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Abstract

A good strategy to test a software component involves the generation of the whole
set of cases that participate in its operation. While testing only individual values
may not be enough, exhaustive testing of all possible combinations is not always
feasible. An alternative technique to accomplish this goal is called combinato-
rial testing. Combinatorial testing is a method that can reduce cost and increase
the effectiveness of software testing for many applications. It is based on con-
structing functional test-suites of economical size, which provide coverage of the
most prevalent configurations. Covering arrays are combinatorial objects, that
have been applied to do functional tests of software components. The use of cov-
ering arrays allows to test all the interactions, of a given size, among the input
parameters using the minimum number of test cases.

For software testing, the fundamental problem is finding a covering array with
the minimum possible number of rows, thus reducing the number of tests, the
cost, and the time expended on the software testing process. Because of the
importance of the construction of (near) optimal covering arrays, much research
has been carried out in developing effective methods for constructing them. There
are several reported methods for constructing these combinatorial models, among
them are: (1) algebraic methods, recursive methods, (3) greedy methods, and (4)
metaheuristics methods.

Metaheuristic methods, particularly through the application of simulated anneal-
ing has provided the most accurate results in several instances to date. Simulated
annealing algorithm is a general-purpose stochastic optimization method that has
proved to be an effective tool for approximating globally optimal solutions to many
optimization problems. However, one of the major drawbacks of the simulated an-
nealing is the time it requires to obtain good solutions.

In this thesis, we propose the development of an improved simulated annealing
algorithm for constructing covering arrays of strength t >= 2 for their use in
software interaction testing. In addition, we propose the use of Grid computing
and Supercomputing to address the large amount of computing time necessary to
obtain near-optimal covering arrays.
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Resumen

Una buena estrateǵıa para probar un componente de software, implica la genera-
ción de todo el conjunto de casos que participan en su funcionamiento. Mientras
que probar sólo algunos valores puede no ser suficiente, hacer una prueba exhaus-
tiva de todas las combinaciones no siempre es factible. Una técnica alternativa
para lograr este objetivo es conocida como combinatorial testing. Combinatorial
testing es un método que puede reducir los costos e incrementar la eficacia de
las pruebas de software para muchas aplicaciones. Se basa en la construcción de
pequeños casos de prueba funcionales, que proporcionan la cobertura de las con-
figuraciones más comunes. Los covering arrays son objetos combinatorios, que
han sido aplicados para realizar pruebas funcionales en diversas áreas, entre ellas,
las pruebas de componentes de software. El uso de los covering arrays permite
probar todas las interacciones, de un determinado tamaño, entre los parámetros
de entrada, utilizando el menor número de casos de prueba posible.

Para las pruebas de software, el problema fundamental es encontrar un covering
array con el mı́nimo número de renglones posible, lo que reduciŕıa: el número
de pruebas, el costo y el tiempo empleado en el proceso de pruebas de software.
Debido a la importancia de la construcción de covering arrays óptimos o cuasi-
óptimos, se ha llevado a cabo mucha investigación sobre el desarrollo de métodos
eficaces para construirlos. Hay varios métodos reportados para la construcción
de estos modelos combinatorios, entre ellos están: (1) métodos algebraicos, (2)
métodos recursivos, (3) algoritmos voraces, y (4) algoritmos aproximados (meta-
heuŕısticas).

Los métodos basados en metaheuŕısticas, especialmente los basados en simulated
annealing han proporcionado los resultados más precisos en varias ocasiones hasta
la fecha. El simulated annealing es un método de optimización estocástica de
propósito general que ha demostrado ser una herramienta eficaz para resolver una
amplia gama de problemas de optimización combinatoria. Sin embargo, uno de
los mayores inconvenientes del simulated annealing es el tiempo que requiere para
obtener soluciones óptimas o cercanas a lo óptimo.
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En esta tesis, se propone el desarrollo de un algoritmo de simulated annealing para
la construcción de covering arrays de fuerza t >= 2, para aplicarlos al desarrollo
de pruebas funcionales de componentes de software. Además, se propone el uso de
las tecnoloǵıas de Grid Computing y Supercomputing para hacer frente a la gran
cantidad de tiempo que requiere el algoritmo de simulated annealing para obtener
covering arrays óptimos o cercanos al óptimo.
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Resum

Una bona estratègia per a provar un component de programari, implica la gen-
eració de tot el conjunt de casos que participen en el seu funcionament. Mentre
que provar només alguns valors pot no ser suficient, fer una prova exhaustiva
de totes les combinacions no sempre és factible. Una tècnica alternativa per a
aconseguir aquest objectiu és coneguda com combinatorial testing. Combinatorial
testing és un mètode que pot reduir els costos i incrementar l’eficàcia de les proves
de programari per a moltes aplicacions. Es basa en la construcció de petits casos
de prova funcionals, que proporcionen la cobertura de les configuracions més co-
munes. Els covering arrays són objectes combinatoris, que han sigut aplicats per a
realitzar proves funcionals en diverses àrees, entre elles, les proves de components
de programari. L’ús dels covering arrays permet provar totes les interaccions,
d’una determinada grandària, entre els paràmetres d’entrada, utilitzant el menor
nombre de casos de prova possible.

Per a les proves de programari, el problema fonamental és trobar un covering ar-
ray amb el mı́nim nombre de ĺınies possible, la qual cosa reduiria: el nombre de
proves, el cost i el temps emprat en el procés de proves de programari. A causa
de la importància de la construcció de covering arrays òptims o cuasi-òptims, s’ha
dut a terme molta investigació sobre el desenvolupament de mètodes eficaços per a
construir-los. Hi ha diversos mètodes reportats per a la construcció d’aquests mod-
els combinatoris, entre ells estan: (1) mètodes algebraics, (2) mètodes recursivos,
(3) algorismes voraços, i (4) algorismes aproximats (metaheuŕısticas).

Els mètodes basats en metaheuŕısticas, especialment els basats en simulated an-
nealing han proporcionat els resultats més precisos en diverses ocasions fins avui.
El simulated annealing és un mètode d’optimització estocàstica de propòsit general
que ha demostrat ser una eina eficaç per a resoldre una àmplia gamma de prob-
lemes d’optimització combinatòria. No obstant açò, un dels majors inconvenients
del simulated annealing és el temps que requereix per a obtenir solucions òptimes
o properes a l’òptim.

En aquesta tesi, es proposa el desenvolupament d’un algorisme de simulated an-
nealing per a la construcció de covering arrays de força t >= 2, per a aplicar-los
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al desenvolupament de proves funcionals de components de programari. A més, es
proposa l’ús de les tecnologies de Grid Computing i Supercomputing per a fer front
a la gran quantitat de temps que requereix l’algorisme de simulated annealing per
a obtenir covering arrays òptims o propers a l’òptim.

VI



Acknowledgments

This dissertation would not have been possible without the help of many people
which is my pleasure to thank them.

I am indebted to my advisors Vicente Hernández Garćıa and José Torres Jiménez
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Chapter 1

Introduction

1.1 Software testing overview

Software systems are heavily used in critical fields like medical diagnosis, air traffic
control, space shuttle missions and stock market reporting. The presence of bugs
in the software application can cause irreparable losses. In 2003 the National In-
stitute of Standards and Technology (NIST) published a widely cited report which
estimated that inadequate software testing costs the US economy $59.5 billion per
year, even though 50% to 80% of development budgets go toward testing. This
study highlights the need for more effective methods of software testing. Accord-
ing to Hartman (2005), the quality of the software relies strongly on the use of
software testing.

Software testing is a process, or a series of processes, designed to make
sure computer code does what it was designed to do and that it does not
do anything unintended. Software should be predictable and consistent,
offering no surprises to users.

Definition 1 (Software testing).

Software testing is commonly described in terms of a series of testing stages. A
software testing stage is a process for ensuring that some aspect of a software
product, system, or unit functions properly. General testing stages are basic to
software testing and occur for all software. The following three stages are consid-
ered general software testing stages (Weyuker, 1998):
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1. Unit testing, in which individual components are tested. Unit testing fre-
quently uses test cases selected using the component’s actual source code.
Unit testing is generally done by code developers who have access to the
source code and are familiar with its details, and therefore can construc-
tively use this information. Also, the relatively small size of the individual
modules or units being tested makes it feasible to consider the code details
when determining appropriate unit test cases.

2. Integration testing, in which the subsystems formed by integrating the in-
dividually tested components are tested as an entity. The code developers
themselves or an independent test organization may perform integration
testing. Integration testing frequently emphasizes the interface code since
the individual modules being integrated have already been tested. People
other than the code developers usually do system testing; they may there-
fore be unfamiliar with the level of detail necessary to perform code-based
testing and generally do not have access to the source code. They are only
responsible for testing the fully integrated system; when they find symp-
toms of faults (that is, when failures occur in response to test cases), they
simply transmit the information to the development organization for fault
isolation and repair.

3. System testing, in which the system formed from the tested subsystems is
tested as an entity. System testing typically uses test cases selected without
reference to the code details, because at this level, there is generally far too
much code to rely on such details.

Besides these stages of testing, there are many different methods of testing such
as structural testing and functional testing. These methods had been developed in
order to improve the quality of the software systems.

