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REAL PALEY-WIENER THEOREMS IN SPACES OF
ULTRADIFFERENTIABLE FUNCTIONS

CHIARA BOITI, DAVID JORNET, AND ALESSANDRO OLIARO

Abstract. We develop real Paley-Wiener theorems for classes Sω of ultradifferentiable func-
tions and related Lp-spaces in the spirit of Bang and Andersen for the Schwartz class. We
introduce results of this type for the so-called Gabor transform and give a full characterization
in terms of Fourier and Wigner transforms for several variables of a Paley-Wiener theorem in
this general setting, which is new in the literature. We also analyze this type of results when
the support of the function is not compact using polynomials. Some examples are given.

1. Introduction

As stated in [4], “A Paley-Wiener theorem is a characterization, by relating support to growth,
of the image of a space of functions or distributions under a transform of Fourier type.” This
relation comes only in terms of a compact and convex set in which the support of the function
or distribution is included. In fact, the growth of f̂ on Cd enables to retrieve the convex hull
of the support of f , but no more precise information can be obtained from it (see [4] and
the references therein). In the last years, a new type of results called “real Paley-Wiener type
theorems” has received much attention, which try to circumvent this theoretical obstruction for
the classical Paley-Wiener theorems to “look inside” the convex hull of the support. The word
“real” expresses that information about the support of f comes from growth rates associated to
the function f̂ on Rd rather than on Cd as in the classical “complex Paley-Wiener theorems”.
This theory was initiated by Bang and Tuan, and here we follow the approach of Andersen
and Andersen-De Jeu (see [2, 3, 4, 5, 26] and the references therein), who state results of “real
Paley-Wiener” type in spaces of rapidly decreasing functions (the Schwartz class S(Rd)) or in
Lp spaces in their most general version, using polynomials, where the support of the function
(or distribution) could be non-compact or even non-convex.

Björck [6] introduced in 1966 global classes of ultradifferentiable functions Sω(Rd) using
weights ω in the sense of Beurling to extend previous theorems of Hörmander about interior
regularity of linear partial differential operators with constant coefficients. These weight func-
tions permit to treat in a unified way a big scale of classes of functions or (ultra)distributions
and are especially suitable for manipulations on the Fourier transform side. We recall here
that when the weight function is the logarithm, i.e. ω(t) = log(1 + t), the class Sω(Rd) is the
Schwartz class S(Rd); see Definition 2.3. In the last 60 years, the classes of ultradifferentiable
functions and their duals have been intensively studied for very different purposes and have
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2 Real Paley-Wiener theorems in spaces of ultradifferentiable functions

become the right setting to study many different problems in analysis in a very general way
(partial differential equations, Paley-Wiener theorems, Whitney jets, Borel theorems, etc.). We
mention [14] as the reference for the modern point of view of the treatment of these classes
where the authors get, under some conditions on the weight functions, to relate the growth of
the functions in terms of their partial derivatives and the growth of their Fourier transforms, a
property that has many advantages.

As Andersen and De Jeu mention in [4], their theorems of “real” type can be extended to
other transforms of Fourier type, where the classical theorems cannot. In fact, also to more
general spaces of functions as we will show below. Our aim is to study real Paley-Wiener
theorems in the spirit of Bang, Andersen and Andersen and De Jeu [2, 3, 4, 5] in the more
general Sω-setting and related Lp-spaces. Moreover, we show that some transforms coming from
the field of time-frequency analysis enter into the game, like the Gabor and Wigner transforms.
We also study the case when the support of the Fourier transform is not necessarily compact
or convex, extending some results in terms of polynomials in the spirit of [4, 26].

In Section 2 we give some preliminaries and definitions on weight functions, Fourier type
transforms and the space Sω(Rd) especially when the seminorms are given in terms of Lp-norms.
In Section 3 we extend [5, Theorem 1] for several variables in the Sω-setting in different ways
(see Proposition 3.3). Also in this section we state a general version of [2, Theorem 1] for the
ultradifferentiable setting and several variables (Theorem 3.2). Our main result in this section
is Theorem 3.17, where we give a full characterization of the known “complex Paley-Wiener
theorem” in the Beurling setting (see [14, Proposition 3.4(2)]) in terms of Wigner transforms;
in this result, we assume that the support of the Fourier transform of the Sω-function is inside a
hypercube in Rd. To obtain it, we need some preparation: to study the behaviour of the Gabor
transform of a function f in Sω(Rd) with respect to a window ψ ∈ Sω(Rd), in a suitable weighted
mixed Lp,q-space, in terms of the support of the function f and the window ψ (Proposition 3.11).
As a consequence, the symmetric properties of the Wigner transform give surprising results
(Corollaries 3.14 and 3.15). We finish this section with an example about Hermite functions.
In Section 4 we treat the case of arbitrary support and, following the lines of [4], we extend
Theorem 2.2 and 2.5 of this paper (these are our Theorem 4.2 and Corollary 4.3). In Example 4.5
we analyze the relation of the definition of the generalized support (4.1) with the regularity
of the corresponding polynomial. As an appendix we add the proof of some properties about
weight functions that are useful in the paper.

2. Preliminaries

We begin with the definition of a non-quasianalytic weight function in the sense of [14] suitable
for the Beurling case, i.e. we consider the logarithm as a non-quasianalytic weight function
also.

Definition 2.1. A non-quasianalytic weight function is a continuous increasing function ω :
[0,+∞)→ [0,+∞) satisfying the following properties:

(α) There exists L ≥ 1 such that ω(2t) ≤ L(ω(t) + 1), for all t ≥ 0;

(β)

∫ +∞

1

ω(t)

t2
dt < +∞;
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(γ) there exist a ∈ R and b > 0 such that

ω(t) ≥ a+ b log(1 + t), t ≥ 0;

(δ) ϕ : [0,+∞)→ [0,+∞), ϕ(t) := ω(et) is convex.

Then, for ζ ∈ Cd, we define ω(ζ) := ω(|ζ|), where |ζ| =
√∑d

j=1 |ζj|2.

Remark 2.2. We recall some well-known properties on non-quasianalytic weight functions; the
proofs can be found in the literature, we recall them here for the sake of completeness.

(i) Condition (α) implies that for every t1, t2 ≥ 0

ω(t1 + t2) ≤ L(ω(t1) + ω(t2) + 1);(2.1)

indeed, since ω is increasing and positive we have

ω(t1 + t2) ≤ ω(2 max{t1, t2}) ≤ L(ω(max{t1, t2}) + 1) ≤ L(ω(t1) + ω(t2) + 1).

(ii) Since (2.1) trivially implies (α) with 2L instead of L, we have that (α) is equivalent to
(2.1) (cf. [14]).

(iii) By condition (α) and (2.1) we easily deduce that for every k ∈ N and t ≥ 0,

ω(kt) ≤ Dk(ω(t) + 1),(2.2)

where Dk = L+ L2 + · · ·+ Lk−1.
(iv) By (β) and the fact that ω is increasing, we have that ω(t) = o(t) as t→ +∞ (cf. [24]).

This can be deduced from the fact that

ω(t)

t
=

∫ +∞

t

ω(t)

s2
ds ≤

∫ +∞

t

ω(s)

s2
ds.

(v) By condition (γ) we have

e−σω(t) ∈ Lp(Rd), ∀σ ≥ d+ 1

bp
.(2.3)

Let ω be a non-quasianalytic weight and ϕ as in (δ) in Definition 2.1. Then we define the
Young conjugate ϕ∗ of ϕ by

ϕ∗(s) := sup
t≥0
{ts− ϕ(t)}, s ≥ 0.(2.4)

We recall that it is an increasing convex function on [0,+∞) satisfying ϕ∗∗ = ϕ (see [21]).
We consider also the Fourier transform of u ∈ L1(Rd) denoted by

F(u)(ξ) = û(ξ) :=

∫
Rd
u(x)e−i〈x,ξ〉dx, ξ ∈ Rd,

with standard extensions to more general spaces of functions and distributions. The so-called
short-time Fourier transform (or Gabor transform) of u ∈ L2(Rd), for a window function ψ ∈
L2(Rd), is denoted by

Vψu(z) :=

∫
Rd
u(y)ψ(y − x)e−i〈y,ξ〉dy, z = (x, ξ) ∈ R2d.
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The Wigner transform of u, v ∈ L2(Rd) is denoted by

Wig(u, v)(x, ξ) :=

∫
Rd
u

(
x+

t

2

)
v

(
x− t

2

)
e−i〈ξ,t〉dt, x, ξ ∈ Rd.

Then we write Wig u for Wig(u, u). We refer to [18] for the classical properties of the Gabor
and Wigner transforms. The setting of this work is given by the following definition.

Definition 2.3 ([6]). The space Sω(Rd) is the set of all u ∈ L1(Rd) such that u, û ∈ C∞(Rd)
and for each λ > 0 and each α ∈ Nd

0 we have

sup
x∈Rd

eλω(x)|Dαu(x)| < +∞ and sup
ξ∈Rd

eλω(ξ)|Dαû(ξ)| < +∞.

The corresponding strong dual of ultradistributions will be denoted by S ′ω(Rd).

In the case that ω(t) = log(1 + t), we have Sω(Rd) = S(Rd). On the other hand, for an
arbitrary non-quasianalytic weight function ω, by condition (γ) of Definition 2.1 it is easy to
deduce that Sω(Rd) ⊂ S(Rd). Hence, Sω(Rd) can be equivalently defined as the set of all
u ∈ S(Rd) that satisfy the condition of Definition 2.3. By Björck [6], we know that the Fourier
transform F : Sω(Rd) → Sω(Rd) is a continuous automorphism, that can be extended in the
usual way to S ′ω(Rd) when endowed with the strong topology, i.e. the topology of uniform con-
vergence on bounded sets. Moreover, the space Sω(Rd) is an algebra under multiplication and
convolution. On the other hand, for u, ψ ∈ Sω(Rd) we have Vψu,Wig u ∈ Sω(R2d). Moreover,
for u, ψ ∈ S ′ω(Rd) the Gabor and Wigner transforms are well defined and belong to S ′ω(R2d)
[11, 12, 19]. We recall, for the convenience of the reader, the following result [11, 12].

Theorem 2.4. Given u ∈ S(Rd), then u ∈ Sω(Rd) if and only if one of the following conditions
hold:

(a) i) ∀λ > 0, α ∈ Nd
0 ∃Cα,λ > 0 s.t. sup

x∈Rd
eλω(x)|Dαu(x)| ≤ Cα,λ , and

ii) ∀λ > 0, α ∈ Nd
0 ∃Cα,λ > 0 s.t. sup

ξ∈Rd
eλω(ξ)|Dαû(ξ)| ≤ Cα,λ ;

(b) i) ∀λ > 0, α ∈ Nd
0 ∃Cα,λ > 0 s.t. sup

x∈Rd
eλω(x)|xαu(x)| ≤ Cα,λ , and

ii) ∀λ > 0, α ∈ Nd
0 ∃Cα,λ > 0 s.t. sup

ξ∈Rd
eλω(ξ)|ξαû(ξ)| ≤ Cα,λ ;

(c) i) ∀λ > 0 ∃Cλ > 0 s.t. sup
x∈Rd

eλω(x)|u(x)| ≤ Cλ , and

ii) ∀λ > 0 ∃Cλ > 0 s.t. sup
ξ∈Rd

eλω(ξ)|û(ξ)| ≤ Cλ ;

(d) i) ∀λ > 0, β ∈ Nd
0 ∃Cβ,λ > 0 s.t. sup

α∈Nd0

sup
x∈Rd
|xβDαu(x)|e−λϕ∗(

|α|
λ ) ≤ Cβ,λ , and

ii) ∀µ > 0, α ∈ Nd
0 ∃Cα,µ > 0 s.t. sup

β∈Nd0

sup
x∈Rd
|xβDαu(x)|e−µϕ

∗( |β|µ ) ≤ Cα,µ ;

(e) ∀µ, λ > 0 ∃Cµ,λ > 0 s.t. sup
α,β∈Nd0

sup
x∈Rd
|xβDαu(x)|e−λϕ∗(

|α|
λ )e−µϕ

∗( |β|µ ) ≤ Cµ,λ ;

(f) ∀λ > 0 ∃Cλ > 0 s.t. sup
α,β∈Nd0

sup
x∈Rd
|xβDαu(x)|e−λϕ∗(

|α+β|
λ ) ≤ Cλ ;
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(g) ∀µ, λ > 0 ∃Cµ,λ > 0 s.t. sup
α∈Nd0

sup
x∈Rd
|Dαu(x)|e−λϕ∗(

|α|
λ )eµω(x) ≤ Cµ,λ ;

(h) given ψ ∈ Sω(Rd) \ {0}, ∀λ > 0 ∃Cλ > 0 s.t. sup
z∈R2d

|Vψu(z)|eλω(z) ≤ Cλ.

