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Abstract  

The capacity of orthogonal imaging applied to laser-backscattering for characterising antimicrobial 

particles based on immobilised essential oils was tested. Different particles were synthesised using various 

particle and oils. Samples were characterised physico-chemically and by an imaging technique. The 

technique recorded the generated patterns because of the laser-particles interaction during the sedimentation 

process. The series of images were transformed into an orthogonal image. Data extraction varied depending 

on the fragmentation degree of image length. After the multivariate analysis, the physico-chemical results 

showed variability due to particle size. That variability diminished the effect of oils for large sizes. The 

imaging data collected these properties, which could be used to recognise both particle size and oil type. 

Thus the prediction of the properties was successful. The position in the physico-chemical space of variance 

was also predicted. Hence this technique could complement a low-cost method to evaluate the properties 

of functionalised particles with oils. 
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1. Introduction  

Emerging problems that negatively impact some synthetic antimicrobials and consumer health 

have been evidenced. Facts like abuse of antimicrobial substances due to inadequate traditional 

food-conservation methods increase the antibiotic resistant strains of bacteria and fungi, which 

all render the development of new strategies to prevent food spoilage and contamination necessary 

(Pisoschi et al., 2018). One of the main approaches in this area is to use naturally-occurring 

antimicrobial chemicals. Research into modifications in natural compounds has focused on 

changes in their properties. Some examples are solubility, dispersion across food matrices, 

avoiding volatility, etc. The main aim is to amplify the antimicrobial effect and to reduce the 

impact on products’ organoleptic properties (Weiss et al., 2009). Accordingly, immobilisation of 

compounds on solid matrices has a high potential as regards the above-mentioned aim. This 

process provides incremented antimicrobial capacity from a small amount of compound 

compared to its free version. One of the main groups of these compounds is plant essential oils. 

Our research group has developed and tested these compound types by immobilising them onto 

particles of different materials, sizes and morphologies (silica) with successful results for both 

solid and liquid foods (Ribes, Ruiz-Rico, Pérez-Esteve, Fuentes, & Barat, 2019; Ribes et al., 2017; 

Ruiz-Rico et al., 2017). The result is many possible particle types whose physico-chemical 

properties (zeta-potential, particle size distribution, surface area, uniformity, etc.) may vary 

significantly depending on the selected combinations. We observed that these properties could be 

determining factors for the effectiveness of a pre-designed antimicrobial. This effectiveness is 

associated with behaviour in relation to the food matrix. Therefore, controlling the properties of 

these compounds is a crucial aspect for their industrial and biotechnological applications 

(Dickinson, 2012). However, different equips and devices, and a relatively long time, are needed 

to acquire a complete data pool (particle size properties, zeta potential, thermos-gravimetric 

analysis, etc.). 

So numerous methods can characterise properties related to particle size and distribution due to 

repercussions on other properties. Some of the most frequently used methods are the liquid 

sedimentation method, microscopy and laser diffraction scattering. The liquid sedimentation 
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method has been widely used as the standard method (ISO 13317-4:2014). It is based on a direct 

mass measurement to give the mass distribution of the equivalent spherical particle diameter. 

Microscopic methods are relatively simple, but need a long measuring time when particle size 

distribution is wide. The particles tracking analysis (PTA) has reported good results by image 

analysis procedures to determine not only size properties, but also the behaviour of particles 

during sedimentation (Śliwa, Jarzębski, & Szutkowski, 2015). Laser-based measuring techniques 

can be classified into three groups according to their measuring principle: local filter technology, 

Fraunhofer diffraction, and laser-backscattering (Emmerich et al., 2019). Laser-backscattering is 

the most employed technique for inline applications. One example is dynamic light scattering 

(DLS) (Yin, 2012). It measures a stable flow of dispersed particles to acquire information with a 

light detector. It requires accurate calibration from a direct method (Bell, Minelli, Tompkins, 

Stevens, & Shard, 2012). Laser-backscattering methods have also been applied to model and 

characterise food properties, and to process both solid and fluid food matrices. These approaches 

are based on a simple device, which also includes image analysis procedures. In this case, the 

laser’s interactions with samples are captured as diffraction patterns in digital images. The image 

capturing regime depends on the type of required information. Static patterns from different 

samples can be captured in single images to study the static properties of a given matrix. When 

the characterisation of a sample depends on the evolution of properties over time, many imaging 

captures should be carried out in a dynamic regime. 

