for T . Hence, it follows easily that {λu : λ ∈ K} is an uncountable
mean Li-Yorke set for T .

(i) ⇒ (v): Let (x, y) be a mean Li-Yorke pair for T and put u := x− y. Let

Y := span(Orb(u, T )),
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which is an infinite-dimensional closed T -invariant subspace of X. Consider the operator
S ∈ L(Y ) obtained by restricting T to Y . We claim that S is not absolutely Cesàro
bounded. Indeed, suppose that this is not the case and let C > 0 be such that

sup
N∈N

1

N

N∑
j=1

‖Sjz‖ ≤ C‖z‖ for all z ∈ Y.

Since (x, y) is a mean Li-Yorke pair for T , we have that

lim inf
N→∞

1

N

N∑
j=1

‖Sju‖ = 0 and lim sup
N→∞

1

N

N∑
j=1

‖Sju‖ > ε,

for some ε > 0. Let δ > 0 be so small that

lim sup
N→∞

1

N

N∑
j=1

‖Sju‖ > δ + ε.

There are N ∈ N and M > N such that

1

N

N∑
j=1

‖Sju‖ < δ and
1

M

M∑
j=1

‖Sju‖ > δ + ε.

Let K ∈ {1, . . . , N} be the largest integer such that ‖SKu‖ < δ. Then

1

K

K∑
j=1

‖Sju‖ < δ.

Since

δ + ε <
1

M

M∑
j=1

‖Sju‖

=
K

M

1

K

K∑
j=1

‖Sju‖+
M −K
M

1

M −K

M∑
j=K+1

‖Sju‖

< δ +
1

M −K

M∑
j=K+1

‖Sju‖,

we have that

ε <
1

M −K

M∑
j=K+1

‖Sju‖ =
1

M −K

M−K∑
j=1

‖SjSKu‖ ≤ C‖SKu‖ < Cδ.

Hence, C > ε/δ. Since δ > 0 can be chosen arbitrarily close to 0, we have a contradiction.
This proves that S is not absolutely Cesàro bounded. Therefore, the set

A :=
{
z ∈ Y : sup

N∈N

1

N

N∑
j=1

‖Sjz‖ =∞
}
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is residual in Y by Theorem 4. On the other hand, let

B :=
{
z ∈ Y : inf

N∈N

1

N

N∑
j=1

‖Sjz‖ = 0
}
.

Since

B =
∞⋂
k=1

∞⋃
N=1

{
z ∈ Y :

1

N

N∑
j=1

‖Sjz‖ < 1

k

}
,

we have that B is a Gδ set. Since there is an increasing sequence (Nk) in N such that

lim
k→∞

1

Nk

Nk∑
j=1

‖Sju‖ = 0,

it follows that span(Orb(u, S)) is contained in B. Hence, B is a residual set in Y . Our
conclusion is that A∩B is a residual set in Y , which is formed by absolutely mean irregular
vectors for S (hence for T ).

Corollary 6. No absolutely Cesàro bounded operator on a Banach space is mean Li-Yorke
chaotic.

The proof of Theorem 5 clearly implies the following result:

Theorem 7. For every T ∈ L(X), the set of all absolutely mean irregular vectors for T
is dense in the set of all absolutely mean semi-irregular vectors for T .

Definition 8. We say that T ∈ L(X) satisfies the Mean Li-Yorke Chaos Criterion
(MLYCC) if there exists a subset X0 of X with the following properties:

(a) lim inf
N→∞

1

N

N∑
j=1

‖T jx‖ = 0 for every x ∈ X0;

(b) there are sequences (yk) in span(X0) and (Nk) in N such that

1

Nk

Nk∑
j=1

‖T jyk‖ > k‖yk‖ for every k ∈ N.

Let us now prove that this criterion characterizes mean Li-Yorke chaos.

Theorem 9. An operator T ∈ L(X) is mean Li-Yorke chaotic if and only if it satisfies
the MLYCC.

Proof. (⇒): By Theorem 5, T has an absolutely mean irregular vector x. So, it is enough
to consider X0 := {x}.
(⇐): If T has an absolutely mean semi-irregular vector, then T is mean Li-Yorke chaotic
by Theorem 5. So, let us assume that this is not the case. Then, (a) implies that

lim
N→∞

1

N

N∑
j=1

‖T jx‖ = 0 for every x ∈ X0.
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Let

Y :=
{
x ∈ X : lim

N→∞

1

N

N∑
j=1

‖T jx‖ = 0
}
,

which is a closed T -invariant subspace of X. Consider the operator S ∈ L(Y ) obtained by
restricting T to Y . Since the sequence (yk) lies in Y , (b) implies that S is not absolutely
Cesàro bounded. Hence, by Theorem 4, the set

A :=
{
y ∈ Y : sup

N∈N

1

N

N∑
j=1

‖Sjy‖ =∞
}

is residual in Y . On the other hand, since the set

B :=
{
y ∈ Y : inf

N∈N

1

N

N∑
j=1

‖Sjy‖ = 0
}

is obviously dense in Y , it is residual in Y . Thus, A ∩ B is residual in Y , which proves
the existence of an absolutely mean irregular vector for T . By Theorem 5, we conclude
that T is mean Li-Yorke chaotic.

Example 10. There are mixing operators that are not mean Li-Yorke chaotic.

Indeed, in [13, Example 23] it was given some examples of mixing operators that are
absolutely Cesàro bounded. One of them was taken from [33], and appears in the PhD
Thesis of Beltrán Meneu with a proof provided by the third author (Theorem 3.7.3 in
[7]). By Corollary 6, these operators are not mean Li-Yorke chaotic.

Example 11. There are Devaney chaotic operators that are not mean Li-Yorke chaotic.

Indeed, let T be the Devaney chaotic operator constructed by Menet [34]. Suppose
that x 6= 0 and

lim inf
N→∞

1

N

N∑
j=1

‖T jx‖ = 0.

For every δ > 0, since

card({1 ≤ j ≤ N : ‖T jx‖ ≥ δ})
N

≤ 1

N

N∑
j=1

‖T jx‖
δ

=
1

δ

1

N

N∑
j=1

‖T jx‖,

we have that
dens({n ≥ 0 : ‖T nx‖ ≥ δ}) = 0.

This contradicts Claim 10 in [34]. Hence, T is not mean Li-Yorke chaotic.