In the following, it is sometimes more convenient to use Lp-norms instead of L∞-norms in
Sω(Rd). We need the following notation of Lp,q-space:

Lp,q(R2d) :=
{
F measurable on R2d such that:(2.5)

‖F‖Lp,q :=
(∫

Rd

(∫
Rd
|F (x, ξ)|pdx

)q/p
dξ
)1/q

< +∞
}

if 1 ≤ p, q < +∞; here, we replace the Lp or Lq norm with the essential supremum if p or q is
equal to ∞. We obtain the next extension of Theorem 2.4:

Theorem 2.5. Given a function u ∈ S(Rd) and 1 ≤ p, q ≤ +∞, we have that u ∈ Sω(Rd) if
and only if one of the following conditions is satisfied:

(a)′ i) ∀λ > 0, α ∈ Nd
0 ∃Cα,λ > 0 s.t. ‖eλω(x)Dαu(x)‖Lp ≤ Cα,λ , and

ii) ∀λ > 0, α ∈ Nd
0 ∃Cα,λ > 0 s.t. ‖eλω(ξ)Dαû(ξ)‖Lq ≤ Cα,λ ;

(b)′ i) ∀λ > 0, α ∈ Nd
0 ∃Cα,λ > 0 s.t. ‖eλω(x)xαu(x)‖Lp ≤ Cα,λ , and

ii) ∀λ > 0, α ∈ Nd
0 ∃Cα,λ > 0 s.t. ‖eλω(ξ)ξαû(ξ)‖Lq ≤ Cα,λ ;

(c)′ i) ∀λ > 0 ∃Cλ > 0 s.t. ‖eλω(x)u(x)‖Lp ≤ Cλ , and
ii) ∀λ > 0 ∃Cλ > 0 s.t. ‖eλω(ξ)û(ξ)‖Lq ≤ Cλ ;

(d)′ i) ∀λ > 0, β ∈ Nd
0 ∃Cβ,λ > 0 s.t. sup

α∈Nd0

‖xβDαu(x)‖Lpe−λϕ
∗( |α|λ ) ≤ Cβ,λ , and

ii) ∀µ > 0, α ∈ Nd
0 ∃Cα,µ > 0 s.t. sup

β∈Nd0

‖xβDαu(x)‖Lqe−µϕ
∗( |β|µ ) ≤ Cα,µ ;

(e)′ ∀µ, λ > 0 ∃Cµ,λ > 0 s.t. sup
α,β∈Nd0

‖xβDαu(x)‖Lpe−λϕ
∗( |α|λ )e−µϕ

∗( |β|µ ) ≤ Cµ,λ ;

(f)′ ∀λ > 0 ∃Cλ > 0 s.t. sup
α,β∈Nd0

‖xβDαu(x)‖Lpe−λϕ
∗( |α+β|λ ) ≤ Cλ ;

(g)′ ∀µ, λ > 0 ∃Cµ,λ > 0 s.t. sup
α∈Nd0

‖eµω(x)Dαu(x)‖Lpe−λϕ
∗( |α|λ ) ≤ Cµ,λ ;

(h)′ Given ψ ∈ Sω(Rd) \ {0}, ∀λ > 0 ∃Cλ > 0 s.t. ‖Vψu(z)eλω(z)‖Lp,q ≤ Cλ.

Proof. (c)′ ⇔ u ∈ Sω(Rd):

Let us assume u ∈ S(Rd) to satisfy (c)′ and prove that u ∈ Sω(Rd). To this aim we shall
prove that u satisfies condition (h) of Theorem 2.4, for some fixed ψ ∈ Sω(Rd) \ {0}. We fix
σ ≥ (d+1)/bp′, where b is the constant in condition (γ) of Definition 2.1 and p′ is the conjugate
exponent of p. Let us first compute

|eλω(x)Vψu(x, ξ)| =
∣∣∣∣eλω(x) ∫

Rd
u(y)ψ(y − x)e−i〈y,ξ〉dy

∣∣∣∣
≤ eλL

∫
Rd
|u(y)|eλLω(y)|ψ(y − x)|eλLω(y−x)+σω(y−x)e−σω(y−x)dy

≤ eλL‖e(λL+σ)ω(t)ψ(t)‖L∞ · ‖eλLω(y)u(y)‖Lp · ‖e−σω(t)‖Lp′ ≤ Cλ(2.6)
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since ψ ∈ Sω(Rd) and because of (c)′(i), (2.1) and (2.3).
On the other hand (see [18, formula (3.10)]),

Vψu(x, ξ) = e−i〈x,ξ〉Vψ̂û(ξ,−x),

so that, as in (2.6) with q instead of p, we obtain that also

|eλω(ξ)Vψu(x, ξ)| = |eλω(ξ)Vψ̂û(ξ,−x)| ≤ C ′λ(2.7)

for some C ′λ > 0.
Then, from (2.6), (2.7) and (2.1):

|Vψu(x, ξ)| =
√
|Vψu(x, ξ)|2 ≤

√
Cλe−λω(x)C ′λe

−λω(ξ)

≤ C ′′λe
−λ

2
(ω(x)+ω(ξ)) ≤ C ′′λe

λ
2 e−

λ
2L
ω(x,ξ)

for some C ′′λ > 0, i.e. condition (h) of Theorem 2.4 is satisfied and u ∈ Sω(Rd).
Conversely, if u ∈ Sω(Rd) then condition (c) of Theorem 2.4 is satisfied and hence from (2.3)

‖eλω(x)u(x)‖Lp ≤ ‖e(λ+σ)ω(x)u(x)‖L∞ · ‖e−σω(x)‖Lp ≤ Cλ

for σ ≥ (d+ 1)/bp, and analogously ‖eλω(ξ)û(ξ)‖Lq ≤ Cλ for some Cλ > 0.

(a)′ ⇔ u ∈ Sω(Rd):

If u satisfies (a)′, then it satisfies (c)′, so from the previous point u ∈ Sω(Rd). On the other
hand, if u ∈ Sω(Rd), from (a) of Theorem 2.4 we have

‖eλω(x)Dαu(x)‖Lp ≤ ‖e(λ+σ)ω(x)Dαu(x)‖L∞‖e−σω(x)‖Lp ≤ C ′α,λ,

for σ ≥ (d+ 1)/bp, so (a)′(i) is satisfied; the proof of (a)′(ii) is similar.

(b)′ ⇔ u ∈ Sω(Rd):

It is enough to prove that (b)′ ⇔ (c)′. Since (b)′ ⇒ (c)′ is trivial, let us suppose that u satisfies
(c)′; from the condition (γ) of Definition 2.1, for c = 1/b and Cα = e−a|α|/b, we have

|eλω(x)xα| ≤ eλω(x)+|α| log |x| ≤ Cαe
(λ+c|α|)ω(x).

Hence, we obtain

‖eλω(x)xαu(x)‖Lp ≤ Cα‖e(λ+c|α|)ω(x)u(x)‖Lp ≤ Cα,λ

for some Cα,λ > 0, so that (b)′(i) is satisfied. Analogously we get (b)′(ii).

(f)′ ⇔ u ∈ Sω(Rd):

Let u ∈ S(Rd) which satisfies (f)′. It is enough to see that û ∈ Sω(Rd). For all ξ ∈ Rd,
α, β ∈ Nd

0:

|ξβDαû(ξ)| =
∣∣F(Dβ

x(xαu(x))
)
(ξ)
∣∣ ≤ ‖Dβxαu‖L1

≤ ‖(1 + |x|2)−n‖Lp′ · ‖(1 + |x|2)nDβ(xαu(x))‖Lp

≤ Cn
∑
γ≤β
γ≤α

(
β

γ

)
α!

(α− γ)!
‖(1 + |x|2)nxα−γDβ−γu(x)‖Lp
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for some Cn > 0 if we choose n > d/(2p′). Therefore, by (f)′, it is easy to see (Lemma 4.6)
that for every λ > 0 there exists Cλ > 0 such that for each ξ ∈ Rd,

|ξβDαû(ξ)| ≤ Cλe
λϕ∗( |α+β|λ ).

In the other direction, if u ∈ Sω(Rd), we have, by Lemma 4.6,

‖xβDαu(x)‖Lp ≤ ‖(1 + |x|2)−n‖Lp · ‖(1 + |x|2)nxβDαu(x)‖L∞

≤ CnC
′
2λe

2λϕ∗( |α+β|+2n
2λ ) ≤ CnC

′′
2λe

λϕ∗( |α+β|λ )eλϕ
∗( 2n

λ )

≤ C̃λe
λϕ∗( |α+β|λ )

for some Cn, C
′
2λ, C

′′
2λ, C̃λ > 0 if we choose n > d/(2p).

(e)′ ⇔ u ∈ Sω(Rd):

From the convexity of ϕ∗ we get that (e)′ ⇔ (f)′, cf. Lemma 4.6(ii) and (ix).

(g)′ ⇔ u ∈ Sω(Rd):

We assume (g)′ is satisfied and we prove (e)′. By Lemma 4.6(v), for all α, β ∈ Nd
0, λ, µ > 0:

‖xβDαu(x)‖Lp ≤ Cµ‖eµω(x)eµϕ
∗( |β|µ )Dαu(x)‖Lp

≤ Cµe
µϕ∗( |β|µ )‖eµω(x)Dαu(x)‖Lp

≤ Cµ,λe
µϕ∗( |β|µ )eλϕ

∗( |α|λ )

for some Cµ, Cµ,λ > 0.
Let us now assume u ∈ Sω(Rd). Then condition (g) of Theorem 2.4 is satisfied, and hence

for σ ≥ (d+ 1)/bp and for every α ∈ Nd
0 and µ > 0:

‖eµω(x)Dαu(x)‖Lp = ‖e(µ+σ)ω(x)Dαu(x)e−σω(x)‖Lp
≤ ‖e(µ+σ)ω(x)Dαu(x)‖L∞ · ‖e−σω(x)‖Lp

≤ Cµ,λe
λϕ∗( |α|λ )

for some Cµ,λ > 0 by (g) and (2.3).

(d)′ ⇔ u ∈ Sω(Rd):

Let u ∈ Sω(Rd); then u satisfies (e)′ for any p (or q) in [1,+∞]. Then (d)′ is trivially satisfied
for any 1 ≤ p, q ≤ +∞.

In the opposite direction, we have that, using (d)′(i) it is not difficult to see that (Lemma 4.6)

|ξβDαû(ξ)| ≤ Cα,λe
λϕ∗( |β|λ ), ξ ∈ Rd.

So û satisfies (d)(ii) of Theorem 2.4. In the same way, the fact that u satisfies (d)′(ii) implies
that û satisfies (d)(i) of Theorem 2.4. Then û ∈ Sω(Rd).

(h)′ ⇔ u ∈ Sω(Rd):

If u ∈ Sω(Rd) then u satisfies (h) of Theorem 2.4, and so

‖Vψu(z)eλω(z)‖Lp,q ≤ ‖Vψu(z)e(λ+σ)ω(z)‖L∞‖e−σω(z)‖Lp,q ≤ Cλ,

for σ sufficiently large, from (2.3).
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In the opposite direction, we prove that (h)′ ⇒ (e) of Theorem 2.4. From the proof of [12,
Proposition 2.10], under condition (2.1) instead of subadditivity, we have

e−λϕ
∗( |α|λ )e−µϕ

∗( |β|µ )|yβDαu(y)| ≤ Cλ,µ

∫
R2d

|Vψu(z)|e(µL+3Lλ+σ)ω(z)e−σω(z)dz

for every σ > 0; using Hölder’s inequality for Lp,q spaces we get

e−λϕ
∗( |α|λ )e−µϕ

∗( |β|µ )|yβDαu(y)|
≤ Cλ,µ‖Vψu(z)e(µL+3Lλ+σ)ω(z)‖Lp,q‖e−σω(z)‖Lp′,q′ ≤ C ′λ,µ,

if we choose σ sufficiently large, cf. (2.3). �

We observe that Theorems 2.4 and 2.5 provide equivalent systems of seminorms for the space
Sω(Rd).

3. Real Paley-Wiener theorems for ω-ultradifferentiable
functions

Now, we prove different “real Paley-Wiener theorems” in the spirit of [2, 4, 5] in spaces of
ω-ultradifferentiable functions. Moreover, we analyze the behavior of time-frequency represen-
tations (Gabor and Wigner) of ω-ultradifferentiable functions which have Fourier transform
with compact support.

We shall use in the following the notation 〈f, g〉 for the inner product in L2 when f, g ∈ L2,
or (more generally) for the duality, that we consider as conjugate linear application of f to g.
Unless stated otherwise, ω is a non-quasianalytic weight as in Definition 2.1, ϕ is as in (δ) in
Definition 2.1, and ϕ∗ is as in (2.4).

Here, we consider, for R > 0 the space

PWω
R(Rd) :=

{
f ∈ C∞(Rd) : ∀λ > 0, sup

α∈Nd0

sup
x∈Rd

R−|α|eλω( x
|α|+1)|Dαf(x)| < +∞

}
.(3.1)

Lemma 3.1. PWω
R(Rd) ⊆ Sω(Rd).

Proof. Let f ∈ PWω
R(Rd) and let us first prove that f ∈ S(Rd). Indeed, there exists a constant

C > 0 such that for every α, β ∈ Nd
0 there exists Cα,β > 0 such that

|xβDαf(x)| ≤ CR|α||xβ|e−ω( x
|α|+1)

≤ CR|α||x||β|e
− 1
D|α|

ω(x)+1

≤ CαR
|α|e

1
D|α|

ϕ∗(|β|D|α|)
=: Cα,β ,

by (2.2) and Lemma 4.6(v). Now, we prove conditions (c)(i) and (c)(ii) of Theorem 2.4.
Condition (c)(i) trivially follows from the definition of PWω

R(Rd) with α = 0. Let us prove
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condition (c)(ii). For |ξ| ≥ 1 and N ∈ N0 we have:

|f̂(ξ)| =
∣∣∣∣∫

Rd
f(x)e−i〈x,ξ〉dx

∣∣∣∣
≤ 1

|ξ|2N

∣∣∣∣∫
Rd
f(x)∆N

x e
−i〈x,ξ〉dx

∣∣∣∣
≤ 1

|ξ|2N

∫
Rd
|∆N

x f(x)|dx

≤ 1

|ξ|2N
∑
|ν|=N

N !

ν!

∫
Rd
|D2ν

x f(x)|dx,

where ν ∈ Nd and D2ν
x = D2ν1

x1
· · ·D2νd

xd
. Since f ∈ PWω

R(Rd) we thus have, for |ξ| ≥ 1 and
λ ≥ (d+ 1)/b:

|f̂(ξ)| ≤ dN

|ξ|2N
CλR

2N

∫
Rd
e−λω( x

2N+1)dx

=
dN

|ξ|2N
CλR

2N(2N + 1)d
∫
Rd
e−λω(y)dy

= C ′λ
dNR2N(2N + 1)d

|ξ|2N
(3.2)

≤ C ′λ
(2dR

√
d)2N

|ξ|2N

≤ Cλ′|ξ|−2Neλ
′ϕ∗( 2N

λ′ )

by Lemma 4.6(viii), for some Cλ, C
′
λ, Cλ′ > 0. Taking the infimum over N ∈ N0 and applying

Lemma 4.6(vi) we have that, for all µ > 0 there exists Cµ > 0 such that for all |ξ| ≥ 1:

|f̂(ξ)| ≤ Cµe
−µω(ξ).