The patterns from these digital images are processed and transformed into numerical data. This 

information can be used to predict simultaneously food features and process parameters for non-

destructive physico-chemical monitoring. Some examples of static characterisations with which 

we work are the prediction of rheological properties from vegetable-based creams (Verdú, Pérez, 

Barat, & Grau, 2018) and the physico-chemical properties of biscuits with different fibre contents 

(Verdú, Barat, & Grau, 2019a). The dynamic study of patterns allowed us to monitor the texture 

of milk during fermentation for yogurt production (Verdú, Barat, & Grau, 2019b). In the present 

work, orthogonal imaging was applied to simplify the collection of laser patterns information with 
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time by a dynamic analysis approach. This image mode means capturing information from the 

image sequence given by a dynamic process in a single image. Hence this approach reduces the 

imaging transform need and can improve previous applications to capture dynamic information 

over time.   

This work focused on studying the application of orthogonal imaging for the physico-chemical 

characterisation of antimicrobial silica particles functionalised with plant essential oils. 

 

2. Material and Methods 

 

2.1. Experiment procedure  

 

Figure 1. Scheme of the experiment. F1: Factor 1, particle size (a, b and c); F2: Factor 2, essential oil type. 
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to obtain wide variability in the properties of antimicrobial particles, they were manufactured by 

modifying some factors: particle size distribution, F1; type of immobilised essential oil, F2 (Fig. 

1). F1 had three categories (a, b and c) of the used commercial silica particles, whose particle size 

distribution is represented in Fig. 1 and explained in Section 2.1.1. of Material and Methods. F2 

had four different oils: eugenol, thymol, carvacrol and vanillin. Bare particles were included in 

the study as the control group. The combination of both factors provided 15 particle categories: 

12 functionalised and three bare. The bare ones used as controls. Particles were characterised 

according to several physico-chemical analyses (thermo-gravimetric analysis, zeta potential, 

particle size distributions, etc.) (Fig. 1, Step 1). The physico-chemical variance generated by the 

combination of factors was explored by the multivariate statistical method Principal Component 

Analysis (PCA). It provided a relation between the particle categories and the physico-chemical 

variables based on synthetic variables called principal components (PCs), which capture the 

physico-chemical variance in reduced dimensionality (Fig. 1, Step 2). The coordinates within PCs 

were used as a characterisation map of the factors’ influence. The next step was to study particles 

based on the images of the laser-particle interaction captured during the sedimentation process. 

Captured images were processed to acquire the most useful information (Fig. 1, Steps 3 and 4). 

Image information was also explored by PCA to characterise particle categories (Fig. 1, Step 5). 

The last step was to study the relation between both data blocks by a Partial Least Square 

Regression (PLS-R) analysis to predict the physico-chemical properties of the particles from the 

image information (Fig. 1, Step 6).   

 

2.2.  Particle functionalising 

2.1.1 Reagents 

Different reagents were used to prepare the functionalised supports. Carvacrol (≥ 98% w/w), 

eugenol (99% w/w) and thymol (≥ 98.5% w/w) were obtained from Sigma-Aldrich (Madrid, 

Spain) and vanillin (> 99% w/w) was supplied by Ventós (Barcelona, Spain). They were used as 

bioactive compounds to prepare the supports functionalised with antimicrobial compounds. 
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Acetonitrile, diethyl ether, dichloromethane and methanol were purchased from Scharlab 

(Barcelona, Spain), while chloroform and 2-butanone came from Sigma-Aldrich (Madrid, Spain), 

which were used as solvents for the derivatisation and grafting reactions. (3-

Aminoproppyl)triethoxysilane (APTES), paraformaldehyde, trimethylamine, sodium 

borohydride and KOH were purchased from Sigma-Aldrich (Madrid, Spain), and NaCl, MgSO4, 

H2SO4 and HCl were obtained from Scharlab (Barcelona, Spain), which were the other reagents 

needed for the derivatisation of bioactive compounds.  

