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Abstract
Robust detection and classification of objects at sea is a major step towards safe au-
tonomous navigation and collision avoidance for marine vessels. Objects of interest
(OOI) include large commercial vessels, small leisure boats, kayaks, other objects with-
out a clear radar signature, as well as stationary objects such as buoys, land, bridge
pillars and similar. Object classification using electro-optical sensors can address this
problem and has been shown to be a potential alternative to a human lookout.

This project emanates from the research performed in [75] and investigates alterna-
tive, avant-garde approaches to the implementation of the RetinaNet [47], deep-learning
object detector, by means of neuromorphic computation and few-shot meta-learning.
This is done with the aim of reducing the energy footprint and data consumed by the
algorithm. Although these technologies are in early stages of development, the project
manages to achieve state-of-the-art results when compared to other contemporary re-
search.

The TFA [94] few-shot learning method was applied, leading to a reduction of 90%
in the training time and 95% in the data consumption while achieving a 63.3% of the
target performance on RetinaNet. In parallel, an algorithm was developed to convert
the RetinaNet model into a spiking neural network following the work performed in [72]
and [36]. This model maintained the characteristics of the original, showing a loss in
performance of just 1.6% for a simulated time-window of 1000ms.

Code: https://github.com/joaromi/MSc_Thesis_DTU

https://github.com/joaromi/MSc_Thesis_DTU
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CHAPTER 1
Introduction

1.1 Background and motivation

During the last decades, there has been an evergrowing trend towards the development
of autonomous machinery that can substitute human workforce in tasks of increasing
complexity. Following these events and with the rise of artificial intelligence, the future
of sea transportation is likely to follow the same path and, thus, efforts are being made
to propel the needed technical developments. To allow for safe unmanned navigation,
obstacle detection and classification plays a crucial role and can potentially be addressed
using electro-optical sensors and machine-learning techniques.

This project stems from the ShippingLab’s autonomous navigation research initiative,
as a follow-up to the work performed in [75]. In this previous paper, research was carried
out on existing convolutional neural network architectures for computer vision and the
performances of three state-of-the-art networks were assessed for object detection at sea.
The benchmarked models were Faster R-CNN [25], YOLOv3 [67] and RetinaNet [47].

After the positive outcomes delivered on [75], the current document investigates al-
ternative, somewhat unfamiliar approaches to the implementation of the RetinaNet deep
learning model, exploiting more biologically accurate neural network architectures and
meta-learning. These will be exploited towards the Green AI paradigm, aiming to reduce
the resource usage of deep-learning. The advantages of mimicking the biological brain,
unmatched in power efficiency, and few-shot learning to reduce the data consumption,
advertise themselves as good research paths towards this objective. However, as shown
by previous applications, these technologies are still in early phases of development and
their relevance in computer vision follows more modest neural network structures and
classification tasks (e.g. the popular MNIST handwritten digit database).

The object detection and classification problem is at a much higher level in what
refers to the required network complexity, the data and computational cost, and the
precision demanded. It is regarded as significantly more challenging as it involves both
recognizing multiple overlapped objects and calculating precise coordinates for bounding
boxes [36].

An up-scaling and adaptation of the aforementioned technologies will be fulfilled
and the obtained results will be benchmarked against the original RetinaNet to finally
evaluate their potential interest towards the ShippingLab objectives.
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1.2 Objectives
The objectives stated in this section align with the roadmap of the ShippingLab project
and were agreed between the author and supervisors of the MSc Thesis. These milestones
are decisive to evaluate the project’s outcome and their completion will be assessed in
the Discussion (section 5).

1.2.1 Main objectives
The following objectives are expected to be met and documented in the thesis by the
end of the project:

1. Perform a literature study of specific topics relevant to the thesis work. Emphasis
should be given to:

a) Deep learning and spiking neural networks (SNNs): advantages and limita-
tions w.r.t. other types of learning systems/architectures.

b) Meta-learning methods for vision-based detection and classification in the
presence of small data sets.

c) Visual-based detection and classification for autonomous ship navigation

2. Investigate possible approaches to spiking architectures and neuromorphic com-
puting with the focus on deep-learning models for computer vision.

3. Develop and implement RetinaNet for detection and classification of ships and
buoys exploiting an SNN architecture, and compare performances w.r.t. an deep
(analog) neural network architecture.

4. Investigate meta learning methods for object detection and classification (on spik-
ing neural networks) and identify one or more approaches that could be relevant
for the autonomous ship navigation.

5. Develop and implement at least one meta learning method for object detection
and classification.

6. Test and validate the implemented meta learning solution on relevant data sets
and compare findings with the SNN-RetinaNet approach.

7. Draw conclusions about the potential of using SNN and meta learning for robust
object detection and classification in autonomous ship navigation.

1.2.2 Side objectives
The objectives stated below are accessory and may be fulfilled if the available resources
permit it:
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1. Further development of existing spiking neural network frameworks targeting the
object detection and classification problem.

2. Investigate potential improvements to the studied technologies towards the objec-
tives of the ShippingLab project.

3. Implementation and testing of the developed solutions in dedicated hardware.

1.3 Resources
The following resources were identified at the beginning of the MSc project and will be
available to carry out the project objectives:

• Labeled databases of images (MS COCO [48] and ShippingLab datasets).

• Unlabeled databases of images.

• Deep learning model for comparative study (RetinaNet model from [89] and [75]).

• NVIDIA Jetson TX1 or TX2 for implementation and testing of developed solution.

• The DTU Computing Center (DCC) [19] for the training of the deep-learning
models.

1.4 Scope of the project
The workload of the project corresponds to that of a 35 ECTS MSc Thesis with a
duration of six months. The tasks are grouped into two main work packages which are
aligned with the objectives stated above.

The research revolves around the development and testing of novel techniques to
address the issue of object detection and classification using AI. This problem can be
defined as the identification of instances of semantic objects of a certain class (e.g: people,
animals, vehicles of any sort, etc.) in digital images or video, and pertains to the areas
of image processing and computer vision.

The first work package looks into the field of spiking neural networks and neuro-
morphic computation, relating to objectives 1a, 2 and 3. It has ended up constituting
around 80% of the workload due to the necessity of developing a suitable framework for
the realization of spiking object detection models. The developed Python library allows
for conversion of convolutional object detection networks into spiking models and their
simulation and testing.

The second work package is related to the analysis and application of meta-learning
techniques on the RetinaNet network’s training, covering objectives 1b, 4, 5 and 6.



4 1 Introduction

The time available for this part has been very limited and accomplishment of the base
objectives was prioritized over further upgrades. A few-shot learning method has been
applied to perform a fast training of the RetinaNet model and the results have been
compared against the fully trained RetinaNet.

It was initially contemplated to perform an implementation of the algorithms in
dedicated hardware (Nvidia Jetson TX2). However, research on the available frameworks
for SNNs revealed that none of them posessed the level of complexity required for this
project. Resources were then reallocated to further develop these frameworks and the
implementation on dedicated hardware was traded as a side objective.

Results obtained in both work packages could ideally fit together as described in
figure 1.1, leading to improvements in the AI model training and its implementation in
a spiking architecture.

(a) Path 1: Training of spiking neural network.

(b) Path 2: Training of deep (analog) neural network and porting to a spiking
architecture.

Figure 1.1: Scheme to illustrate the studied approaches. Path 2 describes the approach
that the final implementation produced in the project could potentially achieve.

1.4.1 Contributions
The research performed pertains to the fields of neuromorphic software architectures
and few-shot learning.

Regarding the meta-learning work package, the project relies on previous work in
few-shot object detection and classification, adapting an existing algorithm (TFA [94])
to the characteristics of the ShippingLab data and the RetinaNet model. The con-
tributions made are essentially the implementation, analysis and benchmarking of the
TFA-RetinaNet against relevant previous studies and against the fully-trained RetinaNet
model.
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In the spiking neural networks section, however, after a broad scanning for possible
paths to implement the RetinaNet algorithm in a neuromorphic architecture, a method
is developed to transform from the trained RetinaNet model to a spiking neural network.
Although following a similar idea as shown in [36], the method used in that paper was
not fully explained and the code was not accessible. The starting point was instead the
research performed in [72], which had to be remodelled and upgraded to suit the object
detection and classification (ODC) problem. Therefore, this section contributes with a
framework for the ANN to SNN conversion and simulation of ODC convolutional neural
networks and with the analysis of the results obtained using the RetinaNet model as
input.

It is worth highlighting the novelty of the work realized in this section as, to the best
of our knowledge, there is only one previous research paper that reports a similar level of
success on the implementation of an ODC spiking neural network (Spiking-YOLO [36]).

1.4.2 Limitations
The main constraint for the project is the highly demanding nature of the environmental
awareness issue towards ship autonomy. Safety codes dictate that the provided detec-
tions must be accurate and robust in any weather conditions. The recall (fraction of
detected obstacles over the whole number of them) is an especially critical metric, as
the consequence of failing to detect an object in a navigation setting could be adverse.
The evaluation of the results must therefore be coherent with the laid expectations.

It is known beforehand that these newly explored technologies are in their early
stages and will most likely not fulfill these hard requirements in their current state. The
project aims instead to lay the ground for future investigations that may improve them
and take advantage of the benefits they offer.

This project is noticeably ambitious in scope too, attempting to dig into multiple lines
of research and very novel technologies. Time limitations have been the main dictators
for the reach of the results accomplished in each work package. As it can be perceived
in its description, this project has very strong internal dependencies, which made a
successful result only achievable if all the steps in the project chain were performed
correctly. Resources and schedules have been restructured from the way they were
initially conceived to ensure a maximal fulfillment of the agreed objectives.

Besides, during the project’s kick-off meeting, it was agreed that the RetinaNet[47]
ODC algorithm would be one to be used throughout the project, to follow previous work
done by the department in [75].

Finally, concerning the application of spiking neural networks to the ODC task, the
biggest constraints have been the absence of a neuromorphic platform in the project
resources and, as has been mentioned above, the shortage of time to perform this hard-
ware implementation if available. The translation of a neural architecture this big to
that kind of device would definitely have been a challenge too. This has impeded a
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study on the main advantages of neuromorphic deep-learning models and so, the first
work-module’s results will be limited to determining whether a spiking implementation
of RetinaNet is a viable milestone.

1.5 Thesis outline
The document is tailored to be self-contained, independently address all the project
objectives and have a user-friendly structure. It is divided into 6 different chapters:

Chapter 1 - Introduction. Provides context to the reader and briefly introduces the
main concepts which will be relevant throughout the Thesis. Sets the expectations for
the content of the following chapters.

Chapter 2 - Literature review. Familiarizes the reader with the state-of-the-art
and properly references previous work in the studied fields. Provides some background
knowledge that may be necessary to understand the following chapters.

Chapter 3 - Spiking-RetinaNet. Explains in detail the characteristics of spiking
neural networks and neuromorphic computing and explores possible paths to perform
the implementation of RetinaNet on this sort of architecture. A toolbox to convert it to
a spiking model is produced and the results are analyzed on the ShippingLab data. It
corresponds to work package 1.

Chapter 4 - TFA-RetinaNet. Reviews possible approaches to the enhancement of
the ODC problem based on existing meta-learning studies. The TFA few-shot learning
method is then chosen, setting the path for further analysis, implementation and testing
on the ShippingLab data. It corresponds to work package 2.

Chapter 5 - Discussion. The final results of the Thesis are analyzed and bench-
marked against previous work. The section elaborates on the findings of the project and
balances the advantages and limitations of each of the studied paths. It also evaluates
the accomplishment of the project objectives and suggests possible courses for future
work in these fields. It is closely related to objective 7.

Chapter 6 - Conclusion. Provides a summary of the whole project and highlights
its positive impact.



CHAPTER 2
Literature review

In this chapter, some context will be provided to the current project by performing a
revision of the state-of-the-art within the fields of study. It serves the double purpose of
properly referencing the minds behind preceding research and providing the reader with
the needed, prior knowledge to master the work in following chapters.

2.1 ShippingLab project
Denmark is among the world’s leading maritime nations and, overall, maritime compa-
nies account for approximately one-fourth of the country’s total exports [3].

The Blue Denmark is one of Denmark’s industrial positions of strength, consisting
of shipowners and shipping companies and a wide number of businesses whose activities
emanate from international and Danish shipping. These could be, for example, shipbro-
kers, ports, logistics companies, shipyards and service companies that supply equipment,
components and service to ships.

About 60,000 persons are directly employed and about 42,000 persons are indirectly
employed in Blue Denmark. In total, this corresponds to 3.8% of Danish employment.

It is the Danish Government’s stated ambition to maintain and expand the Blue
Denmark’s position as a growth engine in the Danish economy. ShippingLab implements
this ambition, having stakeholders across the maritime industry joining efforts on pre-
competitive initiatives [78].

2.1.1 Project objectives
The project goal in the long term is to enhance the competitive edge of Danish maritime
suppliers to secure Blue Denmark’s leading position in the global market. This will be
accomplished by investing in in ground-breaking research, development and innovation
for the creation of quantifiable technological value in the short term. Three core areas
are the target of current investigation: digital ship operations, decarbonization and
autonomy, pertaining this Thesis to the third work package in the list.

The overall objective of ShippingLab Autonomy is to be able to demonstrate au-
tonomy up to unmanned operations of a Danish vessel while integrating with existing
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technology. An open, modular system architecture and interface standard are to be
defined aiming for an easier implementation in the Danish infrastructures.

The approach is twofold. The first case is an add-on autonomy functionality for
existing vessels while the second case focuses on one-man and unmanned operations of
new-built electric ferries.

2.1.2 Data characterization
The maritime dataset used in this project comes from previous research [75].It is con-
ceived as a pool of images from different sea scenarios for the training and testing of AI
models towards the autonomous navigation of ships. Objects of interest (OOI) include
large commercial vessels, small leisure boats, kayaks, other objects without a clear radar
signature, as well as stationary objects such as buoys, land, bridge pillars and similar.
The images were acquired from ferries in near coastal service and objects at a wide range
of distances are annotated in two main classes: boats and buoys. The data is divided
into two separate training and validation subsets.

The chosen classes serve the basic purpose of locating and distinguishing between
stationary obstacles (buoys) and moving vehicles (boats) within the income data, as key
information for the ship to define its future course.

The dataset is limited in scope, as the images pertain to, at most, 3 different ferry
routes and the climatic conditions are not adverse. Nevertheless, it suffices to make a
first assessment on the performances of different vision algorithms and compare between
them. It will be referred throughout the project as the ShippingLab dataset.

2.2 Artificial Neural Networks
Artificial neural networks are a category of computing systems within the family of
machine-learning algorithms and AI. These systems are inspired to some degree by the
biological neural networks that constitute animal brains.

2.2.1 Biological inspiration
When it comes to non-mathematical tasks, the animal brain possesses many advantages
over traditional computing, especially in what regards to pattern recognition and im-
provisation. The brain is also remarkably robust, as its activity is decentralized in a
massive mesh of connected units. These units, called neurons, have very limited data
processing capabilities by themselves. However, their functional association in intercon-
nected networks greatly increases their potential. Communications (synapses) between
neurons take place through weighted electrochemical pulses which can be both positive
(excitatory) and negative (inhibitory) [39].
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Perhaps, the most fascinating aspect about the brain is that it is able to learn by
establishing relationships between actions and stimuli. This key feature defines most
animal forms of life, whose survival is in many cases related to their learning capabilities
and awareness of their surroundings. According to the leading theory among neurosci-
entists, learning is performed through what they call synaptic plasticity, which is the
modulation of the sensitivity of brain neurons due to repeated and persistent stimula-
tion. This is referred to as cell assembly theory, Hebb’s postulate, or Hebbian learning
[27].