In structural testing (or white-box testing) test conditions are designed by exam-
ining paths of logic. Structural testing is typically used during unit testing, where
the tester (usually the code developer) knows the internal structure and tries to
exercise it based on detailed knowledge of the code. The tester examines the in-
ternal structure of the program or system. Test data is driven by examining the
logic of the program or system, without concern for the program or system re-
quirements. The tester knows the internal program structure and logic, just as
a car mechanic knows the inner workings of an automobile. Specific examples in
this category include:

⊲ Data-flow testing: The data flow criteria are based on analysis that is similar
to that done by an optimizing compiler, classifying occurrences of variables
in a program as being either definitions or uses. Programs will be repre-
sented by flow graphs, consisting of nodes that represent blocks or sequences
of statements that are always exercised as a unit, and edges that represent
the flow of control between blocks (Frankl and Weyuker, 1988)
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⊲ Path testing: Each and every independent path within the code is executed
at least once to find out any error (Yan and Zhang, 2008).

⊲ Branch testing: Branch testing helps in the validation of all the branches
in the code and making sure that no branching leads to abnormal behavior
of the application (Frankl and Weiss, 1993).

⊲ Condition Testing: Each and every condition is executed by making it true
and false in test cases, in each of the ways at least once (McMinn, 2004).

⊲ Mutation Testing: In this testing, the application is tested for the code that
was modified after fixing a particular defect (Offutt et al., 1996).

An advantage of structural testing is that it is thorough and focuses on the pro-
duced code. Because there is knowledge of the internal structure or logic, errors
or deliberate mischief on the part of a code developer have a higher probability of
being detected.

One disadvantage of structural testing is that it does not verify that the specifica-
tions are correct; that is, it focuses only on the internal logic and does not verify
the logic to the specification. Another disadvantage is that there is no way to
detect missing paths and data-sensitive errors.

Functional testing (or black-box testing) is one in which test conditions are devel-
oped based on the functionality of the software system; that is, the tester requires
information about the input data and observed output, but does not know how
the program or system works. Just as one does not have to know how a car
works internally to drive it, it is not necessary to know the internal structure of
a program to execute it. The tester focuses on testing the functionality of the
program against the specification. With functional testing, the tester views the
program as a black-box and is completely unconcerned with the internal structure
of the program or system. Functional testing is used during integration and sys-
tem tests, where the emphasis is on the perspective of the user and not on the
internal workings of the software. Functional testing tries to test the functionality
of the software as it is perceived by the end users (based on user manuals) and the
requirements writers. Thus, functional testing consists of subjecting the system
under test to various user controlled inputs, and watching its performance and
behavior. Some examples in this category include:

⊲ Decision tables testing: Decision tables represent logical relationships be-
tween conditions (for example, inputs) and actions (for example, outputs).
Derive test cases systematically by considering every possible combination
of conditions and actions (Beizer, 1990).

⊲ Equivalence partitioning testing: It divides the input domain into a col-
lection of subsets, or equivalence classes, which are deemed equivalent ac-
cording to the specification. Pick representative tests (sometimes only one)
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from within each class. Can also be done with output, path, and program
structure equivalence classes (Reid, 1997).

⊲ Boundary value testing: It chooses test cases on or near the boundaries of
the input domain of variables, with the rationale that many defects tend to
concentrate near the extreme values of inputs (Reid, 1997).

⊲ Requirements-based testing: Given a set of requirements, it devises tests so
that each requirement has an associated test set. Trace test cases back to
requirements to ensure that all requirements are covered (Mogyorodi, 2001).

⊲ Combinatorial interaction testing: Combinatorial Interaction Testing is a
black box sampling technique derived from the statistical field of design of
experiments. It has been used extensively to sample inputs to software, and
more recently to test highly configurable software systems and GUI event
sequences.

A major advantage of functional testing is that the tests are aimed to what the
program or system is supposed to do, and it is natural and understood by everyone.
A limitation is that exhaustive input testing is not achievable, because this requires
that every possible input condition or combination be tested. In addition, because
there is no knowledge of the internal structure or logic, there could be errors or
deliberate mischief on the part of a code developer that may not be detectable
with functional testing.

Since the number of possible inputs is typically very large, testers need to select a
subset, commonly called a suite, of test cases, based on effectiveness and adequacy.
Below we discuss some of the popular testing methods that have been adopted by
the testing community. This thesis is mainly related with functional testing and
more specifically with combinatorial interaction testing. In the next section the
general aspects of the combinatorial interaction testing are described.

1.2 Combinatorial interaction testing (CIT)

Software systems today are complex and have many possible configurations. Many
software systems are built using reusable components of software. Interaction
among components are often complex and abundant. Components may not be
designed with the final product in mind which leaves them susceptible to unex-
pected interaction faults. Although in theory, tests could be run under all possible
configurations in order to detect interaction faults, in practice this is infeasible
either time-wise or cost-wise. Therefore, it is of widespread interest generating
test suites that provide coverage of as many interactions as possible.

Combinatorial testing selects input values for individual parameters and combines
these values to create tests. One strategy for combinatorial testing, called t-way
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testing, requires every possible combination of values of any t parameters to be
included in some test case, where t is typically less than the total number of pa-
rameters. The key observation behind t-way testing is that not every parameter
contributes to every fault, and many faults can be exposed by considering inter-
actions among a small number of parameters.

Consider a hypothetical holiday-reservation system that has four components of
interest shown in Table 1.1. There are three log-in types, three customer types,
three reservation types, and three credit cards types. Different end users may use
different combinations of components. To exhaustively test all combinations of
the four parameters that have 3 options each from Table 1.1 would require 34 =
81 tests. The four components are factors, and the three values for each factor are
their levels.

Table 1.1: The four parameters, and their three possible values, of a hypothetical
holiday-reservation system.

Log-in type Customer type Reservation type Credit card type

New customer - not logged in New customer Cars Visa
New customer - logged in Frequent customer Hotels Mastercard
Frequent customer - logged in Employee Flights American Express

It is possible to reduce the 81 tests required for exhaustive testing by employing
2-way (or pairwise) interaction testing. Instead of testing every combination, all
individual pairs of interactions are tested. Table 1.2 shows the resulting test
suite, it contains only 9 tests. The entire test suite covers every possible pairwise
combination between components.

Table 1.2: A small interaction test suite for the hypothetical holiday-reservation
system showed in Table 1.1.

Test No. Log-in Type Customer type Reservation type Credit card type

1 New member - not logged in New customer Cars Visa
2 New customer - not logged in Frequent customer Hotels Mastercard
3 New customer - not logged in Employee Flights American Express
4 New-customer - logged in New customer Flights Mastercard
5 New-customer - logged in Frequent customer Cars American Express
6 New-customer - logged in Employee Hotels Visa
7 Customer - logged in New customer Hotels American Express
8 Customer - logged in Frequent customer Flights Visa
9 Customer - logged in Employee Cars Mastercard

A suite with 81 test cases may sound reasonable, but the number of necessary
tests grows exponentially as the number of components increases. Suppose we
had a system with 12 possible factors and four levels each. We then need 412 =
16,777,216 test cases, if we extrapolate these tests in terms of time, considering we
could finish a test in one second, we would require 279,620 minutes (or 6 months)
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to finish all the tests. Pairwise combinatorial testing for 412 can be achieved in as
few as 24 tests.

Based on the example above, we note that it is easy to apply the combinatorial
interaction testing. Combinatorial testing is a specification-based technique which
requires no knowledge about the implementation under test. Note that the speci-
fication required by some forms of combinatorial testing is lightweight, as it only
needs to identify a set of parameters and their possible values. This is in contrast
with other testing techniques that require a complex operational model of the sys-
tem under test. Finally, assuming that the parameters and values are properly
identified, the actual combination generation process can be fully automated.

Combinatorial interaction testing is based on the premise that many errors in
software can only arise from the interaction of two or more parameters (Bryce
et al., 2010). The application of combinatorial testing to software applications has
been studied extensively in recent years. Burr and Young (1998) showed that
pairwise testing can achieve a higher block and decision coverage than traditional
methods for a commercial email system. Dalal et al. (1999) reported a case study in
which combinatorial testing was applied to a telephone system. Kuhn et al. (2004)
studied the actual faults in several open source software projects. Colbourn et al.
(2005) applied combinatorial testing to progressive ranking and composition of
Web services. Yilmaz et al. (2006) applied combinatorial testing to an open-source
CORBA middleware implementation ACE+TAO. Kuhn et al. (2010) presented the
use of combinatorial testing in a smart phone application.

Many studies demonstrated the effectiveness of pairwise testing in a variety of
applications. But, there is a possibility that some of the failures in a system are
present when an interaction of more than 2 parameters occurs. An appropriate
value for t to provide adequate coverage depends on the complexity of the system
under test, and in general the value of t is not known. Studies were made in
order to show the percentage of failures a real system will present when distinct
levels of interaction were used (Kuhn et al., 2008). The results of these tests are
summarized in Table 1.3 and Figure 1.1.

Table 1.3: Percent fault detection at interaction levels 1 through 6 according to the
type of application.

Applications
Interaction level Med services Browser Server NASA database Network security

1 66% 29% 42% 68% 17%
2 97% 76% 70% 93% 62%
3 99% 95% 89% 98% 87%
4 100% 97% 96% 100% 98%
5 100% 99% 96% 100% 100%
6 100% 100% 100% 100% 100%
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Figure 1.1: Fault detection at interaction levels 1 through 6 according to the type
of application (Kuhn et al., 2008).

In Figure 1.1 we can clearly see how the failure detection rate increases rapidly
with the interaction level. With the browser application, for example, 29% of
the failures were triggered by only a single parameter value, 76% by pairwise
combinations, and 95% by 3-way combinations. The detection rate curves for
the other applications behaves in a similar way, reaching in some cases 100% of
detection with 4 to 6-way interactions. This means that the interaction of size six
or less parameters in these systems were causing 100% percent of the faults on the
systems.