Since the above inequality is trivial for |ξ| ≤ 1, we finally have (c)(ii) and hence f ∈ Sω(Rd). �

In the following result, we denote by

(3.3) QR := {ξ ∈ Rd : |ξ|∞ ≤ R},

where ξ ∈ Rd and |ξ|∞ is its sup norm.

Theorem 3.2. Let R > 0, f ∈ C∞(Rd) and ω a non-quasianalytic weight function. The
following conditions are equivalent:

(a) The function f ∈ PWω
R(Rd),

(b) The function f ∈ Sω(Rd) and its Fourier transform f̂ is compactly supported with

supp f̂ ⊆ QR.
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Proof. (a) ⇒ (b). Let f ∈ PWω
R(Rd). We integrate by parts,

|f̂(ξ)| =
∣∣∣∣ 1

ξ2N1 + · · ·+ ξ2Nd

∫
Rd
f(x)(D2N

x1
+ · · ·+D2N

xd
)e−i〈x,ξ〉 dx

∣∣∣∣
≤ 1

ξ2N1 + · · ·+ ξ2Nd

d∑
j=1

∫
Rd
|D2N

xj
f(x)| dx.

By hypothesis, we have that for every λ > 0 there exists Cλ such that

|f̂(ξ)| ≤ Cλ
1

ξ2N1 + · · ·+ ξ2Nd

d∑
j=1

R2N

∫
Rd
e−λω(

x
2N+1

) dx

≤ Cλ
1

ξ2N1 + · · ·+ ξ2Nd
dR2N(2N + 1)d

∫
Rd
e−λω(y) dy = Dλ

dR2N(2N + 1)d

ξ2N1 + · · ·+ ξ2Nd
,(3.4)

for a constant Dλ independent of N and λ ≥ (d + 1)/b. Now, we observe that for any ξ ∈ Rd

such that |ξ|∞ > R we have 2N
√
ξ2N1 + · · ·+ ξ2Nd > R, and so supp f̂ ⊆ QR.

(b) ⇒ (a) Suppose that f̂ ⊂ Sω(Rd) is compactly supported with supp f̂ ⊆ QR. By Fourier
inversion formula in S(Rd), for x 6= 0 and N ∈ N0:

|Dαf(x)| = 1

(2π)d

∣∣∣∣∫
Rd
F(Dαf)(ξ)ei〈x,ξ〉dξ

∣∣∣∣
≤
∣∣∣∣∫

Rd
ξαf̂(ξ)

1

|x|2N
∆N
ξ e

i〈x,ξ〉dξ

∣∣∣∣
≤ 1

|x|2N

∫
Rd
|∆N

ξ ξ
αf̂(ξ)|dξ

≤ 1

|x|2N

∫
Rd

∑
|ν|=N

N !

ν!

∣∣∣D2ν1
ξ1
· · ·D2νd

ξd

(
ξα1
1 · · · ξ

αd
d f̂(ξ)

)∣∣∣dξ
≤ 1

|x|2N
∑
|ν|=N

N !

ν!

min{2ν1,α1}∑
h1=0

(
2ν1
h1

)
· · ·

min{2νd,αd}∑
hd=0

(
2νd
hd

)
α1!

(α1 − h1)!
· · · αd!

(αd − hd)!

∫
|ξ|∞≤R

|ξα1−h1
1 · · · ξαd−hdd | ·

∣∣∣D2ν−h
ξ f̂(ξ)

∣∣∣ dξ,(3.5)
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where we denoted D2ν−h
ξ = D2ν1−h1

ξ1
· · ·D2νd−hd

ξd
. Since f̂ ∈ Sω(Rd), there exists Cµ,λ > 0 such

that, applying Theorem 2.4(g) in (3.5), for |x| ≥ 1 and N ∈ N0:

|Dαf(x)| ≤ 1

|x|2N
∑
|ν|=N

N !

ν!

min{2ν1,α1}∑
h1=0

(
2ν1
h1

)
· · ·

min{2νd,αd}∑
hd=0

(
2νd
hd

)
·αh11 · · ·α

hd
d

∫
|ξ|∞≤R

|ξ1|α1−h1 . . . |ξd|αd−hd
∣∣∣D2ν−h

ξ f̂(ξ)
∣∣∣ dξ

≤ 1

|x|2N
∑
|ν|=N

N !

ν!

min{2ν1,α1}∑
h1=0

(
2ν1
h1

)
· · ·

min{2νd,αd}∑
hd=0

(
2νd
hd

)

·|α|2N
(

1 +
1

R

)2N

R|α|
∫
Rd
Cµ,λe

λϕ∗( 2N−|h|
λ )e−µω(ξ)dξ

≤ Cλ
1

|x|2N
dN22N(|α|+ 1)2N

(
1 +

1

R

)2N

eλϕ
∗( 2N

λ )R|α|,

for some Cλ > 0, where we have fixed µ ≥ (d+ 1)/b.
Taking the infimum over N ∈ N0 and applying Lemma 4.6(vi) we have therefore, for |x| ≥

2
√
d(|α|+ 1)(1 + 1

R
),

|Dαf(x)| ≤ Cλe
−(λ− 2

b )ω
(

x

2
√
d(|α|+1)(1+ 1

R)

)
− 2a

b

R|α|(3.6)

for a ∈ R, b > 0 as in condition (γ) of Definition 2.1.

Let us consider now |x| < 2
√
d(|α|+ 1)(1 + 1

R
). We have

|Dαf(x)| = 1

(2π)d

∣∣∣∣∫
Rd
F(Dαf)(ξ)ei〈x,ξ〉 dξ

∣∣∣∣
≤
∫
QR

|ξ1|α1 . . . |ξd|αd |f̂(ξ)| dξ

≤ CR|α|,

for C = ‖f̂‖L1(Rd). Since ω is increasing we have that (3.6) is true also for |x| < 2
√
d(|α| +

1)(1 + 1
R

), for a constant Cλ which depends on λ, a, b, R, d and ω(1). By (3.6) and (2.2) we
finally have that for every λ′ > 0 there exists Cλ′ > 0, depending on ω, λ′, d, R, a and b, such
that

|Dαf(x)| ≤ Cλ′e
−λ′ω( x

|α|+1)R|α|.

This proves that f ∈ PWω
R(Rd). �

Let us define, for a function g on Rd:

Rg := sup{|x|∞ : x ∈ supp g}.(3.7)

The next result treats two different cases: the first one does not need weight functions and
it is a natural extension of Theorem 1 of [5] for several variables; in the other case, we assume
two different additional conditions on the non-quasianalytic weight function: subadditivity
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(condition (3.9)) or a “mild” condition introduced in [13] that guarantees that the weight does
not increase too slowly (condition (3.10)). We shall use in the following the notation f (α) for
Dαf .

Proposition 3.3. Let 1 ≤ p ≤ +∞ and f ∈ C∞(Rd). We have:

(1) If f (α)(x) ∈ Lp(Rd) for all α ∈ Nd
0, we have

lim
n→+∞

(
max
|α|=n

∥∥f (α)(x)
∥∥
Lp

)1/n

= Rf̂ .(3.8)

(2) Assume that eλω( x
|α|+1)f (α)(x) ∈ Lp(Rd) for all α ∈ Nd

0 and for some λ > 0, and that the
non-quasianalytic weight function ω satisfies one of the following conditions:
(a) It is subadditive, i.e.,

ω(t1 + t2) ≤ ω(t1) + ω(t2), t1, t2 ≥ 0;(3.9)

(b) There is a constant H > 1 such that

2ω(t) ≤ ω(Ht) +H, t ≥ 0.(3.10)

Then

lim
n→+∞

(
max
|α|=n

∥∥∥eµω( x
|α|+1)f (α)(x)

∥∥∥
Lp

)1/n

= Rf̂ , for all 0 ≤ µ ≤ λ.(3.11)

Remark 3.4. We observe that, in general, Rf̂ ∈ {t ∈ R; t ≥ 0} ∪ {+∞}, so that f̂ may not

have compact support. Moreover, the limit (3.11) does not depend on µ.

Proof of Proposition 3.3. It suffices to see (2), since (1) can be proved in the same way (it is
statement (2) for λ = 0). We can assume that p <∞, because the same proof is valid for p =∞
with some small modifications. First, we consider φ ∈ Sω(Rd) such that φ̂ has compact support.
Then, by Theorem 3.2, we have that φ ∈ PWω

Rφ̂
(Rd) and hence, for every 1 ≤ p < +∞, λ > 0,

and σ ≥ 2/bp:∥∥∥eλω( x
|α|+1)φ(α)(x)

∥∥∥1/n
Lp

=
∥∥∥e(λ+σ)ω( x

|α|+1)φ(α)(x)e−σω( x
|α|+1)

∥∥∥1/n
Lp

≤
∥∥∥e(λ+σ)ω( x

|α|+1)φ(α)(x)
∥∥∥1/n
L∞
·
∥∥∥e−σω( x

|α|+1)
∥∥∥1/n
Lp

≤ (Cλ+σR
|α|
φ̂

)1/n(|α|+ 1)
d
pn‖e−σω(x)‖1/nLp .

So, if we take the maximum when |α| = n and then the limit when n tends to infinity, we
deduce

lim sup
n→+∞

(
max
|α|=n

∥∥∥eλω( x
|α|+1)φ(α)(x)

∥∥∥1/n
Lp

)
≤ Rφ̂ , p ∈ [1,+∞), λ > 0.(3.12)

Now, we consider f ∈ C∞(Rd) such that eλω( x
|α|+1)f (α)(x) ∈ Lp(Rd) for all α ∈ Nd

0. We
observe that f ∈ S ′(Rd) and hence its Fourier transform is well defined. Assume, for the

moment, that supp f̂ is compact, so that Rf̂ ∈ R.
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We observe that if the weight satisfies hypothesis (2)(a), i.e., it is subadditive, we have

λω

(
x

n+ 1

)
≤ λω

(
y

n+ 1

)
+ λω

(
x− y
n+ 1

)
,(3.13)

for any x, y ∈ Rd, λ ≥ 0 and n ∈ N. On the other hand, it is easy to deduce from hypothesis
(2)(b) that for each k ∈ N,

2kω(x) ≤ ω(Hkx) +H(2k−1 + 2k−2 + · · ·+ 1), x ∈ Rd,

and hence, ω(x) ≤ 2−kω(Hkx) +H, for all x ∈ Rd. Now, we take k ∈ N so that L ≤ 2k, where
L ≥ 1 is the constant of condition (α) of Definition 2.1. Then, we select n ∈ N big enough with
Hk ≤ n+ 1 to obtain, from (2.1),

λω

(
x

n+ 1

)
≤ λLω

(
y

n+ 1

)
+ λLω

(
x− y
n+ 1

)
+ λL

≤ λLω

(
y

n+ 1

)
+ λL2−kω

(
Hk(x− y)

n+ 1

)
+ λL+H

≤ λLω

(
y

n+ 1

)
+ λω(x− y) + λL+H,(3.14)

for all x, y ∈ Rd. Hence, under both hypotheses on the weight function ω, we have, by (3.13)
or (3.14), for each x, y ∈ Rd and n big enough,

λω

(
x

n+ 1

)
≤ λLω

(
y

n+ 1

)
+ λω(x− y) +Dλ,(3.15)

for some constant Dλ that depends on λ ≥ 0 and the weight function ω.
Let ε > 0 and choose φ ∈ Sω(Rd) such that φ̂ ≡ 1 in a neighborhood of [−Rf̂ , Rf̂ ]

d and

φ̂ ≡ 0 outside [−Rf̂ − ε, Rf̂ + ε]d. Then f̂ = f̂ · φ̂ and hence, by the properties of the Fourier

transform, f = f ∗ φ. Now, by (3.15), we obtain

lim sup
n→+∞

(
max
|α|=n

∥∥∥eλω( x
|α|+1)f (α)(x)

∥∥∥1/n
Lp

)
= lim sup

n→+∞

(
max
|α|=n

∥∥∥eλω( x
n+1)f ∗ φ(α)(x)

∥∥∥1/n
Lp

)
= lim sup

n→+∞

(
max
|α|=n

∥∥∥∥eλω( x
n+1)

∫
Rd
φ(α)(y)f(x− y)dy

∥∥∥∥1/n
Lp

)

≤ lim sup
n→+∞

eDλ/n

(
max
|α|=n

∥∥∥∥∫
Rd
φ(α)(y)eλLω( y

n+1)f(x− y)eλω(x−y)dy

∥∥∥∥1/n
Lp

)
(3.16)

≤ lim sup
n→+∞

(
max
|α|=n

∥∥∥eλLω( x
n+1)φ(α)(x)

∥∥∥1/n
L1

)∥∥eλω(x)f(x)
∥∥1/n
Lp
≤ Rφ̂ ≤ Rf̂ + ε,

since, by assumption, eλω(x)f(x) ∈ Lp(Rd) and, by the construction of φ, Rφ̂ ≤ Rf̂ + ε. Now,
as ε > 0 is arbitrary, we obtain

lim sup
n→+∞

(
max
|α|=n

∥∥∥eλω( x
n+1)f (α)(x)

∥∥∥1/n
Lp

)
≤ Rf̂ .(3.17)

We remark that when supp f̂ is not compact, Rf̂ = +∞ and, in this case, (3.17) is still valid.
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Take now 0 6= ξ0 ∈ supp f̂ , and assume w.l.o.g. that 0 < ε < |ξ01 | = |ξ0|∞, where ξ0 =

(ξ01 , . . . , ξ
0
d) ∈ Rd. We take ψ ∈ D(ω)(Rd) with Π1 suppψ ⊆

[
ξ01 − ε

2
, ξ01 + ε

2

]
and 〈f̂ , ψ〉 6= 0,

where Π1 : Rd → R is the projection in the first variable.
Then, for ξ ∈ Rd with ξ1 6= 0, λ > 0 and 1 ≤ p < +∞ we have:

(|ξ01 | − ε)n|〈f̂(ξ), ψ(ξ)〉| = (|ξ01 | − ε)n|〈ξn1 f̂(ξ), ξ−n1 ψ(ξ)〉|
= (|ξ01 | − ε)n|〈D̂n

1f(ξ), ξ−n1 ψ(ξ)〉|
= (|ξ01 | − ε)n|〈Dn

1f(x),F−1(ξ−n1 ψ(ξ))(x)〉|
≤ (|ξ01 | − ε)n‖Dn

1f‖Lp‖F−1(ξ−n1 ψ(ξ))‖Lp′

≤ (|ξ01 | − ε)n‖e
λω( x

n+1)Dn
1f(x)‖Lp

∥∥∥∥ 1

(1 + |x|2)d
F−1

[
(1−∆ξ)

d(ξ−n1 ψ(ξ))
]∥∥∥∥

Lp′

≤ (|ξ01 | − ε)n‖e
λω( x

n+1)Dn
1f(x)‖Lp

∥∥∥∥ 1

(1 + |x|2)d

∥∥∥∥
Lp′

∥∥F−1 [(1−∆ξ)
d(ξ−n1 ψ(ξ))

]∥∥
L∞

.