Artificial neural networks were designed with the objective of providing human tech-
nology with this kind of perception, becoming one of the pillars of artificial intelligence.
Their main resemblance with the animal nervous system is their micro-structure, based
on a collection of connected units called artificial neurons, and their ability to learn from
error and stimuli.

2.2.2 Analog Neural Networks
The first research paper about the design of artificial neural networks was published in
1943 by McCulloch and Pitts [53]. A neuron was modeled as switch which, depending
on the total weighted inputs from other neurons, produced a binary output. The first
learning demonstration, though, was performed in 1958 with Rosenblatt’s Perceptron
[68], which could be taught linear problems. These networks have quickly developed
into very complex models, which are trained on massive amounts of data for applications
as diverse as weather forecasting, stock-market tracking, historical reconstruction and
control of unmanned vehicles.

Due to the hardware constraints, neurons in these artificial networks are very simpli-
fied, consisting in a non-linear activation function that produces a numeric output based
on a linear combination of all the inputs. For this reason and following the nomencla-
ture established in [72], these networks will be referred throughout the project as analog
neural networks (ANNs).

In the field of computer vision traditional hand-crafted algorithms have quickly
been substituted by deep learning techniques, due to their higher accuracy on bench-
mark datasets. Convolutional neural networks nowadays constitute the unrivaled top-
performers between image analysis methods. A more elaborate explanation of this topic
shall be found in section 2.3.

2.2.3 Spiking Neural Networks
Artificial spiking neural networks (SNNs) are deep learning models which, when com-
pared with ANNs, show a more biologically realistic behavior, incorporating a time
dimension. Their main difference is that SNNs inner communications are driven by
sparse and asynchronous binary signals, product of the neuronal dynamics. This is sim-
ilar to how biological neurons behave, transmitting spiking signals which are generated
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by electrochemical reactions. In the context of artificial networks, these are replicated
within a software simulation or using electronics in the so-called neuromorphic process-
ing units. Some examples of these hardware platforms are the University of Manchester’s
SpiNNaker [24], IBM’s TrueNorth [12] and Stanford’s Neurogrid [5].

Spiking neural networks have mainly been approached from a neuroscientific perspec-
tive, being propelled by the need of a better understanding of the mammalian brain’s
remarkable information processing skills. With ongoing efforts toward these bio-inspired
models, there are expectations that they will come closer to natural intelligence and reach
higher computational efficiency than more abstract models. In particular it is shown
that networks of spiking neurons can be, with regard to the number of neurons needed,
computationally more powerful than ANN models. In one of the most influential papers
on the topic [51], published in 1997, a concrete biologically relevant function is exhib-
ited which can be computed by a single spiking neuron, but which requires hundreds of
hidden units on a sigmoidal neural network. On the other hand, it is known that any
function that can be computed by a small sigmoidal neural net can also be computed
by a small network of spiking neurons.

With the success of deep-learning, the most common perspective is to view SNNs
exclusively as a more efficient replacement of conventional ANNs. This is reflected in
the way SNNs are benchmarked by their accuracy on ANN tailored datasets like MNIST
or CIFAR, which lack the precise timing and low latency information that could benefit
a neuromorphic approach. Such comparisons are certainly important because they show
that SNNs can be powerful classifiers in the classical machine learning setup. However,
they create a bias that hampers the proper development of the technology.

Many practical applications of SNNs can be found in the areas of robotics and control
[16, 8], decision making and action selection, trajectory planning and tracking, rehabil-
itation, environment exploration, etc [50]. These while showing a big potential for the
SNNs, are rather simplified approaches in the most part, set as probes for the technol-
ogy’s early development. Brain-machine interfaces (BMI) are also currently arising as
a particularly interesting application field for neuromorphic computing [9] due to the
low energy consumption, low heat dissipation, robustness, and ability to decode in real
time, showcased by spiking models. The fact that SNNs can process biological spikes
without further transformation adds to the appeal of such systems. The recent devel-
opment of these spiking networks also appear as a promising opportunity for the Green
Artificial Intelligence paradigm, which aims to reduce the resource usage while training
and executing AI models [92].

An increasing trend is being observed in the interest in event-based computer vision
showcased by research communities. Advantages of using event-based sensors have been
demonstrated for several applications such as tracking, stereo vision, optical flow esti-
mation, scene reconstruction and SLAM [50]. However, only few of these approaches
use spiking models for event-based post-processing or run on neuromorphic hardware.
As a pioneer in this field, it is necessary to mention the gesture recognition system in
[2], developed to highlight the benefits of combining a dynamic vision sensor with IBM’s
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True North processing chip.
It is believed that there is great potential for fully event-based sensing and processing

systems, where deep SNNs on neuromorphic hardware platforms seem like an obvious
choice [63]. However, although initial demonstrations performed on simpler classification
tasks are encouraging [84], more research is needed to develop spiking models that can
benefit from event-based input to outperform traditional deep-learning methods. To
stimulate research in this direction, the neuromorphic engineering community has been
working on generating new benchmarks that do not carry the legacy of conventional
machine learning [57, 7]. Such datasets have only recently became available but already
had a favourable effect on providing visibility to the progress in SNN computing.

Finally, the object detection and classification problem, which motivates the current
research, is a rather unexplored area due to the sheer size of the networks and datasets
required, making it a bad test-bench for new SNN prototypes. Seoul National Uni-
versity’s Spiking-YOLO neural network [36] is the pioneer in this front line, achieving
state-of-the-art performances by conversion of a pre-trained ANN Tiny-YOLO model
while consuming 280 times less energy on a neuromorphic chip.

Available Python libraries which have been tested in this project for SNN software
simulation include Norse [61], SNN Toolbox [81], BindsNET [26] and Brian2 [83].

2.2.4 Conversion from ANN to SNN
Despite their excellent potential, SNNs have been limited to relatively simple tasks, shal-
low structures, and small datasets, bue primarily the lack of scalability of their learning
algorithms. This is caused by the complex dynamics and non-differentiable activations
of spiking neurons. ANN-to-SNN conversion algorithms have been widely studied in
recent years as a parallel approach. These methods rely on the idea of translating pre-
trained parameters from an ANN, creating an equivalent SNN with minimal sacrifice in
performance.

Early studies on this topic initiated in 2013 with the research performed in [62]. In
this paper, convolutional units were translated into LIF-spiking neurons with refractory
periods, aiming for compatibility with event-based sensors. A close link between the
dynamics of a spiking neuron and a ReLU activation function was suggested in [10], re-
porting good performance error rates after implementation. This method was improved
in [17], achieving nearly loss-less conversion on the MNIST dataset by using a parameter
normalization step before the transformation. Other approaches include noise injection
for more robust training and predictions, the use of binary weights and restricted con-
nectivity targeting the TrueNorth hardware [20], and a conversion method that adapts
the firing threshold of spiking units to minimize the number of spikes required [99].

Directly serving as foundation for this project, [72] builds upon previous works and
implements support for many operators that are crucial for improved ANN error scores,
such as pooling layers, softmax activations and batch-normalization. The underlying
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encoding scheme for this conversion approach is rate-based: The neurons generate a
sequence of discrete spikes, which, when averaged over the integration time, it approxi-
mates the analog firing rate corresponding to the original ANN. This encoding becomes
more accurate as the simulation duration is increased and more spikes are generated,
entailing a higher resolution at the price of scaling up the computational cost.

A future research by the same authors, documented in [70], implements an inverse
time-to-first-spike encoding, where each neuron fires a single spike and the information
is encoded in its temporal location. This approach sacrifices some of the robustness and
accuracy of the rate encoding in favour of a lower energy cost of information transfer.

Finally, [36] implements in neuromorphic hardware the first object detection model
using a deep rate-SNN, achieving comparable results to the original ANN in non-trivial
datasets (2% performance reduction). This is achieved by the use of a new, fine-grained
normalization method that increases the information transmission, and by the design
of a new spiking version of leaky-ReLU being able to transmit negative values using an
imbalanced threshold.

Figure 2.1: Object detections performed by the (Keras) RetinaNet model used in this
project. Image belongs to the MS COCO dataset [48].
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2.3 Object detection and classification
The object detection and classification problem constitutes one of the most advanced
issues related to computer vision and image processing. It deals with detecting and
distinguishing instances of semantic objects of a certain class in digital images or video
frames. Some well-researched domains in the ODC field include pedestrian detection
and facial recognition, mostly for surveillance, target tracking, and security applications
[87].

Object detection methods are benchmarked within the scientific community in rele-
vant datasets which contain a very diverse pool of labelled classes. These environments
are somewhat more challenging that many real applications due to such a varied object
range and the sheer size of the image sets. The most relevant data collections are:

• COCO [48], a large-scale dataset of images with Common Objects in Context
(COCO) for object detection, segmentation, and captioning. These objects are
labelled in 80 different classes. It is sponsored by Microsoft, Facebook, CVDF and
Mighty AI.

• Pascal VOC [21] (Visual Object Classes), comprised of 20 semantic classes. The
preparation and running of this challenge is supported by the EU-funded PASCAL2
Network of Excellence on Pattern Analysis, Statistical Modelling and Computa-
tional Learning.

• ImageNet [14], backed by Stanford and Princeton universities, is an image dataset
organized according to the WordNet hierarchy. Each meaningful concept in Word-
Net, possibly described by multiple words or word phrases, is called a ”synonym
set” or ”synset”. There are more than 100,000 synsets in WordNet with an average
1000 images to illustrate each synset.

The performance of object detectors is measured using the mean Average Precision
(mAP), a popular metric used to evaluate models doing document/information retrieval
and object detection tasks. This metric is computed by averaging across all object classes
the AP scores obtained in each of them. The AP (Average Precision) is calculated by
integrating the precision1 of the detections of each class as a function of their recall2.

Traditional machine-learning approaches to this problem rely on a prior definition
of features, which are used for a later classification using techniques such as a support
vector machine (SVM). A feature is a specific area of the image which contains unique
information that makes it easily distinguishable for computer-vision algorithms. Usually,
features correspond to specific structures in the picture that may show a big difference
in lighting and color between adjacent pixels, for example, corners and edges of objects

1Precision = True good detections
All detections ; a.k.a. positive predicted value.

2Recall = True good detections
All labeled objects in the image ; a.k.a. true positive rate or sensitivity.
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[29]. Early iterations of these feature detectors, such as the Harris Corner Detector
[15], measured the rate of change of pixel values when shifting a window through the
image in different directions. More advanced techniques are available, such as SIFT
and SURF, two robust and widely used algorithms which are under patent protection
[35]. As a faster and license-free alternative to these, ORB was developed in 2011 by
OpenCV engineers to reach comparable performances, building on the lighter, FAST
corner detector and BRIEF descriptor extractor [69].

The above-mentioned methods have since then been outrun by deep-learning tech-
niques, able to do end-to-end object detection without specifically defining features, and
typically based on convolutional neural networks (CNN). Something interesting about
these structures is that the connectivity pattern between their neurons resembles the
animal visual cortex. Up to this date, the best performing model to accomplish the
ODC task is the YOLOv4-P7, achieving a score of 60% on the COCO test-dev [59].

Regarding direct previous work to this document, in [75], they benchmarked three
deep-learning techniques on the ShippingLab dataset. A summary of this benchmarking
is displayed in table 2.1. The RetinaNet architecture, which is a key component of this
project, is among these tested models and will be further discussed in the following
section (2.3.1). This model will be used as bedrock for the techniques applied in the
present research.

Table 2.1: Comparison of deep-learning algorithms on the ShippingLab (SL) dataset
performed on [75]. Score corresponds to mAP@0.5IoU.

Method Source SL
Score

COCO
Score Description

Faster
R-CNN

Ross B.
Girshick
[25]

81% 46.7%
Classical two-stage detector which
generally yields the best results, but is
quite slow (2015).

YOLOv3
Redmon, J.
& Farhadi,
A. [67]

90% 46.6%

A Very fast one-stage detector, which
does sacrifice some performance to
achieve these fast inference times
(2018).

RetinaNet Lin et al.
[47] 90% 52%

One-stage detector that uses a novel
loss function to improve its
performance, the Focal Loss (2018).
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2.3.1 RetinaNet
RetinaNet [47] is a state-of-the-art one-stage object detector which achieves performances
comparable to classical two-stage approaches (e.g. Faster R-CNN) while being compu-
tationally cheaper. The key to these results is the novel loss function it incorporates,
named Focal Loss. It is a single, unified convolutional neural network consisting of a
backbone and two task-specific subnetworks in charge of the bounding box regression
and object classification (figure 2.2).

The backbone is an off-the-shelf convolutional neural network which is responsable
for highlighting potential areas of interest within the input image by computing a convo-
lutional feature map. Following the path taken in [75], the ResNet50 CNN will be used
for this task. The feature map is aranged using a Feature Pyramid Network (FPN) [46]
with the objective of improving detections over a wider range of scales. The top of the
pyramid refers to the final layers of the CNN, containing spatially coarser but seman-
tically stronger features. The bottom instead, is linked to shallower layers in the CNN,
containing higher resolution but lower-semantic feature maps capable of more precise
keyspot location. In essence, the FPN’s function is to augment the backbone with a top-
down pathway that up-samples features from above in the pyramid to generate higher
resolution versions in lower stages. These are then enhanced via lateral connections with
features from the bottom-up pathway creating rich semantics in all levels. The pyramid
is structured in 5 stages of 256 channels each.

RetinaNet makes use of a predetermined set of sizes and aspect ratios that serve
as translation-invariant bounding box candidates for the areas of interest. These are
referred to as anchor boxes and each one is assigned to a one-hot vector of classification
targets and a size 4 vector for the predicted box coordinates. An anchor is assigned to a
ground-truth (labelled) object if their IoU is above a threshold ho, or to the background
class if below hb (hb < ho). Anchors with an IoU between both thresholds are ignored
during training. The parameters chosen were ho = 0.5 and hb = 0.4.

The classification head is in charge of estimating the probability of object presence
for each of the C classes in each of the K archors. It consists of a sequential, fully

Figure 2.2: Architecture of RetinaNet as described in the source paper [47].
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convolutional network whose inputs are the feature maps of each of the FPN levels. It is
structured as four iterations of 3x3 convolutional layers with ReLU activations followed
by a 3x3 convolutional layer with a [K,C] sized output. This output can be decoded
using sigmoid activations as in the standard classification networks.

The box regression head shares the overall structure with the classification head
except it uses different parameters and terminates in a [K,4] sized output. It serves as
a class-agnostic estimator of the offset between each anchor box in the feature map to
the nearest found object.

The Focal Loss, the novel loss function introduced in the RetinaNet classification
task, has been designed with the purpose of better addressing the imbalance regarding
the background class, much more abundant than the object classes. It also allows for
better classification of distant objects in areas with high object population or large
differences between object sizes.

