

Escola Tècnica Superior d’Enginyeria Informàtica

Universitat Politècnica de València

Fault analysis of edge router Linux

system message log files with machine

learning

Trabajo Fin de Máster

Máster Universitario en Gestión de la Información

Autor: Péter László Lógó

Tutor: Prof. José Hernández-Orallo

2021

Fault analysis of edge router Linux system message log files with machine learning

2

Abstract

In our everyday life, many things are done electronically, e-mails, buying different tickets,

navigation, and so on. These devices must always work correctly. Linux-based routers are no

exception. The devices create a log file about everything that happens to them, which in many

cases is in an unreadable state for humans. When such a device fails, professional workers spend

many hours searching for individual errors and often fail to detect them.

The main goal of this research is to create a System log files analyzer for predictive

maintenance because there is currently no quick and effective program for this. Therefore,

several publicly available programs were overviewed that are capable of individual log files,

especially system log files, and analyzing them. It was investigated how they are structured and

what types of logs are analyzed in what way.

Syslog files were examined with different labels in this dissertation, which were converted

using text mining methods. Then they were analyzed with several models, including decision

trees, random forests, the XGBoost model, and neural networks, and they predicted labels for

each log file. To make this more successful, text-mining methods were applied, and each Syslog

was sliced into sequences. These transformations gave much more transparent and accurate

results. After teaching and testing the models, the results were obtained, which were evaluated

with different indicators, such as accuracy and a confusion matrix.

It was also part of this thesis the writing of a program for a Raspberry Pi that can give the

professional workers guidance on what kind of failures happened in the system, thus reducing

their time spent on maintenance and more efficient debugging. The program was written in

Python and tested on two different types of Raspberry Pi.

In conclusion, several types of errors can occur in a log file, and machine learning methods

can significantly help the work of professionals by guiding analysis. With this AI technology,

professionals know more precisely what error they need to look for in which sequence; they do

not have to look through all the rows. This allows them to spend more time on improvements

and upgrades, and not have to deal with maintenance.

Keywords: text mining, Syslog, TF-IDF, analysis, Python

Fault analysis of edge router Linux system message log files with machine learning

3

Table of Contents

1 Introduction ... 6

2 Methodology and Tools .. 7

2.1 Data mining .. 7

2.1.1 A brief overview of the fundamentals of data mining... 7

2.1.2 About text mining .. 7

2.1.3 CRISP-DM and text mining methods ... 8

2.2 Term Frequency-Inverse Document Frequency weight ... 11

2.3 Regular expressions .. 13

2.4 Syslog files ... 15

2.5 System log analyzer programs ... 17

2.6 Raspberry Pi ... 18

2.7 Tools for implementation ... 19

2.8 Evaluation with metrics .. 20

3 Models and deep learning ... 23

3.1 Machine learning .. 23

3.2 Decision Trees .. 24

3.3 XGBoost ... 25

3.3.1 XGBoost Trees for Regression ... 27

3.3.2 XGBoost Trees for Classification ... 31

3.4 Deep learning ... 36

3.4.1 Artificial Neural network .. 36

4 Data description and preparation ... 41

4.1 Data .. 41

4.2 Tokenization and card level ... 42

4.3 Data preparation at the sequence level ... 44

Fault analysis of edge router Linux system message log files with machine learning

4

4.4 Grouping labels .. 48

4.5 One-Hot encoding .. 49

5 Modeling ... 50

5.1 Binary Classification .. 50

5.1.1 Card level .. 50

5.1.2 Sequence level ... 54

5.2 Modeling with three types of labels ... 56

5.3 Modeling with eight labels ... 63

5.3.1 Sequence level ... 63

5.3.2 Card level .. 68

5.4 Modeling with all of the labels ... 68

6 Development for Raspberry Pi .. 73

6.1 The script .. 73

6.2 Improving the script ... 75

7 Conclusions and future work ... 77

References .. 79

List of Figures .. 82

List of Tables .. 84

List of Equations .. 85

Fault analysis of edge router Linux system message log files with machine learning

5

Acknowledgments

Throughout the writing of the dissertation, I have received a great deal of support and

assistance.

First, I would like to thank my supervisor, Prof. Gábor Szűcs, whose expertise was

invaluable in formulating the research questions and methodology. Your feedback pushed me

to sharpen my thinking and brought my work to a higher level.

I would also like to thank the professor of the Universitat Politècnica de València, José

Hernández-Orallo, for his acceptance and support, who helped me find a solution to my

problems with his feedback and thoughts.

I would like to acknowledge my colleagues from my internship at Flex for their wonderful

collaboration. I would particularly like to single out my supervisors at Flex, Gábor Magda,

Milán Szücs, and Tamás Horváth. Thank you for the many wonderful conversations in the

meetings, your support, and all of the given opportunities.

In addition, I would like to thank my parents, family for their wise counsel and their extreme

support. You are always there for me. Köszönöm!

Fault analysis of edge router Linux system message log files with machine learning

6

1 Introduction

Nowadays, the automation of services or production is becoming more and more common.

During or after this automation, some products may fail and break down. In this thesis, the

general goal is to find the answer to whether there is already a solution to automatically monitor

Linux-based edge routers after a failure. In the real life the log files monitoring is essential to

help the maintenance processes.

According to my best knowledge, it does not exist any program that could analyze the log

files containing the system message. There are some programs which could only interpret the

text generated by themself. Therefore, in this study, these system log files using machine

learning and neural network are analyzed.

Raspberry Pis are easy-to-carry, small-sized computers. Since failures can occur in any

country, it is enough for I.T. professionals to bring this small device with them and connect the

appropriate elements to it for analysis; therefore, a program was developed for a Linux-based

Raspberry Pi. Most of the times the system log files contain very sensitive data; therefore the

companies try to avoid the online solutions, it can be risky to run the scripts throught servers or

upload the files into the cloud. These are the reasons why the program had to be written for this

device.

This dissertation has eight chapters followed by references and lists of tables, figures, and

equations. The entire work is based on the principle that the definition and theorems are taken

from the cited references with the proper citation as they are. At first, a comprehensive

literature overview is conducted. Section two contains the theoretical background in brief. Then

the programming steps and the coding itself are explained. The dissertation is closed by the

results and the conclusions. The Cross-Industry Standard Process for Data Mining (CRISP-DM)

methodology is applied throughout the project, which means the first step is business

understanding. Initially, it has to understand how the system works log files, which system can

write in the files, and why. The next important step is preparing the data, which means the

system logs have been cleaned and reduce noise. For these steps, the Term Frequency-Inverse

Document Frequency (TF-IDF) and other methods were used. The various transformations and

tokenization are followed by modeling. After the evaluation, the last step was deployment. The

thesis is closed by the sections of the conclusions and the references.

Fault analysis of edge router Linux system message log files with machine learning

7

2 Methodology and Tools

In this chapter, a brief theoretical overview is presented to understand the data mining and

the connected tools that were used during the analysis better.

2.1 Data mining

2.1.1 A brief overview of the fundamentals of data mining

Data mining is the process of finding patterns, correlations, and anomalies within datasets to

extract insight and knowledge, and use it for explaining the data or making predictions. Using

many of the data mining techniques, companies can use this information, for example, to

increase revenues, cut costs, improve customer relationships, reduce risks, and predict the result

of a game, and more [1].

Nowadays, data mining is widespread in business, science, engineering, medicine, and more

several other applications. The bank sectors use data mining of credit card transactions, stock

market movements, or the national government to use several data science tools for national

security. These application areas are just the tip of the iceberg for data mining applications. Big

Data is now commonplace, with data collection becoming relatively cheap and the proliferation

of devices capable of collecting data. The most active techniques explored today come from

Machine Learning, such as Deep Learning. Deep Learning can capture dependencies and

complex patterns far beyond other techniques; it reignites some of the biggest challenges in the

world of data mining, data science, and artificial intelligence [2].

2.1.2 About text mining

One of the earliest examples of text summarization, text mining, and classification was

library catalogs. The earliest library catalog is attributed to Thomas Hyde for the Bodleian

Library at the University of Oxford in the 17th century. In 1876, Melvin Dewey introduced the

index card to form a library card catalog [3].

Nowadays, more and more information is in an unstructured and semi-structured format, like

open-ended survey answers, news, call-center notes, and even books or web forms. Text mining

is the process of analyzing textual collections of material to understand key concepts and topics

and explore hidden contexts and trends without knowing the words or phrases used by the

authors to express the concepts.

Fault analysis of edge router Linux system message log files with machine learning

8

The text mining process usually includes the following steps:

 Identify the text you want to mine: Identify the text and prepare it for mining.

 Mine the text and extract the structured data. To the source text apply the text mining

methods.

 Build concept and category models. Define key concepts, categories. Determine the

best categories and concepts for scoring.

 Analysis of structured data. Use traditional data mining techniques such as

clustering, classification, and predictive modeling to explore the relationships

between concepts. Combine extracted concepts with other structured data to predict

future behavior based on the concepts.

2.1.3 CRISP-DM and text mining methods

The Cross-Industry Standard Process for Data Mining (CRISP-DM) stands for a cross-

industry process for data mining, data science. The methodology provides a structured approach

to planning and doing data mining projects; unfortunately, this model belongs to an ideal world,

an idealized sequence of events. Therefore, in practice, many of the tasks can be performed

differently, in a separate order. The CRISP-DM methodology will often be necessary to

backtrack to previous assignments and repeat specific actions. For example, Business and

datasets understanding are one of the most critical tasks. If the data miners do not understand

what the company wants, there will be many unnecessary costs [6].

Fault analysis of edge router Linux system message log files with machine learning

9

The CRISP-DM life cycle model consists of six phases (Figure 1). The sequence of the

stages is not strict; therefore, most data mining projects move many times back and forth

between evaluation and modeling as necessary. The model is flexible, and it can be customized

easily. The six phases are business understanding (determining the purpose of the study), data

understanding (data exploration and understanding), data preparation, modeling, evaluation,

and deployment [7].

In [3], the authors presented a model for text mining based on the CRISP-DM method. As

they wrote, “Within the six phases, CRISP-DM methodology provides comprehensive coverage

of all of the activities involved in carrying out data mining projects. Because the primary

distinction between data mining and text mining is simply the type of data involved in the

knowledge discovery process, we adopt CRISP-DM as a foundation upon which to derive the

text mining methodology followed in this book.”

Figure 2: Text mining process flow. These are the general steps

Business
Understanding

Data Understanding

Data Preparation

Modeling

Evaluation

Deployment

Determine the
purpose of the text

mining study

Explore the
avaibility and
nature of the

unstructured data

Prepare the data
TF-IDF

measurement
Develop models Evalute results Deploy

results

Figure 1: CRISP-DM reference model. The boxes represent the six phases of the life cycle model

DATA

Fault analysis of edge router Linux system message log files with machine learning

10

Figure 2 shows the flow of the text mining process. The first phase (Determine the purpose

of the text mining study) works like any other project’s first step, so the text mining study starts

with determining the purpose of the study. This requires a thorough understanding of the

business case and what the study aims to accomplish. In order to achieve this understanding

and define the aims precisely, we must assess the nature of the problem that initiated the study.

The second phase (Explore the availability and the quality of the data) include a few tasks,

like

 Identification of the textual data sources (digitized or paper-based; internal or

external to the organization)

 Assessment of the accessibility and usability of the data

 Collection of an initial set of data

 Exploration of the richness of the data (does it have the information content needed

for the text mining study)

 Assessment of the quantity and quality of the data: Once the exploration is concluded

with positive outcomes, the next phase is to collect and integrate large amounts of

data from various sources used in the study.

The third and fourth phases (Prepare data and Develop models) present the most significant

differences between data mining and text mining. Within the context of knowledge discovery,

the primary purpose of text mining is to process unstructured, textual data and structured and

semi-structured data to extract novel, meaningful, and actionable knowledge/information for

better decision making.

In the fifth phase (Evaluate the results), if the models are developed and assessed for

accuracy and quality from a data analysis perspective, we must verify and validate the proper

execution of all of the activities.

At the end, in the sixth phase (Deploy the results), if the models and the modeling process

successfully pass the assessment process; they can be deployed [3].

Fault analysis of edge router Linux system message log files with machine learning

11

2.2 Term Frequency-Inverse Document Frequency weight

After reviewing the data mining and CRISP-DM methodology, we will review the TF-IDF

measure because it is used for normalization later on.

The Term Frequency-Inverse Document Frequency (TF-IDF) weight is often used in text

mining and information retrieval. This weight is a statistical measure used to evaluate how

important a word is to a document in a collection or corpus. The importance increases

proportionally to the number of times a word appears in a document but is offset by the

frequency of the word in the corpus. Search engines often use variations of the TF-IDF

weighting scheme as a central tool in scoring and ranking a document’s relevance given a user

query. TF-IDF can be successfully used for stop-words filtering in various subject fields,

including classification and text summarization [6].

Typically, the TF-IDF weight is composed of two terms. The first computes the normalized

Term Frequency (TF), which means the number of times a word appears in a document, divided

by the total number of words in that document. The second term is the Inverse Document

Frequency (IDF), computed as the logarithm of the number of the documents in the corpus

divided by the number of documents where the specific term appears.

Term Frequency, which measures how frequently a term occurs in a document. Since every

document is different in length, it is possible that a term would appear much more time in long

documents than shorter ones. Thus, the document length as a way of normalization often divides

the term frequency (Equation 1):

𝑇𝐹(𝑡) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡𝑒𝑟𝑚 𝑡 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑖𝑛 𝑎 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡

Equation 1: The equation for the Term Frequency

Inverse Document Frequency, which measures how important a term is. While computing

term frequency, all terms are considered equally important. However, it is known that certain

terms, such as “that”, “is”, “of”, and “the”, may appear many times but have little importance.

Thus, we need to weigh down the frequent terms while scaling up the rare ones by computing

the following [7] (Equation 2):

𝐼𝐷𝐹(𝑡) = log
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑤𝑖𝑡ℎ 𝑡𝑒𝑟𝑚 𝑡 𝑖𝑛 𝑖𝑡

Equation 2: The equatin for the Inverse Document Frequency

Fault analysis of edge router Linux system message log files with machine learning

12

As a result of the previous equitations one can get TF-IDF what is the multiplications of

Equation 1 and Equation 2 (Equation 3).