We have

F−1
[
(1−∆ξ)

d(ξ−n1 ψ(ξ))
]

=
∑

|ν|=ν1+···+νd+1=d

d!

ν!
F−1

[
D2ν1
ξ1
· · ·D2νd

ξd
(ξ−n1 ψ(ξ))

]
=
∑
|ν|=d

d!

ν!

2ν1∑
h=0

(
2ν1
h

)
ih

(n+ h− 1)!

(n− 1)!
F−1

[
ξ−n−h1 D2ν1−h

ξ1
· · ·D2νd

ξd
ψ(ξ)

]
.

Therefore, we obtain∥∥F−1 [(1−∆ξ)
d(ξ−n1 ψ(ξ))

]∥∥
L∞

≤ 4d(d+ 1)d(n+ 2d)2d max
|ν|=d,0≤h≤2ν1

‖ξ−n−h1 D2ν1−h
ξ1

· · ·D2νd
ξd
ψ(ξ)‖L1

≤ 1

(|ξ01 | − ε/2)n
4d(d+ 1)d(n+ 2d)2d max

|ν|=d,0≤h≤2ν1
‖ξ−h1 D2ν1−h

ξ1
· · ·D2νd

ξd
ψ(ξ)‖L1 .

We then obtain

(|ξ01 | − ε)|〈f̂ , ψ〉|1/n

≤ |ξ01 | − ε
|ξ01 | − ε/2

‖eλω( x
n+1)Dn

1f(x)‖1/nLp

∥∥∥∥ 1

(1 + |x|2)d

∥∥∥∥1/n
Lp′

(n+ 2d)2d/nC(ψ)1/n,

for a constant C(ψ) that depends on ψ, the support of ψ and its partial derivatives up to the

order 2d, and the dimension d. Hence, since
|ξ01 |−ε
|ξ01 |−ε/2

≤ 1,

|ξ0|∞ − ε ≤ lim inf
n→+∞

(
max
|α|=n

∥∥∥eλω( x
n+1)f (α)(x)

∥∥∥1/n
Lp

)
≤ lim sup

n→+∞

(
max
|α|=n

∥∥∥eλω( x
n+1)f (α)(x)

∥∥∥1/n
Lp

)
≤ Rf̂

by (3.17).
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By the arbitrariness of ε > 0 and then of ξ0 ∈ supp f̂ :

Rf̂ ≤ lim inf
n→+∞

(
max
|α|=n

∥∥∥eλω( x
n+1)f (α)(x)

∥∥∥1/n
Lp

)
≤ lim sup

n→+∞

(
max
|α|=n

∥∥∥eλω( x
n+1)f (α)(x)

∥∥∥1/n
Lp

)
≤ Rf̂ ,

and, hence, there exists

lim
n→+∞

(
max
|α|=n

∥∥∥eλω( x
n+1)f (α)(x)

∥∥∥1/n
Lp

)
= Rf̂ ,

for λ > 0 and 1 ≤ p < +∞. �

Remark 3.5. The condition eλω( x
|α|+1)f (α)(x) ∈ Lp for all λ ≥ 0 is equivalent to eλω(x)f (α)(x) ∈

Lp for all λ ≥ 0 by (2.2). Therefore, if in Proposition 3.3 we ask that eλω(x)f (α)(x) ∈ Lp(Rd)
for all α ∈ Nd

0 and all λ ≥ 0, (3.11) is true without the additional assuptions (3.9) or (3.10).
Indeed, in (3.16) we can use (2.1) directly.

As we have already mentioned, Proposition 3.3 in the case λ = 0 is [5, Theorem 1] for several
variables, cf. [2, Theorem 3] also. On the other hand, we are interested in the case λ > 0 in
order to get Paley-Wiener theorems for ultradifferentiable functions; see Theorem 3.17 below.
To this aim, first we prove that, under the assumptions of Proposition 3.3, if (3.11) is satisfied
for some Rf̂ ∈ R and for all λ > 0, then u ∈ Sω(Rd). We need some lemmas.

Lemma 3.6. Let f ∈ C∞(Rd) such that eλω(x)f (α)(x) ∈ Lp(Rd) for all α ∈ Nd
0, λ > 0, and

some 1 ≤ p ≤ +∞. Then f ∈ S(Rd).

Proof. Since f ∈ S ′(Rd), we can apply the Fourier transform to f . We fix α, β ∈ Nd
0 and choose

λ > 0 big enough such that xβ−γe−λω( x
|α−γ|+1) ∈ Lp

′
(Rd), for every γ ≤ min{α, β} and for

1/p+ 1/p′ = 1, and we apply Hölder’s inequality to obtain

|ξαDβ f̂(ξ)| = |F
(
Dα
x (xβf(x))

)
(ξ)| ≤

∫
Rd
|Dα

x (xβf(x))|dx

≤
∑
γ≤α
γ≤β

(
α

γ

)
β!

(β − γ)!

∫
Rd
|xβ−γDα−γ

x f(x)|dx

=
∑
γ≤α
γ≤β

(
α

γ

)
β!

(β − γ)!

∫
Rd
|eλω( x

|α−γ|+1)Dα−γ
x f(x)| · |xβ−γe−λω( x

|α−γ|+1)|dx

≤
∑
γ≤α
γ≤β

(
α

γ

)
β!

(β − γ)!
‖eλω( x

|α−γ|+1)f (α−γ)(x)‖Lp · ‖xβ−γe−λω( x
|α−γ|+1)‖Lp′ ≤ Cα,β,λ,

which finishes the proof. �
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Lemma 3.7. Let 1 ≤ p ≤ +∞ and f ∈ C∞(Rd) with eλω(x)f (α)(x) ∈ Lp(Rd) for all α ∈ Nd
0

and for all λ > 0. If f̂ has compact support, we have

sup
ξ∈Rd

eλω(ξ)|f̂(ξ)| < +∞, for all λ > 0.(3.18)

Proof. Assume that ξ = (ξ1, . . . , ξd) 6= 0, and that |ξ|∞ = |ξ1|. Given n ∈ N0 and λ ≥ d+1
bp′

,

where 1/p+ 1/p′ = 1, we can write

|f̂(ξ)| = 1

|ξ1|n

∣∣∣∣∫
Rd
f(x)Dn

x1
e−ixξdx

∣∣∣∣
≤ 1

|ξ1|n

∫
Rd
eλω( x

n+1)|Dn
1f(x)|e−λω( x

n+1)dx

≤ 1

|ξ1|n
∥∥∥eλω( x

n+1)Dn
1f(x)

∥∥∥
Lp
·
∥∥∥e−λω( x

n+1)
∥∥∥
Lp′

=
Cλ
|ξ1|n

(n+ 1)
d
p′
∥∥∥eλω( x

n+1)Dn
1f(x)

∥∥∥
Lp

for Cλ = ‖e−λω(x)‖Lp′ < +∞ from (2.3).

Since f̂ has compact support by assumption, by Proposition 3.3 and Remark 3.5, we have
that (3.11) is satisfied with Rf̂ ∈ R. Therefore, there exists a constant D ∈ R, depending only
on f , such that, for all n ∈ N0,

‖eλω( x
n+1)Dn

1f(x)‖Lp ≤ Dn,

and hence, by Lemma 4.6(viii),

|f̂(ξ)| ≤ Cλ
Dn

|ξ1|n
(n+ 1)

d
p′ ≤ Cλ

D̃n

|ξ1|n
n! ≤ C ′λ|ξ1|−ne

λϕ∗(nλ)(3.19)

for some D̃, C ′λ > 0.
Now, by Lemma 4.6(vi), if we assume |ξ1| ≥ 1,

|f̂(ξ)| ≤ C ′λe
−(λ− 1

b )ω(ξ1)−
a
b .

Hence, it is suffices to take λ > 1/b big enough to finish the proof. �

Lemma 3.8. Let 1 ≤ p ≤ +∞ and f ∈ C∞(Rd) such that eλω(x)f (α)(x) ∈ Lp(R) for all α ∈ Nd
0

and λ > 0. If f̂ has compact support, then f ∈ Sω(Rd).

Proof. By Lemmas 3.6 and 3.7 we have that f ∈ S(Rd) and, for every λ > 0, there exists

Cλ > 0 such that ‖eλω(ξ)f̂(ξ)‖L∞ ≤ Cλ. Moreover ‖eλω(x)f(x)‖Lp ≤ C ′λ for some C ′λ > 0 by
assumption. It follows, from Theorem 2.5 (c)′ with q =∞, that f ∈ Sω(Rd). �

3.1. Relation with the Wigner transform. Proposition 3.3 proves that the radius of the
support of f̂ can be computed with the limit (3.11) for any λ ≥ 0. Now, we give a characteri-

zation of the support of f̂ in terms of the Wigner transform. First, we introduce the following
real Paley-Wiener space defined by means of the Gabor transform:
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Definition 3.9. Let T,R > 0 and define, for ψ ∈ PWω
T (Rd),

PWGω,ψ
R (Rd) := {f ∈ C∞(Rd) ∩ S ′ω(Rd) : for each λ, µ > 0,

sup
N∈N0

sup
x,ξ∈Rd

(R + T )−N
1

(N + 1)d/2
eλω( x

N+1)+µω(ξ)|ξ|N∞|Vψf(x, ξ)| < +∞}.

Proposition 3.10. Let ψ ∈ PWω
T (Rd). Then

PWω
R(Rd) ⊆ PWGω,ψ

R (Rd).

Proof. Let f ∈ PWω
R(Rd). Fix ξ ∈ Rd \ {0}. Then |ξ|∞ = |ξj| for some 1 ≤ j ≤ d and hence

|ξ|N∞|Vψf(x, ξ)| = |ξNj Vψf(x, ξ)| =
∣∣∣∣ξNj ∫

Rd
f(y)ψ(y − x)e−i〈y,ξ〉dy

∣∣∣∣
=

∣∣∣∣∫
Rd
f(y)ψ(y − x)DN

yj
(e−i〈y,ξ〉)dy

∣∣∣∣
=

∣∣∣∣∫
Rd
DN
yj

(
f(y)ψ(y − x)

)
e−i〈y,ξ〉dy

∣∣∣∣
≤

N∑
k=0

(
N

k

)∫
Rd
|Dk

yj
f(y)| · |DN−k

yj
ψ(y − x)|dy.

Since f ∈ PWω
R(Rd) and ψ ∈ PWω

T (Rd), it is not difficult to see that for every λ > 0 there is
Cλ > 0 such that

|ξ|N∞|Vψf(x, ξ)| ≤ Cλ(R + T )Ne−λω( x
N+1)(N + 1)d,(3.20)

for all x, ξ ∈ Rd and N ∈ N0.
Moreover, since f, ψ ∈ Sω(Rd) by Lemma 3.1, then Vψf ∈ Sω(R2d) also ([19, Thm. 2.7]) and,

hence, for all µ > 0 there exists Cµ > 0 such that

|Vψf(x, ξ)| ≤ Cµe
−µω(ξ),(3.21)

since ω(x, ξ) ≥ ω(ξ).

By Theorem 3.2 we have that supp f̂ ⊆ QR, supp ψ̂ ⊆ QT and hence the projection on ξ of
the support of Vψf satisfies

Πξ (suppVψf(x, ξ)) ⊆ QR+T , x ∈ Rd,(3.22)

as it can be deduced for example from [18, formula (3.8)]. From (3.21) and (3.22) we have that

|ξ|N∞|Vψf(x, ξ)| ≤ Cµ(R + T )Ne−µω(ξ)(3.23)

for all x, ξ ∈ Rd, N ∈ N0 and µ > 0.
Combining (3.20) and (3.23) we finally have:

|ξ|N∞|Vψf(x, ξ)| =
√(
|ξ|N∞|Vψf(x, ξ)|

)2
≤
√
Cλ(R + T )Ne−λω( x

N+1)(N + 1)dCµ(R + T )Ne−µω(ξ)

≤ Cλ,µ(R + T )N(N + 1)d/2e−
λ
2
ω( x

N+1)e−
µ
2
ω(ξ)

for some Cλ,µ > 0 and for all x, ξ ∈ Rd, N ∈ N0, λ, µ > 0. Therefore f ∈ PWGω,ψ
R (Rd). �
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Given the space defined in (2.5), we have the following result:

Proposition 3.11. Let f, ψ ∈ Sω(Rd) and p, q ∈ [1,+∞]. Then, for every λ, µ ≥ 0,

lim sup
N→+∞

∥∥∥eλω( x
N+1)+µω(ξ)|ξ|N∞Vψf(x, ξ)

∥∥∥1/N
Lp,q
≤ Rf̂ +Rψ̂.(3.24)

Proof. If supp f̂ or supp ψ̂ are not compact, then Rf̂ = +∞ or, respectively, Rψ̂ = +∞, so the

inequality (3.24) is trivial. So, we can assume that supp f̂ and supp ψ̂ are compact, and hence

Rf̂ , Rψ̂ ∈ R. By Theorem 3.2 and Proposition 3.10, we have f ∈ PWω
Rf̂

(Rd) ⊆ PWGω,ψ
Rf̂

(Rd)

and hence for σ and τ sufficiently large, from (2.3) we obtain

lim sup
N→+∞

∥∥∥eλω( x
N+1)+µω(ξ)|ξ|N∞Vψf(x, ξ)

∥∥∥1/N
Lp,q

≤ lim sup
N→+∞

∥∥∥e(λ+σ)ω( x
N+1)+(µ+τ)ω(ξ)|ξ|N∞Vψf(x, ξ)

∥∥∥1/N
L∞
·
∥∥∥e−σω( x

N+1)−τω(ξ)
∥∥∥1/N
Lp,q

≤ lim sup
N→+∞

C
1
N
λ,µ(Rf̂ +Rψ̂)(N + 1)

d
2N

+ d
pN ‖e−σω(x)−τω(ξ)‖1/NLp,q = Rf̂ +Rψ̂,

for some Cλ,µ > 0, if p < +∞. If p = +∞ the proof is similar. �

We introduce now the following notation for the translation and modulation operators; for
x, ξ, x0, ξ0 ∈ Rd we denote

Tx0f(x) = f(x− x0), Mξ0f(ξ) = ei〈ξ
0,ξ〉f(ξ).