While not conclusive, these results suggest that combinatorial testing which exer-
cises high strength interaction combinations of size two to six can be an effective
approach to software assurance.
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1.3 Research problem

To continue at the forefront in this fast paced and competitive world, compa-
nies have to be highly adaptable and to suit such transforming needs customized
software solutions play a key role. To support this customization, software sys-
tems must provide numerous configurable options. While this flexibility promotes
customizations, it creates many potential system configurations, which may need
extensive quality assurance.

A good strategy to test a software component involves the generation of the whole
set of cases that participate in its operation. While testing only individual values
may not be enough, exhaustive testing of all possible combinations is not always
feasible (Mala et al., 2010; Cohen et al., 2003). An alternative technique to accom-
plish this goal is called combinatorial testing. Combinatorial testing is a method
that can reduce cost and increase the effectiveness of software testing for many
applications. It is based on constructing functional test-suites of economical size,
which provide coverage of the most prevalent configurations. Covering Arrays
(CAs) are combinatorial objects, that have been applied to do functional tests of
software components. The use of covering arrays allows to test all the interactions,
of a given size, among the input parameters using the minimum number of test
cases.

A Covering Array (CA) is a combinatorial object, denoted by
CA(N ; t, k, v) which can be described like a matrix with N × k elements,
such that every N × t subarray contains all possible combinations of vt

symbols at least once. N represents the rows of the matrix, k is the
number of parameters, which have v possible values, and t represents the
strength or the degree of controlled interaction. When a covering array
contains the minimum possible number of rows, it is optimal and its size
is called the Covering Array Number (CAN).

Definition 2.

For software testing, the fundamental problem is to determine CAN(t, k, v). Be-
cause, it reduces the number of tests, the cost and the time expended on the
software testing process.

A covering array has the same cardinality in all its parameters. However, software
systems are generally composed with parameters that have different cardinalities;
in this situation a mixed covering array (MCA) can be used.
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AMixed Covering Array, denoted byMCA(N ; t, k, v1v2 . . . vk), is anN×k
array where v1v2 . . . vk is a cardinality vector that indicates the values for
every column. The mixed covering arrays has the following two properties:

1. Each column i(1 ≤ i ≤ k) contains only elements from a set Si with
|Si| = vi.

2. The rows of each N × t subarray cover all t-tuples of values from
the t columns at least once.

Definition 3.

Because of the importance of the construction of (near) optimal MCAs, much
research has been carried out in developing effective methods for constructing
them. There are several reported methods for constructing these combinatorial
models, among them are:

1. Algebraic methods (Bush, 1952; Sherwood, 2008)

2. Recursive methods (Williams, 2000; Moura et al., 2003; Colbourn and Torres-
Jimenez, 2010)

3. Greedy methods (Cohen et al., 1996; Tung and Aldiwan, 2000; Lei et al.,
2007; Bryce and Colbourn, 2007; McDowell, 2011)

4. Metaheuristics methods (Cohen et al., 2003; Shiba et al., 2004; Gonzalez-
Hernandez et al., 2010; Avila-George et al., 2012d)

Metaheuristic methods, particularly through the application of Simulated Anneal-
ing (SA), has provided the most accurate results in several instances until now.
This local search method has provided many of the smallest covering arrays for
different system configurations (Bryce et al., 2010). Simulated annealing algorithm
is a general-purpose stochastic optimization method that has proved to be an ef-
fective tool for approximating globally optimal solutions to many optimization
problems. However, one of the major drawbacks of the method is the time it
requires to obtain good solutions (which increases when the evaluation function
requires too much time).

In this thesis, we propose the development of an improved simulated annealing
algorithm for constructing uniform and mixed covering arrays of strength t >= 2
for their use in software interaction testing. In addition, we propose the use of
Grid computing and Supercomputing to address the large amount of computing
time necessary to obtain near-optimal covering arrays.
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1.3.1 Hypothesis

It is possible to develop a simulated annealing algorithm to construct covering
arrays that use Parallel computing and Grid computing in order to address the
slow convergence of the simulated annealing technique.

1.3.2 Objective

Develop and implement a simulated annealing algorithm for constructing optimal
or near-optimal covering arrays using Parallel computing and Grid computing to
address the slow convergence of the simulated annealing technique.

1.4 Contributions

The expected contributions of the present thesis were:

⊲ An improved implementation of a simulated annealing algorithm for con-
structing uniform and mixed covering arrays of strength t ≥ 2.

⊲ A Grid implementation of simulated annealing algorithm.

⊲ A Parallel simulated annealing algorithm for constructing covering arrays.

⊲ An algorithm to verify covering arrays.

The constructed covering arrays have been published in the repository described
in Appendix A, in order that others can study the actual covering arrays, build
new covering arrays from them, and also use these covering arrays without having
to spend the computational resources.

1.5 Thesis organization

The remaining of this thesis is structured as follows:

⊲ Chapter 2 presents some basic definitions and terminology about combina-
torial interaction testing objects.

⊲ Chapter 3 describes the relevant related work to construct covering arrays.
There are several reported methods for constructing these combinatorial
models. Among them are: (1) Algebraic methods, (2) Recursive methods,
(3) Greedy methods, and (4) Metaheuristics methods.

⊲ Chapter 4 presents the specific details that were involved in the development
of the simulated annealing proposed for constructing covering arrays.
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1.5 Thesis organization

⊲ Chapter 5 analyzes the global performance of the developed simulated an-
nealing algorithm and the influences that some of its key features have on
it; A methodology for fine-tuning the developed algorithm is presented;
Moreover, it shows the results obtained by the implementation of simulated
annealing algorithm; Finally, it illustrates the development of test configu-
rations for two real software applications.

⊲ Chapter 6 contains the conclusions derived from this thesis, also it presents
some possible directions for future research.
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Chapter 2

Theoretical Framework

Combinatorial approaches to testing are used in several fields, and have recently
gained momentum in the field of software testing through software interaction
testing.

In this chapter is presented some basic definitions and terminology about combi-
natorial designs. Let V be a set of v symbols or levels. The term “level” is used
because in the design of experiments, the symbols typically indicate the levels or
settings of the factors or variables whose effects on a response of interest are to be
studied. Usually it will denote the possible levels by 0, 1, . . . , v − 1. Through this
work, by an N ×k array (or matrix) with entries from V it shall mean a collection
of Nk elements of V arranged in N rows and k columns with one element per
row-column pair.

2.1 Latin Square and Orthogonal Latin Squares

Latin squares are combinatorial designs most easily described as a v × v array.
It is believed that Euler by 1782 was the first one to study them. Fisher (1926)
used them in the design of statistical experiments. Mandl (1985) applied them in
software testing, specifically in designing some of the tests in the Ada Compiler
Validation Capability test suite.
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A Latin square of order v is a v× v array with entries from a set V of the
cardinality v such that each element of V appears once in every row and
every column (Hedayat et al., 1999).

Definition 4 (Latin Square).

It is easily seen that a Latin square of order v exists for every positive integer v.

For every positive integer v, there exists a v × v Latin square with V as
the set of objects.

Proposition 1.

Proof. Set Lij = i+ j module v. Thus,

L =








0 1 . . . v − 1
1 2 . . . 0
...

...
...

...
v − 1 0 . . . v − 2








Clearly the array L is a Latin square.

For v = 4, the construction of Proposition 1 yields the Latin square shown
in Figure 2.1.

Example 1.







0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2







Figure 2.1: A Latin square of order 4, every symbol 0,1,2,3 appears once in every
row and column.

Two Latin squares are called orthogonal if when one is superimposed upon the
other every ordered pair of symbols occurs once in the resulting square.

14



2.1 Latin Square and Orthogonal Latin Squares

Let A = (aij) and B = (bij) be Latin squares of order v. They are said to
be orthogonal if every ordered pair of symbols occurs exactly once among
the v2 pairs (aij , bij), i = 0, 1, . . . , v − 1; j = 0, 1, . . . , v − 1.

Definition 5 (Orthogonal Latin Squares).

The arrays in Figure 2.2 are orthogonal Latin squares of order 4. It can ob-
serve that none of these arrays is orthogonal with to the array in Figure 2.1.

Example 2.

(a)






2 0 1 3
0 2 3 1
3 1 0 2
1 3 2 0







(b)






3 1 0 2
0 2 3 1
1 3 2 0
2 0 1 3







(c)






1 3 2 0
0 2 3 1
2 0 1 3
3 1 0 2







Figure 2.2: Three orthogonal Latin squares of order 4.

A Latin square is orthogonal isolated if there is no Latin square orthogonal to it.
The Latin square in Figure 2.1 is orthogonal isolated.

A collection of w Latin squares of order v, any pair of which are orthogonal, is called
a set of Mutually Orthogonal Latin Squares. Let A1,A2, . . . ,Ak be Latin squares
of order v. They are called mutually orthogonal if Ar and As are orthogonal for
all r and s with 1 ≤ r < s ≤ k. A set of Mutually Orthogonal Latin Squares is
called a MOLS(v, w). The arrays in Figure 2.2 form a MOLS(4, 3).

The three arrays in Figure 2.3 shows that the orthogonal Latin squares
shown in Figure 2.2 form a MOLS(4,3). Notice that all sixteen pairs of
symbols (x, y) occurs once in the same cell of the squares.

Example 3.