𝑇𝐹𝐼𝐷𝐹(𝑡) = 𝑇𝐹(𝑡) ∗ 𝐼𝐷𝐹(𝑡)

Equation 3: The equation for Term Frequency-Inverse Document Frequency

Fault analysis of edge router Linux system message log files with machine learning

13

2.3 Regular expressions

Regular expressions were very useful during data preparation. It was easier to search and

replace some specific words. In this section, we explain how the regex works.

A regular expression (regex) is a sequence of characters that define a search pattern. Usually,

such patterns are used by string searching algorithms to find and replace or find operations on

strings or input validation. It is a technique developed in theoretical computer science and

formal language theory. Regular expressions are widely used in different areas, for example in

search engines, or text editors. With this process, the user can check the e-mail address is correct

or not, find and replace the date format with something else, or validate the bank account

number.

A regular expression specifies a set of strings that each individual string in the set should

match it; the functions in this module let you check if a particular string matches a given regular

expression (or whether a given regular expression corresponds to a given string that applies to

the same thing).

Regular expressions can be concatenated to create new regular expressions. “A” and “B” are

both regular expressions, in this case, “AB” is also a regular expression. Usually, if a string “a”

matches with “A” and another string “b” matches with “B”, the string “ab” will match with

“AB”. This holds unless “A” or “B” contains low precedence operations, boundary conditions

between “A” and “B”; or have numbered group references. Thus, complex expressions can

easily be constructed from simpler primitive expressions like those described here [8].

In this part, some regular expressions were written with some examples.

If the regular expression is inside a bracket “[a-zA-z]”, this will match any character from

“a” to “z” or “A” to “Z ”, but it is also possible to set the opposite, that means “[^abc]” will

match any character except “a”, “b”, “c”.

Some of the special sequences beginning with “\” represent predefined sets of characters that

are often useful, such as the set of digits, the set of letters, or the set of anything that is not

whitespace. “\d” matches any decimal digit; this is equivalent to the class “[0-9]”, and also it

has negation “\D” it is equivalent to the class “[^0-9]”. The user can find the whitespace

characters with regular expressions, like space, newline, tabulator with the “\s” expression. The

“\w” matches any alphanumerical character; it is equivalent to the class “[a-zA-Z0-9_]”.

Fault analysis of edge router Linux system message log files with machine learning

14

These sequences can be included inside a character class. For example, “[\s,!]” is a character

class that will match any whitespace character, or “,” or “!”.

Dot “.” is a metacharacter. It matches anything except a newline character. The first

metacharacter for repeating things that we will look at is “*”. The star character does not match

the literal character “*”; instead, it specifies that the previous character can be matched zero or

more times instead of exactly once.

For example (Figure 3), in this expression, “da*ta” will match “dta”, it means zero “a”

character, “data” (one “a” character), “daaaata” (four “a” character), and so on.

Find the date in a text could look like this formula: “[0-9]{4}[^0-9]*[0-9]{2}[^0-9]*[0-

9]{2}”

This means “[0-9]{4}” four number which is the year, next “[^0-9]*” zero or more non-

numeric character (it is the separate character); the next step is “[0-9]{2}” it means two

numbers, which is the month, and again the separate characters “[^0-9]*” and in the end again

“[0-9]{2}” the last two digits which are the days. Therefore, this regular expression’s source

text could be this “2019. 10.31” or “2019-10-31” or “20191031” as well [9].

Figure 3: Regular expression example

Fault analysis of edge router Linux system message log files with machine learning

15

2.4 Syslog files

In this chapter, the Syslog files were presented. What a Syslog is and how it is built, and

what it can be used for. This section helps understand the Syslog files (Figure 4).

In computer science, Syslogs are the Message Logging Standard by which almost any device

or application can send data about events, status, diagnostics, and more [24]. The default

programs to read these files are the notebook programs.

The log is the file extension for an automatically produced file that contains a record of

events from specific software and operating systems. While they can include several things, log

files are often used to show all events associated with the system or application that created

them. For example, a backup program might keep log files showing exactly what happened or

did not happen during a backup. The point of a log file is to keep track of what is happening

behind the scenes, and if something should happen within a complex system, you have access

to a detailed list of events that took place before the malfunction. Whatever the application,

server, or Operating System (O.S.) thinks needs to be recorded [25].

Figure 4: A System log file, Syslog

The Syslog Protocol (RFC 5424) describes [26] that a log file uses three layers:

 The “Syslog transport” layer puts messages on the wire and takes them off the wire.

 The “Syslog application” layer handles the generation, interpretation, routing, and

storage of Syslog messages.

 The “Syslog content” is the management information contained in a Syslog message.

Syslog message size limits are dictated by the “Syslog transport” mapping in use, and there

is no upper limit per se. Each transport mapping defines the minimum maximum required

message length support.

In a Syslog file, the date is an important part. It could be four different formats.

1. format : “1985-04-12T23:20:50.52Z”

This example represents 20 minutes and 50.52 seconds after the 23rd hour of 12 April 1985

in UTC.

2. format: “1985-04-12T19:20:50.52-04:00”

Fault analysis of edge router Linux system message log files with machine learning

16

The second format represents the same time as in the first example but is expressed in U.S.

Eastern Standard Time.

3. format: “2003-10-11T22:14:15.003Z”

This date represents 11 October 2003 at 10:14:15pm, 3 milliseconds into the next second.

The timestamp is in UTC.

4. format: “2003-08-24T05:14:15.000003-07:00”

The last date format represents 24 August 2003 at 05:14:15am, 3 microseconds into the next

second. The timestamp indicates that its local time is -7 hours from UTC [26].

Fault analysis of edge router Linux system message log files with machine learning

17

2.5 System log analyzer programs

At the beginning of this research several programs were overviewed to see whether they

were capable of analyzing various log files. In this section these programs are explained,

including my testing experiences.

Since a program can create many log files, it is worth organizing and analyzing them

somehow; there are different programs for these; a couple of them were presented in this

section.

Most system log file analysis programs cannot be used in this case. The log file management

means how many files there are, at what intervals they were created, and whether they contain

any anomaly. Often these programs are used to extract the message from many other unreadable

words and numbers. Some programs can categorize log files somehow, but you cannot attach

other existing data to this program; only those files can handle that are created on that computer.

Some analyzer program works only in the Ubuntu environment, like “logpai”. Others are

available from browsers, like “LOGalyze” (Figure 5).

Figure 5: Screenshot of the LOGanalyze program, which is a log analyzer program

For a log analysis program, it is essential to read and understand the data, the text. The

program then split the log files into different aspects, such as time, log type, message, and

facility. Based on these, the log analyzer programs can summarize and create charts based on

the processed data. For example, when an anomaly is detected, the program looks when the log

files were created more often.

Fault analysis of edge router Linux system message log files with machine learning

18

2.6 Raspberry Pi

In this thesis, in part Raspberry Pi was used, so in this chapter it was intruduced.

The Raspberry Pi is a credit-card-sized single-board computer that plugs into a computer

monitor or television and uses a standard keyboard and mouse. A capable device enables people

to explore computing and learn how to program in a language like Python. It can do everything

people would expect a desktop computer to do, from browsing the internet and playing high-

definition videos to making spreadsheets, word-processing, and even playing video games [27].

The first Raspberry Pi product was released in 2012, and the latest, the Raspberry Pi 4 Model

B, was introduced in June 2019. It contains Gigabit Ethernet, along with onboard wireless

networking and Bluetooth. It can handle the 4K output and run two monitors at once [28].

Figure 6: Raspberry Pi 4 Model B1. General view of the single computer board

As we can see above (Figure 6), the graphical interface of the Raspberry Pi device is the

same as the standard desktop computer interfaces.

1 Source: https://www.raspberrypi.org/products/raspberry-pi-4-model-b/ (2021. April)

https://www.raspberrypi.org/products/raspberry-pi-4-model-b/

Fault analysis of edge router Linux system message log files with machine learning

19

2.7 Tools for implementation

Python was used in this research because Python is a general-purpose, high-level

programming language, which is very useful for data science, and deep learning tasks. It has

many downloadable packages, modules, or machine learning, and many people use it in data

mining and text mining.

For creating tables and working with data frames, the “pandas” package was used, and for

the regular expressions, the “re” module. The “os” and “glob” modules were used to manage

folders and files. Natural Language Toolkit (“nltk”) was used to tokenize the words. This

module is a very useful module for tokenization, stemming, text processing, and work with

human language. For the calculations, evaluation “math”, Scikit-learn (“sklearn”), and

“NumPy” were used. Sklearn is also useful for separating training and test datasets, encoding

labels, and create different models, such as Random Forest or Decision Tree. The charts and

figures were created with the help of the “matplotlib” module. The “pickle” package was used

to save and load the models.

“Keras” and “TensorFlow” were used for creating the neural network. It is also an open-

source neural network library, which was written in Python, as well. Keras contains a significant

number of implementations of commonly used neural network building blocks like layers,

activation functions, and so on. It also supports convolutional and Recurrent Neural Networks.

Keras module is also useful to help the text preprocessing.

TensorFlow is a helpful tool for neural networks; it is open-source software. This module is

fast and flexible so that it can be used for many different problems. TensorFlow is a symbolic

math library, and for example, at Google, the engineers use this module for research and

productivity. It is prevalent, and most of the time, it performs very well [29].

Fault analysis of edge router Linux system message log files with machine learning

20

2.8 Evaluation with metrics

For the models, the accuracy of the given model was calculated as well as the value of the

area under the receiver operating characteristic curve. The formula for accuracy is (Equation

4):

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑙𝑎𝑠𝑠

𝑡𝑜𝑡𝑎𝑙 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑐𝑙𝑎𝑠𝑠
 ∗ 100

Equation 4: The formula for the models’ accuracy

On the other hand, the other formula is (Equation 5):

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

Equation 5: The formula for the models’ accuracy rearranged

[30].

For the formula for the Area Under the receiver-operating characteristic Curve (AUC) score,

we have to calculate the True Positive Rate (TPR), and the False Positive Rate (FPR), which

are the following equations (Equation 6):

𝑇𝑃𝑅 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐴𝑙𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
; 𝐹𝑃𝑅 =

𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐴𝑙𝑙 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

Equation 6: The formula for the models’ AUC score

The value of AUC is the area under the line on the diagram where the x-axis is the False

Positive Rate, and the y-axis is the True Positive Rate [31].

The AUC is equal to the probability that the classifier will rank a randomly chosen positive

example higher than a randomly chosen negative example. There are some important basic

terms for this; the True Positive Rate is also known as Recall or Sensitivity, and the False

Positive Rate or Specificity. They both have values in the range [0, 1] close intervals, and they

are computed at the threshold values. After a graph is drawn, the AUC is the area under the

curve between them. Other good evaluation numbers are Precision, Recall, and F1 score [32]

(Equation 7).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

Fault analysis of edge router Linux system message log files with machine learning

21

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Equation 7: The formulas for Precision, Recall, and F1 scores

The Confusion Matrix is a matrix; it describes the performance of the model. Actual values

can be Positive or Negative. For example, in a binary classification, the first label is positive,

and the second is negative. When we predicted the positive and negative value correctly, then

it is the True Positive (TP), which means that we predicted the first label, and the first label

happened to the system. The True Negative (TN) means that we predicted the second and the

second label happened. However, suppose our predicted positive value is a true negative, and

the predicted negative is actually positive. In that case, they are False Positive (FP), where we

predicted the first label, but the system had the second label and False Negative (FN), where

we predicted the second, but it actually had the first (Table 1).

T
ru

e
la

b
el

Predicted label

 Positive Negative

Positive TP FN

Negative FP TN

Table 1: Confusion matrix

Cross-validation was used during this research. Cross-validation helps the models to give

much more accurate results and avoid overfitting; the “KFold()”function from the “sklearn”

module was used to create fifteen folds.

Cross-validation is a resampling procedure used to evaluate machine-learning models on a

limited data sample. The procedure has a single parameter called ‘k’, which refers to the number

of groups to which a particular data sample should be divided [33].

To understand the cross-validation procedure, an example was written:

We have a dataset with six observations.

𝑑𝑎𝑡𝑎𝑠𝑒𝑡 = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6]

Fault analysis of edge router Linux system message log files with machine learning

22

The first step is to select a k value to determine the number of folds used to split the data; let

us say, in this case, 𝑘 = 3. This means; first, we shuffle the data and split it into three different

groups. Since we have six observations, each group will have the same number of observations.

The result is the following folds:

 𝐹𝑜𝑙𝑑_1 = [𝑥1, 𝑥2]

 𝐹𝑜𝑙𝑑_2 = [𝑥3, 𝑥4]

 𝐹𝑜𝑙𝑑_3 = [𝑥5, 𝑥6]

Three models are trained and evaluated, with each fold given a chance to be the held-out test

set. The table below (Table 2) illustrates these splits; the fold with red text is the test set, and

the others are the train set.

 Fold_1 Fold_2 Fold_3

Model_1 [𝑥1, 𝑥2] [𝑥3, 𝑥4] [𝑥5, 𝑥6]

Model_2 [𝑥1, 𝑥2] [𝑥3, 𝑥4] [𝑥5, 𝑥6]

Model_3 [𝑥1, 𝑥2] [𝑥3, 𝑥4] [𝑥5, 𝑥6]

Table 2: Cross-validation example

Fault analysis of edge router Linux system message log files with machine learning

23

3 Models and deep learning

In this chapter, first, decision Trees were written, and after, the XGBoost model, which is a

gradient boosted decision trees.

3.1 Machine learning

Machine learning is a deep learning area that focused on constructing algorithms that predict

based on data. A machine learning task aims to learn a function “f: Data (X) → Possible

predictions (Y)” that maps the input domain of the data onto the output domain of possible

predictions. The function “f” is selected from a specific function class, which is different for

each family of learning algorithms. Elements of “X” and “Y” are application-specific

representations of data objects and predictions, respectively [18].

Machine learning algorithms can be classified mainly into three different categories by the

type of datasets used as experience. These categories are reinforcement learning, supervised

learning, and unsupervised learning. Other learning algorithms combine two categories, like

semi-supervised learning, which uses both unlabeled and labeled data. Reinforcement learnings

do not experience a fixed dataset but a feedback loop between the system and its experiences.

Supervised learnings use labeled datasets, where part of the dataset represents the data point,

and the other part is the corresponding true prediction for the first part. This training set of

input-output pairs is used to find a deterministic function that maps any input to output,

predicting future input-output observations while minimizing errors as much as possible.