Example 3.12. The inequality (3.24) is strict, in general. Let us consider, for instance,

f ∈ Sω(R) with supp f̂ ⊆ [Rf̂ − µ,Rf̂ ] for some 0 < µ < Rf̂ < +∞. Then

‖|ξ|N∞Vff(x, ξ)‖1/NLp,q ≤ µ‖Vff(x, ξ)‖1/NLp,q(3.25)

since

Πξ suppVff(x, ξ) = ∪
x∈R

supp(f̂ ∗M−x
¯̂̃
f)(ξ) ⊆ [Rf̂ − µ,Rf̂ ] + [−Rf̂ ,−Rf̂ + µ] = [−µ, µ],

where f̃(x) = f(−x), by [18, Lemma 3.1.1]. Since ‖Vff(x, ξ)‖Lp,q does not depend on N , letting
N → +∞ in (3.25) we get that

lim sup
N→+∞

‖|ξ|N∞Vff(x, ξ)‖1/NLp,q ≤ µ < Rf̂ < 2Rf̂ .

On the other hand, for the right choice of the window function we get the equality in (3.24), as
the next result shows. This fact becomes crucial for the analysis of real Paley-Wiener theorems
in terms of the Wigner transform. In the next result the number Rf̂ could be +∞.

Proposition 3.13. Let f ∈ Sω(Rd) and p, q ∈ [1,+∞]. Then, for all λ, µ ≥ 0, we have

lim
N→+∞

∥∥∥eλω( x
N+1)+µω(ξ)|ξ|N∞Vf̃f(x, ξ)

∥∥∥1/N
Lp,q

= 2Rf̂ .(3.26)
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Proof. By Proposition 3.11 we have

lim sup
N→+∞

∥∥∥eλω( x
N+1)+µω(ξ)|ξ|N∞Vf̃f(x, ξ)

∥∥∥1/N
Lp,q
≤ 2Rf̂ ,(3.27)

since ˆ̃f(ξ) = f̂(−ξ) and hence R ˆ̃
f

= Rf̂ .

Now, we fix ξ0 ∈ supp f̂ and 0 < ε < 2|ξ0|∞, choose φε, ψε ∈ Sω(Rd) with supp φ̂ε, ψ̂ε ⊆ Qε/4

and

〈f̂ , Tξ0ψ̂ε〉 6= 0, 〈f̂ , Tξ0 ˆ̃φε〉 6= 0.(3.28)

Note that, by [18, formula (3.10)],

Πξ supp (Vφε(M2ξ0ψε)(x, ξ)) = Πξ supp
(
e−i〈x,ξ〉Vφ̂ε(M̂2ξ0ψε)(ξ,−x)

)
= Πξ supp

(
Vφ̂ε(T2ξ0ψ̂ε)(ξ,−x)

)
= Πξ supp

((
T2ξ0ψ̂ε ∗M−xφ̂ε

)
(ξ)
)

⊆ Q ε
2
(2ξ0) := {ξ ∈ Rd : |ξ − 2ξ0|∞ ≤ ε/2}.

Then, for ξ ∈ Πξ supp (Vφε(M2ξ0ψε)) we have |ξ|∞ ≥ 2|ξ0|∞−ε/2. Hence, for all ξ ∈ Rd \{0}:∥∥∥e−λω( x
N+1)−µω(ξ)|ξ|−N∞ Vφε(M2ξ0ψε)(x, ξ)

∥∥∥
Lp′,q′

≤
(

2|ξ0|∞ −
ε

2

)−N
‖Vφε(M2ξ0ψε)‖Lp′,q′

≤ Cε,ξ0
(

2|ξ0|∞ −
ε

2

)−N
(3.29)

for some Cε,ξ0 > 0, since Vφε(M2ξ0ψε) ∈ Sω(R2d) ⊆ Lp
′,q′(R2d), where we have denoted by p′, q′

the conjugate exponents of p and q respectively.
On the other hand, for ξ ∈ Rd \ {0}, by (3.29):

(2|ξ0|∞ − ε)N |〈Vf̃f(x, ξ), e−i〈ξ
0,x〉Vφε(M2ξ0ψε)(x, ξ)〉|

≤ (2|ξ0|∞ − ε)N
∣∣∣〈eλω( x

N+1)+µω(ξ)|ξ|N∞Vf̃f(x, ξ), e−λω( x
N+1)−µω(ξ)|ξ|−N∞ e−i〈ξ

0,x〉Vφε(M2ξ0ψε)(x, ξ)〉
∣∣∣

≤ (2|ξ0|∞ − ε)N
∥∥∥eλω( x

N+1)+µω(ξ)|ξ|N∞Vf̃f
∥∥∥
Lp,q
·
∥∥∥e−λω( x

N+1)−µω(ξ)|ξ|−N∞ Vφε(M2ξ0ψε)
∥∥∥
Lp′,q′

≤ Cε,ξ0
(2|ξ0|∞ − ε)N

(2|ξ0|∞ − ε/2)N

∥∥∥eλω( x
N+1)+µω(ξ)|ξ|N∞Vf̃f

∥∥∥
Lp,q
≤ Cε,ξ0

∥∥∥eλω( x
N+1)+µω(ξ)|ξ|N∞Vf̃f

∥∥∥
Lp,q

.

Then

(2|ξ0|∞ − ε)
∣∣∣〈Vf̃f(x, ξ), e−i〈ξ

0,x〉Vφε(M2ξ0ψε)(x, ξ)〉
∣∣∣ 1
N ≤

≤ C
1
N

ε,ξ0

∥∥∥eλω( x
N+1)+µω(ξ)|ξ|N∞Vf̃f

∥∥∥ 1
N

Lp,q
.(3.30)
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Let us now remark that

Vφε(M2ξ0ψε)(x, ξ) =

∫
Rd
ei〈2ξ

0,y〉ψε(y)φε(y − x)e−i〈y,ξ〉dy

= ei〈ξ
0,x〉
∫
Rd
ei〈ξ

0,y〉ψε(y)e−i〈ξ0,y−x〉φε(y − x)e−i〈y,ξ〉dy

= ei〈ξ
0,x〉VM−ξ0φε(Mξ0ψε)(x, ξ)

and therefore, from [18, Thm. 3.2.1], by (3.28):

〈Vf̃f(x, ξ), e−i〈ξ
0,x〉Vφε(M2ξ0ψε)(x, ξ)〉 = 〈Vf̃f, VM−ξ0φε(Mξ0ψε)〉

= 〈f,Mξ0ψε〉 · 〈f̃ ,M−ξ0φε〉 = 〈f̂ , M̂ξ0ψε〉 · 〈̂̃f, M̂−ξ0φε〉
= 〈f̂ , Tξ0ψ̂ε〉 · 〈̂̃f, T−ξ0φ̂ε〉 = 〈f̂ , Tξ0ψ̂ε〉 · 〈f̂ , Tξ0 ̂̃φε〉 6= 0.

Therefore

lim
N→+∞

∣∣∣〈Vf̃f(x, ξ), e−i〈ξ
0,x〉Vφε(M2ξ0ψε)(x, ξ)〉

∣∣∣1/N = 1

and from (3.30) we obtain that

(2|ξ0|∞ − ε) ≤ lim inf
N→+∞

∥∥∥eλω( x
N+1)+µω(ξ)|ξ|N∞Vf̃f

∥∥∥1/N
Lp,q

.(3.31)

By the arbitrariness of 0 < ε < 2|ξ0|∞ and of ξ0 ∈ supp f̂ , from (3.31) and (3.27), we finally
obtain (3.26). �

Corollary 3.14. Let f ∈ Sω(Rd) and p, q ∈ [1,+∞]. Then, for all λ, µ ≥ 0:

lim
N→+∞

∥∥∥eλω( x
N+1)+µω(ξ)|ξ|N∞Wig f(x, ξ)

∥∥∥1/N
Lp,q

= Rf̂ .(3.32)

Proof. By [18, Lemma 4.3.1], if p, q ∈ [1,+∞):∥∥∥eλω( x
N+1)+µω(ξ)|ξ|N∞Wig f(x, ξ)

∥∥∥
Lp,q

=
∥∥∥eλω( x

N+1)+µω(ξ)|ξ|N∞2de2i〈x,ξ〉Vf̃f(2x, 2ξ)
∥∥∥
Lp,q

= 2d2−
d
p2−

d
q

∥∥∥∥eλω( y
2(N+1))+µω( η2 )

∣∣∣η
2

∣∣∣N
∞
Vf̃f(y, η)

∥∥∥∥
Lp,q

.(3.33)

Using the fact that ω is increasing and satisfies condition (α) of Definition 2.1 we have

1

L
ω(t)− 1 ≤ ω

(
t

2

)
≤ ω(t),
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and so, by (3.33),

2
d
N
(1− 1

p
− 1
q
)1

2
e−λ/N−µ/N

∥∥∥e λLω( y
N+1)+ µ

L
ω(η) |η|N∞ Vf̃f(y, η)

∥∥∥1/N
Lp,q

≤
∥∥∥eλω( x

N+1)+µω(ξ)|ξ|N∞Wig f(x, ξ)
∥∥∥1/N
Lp,q

≤ 2
d
N
(1− 1

p
− 1
q
)1

2

∥∥∥eλω( y
N+1)+µω(η) |η|N∞ Vf̃f(y, η)

∥∥∥1/N
Lp,q

.

Consequently, from Proposition 3.13, we deduce

lim
N→+∞

∥∥∥eλω( x
N+1)+µω(ξ)|ξ|N∞Wig f(x, ξ)

∥∥∥1/N
Lp,q

=
1

2
· 2Rf̂ = Rf̂ ,

for 1 ≤ p, q <∞. If p and/or q is ∞ the proof is similar. �

Corollary 3.15. Let f ∈ Sω(Rd) and p, q ∈ [1,+∞]. Then

lim
N→+∞

∥∥|ξ|N∞Wig f(x, ξ)
∥∥1/N
Lp,q

= Rf̂(3.34)

lim
N→+∞

∥∥|x|N∞Wig f(x, ξ)
∥∥1/N
Lp,q

= Rf .(3.35)

Proof. Formula (3.34) follows from (3.32) with λ = µ = 0.

Formula (3.35) follows from [18, Prop. 4.3.2] and (3.34) applied to f̂ :

lim
N→+∞

∥∥|x|N∞Wig f(x, ξ)
∥∥1/N
Lp,q

= lim
N→+∞

∥∥∥|x|N∞Wig f̂(ξ,−x)
∥∥∥1/N
Lp,q

= lim
N→+∞

∥∥∥|x|N∞Wig f̂(ξ, x)
∥∥∥1/N
Lp,q

= R ˆ̂
f

= Rf .

�

If we consider formula (3.34) for p = q = 2 in the one-dimensional case, the multiplication
by |ξ|N cannot be replaced by the derivatives DN

x of the Wigner transform of a real valued
function f ∈ Sω(R). Indeed, if we denote by

Af(x, ξ) :=

∫
R
f
(
t+

x

2

)
f
(
t− x

2

)
e−i〈t,ξ〉dt

the ambiguity function Af of f , by [18, Lemma 4.3.4], we obtain

‖DN
x Wig f(x, ξ)‖L2 = ‖F

(
DN
x Wig f(x, ξ)

)
‖L2

= ‖yNŴig f(y, η)‖L2 = ‖yNAf(−η, y)‖L2 .(3.36)

Now, since f is real valued by assumption,

Af(−η, y) =

∫
R
f
(
t− η

2

)
f
(
t+

η

2

)
e−i〈t,y〉dt

=

∫
R
f(u− η)f(u)e−i〈u−

η
2
,y〉du = e

i
2
〈η,y〉Vff(η, y).

Hence, by (3.36),

lim sup
N→+∞

‖DN
x Wig f(x, ξ)‖1/NL2 = lim sup

N→+∞
‖yNVff(η, y)‖1/NL2 ,
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which can be strictly smaller than Rf̂ , by Example 3.12.

On the other hand, if f = f̃ , by Proposition 3.13,

lim
N→+∞

‖DN
x Wig f(x, ξ)‖1/NL2 = lim

N→+∞
‖yNVf̃f(η, y)‖1/NL2 = 2Rf̂ > Rf̂ .

Lemma 3.16. Let p, q ∈ [1,+∞] and f ∈ S ′ω(Rd) such that

eλω(x)+µω(ξ) Wig f(x, ξ) ∈ Lp,q(R2d)

for all λ, µ > 0. Then f ∈ Sω(Rd).