There are certain basic operations which transform one Latin square into another.
Any permutation of the rows of the array, or the columns of the array, or the ele-
ments of V gives another Latin square. Let’s say two Latin squares are isomorphic
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(a)






(2, 3) (0, 1) (1, 0) (3, 2)
(0, 0) (2, 2) (3, 3) (1, 1)
(3, 1) (1, 3) (0, 2) (2, 0)
(1, 2) (3, 0) (2, 1) (0, 3)







(b)






(2, 1) (0, 3) (1, 2) (3, 0)
(0, 0) (2, 2) (3, 3) (1, 1)
(3, 2) (1, 0) (0, 1) (2, 3)
(1, 3) (3, 1) (2, 0) (0, 2)







(c)






(3, 1) (1, 3) (0, 2) (2, 0)
(0, 0) (2, 2) (3, 3) (1, 1)
(1, 2) (3, 0) (2, 1) (0, 3)
(2, 3) (0, 1) (1, 0) (3, 2)







Figure 2.3: Example of a MOLS(4,3). (a) A juxtaposed array corresponding to
the pair of orthogonal Latin squares (Figure 2.2(a) and (b)); (b) A juxtaposed array
corresponding to the pair of orthogonal Latin squares (Figure 2.2(a) and (c)); (c) A
juxtaposed array corresponding to the pair of orthogonal Latin squares (Figure 2.2(b)
and (c)); Notice that all sixteen pairs of symbols (x, y) occurs once in the same cell of
the squares.

if and only if one can be transformed into the other by a combination of these
three operations. Any two of the Latin squares in Figure 2.2 are isomorphic, but
none of them is isomorphic to the Latin square in Figure 2.1.

In a MOLS(v, w), a permutation of the element of V in one or more of the Latin
squares will no affect their orthogonality. A permutation of the rows or columns
that is performed simultaneously on all Latin squares of the MOLS(v, w) also
preserves the orthogonality.

2.2 Orthogonal Arrays

The Orthogonal Arrays (OAs) were introduced by Rao (1946) under the name
of hypercubes. Besides being used for construction of various other combinato-
rial configurations, they are popular among statisticians for their properties in
fractional factorial experiments. The first works where orthogonal arrays were ap-
plied to the designs of experiments, were made in disciplines like agriculture and
medicine (Hedayat et al., 1999). The use of OAs for testing software was suggested
by Mandl (1985), he described using orthogonal arrays in testing of a compiler.
Tatsumi (1987) in his work on Test Case Design Support System used in Fujitsu
Ltd, talks about two standards for creating test arrays: (1) with all combinations
covered exactly the same number of times (orthogonal arrays).
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An orthogonal array denoted by OAλ(N ; t, k, v), can be defined as an
N × k array on v symbols such that every N × t subarray contains all the
ordered subsets of size t from v symbols exactly λ times.

Definition 6 (Orthogonal Array).

Orthogonal arrays have the property that λ = N
vt . In the case when λ = 1 it is

customary to say that the OA has index unity, it is optimal. The integers N, t, k, v
and λ may be referred to as the parameters of the OA. The number of rows N is
also known as the size of the array, the number of runs (observations), the number
of assemblies or the number of level or treatment combinations; the parameter t
is the strength; the number of columns k is also called the number of constrains,
or the number of factors or variables; and v is the number of symbols or number
of levels associated with each factor, the order.

The array in Figure 2.4 is an orthogonal array based on three levels, with
strength two, of index unity, with nine runs and with four factors. It is
an OA(9; 2, 4, 3).

Example 4.

















0 0 0 0
1 1 1 0
2 2 2 0
0 1 2 1
1 2 0 1
2 0 1 1
0 2 1 2
1 0 2 2
2 1 0 2

















Figure 2.4: Example of an OA(9; 2, 4, 3), where the strength is t = 2, the alphabet is
v = 3 and all nine combinations of symbols appear only once in each pair of columns
of the orthogonal array.

The orthogonal arrays has some interesting properties, among them are the fol-
lowing ones:

1. The parameters of the OA satisfy λ = N/vt;
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2. An orthogonal array of strength t is also an orthogonal array of strength t′, where 1 ≥

t′ ≥ t. The index λ′ of an orthogonal array of strength t′ is λ′ = λ ·mt−t′ ;

3. Let Ai = {0, 1, . . . , r} be a set of OA(Ni; ti, k, v), the juxtaposed array A =





A0

. . .
Ar



 is

an OA(N ; t, k, v) where N = N1 +N2 + · · ·+Nr and t ≥ min{t0, t1, . . . , tr};

4. Any permutation of rows or columns in an orthogonal array, results in another orthogonal
array with the same parameters;

5. Any subarray of size N × k′ of an OA(N ; t, k, v), is an OA(N ; t′, k′, v) of strength t′ =
min{k′, t};

6. Select the rows of an OA(N ; t, k, v) that starts with the symbol 0, and eliminate the first
column; the resulting matrix is an OA(N/v; t− 1, k − 1, v).

The requirement that every t-tuple arises exactly λ times can be too restrictive in
applications that require only that every t-tuple be covered at least once. It can
be relax the definition to introduce the covering arrays and mixed covering arrays.

2.3 Covering Arrays

The Covering Arrays (CAs) have been object of study and application in different
research areas. Cawse (2003) used covering arrays for design of materials, Hedayat
et al. (1999) used them in medicine and agriculture; in biology and industrial pro-
cesses have also been used by Shasha et al. (2001) and Phadke (1995). Covering
arrays have been used in hardware testing Vadde and Syrotiuk (2004) but signif-
icantly the area with the major application of these objects is in software testing
Burr and Young (1998); Yilmaz et al. (2006).

A covering array denoted by CA(N ; t, k, v), is a matrixM of size N × k
which takes values from the set of symbols {0, 1, 2, . . . , v − 1} (called the
alphabet), and every submatrix of sizeN×t contains each tuple of symbols
of size t (t-tuple), at least once.

Definition 7 (Covering Array).

The value N is the number of rows ofM, k is the number of parameters, where
each parameter can take v values and the interaction degree between parameters
is described by the strength t. Each combination of t columns must cover all the
vt t-tuples. Given that there are

(
k
t

)
sets of t columns in M, the total number

of t-tuples in M must be vt
(
k
t

)
. When a t-tuple is missing in a specific set of t

columns we will refer to it as a missing t-wise combination. Then,M is a covering
array if the number of missing t-wise combinations is zero.
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The array in Figure 2.5 is a CA(7; 2, 7, 2). The strength of this covering
array is t = 2 and the alphabet is v = 2, hence the combinations {0, 0},
{0, 1}, {1, 0}, {1, 1} appear in each subset of size N × 2 of the covering
array.

Example 5.













0 0 0 1 0 1 1
0 0 1 0 1 1 0
0 1 0 1 1 0 0
1 0 1 1 0 0 0
0 1 1 0 0 0 1
1 1 0 0 0 1 0
1 0 0 0 1 0 1













Figure 2.5: Example of a CA(7; 2, 7, 2).

To illustrate the covering array approach applied to the design of software testing,
consider the Web-based system example shown in Table 2.1, the example involves
four parameters each with three possible values. A full experimental design (t = 4)
should cover 34 = 81 possibilities, however, if the interaction is relaxed to t = 2
(pair-wise), then the number of possible combinations is reduced to 9 test cases.

Table 2.1: Combinatorial testing using covering arrays, a Web-based system example
(parameters).

Browser OS DBMS Connections

0 Firefox Windows 7 MySQL ISDN
1 Chromium Ubuntu 10.10 PostgreSQL ADSL
2 Netscape Red Hat 5 MaxDB Cable

Figure 2.6(a) shows the covering array corresponding to CA(9; 2, 4, 3); given that
its strength and alphabet are t = 2 and v = 3, respectively, the combinations
that must appear at least once in each subset of size N × 2 are {0, 0}, {0, 1},
{0, 2}, {1, 0}, {1, 1}, {1, 2}, {2, 0}, {2, 1}, {2, 2}. Finally, to make the mapping
between the covering array and the Web-based system, every possible value of
each parameter in Table 2.1 is labeled by the row number. Figure 2.6(b) shows
the corresponding pair-wise test suite; each of its nine experiments is analogous to
one row of the covering array shown in Figure 2.6(a).
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(a)
















0 0 0 0
0 1 1 1
0 2 2 2
1 0 1 2
1 1 2 0
1 2 0 1
2 0 2 1
2 1 0 2
2 2 1 0

















(b)

1 Firefox Windows 7 MySQL ISDN
2 Firefox Ubuntu 10.10 PostgreSQL ADSL
3 Firefox Red Hat 5 MaxDB Cable
4 Chromium Windows 7 PostgreSQL Cable
5 Chromium Ubuntu 10.10 MaxDB ISDN
6 Chromium Red Hat 5 MySQL ADSL
7 Netscape Windows 7 MaxDB ADSL
8 Netscape Ubuntu 10.10 MySQL Cable
9 Netscape Red Hat 5 PostgreSQL ISDN

Figure 2.6: Combinatorial testing using covering arrays, a Web-based system ex-
ample. (a) A combinatorial design, CA(9; 2, 4, 3). (b) Test-suite covering all 2-way
interactions, CA(9; 2, 4, 3).

When a matrix has the minimum possible value of N to be a CA(N ; t, k, v), the
value N is known as the Covering Array Number (CAN). The CAN is formally
defined in (2.1) and is denoted by CAN(t, k, v).

CAN(t, k, v) = min
︸︷︷︸

N∈N

{N : ∃ CA(N ; t, k, v)} (2.1)

The trivial mathematical lower bound for a covering array is vt ≤ CAN(t, k, v),
however, this number is rarely achieved. Therefore determining achievable lower
bounds is one of the main research lines for covering arrays. Finding the covering
array number is also known in the literature as the Covering Array Construction
(CAC). It is equivalent to the problem of maximizing the degree k of a covering
array given the values N , t, and v (Sloane, 1993).