FL (pt) = −αt (1− pt)γ log (pt) (2.1)

This loss, shown in equation 2.1, builds upon the traditional cross entropy formula adding
a modulating factor: αt (1− pt)γ. Here, γ serves as a focusing parameter to down-weight
the easy, over-represented examples, focusing on hard negatives, and α as a balancing
factor.

In this project, RetinaNet achieves a mean Average Precision at 0.5 IoU of 50.45%
in the MS COCO dataset and 97.16% in the ShippingLab data.

2.4 Meta-Learning
From a social psychology perspective, the term meta-learning is a branch of meta-
cognition referred to the understanding of the interaction between the mechanisms of
learning and the concrete contexts in which they are applicable. Hence, meta-learning
is viewed as an adaptation of learning itself on a higher level than merely acquiring sub-
ject knowledge [91]. The term meta-learning was first conceived by Donald Maudsley
to describe a process by which people become self-aware and ‘increasingly in control
of habits of perception, inquiry, learning, and growth that they have internalized’ [52].
The prefix meta- in this context implies an abstract recursion: the word meta-learning
can then be defined as ‘learning about learning’.

In the field of AI, this term addresses the study of meta-data from learning algorithms
pursuing improvements in their efficiency and performance. In many cases, this refers
to the application of other automatic learning algorithms to this data. However, meta-
learning might also refer to a manual approach to the study of a model’s hyperparameters
or learning context in the seek to improve or automate the algorithm tuning [43].
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The term meta-learning is first addressed in literature in 1987 within two independent
pieces of work, by J.Schmidhuber and G.Hinton. Schmidhuber’s PhD Thesis [74] built
the theoretical framework for a new family of methods using self-referential learning,
which involve the training of neural networks that can receive as inputs their own learn-
able weights and predict updates for said weights. The document further proposed that
the model itself could be induced using evolutionary algorithms. The paper by Hinton
et al. [28], on the other hand, suggests to duplicate the weights in each neuron synapse.
The first weight would be the standard slow-weight, which prompts a slow acquisition of
knowledge, whereas the second weight, the fast-weight, produces a fast-paced training
aiming to recover slow weights learnt in the past that have been since forgotten due to
the optimizer updates (deblur).

After both of these papers gave rise to the concept of meta-learning, one can see
a rapid branching-out and increase in the usage of the idea in multiple different areas.
Some of the most relevant milestones include the meta-learning of biologically plausible
learning rules in 1995 [4], the first proposals for meta-learning frameworks using gradient
descent and backpropagation in 2001 [98], the first use of meta-learning in combination
with reinforcement learning in 2003 [76], and the first attempt of zero-shot learning in
2008 [42].

In the modern deep-learning context, meta-learning can be classified into four main
categories [56]:

1. Optimizer meta-learning, which search for the optimal hyperparameter config-
uration in order to maximize the performance of the base neural network.

2. Few-shot meta-learning, where a deep neural network is engineered so that it
is able to generalize from a base training to new unseen datasets from the same
task family, in an attempt to move away from traditional, energy and data-hungry

Figure 2.3: Meta-learning taxonomy as described in [30]. Fields relevant to the current
paper are framed in orange.
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methods. The basic concept is that individual training samples are minimalistic,
varied, and provide enough abstraction so that the network can learn to identify
new objects just like a child would learn, using few but significant samples.

3. Metric meta-learning is the use of an AI model to determine if a metric is
effective for a set of problems and if the target networks are hitting it properly.
The metric space is learnt by the use of few examples and can be used across
diverse domains.

4. Recurrent model meta-learning basically consists in the application of meta-
learning techniques to recurrent neural networks and long-short term memory net-
works.

Regarding the ambit of computer vision, which encapsulates this project, the main
body of work has been generated in the field of few-shot learning, with a major focus
on the few-shot classification problem [6]. This is defined as the issue of identifying to
which of a set of categories (sub-populations) a new observation belongs using scarce
training data.

Many effective solutions have been proposed for this problem in the past few years,
obtaining 1-shot performances as good as 98% on the Omniglot benchmark [41] and
82% on the more challenging miniImageNet set [85]. A brief overview of these solutions
will be provided now. The majority of these algorithms can be labelled as either a
gradient-based meta-learner or as a metric learning algorithm.

In the gradient-based meta-model setting, a distintion is made between the meta-
learner, which is the model that learns across episodes, and the base-learner, which
learns from the data within each episode. The meta-learner’s parameters are trained at
the end of each episode from the classification loss. Some examples of this approach are
Meta-LSTM (2016) [66], which uses a long-short-term-memory and a custom update
rule to improve the learning on the few-shot set; and maML (2017) [23], which learns
how to best initiate the base-model parameters to maximize learning in each training
episode. This meta-model is conceived to be agnostic from the base model and could be
applied to any machine-learning problem.

Metric-learning, on the other hand, involves learning to compare data samples by
means of a distance function. In classification problems, they classify query instances
depending on their similarity to support set instances. This setting has given rise to ap-
proaches such as matching networks [93], which are trained to compute a representation
of images enabling them to be classified by comparison in-situ; and relation networks
[86], which evolve over the previous ones by allowing the algorithm to also learn the
distance function.

Finally, the object detection and classification (ODC) problem, which is our direct
area of interest, is a very novel field of study, having barely a few years of relevance
within the meta-learning paradigm. For instance, to the best of our knowledge, the
first few-shot object detector was proposed in early 2019 by Kang et al. [33]. The
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current performance of 10-shot object detectors in the MS COCO dataset is capped at
a mAP@0.5 of 12.5% [58], being this performance very poor for the objectives of the
ShippingLab project. This field of study will be further characterized in section 4.

2.5 Summary
Object detection and classification methods are an essential technology for the fabri-
cation of unmanned, fully autonomous vehicles as they enable machines to achieve ad-
vanced perception of the environment through the extraction of detailed information
from image or video inputs. These objectives align with the ShippingLab Autonomy
research effort, which aims to develop the first autonomous Danish ship.

The best performing object detectors are deep-learning methods with an artificial
analog neural network structure (ANN). These structures loosely mimic the animal
brain by emulating its mesh structure formed by thousands of simple, interconnected
units. Among them we find RetinaNet [47], a one-stage ODC which will be used for the
experiments in this project.

Spiking neural networks (SNNs), on the other hand, are considered the 3rd generation
of artificial neural networks, as they draw even more inspiration from the animal brain
trying to emulate the dynamics from its neurons and its learning rules. These algorithms
are still in early phases of development but show a big potential in computational power
and energy saving.

Finally, meta-learning strives to equip deep-learing models with a deeper understand-
ing of their learning process, achieving improvements in their training time, the data
consumption and the performances obtained.
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CHAPTER 3
Spiking-RetinaNet

This chapter corresponds to the first work package of the MSc Thesis project. The aim
of this module is to explore the possibility and benefits of implementing the RetinaNet
object detection algorithm using spiking neural networks. This is not an easy task, as
vision applications of spiking neural networks are currently limited to classification tasks
on smaller and simpler network architectures.

The chapter will start with a brief overview of the characteristics of spiking neural
networks and how information can be conveyed using binary spikes. Possible paths to
perform the implementation of RetinaNet on this sort of architecture will be explored,
leading to a final discussion and benchmarking between each of the followed studylines.

3.1 Spiking Neural Networks overview
As presented previously in section 2.2.3, artificial spiking neural networks (SNNs) are
deep learning models that more closely mimic the constitution and dynamics of the
nervous system. SNNs first emerged in computational neuroscience, as an attempt to
model the behavior of biological neurons. This resulted in the Leaky-Integrate-and-Fire
(LIF) model, which is the most prominent spiking neuron mathematical implementation.

The LIF-neurons activity is described as an integration of the received spike voltages,
paired to a weak dissipation (leakage) to the environment. This leakage term produces
a slow decay of the neuron voltage if not enough consecutive stimuli are received. When
this voltage reaches a threshold, the neuron fires a spike on its own (figure 3.1). Following
further inspiration from the brain, neuronal inputs and outputs are encoded in spike-
trains. In the current project, though, the leakage term of the model has been neglected
for simplicity and the neurons are shaped using the Integrate-and-Fire (IF) model. The
mathematical explanation for it can be found in section 3.4.1.

Even though the first models for these kind of networks range to 1952 [1], spiking
neural networks have not met a large interest within the deep-learning community until
quite recently due to their lack of efficient training algorithms for supervised learning
[65]. Commonly used learning algorithms require continuous valued, differentiable func-
tions for the neuron’s output, being spiking activations not suitable for them. Several
workarounds have been performed by calculating the time-of-arrival of the spikes or the
spiking-rate, nevertheless, this is inefficient and adds complexity to the problem.
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Figure 3.1: Graphical explanation of the Leaky-Integrate-and-Fire (LIF) neuron model.
From left to right, input spike-trains (Θ) are modulated by the synaptic weights (w) to
be integrated as the current influx in the membrane potential (Vmem). The leakage term
causes an exponential decay of this potential over time. Whenever this voltage crosses
a firing threshold (Vth), the neuron fires a spike and resets the membrane potential.

Spiking neurons are, on the other hand, widely used in neuromorphic computing.
This consists in building neural networks directly in hardware, using electronic and optic
systems. Physical device neurons are connected by electronic synapses in a distributed,
energy efficient architecture. This approach has been used, for example, within the
Human Brain Project [31], in an attempt to recreate a functional Silicon Brain. With
ongoing efforts toward these bio-inspired models, there are expectations that they will
come closer to natural intelligence and reach higher computational efficiency than more
traditional approaches.

SNNs on neuromorphic hardware exhibit favorable attributes such as fast inference
and low-power consumption due to event-driven information processing [63]. Their ar-
chitecture also avoids energy voracious data shuffling between the memory and the
processing units. Being a standard computer’s estimated power usage around 100W ,
neuromorphic architectures aim to reduce it to comparable levels to the human brain,
which has an estimated average energy consumption of roughly 20W [18].

In this project, though, the spiking neural networks will be operated via software
simulation. This sacrifices many of the mentioned advantages in favour of a more ac-
cessible approach and the ability to analyze the relationship between the SNNs the
more widespread ANNs. This choice is also motivated by the possibility of using more
widespread, well-known frameworks (PyTorch, Keras/TensorFlow) for the programming
of the models, and by the hardware resources available, which do not bear a neuromor-
phic architecture.

Neuromorphic platforms currently face the challenge of scaling up and increasing
their range of applicability. They will have to deal with more complex neural networks
and device variability, while keeping the devices compact and low energy consuming
[90]. Having said that, a previous research has already implemented an object detection
spiking model (Spiking-YOLO) in neuromorphic hardware achieving state-of-the-art re-
sults [36]. This project strives to emulate this success following a different path. Due
to the pre-existing complexity of the object detection and classification problem and the
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scarcity of previous research, the project adheres when possible to the most reliable and
well-documented approaches to deep SNNs, to maximize its chances.

Aside from the potential energy saving, the interest of spiking neural networks lies
on a two more reasons. Firstly, the robustness of rate-encoded spike-trains, which allow
for partial loss of the communicated signals and weaker transmissions. And secondly,
the possibility of using bio-inspired learning rules, such as Hebbian learning, while also
exploiting the network dynamics thanks to their temporal encoding.

3.2 Spike-train encoding
The first step towards the implementation of a spiking neural network is to determine
how the information is encoded in and transmitted across neurons. In the literature
there are two methods that stand out: temporal-mean-rate encoding and time-to-first-
spike encoding.

The most direct connection between analog and spiking neural networks is made by
considering the activation of an analog neuron as the equivalent of the firing rate of a
spiking neuron assuming a steady state [63]. This is addressed as temporal-mean-rate
[72], rate encoding [38] or r-SNN. The information is encoded in the average number of
spikes that occur during the simulation. This way of transmission is very robust, being
inherently redundant because it integrates multiple binary events over a determined
period of time.

In contrast, time-to-first-spike (ttfs) [70] or t-SNN encodings carry the relevant in-
formation within the delay between the spikes and the stimulus [40, 60]. This approach
is more energy efficient as it produces sparse or single spike trains. However, precise
detection of every spike can be crucial and its mathematical relationship with analog
neural networks is less intuitive.

Figure 3.2 shows a simplified example of a signal’s encoding in a 100ms time window
using both r-SNN and t-SNN with the purpose of comparing both approaches. The rate
coding approach can transmit signals in the [0, rmax] range, being 0 the absence of any
event and rmax the emision of a spike at every single timestep (maximum rate). The ttfs
interprets this interval differently, coding its maximum value as an immediate spike and
the minimum as a whole time window delay before the spike (no spike).

The advantage that time-to-first-spike has over rate encoding is manifest in terms of
energy consumption, as it uses just a single spike to transmit the information. Never-
theless, they both show an improvement over the analog signal’s energy footprint.

It is worth noting that the spike-train encodings suffer from one major limitation:
the signal’s discrete sampling. For a fixed clock rate, the available resolution of the
conveyed data is capped by the length of the time interval where it is encoded. High

1The encoding of the spike trains has been simplified for clarity.
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Figure 3.2: Explanatory1graph for the two studied spike-encoding approaches. Note
how the constant signal transmitted in the ANN is likely to be more energy consuming
than the event-based binary signals of the SNNs.

precision tasks like object detection and classification (ODC) are likely to need a large
time window to achieve good performances.

The SNN implementation of RetinaNet will run on temporal-mean-rate encoding due
to its more straightforward connection to ANN, mathematical simplicity and prominence
among existing research. Furthermore, it also exhibits a higher robustness to errors, as
a failure to detect some of the spikes does not induce a significant error in the average
spike-rate.

3.3 First approach: Training
This section studies the learning capabilities of an artificial spiking neural network and
explores the possibility of applying a training process to a SNN version of RetinaNet.

3.3.1 Learning methods for SNNs
In virtually all artificial neural networks, spiking or non-spiking, the learning process
is realized through the adjustment of scalar-valued synaptic weights [88]. Nevertheless,
SNNs are compatible with more bio-plausible Hebbian learning rules that are not possible
to replicate in analog neural networks (see section 2.2.3). These are referred to under the
umbrella term of spike-timing-dependant plasticity (STDP), their common key feature
being that the strength (weight) of the connection between two consecutive neurons is
adjusted according to their relative spike times within a certain interval. The adjustment
is therefore performed locally, both to the synapse and to the time window.
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The most common instance of biological STDP can be intuitively interpreted as
follows: Given the event of a neuron in layer l firing, if a presynaptic neuron in layer
l − 1 had fired shortly before, then their connection would be strengthened due to the
likelihood of a causal link. However, if the presynaptic neuron fired instead briefly af-
ter, then the causal relationship between both events would be spurious and the weight
of their connection, weakened. This algorithm is more straightforwardly related to un-
supervised learning, focus of the vast majority of SNN experimentation due to their
distinctive potential. Nevertheless, STDP is also embedded in some SNN supervised
learning techniques which could be suitable for this project.

In the context of spiking neural networks, supervised learning aims to minimize the
error between desired and output spike trains, adjusting the model’s weights via gradient
descent on a cost function. Although this concept is similar to the main ANN training
techniques, the main disparity lays on the non-differentiable nature of the spikes.