Proof. We observe that Wig f ∈ L1(R2d), since

‖Wig f‖L1 ≤ ‖eλω(x)+µω(ξ) Wig f(x, ξ)‖Lp,q‖e−λω(x)−µω(ξ)‖Lp′,q′ <∞
by hypothesis and (2.3), provided that λ ≥ (d+ 1)/bp′ and µ ≥ (d+ 1)/bq′. Then, by applying
the inverse partial Fourier transform with respect to ξ to Wig f(x, ξ) we get

f

(
x+

t

2

)
f

(
x− t

2

)
= (2π)−d

∫
Rd

Wig f(x, ξ)ei〈ξ,t〉dξ.(3.37)

Then, the element f
(
x+ t

2

)
f
(
x− t

2

)
, that a priori belongs to S ′ω(R2d

(t,x)), is in fact a function

in L∞(Rd
t ) for almost every x ∈ Rd, and is in L1(Rd

x) for every t ∈ Rd. Now, suppose that
f 6≡ 0 (otherwise the result is trivial), and let φ0 ∈ Sω(Rd) such that 〈f, φ0〉 6= 0. For a function
φ ∈ Sω(Rd), consider

Φ(t, x) = φ

(
x+

t

2

)
φ0

(
x− t

2

)
∈ Sω(R2d),

and apply the two distributions in (3.37) to the test function Φ; on the right-hand side we can
write the application as an integral, and then we obtain

〈f, φ〉〈f, φ0〉 = (2π)−d
∫
R2d

(∫
Rd

Wig f(x, ξ)ei〈ξ,t〉dξ

)
φ

(
x+

t

2

)
φ0

(
x− t

2

)
dx dt.

Then by the change of variables x+ t/2 = y, x− t/2 = s and by Fubini Theorem we obtain

〈f, φ〉 =
1

(2π)d〈f, φ0〉

∫
Rd

(∫
R2d

Wig f

(
y + s

2
, ξ

)
ei〈ξ,y−s〉φ0(s) dξ ds

)
φ(y) dy,

and so we get that f is a function in L1(Rd) given by

f(x) =
1

(2π)d〈f, φ0〉

∫
R2d

Wig f

(
x+ s

2
, ξ

)
ei〈ξ,x−s〉φ0(s) dξ ds.(3.38)

In order to prove that f ∈ Sω(Rd) we shall prove that f satisfies condition (c)′ of Theorem 2.5.
Suppose that p < +∞. By (3.38) and Minkowski inequality, cf. for example [17, 6.19], we have

‖eλω(x)f(x)‖Lp ≤
1

(2π)d|〈f, φ0〉|

(∫
Rd

(∫
R2d

eλω(x)
∣∣∣∣Wig f

(
x+ s

2
, ξ

)∣∣∣∣ |φ0(s)|dξds
)p

dx

)1/p

≤ 1

(2π)d|〈f, φ0〉|

∫
R2d

(∫
Rd

(
eλω(x)

∣∣∣∣Wig f

(
x+ s

2
, ξ

)∣∣∣∣ |φ0(s)|
)p

dx

)1/p

dξds.
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Writing C0 = ((2π)d|〈f, φ0〉|)−1, using Hölder inequality in the ξ-integral and (2.1) we obtain,
for µ ≥ (d+ 1)/bq′,

‖eλω(x)f(x)‖Lp ≤ C0e
λL

∫
R2d

e−µω(ξ)eµω(ξ)

·
(∫

Rd

(
eλLω(x+s)

∣∣∣∣Wig f

(
x+ s

2
, ξ

)∣∣∣∣)p dx)1/p

eλLω(s)|φ0(s)|dξds

≤ C02
d/peλ(L

2+L)‖e−µω(ξ)‖Lq′

·
(∫

Rd
eλLω(s)|φ0(s)|ds

)∥∥∥∥∥eµω(ξ)
(∫

Rd

(
eλL

2ω(y)|Wig f(y, ξ)|
)p
dy

)1/p
∥∥∥∥∥
Lq(Rdξ)

= Cλ‖eλL
2ω(y)+µω(ξ) Wig f(y, ξ)‖Lp.q <∞(3.39)

by hypothesis and (2.3). In the case p = +∞ the same proof works, with small modifications,
so (3.39) holds for every p and q.

Now, let φ1 ∈ Sω(Rd) be such that 〈f̂ , φ1〉 6= 0, and q < +∞. We apply (3.38) to f̂ and use
[18, Prop. 4.3.2] to get

‖eλω(ξ)f̂(ξ)‖Lq ≤ C1

(∫
Rd

(
eλω(ξ)

∫
R2d

∣∣∣∣Wig f̂

(
ξ + s

2
, y

)∣∣∣∣ |φ1(s)|dyds
)q

dξ

)1/q

= C1

(∫
Rd

(
eλω(ξ)

∫
R2d

∣∣∣∣Wig f

(
−y, ξ + s

2

)∣∣∣∣ |φ1(s)|dyds
)q

dξ

)1/q

,

where C1 = ((2π)d|〈f̂ , φ1〉|)−1. We apply the change of variables (ξ+s)/2 = η in the ξ-integral,
−y = x, use condition (α) of Definition 2.1 and (2.1) and Hölder’s inequality in the x-integral
to obtain, for µ ≥ (d+ 1)/bp′,

‖eλω(ξ)f̂(ξ)‖Lq ≤ C12
d
q eλ(L

2+L)

∫
Rd
eλLω(s)|φ1(s)|ds

·
(∫

Rd

(
eλL

2ω(η)

∫
Rd
e−µω(x)eµω(x)|Wig f(x, η)|dx

)q
dη

)1/q

≤ Cλ

(∫
Rd

(∫
Rd

(
eλL

2ω(η)eµω(x)|Wig f(x, η)|
)p
dx

)q/p
dη

)1/q

= Cλ‖eµω(x)+λL
2ω(η) Wig f(x, η)‖Lp,q <∞,(3.40)

by hypothesis, where Cλ = C12
d/qeλ(L

2+L)
∫
eλLω(s)|φ1(s)|ds‖e−µω(x)‖Lp′ < +∞ by (2.3). If

q = ∞ the same proof works, with small modifications, so (3.40) holds for every p and q. By
(3.39) and (3.40) the function f satisfies Theorem 2.5 (c)′. �

We can now prove the following theorem that, besides the classical result in ultradifferentiable
classes (see [6, 14, 16]), contains real ultradifferentiable Paley-Wiener theorems in the spirit of
[3] and a new equivalent condition on the Wigner transform. Given R > 0, for the compact set
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QR, as defined in (3.3), we denote its supporting function by

HR(x) := sup{〈x, y〉 : y ∈ Rd, |y|∞ ≤ R}.

Theorem 3.17. Let 1 ≤ p, q ≤ +∞, R > 0 and f ∈ C∞(Rd). Then the following conditions
are equivalent:

(a) f is an entire function in Cd and for all k ∈ N0 there exists Ck > 0 such that

|f(z)| ≤ Cke
HR(Im z)−kω(z), z ∈ Cd.

(b) f ∈ PWω
R(Rd).

(c) eλω(x)f (α)(x) ∈ Lp(Rd) for all α ∈ Nd
0 and λ ≥ 0 and

lim
n→+∞

(
max
|α|=n

∥∥∥eλω( x
n+1)f (α)(x)

∥∥∥
Lp

)1/n

= Rf̂ ≤ R.(3.41)

(d) f ∈ Sω(Rd) and supp f̂ ⊆ QR.
(e) f ∈ S ′ω(Rd), eλω(x)+µω(ξ) Wig f(x, ξ) ∈ Lp,q(R2d) for all λ, µ ≥ 0 and

lim
n→+∞

∥∥∥eλω( x
n+1)+µω(ξ)|ξ|n∞Wig f(x, ξ)

∥∥∥1/n
Lp,q

= Rf̂ ≤ R.(3.42)

Proof. (a)⇔ (d): This is Paley-Wiener theorem in D(ω)(Rd) (Beurling case) for the convex set
QR; see [7, Theorem 2.14], or [6, Theorem 1.4.1] and [16, Satz 3.3], or [14, Lemma 3.3] when the
non-quasianalytic weight ω satisfies the additional assumption log(1+ t) = o(ω(t)) as t→ +∞.

(d)⇔ (b): This is Theorem 3.2.
(d)⇒ (c): It follows from Theorem 2.5(a)′, Proposition 3.3 and Remark 3.5.
(c)⇒ (d): It follows from Proposition 3.3, Remark 3.5 and Lemma 3.8.
(d)⇒ (e): It is Corollary 3.14, since for f ∈ Sω(Rd),

eλω(x)+µω(ξ) Wig f(x, ξ) ∈ Lp,q(R2d)

for all λ, µ ≥ 0.
(e)⇒ (d): Follows from Lemma 3.16 and Corollary 3.14. �

Corollary 3.18. Given 1 ≤ p, q ≤ +∞ and R > 0, we consider f ∈ S ′ω(Rd) such that
eλω(x)+µω(ξ) Wig f ∈ Lp,q(R2d) for all λ, µ ≥ 0. We have:

(a) f ∈ Sω(Rd) with supp f̂ ⊆ QR if and only if Rf̂ ≤ R and for all λ, µ > 0 there exists
Cλ,µ > 0 such that

|ξ|n∞Wig f(x, ξ) < Cλ,µR
n(n+ 1)

d
2 e−λω( x

n+1)−µω(ξ), n ∈ N0, (x, ξ) ∈ R2d.

(b) f ∈ Sω(Rd) with supp f ⊆ QR if and only if Rf ≤ R and for all λ, µ > 0 there exists
Cλ,µ > 0 such that

|x|∞|Wig f(x, ξ)| ≤ Cµ,λR
n(n+ 1)

d
2 e−λω( ξ

n+1)−µω(x), n ∈ N0, (x, ξ) ∈ R2d.

Proof. (a) If f ∈ Sω(Rd) and supp f̂ ⊆ QR, by Theorem 3.17, we obtain that f ∈ PWω
R(Rd).

From Proposition 3.10 we have f ∈ PWGω,f̃
R , where f̃(x) = f(−x), and hence

sup
n∈N0

sup
x,ξ∈Rd

(2R)−n
1

(n+ 1)d/2
eλω( x

n+1)+µω(ξ)|ξ|n∞|Vf̃f(x, ξ)| < +∞.
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It follows from [18, Lemma 4.3.1] that

sup
n∈N0

sup
x,ξ∈Rd

R−n
1

(n+ 1)d/2
eλω( x

n+1)+µω(ξ)|ξ|n∞|Wig f(x, ξ)|

≤ sup
n∈N0

sup
x,ξ∈Rd

R−n
1

(n+ 1)d/2
eλω( 2x

n+1)+µω(2ξ) |2ξ|n∞
2n
|2dVf̃f(2x, 2ξ)|

= 2d sup
n∈N0

sup
x,ξ∈Rd

(2R)−n
1

(n+ 1)d/2
eλω( x

n+1)+µω(ξ)|ξ|n∞|Vf̃f(x, ξ)| < +∞.

Conversely, if f ∈ S ′ω(Rd) with eλω(x)+µω(ξ) Wig f ∈ Lp,q(R2d) and the inequality of (a) is

satisfied, then f ∈ Sω(Rd) by Lemma 3.16 and supp f̂ ⊆ QR by Corollary 3.14, since Rf̂ ≤ R.

(b) It follows from (a) because

sup
n∈N0

sup
(x,ξ)∈R2d

R−n
1

(n+ 1)
d
2

eλω( x
n+1)+µω(ξ)|ξ|n∞|Wig f̂(x, ξ)| < +∞

is equivalent to

sup
n∈N0

sup
(x,ξ)∈R2d

R−n
1

(n+ 1)
d
2

eλω( ξ
n+1)+µω(x)|x|n∞|Wig f(x, ξ)| < +∞,

since Wig f̂(x, ξ) = Wig f(−ξ, x) by [18, Prop. 4.3.2]. �

If we consider ω(t) = log(1 + t) we have that Sω(Rd) is the classical Schwartz space S(Rd)
and hence Theorem 3.2 with d = 1 coincides with Theorem 1 of [2], while Proposition 3.3
for d = 1 and λ = 0 coincides with Theorem 1 of [5]. We also observe that Lemma 3.6 for
ω(t) = log(1 + t) implies

f ∈ C∞(Rd), (1 + |x|)λf (α)(x) ∈ Lp(Rd) ∀λ > 0, ∀α ∈ Nd
0, for some p ∈ [1,+∞]⇔ f ∈ S(Rd).

Moreover, Lemma 3.16 for ω(t) = log(1 + t) implies

f ∈ S ′(Rd), (1 + |x|)λ(1 + |ξ|)µ Wig f(x, ξ) ∈ Lp,q(Rd) ∀µ, λ > 0, for some p, q ∈ [1,+∞]

⇔ f ∈ S(Rd).

The above remarks lead to the following corollary of Theorem 3.17 for ω(t) = log(1 + t):

Corollary 3.19. Let 1 ≤ p, q ≤ +∞, R > 0 and f ∈ C∞(Rd). Then the following conditions
are equivalent:

(a) f is an entire function in Cd and for all k ∈ N0 there exists Ck > 0 such that

|f(z)| ≤ Ck(1 + |z|)−keHR(Im z), z ∈ Cd.

(b) f ∈ S(Rd) and for all λ > 0 there exists Cλ > 0 such that

|f (α)(x)| ≤ CλR
|α|(|α|+ 1)λ(1 + |x|)−λ x ∈ Rd, α ∈ Nd

0.

(c) f ∈ S(Rd) and

lim
n→+∞

(
max
|α|=n

∥∥f (α)(x)
∥∥
Lp

)1/n

= Rf̂ ≤ R.

(d) f ∈ S(Rd) and supp f̂ ⊆ QR.
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(e) f ∈ S(Rd) and

lim
n→+∞

‖|ξ|n∞Wig f(x, ξ)‖1/nLp,q = Rf̂ ≤ R.

Proof. It follows directly from Theorem 3.17 with ω(t) = log(1 + t) and the observation that
(3.41) and (3.42) can be required just for λ = 0 since we have f ∈ S(Rd).

Note also that we can substitute eλω( x
n+1) with (1+|x|)λ

(n+1)λ
instead of

(
1 + |x|

n+1

)λ
since(

1 + |x|
n+ 1

)λ
≤
(

1 +
|x|
n+ 1

)λ
≤
(

1 +
1 + |x|
n+ 1

)[λ]+1

=

[λ]+1∑
k=0

(
[λ] + 1

k

)(
1 + |x|
n+ 1

)k
.