Given a CA(N ; t, k, v) permuting the rows and/or columns produces an equivalent
covering array (Hnich et al., 2006). The rows represent a set of test vectors, and
their order is irrelevant. Permuting the columns does not affect since every subset
of t columns contains all the combinations of vt symbols.

Two covering arrays are said to be isomorphic if one can be obtained from
the other by a sequence of permutations of the rows, the columns, and the
symbols.

Definition 8 (Isomorphic Covering Arrays).

There are 3 types of symmetries in a covering array: row symmetry, column sym-
metry and symbol symmetry. The row symmetry refers to the possibility to alter
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2.3 Covering Arrays

the order of the rows without affecting the covering array properties. There are
N ! possible row permutations of a covering array. The column symmetry refers
to permuting columns in the covering array without altering it. There exist k!
possible column permutations of a covering array. In the same way the symbol
symmetry includes all the possible permutations of symbol per column, giving a
number of (v!)k isomorphic covering arrays that can be constructed this way. By
the previous analysis we can conclude that there are a total of N ! × k! × (v!)k

different isomorphic covering arrays to one specific covering array.

The two covering arrays of CA(4; 2, 3, 2) in Figure 2.7 are isomorphic since
we can get one from the other by swapping the first two columns of the
matrix.

Example 6.

(a)






0 0 0
0 1 1
1 0 1
1 1 0







(b)






0 0 0
1 0 1
0 1 1
1 1 0







Figure 2.7: Example of isomorphic covering arrays.

According to Colbourn and Torres-Jimenez (2010), a Cyclic Matrix (CM)
is an array O of size k × k that is formed by k rotations of a vector of
size k (called starter vector s). The covering arrays derived from a cyclic
matrix will be referred as Cyclic Covering Array (CCA).

Definition 9 (Cyclic covering arrays).

Figure 2.8 gives an example of a cyclic matrix formed from the starter vector
{0, 0, 0, 1, 0, 1, 1}. This matrix is a cyclic covering array CA(7; 2, 7, 2).

This combinatorial object (covering array) is fundamental in developing interac-
tion tests when all factors have an equal number of levels. However, software
systems are generally composed with parameters that have different cardinalities.
To remove this limitation of covering arrays, the mixed-level covering array can
be used.
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Chapter 2. Theoretical Framework

(a) Starter vector s of size 7.

0 0 0 1 0 1 1

(b) CA(7; 2, 7, 2)












0 0 0 1 0 1 1
0 0 1 0 1 1 0
0 1 0 1 1 0 0
1 0 1 1 0 0 0
0 1 1 0 0 0 1
1 1 0 0 0 1 0
1 0 0 0 1 0 1













Figure 2.8: Example of a cyclic covering array CA(7; 2, 7, 2).

A Mixed Covering Array (MCA) is a generalization of a covering array that allows
for different alphabets in different columns. This was introduced to remove the
limitation that all parameters had to have the same number of possible values
since different parameters in the system will often take on a different number of
possible values. This is a more realistic approach in a software application context.

A mixed level covering array denoted by MCA(N ; t, k, v1 v2 . . . vk), is an
N × k array where v1v2 . . . vk is a cardinality vector that indicates the
values for every column. The mixed covering arrays have the following
two properties: (1) Each column i(1 ≤ i ≤ k) contains only elements from
a set Si with |Si| = vi. (2) The rows of each N × t subarray cover all
t-tuples of values from the t columns at least once. The minimum N for
which there exists a mixed covering array is called mixed covering array
number MCAN(t, k, v1v2 . . . vk). A short notation for the mixed cover-
ing array can be given using the exponential notation MCA(N ; t, k, vq11
vq22 . . . vqwg ); the notation describes, that there are qr parameters from the
set {v1, v2, . . . , vk} that takes vs values (Cohen et al., 2003).

Definition 10 (Mixed Covering Array).

Table 2.2: Combinatorial testing using mixed covering arrays, a Web-based system
example (parameters).

Browser WebServer Database Payment

0 Firefox Apache MySQL Visa
1 Chromium IIS MaxDB MasterCard
2 IE WebSphere
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2.4 Summary

To illustrate the mixed covering array approach applied to the design of software
testing, consider the e-commerce system example shown in Table 2.2, the example
involves four parameters, the first two parameters have 3 possible values and the
last two parameters have only 2 possible values; to test in an exhaustive way the
software is required a set of 3× 3× 2× 2 = 36 test cases.

Using a mixed covering array (with interaction size t = 2) will require only 9 cases.
Figure 2.9(a) shows a mixed covering array corresponding to MCA(9; 2, 4, 3222).
Finally, to make the mapping between the mixed covering array and the e-commerce
system, every possible value of each parameter in Table 2.2 is labeled by the row
number. Figure 2.9(b) shows the corresponding pair-wise test suite; each of its
nine experiments is analogous to one row of the mixed covering array shown in
Figure 2.9(a).

(a)
















0 0 0 0
2 1 0 1
1 2 0 1
0 2 1 0
2 0 1 1
1 1 1 0
0 1 0 1
2 2 1 0
1 0 1 1

















(b)

1 Firefox Apache MySQL Visa
2 IE IIS MySQL MasterCard
3 Chromium WebSphere MySQL MasterCard
4 Firefox WebSphere MaxDB Visa
5 IE Apache MaxDB MasterCard
6 Chromium IIS MaxDB Visa
7 Firefox IIS MySQL MasterCard
8 IE WebSphere MaxDB Visa
9 Chromium Apache MaxDB MasterCard

Figure 2.9: Combinatorial testing using mixed covering arrays, a Web-based system
example. (a) It shows a MCA(9; 2, 4, 3222) for the e-commerce system. (b) Test-suite
covering all 2-way interactions, MCA(9; 2, 4, 3222).

2.4 Summary

In this chapter we have presented in detail the evolution of combinatorial objects,
starting from the Latin squares, orthogonal Latin squares, Mutually orthogonal
Latin squares, orthogonal arrays, until reaching the Covering arrays. The primary
combinatorial object that we will examine from now on is the covering array. We
will discuss both uniform and mixed level arrays because our goal is to build real
test suites. In the next chapter we will describe the relevant related work to the
construction of covering arrays.
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Chapter 3

State of the Art

Because of the importance of the construction of (near) optimal covering arrays,
much research has been carried out in developing effective methods for constructing
them. In this chapter we describe the relevant related work to the construction
of covering arrays. Section 3.1 presents the computational complexity of the CAC
problem. There are several reported methods for constructing these combinatorial
models. Among them are:

1. Algebraic methods, see Section 3.2

2. Recursive methods, see Section 3.3

3. Greedy methods, see Section 3.4

4. Metaheuristic methods, see Section 3.5

Some of the algorithms used to solve the CAC problem are approximated, meaning
that rather than constructing optimal covering arrays, they construct matrices of
size close to that value. Section 3.7 presents a methodology to verify a given
matrix as a covering array.

3.1 Computational complexity

There are a variety of computational problems that can be solved in polynomial
time, others can only be solved in exponential time; algorithms that do not run in
polynomial time are considered infeasible. The difficulty of problems are classified
into complexity classes. P is the class of all problems that can be solved by a de-
terministic Turing machine in polynomial time, where the polynomial time bound
is a function of the input size. NP is the class of (decision) problems for which
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Chapter 3. State of the Art

solutions to the given input instance can be guessed and verified in polynomial
time. In other words, problems in NP can be solved by a nondeterministic Turing
machine in polynomial time.

Concerning the complexity of the CAC problem, Lei and Tai (1998) showed that
the construction of optimal covering arrays is an NP-complete problem. Recently
Lawrence et al. (2011) showed the proof presented by Lei and Tai (1998) is erro-
neous; since the “pair-cover problem” as described in that paper fails to match up
correctly with the problem of finding strength t = 2 covering arrays. Therefore,
the problem of determining the NP-completeness of the covering arrays construc-
tion problem in the general case, is still open. However, there exist certain closely
related problems which are NP-complete (Seroussi and Bshouty, 1988; Colbourn,
2004; Cheng, 2007), suggesting that the covering arrays construction problem is a
hard combinatorial optimization problem.

Due to the complexity of the problem, most of the algorithms are approximate,
as meaning that they find a solution in a reasonable time, but not necessarily the
optimal solution.

3.2 Algebraic methods

Algebraic methods construct covering arrays in polynomial time using predefined
rules. Some algebraic approaches compute covering arrays directly using some
mathematical functions or other algebraic procedures. There exist only some spe-
cial cases where it is possible to find the covering array number using polynomial
order algorithms.

3.2.1 Constructing optimal covering arrays within polynomial
time

Bush construction

Bush (1952) presented a generalization of the concept of a set of orthogonal Latin
squares, called orthogonal arrays of index unity. In his paper Bush introduced a
very ingenious procedure for constructed these arrays. It employs a special class
of polynomials which have coefficients in the finite GF (v), where v = pα is a prime
or a power of prime and v > t. Theorem 1 ensures the existence of orthogonal
arrays with v + 1 columns when v is a prime power.
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3.2 Algebraic methods

Let v = pα be a prime power with v > t. Then OAN(t, k, v) = vt for all
k ≤ v + 1.

Theorem 1 (Bush (1952)).

The resulting orthogonal arrays of index unity are equivalent to covering arrays
of size N = vt, strength t ≥ 2 and degree k = v + 1. Section 3.6 will present an
efficient implementation for this construction, based on the use of logarithm tables
for Galois Fields.