Silica particles a had an average 4 µm particle size according to the product specifications of 

SYLYSIA® SY350/FCP, which came from Silysiamont (Milano, Italy). Silica particles b had a 

average 25 µm particle size according to the product specifications from Sigma-Aldrich (Madrid, 

Spain). The technical information on the specification sheet of particles b indicated a particle size 

that fell within the 5-25 µm range. Silica particles c had an average 10 µm particle size according 

to the product specifications from Sigma-Aldrich (Madrid, Spain). These particles’ size was 

between 5-15 µm in accordance with the specification sheet. 

 

2.2.2. Synthesis of the functionalised particles 

The functionalised silica microparticles lots were synthesised following a four-step synthetic 

procedure (García-Ríos, Ruiz-Rico, Guillamón, Pérez-Esteve, & Barat, 2018). Firstly, the 

aldehyde derivatives of carvacrol, eugenol and thymol were prepared to add a second reactive 

moiety to molecules in order to keep the hydroxyl group free, which is essential for the 

antimicrobial activity of bioactive compounds (Gill & Holley, 2006). Secondly, the unmodified 

vanillin and previously synthesised aldehyde derivatives were reacted with APTES to obtain 

alkoxysilane derivatives capable of being attached to the surface of silica microparticles in a third 

step. Finally, the imine bond of the alkoxysilane derivatives was transformed into an amine bond 

to stabilise the immobilised compounds.  
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The carvacrol and thymol aldehydes were synthesised by direct formylation using 

paraformaldehyde, while eugenol aldehyde was synthesised following a Reimer–Tiemann 

reaction (Chen, Shi, Neoh, & Kang, 2009).  

The alkoxysilane derivatives were synthesised by a reaction run with APTES. In a typical 

synthesis run, the carvacrol, eugenol and thymol aldehyde derivatives and pure vanillin were 

suspended in dichloromethane, and APTES was added to the mixture at a molar ratio of 1:1 

(essential oil: APTES). The mixture was stirred in reflux for 1 h, and evaporated at reduced 

pressure to obtain the corresponding alkoxysilane derivatives.  

To attach the alkoxysilane derivatives to the surface of the different mean sized silica 

microparticles (5, 10 or 25 µm), 10 g of the bare particles were placed in a round-bottomed flask 

in an inert atmosphere and suspended in 150 mL of acetonitrile. Then excess alkoxysilane 

derivatives were added and the mixture was stirred for 5.5 h at room temperature. After 

immobilisation, the stabilisation of the chemical bond of the alkoxysilane derivatives was carried 

out by suspending solids in 150 mL of methanol and running a reaction with excess sodium 

borohydride for 12 h. The final solids were centrifuged, washed with distilled water (pH 4) and 

ethanol, and dried at room temperature in a vacuum for 12 h. 

 

2.3. Physico-chemical characterisation of particles 

The bare and functionalised particles were characterised by different instrumental techniques. 

Size distribution and percentiles d(0.1), d(0.5), d(0.9), volume-weighted mean D[4,3], surface-

weighted mean D[3,2], uniformity U and specific surface area SA were determined in a Malvern 

Mastersizer 2000 device (Malvern Instruments, UK). The Mie theory was applied by considering 

a refractive index of 1.45 and an absortion index of 0.01. To determine the zeta-potential (Zp), a 

Zetasizer Nano ZS (Malvern Instruments, UK) was used. Samples were dispersed in water at a 

concentration of 1 mg/mL. Before taking each measurement, samples were sonicated for 2 min 

to preclude aggregation. The zeta-potential was calculated from the particle mobility values by 

applying the Smoluchowski model at pH 7 and 20ºC. The degree of functionalisation of the 



8 
 

particles was determined by a thermo-gravimetric analysis (TGA). The TGA were carried out on 

a TGA/SDTA 851e Mettler Toledo balance (Mettler Toledo Inc., Schwarzenbach, Switzerland) 

in an oxidant atmosphere (air 80 mL/min) with a heating programme consisting of heating steps 

at 5ºC per min from 25-1,000ºC. TGA was expressed as the percentage of organic matter (% o.m). 

All the analyses were done in triplicate. The above-mentioned variables formed part of the 

physico-chemical data block.  

 

2.4. Imaging device 

Orthogonality is the notion of perpendicularity in linear algebra. In this case, dynamic light 

intensity information (with time) was required to generate an orthogonal image of each sample. 