Example 12. There are frequently hypercyclic operators that are not mean Li-Yorke
chaotic.

Indeed, Bayart and Ruzsa [6, Section 6] proved that there exists a frequently hyper-
cyclic operator (thus this operator is DC21

2
by [13, Theorem 13]) such that the orbit of no

x 6= 0 is distributionally near of 0. Hence, it is not DC1 and not mean Li-Yorke chaotic
[13, Proposition 20(a)].
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Example 13. There are distributionally chaotic operators that are not mean Li-Yorke
chaotic.

We recall the following result that was obtained in [13]: If X = c0(N) (X = c0(Z))
or X = `p(N) (X = `p(Z)) for some 1 ≤ p ≤ ∞, then there exists an (invertible) operator
T ∈ L(X) which is distributionally chaotic and satisfies

lim
N→∞

1

N

N∑
j=1

‖T jx‖ =∞ for all x ∈ X\{0}.

Since these operators do not have an absolutely mean irregular vector, Theorem 5
guarantees that they are not mean Li-Yorke chaotic. Since DC1 and DC2 are equivalent
for operators on Banach spaces [13, Theorem 2], this implies that the notions of mean
Li-Yorke chaos and DC2 are not equivalent for operators on Banach spaces, contrary to
what happens in the context of topological dynamics on compact metric spaces [20].

Remark 14. The above examples are Li-Yorke chaotic, but not mean Li-Yorke chaotic.

We recall that an operator T on a separable Banach space X is said to satisfy the
Frequent Hypercyclicity Criterion (FHC) if there exist a dense subset X0 of X and a map
S : X0 → X0 such that, for any x ∈ X0,

•
∑∞

n=0 T
nx converges unconditionally,

•
∑∞

n=0 S
nx converges unconditionally,

• TSx = x.

If T satisfies this criterion, then T is frequently hypercyclic, Devaney chaotic, mixing
and distributionally chaotic [11, 16]. Since we have just seen that there are examples
of frequently hypercyclic operators, Devaney chaotic operators, mixing operators and
distributionally chaotic operators that are not mean Li-Yorke chaotic, it is natural to ask
if the Frequent Hypercyclicity Criterion implies mean Li-Yorke chaos. Let us now see that
the answer is yes.

Proposition 15. If T ∈ L(X) satisfies the Frequent Hypercyclicity Criterion, then T has
a residual set of absolutely mean irregular vectors.

Proof. If T satisfies the Frequent Hypercyclicity Criterion, then the set{
x ∈ X : lim

n→∞
‖T nx‖ = 0

}
is dense in X and T is distributionally chaotic. Hence, we can apply [13, Theorem 27].

Concerning Figure 1, it is easy to construct a mean Li-Yorke chaotic operator which
is not hypercyclic. Indeed, let T ∈ L(X) be any mean Li-Yorke chaotic operator and
consider the operator T ⊕ I on X ⊕ X, where I denotes the identity operator on X.
However, the following question remains open.

Question 16. Is there a Banach (or Hilbert) space operator which is mean Li-Yorke
chaotic but is not distributionally chaotic?

9



FHC

mixing Devaney chaotic FH DC1≡ DC2 mean Li-Yorke

UFH

RH DC21
2

w-mixing

H

Li-Yorke chaotic

Figure 1: Implications between different definitions related with hypercyclicity and chaos
for operators on Banach spaces.

Related to Question 16, we have the following result from [13]: If X = c0(N) (X =
c0(Z)) or X = `p(N) (X = `p(Z)) for some 1 ≤ p ≤ ∞, then there exists an (invertible)
operator T ∈ L(X) which admits an absolutely mean irregular vector whose orbit is not
distributionally unbounded.

In particular, this shows that an absolutely mean irregular vector is not necessarily
distributionally irregular. However, we don’t know if the operator admits other vectors
with distributionally unbounded orbit, or if it has a distributionally irregular vector.

4 Densely mean Li-Yorke chaotic operators

Let us now show that, in separable spaces, dense mean Li-Yorke chaos is equivalent
to the existence of a residual set of absolutely mean irregular vectors.

Theorem 17. Assume X separable. For every T ∈ L(X), the following assertions are
equivalent:

(i) T is densely mean Li-Yorke chaotic;

(ii) T has a dense set of mean Li-Yorke pairs;

(iii) T has a residual set of mean Li-Yorke pairs;

(iv) T has a dense set of absolutely mean semi-irregular vectors;

(v) T has a dense set of absolutely mean irregular vectors;

(vi) T has a residual set of absolutely mean irregular vectors.

10



Proof. (ii) ⇔ (iv): It follows easily from the fact that (x, y) is a mean Li-Yorke pair for
T if and only if x− y is an absolutely mean semi-irregular vector for T .

(iv) ⇔ (v): It follows from Theorem 7.

(v) ⇔ (vi): The set R of all absolutely mean irregular vectors for T is the intersection of
the sets

A :=
{
x ∈ X : sup

N∈N

1

N

N∑
j=1

‖T jx‖ =∞
}

and B :=
{
x ∈ X : inf

N∈N

1

N

N∑
j=1

‖T jx‖ = 0
}
.

It follows from Theorem 4 that A is residual in X whenever it is nonempty. And we saw
in the proof of Theorem 5 that B is residual in X whenever it is dense in X. Thus, R is
residual in X whenever it is dense in X.

(vi) ⇒ (iii): If (Uj) is a sequence of dense open sets in X such that every vector in
⋂
Uj

is absolutely mean irregular for T , then the sets Vj := {(x, y) ∈ X ×X : x− y ∈ Uj} are
open and dense in X ×X, and every point in

⋂
Vj is a mean Li-Yorke pair for T .

The implications (iii) ⇒ (ii) and (i) ⇒ (ii) are obvious.

(vi) ⇒ (i): Let R be the set of all absolutely mean irregular vectors for T and let (yj)
be a dense sequence in X. Let D := Q or Q + iQ, depending on whether the scalar field
K is R or C, respectively. Since R is residual in X, we can choose inductively linearly
independent vectors x1, x2, x3, . . . ∈ X such that x1 ∈ B(y1; 1) ∩R and

xn+1 ∈ B
(
yn+1;

1

n+ 1

)
∩

⋂
(α1,...,αn)∈Dn

(α1x1 + · · ·+ αnxn +R) (n ∈ N).