Case: t = v = 2

Rényi (1971) determined sizes of covering arrays for the case t = v = 2 when N is
even. Kleitman and Spencer (1973) and Katona (1973) independently determined
covering array numbers for all N when t = v = 2. The construction is straightfor-
ward. It specifies that given N , in order to build a CA(N ; t, k, v) with maximum
k, it forms a matrix in which the columns consist of all distinct binary N -tuples
of weight ⌈N2 ⌉ that have a 0 in the first position. Theorem 2 guarantees that this
is a covering array, and gives a maximum k.

Let k be a positive integer, then

CAN(t, k, v) = min

{

N :

(
N − 1

⌈N2 ⌉

)}

≥ k.

Theorem 2 (Kleitman and Spencer (1973); Katona (1973)).

3.2.2 Group construction of covering arrays

Chateauneuf and Kreher (2002) introduced a new method to construct covering
arrays of strength three. This construction uses the structure of covering arrays
and the repetition in covering arrays. The idea is to construct a covering array
from a small array, a starter vector and a group. This construction builds the
covering array column by column by considering the group acting on the columns
of the starter vector. In some cases a small array will be appended to complete the
covering array. However, they do not show a concrete strategy on how to obtain
both the starter vector or the group acting. Meagher and Stevens (2005) extended
the idea of Chateauneuf and Kreher (2002), presenting a strategy for obtaining
the starter vector by local search and the selection of a group action.
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Chapter 3. State of the Art

This construction involves selecting a subgroup of the symmetric group on k ele-
ments, G < Symv, and finding a starter vector, α ∈ Z

k
v , the starter vector depends

on the group G. The vector is used to form a Cyclic Matrix Z. The group acting
on the matrix Z produces several arrays which are concatenated to form a cover-
ing array Z. Often it will be necessary to add a small matrix, S, to complete the
covering conditions.

Using this construction, if there is an initial vector Z, with respect to the action
of the group G, then it can construct a CA(k(v − 1) + 1; 2, k, v).

Figure 3.1 shows an example of how this construction works. Let G = {e, (12)} <
Sym3 and α = {0, 1, 1, 1, 2} ∈ Z

5
3. Construct the cyclic matrix X (Figure 3.1(a))

taking α as the first row. The elements of G acting on the matrix X produce
the arrays shown in Figure 3.1(b). The small vector S = {0, 0, 0, 0, 0} is needed
to ensure the coverage of all pairs. From this, a CA(11; 2, 5, 3) is construct by
juxtaposing the arrays S, X and X(1,2), see Figure 3.1(c).

(a)

X =









0 1 1 1 2
2 0 1 1 1
1 2 0 1 1
1 1 2 0 1
1 1 1 2 0









(b)

Xe =









0 1 1 1 2
2 0 1 1 1
1 2 0 1 1
1 1 2 0 1
1 1 1 2 0









X(12) =









0 2 2 2 1
1 0 2 2 2
2 1 0 2 2
2 2 1 0 2
2 2 2 1 0









(c)

Z =





















0 0 0 0 0
0 1 1 1 2
2 0 1 1 1
1 2 0 1 1
1 1 2 0 1
1 1 1 2 0
0 2 2 2 1
1 0 2 2 2
2 1 0 2 2
2 2 1 0 2
2 2 2 1 0





















Figure 3.1: Example of the construction of covering arrays using the group construc-

tion. (a) Circular matrix X constructed from the initial vector α = {0, 1, 1, 1, 2} as
the first row; (b) The elements of G acting on X produce Xe and X(12); (c) Z is the
CA(11; 2, 5, 3) constructed using the group construction.

Finally, Lobb et al. (2012) presented a generalization of this method to permit
any number of fixed points, permit an arbitrary group acting on the symbols, and
permit an arbitrary group acting on the columns. With all these generalizations
were obtained new bounds for covering arrays of strength two.
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3.2 Algebraic methods

3.2.3 Constant weight vectors

Tang and Woo (1983) used constant weight vectors to construct test suites to be
applied to logic circuit testing. These test sets are equivalent to covering arrays.
A covering array can be formed by vectors of a particular set of weights.

Let a be a vector of size k, with entries from {0, 1, . . . , v− 1}. The weight
of a, denoted by w, is the sum of the values in the vector, see (3.1).

Definition 11.

w =

k−1∑

i=0

ai (3.1)

Table 3.1 shows the set of all vectors where v = 2, k = 5, w = 2.

Table 3.1: Binary vectors of size k = 5 and weight w = 2.

Cardinality Vectors

(
5

2

)

1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 1 0 0
0 1 0 1 0
0 1 0 0 1
0 0 1 1 0
0 0 1 0 1
0 0 0 1 1

Tang and Woo derive that to construct a CA(N ; t, k, v), it requires a set of vectors
T that contains all vectors v space, size k, weights w such that w ≡ c mod s, for
a constant c, where s = (n− k)(v − 1) + 1, 0 ≤ c ≤ k − t, and 0 ≤ w ≤ k(v − 1).

Thus, there are a total of k − t+ 1 solutions. Then, we must find which of these
solutions gives the set of vectors with lower cardinality, i.e., the lower value of N .

Table 3.2 gives an explicit example of this construction. In this example, to con-
struct a CA(N, 2, 4, 3), it obtains that s = (k − t)(v − 1) + 1 = 5. There are five
ternary covering arrays, one for each constant c for 0 ≤ c ≤ s − 1. The |T |min is
obtained when w ≡ 1 mod 5, then w takes values in {1, 6}. Therefore N = 14.
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Table 3.2 shows the two subsets of vectors for the weights 1 and 6 that construct
the CA(14, 2, 4, 3). N is optimal in the domain of the sets of constant weight
vectors, and is composed as follows: the number of vectors where w = 1 is 4, while
the number of vectors where w = 6 is 10.

Table 3.2: A CA(14; 2, 4, 3).

w Cardinality Vectors

1

(
4

1

)
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

6

(
4

1

)

+

(
4

2

)

2 2 2 0
2 2 0 2
2 0 2 2
0 2 2 2
2 2 1 1
2 1 1 2
1 1 2 2
1 2 2 1
2 1 2 1
1 2 1 2

This construction for the binary case gives the following upper bound (3.2):

|T |min =
2k

k − t+ 1
. (3.2)

Additionally, it is obtained that when t ≤ n/2, the smallest possible cardinality of
T is obtained directly with the sets of all vectors where w = ⌊t/2⌋ and t−⌊t/2⌋−1,
that is (3.3):

|T |min =

(
k

⌊t/2⌋

)

+

(
k

t− ⌊t/2⌋ − 1

)

. (3.3)

However, the values of N obtained from (3.3) are impractical in software testing
for large values of k and t, because the number of tests needed is very large.
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3.2.4 Using trinomial coefficients

Martinez-Pena and Torres-Jimenez (2010) introduced a new method for construct-
ing covering arrays using trinomial coefficients, they improves the results presented
by Tang and Woo (1983). They used the trinomial coefficients for the represen-
tation of the search space in the construction of ternary covering arrays. It is
clear that any covering array is formed by a row set. In this sense, a trinomial
coefficient represents a particular subset of rows which may belong to a ternary
covering array.

Let 0 ≤ a, b, c ≤ k, k = a + b + c and k ≥ 2, where k is the ternary
covering array degree. A candidate row subset ℜk

a,b,c is a collection of rows

obtained by the trinomial coefficient
(

k
a,b,c

)
and its cardinality is equal to

that coefficient. The candidate row subset is generated by evaluating all
combinations using 0a 1b 2c symbols, i.e., symbol 0 is used a times, symbol
1 is used b times and symbol 2 is used c times over a k-column row.

Definition 12.

The previous definition leads to the next theorem.

Let A be a set of k-th degree trinomial coefficients. For any strength
2 ≤ t ≤ k, a vertical concatenation of the row subsets generated by each
trinomial coefficient in A may construct any ternary covering array.

Theorem 3.

Let the strength and the degree of a required covering array equal q. Let Z be a
3q × q array. Adjoin the

(
q+2
2

)
trinomial coefficients of q-th degree in the set A.

For each element in A generate its candidate row subset and append it vertically
to Z. Then Z is an optimal CA(3q; q, q, 3).

We verify the result is a ternary covering array by looking into the definitions of
the trinomial theorem and of the candidate row subsets. The trinomial theorem
generates all possible trinomial coefficients of q-th degree. Remark that the sum
of all q-th degree trinomial coefficients is 3q. Hence if we transform each trinomial
coefficient of q-th degree into candidate row subsets we will be producing 3q dif-
ferent rows. These rows represent all the possible combinations that any N × q
subarray must contain. By definition, any CA(q, q, v) has only one subarray of size
q. Therefore, we have constructed an optimal ternary covering array of strength
q and degree q.
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Now, consider the constructed CA(3q; q, q, 3). The strength value in a covering
array is upper bounded by degree value. For any 2 ≤ s < q we automatically
derive a CA(3q ; s, q, 3). Then we can construct a ternary covering array of any
strength and any degree.

Figure 3.2 gives an explicit example of construction of a ternary covering arrays.
In this example, it constructs a CA(9; 2, 3, 3) by using a set A with 4 trinomial
coefficients. Figure 3.2(a) shows a table that describes each trinomial coefficient
in A and their corresponding candidate row subsets. Figure 3.2(b) displays the
array Z (the ternary covering array), which is composed of every row generated
by A.

(a)

A ℜk
a,b,c

(
3

3,0,0

)
0 0 0

(
3

0,3,0

)
1 1 1

(
3

0,0,3

)
2 2 2

0 1 2
1 2 0

(
3

1,1,1

)
2 0 1

0 2 1
1 0 2
2 1 0

(b)
















0 0 0
1 1 1
2 2 2
0 1 2
1 2 0
2 0 1
0 2 1
1 0 2
2 1 0

















Figure 3.2: Representation of a CA(9; 2, 3, 3) in trinomial coefficients. (a) The
candidate row subsets from trinomial coefficients. (b) The ternary covering array
created.
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3.3 Recursive methods

In this section we describe recursive constructions, these methods use small cov-
ering arrays as ingredients to construct larger instances.