The simplest and most traditional approach to supervised learning is called surrogate
gradient backpropagation [96, 55]. The method is a direct translation of ANN’s success-
ful gradient descent algorithm, applied to SNNs by using a differentiable approximation
for the spiking activations. Following these in popularity come STDP-based backprop-
agation methods, which infer that the equivalent of the gradient descent rule is best
expressed as a compound of two Hebbian processes in SNNs (figure 3.3). These tech-
niques, referred first as ReSuMe in [64] and then further developed in [82], establish an
explicit link between biological and artificial learning patterns. An additional mention
should be made to temporal backpropagation [54, 49], which adapts the backpropagation
method to delay-encoded SNNs.

Further research performed on these methods shows that all of them achieve good

Figure 3.3: Graphical explanation of Hebbian (STDP) learning within the ReSuMe
training algorithm [64]. The weight modifications ∆woi are computed using the difference
between the desired (Sd) and the obtained (So) output spike trains and their relative
location from the presynaptic spikes (Si) modulated by a decaying exponential. This is
a theoretical spiking equivalent to the ANN backpropagation algorithm.
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performances on the MNIST handwritten digit database but could be very inefficient
when scaled up to more complex problems if not ran in a neuromorphic platform [88].
Nevertheless, the surrogate gradient backpropagation algorithm was selected for further
testing as it is the widest-spread approach among popular deep-learning libraries.

3.3.2 Implementation and results
Before trying to apply the chosen learning method to the objectives of this project it is
worth noting that all mentioned techniques have only been tested on classification tasks.
It is important then, to assess the scalability of the surrogate gradient descent method
for its use in the training of a bigger object detection neural network.

To evaluate the learning capabilities of a spiking neural network, a test training
of a three layer convolutional model was performed on the MNIST handwritten digit
database using the PyTorch Norse SNN library [61]. An ANN with the same structure
was used for benchmarking.

Two key metrics have been chosen for the comparison: the training time and the
accuracies obtained after three epochs, as this number was sufficient to achieve good-
enough performance in the ANN model.

Figure 3.4: Evolution of the accuracies of the models trained on the MNIST dataset.

The training was performed using gradient backpropagation in the case of the ANN
and surrogate gradient backpropagation for the SNN. As displayed in table 3.1, a time
window of 250ms is needed for the spiking model to achieve similar performance to the
original ANN.

A look at the training time, however, reveals the big downside this entails. The
computational cost of the SNN training makes it no rival to the ANN. The source of
this issue is likely to be a combination of the following:
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Table 3.1: Benchmarking between ANN and SNN training on MNIST dataset.

ANN SNN t = 200ms SNN t = 250ms

Training method backprop. surr. backprop. surr. backprop.
Training time 7,3 s/epoch 200 s/epoch 478 s/epoch
Final accuracy 97.5% 96.9% 97.4%

• The PyTorch framework is not designed for the use of SNNs, their implementation
is done by simulation. This is magnified in the training, as the spiking network is
run through the desired time window for every sample in the dataset.

• The gradient descent method trains the network by backpropagation of the error
through the derivatives of the activation functions. Due to the non differentiability
of the spikes in the model, approximate gradients are needed. These, in combina-
tion with the more complex dynamics of the neurons, could have a negative impact
on the training time.

• The training method used is a direct translation of an algorithm which was de-
signed for ANN. However, this might not be the right approach due to the differ-
ent nature of the spiking model. This is now an open line of research whose most
interesting results shift towards Hebbian learning based algorithms.

Due to the larger scale of the RetinaNet network (100+ layers) and the already long
time it takes to train its ANN version (∼6 days), the decision was made to discard this
approach and steer the project towards the conversion of a trained model to a spiking
neural network architecture.

3.4 Final approach: Conversion
The aim of this section is to implement and test a method that translates from a trained
ANN to an equivalent SNN with minimal sacrifices in its performance. This approach
should be much less time consuming than training the SNN and the converted model
could potentially be deployed to specific harware for efficient execution.

The chapter draws its main inspiration from the research carried out in [72] and
[70], where deep-learning classification models are automatically converted to spiking
neural networks. Nonetheless, it moves one step ahead by applying it to the much more
complex object detection problem in a comparable way as the work done in [36]. For
more details on previous works regarding this topic see section 2.2.4.

3.4.1 Method
The method used for the ANN to r-SNN conversion is based on the principle that the
firing rate of the spiking neurons over a certain time window should approximate the
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graded activations of the original analog neurons [72]. A one-to-one correspondence
between analog and spiking neurons is assumed.

The ReLU activations for neuron i in layer l of the ANN (al
i) can be expressed as:

al
i := max

0,
M l−1∑
j=1

W l
ija

l−1
j + bl

i

 (3.1)

where W l
ij is the kernel from neuron j of layer l-1 to neuron i of layer l and bl

i is the bias
on neuron i of layer l (weights of the analog neuron).

On the other hand, the dynamics of the neurons in the SNN are modelled using
the Integrate and Fire (IF) membrane equations. Each SNN neuron has a membrane
potential V l

i (t), which is driven by the input current zl
i(t) and the event of the generation

of a spike Θl
i(t).
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{

1 if V l
i (t) ≥ Vth ←− spike

0 else.

(3.2)

The parameter Vth is the membrane voltage threshold that, if surpassed, triggers the
event of a spike in the neuron. The membrane voltage then drops by that amount (reset
by subtraction).

The input current zl
i(t) is obtained as a linear combination of all the inputs to the

neuron, however unlike in the ANN case, this time the inputs are binary spikes Θl−1
j (t)

received from the previous layer.
The IF neuron firing rate is assumed to range from the non-spiking state of the

neuron (0%) to its spiking at every single time step (100%). For this reason, a requisite
for a one-to-one correspondence of these rates to the original analog activations is that
they all fall in the unit interval too. This can be accomplished through a normalization
of the ANN parameters.

Assuming the former is fulfilled, the SNN can be built as an equivalent copy of the
ANN’s structure and weights.

3.4.2 Approximation errors
After the conversion, the SNN is affected by two different sources of approximation error:
firing saturation and discrete sampling.

Firing saturation takes place when the original analog activation values fall outside
the unit range. This results in zl

i > Vth and the best a spiking neuron can do in this case
is fire with its maximal rate, but never reach the target frequency.
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Figure 3.5: Approximation errors highlighted in a correlation plot between the original
activations and the obtained spiking rates of a sample layer which has been converted
from ANN to SNN

Regarding discrete sampling; with the reset by substraction mechanism the mem-
brane potential of the first layer of a neuron can be expressed as: V 1

i (t) = t·z1
i −n1

i (t)·Vth,
considering z1

i as a constant input current. The number of spikes that have been fired
is then:

n1
i (t) = t · z1

i − V 1
i (t)

Vth

(3.3)

And the spiking rate can be approximated as:

r1
i (t) = n1

i (t)
t

= z1
i

Vth

− V 1
i (t)

Vth · t
= a1

i −
V 1

i (t)
Vth · t︸ ︷︷ ︸

error

(3.4)

The firing rate of the neuron converges to the original analog activation with an approx-
imation error due to discrete sampling. This was briefly referred to in section 3.2 in a
more qualitative way. In deep SNNs this error is propagated through the network to
deeper layers as explained in [73] yielding the following expression.

rl
i(t) =

M l−1∑
j=1

W l
ijr

l−1
j (t) + bl

i −
V l

i (t)
Vth · t

(3.5)

This shows that the approximation errors of previous layers are recursively multiplied
by the kernels of higher layers and accumulated with their own discrete sampling errors.
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Thus, a neuron will receive an input spike train with a rate reduced according to the
sampling error of previous layers, resulting in deteriorated firing rates in higher layers.

As seen in eqs. 3.4 and 3.5, these discrete sampling errors are inversely proportional
to the simulation time, so the deeper the network, the longer the simulation time needed
to achieve high correlations with the ANN activations.

These two error sources can be addressed in the normalization phase prior to conver-
sion. However, there is a trade off to be made between them. Priorizing the complete
removal of the neurons’ saturation means fitting all activations in the [0−1] interval,
which may produce very low firing rates in a significant percentage of the neurons. This
will increase the simulation time needed to reduce the discrete sampling error. Some
workarounds to these issues are applied in section 3.4.4.2.

3.4.3 Tools
The implementation of the conversion method explained in this section has been based
on the Spiking Neural Network Conversion Toolbox (SNN_Toolbox) available at [71]. This
library is grounded on the research paper [72], and will need to be augmented to target
object detection models.

This toolbox automates the conversion of pre-trained analog to spiking neural net-
works (ANN to SNN), and provides options for testing the SNNs in spiking neuron
simulators or neuromorphic hardware. The algorithm operates within the Keras (Ten-
sorflow) framework.

Most of the findings reported in this section were achieved using reverse engineering,
as the documentation is scarce and concise. This is because the toolbox is designed as
a black box with which you interact through a configuration file. The user can navigate
and choose between the offered options by means of this file as explained in the available
documentation [81].

3.4.3.1 Pipeline
The toolbox currently supports input networks generated with Keras, PyTorch, Lasagne,
or Caffe. However, as the toolbox’s backend is Keras-based, the Keras models offer the
best compatibility; hence being the ones used in this project.

The SNN_Toolbox’s algorithm follows the scheme displayed in figure 3.6. The pipeline
takes in an ANN in one of the aforementioned frameworks and produces a functional
equivalent spiking neural network. It is divided in four very distinct stages which are
detailed below.

Parsing. For the toolbox to be flexible to accept input models from several frame-
works and structures, the toolbox has a first translation step that extracts the relevant
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Figure 3.6: Pipeline scheme for the SNN_Toolbox

information from the input neural network and creates an equivalent Keras model. This
allows for some abstraction and is used as base for the spiking model generation.

The parsing step is also in charge of handling different types of layers for posterior
porting to the spiking model. For example:

• The parameters of the batch normalization layers are absorbed into the parameters
of the previous convolutional layer.

• Activation layers are absorbed into the previous convolutional layer.

• Max pooling layers can optionally be replaced by average pooling layers that show
better compatibility with the spiking dynamics.

• Add layers are replaced by a combination of a concatenate and convolution layers.
This is done to allow for the subsequent normalization of branched networks.

• For the same reasons, a global average pooling layer is replaced by a combination
of an average pooling layer and a flatten layer.

Normalization. As mentioned in section 3.4.1, the SNN will be built with a one-to-
one transformation of the neurons from the parsed ANN to Integrate-and-Fire spiking
neurons, seeking that the firing rate of these converges to the analog activations of the
original ANN neurons.

To make this functional, the activations of the ANN must be kept within the 0—1
range, as the I-F spiking neurons can only spike with a rate between 0 and 100%.

With this objective, a normalization is performed to the parsed ANN before its
conversion to SNN. The parameters of the network are modified to scale all activations
to the desired range while preserving their logic. In the SNN_Toolbox, this is executed
layer-wise, with respect to the largest activation of each layer. For that reason, it will be
referred to as layer normalization. Further explanation can be found in section 3.4.4.2.

Conversion. After the weight normalization, the parsed model is ready for conversion.
The model is mirrored using equivalent spiking counterparts for all its neurons.
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The SNN_Toolbox is capable of generating spiking neural network outputs in the
INI/Keras (default), pyNN, Brian2, MegaSim, Loihi and SpiNNaker frameworks. In the
INI/Keras backend, which is the one chosen for this project, these spiking layers have all
been built as children of the keras.layer class, including new attributes and methods
to compute the dynamic behavior of the spiking neurons.

The toolbox can generate spiking neural networks which use temporal-mean-rate
coding (r-SNN), time-to-first-spike coding (t-SNN) and temporal pattern coding.

Table 3.2 shows the layers which have a spiking-compatible version currently im-
plemented in the toolbox. Note that not all of them rely on a spiking I-F dynamic
model.

Table 3.2: Layers which have been implemented in the SNN_Toolbox

Spiking I-F layers Spiking-compatible layers2

• Dense • Reshape
• Conv1D • Flatten
• Conv2D • Concatenate
• DepthwiseConv2D • ZeroPadding2D
• Sparse
• SparseConv2D
• SparseDepthwiseConv2D
• AveragePooling2D
• MaxPooling2D3

Simulation. The produced spiking neural network can either be deployed on third
party frameworks or simulated in the built-in INI simulator (Keras).

The simulator accepts inputs in the shape of either Poisson spike trains or constant
input currents, to which our analog input can be transformed. Inputs from DVS event
sequences are also allowed.

The network is then simulated for a given time window. At each timestep, the input
is propagated through spikes modifying the inner states of the neurons. The spikes that
take place in the final layer are accumulated throughout the duration of the experiment.

With an appropriate time window, the spiking rate (accumulated spikes over a certain
duration) will converge to the analog activations of the original ANN.

2Spiking-compatible layers use the standard Keras implementation with small tweaks to make them
work with the spiking simulator.

3MaxPooling2D layer is not yet fully compatible with the Tensorflow backend of Keras.
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3.4.3.2 Toolbox limitations
In spite of its smart layout and great flexibility, the SNN_Toolbox was conceived as a
first experimental approach to ANN-SNN conversion, targeting much simpler network
architectures than the one being contemplated in this project.

The toolbox had to be redesigned and have some of its core components completely
rebuilt to adapt it to the RetinaNet neural network.

The main limitations found were:

1. Due to its size and modularity, RetinaNet is built as three interconnected sub-
networks, each with its own task (see section 2.3.1). The SNN_Toolbox lacks
compatibility with this architecture as it expects a neural network which is framed
in a single layer iterable (‘flat’ list of layers). This affects mainly the Parsing step
in the pipeline.

2. RetinaNet is an object detection and classification neural network, whereas the
Conversion and Simulation processes in the toolbox have been conceived for more
simple classification problems.

3. The list of layers that the toolbox can work with is limited. RetinaNet has up-
sampling layers that fall out from this set.

4. The Normalization method used in the toolbox is not optimal for ODC problems
and would yield to very low firing rates in many network channels.

5. Other issue with the Normalization is that it was designed for only-positive ac-
tivations (e.g. ReLU). RetinaNet uses also linear activations and all information
transmitted in the negative subspace is susceptible of being lost.

6. The toolbox does not allow for the use of custom loss functions or optimization
algorithms.

3.4.4 Implementation
Due to time and scope constraints, the modifications performed to the toolbox have
focused only on the Keras/Tensorflow framework. This did sacrifice the compatibility of
the algorithm with other deep learning libraries but made possible to scale the method
and apply it to a Keras RetinaNet implementation.

3.4.4.1 Parsing
As mentioned in 3.4.3.2 (lim. 1), the Parsing stage in the SNN_Toolbox needed to receive
modifications to prepare it for input models which are structured in multiple levels or
subnetworks.
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Table 3.3: Python version and modules used for the implementation.

Python 3.8.6
NumPy 1.18.5
TensorFlow 2.3.1
Keras 2.4.3

The modus operandi at this stage is to iterate through each of the subnetworks,
extracting its structure and relevant information, and then create a ‘flat’ scheme of the
complete network that makes the data immediately accessible. This scheme is performed
using a Python dictionary with the layer names as keys and the layer data as values.
The dictionary is then fed to .build_parsed_model and used to generate an equivalent
Keras model of the network that can be used downstream in the pipeline.