�

Example 3.20. For k ∈ N0, let ek be the Hermite function on R defined by

ek(x) =
1

(2kk!
√
π)1/2

e−x
2/2Hk(x), x ∈ R,

where the Hermite polynomial Hk(x) of degree k is given by

Hk(x) = (−1)kex
2 dk

dxk
e−x

2

, x ∈ R.

The Hermite functions ek ∈ Sω(R) (see [23, Lemma 3.2] and [11, Remark 4.17]). Then the
Wigner transform Wig(ej, ek) ∈ Sω(R2) and the Fourier-Wigner transform

V (ej, ek)(y, t) :=
1

2π

∫
R
ej

(
x+

t

2

)
ek

(
x− t

2

)
eiyxdx

is the inverse Fourier transform of Wig(ej, ek) (see [27]):

Wig(ej, ek)(x, ξ) = F(V (ej, ek))(x, ξ).(3.43)

Let us denote by

ej,k(y, t) = V (ej, ek)(y, t), j, k ∈ N0.

By (3.43)

Wig(ej, ek)(x, ξ) = êj,k(x, ξ)

and, by [27, Thm. 3.4], for all j, k ∈ N0:

Lej,k(y, t) = (2k + 1)ej,k(y, t),

where L is the twisted Laplacian defined by

L :=

(
Dy −

1

2
t

)2

+

(
Dt +

1

2
y

)2

.

Then

L̂ej,k = (2k + 1)êj,k

and, by [11, Ex. 5.4]:

L̂êj,k(x, ξ) = (2k + 1)êj,k(x, ξ),(3.44)
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where

L̂ :=

(
1

2
Dξ + x

)2

+

(
1

2
Dx − ξ

)2

.

It is well-known that the Hermite functions are eigenfunctions of the Fourier transform:

êk(ξ) = λek(ξ)

for some λ ∈ C. Since ek does not have compact support, we have therefore that êk does not
have compact support, i.e. Rêk = +∞. Since ek ∈ Sω(R), by Corollary 3.14 we have that for
all p, q ∈ [1,+∞] and µ, λ ≥ 0:

lim
n→+∞

∥∥∥eλω( x
n+1)+µω(ξ)|ξ|n Wig(ek, ek)(x, ξ)

∥∥∥1/n
Lp,q

= +∞,

i.e. the eigenfunctions êk,k = Wig(ek, ek) of L̂ satisfy:

lim
n→+∞

∥∥∥eλω( x
n+1)+µω(ξ)|ξ|nêk,k(x, ξ)

∥∥∥1/n
Lp,q

= +∞, ∀µ, λ ≥ 0.

Moreover, Proposition 3.3 and Remark 3.5 imply that the Hermite functions ek satisfy

lim
n→+∞

∥∥∥∥eλω( x
n+1) d

n

dxn
ek(x)

∥∥∥∥1/n
Lp

= +∞

for all λ ≥ 0 and p ∈ [1,+∞].

4. Arbitrary support

In order to characterize the support of f̂ in terms of the growth of some derivatives of f when
supp f̂ is not compact, we replace, in the definition of PWω

R(Rd), the derivatives Dα by the
iterates P (D)n of a linear partial differential operator with constant coefficients and generalize
some results of [4].

Given a polynomial P ∈ C[ξ1, . . . , ξd] we denote by P (D) the corresponding linear partial
differential operator with symbol P , where we use the standard notation Dj := −i∂j. Following
[4], we define for an ultradistribution T on Rd and a polynomial P ∈ C[ξ1, . . . , ξd],

R(P, T ) := sup{|P (ξ)| : ξ ∈ suppT},(4.1)

with the convention that R(P, T ) = 0 if T ≡ 0.
As in the previous sections, ω is a non-quasianalytic weight as in Definition 2.1, ϕ is as in

(δ) in Definition 2.1, and ϕ∗ is as in (2.4).

Lemma 4.1. Let P ∈ C[ξ1, . . . , ξd] be a polynomial of degree m ≥ 1. Then, for all k ∈ Nd
0 and

n ∈ N:

Dk
ξP (ξ)n =

|k|∑
`=0

n!

(n− `)!
P`,k(ξ)P (ξ)n−`,(4.2)

for polynomials P`,k(ξ) independent of n and of degree degP`,k ≤ `(m− 1).
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Proof. Let us prove it by induction on |k|. If |k| = 0 then the statement is trivial with P0,0 ≡ 1.
Assume (4.2) to be valid for |k|, and let us prove it for |k|+ 1, i.e. for a multi-index k + ej for
some 1 ≤ j ≤ d, where ej is the vector with all entries equal to 0 except the j-th entry equal
to 1.

By the inductive assumption

D
k+ej
ξ P (ξ)n =

|k|∑
`=0

n!

(n− `)!
Dξj [P`,k(ξ)P (ξ)n−`]

=

|k|∑
`=0

n!

(n− `)!
[DξjP`,k(ξ) · P (ξ)n−` + P`,k(ξ)(n− `) ·DξjP (ξ) · P (ξ)n−`−1]

=

|k|∑
`=0

n!

(n− `)!
DξjP`,k(ξ) · P (ξ)n−` +

|k|∑
`=0

n!

(n− `− 1)!
P`,k(ξ) ·DξjP (ξ) · P (ξ)n−`−1

with deg
(
P`,k(ξ)DξjP (ξ)

)
≤ `(m− 1) + (m− 1) = (`+ 1)(m− 1).

We can thus write

D
k+ej
ξ P (ξ)n =

|k|+1∑
˜̀=0

n!

(n− ˜̀)!
P˜̀,k+ej

(ξ)P (ξ)n−
˜̀
,

for some polynomials P˜̀,k+ej
not depending on n and of degree degP˜̀,k+ej

≤ ˜̀(m− 1). �

Theorem 4.2. Let P ∈ C[x1, . . . , xd] be a polynomial of degree m ≥ 1. Let f ∈ Sω(Rd), R > 0

and let R(P, f̂) be defined as in (4.1). Then the following conditions are equivalent:

(a) For all λ > 0 there is Cλ > 0 such that for each n ∈ N0 and x ∈ Rd we have

|P (D)nf(x)| ≤ CλR
ne
−λω

(
| x
n+1 |

1/m
)

;(4.3)

(b) R(P, f̂) ≤ R.

Proof. Let us first prove that (a)⇒ (b). Let ξ0 ∈ Rd and ε > 0 such that |P (ξ0)| ≥ R + ε > 0.

We have to prove that f̂(ξ0) = 0.
For every λ > 0 and n ∈ N0 we have, from (a):

|f̂(ξ0)| =
∣∣∣∣ 1

P (ξ0)n

∫
Rd

(P (D)nf(x))e−i〈ξ0,x〉dx

∣∣∣∣
≤ 1

|P (ξ0)|n

∫
Rd
CλR

ne
−λω

(
| x
n+1 |

1/m
)
dx

= Cλ
1

|P (ξ0)|n
Rn(n+ 1)d

∫
Rd
e−λω(|y|

1/m)dy

= C ′m

(
R

|P (ξ0)|

)n
(n+ 1)d,

for some C ′m > 0, choosing λ sufficiently large in such a way that e−λω(|y|
1/m) ∈ L1(Rd), cf. (2.3).

Letting n→ +∞ we have that f̂(ξ0) = 0 since |P (ξ0)| ≥ R + ε. Therefore (b) is satisfied.
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Conversely, let us prove that (b) ⇒ (a). By the Fourier inversion formula, for x 6= 0 and
N ∈ N0:

|P (D)nf(x)| = 1

(2π)d

∣∣∣∣∫
Rd
P (ξ)nf̂(ξ)ei〈x,ξ〉dξ

∣∣∣∣
≤ 1

|x|2N

∣∣∣∣∫
Rd
P (ξ)nf̂(ξ)∆N

ξ e
i〈x,ξ〉dξ

∣∣∣∣
≤ 1

|x|2N

∫
Rd

∣∣∆N
ξ

(
P (ξ)nf̂(ξ)

)∣∣dξ
≤ 1

|x|2N
∑
|ν|=N

N !

ν!

∫
|P (ξ)|≤R

∣∣D2ν1
ξ1
· · ·D2νd

ξd

(
P (ξ)nf̂(ξ)

)∣∣dξ
≤ 1

|x|2N
∑
|ν|=N

N !

ν!

2ν1∑
k1=0

(
2ν1
k1

)
· · ·

2νd∑
kd=0

(
2νd
kd

)
·
∫
|P (ξ)|≤R

|Dk
ξP (ξ)n| · |D2ν−k

ξ f̂(ξ)|dξ

≤ 1

|x|2N
∑
|ν|=N

N !

ν!

2ν1∑
k1=0

(
2ν1
k1

)
· · ·

2νd∑
kd=0

(
2νd
kd

) |k|∑
`=0

n!

(n− `)!

·
∫
|P (ξ)|≤R

|P`,k(ξ)| · |P (ξ)|n−`|D2ν−k
ξ f̂(ξ)|dξ,

for polynomials P`,k(ξ) with degP`,k ≤ `(m− 1) independent of n, by Lemma 4.1.

Since f̂ ∈ Sω(Rd) we thus have that for every µ, λ > 0 there exists Cµ,λ > 0 such that

|P (D)nf(x)| ≤
∑
|ν|=N

N !

ν!

2ν1∑
k1=0

(
2ν1
k1

)
· · ·

2νd∑
kd=0

(
2νd
kd

) |k|∑
`=0

n`
1

|x|2N
Rn−|k|

·
∫
|P (ξ)|≤R

|P`,k(ξ)| · |P (ξ)||k|−` · |D2ν−k
ξ f̂(ξ)|dξ

≤
∑
|ν|=N

N !

ν!

2ν1∑
k1=0

(
2ν1
k1

)
· · ·

2νd∑
kd=0

(
2νd
kd

) |k|∑
`=0

n|k|
1

|x|2N
Rn

(
1 +

1

R

)2N

·
∫
|P (ξ)|≤R

(1 + |ξ|)d+1|P`,k(ξ)| · |P (ξ)||k|−` · |D2ν−k
ξ f̂(ξ)|(1 + |ξ|)−(d+1)dξ

≤
∑
|ν|=N

N !

ν!

2ν1∑
k1=0

(
2ν1
k1

)
· · ·

2νd∑
kd=0

(
2νd
kd

) |k|∑
`=0

n2N 1

|x|2N
Rn

(
1 +

1

R

)2N

·Cµ,λeλϕ
∗( 2N−|k|

λ )eµϕ
∗(m|k|−`+d+1

µ )
∫
Rd

1

(1 + |ξ|)d+1
dξ,(4.4)

by Theorem 2.4(e).
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Now, since ϕ∗ is increasing, we have that

eλϕ
∗( 2N−|k|

λ ) ≤ eλϕ
∗( 2mN−m|k|

λ )(4.5)

and

eµϕ
∗(m|k|−`+d+1

µ ) ≤ Cµe
µ
2
ϕ∗(m|k|−`µ/2 )e

µ
2
ϕ∗( d+1

µ/2 ) ≤ Cµ,de
µ
2
ϕ∗(m|k|µ/2 )(4.6)

by Lemma 4.6(ix).
Moreover, taking λ = µ/2, we have that

eλϕ
∗( 2mN−m|k|

λ )eλϕ
∗(m|k|λ ) ≤ eλϕ

∗( 2mN
λ ),(4.7)

by Lemma 4.6(ii).
We use now (4.5), (4.6) and (4.7) in (4.4) to obtain that for every λ > 0 there exists Cλ > 0

such that

|P (D)nf(x)| ≤
∑
|ν|=N

N !

ν!

2ν1∑
k1=0

(
2ν1
k1

)
· · ·

2νd∑
kd=0

(
2νd
kd

)
(2N + 1)n2N

· 1

|x|2N
Rn

(
1 +

1

R

)2N

Cλe
λϕ∗( 2mN

λ )

≤ CλR
n 1

|x|2N
dN22N22Nn2N

(
1 +

1

R

)2N

eλϕ
∗( 2mN

λ )

≤ CλR
n

[
1

|x|2N/m
d2N42N(n+ 1)

2N
m

(
1 +

1

R

)2N

e
λ
m
ϕ∗( 2N

λ/m)

]m
.

Taking the infimum over N ∈ N0 and applying Lemma 4.6(vi), we have that for all |x| ≥
(4d)m(n+ 1)(1 + 1

R
)m

|P (D)nf(x)| ≤ CλR
n

[
e
−( λm−

2
b )ω

(
|x|1/m

4d(n+1)1/m(1+1/R)

)
− 2a

b

]m
,(4.8)

for a ∈ R, b > 0 as in condition (γ) of Definition 2.1. For |x| < (4d)m(n+ 1)(1 + 1
R

)m we have

|P (D)nf(x)| = 1

(2π)d

∣∣∣∣∫
Rd
P (ξ)nf̂(ξ)ei〈x,ξ〉 dξ

∣∣∣∣
≤
∫
supp f̂

|P (ξ)|n|f̂(ξ)| dξ ≤ CRn,

with C = ‖f̂‖L1(Rd) (observe that C is finite since f̂ ∈ Sω(Rd)). Since ω is increasing, we then

have that (4.8) is satisfied for |x| < (4d)m(n + 1)(1 + 1
R

)m with Cλ = Ce|λ−
2m
b
|ω(1)+ 2ma

b , and so

(4.8) is satisfied for every x ∈ Rd. From (2.2) we finally have that for every µ > 0 there exists
Cµ > 0, depending on µ,m, a, b, d and R, such that

|P (D)nf(x)| ≤ CµR
ne
−µω

(
| x
n+1 |

1/m
)
, ∀x ∈ Rd,

i.e. (4.3) is satisfied. �
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Based in some known results of Andersen [4], we can deduce easily the following corollary:

Corollary 4.3. If P ∈ C[x1, . . . , xd] is a polynomial of degree m ≥ 1, f ∈ Sω(Rd) and 1 ≤ p ≤
∞, we have, for all λ ≥ 0,

(4.9) lim
n→+∞

∥∥∥∥∥eλω
(
| x
n+1 |

1/m
)
P (D)nf(x)

∥∥∥∥∥
1/n

Lp

= R(P, f̂).