3.3.1 Raise to a power the number of columns for any alphabet
and any strength

Hartman (2005) presented a recursive construction which gives a method of squar-
ing the number k of columns in a covering array of strength t while multiplying
the rows N by a factor dependent only on t and v, but independent of k. This
factor is related to the Turan numbers T (t, v) that are defined to be the number
of edges in the Turan graph. The Turan graph is the complete v-partite graph
with t-vertices, having b parts of size a+1, and v− b parts of size a = ⌊t/v⌋ where
b = t − va. Turan’s theorem states that among all t-vertex graphs with no v + 1
cliques, the Turan graph is the one with the most edges. This method constructs
a CA(N1(T (t, v) + 1); t, k2, v) Z from the below two ingredients:

1. A CA(N1; t, k, v) X

2. An OA(N2; 2, T (t, v) + 1, k) Y

If CAN(t, k, v) = N and there exist T (t, v) − 1 mutually orthogonal
Latin squares of side k (or equivalently CAN(2, k, T (t, v) + 1) = k2) then
CAN(t, k2; v) ≤ (T (t, v) + 1)N .

Theorem 4 (Squaring covering arrays (Hartman, 2005)).

The procedure is as follows, see Theorem 4. Let X be a CA(N ; t, k, v) and let
X i be the i-th column of X . Let Y be an orthogonal array of strength 2 with
T (t, v)+ 1 columns and entries from {1, 2, . . . , k}. We will construct a block array
Z with k2 columns and T (t, v) + 1 rows. Each element in Z will be a column of
X . Let XY be the block in the i-th row and j-th column of Z, see Figure 3.3.

If exists X = CA(N ; t, k, v), to raise to the power n the number of columns k,
should be possible to construct Y = CA(M ; s, l, r) with the following properties.

1. r must have the cardinality k

2. M = kn

3. s = n

4. l = (n− 1)× T (v, t) + 1
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(a) CA(N1; t, k, v)








X1 X2 . . . Xk









(b) OA(N2; 2, T (t, v) + 1, k)
















yij

















(c) CA(N1(T (t, v) + 1); t, k2, v)








zij = Xyji









Figure 3.3: The construction for Theorem 4.

(a) CA(4; 2, 3, 2)






0 0 0
0 1 1
1 0 1
1 1 0







(b) OA(9; 2, 2, 3)T

(
0 0 0 1 1 1 2 2 2
0 1 2 0 1 2 0 1 2

)

(c) CA(8; 2, 9, 2)














0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1
1 1 1 0 0 0 1 1 1
1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0
0 1 1 0 1 1 0 1 1
1 0 1 1 0 1 1 0 1
1 1 0 1 1 0 1 1 0















Figure 3.4: Example of the squaring covering arrays.

The procedure is similar to squaring. We will construct a block array Z with kn

columns and N × ((n− 1)× T (v, t)) + 1 rows.
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3.3.2 Products of covering arrays

Colbourn et al. (2006a) presented a product construction for t = 2. In general, the
product of two covering arrays where t = 2 consists in obtaining a new covering
array where the number of columns is equal to the product of the columns of
the ingredients, and the number of rows is equal to the sum of the rows of each
ingredient. The basic strategy of the product of covering arrays is described below.

When a covering array CA(N1; 2, k, v) and a covering array CA(N2; 2, ℓ, v) both
exist, it is an easy matter to construct a covering arrayCA(N1+N2; 2, kℓ, v). To be
specific, let X = (xij) be a CA(N1; 2, k, v) and let Y = (yij) be a CA(N2; 2, ℓ, v).
Form an (N1 + N2) × kℓ array Z = (zi,j) = X ⊗ Y by setting zi,(f−1)k+g = xi,g

for 1 ≤ i ≤ N1, 1 ≤ f ≤ ℓ, and 1 ≤ g ≤ k. Then set zN+i,(f−1)k+g = yi,f for
1 ≤ i ≤ N2, 1 ≤ f ≤ ℓ, and 1 ≤ g ≤ k. In essence, k copies of Y = (yij) are
being appended to ℓ copies of X = (xij) as shown in Figure 3.5. Since two different
columns of Z arise either from different columns ofX or from two different columns
of Y , the result is a covering array CA(N1 + N2; 2, kℓ, v). Figure 3.6 shows the
construction of the covering array CA(9; 2, 12, 2) using as ingredients the covering
arrays CA(5; 2, 4, 2) and CA(4; 2, 4, 2).

Z =

















x11 x12 . . . x1k x11 x12 . . . x1k . . . x11 x12 . . . x1k

x21 x22 . . . x2k x21 x22 . . . x2k . . . x21 x22 . . . x2k

...
... . . .

...
xN11 xN12 . . . xN1k xN11 xN12 . . . xN1k . . . xN11 xN12 . . . xN1k

y11 y11 . . . y11 y12 y12 . . . y12 . . . y1ℓ y1ℓ . . . y1ℓ
y21 y21 . . . y21 y22 y22 . . . y22 . . . y2ℓ y2ℓ . . . y2ℓ
...

... . . .
...

yN21 yN21 . . . yN21 yN22 yN22 . . . yN22 . . . yN2ℓ yN2ℓ . . . yN2ℓ

















Figure 3.5: Products of covering arrays, the structure of X ⊗ Y .

3.3.3 Roux type constructions

Sloane (1993) published a method which improved some elements of the work
reported in Roux (1987), see Theorem 5.

CAN(3, 2k, 2) ≤ CAN(3, k, 2) + CAN(2, k, 2).

Theorem 5 (Roux (1987)).
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(a) CA(5; 2, 4, 2)








1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1
0 0 0 0









(b) CA(4; 2, 3, 2)






1 1 0
1 0 1
0 1 1
0 0 0







(c) CA(9; 2, 12, 2)
















1 1 1 0 1 1 1 0 1 1 1 0
1 1 0 1 1 1 0 1 1 1 0 1
1 0 1 1 1 0 1 1 1 0 1 1
0 1 1 1 0 1 1 1 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0

















Figure 3.6: Products of covering arrays of strength two.

Z =











X X

Y Ȳ











X is a strength 3 covering array, 2 levels per factor.
Y is a strength 2 covering array, 2 levels per factor.
Z is a strength 3 covering array.

Figure 3.7: Original Roux construction.

This procedure constructs a CAN(3, 2k, 2) by combining two covering arrays with
the following characteristics: CA(N3; 3, k, 2) and CA(N2; 2, k, 2). It starts by ap-
pending CA(N2; 2, k, 2) to a CA(N3; 3, k, 2), which results into a (N3 + N2) × k
array. Then this array is copied below itself, producing a (N3 + N2) × 2k array.
Finally, the copied strength two array is replaced by its bit-complement array
(i.e., switch 0 to 1 and 1 to 0). Figure 3.7 is an illustration of this construc-
tion. Figure 3.8 shows the construction of the covering CA(13; 3, 8, 2) using as
ingredients the covering arrays CA(8; 3, 4, 2) and CA(5; 2, 4, 2).

Theorem 6 proves a generalization of the Roux construction. It begins by placing
two CA(N3; 3, k, v)s side by side. We need a Y covering array CA(N2; 2, k, v) and
a set π, where π is a cyclic permutation of the v symbols. Then for 1 ≤ i ≤ v− 1,
we append N2 rows consisting of Y and πi(C) placed side by side. Figure 3.9
illustrates this construction. Figure 3.10 shows the construction of the covering
array CA(45; 3, 8, 3) using as ingredients the covering arrays CA(27; 3, 4, 3) and
CA(9; 2, 4, 3).
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(a) CA(8; 3, 4, 2)














0 0 0 0
1 1 1 1
0 1 1 0
1 1 0 0
1 0 0 1
0 0 1 1
1 0 1 0
0 1 0 1















(b) CA(5; 2, 4, 2)








1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1
0 0 0 0









(c) CA(8 + 5; 3, 2× 4, 2)
























0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
0 1 1 0 0 1 1 0
1 1 0 0 1 1 0 0
1 0 0 1 1 0 0 1
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 1 1 0 0 0 0 1
1 1 0 1 0 0 1 0
1 0 1 1 0 1 0 0
0 1 1 1 1 0 0 0
0 0 0 0 1 1 1 1

























Figure 3.8: An example of the Roux construction. (a) Shows a CA(8; 3, 4, 2). (b)
Shows a CA(5; 2, 4, 2). (c) Shows the CA(13; 3, 2, 2) resulting from the Roux construc-
tion.

CAN(3, 2k, v) ≤ CAN(3, k, v) + (v − 1)CAN(2, k, v).

Theorem 6 (Chateauneuf and Kreher (2002)).

Z =



















X X

Y Y π1

Y Y π2

Y Y πv−1



















X is a CA(N3; 3, k, v).
Y is a CA(N2; 2, k, v) and π = {1, 2, . . . , v} is a cyclic permutation of the v symbols.
Z is a CA(N3 + (v − 1)N2; 3, 2k, v).

Figure 3.9: The construction for Theorem 6.