Unsupervised learning algorithms use unlabeled datasets to train the model. The point of

unsupervised learning is to derive structure from unlabeled data by investigating the similarity

between pairs of objects and is usually associated with density estimation or data clustering

[19]. A possible machine learning method can minimize the mean squared error (MSE) on the

training set X:

𝑀𝑆𝐸 =
1

𝑛
∑(�̂� − 𝑦)2

𝑖

Equation 8: Mean Squared error

In this equation (Equation 8), the datasets X has n instances i (the events). �̂� is the prediction

of the model.

Fault analysis of edge router Linux system message log files with machine learning

24

A good, successful machine-learning algorithm should perform well on unseen input

samples of the same type as the training and validation datasets. Therefore, the algorithm’s

performance should be evaluated on its ability to minimize the training error and its ability to

reduce the difference between the training error and validation error.

3.2 Decision Trees

Decision Tree Learning is a non-parametric supervised learning method. It can be used for

both classification and regression. The goal is to create a model that predicts the value of a

target variable by learning simple decision rules inferred from the data features. The deeper the

tree, the more complex the decision rules and fitter the model.

The Decision tree method is useful in data science because it is simple to understand and

easy to visualize. It requires little data preparation because, for example, this module does not

support missing values; other models often require data normalization or need to create dummy

variables and blank values to be removed. The cost of predicting data is logarithmic in the

number of data points used to train the tree. The Decision tree model can handle both categorical

and numerical data, unlike other models, which are usually specialized in analyzing datasets

with only one variable type. This method uses a white-box model. If a given situation is

observable in a model, the explanation for the condition is easily explained by Boolean logic.

By contrast, in a black-box model (for example, in an artificial neural network), results may be

more challenging to interpret. Decision trees perform well even if their assumptions are

somewhat violated by the correct model from which the data were generated. With this model,

it is possible to validate a model using statistical tests. That makes it possible to account for the

reliability of the model.

Unfortunately, Decision trees have some disadvantages. Decision-tree learners can create

over-complex trees that do not generalize the data well. If this happens it is called overfitting.

Mechanisms such as pruning, setting the minimum number of samples required at a leaf node,

or setting the maximum depth of the tree are necessary to avoid this problem. Decision trees

can be unstable because small variations in the data might result in a completely different tree.

This problem is reduced by using decision trees within an ensemble. Practical decision-tree

learning algorithms are based on heuristic algorithms, like the greedy algorithm, where locally

optimal decisions are made at each node. Such algorithms cannot guarantee to return the

globally optimal decision tree. It can be reduced by training multiple trees in an ensemble

learner, where the models are sample the features and samples randomly with replacement.

Fault analysis of edge router Linux system message log files with machine learning

25

Decision tree learners create biased trees if some classes dominate, therefore recommended to

balance the dataset before fitting with the decision tree. Some concepts are hard to learn because

decision trees do not express them easily, like the multiplexer problems [12].

Below we can see a short example to understand the decision trees better.

The following example shows how a decision tree learning algorithm can obtaine a decision

tree that is designed to decide whether we can joyfully play tennis or not (Figure 7).

Figure 7: A decision tree for classifying whether to play tennis or not. Each box represents a condition on an attribute whose

value takes you down to the left of right. Box at the leaves represent the final decision (the class)

3.3 XGBoost

The other model used in this research is XGBoost; it stands for eXtreme Gradient Boosting

[13].

XGBoost is an optimized distributed gradient boosting library designed to be highly

efficient, portable, and flexible. It implements machine learning algorithms under the Gradient

Boosting framework. This model provides a parallel tree boosting that solves many data science

problems quickly and accurately. The same code runs on a significant distributed environment

and can solve problems beyond billions of examples [14].

XGBoost is an algorithm that has recently been dominating applied machine learning for

structured or tabular data. It is an implementation of gradient boosted decision trees designed

for speed and performance. This model supports many interfaces, like C++, Python, R, Julia,

Wind Humidity

No Yes No Yes

Weather

https://en.wikipedia.org/wiki/Gradient_boosting
https://en.wikipedia.org/wiki/Gradient_boosting

Fault analysis of edge router Linux system message log files with machine learning

26

Command Line Interface, and Java. The implementation of the model supports the features of

the scikit-learn (Python) and R , with new additions like regularization. The model support three

types of gradient boosting. The first is the Gradient Boosting algorithm; it is also called the

Gradient Boosting machine, including the learning rate. The second is the Stochastic Gradient

Boosting with sub-sampling at the row, column, and column per split levels. The third, and the

last one, is the Regularized Gradient Boosting with both Lasso Regression and Ridge

Regression regularization. The XGBoost library provides a system for use in a range of

computing environments, for example, the parallelization of tree construction using all of your

CPU cores during training. Distributed computing is useful for training huge models utilizing

a cluster of machines. Out-of-core computing helps for enormous datasets that do not fit into

memory. Cache optimization of data structures and algorithm to make the best use of hardware.

The implementation of the XGBoost algorithm was engineered for the efficiency of memory

resources and compute time. A design goal was to make the best use of available resources to

train the model. The figure below (Figure 8) shows that XGBoost was usually faster than the

other benchmarked implementations from R, Python Spark, and H2O.[13].

Figure 8: Benchmark Performance of XGBoost 2 and other programing laguages

Representing input data using sparsity in this way has implications on how to calculate the

splits. The XGBoost model’s default method of handling missing data when learning decision

tree splits is to find the best ‘missing direction’ in addition to the standard threshold decision

rule for numerical values. The one-hot encoded categorical variable where the zeros are

2 Source: http://datascience.la/benchmarking-random-forest-implementations/ (2020. September)

http://datascience.la/benchmarking-random-forest-implementations/

Fault analysis of edge router Linux system message log files with machine learning

27

encoded as missing values is equivalent to testing one versus all splits for each category. To

select the missing direction is the direction that maximizes the gain from equality. When

enumerating through all possible split values, we can also test the effect on our gain function

of sending all missing examples down the left or right branch and select the best option. This

step makes split selection slightly more complicated, since we do not know the gradient

statistics of the missing values for any given feature we are working on, although we do know

the sum of all the gradient statistics for the current node [15]. The XGBoost algorithm can

handle this by performing two reads over the input data, and the second reverse. For the first

left-to-right scan, the left path gradient statistic is the scan value maintained by the scan, the

corresponding direction gradient statistic for this node is the total gradient statistic minus the

scan values. Therefore, the correct direction implicitly contains all the missing values. When

scanning from right to left, the reverse direction is correct and the left direction contains all

missing values. The algorithm then selects the best split from the forward or reverse scan [15].

3.3.1 XGBoost Trees for Regression

In Figure 9, we can see how effective a drug is depending on the dosage. The second and

the third observations are relatively large positive values for Drug Effectiveness, which means

that the drug was helpful. The first and the fourth are relatively large negative values, so that

means the drug did more harm than good. The red line is the initial prediction.

Figure 9: XGBoost Regression example. This figure shows the relation between the drug dosage and the drug effectiveness

The first step in fitting XGBoost to the training data is to create an initial prediction. This

value can be anything, but by default, it is 0.5, regardless of whether you are using the model

2
3

1

4

-15

-10

-5

0

5

10

0 20 40

D
ru

g
 E

ff
ec

ti
v
en

es
s

Drug Dosage (mg)

Drug Effectiveness

Fault analysis of edge router Linux system message log files with machine learning

28

for Regression or Classification. The predictions, 0.5, corresponds to this thick, red, horizontal

line, and the residuals, the differences between the observed and predicted values, show us how

good the initial prediction is. After the XGBoost fits a unique regression tree to the residuals.

There are many ways to build trees like this; below the most common way was presented to

build them for regression.

Figure 10: XGboost Regression example. The figure shows the splits based on the drug dosage

Each tree starts as a single leaf. All of the residuals go to the leaf after calculating a quality

score or similarity score for these points, where the lambda is a regularization parameter

(Equation 9).

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 =
(∑ 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠)2

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 + 𝜆

Equation 9: Similarity Score for Regression

[16] so, in this case, if the lambda is zero, which is the default number, then the similarity

score is:

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 =
(−10.5 + 6.5 + 7.5 − 7.5)2

4 + 0
= 4

The question is whether we can do a better job clustering similar residuals if we split them

into two groups. Therefore first focus on the two observations with the lowest dosages. Their

average dosage is 15, so we split the points into two groups, based on whether or not the dosage

less than 15. The first point on the far left is the only one that is smaller, so its residual goes to

the leaf on the left, the others go to the leaf on the right. Now the model calculates the similarity

score again for the left and the right as well, which are:

Fault analysis of edge router Linux system message log files with machine learning

29

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 𝑜𝑛 𝑙𝑒𝑓𝑡 =
−10.52

1 + 0
= 110.25

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 𝑜𝑛 𝑟𝑖𝑔ℎ𝑡 =
(6.5 + 7.5 − 7.5)2

3 + 0
= 14.08

We can see that when the residuals in a node are very different, they cancel each other out,

and the similarity score is relatively small (4). In contrast, when the points are similar, or there

is just one of them, they do not cancel out, and the similarity score is relatively large (110.25).

After the model needs to quantify how much better the leaves cluster similar residuals than the

root by calculating the gain of splitting the residuals into two groups (Equation 10).

𝐺𝑎𝑖𝑛 = 𝐿𝑒𝑓𝑡𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 + 𝑅𝑖𝑔ℎ𝑡𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 − 𝑅𝑜𝑜𝑡𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦

Equation 10: Gain score for regression

[17] In this case is the Gain is 110.25 + 14.08 – 4 = 120.33. After the threshold’s gain

calculation, XGBoost can compare it to the gain calculated for the other thresholds. Therefore,

it shifts the threshold over so that it is the average of the next to observations and builds a simple

tree that divides the observations using the new threshold, dosage less than 22.5. Calculate the

similarity score for the leaves and calculate the gain again. This gain is 4. Since this gain is less

than the gain for dosage less than 15 (120.33), therefore, dosage < 15 is better at splitting the

residuals into clusters of similar values. So again, it shifts the threshold over so that it is the

average of the last two observations and builds again a simple tree that divides the observations

using the new threshold, dosage less than 30, and calculates the similarity scores and the gain.

At this time, the gain is 56.33, which is smaller than 120.33. Since the model cannot shift the

threshold over any further to the right, it is done comparing different thresholds, using the

threshold that gave the largest gain for the first branch in the tree. Since there is only one point

in the leaf on the left, it cannot split it any further. Therefore, it can split the 3 points in the leaf

on the right, and do the process from the beginning, calculate the average for the new first two

residuals, and try the thresholds by calculate the similarity scores and the gains, and select the

highest gain threshold, this time the gain is 140.17. As we can see on the chart, the tree depth

of the levels has limit, and this means the model does not split the 6.5, 7.5 leaves any further,

and it is done building this tree, but the default is to allow up to 6 levels. XGBoost prunes this

tree based on its gain values. It starts by picking a number, for example, 130. XGBoost calls

this number 𝛾 (𝑔𝑎𝑚𝑚𝑎). Than it starts to calculate the difference between the gain associated

with the lowest branch in the tree and the value for gamma. If the difference between the gain

Fault analysis of edge router Linux system message log files with machine learning

30

and gamma is negative, it will remove the branch, but if it is positive, we will not. In this case,

140.17 – 130 = 10.17 is a positive number so that the branch will stay, and the model is done

pruning. We can see the gain for the root is 120.33, and it is less than 130, the value for gamma

so that the difference will be negative. However, because the model did not remove the first

branch, it will not remove the root. In contrast, if we set 𝛾 = 150, than it would remove the

branch, therefore, it will remove the root too, and all it would be left with is the original

prediction, which is extreme pruning.

If we set the regularization parameter, 𝜆 (𝑙𝑎𝑚𝑏𝑑𝑎) 𝑡𝑜 1, which means it is intended to

reduce the prediction’s sensitivity to individual observations, then the new similarity score for

the root is 3.2, which is
8

10
𝑠 of what we got when 𝜆 = 0. When it calculates the similarity score

for the leaf on the left, it gets 55.12, which is half of before. We can see is that when 𝜆 > 0, the

similarity scores are smaller, and the amount of decrease is inversely proportional to the number

of residuals in the node. In other words, the leaf on the left had only 1 point, and it had the

largest decrease in similarity score, 50%; in contrast, the root had all 4 points and the smallest

decrease, 20%. Therefore the gain values will be smaller, so if we use the same

𝛾 (𝑔𝑎𝑚𝑚𝑎) values (130), we will prune the whole tree away. When the 𝜆 > 0, it is easier to

prune leaves because the values for gain are smaller. Setting the 𝛾 = 0, does not turn off pruning

because the gain can be a negative number, and negative – 0 = negative so that the model will

remove the branch. On the other hand, by setting 𝜆 = 1, 𝜆 prevented overfitting the training

data. Now the model will calculate the output values for the leaves (Equation 11); it is like the

similarity score, except it does not square the sum of the residuals.

𝑂𝑢𝑡𝑝𝑢𝑡 𝑉𝑎𝑙𝑢𝑒 =
∑ 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 + 𝜆

Equation 11: Output Value for Regression

[16] So the output value to the leaf on the left is
−10.5

1+ 𝜆
, if the 𝜆 = 0, the value is -10.5; if it is

1, then -5.25. In other words, when 𝜆 > 0, it will reduce the amount that this individual

observation adds to the overall prediction and reduce the prediction’s sensitivity to this

individual observation. When 𝜆 = 0, then the output value for a leaf is simply the average of

the residuals in that leaf. After the calculation of the output values, the model can create new

predictions. Like an unextreme gradient boost, XGBoost creates new predictions by starting

with the initial prediction and adding the output of the tree scaled by a learning rate. XGBoost

calls the learning rate, 𝜀 (𝑒𝑡𝑎), and the default value is 0.3 (Equation 12).

Fault analysis of edge router Linux system message log files with machine learning

31

𝑁𝑒𝑤 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 + (𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 ∗ 𝑂𝑢𝑡𝑝𝑢𝑡 𝑣𝑎𝑙𝑢𝑒)

Equation 12: How the regression’s predictions work

[17] Therefore the new predicted value for the first observation, with 10 dosages, is the

original prediction, 0.5 + (0.3 * -10.5) = -2.65. For the second residual the new predicted values

is 0.5 + (0.3 * 7) = 2.6, and so on. It builds another tree based on the new residuals and creates

new predictions that give even smaller residuals, and it keeps building trees until the residuals

are super small or it has reached the maximum number.