Hence,
M := {α1x1 + · · ·+ αmxm : m ≥ 1 and α1, . . . , αm ∈ D}

is a dense D-vector subspace of X consisting (up to 0) of absolutely mean irregular vectors
for T . In particular, M is a dense mean Li-Yorke set for T . Since M is countable, we
need to enlarge M in order to obtain an uncountable dense mean Li-Yorke set for T . Let

N := {α2x2 + · · ·+ αmxm : m ≥ 2 and α2, . . . , αm ∈ D}.

For each y ∈ N\{0}, let Ay := {λ ∈ K : y − λx1 is absolutely mean irregular for T}.
Since Ay is a Gδ set in K containing D, Ay is residual in K. Thus, A :=

⋂
y∈N\{0}Ay is

also a residual set in K containing D. By Zorn’s Lemma, there is a maximal D-vector
subspace H of K such that D ⊂ H ⊂ A. If H were countable, then

B :=
⋂

β∈D\{0}

⋂
α∈H

β(α + A)

would be residual in K. By choosing γ ∈ B\H, we would have that H ′ := H + {βγ :
β ∈ D} is a D-vector subspace of K satisfying D ⊂ H ′ ⊂ A and H ( H ′, which would
contradict the maximality of H. Thus, M ′ := {αx1 : α ∈ H} + N is the uncountable
mean Li-Yorke set for T we were looking for.

Remark 18. Note that in the previous theorem the separability of X was used only in
the proof that (vi) ⇒ (i). The equivalences

(ii)⇔ (iii)⇔ (iv)⇔ (v)⇔ (vi)

are valid for any Banach space.
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In view of Theorem 5, it is true that an operator T ∈ L(X) is mean Li-Yorke chaotic
if and only if there is a mean Li-Yorke set for T which is a one-dimensional subspace of
X. Nevertheless, we shall now show that the chaotic behaviour always occurs in a much
larger subspace of X.

Theorem 19. Every mean Li-Yorke chaotic operator T ∈ L(X) is densely mean Li-Yorke
chaotic on some infinite-dimensional closed T -invariant subspace of X.

Proof. By Theorem 5, the restriction of T to a certain infinite-dimensional closed T -
invariant subspace Y of X has a residual set of absolutely mean irregular vectors. The
proof of Theorem 5 actually constructs a separable such Y . Hence, we can apply Theo-
rem 17 and conclude that T is densely mean Li-Yorke chaotic on Y .

Definition 20. We say that T ∈ L(X) satisfies the Dense Mean Li-Yorke Chaos Cri-
terion (DMLYCC) if there exists a dense subset X0 of X with properties (a) and (b)
of Definition 8.

Theorem 21. Assume X separable. An operator T ∈ L(X) is densely mean Li-Yorke
chaotic if and only if it satisfies the DMLYCC.

Proof. (⇒): By Theorem 17, T has a dense set X0 of absolutely mean irregular vectors.
Clearly, X0 satisfies properties (a) and (b) of Definition 8.

(⇐): Since X0 is dense in X, condition (a) implies that the set

B :=
{
x ∈ X : inf

N∈N

1

N

N∑
j=1

‖T jx‖ = 0
}

is residual in X. By (b), T is not absolutely Cesàro bounded. Hence, by Theorem 4, the
set

A :=
{
x ∈ X : sup

N∈N

1

N

N∑
j=1

‖T jx‖ =∞
}

is also residual in X. Thus, T has a residual set of absolutely mean irregular vectors. By
Theorem 17, we conclude that T is densely mean Li-Yorke chaotic.

Theorem 22. If T ∈ L(X) and

X0 :=
{
x ∈ X : lim inf

N→∞

1

N

N∑
j=1

‖T jx‖ = 0
}

is dense in X, then the following assertions are equivalent:

(i) T is mean Li-Yorke chaotic;

(ii) T has a residual set of absolutely mean irregular vectors;

(iii) T is not absolutely Cesàro bounded;

(iv) lim sup
N→∞

1

N

∞∑
j=1

‖T jy0‖ > 0 for some y0 ∈ X.

12



Proof. (i) ⇒ (iii): It follows from Corollary 6.

(iii) ⇒ (ii): Since X0 is dense in X by hypothesis, it is residual in X. Hence, (ii) follows
from Theorem 4.

The implication (ii) ⇒ (i) follows from Theorem 5.

The implication (i) ⇒ (iv) is trivial.

(iv) ⇒ (i): Suppose that T is not mean Li-Yorke chaotic. By Theorem 5, there is no
absolutely mean semi-irregular vector for T , and so

X0 =
{
x ∈ X : lim

N→∞

1

N

N∑
j=1

‖T jx‖ = 0
}
.

Thus, X0 is a residual subspace of X, which implies that X0 = X and contradicts (iv).

Remark 23. In the case that the space X is separable, Theorem 17 shows that condition
(ii) in the above theorem can be replaced by

(ii’) T is densely mean Li-Yorke chaotic.

As an immediate consequence of the previous theorem, we have the following di-
chotomy for unilateral weighted backward shifts on Banach sequence spaces.

Corollary 24. Let X be a Banach sequence space in which (en)n∈N is a basis [26, Section
4.1]. Suppose that the unilateral weighted backward shift

Bw(x1, x2, x3, . . .) := (w2x2, w3x3, w4x4, . . .)

is an operator on X. Then either

(a) Bw is mean Li-Yorke chaotic, or

(b) Bw is absolutely Cesàro bounded.

Another consequence of Theorem 22 is given in the following corollary. Items (a) and
(b) improve Theorems 27 and 28 of [13], respectively.

Corollary 25. Let T ∈ L(X) be such that

{
x ∈ X : lim inf

N→∞

1

N

N∑
j=1

‖T jx‖ = 0
}

is dense in X. If any of the following conditions is true:

(a) T is distributionally chaotic,

(b) T is Cesàro hypercyclic,

(c) X is a Banach space and lim sup
n→∞

‖T n‖
n

> 0,

(d) X is a Hilbert space and lim sup
n→∞

‖T n‖
n

1
2

> 0,

(e) T has an eigenvalue λ with |λ| ≥ 1,

13



Remark: If {x : T nx→ 0} is a dense set in X, then:

DC1≡ DC2≡ DC3

Devaney chaos

UFH Cesàro hypercyclicity

Mean Li-Yorke chaos

RH

w-mixing

H

Li-Yorke chaos

Figure 2: Implications between different definitions related with hypercyclicity and chaos
for operators on Banach spaces when {x : T nx→ 0} is a dense set in X.

then there is a residual set of absolutely mean irregular vectors for T . If, in addition, X
is separable, then T is densely mean Li-Yorke chaotic.