Hence the obtained orthogonal images represented a pixel position on the X-axis and time on the 

Y-axis; i.e., include in an image the variation of light intensity for each pixel with time as 

perpendicular axes (Fig. 2). To obtain that continuous information from the diffraction patterns 

generated by the laser-particles interaction during the sedimentation process, a low-cost device 

consisting in a red laser diode and a digital camera connected to a computer was built. Fig. 2A 

shows the device setup. 

The capture system of the device for image analysis was a digital Logitech C920 camera with a 

CMOS sensor that operates at a resolution of 2304◊1535. The angle of view (AOV) of the lens 

was 78º, which gave a field of view (FOV) of approximately 100 mm at the work distance. Camera 

exposure and gain settings were configured to the auto mode. The camera included an HD video 

working in the H.264 high quality format so that the 1980◊1080 obtained images would present 

minimum lost. The device was placed inside a dark cabin to keep it away from light, and was 

vertically placed 15 cm over the sample surface. The laser pointer (650 nm, 50 mW, 3 mmᴓ) was 

perpendicularly placed 20 cm under samples by emitting to the central zone of the bottom surface. 

Both the laser diode and camera (HD cam Logitech C920) were low-cost components, and were 

connected to a conventional computer that ran Linux. The capture temperature was 20ºC. Samples 

were prepared as particle suspension (0.7 g particles, 2.3 mL distilled water) on a transparent well 
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plate (12-well plate, 21.2 mm ø, 6.9 mL, Corning® Costar®) and shaken for 1 minute at 250 rpm 

(Orbital shaker Ivymen® system). When the stirrer was stopped, the laser beam was pointed 

through a flat transparent well plate to interact with the suspension during the sedimentation 

process. The system was controlled by a specific program that automatically triggers the camera 

by software to take images at a rate of 1 image/sec. for 15 min (Fig. 2A). Nine hundred images 

from each sample were obtained at the end of the sedimentation process. Twenty samples of each 

particle category were analysed.  

 

2.5. Imaging processing  

 

 

Figure 2. Image processing and data extraction. A: image device scheme; B: evolution of the diffraction pattern with 

time and orthogonal image extraction; C: the orthogonal image fragmented into different degrees and the data obtained 

from fragments (histograms).  
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An own software was developed to quickly and accurately process images. The software was 

developed in C language using the OpenCV 2.4.1 image processing libraries (Bradski, 2000). It 

runs on a computer with Linux Ubuntu 16.04 as the operating system. The procedure was run as 

follows: 

1. Creation of a stack from the entire process: the 900 images captured during the process 

were joined to an image stack, where the Z-axis represented time. This resulted in a 

three-dimensional column where the variation of diffraction patterns was collected with 

time (Fig. 2B) 

2. Orthogonal images extraction: variations in light intensity throughout the process were 

captured in orthogonal images to simplify the monitoring process from 900 images to 1 

image. That image was a slice across the time axis of the stack that was 21.2 mm wide 

(diameter of the well) on the X-axis, which crossed the central point of the diffraction 

pattern (Fig. 2C). The obtained images represent the pixel position on the X-axis and 

time on the Y-axis 

3. Data extraction from the orthogonal images: data were extracted based on the greyscale 

histograms at different degrees of image fragmentation. Images were transformed into a 

greyscale (8 bits) to simplify the collected information. Afterwards, they were divided 

into different fragments based on the % image lengths (time, Y-axis), which were 100%, 

50%, 25%, 10% and 5% of the time axis. Thus images were fragmented in different areas 

prior to data extraction. Histograms were extracted, which collected information on 

frequency (expressed as pixels) for each grey value (256 values) within a given fragment, 

defined by the degree of fragmentation. Therefore, the amount of data depended on the 

degree of fragmentation. For example, the 100% image length had one histogram from 

the entire image, 50% went to two histograms from each half, 25% to four histograms, 

etc. (Fig. 2C). Histograms were organised in a data matrix as spectra formed by 256 

variables for the multivariate statistical analysis. When the degrees of fragmentation had 

more than one histogram, they were serially organised.  
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This algorithm shows in detail the applied process: 