In summary, when building XGBoost Trees for Regression, the model calculates the

similarity scores and the gain to determine how to split the data, and it prunes the tree by

calculating the differences between gain values and a user-defined tree complexity parameter,

𝛾 (𝑔𝑎𝑚𝑚𝑎) (Equation 13).

𝐺𝑎𝑖𝑛 − 𝛾 = {
> 0, 𝑡ℎ𝑎𝑛 𝑑𝑜 𝑛𝑜𝑡 𝑝𝑟𝑢𝑛𝑒
< 0, 𝑡ℎ𝑎𝑛 𝑖𝑡 𝑤𝑖𝑙𝑙 𝑝𝑟𝑢𝑛𝑒

Equation 13: Pruning for Regression

If the model prunes, it will subtract 𝛾 from the next gain value and work the way up the tree.

Then it calculates the output values for the remaining leaves. When

𝜆 (𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟) > 0, it results in more pruning by shrinking the similarity

scores, and it results in smaller output values for the leaves.

3.3.2 XGBoost Trees for Classification

To present this, almost the same training set was used as before. The second and the third

observation were effective, and the first and fourth was not. As we can see above, the first step

in fitting XGBoost to the training data is always to create an initial prediction. As it was

mentioned, this prediction can be anything, for example, the probability of observing an

effective dosage in the training data, but by default, it is 0.5 (Figure 11).

Fault analysis of edge router Linux system message log files with machine learning

32

Figure 11: XGBoost Classification example. This figure shows the relation between the drug dosage and the probability that

the drug is effective

Since the second and the third green dots represent effective dosages, the probability that the

drug is effective is one. The others represent ineffective dosages, so the probability for them is

zero. The residuals, the differences between the observed and predicted values, show us how

good the initial prediction is. As it was explained above, a unique tree was fitted to the residuals;

the XGBoost model for classification has a new formula for the similarity scores (Equation 14).

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒𝑠 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

=
(∑ 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑖)

2

∑[𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖 ∗ (1 − 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖)] + 𝜆

Equation 14: Similarity Scores for Classification

The numerator for classification is the same as the numerator for regression. As with

regression, the denominator contains 𝜆 (𝑙𝑎𝑚𝑏𝑑𝑎), the regularization parameter; however, the

rest of the denominator is different. The sum for each observation of the predicted probability

times one minus the previously predicted probability.

0

0.5

1

0 10 20

P
ro

b
ab

il
it

y
 t
h
at

 t
h
e

d
ru

g
 i

s
ef

fe
ct

iv
e

Drug Dosage (mg)

Drug Effectiveness

Fault analysis of edge router Linux system message log files with machine learning

33

Figure 12: XGBoost Classification example. The figure shows the splits based on the drug dosage

Although this formula is different from what XGBoost uses for regression, it is very closely

related, and I will show this later. As for the regression, each tree starts as a single leaf, and all

of the residuals go to the leaf (Figure 12). The model calculates the similarity score. This time

means it is zero because the nominator will be 0:

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 =
(−0.5 + 0.5 + 0.5 − 0.5)2

∑[𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖 ∗ (1 − 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖)] + 𝜆
= 0

So again, it needs to decide if it can do a better job clustering similar residuals if it split them

into two groups. For example, I will start with the threshold, where the dosage is less than 15

(this number is the average value between the last two observations). The similarity score for

the leaf on the left is
(−0.5)2

0.5∗(1−0.5)+𝜆
= 1, 𝑤ℎ𝑒𝑛 𝜆 = 0. For the right, it

is
(−0.5+0.5+0.5)2

(0.5∗(1−0.5))+(0.5∗(1−0.5))+(0.5∗(1−0.5))+𝜆
= 0.33, 𝑤ℎ𝑒𝑛 𝜆 = 0. Now it can calculate the gain,

just as it did when I used XGBoost for regression. Therefore, when it split the observations

based on the threshold dosage < 15, the gain is 0.33 + 1 – 0 = 1.33, and because no other

threshold gives a larger gain value, this will be the first branch in the tree. The model will split

the rest of the residuals into two leaves and start again from the beginning. As we can see above,

the model stopped growing this tree because the number of levels has limit, and this number is

two; however, XGBoost also has a threshold for the minimum number of residuals in each leaf.

This number is determined by calculating cover. The cover is defined as the denominator of the

similarity score minus 𝜆. In other words, during classification, the cover is equal to (Equation

15):

Fault analysis of edge router Linux system message log files with machine learning

34

𝐶𝑜𝑣𝑒𝑟 = ∑[𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖 ∗ (1 − 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖)]

Equation 15: Cover for Classification

In contrast, during the regression, the cover is equal to the number of residuals. By default,

the minimum value for cover is one. When we use XGBoost for regression and use the default

minimum value for cover, the cover does not affect how the tree grows because we can have as

few as one residual per leaf. In contrast, classification is more complicated because cover

depends on the previously predicted probability of each residual in a leaf. For example, the

cover value for the -0.5 leaf is 0.5 * (1 – 0.5) = 0.25, and since the default value for the minimum

cover is one, the model would not allow this leaf. Likewise, the cover for the 0.5, 0.5 leaf is 0.5

* (1 – 0.5) + 0.5 * (1-0.5) = 0.5, so by default the model would not allow this leaf either, and

so on. XGBoost requires trees to be larger than just the root, so we have to set the cover value

to zero. That means in the Python setting the min_child_weight parameter equal to zero. The

trees are pruned in the same way as in the first case; lambda and gamma work the same way.

For classification, the output value for a leaf is (Equation 16):

𝑂𝑢𝑡𝑝𝑢𝑡 𝑉𝑎𝑙𝑢𝑒 =
(∑ 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑖)

∑[𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖 ∗ (1 − 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖)] + 𝜆

Equation 16: Output Value for Classification

However, just like with an unextreme gradient boost for classification, the model needs to

convert the initial probability to the value of the logarithm of the odds (Equation 17).

𝑜𝑑𝑑𝑠 =
𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

1 − 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
→ log(𝑜𝑑𝑑𝑠) = log (

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

1 − 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
)

Equation 17: Odds for Classification

In this case, when the initial prediction is 0.5, log (
0.5

1−0.5
) = 0. As mentioned before, like

gradient boost for classification, we add the log(odds) of the initial prediction to the output of

the tree, scaled by a learning rate, 𝜀 (𝑒𝑡𝑎). The default value is 0.3, so same in regression.

Therefore, the new predicted value for the first observation with two dosage is 0 + (0.3 * -2) =

-0.6. To convert a log(odds) value into a probability, the model plugs into the logistic function,

which is (Equation 18):

Fault analysis of edge router Linux system message log files with machine learning

35

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑒log (𝑜𝑑𝑑𝑠)

1 + 𝑒log (𝑜𝑑𝑑𝑠)

Equation 18: Probability for Classification

In this case, the new predicted probability is
𝑒−0.6

1+𝑒−0.6
= 0.35, for the second point, the new

value is 0.65. After this, the model will calculate the whole process to the next leaves and build

a new tree with the new residuals. After the first tree, when the model builds the tree, calculating

the similarity scores is more interesting because the previous probabilities are no longer the

same for all observations. The model will keep building trees until the residuals are very small

or reached the maximum number of trees.

In summary, when we use XGBoost for classification, it calculates similarity scores and

gains to determine how to split the data. It prunes the tree by calculating the difference between

gain values and a user-defined gamma parameter like with the regression. Then it calculates the

output values for the leaves. We have to be aware that the minimum number of residuals in a

leaf is related to a metric called “cover”, which is the denominator of the similarity score minus

lambda.

Fault analysis of edge router Linux system message log files with machine learning

36

3.4 Deep learning

After the decision tree, and XGBoost models, in this chapter, neural networks is written

because neural networks were used during the thesis.

3.4.1 Artificial Neural network

A neural network is a network of simple components and hierarchically organized parallel

structures that deal with the realities of the world in the same way as the biological nervous

system. An artificial neural network is an information processing system composed of the

structure and function of the physiological human brain neural network and some theoretical

abstraction, simplification, and simulation of several basic characteristics. The goal of artificial

neural networks is not to model the human brain. Artificial neural network research is

fundamentally based on and driven by mathematical and engineering disciplines rather than

biological brain function.

Figure 13: Layers of the Artificial Neural Network3. The first layer is the input layer, the last is the output layer, between

them are the hidden layers. Every layer could have more nodes on it.

The structural model of a neuron can be represented as a node. Each input weight can be

adjusted during the learning process. Multiple such points are connected into a directed graph

3 Source: https://www.researchgate.net/figure/Artificial-neural-network-architecture-ANN-i-h-1-h-2-h-n-o_fig1_321259051

(2020. September)

https://www.researchgate.net/figure/Artificial-neural-network-architecture-ANN-i-h-1-h-2-h-n-o_fig1_321259051

Fault analysis of edge router Linux system message log files with machine learning

37

to form an adaptive neural network. The information processing of artificial neurons can be

divided into three parts. In the first part, the inner product of the input signal and the strength

of the neuron connection is completed, and then the result is passed through the activation

function and then judged on the basis of the threshold function [34]. If it is higher than the

threshold, the nerve is activated; otherwise they will be suppressed. In this way, artificial

neurons are very similar to biological neurons. In general, the neural network model is

determined by three factors: network topology, neuronal characteristics, and learning or training

rules. The topology of neural networks can be divided into hierarchical network models and

interconnected network models (Figure 13). The former divides neurons into several layers,

and the layers are connected one after the other. The layer input is only associated with the layer

output. The latter allows any two neurons to be connected. Some networks are a mixture of the

two.

The default choice for an activation function in artificial neural networks is the max function

(Equation 19):

𝑔(𝑧) = 𝑚𝑎𝑥{0, 𝑧}.

Equation 19: The Neural networks’ max funcion

A unit that employs this function is called a rectified linear unit or, in shorter version ReLU.

ReLUs are quickly optimized since the derivative is either zero or a positive constant value

through the domain. Therefore, the gradient direction is far more useful for learning than it

would be with activation functions with non-vanishing and higher-order derivatives.

Unfortunately, ReLU has some drawbacks; one of them is that they cannot learn via gradient-

based methods on examples for which the activation is zero.

The other activation function is the sigmoid, and this function is used to represent a

probability distribution over a binary variable. It defines as (Equation 20):

𝜎(𝑧) =
1

1 + 𝑒−𝑧

Equation 20: The Neural networks’ sigmoid function

The softmax function of “z”, is a generalization of the sigmoid function representing a

probability distribution over a discrete variable with n possible values. Softmax functions are

often used as the output units of a classifier [20].

Fault analysis of edge router Linux system message log files with machine learning

38

Figure 14: Single Perceptron4. After the multiplication and summarization the last step is the unit function.

Perceptron is an essential element in a neural network. We can see the figure above about a

single perceptron (Figure 14).

A perceptron is taking in the different inputs, processes them, and then generates an output.

Inputs have different weights because some inputs have more importance than others do. I

would like to write an example for representing how it works. It is a simple question: Should I

go out to grill chicken wings in the park? I have more inputs, which decides this question,“𝑥1”

(Is the weather good? 1: means yes, 0: means no), and“𝑥2” (Is it a weekend? 1: yes, 0: no),“𝑥3”

(Is there a crowd in the park? 0: yes, 1: no), and“𝑥4” (Do I have chicken wings? 1: yes, 0: no).

There are four weights for these; their value is 1 for “𝑤1”, 2 for “𝑤2”, 1 for “𝑤3” and 2 for

“𝑤4”. When the weather is excellent, it is Saturday, nobody is in the park, and I have wings;

the equation would be (Equation 21):

∑(𝑥𝑖 ∗ 𝑤𝑖) = 𝑥1 ∗ 𝑤1 + 𝑥2 ∗ 𝑤2 + 𝑥3 ∗ 𝑤3 + 𝑥4 ∗ 𝑤4

4

𝑖=1

Equation 21: Simple equation for Neural networks

4 Source: https://towardsdatascience.com/introduction-to-artificial-neural-networks-ann-1aea15775ef9 (2020. October)

https://towardsdatascience.com/introduction-to-artificial-neural-networks-ann-1aea15775ef9

Fault analysis of edge router Linux system message log files with machine learning

39

In this case, 1 + 2 + 1 + 2 = 6, so I will go to the park to grill. We need to define the

threshold. In this example, if the limit is six, that means, if the total is less than six, then we will

not go to the park, but if it is equal or greater than six, then we will. I gave the “𝑥2”, “𝑥4” a

higher weight, because on the weekdays I usually go to work, and if I do not have wings then I

cannot grill, so “𝑥2”, “𝑥4” are more important than “𝑥1”, “𝑥3”. The output was binary as well.

A single perceptron cannot be used for tasks that are more complex because if the job is to

recognize digits from a picture, the output could only have two values so that it would not work.

A neuron is similar to a perceptron, but instead of zero or one for input, it can take fraction

values as valid input. The threshold was defined before, and it looked like this (Equation 22).

𝑜𝑢𝑡𝑝𝑢𝑡 = {1 𝑖𝑓 ∑ 𝑤𝑖∗𝑥𝑖 𝑖 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0 𝑖𝑓 ∑ 𝑤𝑖 ∗𝑥𝑖 𝑖 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

Equation 22: The Neural networks output equation

Now I will move the threshold to the other side of the inequality. We can use a threshold on

the other side too, but because of bias = - threshold, the inequality will be this, but in reality,

the outcomes of neural networks are not so discrete but continuous (Equation 23):

𝑜𝑢𝑡𝑝𝑢𝑡 = {1 𝑖𝑓 ∑ 𝑤𝑖∗𝑥𝑖 𝑖 + 𝑏𝑖𝑎𝑠 ≥ 0
0 𝑖𝑓 ∑ 𝑤𝑖∗𝑥𝑖 𝑖 + 𝑏𝑖𝑎𝑠 <0

Equation 23: The Neural network output equation with bias

Usually, in the real world, the problems are more complex, so we cannot solve them with

only one perceptron. Typically, we create a complex neural network with more layers [21].

Learning in artificial neural networks is closely related to how humans learn in our regular

lives; we perform an action, and we are either accepted or corrected by a coach to understand

how to get better at a specific task. Neural networks require a leader in order to describe what

should have been produced as a response to the input. Based on the difference between the

actual value and the predicted value, an error value, also called the “cost function”, is computed

and sent back through the system. Cost Function is a value, one-half of the squared difference

between actual and output value. For each layer of the network, the cost function is analyzed

and used to adjust the threshold and weights for the following input. The network aims to

minimize this cost. The lower the cost function, the closer the actual value to the predicted

value. In this way, the error keeps becoming marginally lesser in each run as the network learns

how to analyze values. The system feeds the resulting data back through the entire neural

Fault analysis of edge router Linux system message log files with machine learning

40

network. The weighted synapses connecting input variables to the neuron are the only thing we

can control. As long as there exists a disparity between the actual value and the predicted value,

the system needs to adjust those weights. We have to repeat this process until we scrub the cost

function down to as small as possible [21].