Proof. Any of these conditions implies that

lim sup
N→∞

1

N

N∑
j=1

‖T jy0‖ > 0 for some y0 ∈ X

(for items (c) and (d) this follows from Theorem 2.4 and Corollary 2.6 of [9]). Thus, the
result follows from Theorem 22.

Example 26. There are densely mean Li-Yorke chaotic operators that are not Cesàro
hypercyclic.

Indeed, let T be the weighted backward shift on `1(N) defined by

Te1 = 0 and Tek =
( k

k − 1

)
ek−1 for k > 1.

Since ‖T n‖ = n+1 for all n ∈ N, Corollary 25(c) implies that T is densely mean Li-Yorke
chaotic. Moreover, the equalities ‖T n‖ = n+ 1 (n ∈ N) also imply that (T

nx
n

) is not dense
in `1(N), for every x ∈ `1(N). Thus, T is not Cesàro hypercyclic [30].

One may think that the above example might be a good candidate for a mean Li-Yorke
chaotic operator which is not distributionally chaotic, but actually this is not the case

14



because of the following result which was generously provided to us by Frédéric Bayart in
private communication:

In general, for α > 0 and 1 ≤ p <∞, let T be the unilateral weighted backward shift
on `p(N) defined by

Te1 = 0 and Tek =
( k

k − 1

)α
ek−1 for k > 1.

Theorem 27. If α = 1
p
, then T has a residual set of distributionally irregular vectors.

Proof. In view of [11, Theorem 15], it is sufficient to prove that T has a distributionally
unbounded orbit. Let {nk}k∈N be an increasing sequence of natural numbers such that

[log(nk)]
1/p

k2
→∞ as k →∞.

Define, for k ≥ 1,

xk :=
1

k2

knk∑
n=nk

1

n1/p
en.

Since

‖xk‖p =
1

k2

( knk∑
n=nk

1

n

)1/p
≤ C

k2
[

log(knk)− log(nk)
]1/p

= C
(log(k))1/p

k2
,

we may consider x :=
∑

k≥1 xk, which belongs to `p(N). Moreover, if we set Bk :=

[nk, (k − 1)nk] and B := ∪k∈NBk, we have that dens(B) = 1. Now, for n ∈ Bk,

‖T nx‖p ≥ ‖T nxk‖p ≥
1

k2

∥∥∥ nk∑
j=1

1

(n+ j)1/p
T nen+j

∥∥∥
p

≥ 1

k2

∥∥∥ nk∑
j=1

1

j1/p
ej

∥∥∥
p
≥ 1

k2

( nk∑
j=1

1

j

)1/p
≥ C

(log(nk))
1/p

k2
→∞.

Hence, x has a distributionally unbounded orbit.

5 Dense lineability of absolutely mean irregular vec-

tors

Definition 28. An absolutely mean irregular manifold for T ∈ L(X) is a vector subspace
Y of X such that every nonzero vector in Y is absolutely mean irregular for T .

Such a manifold is clearly a mean Li-Yorke set for T . The following dichotomy gives
us a sufficient condition for the existence of a dense absolutely mean irregular manifold.

Theorem 29. Assume X separable. If T ∈ L(X) and

X0 :=
{
x ∈ X : lim

N→∞

1

N

N∑
j=1

‖T jx‖ = 0
}

is dense in X, then either

15



(a) lim
N→∞

1

N

N∑
j=1

‖T jx‖ = 0 for every x ∈ X, or

(b) T admits a dense absolutely mean irregular manifold.

Proof. Suppose that (a) is false and let us prove (b). By Theorem 22, T has an absolutely
mean irregular vector. Let C := ‖T‖ > 1. Then, we can construct a sequence (xm) of
normalized vectors in X0 and an increasing sequence (Nm) of positive integers so that

1

Nm

Nm∑
i=1

‖T ixm‖ > m(2C)m and
1

Nm

Nm∑
i=1

‖T ixk‖ <
1

m
for k = 1, . . . ,m− 1.

Given α, β ∈ {0, 1}N, we say that β ≤ α if βi ≤ αi for all i ∈ N. Let (rj) be a sequence of
positive integers such that rj+1 ≥ 1 + rj +Nrj+1 for all j ∈ N. Let α ∈ {0, 1}N be defined
by αn = 1 if and only if n = rj for some j ∈ N. For each β ∈ {0, 1}N such that β ≤ α and
β contains an infinite number of 1’s, we define

xβ :=
∑
i

βi
(2C)i

xi =
∑
j

βrj
(2C)rj

xrj .

Take k ∈ N with βrk = 1. Since
1

Nrk

Nrk∑
i=1

‖T ixrk‖ > rk(2C)rk and
1

Nrk

Nrk∑
i=1

‖T ixs‖ <
1

rk
for

each s < rk, we have that

1

Nrk

Nrk∑
i=1

‖T ixβ‖ ≥
1

(2C)rk
1

Nrk

Nrk∑
i=1

‖T ixrk‖ −
1

Nrk

Nrk∑
i=1

∑
j 6=k

βrj
(2C)rj

‖T ixrj‖

> rk −
1

rk

∑
j<k

1

(2C)rj
−
∑
j>k

‖xrj‖
2rj

≥ rk − 1.

On the other hand, since
1

Nrk+1

Nrk+1∑
i=1

‖T ixs‖ <
1

rk + 1
for each s < rk + 1, then

1

Nrk+1

Nrk+1∑
i=1

‖T ixβ‖ ≤
1

Nrk+1

Nrk+1∑
i=1

∑
j≤k

βrj‖T ixrj‖
(2C)rj

+
1

Nrk+1

Nrk+1∑
i=1

∑
j>k

βrj‖T ixrj‖
(2C)rj

≤ 1

rk + 1

∑
j≤k

1

(2C)rj
+

1

Nrk+1

Nrk+1∑
i=1

∑
j>k

‖xrj‖
2rj

<
1

rk + 1
·

Thus, xβ is an absolutely mean irregular for T .
Now, let (wn) be a dense sequence in X0 and choose γn ∈ {0, 1}N (n ∈ N) such that

each γn contains an infinite number of 1’s, γn ≤ α for every n ∈ N, and the sequences γn
have mutually disjoint supports. Define vn :=

∑
i
γn,i

(2C)i
xi and yn := wn + 1

n
vn (n ∈ N).
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Then Y := span{yn : n ∈ N} is a dense subspace of X. Moreover, if y ∈ Y \{0}, then
we can write y = w0 +

∑
k

ρk
(2C)k

xk, where w0 ∈ X0 and the sequence of scalars (ρk) takes

only a finite number of values (each of them infinitely many times). As in the above proof
we can show that the vector v :=

∑
k

ρk
(2C)k

xk is absolutely mean irregular for T . Since
y = w0 + v and w0 ∈ X0, we conclude that y is also absolutely mean irregular for T .