To assemble the dictionary, a new method was created within the SNN_Toolbox’s
ModelParser class taking as foundation the original .parse from the toolbox. This new
function, .parse_subnet, is explained briefly in table 3.4.

A very useful feature of the parsing method is that it allows for modifications of the
layer data before appending it to the dictionary. This largely improves compatibility of
the pipeline with a wider range of layer types. An example of this is the substitution
of the Add layers for custom layers which are prepared for the following Normalization
phase (3.4.4.2).

To further increase this versatility, the .build_parsed_model was revised to include
customization for the model’s loss function and optimizer, as this characteristic was a
requirement for RetinaNet’s parsing.

3.4.4.2 Normalization

The Normalization step receives the parsed model and modifies the weights of its layers
so that every activation falls in the 0−1 interval. This makes the network suitable for
conversion to SNN with minimal information loss due to firing saturation (3.4.2).

The original layer normalization method used in the SNN_Toolbox had two issues: it
led to low firing rates and was not designed for negative activation values. In [36], the
first issue is addressed by performing the normalization channel-wise instead of layer-
wise. This approach magnifies channels with small activations and greatly improves the
firing rates of the network (see figure 3.9).

This channel normalization, however, keeps being incompatible with negative acti-
vations. In this section, a novel normalization method will be introduced which builds
on top of the latter, fixing this issue. The method will be referred to as shifted channel
normalization.
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Table 3.4: Overview of the .parse_subnet method

ModelParser.parse_subnet()
Inputs:
• self. The class ModelParser, that contains the dictionary which is being

written and the rest of the tools to generate the parsed model.
• layers. The layer iterable of the subnetwork that is being targetted.
• idx. Dictionary index of the last layer that was parsed. For naming and

reference purposes.
• prev_out_idx. A list of the dictionary indices of the outbound layers from

the previous subnetwork. These layers will be connected to the inbound
layers from the current subnetwork.

• in_layers. A list of the inbound layers of the targetted subnetwork. Needs
to be of the same length as prev_out_idx and their elements need to be
correctly arranged so that they are correctly coupled for the connection.

• out_layers. A list of the outbound layers of the targetted subnetwork. It
will be used to generate out_idx.

Outputs:
• idx. New dictionary index of the last layer that was parsed.
• out_idx. A list of the dictionary indices of the outbound layers from the

current subnetwork. These layers will be connected to the inbound layers
from the following subnetwork.

Implicit outputs:
• self._layer_list. Dictionary (filled in by this method) which sorts the

relevant data and relationships for all the layers in the model. New layers
are appended as new entries of the dictionary as the method iterates through
the targetted subnetwork.

Shifted channel normalization uses an estimate of the distribution of all possible
activation values for each channel in the network to perform a scaling and a shift which
will fit them in the unit range.

This estimate consists of the 0.01 and 99.99th percentiles4 of the activation values,
computed channel-wise over a significant portion of the training data (∼ 10%). These
values will be referred to as ε and λ, as shown in figure 3.7.

The desired behavior of the network after normalization can be better explained as a
multiple step recursion. The normalized activations of channel i in layer l (ãl

i) compare
to the original activations (al

i) as ãl
i = (al

i − εl
i)(λl

i − εl
i)−1. A downstream neuron in

layer l+1 will get these normalized activations, decode them to their original magnitude,
compute their own activation, and finally normalize this new activation.

This process, however, is performed in a single step and absorbed to the convolution
weights of each channel as shown in equation 3.6: where w̃l

i,j is the normalized kernel
4These percentiles have been empirically found to give the best results.
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Figure 3.7: Explanatory graph for the shifted channel normalization.

from channel i in layer l − 1 to channel j in layer l, and b̃l
j is the normalized bias for

channel j in layer l.
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It is necessary to address the case of layers with multiple inputs, as the implementa-
tion done in the SNN_Toolbox needs to be adapted to the shifted channel normalization
method. A new layer type NormAdd, has been designed for this purpose.

Figure 3.8: Structure of layer NormAdd

The new Keras NormAdd layer wraps in it the concatenation plus convolution ap-
proach originally used in the toolbox, but adds a previous step that allows for proper
decoding of several inputs, applying a different shift to each of them. This makes possible
to preserve the relative scales and locations of the input values prior to the summation
so that the information is correctly transmitted. A scheme of the layer structure is
displayed in figure 3.8.

The above-named method has been applied through the function channel_norm_J,
as explained in table 3.5.

A few samples of the resulting normalized activations of RetinaNet are presented in
figure 3.9. The channel normalization shows a better distribution of the data, something
very advantageous against the discretization source of error. As the normalization was
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carried out using the 99.99th percentile, overflow can be spotted in some layers. However,
the presence of these few outliers showed no impact in the final model’s performance.

It is worth mentioning that the final predictions of the model are also normalized.
The outputs of the normalized model and of the generated spiking model will need to
be up-scaled to its original size before decoding the predictions or computing the loss.

Figure 3.9: Activation values distributions before and after (shifted) normalization. No-
tice how channel normalization makes better use of the 0−1 interval to display the
information and achieves larger activation values (and higher spiking rates after the
conversion).

3.4.4.3 Conversion
From all the options available in the toolbox (3.4.3.1) the project will be limited to
perform the conversion to a spiking neural network with temporal-mean-rate coding (R-
SNN). The chosen platform for deployment is the keras INI simulator, which is embedded
in the toolbox and allows for modifications.



38 3 Spiking-RetinaNet

Table 3.5: Overview of the channel_norm_J function

channel_norm_J()
Inputs:
• model. The parsed model (Keras).
• config. A configuration file used to input in the toolbox parameter values

for the whole conversion process (e.g. norm. percentiles).
• norm_set. Image dataset to be used for the gathering of ε and λ.
Implicit outputs:
• model. Normalized parsed model (Keras).

Table 3.6: Overview of the .build_v2 function

SNN.build_v2()
Inputs:
• self. The class SNN, that contains the new spiking model and the tools to

generate it.
• model. The parsed model (Keras).
• loss_fn. The loss function to use for the compilation.
• optimizer. The desired optimizer.
Implicit outputs:
• self.snn. Spiking model (Keras) equivalent to the input model.

Although most of the layers in RetinaNet do have a spiking version implemented in
the INI simulator (table 3.2), it was necessary to develop a spiking-compatible version of
two additional layers: UpSampling2D (as mentioned in 3.4.3.2 (3)) and NormAdd (section
3.4.4.2).

The conversion step is performed through the class SNN, which stores the generated
spiking model along with the necessary tools. The main protagonist is the .build
method, which had to be modified to accept a custom loss function and optimizer. This
new .build_v2 function assembles and compiles a Keras model with the structure and
parameters of the parsed model, but using the custom spiking layers from the toolbox.
The biases in the model are adjusted to the time resolution of the simulation as b̂l

i = bl
i·∆t.

An overview of the function can be found in table 3.6.

3.4.4.4 Simulation
The INI simulator runs on the preexisting Keras functionalities. The class SNN contains
the method .predict that simulates the spiking model within a given time window.

The input (image) is fed to the model as a matrix of constant input currents. Then,
it is propagated through the network altering the states of the neurons across each
timestep of the simulation. The spikes generated in the final layer are accumulated and
averaged over the duration to compute the spiking rates. These are returned as the
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encoded predictions of the model.

Listing 3.1: Code for SNN.predict method.
1 def predict(self, x=None):
2 """ x --> Input to the network. """
3 input_b_l = x * self._dt #Input scaled to the chosen dt
4 num_timesteps = self._get_timestep_at_spikecount(input_b_l)
5 output_b_l_t = np.zeros(self.snn.layers[-1].output_shape)
6 self._input_spikecount = 0
7
8 for sim_step_int in range(num_timesteps):
9 #Computation of the spikes in each timestep

10 sim_step = (sim_step_int + 1) * self._dt
11 self.set_time(sim_step)
12 out_spikes = self.snn.predict(input_b_l)
13 #Accumulation of the generated spikes
14 output_b_l_t += out_spikes[0] > 0
15
16 return output_b_l_t / self._duration
17 """ Return the spiking rate """

Other more elaborate methods have also been created to evaluate the performance
of the spiking model in section 3.4.5 such as .run_analysis, which, in addition of the
predictions of the model, it plots the evolution of the loss through the simulation time
and the correlation of the obtained spike rates with the analog activations of the parsed
model.

3.4.5 Results
The spiking neural network conversion took as basis a publicly available implementation
of RetinaNet, which is pre-trained on the on the Microsoft Common Objects in Context
(COCO) dataset [48]. This was used as test-bench for the adaptation and testing of the
SNN_Toolbox, a previous step to the application of the algorithm to the objectives of
the ShippingLab project. Training on the marine data was only launched when good
results were obtained at this first stage.

It is important to clarify that the spiking neural networks’ results have been obtained
by emulation in the INI/Keras framework, where the computational cost of 1ms of
virtual time is 300ms of real time. The objective of the SNN_Toolbox is to act as a
translation and validation step towards the future porting of the obtained spiking model
to the appropriate platform, where it would run in real time.

3.4.5.1 COCO implementation
Although the model used has its source in the official Keras RetinaNet code example
[89], it has been altered and fine-tuned on COCO for 1 epoch to swap the ResNet50’s
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Figure 3.10: Mean Average Precision for the average-pooling, analog Keras RetinaNet
on the MS. COCO dataset. This metric was briefly explained in section 2.3.



3.4 Final approach: Conversion 41

Figure 3.11: Evolution of the SNN RetinaNet loss with the size of the simulated time
window. Acceptable predictions were obtained after a simulated time of 2500ms. The
curve displayed corresponds to sample 73 of the MS. COCO validation subset.

max-pooling layers for compatible average-pooling ones. It achieves a mAP@0.55 of
50.25% on the COCO data as shown in figure 3.10.

The performance of the obtained spiking model essentially converges to the one
achieved by the analog network given enough running time of the spiking model. This
will be illustrated with sample 73 of the COCO validation subset (see figure 3.12), but
can be extrapolated to the whole data.

As shown in figure 3.11, the achieved loss falls very close to the analog model’s
(dashed green line) after 3000ms of simulation. This is the window size needed for
the resolution of the spike trains to hit the requirements of the object detection and
classification problem. The discrete sampling error gets then low enough that the pre-
dictions are minimally affected by it. The evolution of this error can be appreciated by
checking the correlations of between the original analog activations and the obtained
spiking rates in each layer of RetinaNet. Table 3.7 does this for the output layer, and
graphically shows the elegant increase of the correlations with the integration time. This
convergence would have been slower with the layer normalization approach due to lower
spiking rates, needing more time to convey the information and lead the final layers to
the desired steady state.

A further improvement of this convergence time is within reach, though, with a
simple modification to the prediction function. Looking closely at the loss curve in
figure 3.11, it is possible to notice an irregular behavior in the first 150ms. The source
has been traced down to be the transient state of the network, which is the time needed
for the spiking rate of the last layers to stabilize. This obeys to the delay caused by the
propagation of the information through such a deep spiking model.

5The mean average precision (mAP) is a popular metric used to measure the performance of models
doing document/information retrieval and object detection tasks (see section 2.3).
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(a) Predictions of the original ANN RetinaNet.

(b) Predictions of the obtained SNN RetinaNet.

Figure 3.12: Predictions of the models over sample sample 73 of the MS. COCO valida-
tion subset. More can be found in appendix A.
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Table 3.7: Correlations between analog activations and obtained spiking rates of the
output layer after the conversion of RetinaNet. Notice the convergence over the model
run-time due to the reaching of the network steady-state and the diminution of the
discrete sampling error. Additional plots can be found in appendix B.
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The spikes captured in the last layer during this transient state provide an unreliable
prediction and, when taken into account they add a substantial error to the spike-rates
calculation. While it will eventually be compensated by future spikes in the simulation,
this will be time-consuming. By modifying the prediction method in 3.4.4.4 to ignore
outputs in this time interval it is possible to functionally speed up the convergence of
the spike-rates between 3 and 5 times. The transient time has been empirically found to
be approximately of one timestep (1ms) per layer, and has been rounded up to 200ms
as displayed in figure 3.13. The obtained predictions are shown in figure 3.12b.

Moving on to other issues, there is yet another type of error to be addressed. This
one obeys to a phenomenom caused by the shifted channel normalization which affects
to the borders of the activation matrices.

In convolutional layers with kernel size of 3x3 or superior, the shift performed to
negatively activated channels is not properly absorbed to the layer weights and creates
a distortion in the borders of the matrix. The error in this area can reach relative values
as big as 80% when propagating to higher layers, something very worrying at first glance.
This error is well depicted in figure 3.14, where activations of layer 58 barely show any
signs of it (3.14a), but activations of layer 126 have a clear stripe framing the error
matrix (3.14b).

The most susceptible objects to be miss-detected due to its influence are relatively
big items located close to the borders of the image, as these features undergo the most
convolutions and fall into the smallest level of the feature pyramid. However, after
several tests on the data it was concluded that this error had virtually no major impact
on the model’s performance and no further actions were taken. This could be due to the
majority of the relevant information not being located near the borders of the matrix

Figure 3.13: Evolution with time of the SNN RetinaNet loss after disregarding the
transient state. After a big first drop in the loss, the resolution of the model increases
slowly until reaching good results at 1000ms. The curve displayed corresponds to sample
73 of the MS. COCO validation subset.
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(a) Activations for layer 58Add.

(b) Activations for layer 126Conv2D.

Figure 3.14: Comparison between the analog activations of layers 58 and 126 of the
parsed and normalized RetinaNet models. The input is sample 73 of the MS. COCO
validation subset. The normalized activations have been decoded and resized to enable
a visual comparison. The error is computed as the difference between the two.
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and therefore not being affected.
Having said that, this phenomenon could be fully eliminated by falling back to the

regular channel normalization method from [36] and only converting networks with no
negative activation values (e.g. only ReLU or similar).

3.4.5.2 ShippingLab implementation
Having obtained good results on the COCO dataset, the RetinaNet model was retrained
on the ShippingLab dataset and converted to SNN for further testing of the method. This
dataset is conceived for an application of deep-learning models towards environmental
awareness in the sea, having two possible object classes: boat or buoy (see section 2.1.2
for more information). The model adaptation to this new data entailed two major issues
that had to be solved before exposing the model to it.

The first issue was related to the format in which data was stored in the datasets.
While COCO was obtained in tensorflow_datasets (tfds) format [13], the Ship-
pingLab data was streamed from less straightforward tfRecord files. The training
pipeline had to be adapted by the inclusion of new functions to properly handle and
decode the data.

Conversely, the second issue was much harder to discover. The anchor box sizes and
ratios, which were introduced in [47] and worked beautifully in regular benchmarking
datasets, were unable to properly fit the bounding boxes in the ShippingLab data. This
is due to the much higher range of possible object sizes in the marine pictures compared
to the COCO data, from obstacles far away in the horizon to ships crossing a few meters
ahead. This was previously addressed in [75] by the use of K-means clustering to find
the best anchor sizes and ratios that would accomodate all objects. The results obtained
in that article were used as reference, and the values finally used are:

scales =
[
2−2/3, 20, 22/3

]
aspect ratios = [0.8, 1.4, 2.6]

sizes = [13.8, 21.0, 34.3, 59.8, 131.7, 320.0]
strides = [8, 16, 32, 64, 128]

(3.7)

Transfer-learning was performed to speed up the training process; in other words,
the learned parameters of COCO RetinaNet were used as starting point for the training
of the new model. The results shown in this section correspond to a 24h training on the
ShippingLab data, which achieved a mAP@0.5 of 97.16% on the ShippingLab validation
subset (figure 3.15).