Fault analysis of edge router Linux system message log files with machine learning

41

4 Data description and preparation

In this section, information about the data, the preparation and processing was written.

4.1 Data

Only the system log files were used in the analysis. There were 837 files on 128 individual

cards, which number was increased later to 3203 different sliced log files thanks to a slicing

method, which is explained in the “Data preparation” section.

Figure 15: The card’s label distribution. Some of the labels are raleted to the memory, some of them are power or sensor

related

The Syslogs were of various lengths; the shortest had two lines, which means only 77 bytes,

and the longest system log file had almost 14.000.000 lines, which means more than 2

gigabytes. Due to the imbalance in the lengths of the files, later it was important to pay attention

to the method of analysis because they could lead to false results.

As we can see in the figure above (Error! Reference source not found.), there was no

balance in the dataset at the beginning of the research. The dataset contained twelve labels, the

most common label was the “DIMM” label; as shown in the figure, there were 17 cards that

received the “NTF” label, and “NTF” corresponds to “No Trouble Found”, which means the

good log files. Some labels were similar to each other and could be grouped, but each was a

unique label.

Fault analysis of edge router Linux system message log files with machine learning

42

4.2 Tokenization and card level

The system log files are not the same length; it could have two rows, but they could also

have more than 400.000 rows (Figure 16), so these files were normalized. In the beginning,

many regular expressions were used to find and replaced parts of the text. First, a single log file

was checked how it looks, for example, the date format. Some functions were written to replace

the words: a few were simple, and one of them was a harder and more complex function.

Figure 16: Before tokenization. These are some random lines from a syslog

Many words were replaced, which were useless to the analysis, for example, the files’ names,

or hexadecimal numbers, and so on. First, the underscore character replaced by the space

character because many words are written together; therefore, the task was to separate these.

The next step was to change the dates to “DATE” words, and the files’ names to “FILE” words,

and the same with the internet protocol address, “IP”.

The third step was replacing all of the numbers with the capital letter “X” (Figure 17). The

result of the cleaning part was a list, the list items are the lines, so they were split into words. A

tokenizer function was used, which gives an OrderedDict with the counted words. Therefore,

the task was to convert this to a list format. During the conversion, a function calculated the

line’s length. After this process, the function gives a number, how many words are in the

Syslogs.

Fault analysis of edge router Linux system message log files with machine learning

43

Figure 17: After tokenization. These are the same lines as in the previous figure

A table was created to store these tokens. The routers and their words and their counted

numbers were inserted in this data frame so that the tokens became the columns, the numbers

are the cell’s value, and the rows, the indexes are the routers’ names. We can see this table

below (Table 3).

Table 3: Data frame with the counted words. The rows are the syslog files, the columns are the tokens and the cell’s values

are the counted number

As we can see above in the table, some columns are in integer format (for example, the

“Token_3” column); some are in float format (for example, “Token_0”, or “Token_7”). The

reason for this difference is a function. First, if a new Syslog contains a word, which was not in

the table before, so it was not appear in the processed log files, then a new column was created,

named after the new token. The cells’ value turns into Not-a-Number (NaN) value, where the

token did not appear. Secondly, if a new Syslog does not contain an existing token, the cell’s

value is automatically set to NaN. Therefore, a function convert these cells to zero, and during

Fault analysis of edge router Linux system message log files with machine learning

44

this process, the column automatically converts to a float format. One of the last steps inside

this phase is adding a new column, which is the target column, the routers’ error types.

The second and third phase was creating the Term-Frequency table and calculate the Inverse

Document Frequency weight. A function was written, which divides the value of all columns

in a row by the sum of all the tokens in that row, so the total length of the router. With this step,

The table was normalized; it is crucial because, as it was mentioned above, the Syslogs are

different lengths. After this process, the value of the cell could come only from zero to one.

Zero means the word does not appear in the router; one means only the given token is included

in the text.

As we saw in section 2.2, the Inverse Document Frequency weight is a measure of how much

information the word provides, that is, whether it is common or rare across all the routers. The

logarithmically scaled inverse fraction of the documents containing the token is obtained by

dividing the total number of documents by the number of documents containing the term and

then taking the logarithm of that quotient. Therefore, to calculate this, another function was

written, which first counts the occurrence of each token in the routers, and it calculates the value

based on this part. So the result of the data preparation is ready (Table 4). As we can see in this

table, the “Token_3” column contains only zero value because this token (numbers) appears in

every single Syslog file, so it is no longer important.

Table 4: The final table at the cards level. The rows are the syslog files, the columns are the tokens and the cell’s values are

the counted number after the TF-IDF normalization

4.3 Data preparation at the sequence level

There may be more than one error in a log file or none at all, yet it has been classified under

some sort of label. Therefore, for better analysis, a new method was called that sliced each

Fault analysis of edge router Linux system message log files with machine learning

45

Syslog into different sequences (Figure 18). The point was to separate the System log files from

boot to boot and treat them as separate log sequences.

Figure 18: The slicing method

In the figure above, we can see the function for log slicing. Because of the function, the

number of data has multiplied from 128 to 3203 and made each card much transparent and more

analyzable, as the maintenance do not have to look through hundreds of thousands of rows, but

just find the sequence and look through it.

In Figure 19, we can see how the proportion and number of labels changed after slicing.

Figure 19: Labels after slicing

Fault analysis of edge router Linux system message log files with machine learning

46

In Table 5, we can see the final table at the sequences level. After tokenization, this table

was converted using the same procedure as the table at the cards level.

Table 5: The final table after tokenization at sequences level

Slicing yielded many results; it turned out in many sequences did not contain much

information, so some log files gave a false result during the analysis. After checking several

files, it turned out, when the system is booting it had only 5000 tokens. Therefore sequences

below 5000 tokens were unusable in this analysis because they not contained any useful

information. Therefore, they were no longer used. In the Figure 20, we can see this; the black

dots, lines are the sequences without information, data with red color contain enough

Fault analysis of edge router Linux system message log files with machine learning

47

information for analyzing, and the dashed green line is the border between the “good” and “bad”

sequences.

Figure 20: Sequences’ tokens length, the black dots, lines are the sequences without information, data with red color contain

enough information for analyzing, and the dashed green line is the border between the “good” and “bad” sequences

Due to these changes, only 3010 of the original 3203 sequences remain, the distribution of

which is illustrated in the Figure 21.

Figure 21: Without the small sequences

Many sequences had incorrect labels in the dataset due to the slicing since the sequences

cannot receive the cards’ label; for example, if a card was labeled with “DIMM”, all sequences

within it were labeled “DIMM”. Therefore, the entire program and process had to be checked

and redesigned.

Fault analysis of edge router Linux system message log files with machine learning

48

In order to fix these “incorrect” labels, all the sequences were reviewed one by one and label

them with the correct labels. Once reviewed, it occurred once that it contained two types of

errors; this sequence was then treated as two separate sequences, one with the first and one with

the second label. In the Figure 22, we can see the final labels at the sequences level after the

reviews.

Figure 22: The final labels at sequences level after the reviews

We can see that the “NTF” and “DIMM” have changed the most; this is explained by the fact

that many sequences were not faulty during the check yet were labeled with the parent’s label.

The previous ones and current figures show that the cards with the “CPU” label have many

sequences, but only one or two of them were actually faulty; the others were good sequences.

A review of the log files revealed that the date changes when the cards were tested or used

elsewhere, so modeling with the date is still not feasible.

4.4 Grouping labels

During the research, these twelve labels were used, but some labels could be merged. Three

different groupings were done, and this was written in this section.

The first such grouping was “DIMM” against each of the other labels. The theoretical

background to this is that this type of error often occurs in log files and can already act as a pre-

filter during predictive maintenance; this was used in the card level and the sequence level as

well.

From the previous grouping it also follows the grouping in the program written for Raspberry

Pi, where there are three large groups, “DIMM”, “NTF”, in other words, the logs without any

error, and everything else. This grouping is essential for workers. They not only know if there

Fault analysis of edge router Linux system message log files with machine learning

49

is a “DIMM” error or some other type of error in the sequences, but also the program shortens

their work. They also know which of those sequences, which do not necessarily need to be

reviewed, because according to the models, they are good. The “DIMM” error is most common

on cards; therefore, this modeling is beneficial for the company.

There were four types of labels in the dataset that are relatively extremely rare in real life,

and because of their number of pieces, it was not worth merging, so they could be omitted in

one of the groupings. Eight types of labels were used at this time, and these were “DIMM”,

“NTF”, “CPU”, “POWER”, “SSD”, “SENSOR”, “SW”, and “ARAD”. This grouping was also

applied at both levels.

4.5 One-Hot encoding

One-Hot Encoding was used to transform the labels into integers. Most machine learning

algorithms look for a relationship between the integers (labels), and the closer they are, their

relationship is stronger. For example, the models would think that category 2 is closer to 1 than

4 because the difference between the first and the second category is 1 and between the second

and the fourth is 2, and it follows from “1 less than 2” that the second category is more closely

related to the first than to the fourth. In this case, this can lead to a false result because they are

all completely different labels, so there should not be any meaning in being more similar for

closer ones, so this is necessary for creating a better performing model. One - Hot encoding

means that there will be only one “1” in a binary vector, and the others are always “0”.

During the analysis process, the “LabelEncoder()” function from sklearn.preprocessing was

used to transform the labels to integers and the “to_categorical()” function from Keras to create

the vectors.

Fault analysis of edge router Linux system message log files with machine learning

50

5 Modeling

The next phase was modeling; looking for the perfect models, and predict labels with them.

Different models were built at both levels. In this chapter, at the end of each section, the models

are summarized and compared in tables.

5.1 Binary Classification

This chapter is about the binary models for classification; these predictions are useful in

shortening working hours for maintenance. These groups were “DIMM” and all other labels. At

the end of the chapter, the results of the models were written in a summary table.

5.1.1 Card level

The first models at the card level were binary; the target labels were either “DIMM” or

others. The dataset was split for the training set (70% of the total) and test set (30%), the data

from both labels were included in the same proportion. The next step was building the models.

Decision Tree

The first model was a decision tree. A loop increased the depth of the tree one by one. The

worst accuracy was 47.6%, with a 0.4545 area under the receiver operating characteristic curve,

which means it was worse than the “head or tail” flip coin game. The best accuracy was

62.50%, and in this case, the AUC score was 0.6144, so it wass better than before (Table 6).

T
ru

e
la

b
el

 Predicted label

 Others DIMM

Others 29 23

DIMM 25 51

Table 6: Binary Decision Tree’s confusion matrix

XGBoost

The second type of model was the XGBoost model. The model could reach 0.95 on the

receiver operating characteristic curve, as we can see in the figure below. To achieve this

optimal result, the model’s set up was the follows. The number of trees in the model was 15,

the maximum depth of a tree was 7, 0.1 was the subsample ratio of columns when constructing

each tree. This subsampling occurs once for every tree constructed. The learning rate was 0.3,

Fault analysis of edge router Linux system message log files with machine learning

51

which prevents the overfitting, and finally, the alpha parameters value was 2, which was the

Lasso regularization term on weights. Increasing this alpha value yields the model more

conservative.

Figure 23: XGBoost’s receiver operating characteristic

The values near 95% can be considered satisfying because the best value is 1.00, so this

result was close (Figure 23). This XGBoost model could reach 95.53% accuracy. In the Table

7, we can see the confusion matrix.

T
ru

e
la

b
el

 Predicted label

 Others DIMM

Others 49 3

DIMM 3 73

Table 7: Binary XGBoost’s confusion matrix

Fault analysis of edge router Linux system message log files with machine learning

52

Feedforward Neural Network

Figure 24: Feedforward Neural Network in at the card level

The following model was a feedforward neural network. The cross-validation folds was 10.

The model had three dense layers with a rectified linear unit (ReLu) activation function and the

last with a softmax function. Between the layers, it had dropout layers with 0.25 and 0.05 values,

which are prevent overfitting. We can see above (Figure 24) the summary of the structure of

the neural network.

Figure 25: Feedforward Neural Network’s accuracy

As we can see above in the figure (Figure 25), the neural network could reach 68.31%

accuracy, but the standard deviation was relatively larger. This result shows that the neural

network could predict with almost 70% accuracy what kind of error happened with a router.

The AUC score was 0.68, which was higher than the decision tree mentioned above (Figure

26).

Fault analysis of edge router Linux system message log files with machine learning

53

Figure 26: Neural network’s ROC curve

The Table 8 shows the neural network’s confusion matrix, which was better than the decision

tree.

T
ru

e
la

b
el

Predicted label

 Others DIMM

Others 35 17

DIMM 23 53

Table 8: Neural network’s confusion matrix

The Table 9 summarizes the evaluation of the models. It shows different metrics for the

binary classification.

Models Accuracy Precision Recall F1 score ROC AUC

Decision Tree 62.50 53.70 55.77 54.71 61.44

XGBoost 95.53 94.23 95.43 95.66 95.14

Neural Network 68.75 60.34 67.31 63.63 68.52

Table 9: The binary classification results at cards level

As we can see, the best model at this level was the XGBoost; this model performed much

better than the other two.

Fault analysis of edge router Linux system message log files with machine learning

54

5.1.2 Sequence level

After the card level, the binary classification was performed one level deeper at the sequence

level for better analysis. At the end of the chapter, the results of the models were described in

a summary table.

XGBoost

First model was an XGBoost because this model had the best performance at the card level.

The structure of the model was similar to the same model at the higher level; however, it was

able to achieve a little bit worse results. The number of trees was 75, the maximum depth of a

tree was 6, the subsample was 0.2, the learning rate was 0.2, and finally, the alpha regularization

parameter was 1. As we can see in the Figure 27 below, the model could achieve a 0.92 score,

which is a good result but smaller than the cards level.

Figure 27: Binary XGBoost model at sequences level

In the Table 10, we can see the confusion matrix for the test set.