INPUT: { Ii[C][R] | i=1..N } set of N captured images of size C ◊ R 

• Create stack matrix M[N][C][R] initialized as:  

for (I = 1 : N) 

    for (x = 1 : C) 

       for (y = 1 : R) 

           set M[i][x][y] to Ii[x][y] 

• Extract orthogonal image O[C][N] as:  

    for (i = 1 : N) 

       set (x0, y0) to the central point of the diffraction pattern in image Ii 

       for (x = 1 : C) 

           set O[x][i] to M[i][x][yo] 

• Compute fragmentation sets of image O with f = {1, 0.5 0.25, 0.1, 0.05} as: 

set O1 = {O}, and successively, 

set Of = {F1, …, F1/f} | Fi are of size C◊N’ with N’ = f.N, and Fi = O[1:C][1+(i-1).N’:i.N’] 

• Compute gray histograms of each image in sets {Of} 

OUTPUT: {Hf} sets of histograms of sets images {Of} 

 

2.6. Statistical analysis  

The physico-chemical and image information were explored and compared after applying 

multivariable statistical procedures to reduce dataset dimensionality. To this end, the multivariate 

unsupervised statistical method PCA was used to compare the variance collected by not only the 

physico-chemical variables, but also the image information from the antimicrobial particles. A 

PLS-R was used to evaluate the dependence between the image information and the physico-

chemical properties of the tested antimicrobials. This method was used to carry out the linear 

regressions models between both datasets, which were evaluated based on the R2 of prediction. 

The prediction models of the physico-chemical properties were run by using the image data from 

all the samples and degrees of image fragmentation. Samples were divided into a training batch 

(60% of samples) and a testing batch (40% of samples). These procedures were run with the PLS 

Toolbox, 6.3 (Eigenvector Research Inc., Wenatchee, Washington, USA), a toolbox extension in 

the MATLAB 7.6 computational environment (The Mathworks, Natick, Massachusetts, USA).  
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3. Results and Discussion  

3.1. Physico-chemical characterisation   

A PCA was carried out to simultaneously study the physico-chemical properties of particles from 

the analysed variables (Fig. 3A). This analysis provided a geometrical space of variance from 

which the relations between both physico-chemical properties and categories could be studied in 

an extensive lot of particles. This space of variance could represent a space formed by a given lot 

of particles used in industry or a laboratory from which its properties could be interpreted after 

model training.  

The results showed the clustering of different particle sizes (F1) across PC1 (X-axis). Sizes were 

placed from a negative zone of the axis to a positive one in this order: a, c and b (Fig. 3A, 

circumferences). This principal component had 48.9% of total variance, which meant that the 

differences in properties due to particle sizes generated almost half the total variance. The 

placement of the formed clusters also presented decreasing dispersion, with the maximum for a 

and the minimum for b. The variance generated by particle size could be explained by SA and 

D[3, 2], d(0.1) and d(0.5). These parameters had a high explanation load for PC1. When particle 

size increased, SA decreased. This revealed the importance and inverse evolution of SA and the 

size distribution descriptors in spite of the immobilisation process.  

Moreover, PC2 had 27.8% of total variance. This principal component was related to the variance 

produced by the essential oil types, principally for particle size a. For the other sizes, no pattern 

for essential oils placement was observed. PC2 had a very high explanation load by U, d(0.9) and 

D[4, 3]. These results indicated that the essential oil type (F2) had a stronger influence on 

properties when particle size was smaller. This meant that the immobilisation process of Th and 

E provided higher U, d(0.9) and D[4, 3] to particles when size was a. 

Moreover, particles b grouped in a small space and showed less dependence on essential oil type. 

This did not mean that there were no  differences in their properties. However in that space of 

variance, size b had a reduced proportion of it. When a PCA with only size b was run (Fig. 3B), 
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the differences in the properties between the used essential oils were more easily observed. Size 

effect had no influence in that case, where Th and Cr were the only categories to present a similar 

placement in this variance space. This space of variance represented the map of the physico-

chemical behaviour of the synthesised particles according to F1 and F2. This map can be modified 

given the interest in such properties by means of other modifications.  