Here is an application of the previous theorem.

Corollary 30. If Bw is a unilateral weighted backward shift on a Banach sequence space
X in which (en)n∈N is a basis, then either

(a) lim
N→∞

1

N

N∑
j=1

‖(Bw)jx‖ = 0 for every x ∈ X, or

(b) Bw admits a dense absolutely mean irregular manifold.

Example 31. There are densely mean Li-Yorke chaotic operators that are not hyper-
cyclic.

Indeed, let X = c0(N) or X = `p(N) for some 1 ≤ p < ∞. Consider the unilateral
weighted backward shift Bw : X → X whose weight sequence is given by

w :=
(1

2
, 2,

1

2
,
1

2
, 2, 2,

1

2
,
1

2
,
1

2
, 2, 2, 2, . . .

)
,

with successive blocks of 1
2
’s and 2’s. Since supn∈N

∏n
j=1 |wj| = 1 < ∞, Bw is not hyper-

cyclic [26, Example 4.9]. On the other hand, if we define x ∈ X by putting 1
2n

in the
position of the last 2 in the nth block of 2’s, for each n ∈ N, and 0 otherwise, then

‖(Bw)nx‖ ≥ 1 for all n ∈ N.

Hence, Corollary 30 guarantees that Bw is densely mean Li-Yorke chaotic.

Remark 32. In Corollary 25, if X is separable and we assume the stronger property that

{
x ∈ X : lim

N→∞

1

N

N∑
j=1

‖T jx‖ = 0
}

is dense in X, then we can conclude that T has a dense absolutely mean irregular manifold.

6 Generically mean Li-Yorke chaotic operators

We have the following characterizations of generic mean Li-Yorke chaos.

Theorem 33. For every T ∈ L(X), the following assertions are equivalent:

(i) T is generically mean Li-Yorke chaotic;

(ii) Every non-zero vector is absolutely mean semi-irregular for T ;

(iii) X is a mean Li-Yorke set for T .

The proof is analogous to that of [12, Theorem 34].
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Definition 34. We say that an operator T ∈ L(X) is completely absolutely mean irregular
if every vector x ∈ X\{0} is absolutely mean irregular for T .

Thus, every completely absolutely mean irregular operator is generically mean Li-
Yorke chaotic. The converse is not true in general (see Remark 40).

Our next goal is to construct an invertible hypercyclic operator T such that both T
and T−1 are completely absolutely mean irregular. The construction is a modification of
the type of examples of completely distributionally irregular operators provided in [33].
We first recall one of the main results in [33].

Theorem 35. [33, Thm. 3.1] Let v = (vj)j∈Z be a weight sequence that satisfies the
following conditions:

1. there are sequences of integers (nj)j∈Z and (mj)j∈Z with nj < mj < nj+1, j ∈ Z,
and M > 1 such that Mvm−k

≥ vj for every j ∈ [m−k,mk−1], k ∈ N, and if we
consider

Sk := sup
{ vj
vj−1

; j 6∈ ]m−k,mk−1]
}
, k ∈ N,

then for every ε > 0 we find k ∈ N with vnk
< ε and

S
k(nk−m−k)
k ≤ min

{
M,

min{vi; m−k ≤ i ≤ mk−1}
vnk

}
,

2. for every N ∈ N, there exists k ∈ N such that vj > N , for k ≤ j ≤ Nk.

Then the forward shift T : `p(v,Z)→ `p(v,Z) is completely distributionally irregular.

Actually, it was shown that, given an arbitrary non-zero vector x ∈ `p(v,Z), and an
arbitrary δ > 0, there is k ∈ N as big as we want such that

(I1) ‖Blx‖p < δ for any l ∈ [nk −m−k, k(nk −m−k)].

The type of examples that we will consider involve the inverse too, and we also need
to recall the following result:

Corollary 36. [33, Cor. 3.3] Let v = (vj)j∈Z be a weight sequence that satisfies the
following conditions:

1. there are sequences of integers (nj)j∈Z and (mj)j∈Z with nj < mj < nj+1, j ∈ Z,
and M > 1 such that Mvmk

≥ vj for every j ∈ [m−k,mk], k ∈ N, and if we consider

sk := inf
{ vj
vj−1

; j 6∈ ]m−k,mk]
}
, k ∈ N,

then for every ε > 0 we find k ∈ N with vn−k
< ε and

s
k(n−k−mk)
k ≤ min

{
M,

min{vi; m−k ≤ i ≤ mk}
vn−k

}
,

2. for every N ∈ N, there exits k ∈ N such that vj > N , for −Nk ≤ j ≤ −k.

Then the backward shift B = T−1 : `p(v,Z) → `p(v,Z) is completely distributionally irre-
gular.
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In this case, it turns out that, given an arbitrary non-zero vector x ∈ `p(v,Z), and an
arbitrary δ > 0, there is k ∈ N as big as we want such that

(I2) ‖Blx‖p < δ for any l ∈ [mk − n−k, k(mk − n−k)].

These results allow us to provide examples of completely absolutely mean irregular
operators, which are a modification of Example 3.5 of [33]. The sequences of integers
(nj)j∈Z and (mj)j∈Z with nj < mj < nj+1, j ∈ Z, are such that for every k ∈ Z we have

vj−1 ≤ vj when nk < j ≤ mk, and vj−1 ≥ vj when mk < j ≤ nk+1.

In other words, the positions vmk
represent “hills” of the weight sequence, and the positions

vnk
are “valleys”.

Theorem 37. There exists a bilateral shift T on `p(v,Z) such that both T and T−1 are
completely absolutely mean irregular, completely distributionally irregular and hypercyclic.