Proof. On one hand, from [4, Proposition 2.4], it is obvious that

lim inf
n→+∞

∥∥∥∥∥eλω
(
| x
n+1 |

1/m
)
P (D)nf(x)

∥∥∥∥∥
1/n

Lp

≥ R(P, f̂),

for all λ ≥ 0. Hence, it is sufficient to prove that

lim sup
n→+∞

∥∥∥∥∥eλω
(
| x
n+1 |

1/m
)
P (D)nf(x)

∥∥∥∥∥
1/n

Lp

≤ R(P, f̂),

for any λ ≥ 0. To see this we fix λ ≥ 0 and consider µ > 0 big enough such that∥∥∥e−µω(|x|1/m)
∥∥∥
Lp
< +∞.

Now, we assume that R(P, f̂) < +∞. By Theorem 4.2, for every R ≥ R(P, f̂) and every n ∈ N,
we have ∥∥∥∥∥eλω

(
| x
n+1 |

1/m
)
P (D)nf(x)

∥∥∥∥∥
Lp

≤

∥∥∥∥∥e−µω
(
| x
n+1 |

1/m
)∥∥∥∥∥

Lp

∥∥∥∥∥e(λ+µ)ω
(
| x
n+1 |

1/m
)
P (D)nf(x)

∥∥∥∥∥
L∞

≤ (n+ 1)d/pCλ+µ

∥∥∥e−µω(|x|1/m)
∥∥∥
Lp
Rn.

We deduce that

lim sup
n→+∞

∥∥∥∥∥eλω
(
| x
n+1 |

1/m
)
P (D)nf(x)

∥∥∥∥∥
1/n

Lp

≤ R,

for each R ≥ R(P, f̂), which concludes the proof. �

Remark 4.4. Let us remark that Theorem 4.2 gives an estimate, in terms of R, of the upper
bound of |P (ξ)| for ξ ∈ supp f̂ . This is interesting because {ξ ∈ Rd : |P (ξ)| ≤ R} can be

noncompact, so that we have some estimate on the support of f̂ for f ∈ Sω(Rd), with arbitrary

support of f̂ . Our results should be compared with [22]. See also [8, 9, 10].

Example 4.5. Let P ∈ C[ξ1, . . . , ξd] be a polynomial of degree m ≥ 1. If P is hypoelliptic,
then

VR := {ξ ∈ Rd : |P (ξ)| ≤ R}(4.10)

is compact.
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Indeed, if P is hypoelliptic then there exist c > 0 and 0 < σ ≤ m such that

|P (ξ)| ≥ c|ξ|σ, ∀ξ ∈ Rd, |ξ| � 1.

Therefore there exists M > 0 such that

VR ⊆ {ξ ∈ Rd : |ξ| ≤M} ∪ {ξ ∈ Rd : c|ξ|σ ≤ |P (ξ)| ≤ R},

and therefore is bounded and hence compact, since its trivially closed.
On the contrary, the fact that VR is compact does not imply that P is hypoelliptic. Take,

for instance,

P (z) = z21 − z22 + iz2, z1, z2 ∈ C.

In this case

VR = {ξ ∈ R2 : |ξ21 − ξ22 + iξ2| ≤ R}

is compact since |P (ξ)| ≤ R implies

| ImP (ξ)| = |ξ2| ≤ R

|ReP (ξ)| = |ξ21 − ξ22 | ≤ R ⇒ |ξ1| ≤
√
ξ22 +R ≤

√
R2 +R.

However, P (ξ) is not hypoelliptic since the following necessary and sufficient condition for
hypoellipticity (see [25, Prop. 2.2.1]) is not satisfied:

lim
ζ∈V
|ζ|→+∞

| Im ζ| = +∞,

for

V := {z ∈ C2 : P (z) = 0}
= {z ∈ C2 : z22 − iz2 − z21 = 0}

=
{
z ∈ C2 : z2 =

i±
√
−1 + 4z21
2

}
,

where ±
√
−1 + 4z21 denote the two complex roots of 4z21 − 1.

Taking, for instance,

ξ =

(
ξ1,

i+
√

4ξ21 − 1

2

)
∈ V, for ξ1 ∈ R,

we have that |ξ| → +∞ for |ξ1| → +∞, but

| Im ξ| =
∣∣∣∣(0,

1

2

)∣∣∣∣ =
1

2
.
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Appendix

We use the next lemma throughout the paper. Some points are elementary ((i), (ii), (iv) and
(ix)), and the proofs of others can be found in the literature (for (v) and (vi) see [11, Lemma
4.7] or [15, Lemma 1.4]), but we include a full proof for the convenience of the reader. From
[21] we know that for any convex and continuous function ϕ : [0,+∞)→ [0,+∞) we can define
its Young conjugate (Legendre transform in [21, Definition 1.3.2]) ϕ∗ as in (2.4) which is also
convex and satisfies (ϕ∗)∗ = ϕ .

Lemma 4.6. Let ω : [0,+∞) → [0,+∞) be a continuous increasing function such that ϕ :
[0,+∞)→ [0,+∞), ϕ(t) := ω(et) is convex. Then the following properties hold:

(i) ϕ∗(s)/s is increasing.
(ii) ϕ∗(t) + ϕ∗(s) ≤ ϕ∗(t+ s), for all t, s ≥ 0.

(iii) If there exist A ≥ 0 and B ≥ 1 such that ω(et) ≤ A + Bω(t) for all t ≥ 0, then for all
λ > 0 and j, n ∈ N0 = N ∪ {0}:

λϕ∗
(
j

λ

)
+ nj ≤ λ

Bn
ϕ∗
(

j

λ/Bn

)
+ λn

A

B
.

If ω is subadditive in the sense of (3.9), then we can take A = 0 and B = 3.
(iv) If there exist A ≥ 0 and B ≥ 1 such that ω(et) ≤ A + Bω(t) for all t ≥ 0, then for all

ρ ≥ 1, λ > 0 and j ∈ N0:

ρjeλϕ
∗( jλ) ≤ Λρ,λe

λ′ϕ∗( j
λ′ )

for all 0 < λ′ ≤ λ/B[log ρ+1] and Λρ,λ = eλ
A
B
[log ρ+1], where [x] denotes the integer part of x.

(v) For all λ > 0 and k ∈ N0:

tke−λϕ
∗( kλ) ≤ eλω(t), t ≥ 1,

tke−λϕ
∗( kλ) ≤ e−λϕ

∗(0)eλω(t), 0 ≤ t ≤ 1.

(vi) If there exist a ∈ R and b > 0 such that ω(t) ≥ a + b log(1 + t) for all t ≥ 0, then for all
σ, λ > 0 and t ≥ 1:

inf
j∈N0

t−σjeλϕ
∗(σjλ ) ≤ e−(λ−σb )ω(t)−a

σ
b .

(vii) If ω(t) = o(t) as t→ +∞, then for every ` ∈ N there exists a constant C` > 0 such that

s log s ≤ s+ `ϕ∗
(s
`

)
+ C`, s > 0.

(viii) Assume that there exist A ≥ 0 and B ≥ 1 such that ω(et) ≤ A+Bω(t) for all t ≥ 0, and
moreover ω(t) = o(t) as t→ +∞. Then, for all D,λ > 0, there is CD,λ > 0 such that for
all n ∈ N0:

Dnn! ≤ CD,λe
λϕ∗(nλ).

(ix) For all j, h, r ∈ N0 and λ > 0:

eλϕ
∗( jλ)eλϕ

∗( r+hλ ) ≤ e
λ
2
ϕ∗( j+hλ/2 )e

λ
2
ϕ∗( r

λ/2).
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Proof. (i): Let us first remark that ϕ(t) ≥ 0 (for t ≥ 0) implies

ϕ∗(0) = sup
t≥0
{0 · t− ϕ(t)} ≤ 0.

Then, by the convexity of ϕ∗, for 0 < s1 < s2:

ϕ∗(s1) = ϕ∗
(
s1
s2
· s2 +

(
1− s1

s2

)
· 0
)
≤ s1
s2
ϕ∗(s2) +

(
1− s1

s2

)
ϕ∗(0) ≤ s1

s2
ϕ∗(s2).

(ii): Since ϕ∗ is convex and ϕ∗(0) ≤ 0 (see the proof of (i)), for all t, s > 0:

ϕ∗(t) + ϕ∗(s) = ϕ∗
(

(t+ s) · t

t+ s
+ 0 · s

t+ s

)
+ ϕ∗

(
(t+ s) · s

t+ s
+ 0 · t

t+ s

)
≤ ϕ∗(t+ s).

The inequality is trivial for t and/or s equal to 0.
(iii): For all s ≥ 0,

ϕ∗(s) = sup
t≥0
{ts− ϕ(t)} ≥ sup

t≥1
{ts− ϕ(t)} = sup

σ≥0
{(σ + 1)s− ϕ(σ + 1)}

= s+ sup
σ≥0
{σs− ω(eeσ)} ≥ s+ sup

σ≥0
{σs− A−Bω(eσ)}

= s− A+B sup
σ≥0

{
σ
s

B
− ϕ(σ)

}
= s− A+Bϕ∗

( s
B

)
.

Iterating the procedure we easily obtain, for all n ∈ N,

ϕ∗(s) ≥ Bnϕ∗
( s

Bn

)
+ ns− A

n−1∑
k=0

Bk.

For s := jB
n

λ
, multiplying by λ/Bn, we obtain

λ

Bn
ϕ∗
(

j

λ/Bn

)
≥ λϕ∗

(
j

λ

)
+ nj − λA

B

n−1∑
k=0

B−k,(4.1)

and hence, since B ≥ 1,

λϕ∗
(
j

λ

)
+ nj ≤ λ

Bn
ϕ∗
(

j

λ/Bn

)
+ λn

A

B
.

Observe that when ω is subadditive ω(et) ≤ ω(3t) ≤ 3ω(t) for every t ≥ 0.
(iv): From (iii) we have

ρjeλϕ
∗( jλ) ≤ e

λ
Bn

ϕ∗( j
λ/Bn )+λnAB−nj+j log ρ,

and therefore, for nρ := [log ρ+ 1] ≥ log ρ:

ρjeλϕ
∗( jλ) ≤ eλnρ

A
B e

λ
Bnρ

ϕ∗
(

j

λ/Bnρ

)
≤ eλnρ

A
B eλ

′ϕ∗( j
λ′ ),

for all 0 < λ′ ≤ λ/Bnρ (here, we use (i) again).
(v): For all λ > 0, t ≥ 1 and k ∈ N0:

k log t− λω(t) ≤ sup
t≥1
{k log t− λω(t)} = λ sup

s≥0

{
k

λ
s− ϕ(s)

}
= λϕ∗

(
k

λ

)
.
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Therefore tke−λω(t) ≤ eλϕ
∗( kλ) for all t ≥ 1.

On the other hand, for 0 ≤ t ≤ 1 we have

tke−λϕ
∗( kλ) ≤ e−λϕ

∗( kλ) ≤ e−λϕ
∗(0)eλω(t),

since ϕ∗ is obviously increasing, as it is deduced directly from the definition of Young conjugate.
(vi): For all s ≥ 0 and λ, σ > 0 there exists j ∈ N0 such that j ≤ sλ

σ
< j + 1. Then for all

t ≥ 1:

sup
j∈N0

{
σj log t− λϕ∗

(
σj

λ

)}
= λ sup

j∈N0

{
σj + σ

λ
log t− ϕ∗

(
σj

λ

)}
− σ log t

≥ λ sup
s≥0
{s log t− ϕ∗(s)} − σ

(
1

b
ω(t)− a

b

)
= λϕ∗∗(log t)− σ

b
ω(t) + a

σ

b
=
(
λ− σ

b

)
ω(t) + a

σ

b
,

and hence

inf
j∈N0

t−σjeλϕ
∗(σjλ ) ≤ e−(λ−σb )ω(t)−a

σ
b .

(vii): Since ω(t) = o(t) as t→ +∞, for every ` there exists R` > 0 such that

ω(t) ≤ 1

`
t+R`, t ≥ 0.

Then, for all s ≥ 1, we have

ϕ∗
(s
`

)
= sup

t≥0

{
t
s

`
− ω(et)

}
≥ sup

t≥0

{
t
s

`
− 1

`
et
}
−R` =

s

`
log s− s

`
−R`.

Hence the thesis is proved for s ≥ 1 for C` = `R`. For s ∈ (0, 1) the result is obvious since
s log s < 0.

(viii): By Stirling’s formula there exists H > 0 such that

n! ≤ H
√
n
(n
e

)n
≤ H2n

(n
e

)n
, n ∈ N.

Therefore, from (vii) and (iv), for every ` ∈ N there exists C` > 0 such that

Dnn! ≤ H

(
2D

e

)n
nn ≤ H

(
2D

e

)n
en+`ϕ

∗(n` )+C`

= HeC`(2D)ne`ϕ
∗(n` ) ≤ HeC`Λ2D,`e

λϕ∗(nλ)

for all 0 < λ ≤ `
B[log(2D)+1] and Λ2D,` = e`

A
B
[log(2D)+1], provided D ≥ 1/2.

Therefore, for every λ > 0, we can choose a natural number ` ≥ λB[log(2D)+1] to obtain

Dnn! ≤ CD,λe
λϕ∗(nλ),

for CD,λ = HeC`Λ2D,`.
(ix): From (ii) and the convexity of ϕ∗:

eλϕ
∗( jλ)eλϕ

∗( r+hλ ) ≤ eλϕ
∗( j+r+hλ ) = eλϕ

∗( 1
2
j+h
λ/2

+ 1
2

r
λ/2) ≤ e

λ
2
ϕ∗( j+hλ/2 )e

λ
2
ϕ∗( r

λ/2).

�
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I-44121 Ferrara, Italy

E-mail address: chiara.boiti@unife.it
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