 

 

Figure 3. Physico-chemical characterisation of particles. Variance space generated from the multivariate analysis of the 

physico-chemical variables (PCA). A: variance space for all the particle categories; B: variance space for the particles 

of size b. Yellow points denote the physico-chemical variables. Circumferences depict clusters of sizes. Percentiles: 

d(0.1), d(0.5), d(0.9); volume-weighted mean: D[4,3]); surface-weighted mean: D[3,2]; uniformity :U;, specific surface 

area :SA; zeta-potential: Zp, degree of functionalisation: TGA; Co: control (bare particles); Cr: carvacrol; E: eugenol; 

Th: thymol; V: vanillin. 

 

3.2. Imaging processing and data exploration 

The orthogonal images obtained from the laser-particles interaction during the sedimentation 

processes were extracted to visualise their properties. Afterwards, data were extracted for the 

exploration process. Fig. 4 contains the images obtained from the process for each particle size 

(F1) and essential oil (F2) combination. The generated patterns presented different morphologies 

across the temporal axis, which were affected by both F1 and F2. There were two zones: saturated 

and diffused. The first is represented by the intense zone in the middle of the patterns, and the 

second by the fuzzy red contour.  
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Common behaviour was the maximum light width at the beginning of the process. That width 

changed with time in different ways according to particle type until a constant shape appeared, 

from which point the sedimentation process ended. This behaviour showed how laser diffraction 

was initially large due to the high concentration of dispersed particles across the continuous phase. 

Dispersed particles interacted with radiation to produce marked changes in direction, followed by 

more diffuse light at the initial times. Thus diffraction reduced with the sedimentation process, 

and showed the observed curves due to the lower concentration of the dispersed particles because 

of increased sediment material. It was noteworthy that there were cases in which diffraction and 

absorption of light were so high that only the diffused zone was observed without the saturated 

one (Fig. 4, V).    

Bare particles (Co) displayed the particle size change effect. Co-A presented a column of the 

saturated zone with a marked width throughout the process. However, whereas when particle size 

increased (Co-B), sedimentation became faster, and an asymptotic beginning was observed 

between 4-6 minutes. Moreover, the incorporation of essential oils brought about major changes 

in the patterns at all particle sizes. Accordingly, vanillin (V) seemed to have a strong effect on 

behaviour, while thymol (Th) and carvacrol (Cr) were more similar to Co, principally at particle 

sizes b and c.  



15 
 

 

Figure 4. Orthogonal images of the laser-particles interaction during the sedimentation process. F1:  particle sizes a, b 

and c; F2: essential oil type Co: control (bare particles); Cr: carvacrol; E: eugenol; Th: thymol; V: vanillin. 

 

To facilitate the study of the observed effects, the orthogonal images were processed to extract 

multivariable information in the form of histograms at different image-fragmentation degrees, as 

explained above. The effect of factors on the extracted data was explored following the 

differences observed in the space of variance obtained in the PCA from the physico-chemical 

analysis (Fig. 3). Previously, an increasing particle size seemed to narrow the differences between 

the physico-chemical properties of the functionalised particles, and b size was the most evident 

one. Therefore, imaging information seemed to collect enough variance to differentiate particle 

categories in the same way as the studied physico-chemical variance spaces. These 

differentiations were dependent on the degree of image fragmentation.  Fig. 5 shows some PCA 

spaces obtained from the imaging data analysis from the group with the smallest observed 
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differences: size b. Fig. 5A and 5B show the variance spaces to study information within the size 

b particles using the minimum and maximum fragmentation levels (100% and 5% image length, 

respectively). For the minimum fragmentation (Fig. 5A), essential oils could be differentiated, 

principally V. E was also placed away from the other oils, but came close to the control particles 

(Co). Th, Cr and Co were placed around the same position. In this case positions were in 

accordance with those observed in the patterns from the orthogonal images in Fig. 3 and 4, where 

the most differentiated ones were V and E, while Th and Cr presented very similar patterns for 

size b. When the same study was done using the data obtained from the maximum degree of 

fragmentation (the 5% image length), bigger differences among categories were observed (Fig. 

5B). Once again V and E were the most differentiated ones, but a more marked differentiation 

was seen in this case among Co, Th and Cr.  