Proof. We first consider

(a) n0 = −1, m0 = 1, n1 = 4, m−1 = −4, vn0 = 1, vm0 = 21/4, vn1 = 2−1/3, vm−1 = 21/4,
and

(b) mk = −n−k, k ∈ Z, vnk
= (2k)−1/3, vmk

= (k + 2)1/4, vn−k
= (2k + 1)−1/3, vm−k

=
(k + 1)1/4, k ∈ N, vi/vi−1 = vj/vj−1 if i, j ∈ ]nk,mk], or if i, j ∈ ]mk−1, nk], k ∈ Z,
and

(c) mk − nk > 2(mk−1 − nk−1), nk+1 −mk > 2(nk −mk−1), k ∈ N.

We will check that the hypotheses of Theorem 35 and Corollary 36 are satisfied.

Condition (b) gives
min{vi; m−k ≤ i ≤ mk−1}

vnk

=
vn−k+1

vnk

=

(
2k

2k − 1

)1/3

for every k ∈ N,

and the supremum of the slope of v outside the interval [m−k,mk−1] is Sk = vj/vj−1 for
any nk < j ≤ mk, k ∈ N. We set M = 2 and, since Smk−nk

k =
vmk

vnk
= (2k)1/3(k + 2)1/4, we

need that

S
k(nk−m−k)
k = ((2k)2/3(k + 2)1/2)

knk
(mk−nk) ≤ min{vi; m−k ≤ i ≤ mk−1}

vnk

=

(
2k

2k − 1

)1/3

.

This can be obtained for, e.g., mk = (16k3 + 1)nk, k ∈ N. Indeed, for this selection
and for any k ≥ 2 (the case k = 1 trivially satisfies the above inequality), we have

S
k(nk−m−k)
k < (2k(k + 2))1/24k

2 ≤ (2k)1/12k
2 ≤

(
2k

2k − 1

)1/3

.

Thus, T satisfies (I1). If l ≤ nk −m−k, then

‖T lx‖ ≤ vmk

vnk

‖x‖ ≤ (2k)2/3‖x‖,

which yields that, given an arbitrary non-zero vector x ∈ `p(v,Z) and an arbitrary δ > 0,
there is k ∈ N as big as we want such that

1

N

N∑
j=1

‖T lx‖ < (2k)2/3

k + 1
‖x‖+ δ,
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for N = k(nk −m−k), and we obtain that T is completely absolutely mean irregular as
soon as we show that condition (2) in Theorem 35 is satisfied. For this, we notice that

vr = vmk
sr−mk
k ≥ (k + 2)1/4s2kmk

k > (k + 2)1/4
(

2k

2k + 1

)1/3

if mk ≤ r ≤ (2k + 1)mk,

which yields that T is completely absolutely mean irregular.

Analogously,
min{vi; m−k ≤ i ≤ mk}

vn−k

=
vnk

vn−k

=

(
2k + 1

2k

)1/3

for every k ∈ N, and

the infimum of the slope of v outside the interval [m−k,mk] is sk = vj/vj−1 for any

mk < j ≤ nk+1, k ∈ N. Again, we set M = 2 and, since s
mk−nk+1

k = ((2k+2)1/3(k+2)1/4),
we need that

s
k(n−k−mk)
k = s−2kmk

k = ((2k + 2)2/3(k + 2)1/2)
kmk

(nk+1−mk) ≤
(

2k + 1

2k

)1/3

,

which is easily satisfied if we set, e.g., nk+1 = (16k3 + 1)mk, k ∈ N. Thus, B = T−1

satisfies (I2). If l ≤ mk − n−k, then

‖Blx‖ ≤ vmk

vnk

‖x‖ ≤ (2k)2/3‖x‖.

As before, we obtain that B = T−1 is completely absolutely mean irregular in case that
condition (2) in Corollary 36 is satisfied. Indeed, we easily have that

vr > (k + 1)1/4
(

2k

2k + 1

)1/3

if (2k + 1)m−k ≤ r ≤ m−k,

which implies condition (2).
For the hypercyclicity of T , since it is invertible, it suffices to show that there is an

increasing sequence (jk)k in N such that limk vjk = limk v−jk = 0 (See Theorem 3.2 in
[22]). Let jk := (mk + nk)/2 = (8k3 + 1)nk. We have

vjk = Sjk−nk

k vnk
=
(
(2k)1/6(k + 2)1/8

) 1

(2k)1/3
,

that tends to 0 as k goes to infinity. Note that Rk = vj/vj−1 has the same value for any
j ∈ ]n−k,m−k], and thus for all k ∈ N we have Rk < Sk and

v−jk = R
−jk−n−k

k vn−k
< Smk−jk

k

1

(2k + 1)1/3
·

Therefore, limk vjk = limk v−jk = 0, which concludes the hypercyclicity of T .

Corollary 38. There exists an operator T on a Banach space X such that the whole space
X is a mean Li-Yorke set for T .

Remark 39. Since mean Li-Yorke chaos and DC2 are equivalent for dynamical systems
on compact metric spaces, it follows from [23, Theorem 3.1] that the conclusion of the
above corollary is not possible for such dynamical systems.
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Remark 40. It is possible to modify slightly the example in Theorem 37 in order to
obtain T such that every non-zero vector is absolutely mean semi-irregular for both T
and T−1 (thus, both operators are generically mean Li-Yorke chaotic), but neither T nor
T−1 are completely absolutely mean irregular. To do this, the only change would be to
set vmk

= 1, k ∈ Z. That is,

(a) n0 = −1, m0 = 1, n1 = 4, m−1 = −4, vn0 = 1, vm0 = 1, vn1 = 2−1/3, vm−1 = 1, and

(b) mk = −n−k, k ∈ Z, vnk
= (2k)−1/3, vmk

= 1, vn−k
= (2k + 1)−1/3, vm−k

= 1, k ∈ N,
vi/vi−1 = vj/vj−1 if i, j ∈ ]nk,mk], or if i, j ∈ ]mk−1, nk], k ∈ Z, and

(c) mk = (16k3 + 1)nk, nk+1 = (16k3 + 1)mk, k ∈ N.

In that case, the vectors of the unit basis are not absolutely mean irregular. Also, we
observe that the hypercyclicity condition is preserved.