Fault analysis of edge router Linux system message log files with machine learning

55

T
ru

e
la

b
el

Predicted label

 Others DIMM

Others 415 35

DIMM 40 362

Table 10: Binary XGBoost confusion matrix at sequences level

The values near 92% can be considered more than satisfying, and we could predict this from

the confusion matrix, because (415 + 362) / (415 + 35 + 40 + 362) = 0.911972.

Feedforward Neural Network

The next model was a feedforward neural network. The best model had six dense layers and

three dropout layers; each dropout had 0.1 values. We can see below the accuracy and the loss

of the model and the results per fold (Figure 28).

Figure 28: Binary Neural Network at sequences level

The model had 81.34% accuracy, which is much better than the model at the cards level; the

best fold was 84.77%, while the worst was 77.22% (Figure 29).

Fault analysis of edge router Linux system message log files with machine learning

56

Figure 29: Binary feedforward neural network

In the Table 11, we can see the neural network’s confusion matrix at this level.

T
ru

e
la

b
el

Predicted label

 Others DIMM

Others 324 78

DIMM 81 369

Table 11: Binary Neural Network confusion matrix at sequences level

As we can see (Table 12), the best model was again the XGBoost, but at this level, the neural

network performed better than before.

Models Accuracy Precision Recall F1 score ROC AUC

XGBoost 91.20 91.18 90.01 90.06 91.14

Neural Network 81.34 80.00 80.60 80.30 81.30

Table 12: The binary classification results at sequences level

5.2 Modeling with three types of labels

In this part, the modeling was done with three labels, “DIMM”, “NTF”, “Others”. This

grouping helping to shorten the maintenance work hours by many minutes. First model was

again an XGBoost, then feedforward neural networks with different parameters..

Fault analysis of edge router Linux system message log files with machine learning

57

XGBoost

The best of these models had 91.92% accuracy, and it had 80 estimators in it; the maximum

depth of a tree was 4, the subsample ratio was 0.4. It had a 0.5 learning rate, which prevents

overfitting, the alpha value was 2, and the minimum child weight was 5. The values near 92%

can be considered more than satisfying.

In the Table 13, we can see the confusion matrix of the model. The model made the most

error with the “DIMM” label; it mainly was predicted as “NTF”, which refers to a good log file.

 NTF DIMM OTHERS

NTF 407 12 3

DIMM 37 202 3

OTHERS 14 4 221

Table 13: The last XGBoost’s confusion matrix

Neural Network

In the following, Feed-Forward Neural Networks and some Recurrent Neural Networks

(RNN) were built. Unfortunately, the RNNs did not produce significant results and trained

much more slowly than the others train.

The models were built different epoch (1000, 2000), batch (200, 250), and neurons on each

layer. The last layer was always a simple dense layer with softmax activation, and all the models

had the adam optimizer. On average, one model trained for more than 24590 seconds, which is

about seven hours. The test hardware had 64 Central Processing Units with Intel Xeon

Processor; the CPU’s speed was 2924.608 MHz.

The first Feed-Forward Neural Network had five layers. The figure below (Figure 30) shows

the layers and the neurons on them.

Fault analysis of edge router Linux system message log files with machine learning

58

Figure 30: Neural Network’s summary

In this model, the number of epochs was 1000, and the batch size was 200. As we can see in

the Figure 31, the average accuracy of neural networks was 85.51%, with a variance of 1.46.

This was a very good result compared to the relatively small amount of data.

Fault analysis of edge router Linux system message log files with machine learning

59

Figure 31: First Feed-Forward Neural Network with three labels

For calculating the Loss score, the categorical_crossentropy from Keras was used, and as

we can see above, the average loss score was 0.6272, which means the network took the right

decisions, but it was not perfectly confident about the results.

The Table 14 shows the neural networks confusion matrix.

 DIMM NTF OTHERS

DIMM 198 29 15

NTF 56 356 10

OTHERS 20 2 217

Table 14: Neural Network Confusion matrix

In the next model, the epochs number was again to 1000, and the batch size was 250. The

model had six layers (Figure 32).

Fault analysis of edge router Linux system message log files with machine learning

60

Figure 32: Neural Network’s summary

As we can see (Figure 33), the accuracy was almost the same as before, just a little bit less,

and it had a larger variation with few decimal points.

Figure 33: Second Feed-Forward Neural Network with three labels

Fault analysis of edge router Linux system message log files with machine learning

61

The confusion matrix was the following (Table 15).

 DIMM NTF OTHERS

DIMM 208 27 7

NTF 25 356 41

OTHERS 3 30 206

Table 15: Neural Network confusion matrix

In the next model, the parameters were the following, epoch size was 2000, the batch size

was a little bit less than before, and it was 200; it had seven layers in it (Figure 34).

Figure 34: Neural Network’s summary

This model could reach almost 89% accuracy, which can be considered satisfying. In the

Figure 35, we can see the folds accuracies and their loss scores. As we can see, the lowest

accuracy was almost 86%, and the highest was more than 91%.

Fault analysis of edge router Linux system message log files with machine learning

62

Figure 35: Third Feed-Forward Neural Network

In the Table 16, we can see the neural networks confusion matrix; again, the model could

predict “NTF” most accurately than in the case of XGBoost, but not as well as the other model.

 DIMM NTF OTHERS

DIMM 180 43 19

NTF 13 399 10

OTHERS 8 13 218

Table 16: Neural Networks confusion matrix

The Table 17 summarizes the evaluation of the models. As we can see, the best model was

the XGBoost, but neural networks also gave good results with different confusion matrices.

Models Accuracy Precision Recall F1 score ROC AUC

XGBoost 91.92 91.44 91.36 91.29 94.74

First ANN 85.38 86.09 85.38 85.58 83.29

Second ANN 85.27 85.37 85.27 85.29 84.92

Third ANN 88.26 88.34 88.26 88.05 89.12

Table 17: Summary table for three types of labels

Fault analysis of edge router Linux system message log files with machine learning

63

5.3 Modeling with eight labels

5.3.1 Sequence level

The following grouping was with eight labels because there were four types of labels in the

dataset that are relatively very rare in real life. These models can be a pre-filter for a log files

analysis. The whole process was started from the beginning; first, decision trees, random

forests, and XGBoost were built. After these models were combined into a big, robust model.

Decision Tree

The first models were decision trees. Of the thousands of decision trees, the best model had

71.15% accuracy, the maximum depth of the tree was 14, and 3 samples were the minimum

number required to split an internal node, the minimum number of samples required to be at a

leaf node was the default. The decision trees were different in depth, minimum samples in a

split, and minimum samples in a leaf.

Random Forest

The following models were random forests. More than five hundred models were built, and

the average accuracy of the models was 71.29% with 2.05 variance. These models were

different in the number of the trees in the forest, depth, minimum samples in a split, and in a

leaf node.

The number of trees in the best random forest was 185, and the maximum depth was 12; it

had the same number of samples per split and per leaf nodes as the previous different model.

No weight was added to the model. The best had 73.34% accuracy, so the random forest model

was a little bit better than the decision tree.

XGBoost

The last non-combined model was the XGBoost. The best model had 154 estimators, the

maximum depth of a tree was 9, the subsample was 0.5, which means that XGBoost would

randomly sample half of the training data before growing trees, which helps prevent overfitting.

It had a 0.8 learning rate, the alpha parameter was 0.7, and the gamma, which set the minimum

loss reduction required to create a further partition on a leaf node of the tree, was 0.4. A larger

gamma parameter gives a more conservative algorithm. This model had 72.52% accuracy, so it

Fault analysis of edge router Linux system message log files with machine learning

64

is better than the best decision tree but worse than the random forest. The Figure 36 shows the

classification error and the log loss of XGBoost.

Figure 36: XGBoost log loss and Classification error charts

Combined models

As we can see in the results table, all models had an average accuracy of 72.25%; therefore,

these models were combined. A dataframe was created, where the columns were the predictions

of the best models from the decision tree, random forest, and XGBoost, and two more columns

were created with the two combined models.

The Table 18 shows an example from the dataframe with these individuals and combined

models.

Card Sequence

D
ec

is
io

n

T
re

e

R
a
n

d
o
m

F
o
re

st

X
G

B
o
o
st

M
a
jo

ri
ty

V
o
te

s

P
ro

b
a
b
il

it
y

V
o
te

s

Card_name Seq_0 DIMM DIMM NTF DIMM NTF

Seq_1 DIMM DIMM DIMM DIMM DIMM

Seq_2 CPU DIMM CPU CPU CPU

Seq_3 CPU DIMM CPU CPU CPU

Table 18: The models’ results at sequences level

First combined model – Majority voting

The first combined model was simple voting between the models. Below we can see the

Pseudocode for this majority voting (Equation 24).

Fault analysis of edge router Linux system message log files with machine learning

65

Majority Voting

 Create an empty list
 For k := 0 to the length of the list of labels do
 Choose a label that most models voted
 Append this value to the list

Equation 24: Majority Voting’s Pseudocode

In this confusion matrix (Table 19), we can see the result of the majority voting; this means,

if two models predicted the same label, then it does not matter what the third said. It was

accurate for most labels, but when not, it predicted “NTF”, which means the sequence was

without any error.

T
ru

e
la

b
el

Predicted label

 NTF DIMM CPU SSD ARAD SENSOR POWER SW

NTF 1039 264 8 0 15 16 1 0

DIMM 122 627 22 0 1 0 0 0

CPU 7 0 10 0 0 0 0 0

SSD 60 27 3 62 0 1 0 0

ARAD 12 5 0 0 71 0 0 0

SENSOR 61 0 0 2 0 68 0 0

POWER 36 10 17 0 0 0 96 0

SW 25 22 0 0 0 0 0 46

Table 19: Majority voting’s confusion matrix

Second combined model – Probability voting

For the second model, the predictions probabilities was used as weights; thus, it yielded more

accurate model. To get the probabilities of each sequence of each log, the predict_proba(),

built-in function was used. After, list was created; in which the amount of label corresponding

to the probabilities were put. Finally, the function took the most common item, and that became

the prediction.

For easier understanding, we can see the Pseudocode and an example below (Equation 25).

Fault analysis of edge router Linux system message log files with machine learning

66

Probability Voting

 Create an empty list for the final predictions
 For k := 0 to the length of the list of labels do
 Create an empty sublist for probability voting
 For each model do
 Create a number, which is the integer rounded to
hundred times the probability of the model’s predictions
 For j := 0 to this number that was calculated above
do
 Append the predicted label to the sublist
 Choose the most common label from the sublist, in other words,
the label that has the highest probability after the summary
 Append this value to the final list
 Clear the sublist

Equation 25: Probability Voting’s Pseudocode

Probability voting example. There were three models; decision tree, random forest and

XGBoost.

1. The decision tree predicted “NTF”, and the probability for this label was 0.51.

2. The random forest also predicted “NTF”, but only with 0.45 probability

3. The last model, the XGBoost predicted “DIMM” label, but the model was sure that

the sequence has a “DIMM” error because the probability for this label was 0.98.

4. Therefore in the sublist there were (0.45 * 100 + 0.51 * 100) = 91 “NTF” labels, and

0.98 * 100 = 98 “DIMM” labels.

5. The most common label of this sublist was “DIMM”, so the final prediction for this

sequence was “DIMM”.

The example illustrates well the difference between majority voting and probabilistic voting,

as the first combined model would have predicted an “NTF” label due to the two-to-one ratio.

However, the second model predicted a “DIMM” error due to probabilities.

In the Table 20, we can see the probability voting’s confusion matrix.

Fault analysis of edge router Linux system message log files with machine learning

67

T
ru

e
la

b
el

Predicted label

 NTF DIMM CPU SSD ARAD SENSOR POWER SW

NTF 1072 141 58 0 31 39 2 0

DIMM 149 622 0 0 1 0 0 0

CPU 6 0 11 0 0 0 0 0

SSD 59 20 3 76 0 1 0 0

ARAD 9 5 0 0 74 0 0 0

SENSOR 56 0 0 2 0 73 0 0

POWER 21 0 22 0 0 0 110 0

SW 12 22 0 0 0 0 0 59

Table 20: Probability voting’s confusion matrix

As shown from the previous two tables, the results are somewhat similar, but the probability

model predicted different labels for many sequences.

The Table 21 summarizes the evaluation of the models. It shows different metrics for the

classification. The weighted-average scores were used in this table; it means the scores were

weighted of each class by the number of samples from that class. For example, if the dataset

had six “A”, ten “B” and nine “C”, and the micro-average F1-scores were 42.10%, 30.80%, and

66.70%, then the weighted F1-score was (Equation 26):

𝐹1 𝑠𝑐𝑜𝑟𝑒 = (6 × 42.10% + 10 × 30.80% + 9 × 66.70%) / (6 + 10 + 9) = 46.40%

Equation 26: The weighted score for evaluation

Models Accuracy Precision Recall F1 score ROC AUC

Decision Tree 71.15 62.35 64.42 63.36 70.09

Random Forest 73.34 72.04 73.24 73.47 72.95

XGBoost 72.52 65.84 72.81 69.13 74.02

Majority Voting 73.26 76.54 73.26 73.25 73.49

Probability

Voting
76.09 79.07 76.09 76.67 77.46

Table 21: The multilabel classification results at sequences level

As we can see above, the combined models achieved better results, especially the

probabilistic voting.

Fault analysis of edge router Linux system message log files with machine learning

68

5.3.2 Card level

After these models, there was an idea to take the prediction successfully at the cards level

when even one of the sequences on the card was predicted well by the models.

For example, if the first card, labeled with “NTF”, had 23 sequences and the models

predicted 22 “DIMM” and 1 “NTF”, then it was considered successful. The background to this

is that if there is even a single sequence on the card that is a “DIMM” error, then the card was

labeled with the given label. This modeling returned how many cards were in the dataset in

which none of the models found at least one sequence. In the Table 22, we can see only the

votes results and the model of probability votes.

Votes DIMM NTF CPU POWER SSD SENSOR SW ARAD Total

Good 76 10 9 4 4 2 3 2 109

Total 76 17 11 6 4 4 3 2 123

% 100 58 82 66 100 50 100 100 88

Prob_votes DIMM NTF CPU POWER SSD SENSOR SW ARAD Total

Good 76 10 9 4 4 2 3 2 109

Total 76 17 11 6 4 4 3 2 123

% 100 58 82 66 100 50 100 100 88

Table 22: At least one sequence is correct at the cards level

As we can see, both models predicted the same percentage. There were four labels where at

least one sequence was correctly predicted. Twice the worst-performing label was “SENSOR”

with 50%; this means that in only half of the cases were the models able to predict the correct

label in even one sequence. There were 14 cards where both models mispredicted, which means

the models discovered the errors in 88.62% of the cards.