After obtaining this result, the differentiation capacity between particle sizes was also studied, but 

using only Co, Th and Cr. Those categories were selected because they represented the most 

unfavourable cases in terms of differences in behaviour. The spaces of variance generated after 

the PCA studies are shown in Fig. 5C-5D. Studies were done following a previous study about 

the degree of fragmentation. Fig. 5C shows the PCA space generated after analysing the data from 

the minimum degree of fragmentation (the 100% image length). No differentiation was observed 

for most categories, only for Co and Cr at particle sizes c and a, and a large cloud of samples was 

placed around the same place within the coordinates. Conversely, and following the previous 

study, differentiation of categories was observed when the degree of maximum fragmentation 

was used (Fig. 5D). This result agrees with other studies about classifying different particles using 

diffraction patterns such as Wang et al., (2019), who also used an imaging analysis of the 

diffraction patterns obtained from the interaction between particles and coherent light. In that 

case, the difference lay in distinct light intensities, and a continuous flow of fluid with suspended 

particles was used to classify particles with different morphologies. 

Therefore, the results showed how the studied sedimentation process of particles was affected by 

both F1 and F2, which caused differences in the laser interaction that were successfully collected 
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by the patterns of orthogonal images. These differences could be used to characterise all the 

categories, although the information from images had to be processed to obtain the target in those 

cases with the smallest differences.  

 

Figure 5. Image data exploration. A: PCA of particle size b using the minimum degree of fragmentation (the 100% 

image length); B: PCA of particle size b using the maximum degree of fragmentation (the 5% image length); C: PCA 

of all the particle sizes (a, b and c) for Co, Th and Cr using the minimum degree of fragmentation (the 100% image 

length); D: PCA of all the particle sizes (a, b and c) for Co, Th and Cr using the maximum degree of fragmentation (the 

5% image length); Co: control (bare particles); Cr: carvacrol; E: eugenol; Th: thymol; V: vanillin. 

  

3.3. Prediction studies  

After observing the capacity of imaging data to characterise particle categories, dependency 

studies were carried out to test the relation between that data block and the physico-chemical 
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singly predict each physico-chemical variable and the scores (PC1 and PC2) obtained in the 

physico-chemical PCA analysis (Fig. 3). The prediction of the place in the physico-chemical 

variance space was done to test the estimation of coordinates to simultaneously know the physico-

chemical properties for the relations from each pre-established placing.    

 

 

Figure 6. Dependency studies among the image data, single physico-chemical variables and principal components from 

the physico-chemical space of variance. The evolution of R2 prediction with degree of image fragmentation (the % 

image length). Percentiles: d(0.1), d(0.5), d(0.9); volume-weighted mean: D[4,3]); surface-weighted mean :D[3,2]; 

uniformity :U; specific surface area :SA; zeta-potential: Zp, degree of functionalisation: TGA. The different parentheses 

indicate the variables related with PC1 (red dotted line) and PC2 (red line) in the physico-chemical space of variance 

in Fig. 4A. 

 

The R2 prediction results from the PLS studies are found in Fig. 6, which represents the evolution 
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100% image length) had an R2 of between 0.57-0.79. The increase in coefficients seemed to 

denote a linear tendency until the degree of fragmentation of the 10% image length. A generalised 

increase in slope was observed, mainly for the variables with a low R2 for the 100% image length. 

Thus the range of coefficients at the maximum degree of fragmentation (the 5% image length) 

was 0.86-0.97. The variables that explained more of the variance captured for PC1 and for 

themselves (Fig. 3A) were predicted with smaller errors from the 100% image length: SA, D[3,2], 

d(0.1) and d(0.5). They appear at the top of the plot in Fig. 6, while U, d(0.9) and D[4,3], 

respectively related to PC2, and TGA and Zp, started from a low R2 prediction and also obtained 

a lower prediction coefficient at the maximum % image length (bottom of the plot). So the 

variables that were directly characterised by the effect of F1 (particle size) were better predicted. 

This result was probably due to their wider variance of F1 compared to the variables related with 

F2 (essential oil), although they all presented an R2 prediction above 0.85. 