7 Mean Li-Yorke chaotic semigroups

We recall that a one-parameter family (Tt)t≥0 of operators on X is called a C0-
semigroup if T0 = I, TtTs = Tt+s (t, s ≥ 0) and limt→s Ttx = Tsx (x ∈ X and s ≥ 0). It is
well-known that such a semigroup is always locally equicontinuous, in the sense that

sup
t∈[0,b]

‖Tt‖ <∞ for every b > 0.

We refer the reader to the book [21] for a detailed study of C0-semigroups. In the sequel,
T = (Tt)t≥0 will denote an arbitrary C0-semigroup, unless otherwise specified.

Definition 41. T is said to be mean Li-Yorke chaotic if there is an uncountable subset
S of X (a mean Li-Yorke set for T ) such that every pair (x, y) of distinct points in S is
a mean Li-Yorke pair for T , in the sense that

lim inf
b→∞

1

b

∫ b

0

‖Ttx− Tty‖dt = 0 and lim sup
b→∞

1

b

∫ b

0

‖Ttx− Tty‖dt > 0.

If S can be chosen to be dense (resp. residual) in X, then we say that T is densely (resp.
generically) mean Li-Yorke chaotic.

Li-Yorke chaos and distributional chaos for C0-semigroups were studied in [1, 2, 3, 17,
19, 37], for instance.

Definition 42. T is called absolutely Cesàro bounded if there is C > 0 such that

sup
b>0

1

b

∫ b

0

‖Ttx‖dt ≤ C‖x‖ for all x ∈ X.

Definition 43. We say that x ∈ X is an absolutely mean irregular (resp. absolutely mean
semi-irregular) vector for T if

lim inf
b→∞

1

b

∫ b

0

‖Ttx‖dt = 0 and lim sup
b→∞

1

b

∫ b

0

‖Ttx‖dt =∞ ( resp. > 0).
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Definition 44. An absolutely mean irregular manifold for T is a vector subspace Y of X
such that every nonzero vector in Y is absolutely mean irregular for T .

As we did in [18] for hypercyclicity, or in [1] for distributional chaos, we will establish
equivalences between the above notions for C0-semigroups and the corresponding ones for
the operators of the semigroup. The following simple lemma (whose proof we omit) will
be very useful for this purpose.

Lemma 45. For each s > 0, let Cs := supt∈[0,s] ‖Tt‖ <∞. Then

1

Cs

1

N + 1

N∑
j=1

‖(Ts)jx‖ ≤
1

b

∫ b

0

‖Ttx‖dt ≤ Cs
1

N

N∑
j=0

‖(Ts)jx‖,

whenever x ∈ X and Ns ≤ b < (N + 1)s with N ≥ 1.

The next two propositions follow easily from this lemma.

Proposition 46. Given x ∈ X and a C0-semigroup T , the following are equivalent:

1. x is an absolutely mean semi-irregular (resp. irregular) vector for T ;

2. there exists s > 0 such that x is an absolutely mean semi-irregular (resp. irregular)
vector for Ts;

3. x is an absolutely mean semi-irregular (resp. irregular) vector for Ts, for all s > 0.

Proposition 47. Given a C0-semigroup T , the following are equivalent:

1. T is absolutely Cesàro bounded (resp. (densely, generically) mean Li-Yorke chaotic,
admits a dense absolutely mean irregular manifold);

2. there exists s > 0 such that Ts is absolutely Cesàro bounded (resp. (densely, generi-
cally) mean Li-Yorke chaotic, admits a dense absolutely mean irregular manifold);

3. Ts is absolutely Cesàro bounded (resp. (densely, generically) mean Li-Yorke chaotic,
admits a dense absolutely mean irregular manifold), for all s > 0.

Remark 48. With these propositions at hand, it is easy to transport many of our previous
theorems on operators to the semigroup setting. For instance, Theorems 5 (without (v)),
17 and 33 remain valid if we replace the operator T by the semigroup T . In particular,
absolutely Cesàro bounded C0-semigroups are never mean Li-Yorke chaotic.

Theorem 49. Suppose that the set
{
x ∈ X : lim

b→∞

1

b

∫ b

0

‖Ttx‖dt = 0
}

is dense in X. If

any of the following conditions is true:

(a) lim sup
b→∞

1

b

∫ b

0

‖Tty0‖dt > 0 for some y0 ∈ X,

(b) X is a Banach space and lim sup
t→∞

‖Tt‖
t

> 0,

(c) X is a Hilbert space and lim sup
t→∞

‖Tt‖
t
1
2

> 0,
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(d) there is some λ ∈ σp(A) with Reλ ≥ 0, where A is the infinitesimal generator of T ,

then T has a residual set of absolutely mean irregular vectors. If, in addition, X is
separable, then T admits a dense absolutely mean irregular manifold.

Proof. It is a consequence of Theorem 22 and Corollary 25 (note that (b) and (c) imply

that lim sup
n→∞

‖T n1 ‖
n

> 0 and lim sup
n→∞

‖T n1 ‖
n

1
2

> 0, respectively). For the last assertion, see

Remark 32.

As an immediate consequence of the previous theorem, we have the following di-
chotomy for translation semigroups on weighted Lp spaces.

Corollary 50. Let v : R+ → R be an admissible weight function and consider the trans-
lation semigroup T , given by

Tt(f)(x) = f(x+ t), t, x ≥ 0,

on the space Lpv(R+) [26, Example 7.4]. Then either

(a) lim
b→∞

1

b

∫ b

0

‖Ttf‖dt = 0 for every f ∈ Lpv(R+), or

(b) T admits a dense absolutely mean irregular manifold.

As a consequence of Theorem 49(b) and [35, page 224], we obtain

Corollary 51. The C0-semigroup T defined on L1(1,∞) by

Ttf(x) :=
(x+ t

x

)
f(x+ t)

is mean Li-Yorke chaotic.

Question 52. Is there a C0-semigroup which is mean Li-Yorke chaotic but is not distri-
butionally chaotic?

Theorem 53. There exists a mixing absolutely Cesàro bounded C0-semigroup T on
Lp(1,∞) for 1 ≤ p <∞.