5.4 Modeling with all of the labels

In this chapter, all of the labels (i.e., 12) were analysed at the sequences level. The data was

split, so that 70% of each label was included in the training data. First, XGBoost, random forest

were built, and in the end feedforward neural networks. Due to the unbalanced dataset, the

compute_sample_weight() function from Scikit-learn was used to estimate the sample weights

by class. This is a good feature for handling unbalanced data; a small example had written of

how it works.

Fault analysis of edge router Linux system message log files with machine learning

69

1. In the dataset, we have ten observations, and from this data, six “A” labels, three “B”

labels, and one “C” label: 𝑑𝑎𝑡𝑎 = [𝐴, 𝐴, 𝐵, 𝐵, 𝐴, 𝐶, 𝐴, 𝐵, 𝐴, 𝐴]

2. The compute_sample_weight(‘balanced’, observations) function returns an array

with the following weights (Equation 27):

𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑠𝑎𝑚𝑝𝑙𝑒_𝑤𝑒𝑖𝑔ℎ𝑡(′𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑′, 𝑑𝑎𝑡𝑎)

= [0.55, 0.55, 1.11, 1.11, 0.55, 3.33, 0.55, 1.11, 0.55, 0.55]

Equation 27: Sample weights calculation

As a check, if we add the weights for each label, we get the same values: 6 ∗ 0.55 = 3 ∗

1.11 = 3.33; that is, the dataset will be in balance. This algorithm was applied always for the

training set after train-test splitting.

XGBoost

The best model had 55 estimators, the maximum depth of a tree was 4, and the subsample

was 0.4. It had a 0.5 learning rate; the alpha parameter was 2; the minimum child weight was

1, and the scale_pos_weight parameter was set to the array that the compute_sample_weight

function returned. This model had 91.03% accuracy. In the Table 23, we can see the confusion

matrix.

T
ru

e
la

b
el

 Predicted label

A
R

A
D

C
P

U

D
IM

M

F
A

B
R

IC

G
L

IT
C

H

N
T

F

P
O

W
E

R

B
IO

S

R
R

C

S
E

N
S

O

R

S
S

D

S
W

ARAD 17 0 0 0 0 0 0 0 0 0 0 0

CPU 0 2 0 0 0 7 0 0 0 0 0 0

DIMM 0 1 197 0 0 43 0 0 0 0 1 0

FABRIC 0 0 2 5 0 0 0 0 0 0 0 0

GLITCH 0 0 0 0 3 1 0 0 0 2 0 0

NTF 0 0 13 0 0 407 0 0 0 0 0 0

POWER 0 0 0 0 0 1 52 0 0 0 0 0

BIOS 0 0 1 0 0 2 0 6 0 0 0 0

RRC 0 0 0 0 0 1 0 0 27 0 0 0

SENSOR 0 0 0 0 0 3 0 0 0 42 0 0

SSD 0 0 1 0 0 1 1 0 0 0 18 0

SW 0 0 0 0 0 0 0 0 0 0 0 46

Table 23: XGBoost confusion matrix with 12 labels

Fault analysis of edge router Linux system message log files with machine learning

70

Random Forest

The random forest model could reach 89.04% accuracy. The parameters were the following;

115 estimators, maximum depth was 4, and the class_weight parameter was set to ‘balanced’.

The values near 99% can be considered more than satisfying; in the Table 24, we can see the

confusion matrix.

T
ru

e
la

b
el

 Predicted label

A
R

A
D

C
P

U

D
IM

M

F
A

B
R

IC

G
L

IT
C

H

N
T

F

P
O

W
E

R

B
IO

S

R
R

C

S
E

N
S

O
R

S
S

D

S
W

ARAD 17 0 0 0 0 0 0 0 0 0 0 0

CPU 0 1 1 0 0 7 0 0 0 0 0 0

DIMM 0 1 190 1 0 46 0 0 0 3 1 0

FABRIC 0 0 1 5 0 1 0 0 0 0 0 0

GLITCH 0 0 0 0 3 0 3 0 0 0 0 0

NTF 0 0 17 0 0 398 5 1 0 0 1 0

POWER 0 0 0 0 0 1 52 0 0 0 0 0

BIOS 0 0 0 0 0 2 0 7 0 0 0 0

RRC 0 0 0 0 0 1 0 0 27 0 0 0

SENSOR 0 0 0 0 0 2 0 0 0 43 0 0

SSD 0 0 3 0 0 1 1 0 0 0 16 0

SW 0 0 0 0 0 0 0 0 0 0 0 46

Table 24: Random Forest confusion matrix with 12 labels

Feedforward Neural Network

The last models were neural networks again. The fold size was the same as before, 15. At

the best neural network, the epochs size was 2000, and it had 250 batch sizes. As we can see

below in the figure, the model had five layers and some dropout layers as well (Figure 37).

Fault analysis of edge router Linux system message log files with machine learning

71

Figure 37: Feedforward neural network with 12 labels

In the Figure 38, we can see the accuracies per fold; the worse accuracy was 78.22%, the

best was 87.92%, and the average was 84.55%, which was a good result.

Figure 38: Feedforward neural network with 12 labels

In the Table 25, the confusion matrix of the neural network was written.

Fault analysis of edge router Linux system message log files with machine learning

72

T
ru

e
la

b
el

 Predicted label

A
R

A
D

C
P

U

D
IM

M

F
A

B
R

IC

G
L

IT
C

H

N
T

F

P
O

W
E

R

B
IO

S

R
R

C

S
E

N
S

O
R

S
S

D

S
W

ARAD 10 0 0 0 0 7 0 0 0 0 0 0

CPU 0 5 2 0 0 2 0 0 0 0 0 0

DIMM 0 1 178 1 0 58 0 0 0 3 1 0

FABRIC 0 0 1 5 0 1 0 0 0 0 0 0

GLITCH 0 0 0 0 2 1 3 0 0 0 0 0

NTF 0 0 33 0 0 382 5 1 0 0 1 0

POWER 0 0 0 0 0 2 51 0 0 0 0 0

BIOS 0 0 0 0 0 1 0 8 0 0 0 0

RRC 0 0 0 0 0 1 0 0 27 0 0 0

SENSOR 0 0 0 0 0 4 0 0 0 41 0 0

SSD 0 0 6 0 0 4 1 0 0 0 10 0

SW 0 0 0 0 0 0 0 0 0 0 0 46

Table 25: Feedforward neural network confusion matrix with 12 labels

The Table 26 summarizes the evaluation of the models. As we can see, the best was the

XGBoost model again, but the other models also performed well.

Models Accuracy Precision Recall F1 score ROC AUC

XGBoost 91.03 91.16 91.03 90.73 92.17

Random Forest 89.04 88.89 89.04 88.60 88.92

Neural Network 84.55 84.73 84.53 84.12 84.92

Table 26: The classification results with 12 labels at sequences level

During the analysis the XGBoost model was almost always the best model to predicting the

correct labels. The analysis had four different grouping; binary, group with three labels, with

eight labels and with twelve labels. Each cards were analyzed by different machine learning

algorithms, and they were sliced into sequences.

Fault analysis of edge router Linux system message log files with machine learning

73

6 Development for Raspberry Pi

The next task was to write a script for a Raspberry Pi device. It is not always possible to use

servers due to the sensitive data; therefore, this device is perfect because this tool is easy to

transport.

Reviewing an edge router card is almost an entire day’s work for an employee. In most cases,

they do not have any starting point; they can only guess what might have happened to the

system, so they have to check all the lines one by one. This, in the case of hundreds of thousands

of lines, is quite cumbersome and difficult. This program can also be useful as a starting point

and later for predictive maintenance, as it can tell you about a particular card or log file what

might have happened in it. In addition, its various outputs include sliced sequences, making it

easier to check them.

Because the previous scripts were very robust, they had to be redesigned and retained only

the most necessary elements and modules possible. Raspberry Pi 2 and 3 were used to testing

and improving the code. The older model was used to run small tests locally and the newer one

through a server for larger tests. Model 2 has Debian 10.8, and model 3 has 10.9.

6.1 The script

The program was written in two ways because some devices only run older versions of

Python. They are not essentially different; only the print function was redesigned (Figure 39).

Figure 39: The analyzer script

For modeling, the program uses an XGBoost model and three different neural network

models. Since three different neural networks were trained, the models decide by vote which

labels the sequences gets; therefore, the script yields two individual tables. The first is the

prediction by XGBoost and the other is the result of the neural networks.

After starting the program, the user must specify the path to the logs, which can be a folder

containing multiple folders containing Syslogs, a folder full of Syslogs.

For transparency, the code creates a folder called results in which all results, sliced log

details, tables are saved in .csv format. If the folder already exists in the path from which we

Fault analysis of edge router Linux system message log files with machine learning

74

started the program, it will not create a new one. In this case, it creates a new subfolder for the

sliced log files within the results folder. As we can see below, the results folder already exists,

and inside the folder, the “log_with_seq” as well, so the script created a new subfolder called

“log_with_seq_0”, if it also exists, it moves one on the counter until it can create a new one.

This is important because data will not be lost on multiple runs (Figure 40).

Figure 40: If there is a results folder

After that, the path specify the user no longer has to do anything in the program, just wait

for it to run and print the results to standard output, and save each prediction in Comma-

separated values (.csv) format. In the following two figures, we can see the results (Figure 41,

Figure 42).

Figure 41: Testing with one Syslog file

Fault analysis of edge router Linux system message log files with machine learning

75

Figure 42: The results folder after running the program twice

6.2 Improving the script

The next task was to improving the script. The test log card contained ten Syslog files, the

whole folder was more than 60 megabytes, and after the slicing method, it yielded 28 sequences.

Each sequence had more than 30000 tokens; the average was 938729 tokens. The very first

test’s time was a little bit more than 2542 seconds; this means approximately 42.37 minutes.

For predictive maintenance, this is not fast enough. Therefore, the runtime had to speed up.

First, almost all of the append functions had to rewrite; instead of them, a list comprehension

were written because that it could speed up the script with this change (Figure 43).

Figure 43: Change to list comprehension

The next step was to check the assignments; if multiple variables were written in more rows,

then they were created simultaneously. We can see below this step in the Figure 44.

Fault analysis of edge router Linux system message log files with machine learning

76

Figure 44: Multiple assignments

The modules were reduced, and if it was possible, only the necessary functions were

imported. For example, instead of “import math”, the log10 function was imported with the

“from math import log10” line. This helped to avoid the dot operation.

One of the last steps was to modify the regular expressions. They were used a lot during the

tokenizing step, so it is best to use the re.compile() function beforehand, which we can use to

transform regular expressions into pattern objects, which helps to search a pattern again without

rewriting it (Figure 45).

Figure 45: Regular expression modification

The current final time is 1290 seconds ~ 21.5 minutes; which is half of the original time, but

in the “Conclusions and future work” some ideas were written to improve the time more.

Fault analysis of edge router Linux system message log files with machine learning

77

7 Conclusions and future work

The main goal of this research was to create a System log files analyzer for predictive

maintenance because there is currently no quick and effective program for this. Therefore;

several publicly available programs were overviewed that are capable of individual log files,

especially system log files, organizing, and analyzing them. It was investigated how they are

structured and what types of logs are analyzed in what way.

Syslog files were examined with different labels in this dissertation, which were converted

using text mining methods. Then they were analyzed with several models, including decision

trees, random forests, the XGBoost model, and neural networks, and they predicted labels for

each log file. To make this more successful, text-mining methods were applied and each Syslog

was sliced into sequences. These transformations gave much more transparent and accurate

results. After teaching and testing the models, the results were obtained, which were evaluated

with different indicators, such as accuracy and a confusion matrix.

It was also part of this thesis the writing of a program for a Raspberry Pi that can give the

professional workers guidance on what kind of failures happened in the system, thus reducing

their time spent on maintenance and more efficient debugging. The program was written in

Python and tested it on two different types of Raspberry Pi.

In conclusion, several types of errors can occur in a log file, and machine learning methods

can significantly help the work of professionals by guiding analysis. With this AI technology,

professionals know more precisely what error they need to look for in which sequence; they do

not have to look through all the rows. This allows them to spend more time on improvements

and upgrades, and not have to deal with maintenance.

As a personal impression it was worth doing this research. I have learned plenty of new

things like neural networks, or how a text-mining project is built, how the process works in real

situations. I have experienced that we always have to check whether the results are correct

because many times, the results are wrong or unequivocal. Therefore, it is essential, not enough,

if you have data mining skills, and you need to understand the data, in this case, how it works,

how it looks like the system log files. The progress was challenging, with many failures and

false results, or restarting the project from the beginning, but worth it because I learned many

text-mining skills.

Fault analysis of edge router Linux system message log files with machine learning

78

It turns out it is tough to clean a log file because many log files look different. It is not enough

to clean the text; I had to pay attention to the fact that certain words and expressions have to be

left out from the cleaning part because they are essential as in model building, and as well as

for the Syslog file itself. When somebody starts to build a model, he has to pay attention to

precisely what he wants to measure and how.

The task was complicated because I had a relatively small amount of data. Neural networks

need a more extensive dataset, but fortunately, different models handle even the already more

minor dataset well, such as decision trees and the XGBoost. I increased the dataset by slicing

to sequences, but I had to review all the sequences. Therefore, these models, the results I wrote

in this research are more accurate because I could eliminate the noise as much as possible.

I have several development suggestions for the future. First, the company has to write a

Graphical User Interface or improve the runtime with some changes. I used the “pandas”

module for creating and handling data frames, but if we can vectorize these tables with

“NumPy”, then the whole process could be significantly faster.

It is not a question nowadays why data mining is very popular. There are many areas where

it could be used. Hidden information could be extracted from the data, and companies can gain

an advantage from it. Data Science will be more in the focus of companies, as it will impact

economic performance. With predictive maintenance, companies can gain a huge advantage

too. They can anticipate when a device is not working correctly with a predictive model, saving

time and money.