Fig. 7A shows the physico-chemical space of variance from Fig. 3A, which includes the 

coordinates predicted for PC1 and PC2 at the 5% image length. Dispersion considerably increased 

for particle sizes b and c and, due to the similar placement, the model showed some confusion for 

precise predictions. The reduced variance among the bigger particle sizes, when the complete 

model was used, made its differentiation in the PCA space difficult. In order to improve the 

results, model complexity was reduced by studying a model for each factor, and their PC1 and 

PC2 prediction capacity was tested. As the differences between the properties of each particle 

size and essential oil could limit the accuracy of the studied common prediction model, different 

models were tested by isolating each particle type; that is, a specific prediction model was tested 

for each particle size and essential oil type. The prediction results for each particle size model are 

represented in Fig. 7B. The places in the variance physico-chemical space were successfully 

predicted for particles a and C. Most b particles were placed around the correct coordinates, but 

some of them overlapped others. Moreover, the single models for each essential oil provided the 

most accurate prediction approaches (Fig. 7C). The placing of the essential oil types for particles 

a was correct, with little dispersion shown for them all. The dispersion in particles b and c also 
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drastically reduced, where the different oils in these coordinates were differentiated. This result 

showed how precision increased with reduced model complexity because the results improved 

when the physico-chemical variance spaces from size b (Fig. 4B) were predicted, despite a model 

with all the essential oils for that size being used (Fig. 7D). Fragmenting images provided more 

information from which the characterisation of particles could be improved. Following this result, 

it was possible to improve the coefficients with a more drastic degree of image fragmentation 

(e.g. 2% image length). However, the increase in data volume could mean disadvantages for data 

handling because if the 5% image length had 20x256 variables, then the 2% image length would 

represent 50x256 variables.  

 

Figure 7.  Prediction studies of the coordinates in the physico-chemical space of variance from the image data (the 5% 

image length). A: prediction using a common model; B: prediction using a single model for each particle size; C: 

prediction using a single model for each essential oil; D: prediction for the physico-chemical space of variance for 

particle size b (Fig. 3B). □: vanillin; □: thymol; : carvacrol; : eugenol; : control: coordinates observed in the physico-

chemical space of variance (Fig. 3A);  data predicted from the common model; ●: data predicted with the particle a 

size model; ○: data predicted with the particle b size model; ●: data predicted with the particle c size model. 

 

Cr

Co
E

Th

V

-0.05

-0.03

-0.01

0.01

0.03

0.05

0.07

-0.04 -0.02 0.00 0.02 0.04 0.06

P
C

2
 (

3
7

.4
%

)

PC1 (61.2%)

D

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

-0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03

P
C

2
 (

2
7

.8
%

)

PC1 (48.9%)

C

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

-0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03

P
C

2
 (

2
7

.8
%

)

PC1 (48.9%)

B

Cr

Co

E
Th

V

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

-0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03

P
C

2
 (

2
7

.8
%

)

PC1 (48.9%)

A

A

C
B

A

C
B

A

C
B



21 
 

Therefore, a relation between particle behaviour during sedimentation and the data obtained from 

the employed imaging technique was evidenced via the possibility of predicting physico-chemical 

properties. The monitored process provided information about both particle size and essential oil 

type, but increased the degree of fragmenting image, while reducing the complexity of models 

could provide more accurate results in a given space of physico-chemical variance.    

 

4. Conclusions 

Orthogonal imaging applied to the laser-backscattering technique could be used to characterise 

the physico-chemical properties of different categories of functionalised silica particles with plant 

essential oils. Differences in particle size generated most of the observed physico-chemical 

variance, and diminished the effect of the different essential oils when size increased. Imaging 

technique information could be used to characterise particles in size and essential oil type terms. 

A common model made by using information from all the particle categories reported successful 

prediction coefficients for single physico-chemical variables, mainly for those most affected by 

particle size. The prediction coefficients were in accordance with the degree of image 

fragmentation, which rose following a reduction in % image length. Moreover, the prediction of 

the coordinates in the common physico-chemical variance space generated by PCA can be done 

using the common model. However, precision reduced with increasing particle size. Reducing the 

model´s complexity by generating new models using only either particle size or essential oil 

improved the precision of sample coordinate predictions.  

Therefore, this image technique could contribute to a low-cost application based on laser back-

scattering to simultaneously evaluate the physico-chemical properties of functionalised particles 

with essential oils to train the prediction models formed by different particle categories. Future 

studies will focus on testing other immobilised functional molecules which our group is testing 

in different food matrices, like organic acids, as well as particles made from different materials. 

New protocols will also be studied to extract information from orthogonal images to develop more 

precise models with greater complexity.  
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