Proof. Let 0 < ε < 1 and consider the weighted translation semigroup (Tt) on Lp(1,∞)
defined by

Ttf(x) :=
(x+ t

x

) 1−ε
p
f(x+ t).
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Given f ∈ Lp(1,∞) with ‖f‖p = 1, and b > 0, we have that∫ b

0

‖Ttf‖pdt =

∫ b

0

(∫ ∞
1

(x+ t

x

)1−ε
|f(x+ t)|pdx

)
dt

=

∫ b

0

(∫ ∞
1+t

( x

x− t

)1−ε
|f(x)|pdx

)
dt

=

∫ ∞
1

x1−ε|f(x)|p
∫ min{x−1,b}

0

( 1

x− t

)1−ε
dt dx

≤
∫ 1+2b

1

x1−ε|f(x)|p
∫ x−1

0

( 1

x− t

)1−ε
dt dx

+

∫ ∞
1+2b

|f(x)|p
∫ b

0

( x

x− t

)1−ε
dt dx

≤
∫ 1+2b

1

x− 1

ε
|f(x)|pdx+ 2b ≤

(
2 +

2

ε

)
b.

So, (1

b

∫ b

0

‖Ttf‖dt
)p
≤ 1

b

∫ b

0

‖Ttf‖pdt ≤ 2 +
2

ε
·

Thus, (Tt) is an absolutely Cesàro bounded C0-semigroup. Let us now see that (Tt) is
mixing. If v(x) := ( 1

x
)1−ε, then Tt can be rewritten as

Ttf(x) =
( v(x)

v(x+ t)

) 1
p
f(x+ t).

Since v is an admissible weight function, the translation semigroup defined as

τtf(x) := f(x+ t)

is a C0-semigroup on Lpv(1,∞). Moreover, Tt on Lp(1,∞) and τt on Lpv(1,∞) are topo-
logically conjugate. Since (τt) is mixing because limx→∞ v(x) = 0 [26, Example 7.10(b)],
we conclude that (Tt) is also mixing.

Corollary 54. There exists a mixing not absolutely mean irregular C0-semigroup T on
Lp(1,∞) for 1 ≤ p <∞.

Theorem 55. There exists a forward translation C0-semigroup T on Lpv(R+) which is
distributionally chaotic and not mean Li-Yorke chaotic.

Proof. It was proved in [13, Theorem 25] that there is a sequence w = (wn)n∈N of positive
weights such that the unilateral weighted forward shift

Fw : (x1, x2, . . .) ∈ `p(N) 7→ (0, w1x1, w2x2, . . .) ∈ `p(N)

is distributionally chaotic and satisfies

lim
N→∞

1

N

N∑
j=1

‖(Fw)jx‖ =∞ for all x ∈ `p(N)\{0}.

By using conjugacy, we see that there is a sequence v′ = (vn)n∈N of positive weights such
that the unweighted forward shift on `p(v′,N) is distributionally chaotic and not mean Li-
Yorke chaotic. Now, if we consider as admissible weight function v the polygonal formed by
the sequence v′, then the forward translation C0-semigroup on Lpv(R+) is distributionally
chaotic and not mean Li-Yorke chaotic.
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Remark 56. The example in Theorem 37 can be easily adapted to the semigroup setting
in order to construct a completely absolutely mean irregular C0-semigroup T . Indeed,
the translation semigroup on Lpv(R) does the job if we fix v(k) = vk, k ∈ Z, where
(vk)k∈Z is the sequence of weights of the example in Theorem 37, and we set v(x) = v(k),
x ∈ ]k − 1, k], k ∈ Z.
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[9] T. Bermúdez, A. Bonilla, V. Müller and A. Peris, Cesàro bounded operators in Banach
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[10] L. Bernal-González and A. Bonilla, Order of growth of distributionally irregular entire
functions for the differentiation operator, Complex Var. Elliptic Equ. 61 (2016), no.
8, 1176–1186.

[11] N. C. Bernardes Jr., A. Bonilla, V. Müller and A. Peris, Distributional chaos for
linear operators, J. Funct. Anal. 265 (2013), no. 9, 2143–2163.

[12] N. C. Bernardes Jr., A. Bonilla, V. Müller and A. Peris, Li-Yorke chaos in linear
dynamics, Ergodic Theory Dynam. Systems 35 (2015), no. 6, 1723–1745.

[13] N. C. Bernardes Jr., A. Bonilla, A. Peris and X. Wu, Distributional chaos for opera-
tors on Banach spaces, J. Math. Anal. Appl. 459 (2018), no. 2, 797–821.

[14] N. C. Bernardes Jr., A. Peris and F. Rodenas, Set-valued chaos in linear dynamics,
Integral Equations Operator Theory 88 (2017), no. 4, 451–463.

[15] J. Bès, Q. Menet, A. Peris and Y. Puig, Recurrence properties of hypercyclic opera-
tors, Math. Ann. 366 (2016), no. 1-2, 545–572.

[16] A. Bonilla and K.-G. Grosse-Erdmann, Frequently hypercyclic operators and vectors,
Ergodic Theory Dynam. Systems 27 (2007), no. 2, 383–404. Erratum: Ergodic The-
ory Dynam. Systems 29 (2009), no. 6, 1993–1994.

[17] J. A. Conejero, C. Lizama, M. Murillo-Arcila and A. Peris, Linear dynamics of
semigroups generated by differential operators, Open Math. 15 (2017), 745–767.

[18] J. A. Conejero, V. Müller and A. Peris, Hypercyclic behaviour of operators in a
hypercyclic C0-semigroup, J. Funct. Anal. 244 (2007), no. 1, 342–348.

[19] J. A. Conejero, F. Rodenas and M. Trujillo, Chaos for the hyperbolic bioheat equation,
Discrete Contin. Dyn. Syst. 35 (2015), no. 2, 653–668.

[20] T. Downarowicz, Positive topological entropy implies chaos DC2, Proc. Amer. Math.
Soc. 142 (2014), no. 1, 137–149.

[21] K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equa-
tions, Springer-Verlag, New York - Berlin, 2000.

[22] N. S. Feldman, Hypercyclicity and supercyclicity for invertible bilateral weighted
shifts, Proc. Amer. Math. Soc. 131 (2003), no. 2, 479–485.
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[33] F. Mart́ınez-Giménez, P. Oprocha and A. Peris, Distributional chaos for operators
with full scrambled sets, Math. Z. 274 (2013), no. 1-2, 603–612.

[34] Q. Menet, Linear chaos and frequent hypercyclicity , Trans. Amer. Math. Soc. 369
(2017), no. 7, 4977–4994.
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8E, Acces F, 4a planta, 46022 València, Spain.
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