Fault analysis of edge router Linux system message log files with machine learning

79

References

[1] SAS.com, Data Mining,
https://www.ibm.com/support/knowledgecenter/en/SS3RA7_15.0.0/com.ibm.spss.crispdm.h

elp/crisp_overview.htmhttps://www.sas.com/en_us/insights/analytics/data-mining.html

(2019. May)

[2] Ray Li, History of data mining,

https://hackerbits.com/data/history-of-data-mining/ (2020. May)

[3] Gary Miner; John Elder; Dursun Delen; Robert Nisbet; Andrew Fast; Thomas Hill

(2012. January) Practical Text Mining and Statistical Analysis for Non-structured Text

Data Applications - ISBN 978-0123869791

[4] HP. Luhn (1958) The automatic creation of literature abstracts. IBM Journal of

Research and Development. ISSN: 0018-8646

[5] National Research Council (1999) U.S. Research Institutes in the Mathematical

Sciences Assessment and Perspectives, Washington DC, National Academic Press ISBN

978-0-309-06492-7

[6] Smart Vision, What is the CRISP-DM methodology?

https://www.sv-euro9pe.com/crisp-dm-methodology/ (2019. January)

[7] Chapman P, Clinton J, Kerber R, et al. “CRISP-DM Step-by-step data mining

guide.”, Chicago, IL: SPSS; 2000

[8] Tfidf.com, What does tf-idf mean?,

http://www.tfidf.com/ (2019. December)

[9] H. Wu and R. Luk and K. Wong and K. Kwok. (2008. June)

“Interpreting TF-IDF term weights as making relevance decisions” - ACM

Transactions on Information Systems

[10] Re, Re - Regular Expression operations

https://docs.python.org/3.8/library/re.html (2019. December)

[11] Friedl, Jeffrey. Mastering Regular Expressions. 3rd ed., O’Reilly Media, 2009.,

ISBN-10: 0596528124

[12] Scikit learn, 1.10. Decision Trees

https://scikit-learn.org/stable/modules/tree.html (2020, January)

[13] J. Brownlee, A Gentle Introduction to XGBoost for Applied Machine Learning

https://machinelearningmastery.com/gentle-introduction-xgboost-applied-machine-

learning/ (2020. April)

[14] XGBoost developers, XGBoost Documentation

https://xgboost.readthedocs.io/en/latest/ (2020. April)

https://www.ibm.com/support/knowledgecenter/en/SS3RA7_15.0.0/com.ibm.spss.crispdm.help/crisp_overview.htm
https://www.ibm.com/support/knowledgecenter/en/SS3RA7_15.0.0/com.ibm.spss.crispdm.help/crisp_overview.htm
https://www.sas.com/en_us/insights/analytics/data-mining.html%20(2019
https://www.sas.com/en_us/insights/analytics/data-mining.html%20(2019
https://hackerbits.com/data/history-of-data-mining/
https://www.sv-europe.com/crisp-dm-methodology/
http://www.tfidf.com/
https://docs.python.org/3.8/library/re.html#module-contents
https://scikit-learn.org/stable/modules/tree.html
https://machinelearningmastery.com/gentle-introduction-xgboost-applied-machine-learning/
https://machinelearningmastery.com/gentle-introduction-xgboost-applied-machine-learning/
https://xgboost.readthedocs.io/en/latest/

Fault analysis of edge router Linux system message log files with machine learning

80

[15] Mitchell R, Frank E. 2017. Accelerating the XGBoost algorithm using GPU

computing. PeerJ Computer Science 3:e127 https://doi.org/10.7717/peerj-cs.127

[16] C. Lai, XGBoost Regression

https://medium.com/@reinec/my-notes-xgboost-regression-d1992695f8fc (2020.

January)

[17] Towards Data Science, How does XGBoost Work

https://towardsdatascience.com/how-does-xgboost-work-748bc75c58aa (2020. March)

[18] R. Bekkerman, M. Bilenko, J. Langford (January 2012) Scaling Up Machine

Learning, Cambridge University Press – ISBN: 978-0521192248

[19] I. Goodfellow, Y. Bengio, A. Courville (2016) Deep learning, MIT Press, ISBN:

978-0262035613

[20] A. Borovkov (April 2017) Image Classification with Deep Learning, University of

Hamburg

[21] Towards Data Science, Introduction to Artificial Neural Networks(ANN)

https://towardsdatascience.com/introduction-to-artificial-neural-networks-ann-

1aea15775ef9 (2019. October) Nyuszi

[22] C. Nicholson, A Beginner’s Guide to LSTMs and Recurrent Neural Networks

https://pathmind.com/wiki/lstm (2019. November)

[23] Towards Data Science, Understanding RNN and LSTM

https://towardsdatascience.com/understanding-rnn-and-lstm-f7cdf6dfc14e (2019.

October)

[24] ITT Systems, What is Syslog? A Quick Overview of Event Logging Protocol,

https://www.ittsystems.com/what-is-syslog/ (2020. January)

[25] B. Gavin, What is Log File (And How Do I Open One)?,

https://www.howtogeek.com/359463/what-is-a-log-file/, (2019. July)

[26] R. Gerhards, The Syslog Protocol,

https://tools.ietf.org/html/rfc5424#section-1, (2019. March)

[27] Raspberry Pi, What is a Raspberry Pi?

https://www.raspberrypi.org/help/what-%20is-a-raspberry-pi/ (2020. February)

[28] Raspberry Pi, Raspberry Pi 4

https://www.raspberrypi.org/products/raspberry-pi-4-model-b/ (2019. June)

[29] Lasse Espeholt, Massively Scaling Reinforcement Learning with SEED RL

 https://ai.googleblog.com/search/label/TensorFlow (2020. March)

[30] S. Ghoneim, Accuracy, Recall, Precision, F-Score & Specificity, which to optimize

on?

https://doi.org/10.7717/peerj-cs.127
https://medium.com/@reinec/my-notes-xgboost-regression-d1992695f8fc
https://towardsdatascience.com/how-does-xgboost-work-748bc75c58aa
https://towardsdatascience.com/introduction-to-artificial-neural-networks-ann-1aea15775ef9
https://towardsdatascience.com/introduction-to-artificial-neural-networks-ann-1aea15775ef9
https://pathmind.com/wiki/lstm
https://towardsdatascience.com/understanding-rnn-and-lstm-f7cdf6dfc14e
https://www.ittsystems.com/what-is-syslog/
https://www.howtogeek.com/359463/what-is-a-log-file/
https://tools.ietf.org/html/rfc5424#section-1
https://www.raspberrypi.org/help/what-%20is-a-raspberry-pi/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://ai.googleblog.com/search/label/TensorFlow

Fault analysis of edge router Linux system message log files with machine learning

81

https://towardsdatascience.com/accuracy-recall-precision-f-score-specificity-which-to-

optimize-on-867d3f11124 (2019. April)

[31] N. Kawwa, How to Calculate & Use the AUC Score

https://towardsdatascience.com/how-to-calculate-use-the-auc-score-1fc85c9a8430

(2019. February)

[32] K. Ping Sung, Accuracy, Precision, Recall or F1?

https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9 (2020.

September)

[33] J. Brownlee, A Gentle Introduction to k-fold Cross-Validation

https://machinelearningmastery.com/k-fold-cross-validation/ (2019. May)

[34] X. Xu, D. Cao, Y. Zhou, J. Gao, Application of neural network algorithm in fault

diagnosis of mechanical intelligence, Mechanical Systems and Signal Processing,

Volume 141, 2020, 106625, ISSN 0888-3270,

https://doi.org/10.1016/j.ymssp.2020.106625.

https://towardsdatascience.com/accuracy-recall-precision-f-score-specificity-which-to-optimize-on-867d3f11124
https://towardsdatascience.com/accuracy-recall-precision-f-score-specificity-which-to-optimize-on-867d3f11124
https://towardsdatascience.com/how-to-calculate-use-the-auc-score-1fc85c9a8430
https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9
https://machinelearningmastery.com/k-fold-cross-validation/

Fault analysis of edge router Linux system message log files with machine learning

82

List of Figures

Figure 1: CRISP-DM reference model. The boxes represent the six phases of the life cycle

model .. 9

Figure 2: Text mining process flow. These are the general steps .. 9

Figure 3: Regular expression example ... 14

Figure 4: A System log file, Syslog ... 15

Figure 5: Screenshot of the LOGanalyze program, which is a log analyzer program 17

Figure 6: Raspberry Pi 4 Model B. General view of the single computer board 18

Figure 7: A decision tree for classifying whether to play tennis or not. Each box represents a

condition on an attribute whose value takes you down to the left of right. Box at the leaves

represent the final decision (the class) ... 25

Figure 8: Benchmark Performance of XGBoost and other programing laguages 26

Figure 9: XGBoost Regression example. This figure shows the relation between the drug dosage

and the drug effectiveness .. 27

Figure 10: XGboost Regression example. The figure shows the splits based on the drug dosage

 .. 28

Figure 11: XGBoost Classification example. This figure shows the relation between the drug

dosage and the probability that the drug is effective .. 32

Figure 12: XGBoost Classification example. The figure shows the splits based on the drug

dosage ... 33

Figure 13: Layers of the Artificial Neural Network. The first layer is the input layer, the last is

the output layer, between them are the hidden layers. Every layer could have more nodes on it.

 .. 36

Figure 14: Single Perceptron. After the multiplication and summarization the last step is the

unit function. .. 38

Figure 15: The card’s label distribution. Some of the labels are raleted to the memory, some of

them are power or sensor related .. 41

Figure 16: Before tokenization. These are some random lines from a syslog 42

Figure 17: After tokenization. These are the same lines as in the previous figure 43

Figure 18: The slicing method ... 45

Figure 19: Labels after slicing .. 45

file:///C:/Users/Logo/Downloads/2mod-Logo_Peter_thesis%20.docx%23_Toc75892654
file:///C:/Users/Logo/Downloads/2mod-Logo_Peter_thesis%20.docx%23_Toc75892654

Fault analysis of edge router Linux system message log files with machine learning

83

Figure 20: Sequences’ tokens length, the black dots, lines are the sequences without

information, data with red color contain enough information for analyzing, and the dashed green

line is the border between the “good” and “bad” sequences .. 47

Figure 21: Without the small sequences .. 47

Figure 22: The final labels at sequences level after the reviews .. 48

Figure 23: XGBoost’s receiver operating characteristic .. 51

Figure 24: Feedforward Neural Network in at the card level... 52

Figure 25: Feedforward Neural Network’s accuracy ... 52

Figure 26: Neural network’s ROC curve ... 53

Figure 27: Binary XGBoost model at sequences level... 54

Figure 28: Binary Neural Network at sequences level ... 55

Figure 29: Binary feedforward neural network .. 56

Figure 30: Neural Network’s summary .. 58

Figure 31: First Feed-Forward Neural Network with three labels ... 59

Figure 32: Neural Network’s summary .. 60

Figure 33: Second Feed-Forward Neural Network with three labels 60

Figure 34: Neural Network’s summary .. 61

Figure 35: Third Feed-Forward Neural Network ... 62

Figure 36: XGBoost log loss and Classification error charts ... 64

Figure 37: Feedforward neural network with 12 labels ... 71

Figure 38: Feedforward neural network with 12 labels ... 71

Figure 39: The analyzer script .. 73

Figure 40: If there is a results folder .. 74

Figure 41: Testing with one Syslog file ... 74

Figure 42: The results folder after running the program twice .. 75

Figure 43: Change to list comprehension ... 75

Figure 44: Multiple assignments .. 76

Figure 45: Regular expression modification .. 76

Fault analysis of edge router Linux system message log files with machine learning

84

List of Tables

Table 1: Confusion matrix .. 21

Table 2: Cross-validation example ... 22

Table 3: Data frame with the counted words. The rows are the syslog files, the columns are the

tokens and the cell’s values are the counted number ... 43

Table 4: The final table at the cards level. The rows are the syslog files, the columns are the

tokens and the cell’s values are the counted number after the TF-IDF normalization 44

Table 5: The final table after tokenization at sequences level ... 46

Table 6: Binary Decision Tree’s confusion matrix .. 50

Table 7: Binary XGBoost’s confusion matrix .. 51

Table 8: Neural network’s confusion matrix .. 53

Table 9: The binary classification results at cards level ... 53

Table 10: Binary XGBoost confusion matrix at sequences level ... 55

Table 11: Binary Neural Network confusion matrix at sequences level 56

Table 12: The binary classification results at sequences level ... 56

Table 13: The last XGBoost’s confusion matrix .. 57

Table 14: Neural Network Confusion matrix ... 59

Table 15: Neural Network confusion matrix .. 61

Table 16: Neural Networks confusion matrix .. 62

Table 17: Summary table for three types of labels ... 62

Table 18: The models’ results at sequences level .. 64

Table 19: Majority voting’s confusion matrix ... 65

Table 20: Probability voting’s confusion matrix .. 67

Table 21: The multilabel classification results at sequences level ... 67

Table 22: At least one sequence is correct at the cards level ... 68

Table 23: XGBoost confusion matrix with 12 labels ... 69

Table 24: Random Forest confusion matrix with 12 labels.. 70

Table 25: Feedforward neural network confusion matrix with 12 labels................................. 72

Table 26: The classification results with 12 labels at sequences level 72

Fault analysis of edge router Linux system message log files with machine learning

85

List of Equations

Equation 1: The equation for the Term Frequency .. 11

Equation 2: The equatin for the Inverse Document Frequency.. 11

Equation 3: The equation for Term Frequency-Inverse Document Frequency 12

Equation 4: The formula for the models’ accuracy .. 20

Equation 5: The formula for the models’ accuracy rearranged .. 20

Equation 6: The formula for the models’ AUC score .. 20

Equation 7: The formulas for Precision, Recall, and F1 scores ... 21

Equation 8: Mean Squared error .. 23

Equation 9: Similarity Score for Regression .. 28

Equation 10: Gain score for regression .. 29

Equation 11: Output Value for Regression .. 30

Equation 12: How the regression’s predictions work .. 31

Equation 13: Pruning for Regression ... 31

Equation 14: Similarity Scores for Classification .. 32

Equation 15: Cover for Classification .. 34

Equation 16: Output Value for Classification .. 34

Equation 17: Odds for Classification ... 34

Equation 18: Probability for Classification .. 35

Equation 19: The Neural networks’ max funcion .. 37

Equation 20: The Neural networks’ sigmoid function ... 37

Equation 21: Simple equation for Neural networks ... 38

Equation 22: The Neural networks output equation ... 39

Equation 23: The Neural network output equation with bias ... 39

Equation 24: Majority Voting’s Pseudocode ... 65

Equation 25: Probability Voting’s Pseudocode ... 66

Equation 26: The weighted score for evaluation .. 67

Equation 27: Sample weights calculation .. 69