RetinaNet achieves a much more robust performance here than on the COCO data
and, after the conversion, the spiking model shows a much faster convergence time. This
was expected beforehand and can be explained by the small number of classes in the
ShippingLab data (only 2), which make for an easier training target for the algorithm
and can be correctly expressed in a smaller spike-train resolution.
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Figure 3.15: Mean Average Precision of the analog RetinaNet model on the ShippingLab
validation set.

Figure 3.16: Mean Average Precision (@0.5 IoU) evolution with the simulation time of
the spiking model (computed every 50ms). The original model score is displayed as a
reference (green dashed line). The graph was computed using 20 data-samples from the
ShippingLab validation set.

An adequate benchmarking between the converted (spiking) model and the original
RetinaNet has been carried out through the use of the mean Average Precision (mAP)
metric, a state-of-the-art criterion which targets specifically the object detection prob-
lem (see section 2.3). Figure 3.16 displays the mAP score for the spiking model using
a threshold IoU of 0.5 between the predicted bounding boxes and the labels (ground
truths). As expected, the accuracy of the spiking model predictions effectively increases
with the integration time window reaching comparable results to the original ANN Reti-
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naNet (marked in green for reference).
By ignoring the spiking output produced in the first 200ms (network’s transient

state), the results reach a mAP@0.5 of 95.43% after a network run-time of 1000ms.
This is roughly equivalent to a drop in performance of 1.6% from the original model.
This decrease could be reduced at the price of rising the simulation time for applications
where greater precision is required and detection speed is not a decisive factor.

It is important to clarify that this test was performed over 20 samples of the Ship-
pingLab validation set for computational reasons. However, these samples were picked
from all relevant scenes of the video sequence and the mAP obtained on them for the ana-
log RetinaNet matches the score thrown by the full validation set. Obeying to this logic,
the results in figure 3.16 are liable to provide a good insight into the real performance
of the spiking model, nevertheless, analysis on a larger dataset should be conducted if
implemented in neuromorphic hardware.

For a more qualitative scrutiny, figures 3.17 and 3.18 compare the predictions ob-
tained by both analog and spiking RetinaNet over samples 190 and 220 of the validation
subset. Notice the fast convergence of the loss function, only needing 100ms to reach a
suitable result after the 200ms transient length.

3.4.6 Limitations
Although promising results were shown in the previous section, several trade-offs were
needed to achieve a working spiking-RetinaNet model through conversion of an off-the-
shelf Keras RetinaNet implementation.

Regarding the shifted channel normalization and custom NormAdd layers (section
3.4.4.2), although they enable for a meaningful translation of deep-neural networks with
negative activation values, they generate distortions in the borders of the spike-train
matrices. The reach of this phenomenon is yet to be studied, along with the full com-
patibility of the NormAdd layers with a neuromorphic chip implementation.

A possible alternative is to stick to the regular channel normalization method pro-
posed in [36] by training a strictly-positive RetinaNet version as base ANN. This network
would also benefit for faster inference times due to the more constrained activation sub-
space, which would bear a better distribution when normalized to the unit interval.
Nevertheless, it is yet to be seen if these limitations could negatively affect its reliability
as an object detector.

Regarding the chosen encoding scheme for the spike-trains, achieving state-of-the-
art accuracy with rate-based networks comes at the cost of using high firing rates and
long integration times to obtain reliable results. This reduces the energy consumption
gap between traditional methods and SNNs. Using temporal encoding is an attractive
alternative, but, for the moment these approaches could not be easily adapted to the
object detection problem.
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(a) Loss of the SNN prediction.

(b) Detections of the ANN RetinaNet.

(c) Detections of the SNN RetinaNet.

Figure 3.17: Predictions of the models over sample 190 of the ShippingLab validation
subset. The ’boat’ class is marked in red and the ’buoy’ class in green. Good results are
obtained ∼ 5 times faster than on the COCO dataset.



50 3 Spiking-RetinaNet

(a) Loss of the SNN prediction.

(b) Detections of the ANN RetinaNet.

(c) Detections of the SNN RetinaNet.

Figure 3.18: Predictions of the models over sample 220 of the ShippingLab validation
subset. The ’boat’ class is marked in red and the ’buoy’ class in green.
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For the decoding of the predictions, the followed approach was to integrate the final
layer’s spikes over the simulation time and compute the spike rates. Although these do
converge to the original ANN activations, they lead better results when ignoring the
spikes generated during the initial transient state. This scheme contradicts other of the
advantages of neuromorphic computing, which states that ‘Deep SNNs can be queried
for results already after the first output spike is produced, unlike ANNs where the result
is available only after all layers have been completely processed [17]’. It might be a better
approach to infer the predictions using the last layer’s membrane potentials or using a
sliding time window.

It is also worth mentioning that the analysis performed on the spiking-RetinaNet is
constrained by the nature of the used datasets, which were tailored for ANN conventional
methods. Performance of the spiking models during training and predictions would
benefit of the use of event-based streamed data as input, as SNN show better results in
online learning and precise-timing frameworks. These would require though, to redesign
how the data is captured by the vessel sensors and was out of the project’s scope.

Finally, the converted network has been tested in a simulation environment, within
the same framework where the conversion was performed. This, although being logisti-
cally convenient, has sacrificed all the computational and efficiency advantages that the
spiking model running in compatible hardware would display. This project serves then
as a preliminary analysis that demonstrates the possibility of generating state-of-the-
art ODC deep-learning models, just missing their implementation in a neuromorphic
platform for a conclusive benchmarking.

3.5 Whetstone
In parallel to the conversion approach taken in section 3.4, a different method was found
in [77] to specifically train deep artificial neural networks for binary neuron synapse
using existing deep learning methods. This method does not produce spiking neural
networks, but analog networks with binary, threshold-activation functions.

In contrast with the spiking neurons, the Whetstone neurons behave in a static
manner, with no time dimension. The network responds instantaneously, making it
compatible both with existing deep learning frameworks and many neuromorphic pro-
cessors (using a single timestep window). The obtained model is portable and can easily
be instantiated on neuromorphic and conventional platforms.

This subsection will explore the compatibility of this method with the ODC problem
and evaluate its performance on the COCO dataset. The investigation was simultane-
ous to the activities in section 3.4.5.1 yet it never progressed to being adapted for the
ShippingLab dataset due to the results not being promising.
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3.5.1 Method
The method used is very intuitive, as it consists on an iterative modification of the back-
propagation optimization algorithm. It incorporates the obtention of binary activations
directly into the training process.

The method works with custom activation functions named as Spiking_BReLU. These
have an initial stage that mirrors the behavior of a bounded-ReLU function but is
designed to morph into a binary step function during the training. This process is
referred to as sharpening.

This design choice obeys to the nature of the most common ANN training techniques,
which rely on stochastic gradient descent methods. These require the activations of the
neurons to be differentiable during the process. Having said that, it is possible to
incorporate additional constraints in latter stages of the training without compromising
stability, such as a slow mutation of the nodes towards binary communication.

In the Whetstone algorithm, outlined in figure 3.19, a state machine is used to control
the sharpening process during the training. This will be triggered after a certain number
of epochs or after a certain metric stops improving. The sharpening will be performed
very slowly and even halted for some time if the performance of the model is severely
affected. The controller will wait until the targeted parameters improve with some
more training to relaunch the process. This simple feedback control has the objective of
minimizing the impact that binarization may have in the model’s performance.

The process is best performed through the incremental sharpening of each layer
one-by-one, starting from the input and finishing at the output of the network. It is
highlighted in the documentation that the early layers are especially crucial and the
biggest source of performance degradation. Once they are properly sharpened, the loss
introduced by the following layers is greatly minimized.

3.5.2 Implementation
The application of the Whetstone method has been performed using the resources avail-
able in the Github repository: [80]. Nevertheless, some adjustments were needed to
make it compatible with newer versions of Python and able to handle deep learning
models with multiple subnetworks.

The implementation consists of two main additions to the Keras API: the custom
activation layer, Spiking_BReLU, and several sharpening schedules that are incorporated
as callbacks for the training. These callbacks target the Spiking_BReLU layers in the
network progressively morphing them into binary units. From these, we will focus on the
AdaptiveSharpener schedule, which implements the method explained in figure 3.19,
allowing for the finest control over the process.

The Whetstone algorithm, however, is designed for small neural networks and the
original sharpening schedule operated in a layer per epoch rate. This is non viable for
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Figure 3.19: Scheme of the Whetstone sharpening method as featured in the source
paper [77].

Figure 3.20: Loss evolution during the training and sharpening of Whetstone-RetinaNet.
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RetinaNet, as an epoch of the COCO dataset takes around 11h in the DTU Computing
Centre and the network has more than 80 activation layers. This has been modified in
the new AdaptiveSharpener_J, which performs the sharpening batchwise. The main
parameters used to guide the process execution are described in table 3.8.

Table 3.8: Overview of the AdaptiveSharpener_J callback.

AdaptiveSharpener_J
Configurable parameters:
• min_init_epochs=10 Number of training epochs before launching the

Whetstone sharpening.
• batch_interval=40 Number of batches between assessments.
• rate=0.06 Rate at which the Spiking_BReLU layers are sharp-

ened. The sharpness of the layers is controlled by
a slider between 0 and 1 and this variable dictates
the increments between assessments.

• critical=0.9 Sharpness value at which sharpening is performed
in critical mode. This mode aims to slow down the
sharpening when the derivatives starts diverge.

• cz_rate=0.02 Sharpening rate during the critical mode.
• sig_decrease=0.05 Decrease in the loss which is considered as an im-

provement in performance.
• sig_increase=0.05 Increase in the loss which is considered as a degra-

dation of performance. If this happens in sharpen-
ing stage, the algorithm will immediately fall back
to training stage and wait for improvement.

• patience=20 If not in sharpening stage and performance is not
improving, number of consecutive assessments to
wait for improvement before finally deciding to
move on to sharpening stage.

• subnet_idx=[0] Index of the targetted subnet (backbone) in the
Keras model iterable.

• start_sharp.=False Start training in sharpening stage directly.
Methods:
• .assess_sharpening Function that automatizes the sharpening control

explained in 3.5.1 using the mentioned parameters.
• .perform_sharpening Function that applies the sharpness changes to the

targetted Spiking_BReLU layers.
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3.5.3 Results
To test the method on RetinaNet it was necessary to build a version of the network
that exclusively used the Spiking_BReLU layers. The sharpening was only performed
on the backbone of the network, however, if good enough results were shown, the box
regression and classification subnetworks would have been the next step.

The monitored variable during the training is the RetinaNet loss, whose evolution is
displayed in figure 3.20. The process has been performed on the Microsoft COCO dataset
with the objective of benchmarking with the RetinaNet implementation of section 3.4.5.1
(dashed green line in the graph).

Due to the limit in range and resolution of the bounded-ReLU layers, the model
did not reach the performance of the standard RetinaNet model after 165h of training
(epoch 15). The sharpening worsens the performance even further, especially in the first
steps of the process which concern the initial layers. This is displayed in detail in figure
3.21, which shows side by side the mAP of the model before and after the sharpening
takes place.

As the worst performance drop occurs during the sharpening of the first layers, im-
provement might be possible by using a finer control algorithm that allows to slow the
process further down in this first stages. The sharpening rate could be scheduled to start
at a very low value and increase progressively for deeper, less critical layers.

Nevertheless, due to the Whetstone model’s underwhelming performance even before
the sharpening, it is concluded that this method is not suitable for the objectives of our
project.
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(a) Before sharpening. (b) After sharpening.

Figure 3.21: Mean Average Precision for the Whetstone Keras RetinaNet on the MS.
COCO dataset. Notice the limitations in the model performance due to the bounded-
ReLU activations and the negative impact of the sharpening process.



3.6 Summary 57

3.6 Summary
An extensive analysis has been performed into the applicability of neuromorphic archi-
tectures into object detection and classification deep-learning models. This research has
led to the conclusion that, although these approaches still show a low technology readi-
ness level (TRL), it is possible to develop a spiking version of a complex CNN such as
RetinaNet, achieving state-of-the-art results.

Three potential paths towards this objective were investigated and tested via software:
Training of a deep ANN for the use of binary neuron activations (Whetstone), training
of a proper SNN, and conversion of a previously trained ANN to an equivalent SNN
via rate-encoding. Nevertheless, satisfactory results were only reached through the last
of the mentioned approaches: ANN-to-SNN conversion. The conclusions obtained from
this analysis have been summarized in table 5.1, located in the Discussion (section 5).

The ANN-to-SNN conversion method was then applied to the ShippingLab objectives,
regarding obstacle detection and recognition in a marine environment, and reached a
mAP@0.5 of 95.43% on the ShippingLab validation data using an integration time win-
dow of 1000ms. This is roughly equivalent to a drop in performance of 1.6% from the
original model.

These results are on pair with the work performed in [36], the only previous attempt
at fabricating a deep spiking object detector, which was run using the TrueNorth neuro-
morphic chip. That experiment was also performed using an ANN-to-SNN conversion,
reaching a performance drop of 2% in 8000ms on the more complex MS COCO dataset.
A fair comparison, though, could not be performed, as the evaluations were computed
using different datasets and the lack of a neuromorphic platform made it impossible for
us to run a proper evaluation on the COCO dataset due to its huge computational cost
within a simulation framework.

The results obtained are a remarkable feat on their own, due to the efforts of re-
search and enhancement of existing SNN frameworks which were required, as these were
designed for shallow neural network structures and classification tasks. Aside from its
imperfections, this work demonstrates the potential and scalability of the conversion
algorithm to deep ODC models and could be a source of inspiration for future interpre-
tations of the method.
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CHAPTER 4
TFA-RetinaNet

This chapter corresponds to the second work package of the MSc Thesis project. The
aim of this module is to investigate possible enhancements to the ShippingLab object
detection and classification problem using novel meta-learning techniques.

The outset for the chapter is a review and discussion around possible approaches to
the enhancement of the ODC problem based on existing meta-learning studies. One of
these methods will be chosen, setting the path for further analysis, implementation and
testing on the ShippingLab data.

4.1 Meta-Learning overview
One of the fastest-growing areas of investigation in machine-learing is the field of meta-
learning. Meta-learning, in this context, is most commonly understood as learning to
learn, which refers to the process of improving a learning algorithm over multiple learn-
ing episodes in terms of generalization, performance or learning speed. This contrasts
with conventional machine-learning, which focuses on the process of improving model
prediction performances over multiple data instances.

The current most common approach to machine learning problems is to train the
model from scratch for a specific task using a hand-crafted, fixed learning algorithm.
This approach has been successful at the cost of huge computational resources and vast
quantities of data in the cases where both of these are available.

Contemporary neural-network meta-learning constitutes an alternative paradigm,
whose salient characteristic is an explicitly defined meta-level objective, and end-to-end
optimization of the inner algorithm with respect to this objective. Often, meta-learning
is conducted on learning episodes sampled from a a collection of related tasks, leading
to a base learning algorithm that is tuned to improve its future learning performance on
new tasks sampled from this task family. This ‘learning-to-learn’ entails benefits such as
data and computational efficiency, and is better aligned with how this activity is present
in biology [44].

A wide variety of perspectives on meta-learning can be found in the literature. As dif-
ferent sources may refer to the term somewhat discordantly it can be difficult to narrow
down. Yet, taken broadly, the term meta-learning can include fields like automatic algo-
rithm tailoring, transfer learning, multi-tasking, feature-selection and model-ensemble
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learning.
The use of meta-learning techniques obeys to the desire of improving the flexibility

and performance of AI and broaden its applicability to a wider problem spectrum, aim-
ing to eliminate the need of a costly retraining for each specific scenario. Successful
applications can be spotted in areas like few-shot learning, unsupervised learning, self-
directed reinforcement learning, hyperparameter optimization and neural architecture
search [30].

For more information about previous research in meta-learning and related topics,
please refer to section 2.4.

4.2 Applications to object detection and
classification

The embracing of meta-learning approaches to target the object detection and classifica-
tion issue is a very recent advent, which started just a couple years ago. A broad scanning
will be performed in this section for possible improvements that could be achieved by
these means and latest findings in each of the study lines. An evaluation of the interest
and trade-offs will be performed for each approach and, in the end, one of them will be
chosen for a software implementation and testing, following the ShippingLab objectives
and criteria.

Current limitations to the applicability of object detection algorithms are related, for
the most part, to their need of vast quantities of labelled data and computational power.
This makes them inaccessible for the general public due to the cost of producing a big-
enough labelled dataset and the investment needed to acquire and run powerful hardware.
These reasons explain why, up to this date, all reported meta-learning applications to
the ODC problem pursuit a reduction in the amount of data needed for successive
realizations of an object detector in different scenarios. Addressing these limitations
entails an increase in efficiency for these algorithms and applicability to a wider range of
problems. As to the previous description, most meta-learning approaches to the ODC
problem can be classified as variations on the few-shot learning paradigm (previously
introduced in section 2.4). This concept, though, allows for multiple interpretations,
some of which will be briefly explained now.

4.2.1 Incremental learning
The class-incremental object detection aims to address the phenomenon known as catas-
trophic forgetting, which commonly takes place when an already trained model is re-
trained in a dataset comprised only of instances of unseen classes. An abrupt degrada-
tion of performance is then provoked on the original set of classes, as traditional loss
functions do not penalise rewriting of existing parameters. Incremental learning meth-
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ods allow for a progressive increase in the applicability of the network and number of
classes it is able to detect, and can either be achieved online or by fine-tuning on a new,
smaller dataset.

Said issue is typically addressed using distillation methods, intended to minimize the
discrepancies between responses to old classes from the original and the updated models.
An example for this is the work in 2017 by Shmelkov et al. [79], where this is performed
through a novel loss function which balances the interplay between old and new class
predictions. These distillation methods, though, have as a downside that they enforce
some intransigence in the training procedure, making it harder to learn novel classes.
Joseph et al. [32] suggested a fix for this limitation in 2020, by using a meta-learning
approach that learned to reshape model gradient directions towards an optimal sharing
of information across incremental tasks (optimal plasticity).

Another trend in this area are the real-time incremental ODC methods, whose aim
is to increase the label pool of the network during its regular operation. The 2019 paper
from Li et al. [45] is an example of this approach, suggesting the use of automatic image
annotation and cloud computing on a handheld device to incrementally train the model
on datasets generated from taken pictures of target objects. This is performed by means
of image-based web browsing technologies in a remote server.

It is also worth mentioning the research paper of Sharma et al. in 2012, which ap-
plied this philosophy instead to increase the performance of an offline trained detector on
crowded and challenging samples. This is achieved through the use of unsupervised mul-
tiple instance learning (MIL) incremental solutions, which include a MIL loss function
and a tracking-based unsupervised on-line sample collector for the incremental learning.

4.2.2 Few-shot learning
The few-shot object detection (FSOD) problem aims to learn to effectively localize and
classify objects from a single reference or a set of a few image samples. The general
approach to this concept relays on a model which has been trained in a general base
dataset which grants it with enough abstraction to easily recognise new unseen objects.

The usual setting is comprised of the abovementioned dataset of abundant base
classes and a set of novel classes that has K instances per category [33]. The tailoring
of these two sets generally plays a major role in the performance of the trained model,
which is measured as its average precision (AP) on both the novel and base classes and
evaluated on a balanced test set of all the known classes.

The first few-shot object detector was allegedly documented in 2019 by Kang et al.
[33]. Their proposal combined a standard single-stage detector with an auxiliary network
responsible of reweighting the feature extractor outputs. The goal of this reweighting
was to give more importance to features directly related to the specific detection task,
and its training was performed in a multi-episodic fashion.

A number of the most recent FSOD methods have been studied following a ranked
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listing over a mAP benchmarking on MS COCO dataset, performed by the Papers with
Code machine-learning research archive [58]. Among the catalogued methods it was
judged necessary to highlight the methods listed in table 4.1.

Table 4.1: Ranking of few-shot object detection (FSOD) methods as in [58] as per Feb.
2021. Score corresponds to mAP@0.5 on MS COCO.

Method Source Score Description
1 FSDet

View
Xiao, Y. &
Marlet, R
[97]

12.5 In addition to FSOD it inferes the orientation
of the detected objects using 3D data. Exploits
a joint feature-embedding module to improve
feature sharing from base classes. Top
performer on the ranking.

2 Att-
RPN

Qi Fan et
al. [22]

11.1 Performs novel object detection on-the-go with
the help of a support image of the target class
while suppressing false detections in the
background. Builds a base dataset specifically
designed for FSOD.

3 TFA Xin Wang
et al. [94]

10.0 Hypothesises that the feature detector
components are class-agnostic and thus can be
frozen during the few-shot fine tuning, which
then focuses in the last layers of the model.
Builds new benchmarks for FSOD.

4 MPSR Jiaxi Wu
et al. [95]

9.8 Addresses the problem of scale variations
between datasets. Performs a previous resizing
of the input data in a feature-pyramid fashion
to target a much wider range of object scales
during training and detection.

4.2.3 Chosen approach
Following the previous study on meta-learning applications to the ODC problem, an ar-
gumented selection has been made for the method that will be tested in the ShippingLab
scenario.

The chosen path leans towards a pure few-shot learning approach, as there is not
a real need for incrementing the class range in the ShippingLab problem as per today.
However, testing of new neural network structures is performed on a regular basis, as
well as re-training of models for different applications. Reducing the training time of
each new learning episode would have a very big impact and thus, it is the path this
project takes.
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Between the listed state-of-the-art few-shot ODC techniques in table 4.1, the chosen
method to further investigate is TFA [94], a fine-tuning procedure which ranked 3rd on
the Papers with Code benchmarking, only behind FSDetView and Att-RPN, and stands
out for its simplicity. This approach outperforms other, more complex algorithms and is
more suitable for the characteristics of our scenario than the two higher-rated techniques.
These, in addition to their higher intricacy, target objectives which diverge from this
project’s, such as the 3D viewpoint estimation of the objects.

Having said that, from previous studies it is evident that the state-of-the-art per-
formances of all few-shot approaches are currently way below the requirements of the
ShippingLab project. This will be addressed in the following sections and possible
workarounds and trade-offs will be contemplated.

4.3 TFA Method
The Two-stage fine tuning approach (TFA) [94] is built using the Faster R-CNN, a two-
stage object detector, and its key component is to separate the feature representation
learning and the box regression and classification learning into two stages. This technique
has its focus on the tailoring of training data while using transfer-learning as a kick-off.

The method relays on the hypothesis that the features generated on the feature
extractor components of the network are class agnostic, only responsible of detecting
key elements in the image. Therefore, features learned from the base classes are capable
of transfering to the unseen classes without further parameter tuning. This is potentiated
in the base training by the use of a very diversified dataset.

Stage I: Base training. In this stage the entire object detector, including both the
feature extractor and the object predictor, is trained only on the base classes.

Figure 4.1: Illustration of the TFA method. In stage I, the full network is trained on
the base classes. Then, in stage II, the feature extractor components are fixed and only
the box regression and classification subnetworks are fine-tuned on a balanced subset
consisting of both the base and novel classes [94].
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Stage II: Few-Shot fine-tuning. A small balanced set of K-shots per label is created
with both the base and unseen classes. The weights of the feature extractor are then
frozen and random initial weights are assigned for the novel classes to the box predictor
subnetworks. A smaller learning rate is used for this phase to prevent forgetting and
overfitting, approximately 20 times smaller than in the first stage. It is also possible in
this stage to use a classifier based on cosine similarity reducing the intra-class variance
and improving the detection accuracy of novel classes with less decrease in base-class
performance.

4.4 Implementation
The version of TFA applied in this project sticks to the already familiar RetinaNet
architecture having as base classes the COCO dataset collection. As the starting model
is already pre-trained (see 3.4.5.1), the only data and time needed will be the ones the
few-shot training requires. This makes explicitly clear the potential savings this kind of
approach, if effective, could deliver.

4.4.1 Dataset tailoring
The key component for the success of TFA is, in essence, the data selection used in both
the training and the fine-tuning. The design of both datasets will now be explained
together with the implications they may have towards the final results of the method.

Base dataset. As noted above, the data used for the base training of the network
belongs to the Microsoft COCO dataset [48]. This collection delivers a range of 80
different classes in a total of 118287 training samples and was estimated as a good
source of abstraction to the model’s feature detection components. It is undermined,
however, by the relative uniformity in the sizes of framed objects throughout the images.
This is likely to impact the final performance of the model on the ShippingLab data, as
this does contain items of very diverse sizes.

Few-shot dataset. In contrast to the usual few-shot settings, this application does
not require the use of any of the base classes. The few-shot data will only include
instances of the two new ’boat’ and ’buoy’ classes and the catastrophical forgetting [37]
will not be an issue to be dealt with. The set has been designed with the objectives of
the project in mind, building a collection that summarises all possible events of a real
case scenario while achieving an even distribution of the data for optimal learning.

Current benchmarks for the few-shot ODC method use 10-shot learning to compute
the scored predictions, reaching results that, despite being promising, are way below
the standards required for this application. This will be addressed by the use of a
bigger few-shot dataset that can potentially train a more reliable network while keeping
a sufficiently low training time.
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In the Spiking-RetinaNet work package, section 3.4.4.2, the normalization performed
on the RetinaNet model used an estimate of the distribution of all possible activation
values for each channel in the network. This estimate was computed over aprox. 10% of
the data, sampled randomly, which turned to be a significant portion and led to good
predictions of the normalized model. This comes to show that, just with this subset,
all relevant neurons in the network were activated across their full range and all extra
samples may be considered redundant.

The hipothesis behind the building of the few-shot set is then that using a random
10% of the data should lead to good performances. However, a smaller set of well-chosen
images is also likely to pull it off. The resulting dataset has an amount of 300 pictures
and its characteristics are displayed in figure 4.2. An even representation of both classes
has been fully achieved, as well as the presence wide-ranging sized items in every relevant
region of the images. This is roughly a 3.6% of the training dataset and is estimated to
lead to a time and energy saving of 95% when compared to the full training process.

Figure 4.2: Monitored parameters for the building of the few-shot subset. The design
took into account the significant presence and even distribution of items of all classes,
sizes and locations. In the bottom graphs, the sizes of the blue circles are proportional
to the area of the object in that spot, while the background orange color scale references
the distribution of these in the image.
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4.4.2 Model adaptation
The RetinaNet model used for the few-shot training is a child of the one used in the
COCO base training. As displayed in figure 4.3, it has been generated by swapping
the classification subnetwork by a new one with the right layer dimensions for the new
number of classes and randomly initialized weights. The parameters of the feature
pyramid network (FPN) and the box regression head have both been transferred from
the base model, as they are both theoretically class agnostic. Additionally, FPN has
been frozen, its weights will be preserved from the base training as explained in section
4.3.

As the model adaptation performed here is a more advanced version of what was done
in section 3.4.5.2, the same issues regarding data encoding and bounding box shapes were
equally addressed.

Figure 4.3: RetinaNet model adaptation for the training in the ShippingLab few-shot
subset. Transfer-learning has been performed in the FPN and box regressor. The clas-
sifier, on the other hand, has been rebuilt from scratch for the buoy/boat labels.

4.4.3 Training details
The few-shot training was performed in the DTU Computing Centre on a total of 115
epochs taking an average of 101s per epoch. The learning rate was scheduled, using
a piecewise constant decay function, to descend gradually from the minimum base-
training’s learning rate to a value 15 times smaller, an amount similar to what was
used in [94]. This has been done in an attempt to speed up the training while mini-
mizing overfitting in latter stages. The full training time was of 3.5h, ten times shorter
than the full training performed in section 3.4.5.2, which also benefited from COCO
transfer-learning.
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4.5 Results
The trained model displays a mAP@0.5 of 61.5% as shown in figure 4.3. The performance
shown is much higher than that shown by previous applications due, firstly, to the larger
few-shot data pool and, secondly, to the fact that the ShippingLab data has only two
different classes, being the scores displayed in table 4.1 computed on the non-trivial 80
classes of the MS COCO set. These results, though, are not sufficient to support the
application of this method to a real case-scenario, as the accuracy of an object detector
used for a vehicle needs to be as close to 100% as possible. After further investigations
on the training data, two potential issues have been identified that could be deteriorating
the score obtained on the ShippingLab validation subset.

The first issue is related to the anatomical difference between the base COCO dataset
and the few-shot ShippingLab subset, referred to in sections 3.4.5.2 and 4.4.2. This is,
that the anchor box size collections needed to fit the objects in each of both datasets are
different. This big difference in object size is likely to be limiting the ability to apply
the ground hypothesis of 4.3 and achieve good results with the COCO-trained feature
extractor components, simply because the base dataset does not have enough diversity.

In a similar fashion, the second issue is found in the size correlations between the
few-shot and the validation datasets. While the few-shot samples were hand-picked to
obtain an even distribution across classes, locations and sizes of objects; the validation
data is randomly picked, being >90% of the class instances comprised by small objects.
This essentially means that the few-shot training objective is not aligned with what the
validation set rewards the most, which is good performance on small objects. Scores
would improve by using different few-shot samples, which better fit the nature of the
validation set. This statement is backed-up by a small experiment, explained in appendix
C.

Figure 4.4: Mean Average Precision metric of the few-shot trained model on the valida-
tion set calculated for different IoU box-matching thresholds.
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4.6 Summary
After a broad investigation on the applicability of meta-learning to object detection and
classification models, a few-shot learning approach was chosen to address the huge data
consumption and long training times of these kinds of algorithms.

The TFA method [94], while ranking 3rd in the 10-shot COCO benchmark, stood
out from the rest for its simplicity and straightaway applicability to the project, aligning
perfectly with the ShippingLab objectives. The method was adapted to the problem by
cutting down the number of classes to just the two, boat and buoy labels, and by increas-
ing the size of the few-shot dataset, aiming for better results than the ones reported in
the original research paper.

While this certainly was achieved, the obtained scores remained too poor for its
application to autonomous navigation, and an investigation was performed for possible
causes. Some structural differences between the base, few-shot, and validation datasets
were detected and it is believed that, if these were addressed, a significant improvement
in the scores would be achieved.



CHAPTER 5
Discussion

In this chapter, the main work-threads followed throughout the project will be analyzed
in retrospective. A reflection will be performed on the main technological findings and
limitations, and overall results will be compared with the objectives set in the Introduc-
tion (section 1.2). Finally, possible study-lines for the future will be suggested.

5.1 Overall results analysis
As stated in the Introduction, the ambition motivating the project is the exploration
of alternative, avant-garde approaches to the implementation of the RetinaNet deep
learning model to the environmental awareness of vehicles in the sea. A suitable way to
kick-off our work’s final breakdown is to look back to the initial hypothesis made, which
motivated the chosen paths. Figure 5.1 shows the initial concept, which intertwines both
work packages into a coherent mechanism to augment a deep-learning neural network
and permit its implementation in neuromorphic frameworks. Nevertheless, this has never
fully come to life in the project and both work-lines have been kept independent.

Regarding the use of meta-learning to enhance the training of the deep-learning
model, the use of a few-shot learning allowed for a reduction of 90% in the training time
and 95% in the data consumption of the model without leading to overfitting. This, on
the flip side, did not achieve a sufficient performance to support a real application to the
ShippingLab problem, stalling at a 63.3% of the score achieved through a full-training
(section 4.5). Having said that, the differences in the bounding box size ranges between
the base training, few-shot training and validation datasets have been identified to be
negatively biasing this result.

Figure 5.1: Scheme showing the interlocked applications of both work modules. Cor-
responds to Path 2 in figure 1.1: Training of deep (analog) neural network for latter
porting to a spiking architecture.
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We find especially significant to comment on the over-represented small sizes in the
validation set, which contrast with the more evenly distributed emphasis in the few-
shot data. Although this would be normal in a real scenario, the scores given by this
set reward detection of small, faraway targets over big, close obstacles, something that
was purposefully addressed in the construction of the few-shot collection. We suggest
that this dataset should be modified to properly evaluate the skills of object detectors
targeting real sea maneuvers. A new metric could also be implemented with this in
mind, weighting the scores obtained with the sizes or proximities of the ground-truth
objects, however, this could be dangerous towards the detections of smaller bodies (e.g:
kayaks or small buoys).

Another possible enhancement to the few-shot training would be the use of active-
bias [11] or importance sampling [34] techniques during the training, to dynamically
increase the emphasis given to examples where the model performs the worst during the
learning phase. This would lead to a more meaningful training and perfectly harmonize
with the few-shot approach.

On the other hand, the instantiation of the RetinaNet model in a spiking fashion led
to more sophisticated results, mainly due to the much greater resource allocation to this
study line. In spite of the absence of a neuromorphic hardware implementation and the
subsequent handicap of not being able to properly test the Spiking-RetinaNet model, the
results obtained in this work module could be considered state-of-the-art, as they may
rival with those offered by Spiking-YOLO [36], the only previous attempt to creating
a deep spiking object detector. This Spiking-YOLO network, when implemented in a
neuromorphic chip, consumed 280 times less energy than its equivalent ANN running
on a regular GPU.

The Spiking-RetinaNet model was generated through ANN-to-SNN conversion, which
was one of three main open fronts through the span of the MSc Thesis, being the other
two the trainings of a binary activated ANN and of a real SNN. The findings and con-
clusions retrieved have been summarized in table 5.1 for a better intelligibility.

Placing this object detector into the marine context, in section 1.4.2 of the Introduc-
tion the recall metric was addressed as specifically critical, due to the need of detecting
every single obstacles for the vessel to perform safe maneuvers in the sea. The original
Keras RetinaNet scored a 100% on the buoy class and a 99.5% for the boat class over the
full validation dataset (figure 5.2). On the 20-sample set for the SNN validation, which
contained 65 buoys and 30 boats, the ANN scored 100% in both classes. Meanwhile, the
1000ms SNN achieved a perfect score in buoy detection, but failed in one boat instance
(96.6%). This could be caused by the shift channel normalization ‘matrix frame error’,
as explained in page 44. This phenomenon should be further investigated before the use
of this method towards a real application.

Finally, it is also necessary to comment on the neuromorphic hardware implementa-
tion of the Spiking-RetinaNet model. Although in [36] the Spiking-YOLO network was
put to work in the TrueNorth platform, this model was based on Tiny-YOLO, a smaller
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network. It is yet to be seen how costly could this turn out to be for the larger and more
complex Spiking-RetinaNet.

Table 5.1: Brief analysis of all the tested approaches towards a spiking-RetinaNet model.

Advantages Drawbacks

W
he

ts
to

ne

• Model conformed by static,
binary-activated neurons. Extremely
energy efficient.

• Bad results on the ODC problem due
to the limitations of static, binary
activations (mAP@0.5 < 20% in MS
COCO).

• Intuitive training method, built upon
the well-known backpropagation
algorithm.

• Lacks the potential benefits of
event-based encoding.

• Compatible with both conventional
deep-learning frameworks and
neuromorphic platforms.

• Limited applicability to big neural
networks.

SN
N

Tr
ai

ni
ng

• Possibility to use bio-plausible
learning rules and exploit SNN unique
characteristics.

• SNN learning algorithms not ready for
such a big neural network.

• Possibility of reaching better
performances than ANNs by tailoring the
learning data for an event-based logic.

• Obtaining the needed precise-timing
data is costly. Need of a change of
paradigm.

• Can be fully executed in a
neuromorphic platform.

• Computationally expensive if not
performed on neuromorphic hardware.

A
N

N
-t

o-
SN

N
co

nv
er

sio
n

• Able to use widely-known, reliable
ANN learning methods and benefit from
their wide research and documentation.

• Constrained by original ANN model.
Unable to exploit bio-plausible learning
rules and time information.

• Able to reach state-of-the-art
performances on non-trivial datasets. • Ceiling for performance set by the

original ANN model.
mAP@0.5(1s) ∼ 95% in ShippingLab data.
mAP@0.5(1.5s) ∼ 50% MS COCO.

• Converted models can be deployed in
a neuromorphic platform, where they
Would benefit from low energy
consumption, fast inference times and
distributed computation.

• Slow, computationally inefficient
execution within the INI/Keras
simulation environment.

• The use of a r-SNN entails the need of
high spiking rates and relatively big time
windows to reach accurate results.
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(a) Scores for buoys (#1).
Recall = 100%

(b) Scores for boats (#2).
Recall = 99.5%

Figure 5.2: Precision/Recall graph of RetinaNet on the ShippingLab validation data.

5.2 Fulfilment of the objectives
The addressing through the project of the stated objectives in section 1.2 has been
evaluated by means of table 5.2. The State field can be either (fulfilled) or× (missed).

All in all, the MSc thesis project managed to realize all its objectives except the
hardware implementation of the algorithms, due to lack of time and resources. This
was foreseen during the third month of project work and, during a meeting, all parts
agreed to set this target appart in favour of dedicating more time to the design of an
SNN framework for the ODC problem.

Table 5.2: Completion of the objectives set at the start of the MSc project.

# Objective State Outcomes Location
Main objectives

1
Perform a literature study of
specific topics relevant to the thesis
work.

Wide-ranging theory
review on ODC, SNNs,
meta-learning and related
topics.

Sections 2,
3.2, 3.3.1,
4.1 and

4.2.
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2

Investigate possible approaches to
spiking architectures and
neuromorphic computing with the
focus on deep-learning models for
computer vision.

Three studied approaches.
Summarized in table 5.1.

Sections
3.3, 3.4
and 3.5.

3

Develop and implement RetinaNet
for detection and classification of
ships and buoys exploiting an SNN
architecture, and compare
performances w.r.t. an ANN
architecture.

Spiking-RetinaNet model
via ANN-to-SNN
conversion [72].

Section
3.4.

4

Investigate meta learning methods
for ODC and identify one or more
approaches that could be relevant
for the autonomous ship
navigation.

Study on few-shot ODC
and choosing of the TFA
method [94].

Section
4.2.

5 Develop and implement at least one
meta learning method for ODC. TFA-RetinaNet

Sections
4.3 and

4.4.

6
Test and validate the implemented
meta learning solution on relevant
data sets and compare findings
with the SNN-RetinaNet approach.

Benchmark using dataset
size, training time and
mAP as metrics.

Sections
4.5 and 5.

7
Draw conclusions about the
potential of using SNN and meta
learning for robust ODC in
autonomous ship navigation.

As reasoned before. These
solutions are certainly
promising but still in early
phases of development.

Sections
3.6 and
4.6, 5.

Side objectives

1
Further development of existing
spiking neural network frameworks
targeting the ODC problem.

Adaptation of the
SNN_Toolbox[81] and
other libraries to the ODC
problem.

Section
3.4.4.

2
Investigate potential improvements
to the studied technologies towards
the objectives of the ShippingLab
project.

Study of limitations in the
project’s results and how
to address them.

Sections
3.4.6, 4.5

and 5.

3
Implementation and testing of the
developed solutions in dedicated
hardware.

× – –
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5.3 Future work
This section is a natural follow-up to the brainstorming made addressing side-objective
2, in sections 3.4.6, 4.5 and 5. Several limitations were found in the results obtained by
both Spiking-RetinaNet and TFA-RetinaNet and possible work paths to address them
could be:

• Attempting the implementation of spiking-RetinaNet in a neuromorphic platform
to benefit from its advantages.

• Use time-to-first-spike encoding to reach a lower energy footprint of the SNNs.

• Further inverstigate the issues regarding the shifted channel normalization method.

• Collect event-based data for the training of the spiking ODC models on neuromor-
phic hardware using bio-plausible learning rules.

• Perform a proper mAP benchmark of the spiking-RetinaNet on relevant datasets.

• Use of importance sampling to enhance the few-shot training.

• Automatize the generation of the few-shot dataset using AI techniques.

Additionally, to be able to process the RetinaNet architecture and perform its con-
version to a spiking model, the parsing stage had to be performed in a semi-automatic
fashion. Manual input is required to correcly perform the connections between subnet-
works and, during this project, we were unable to find a suitable way to fully automate
them. This would be a big improvement for the conversion toolbox.

Finally, for the Spiking-YOLO model in [36], the standard IF neuron model was
substituted by a novel signed neuron with imbalanced threshold to address the issue
of negative activations (Leaky-ReLU w/IBT). These neurons are fully implementable in
neuromorphic platforms and using them could potentially eliminate the issues derived
from the shift channel normalization algorithm.

5.4 Summary
To summarize, all main objectives of the MSc Thesis were properly fulfilled within the
duration of the project along two different lines of study. These lines, when combined,
could entail a big energy footprint reduction in ODC models and enable its application
in neuromorphic frameworks.

The results obtained are state-of-the-art when compared to other contemporary re-
search in [59] and [58], nevertheless, these are not good enough for use in a vehicle



5.4 Summary 75

navigation algorithm. Due to safety reasons, the performance requirements in this kind
of environment are extremely high. With this in mind, an analysis has been performed
in the search for improvement pathways. Some of the most relevant would be the use of
importance sampling [34] with the few-shot learning, and the hardware implementation
of the SNN on a neuromorphic platform like TrueNorth [12].
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CHAPTER 6
Conclusion

This paper constitutes an elaborate study on the applicability of neuromorphic comput-
ing and few-shot learning to object detection and classification deep-learning models.
The particularity of these algorithms is their convolutional neural network (CNN) struc-
ture and their greater complexity, being integrated by more than 100 layers. This
posed a big challenge throughout the project as both SNNs and meta-learning are in
very embryonic stages and have very scarce research available towards object detection
applications.

It was reckoned necessary for said reasons to take matters into our own hands and,
over the course of the project, two lines of work were conducted towards (a) the reduction
in the data and time consumption during training and (b) the generation of a SNN
object detector. The results obtained by both study lines earn these methods a position
in 2020’s state-of-the-art, as they rival with those in other contemporary studies of the
field.

The neuromorphic computing work module deserves a special mention, due to the
needed efforts of research and enhancement of existing SNN frameworks, as these were
designed for shallow neural network structures and classification tasks. Stemming from
an existing library [81, 72], a novel framework has been developed for the conversion of
object detection neural networks to spiking models, supporting subsequent simulation
and possible deployment to neuromorphic hardware platforms.

The used technologies, however, do not reach the quality standards to be used for
for environmental awareness of autonomous ships yet. It will be necessary for them to
mature before new work is carried out towards this objective. Nevertheless, this work
demonstrates the potential and scalability of these approaches. We hope it serves a
source of inspiration for future investigations.

Given all the resource and time limitations and technological challenges provided
by such an avant-garde field, the project manages to fulfill the proposed objectives and
deliver tangible and justified results. We believe it is a step in the right direction towards
more energy efficient artificial intelligence and the Internet of Things (IoT) paradigm, as
both neuromorphic computation and meta-learning could open the door for low-power
deep-learning methods.
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APPENDIXA
Spiking-RetinaNet

predictions
A.1 Predictions on the ShippingLab data

 
 

 
Figure A.1: Object detections performed by the spiking-RetinaNet model with a 1s
integration time-window and disregarding of the transient. Boats are framed red and
buoys green. Images belongs to the ShippingLab dataset.
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A.2 Predictions on MS COCO

 

 

 

 

 

 
 

Figure A.2: Object detections performed by the spiking-RetinaNet model with a 2s
integration time-window and disregarding of the transient. Images belongs to the MS
COCO dataset [48].



APPENDIX B
Correlations

This section contains correlation plots similar to the ones displayed in table 3.7, but for
layers 13 and 79 of the network.

Notice how the correlation is higher and the convergence faster in more shallow layers
(figure B.1), while deeper layers take more time to reach acceptable results (figure B.2)
due to the delay in the spike propagation. The error in these deeper layers is also higher,
as it is transmitted by up-stream layers and accumulated.

These plots pertain to the simulation of sample 73 of the MS COCO validation set
without ignoring the transient (that is why the simulation takes 3s to converge).
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Table B.1: Correlations between analog activations and obtained spiking rates of layer
13Conv2D after the conversion of RetinaNet.
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Table B.2: Correlations between analog activations and obtained spiking rates of layer
79Conv2D after the conversion of RetinaNet.
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APPENDIXC
ShippingLab validation set

size issue
The study performed in this section aims to back the theory that the evaluations per-
formed in the validation dataset are biased, rewarding more the detections of small
objects. Figure C.2 shows a much higher representation of small objects in the dataset,
which are focused around the horizon line. Additionally, figure C.1 compares the per-
formance of the RetinaNet model when evaluated on the regular validation set and the
few-shot set.

Figure C.1: Characteristics of the ShippingLab validation dataset. Notice the predomi-
nance of small objects in comparison to 4.2.
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Notice how, despite the excellent mAP shown for the validation data, the score
obtained for the few-shot set, which has a more even distribution of object sizes, is
mediocre. This unveils that this model might not be doing well with bigger objects
despite being very good at detecting smaller ones and that this problem goes undetected
if evaluated only in the validation set.

Figure C.2: Performance of the fully trained RetinaNet when evaluated on the validation
(left) and few-shot (right) datasets. Notice the bad performance on the few-shot data
despite the high score obtained in the validation set.
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