Cohen et al. (2008) generalized Theorem 6 to permit the number of factors to
be multiplied by l ≤ 2 rather than two, see Theorem 7; this is the k-ary Roux
construction. To carry this out, it requires another combinatorial object. Let Γ
be an Abelian group of order v, with ⊙ as its binary operation.
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(a) CA(27; 3, 4, 3)




















































0 0 0 0
1 1 1 0
2 2 2 0
0 1 2 0
1 2 0 0
2 0 1 0
0 2 1 0
1 0 2 0
2 1 0 0
0 1 1 1
1 2 2 1
2 0 0 1
0 2 0 1
1 0 1 1
2 1 2 1
0 0 2 1
1 1 0 1
2 2 1 1
0 2 2 2
1 0 0 2
2 1 1 2
0 0 1 2
1 1 2 2
2 2 0 2
0 1 0 2
1 2 1 2
2 0 2 2





















































(b) CA(9; 2, 4, 3)
















0 0 0 0
1 1 1 0
2 2 2 0
0 1 2 1
1 2 0 1
2 0 1 1
0 2 1 2
1 0 2 2
2 1 0 2

















(c) CA(27 + 2× 9; 3, 2× 4, 3)
























































































0 0 0 0 0 0 0 0
1 1 1 0 1 1 1 0
2 2 2 0 2 2 2 0
0 1 2 0 0 1 2 0
1 2 0 0 1 2 0 0
2 0 1 0 2 0 1 0
0 2 1 0 0 2 1 0
1 0 2 0 1 0 2 0
2 1 0 0 2 1 0 0
0 1 1 1 0 1 1 1
1 2 2 1 1 2 2 1
2 0 0 1 2 0 0 1
0 2 0 1 0 2 0 1
1 0 1 1 1 0 1 1
2 1 2 1 2 1 2 1
0 0 2 1 0 0 2 1
1 1 0 1 1 1 0 1
2 2 1 1 2 2 1 1
0 2 2 2 0 2 2 2
1 0 0 2 1 0 0 2
2 1 1 2 2 1 1 2
0 0 1 2 0 0 1 2
1 1 2 2 1 1 2 2
2 2 0 2 2 2 0 2
0 1 0 2 0 1 0 2
1 2 1 2 1 2 1 2
2 0 2 2 2 0 2 2
0 0 0 0 1 1 1 1
1 1 1 0 2 2 2 1
2 2 2 0 0 0 0 1
0 1 2 1 1 2 0 2
1 2 0 1 2 0 1 2
2 0 1 1 0 1 2 2
0 2 1 2 1 0 2 0
1 0 2 2 2 1 0 0
2 1 0 2 0 2 1 0
0 0 0 0 2 2 2 2
1 1 1 0 0 0 0 2
2 2 2 0 1 1 1 2
0 1 2 1 2 0 1 0
1 2 0 1 0 1 2 0
2 0 1 1 1 2 0 0
0 2 1 2 2 1 0 1
1 0 2 2 0 2 1 1
2 1 0 2 1 0 2 1

























































































Figure 3.10: An example of the Theorem 6. (a) Shows a CA(8; 3, 4, 2). (b) Shows a
CA(5; 2, 4, 2). (c) Shows the CA(13; 3, 2, 2) resulting from the Theorem 6 construction.

A Difference Covering Array (DCA) D = (dij) over Γ, denoted by
DCA(N,Γ; 2, k, v), is an N ×k array with entries from Γ having the prop-
erty that for any two distinct columns j and ℓ, {dij ⊙ d−1

iℓ |1 ≤ i ≤ N}
contains every non-identity element of Γ at least once. It denotes by
DCAN(2, k, v) the minimum N for which a DCA(N,Γ; 2, k, v) exists.

Definition 13 (Difference Covering Array).
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A Covering Ordered Design (COD) denoted by COD(N ; t, k, v) is anN×k
array such that every N × t subarray contains all non-constant t-tuples
from v symbols at least once. We denote by CODN(t, k, v) the minimum
N for which a COD(N ; t, k, v) exists.

Definition 14.

A QCA(N ; k, ℓ, v) is an N × k array with columns indexed by ordered
pairs from {1, . . . , k} × {1, . . . , ℓ}, in which whenever 1 ≤ i < j ≤ k and
1 ≤ a < b ≤ ℓ, the N×4 subarray indexed by the four columns (i, a), (i, b),
(j, b), (j, a) contains every 4-tuple (x, y, z, t) with x− t 6≡ y− z (mod v) at
least once. QCAN(k, ℓ, v) denotes the minimum number of rows in such
an array.

Definition 15.

CAN(3, kℓ, v) ≤ CAN(3, k, v) + CAN(3, ℓ, v) + CAN(2, ℓ, v) ×
DCAN(2, k, v).

Theorem 7.

To illustrate how this construction works, we suppose that all the following ingre-
dients exist:

1. A covering array CA(N1; 3, ℓ, v) W .

2. A covering array CA(N2; 3, k, v) X .

3. A covering array CA(N3; 2, ℓ, v) Y .

4. A difference covering array DCA(N4; 2, k, v) U .

The result is a CA(N1 +N2 +N4N3; 3, kℓ, v) Z, see Figure 3.11. Z is formed by
vertical juxtaposing three arrays, Z1 of size N1× kℓ, Z2 of size N2× kℓ, and Z3 of
size N4N3 × kℓ.

Z1 is produced as follows. In row r and column (i, j) of Z1 we place the entry in
cell (r, j) of W . Thus Z1 consists of k copies of W placed side by side.
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Z =



















Z1 =

{
k copies of W
N1 rows

Z2 =

{
ℓ copies of X
N2 rows

Z3 = N4N3 rows



















Figure 3.11: k-ary Roux construction.

Z2 is produced as follows. In row r and column (i, j) of Z2 we place the entry in
cell (r, i) of X . Thus Z2 consists of ℓ copies of the first column of X , then ℓ copies
of the second column, and so on.

To construct Z3, let D = (dij |i = 1, . . . , N4; j = 1 . . . , k) and F = (frs|r =
1, . . . , N3; s = 1, . . . , ℓ). Choose a cyclic permutation π on the v symbols of the
array. Then in row (i− 1)N4+ r and column (j, s) of Z3 place the entry πdij (frs).

Martirosyan and Colbourn (2005) proposed recursive methods which generalize
some Roux type constructions to produce a CAN(t, 2k, v) for any t ≥ 4 and
v ≥ 2. Some improvements to this procedure were presented later by Colbourn
et al. (2006b). The improved procedure permitted the authors to attain some of
the best-known bounds for binary covering arrays of strength four.

To describe how this construction works, we suppose that all the following ingre-
dients exist:

1. A covering array CA(N4; 4, k, v) C4.

2. A covering array CA(R4; 3, ℓ, v) B4.

3. A covering array DCA(S1; 2, ℓ, v) D1.

4. A difference covering array DCA(S2; 2, k, v) D2.

5. A covering ordered design COD(N3; 3, k, v) C3.

6. A covering ordered design COD(R3; 3, ℓ, v) B3.

7. A difference covering array QCA(M ; k, ℓ, v) G5.

It produces a covering array CA(N ′; 4, kℓ, v) G where N ′ = N4 + R4 + N3S1 +
R3S2 +M . G is formed by vertically juxtaposing arrays G1, G2, G3, G4, and G5.
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⊲ G1 of size N4× kℓ. In row r and column (f, h) place the entry in cell (r, f)
of C4. Thus G1 consists of ℓ copies of C4 placed side by side.

⊲ G2 of size R4 × kℓ. In row r and column (f, h) place the entry in cell (r, h)
of B4. Thus G2 consists of k copies of the first column of B4, then k copies
of the second column, and so on.

⊲ G3 of sizeN3S1×kℓ. Index theN3S1 rows by ordered pairs from {1, . . . , N3}×
{1, . . . , S1}. In row (r, s) and column (f, h) place cr,f + ds,h, where cr,f is
the entry in cell (r, f) of C3 and ds,h is the entry in cell (s, h) of D1.

⊲ G4 of sizeR3S2×kℓ. Index the S2R3 rows by ordered pairs from {1, . . . , S2}×
{1, . . . , R3}. In row (s, r) and column (f, h) place br,h + ds,f , where br,h is
the entry in cell (r, h) of B3 and ds,f is the entry in cell (s, f) of D2.

⊲ G5 of size M × kℓ.

3.4 Greedy methods

The majority of commercial and open source test data generating tools use greedy
algorithms for covering arrays construction (AETG, TCG, ACTS and DDA), the
greedy algorithms provide the fastest solving method.

3.4.1 Automatic Efficient Test Generator (AETG)

Cohen et al. (1996) presented a strategy called Automatic Efficient Test Genera-
tor (AETG). In AETG, covering arrays are constructed one row at a time. To
generate a row, the first t-tuple is selected based on the one involved in most un-
covered pairs. Remaining factors are assigned levels in a random order. Levels are
selected based on the one that covers the most new t-tuples. For each row that is
actually added to the covering array, there are a number, M , candidate rows that
are generated and only a candidate that covers the most new t-tuples is added to
the covering array. Once a covering is constructed, a number, R, of test suites are
generated and the smallest test suite generated is reported. This process continues
until all pairs are covered. Algorithm 1 shows the pseudocode of the AETG.

3.4.2 Test Case Generation (TCG)

Tung and Aldiwan (2000) proposed a tool called Test Case Generation (TCG). In
TCG, one row is added at a time to a covering array until all pairs are covered.
Before each row is added, a number of up to M candidate rows are generated and
the best candidate (covering the most new pairs) is added. M is defined to be the
maximum cardinality of factors (the maximum number of levels associated with
any factor). To construct each row, factors are assigned levels in an order based on
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Algorithm 1:AETG, Automatic Efficient Test Generator (Cohen et al., 1996).

1 begin
2 set MinArray to ∞
3 for i← 1 to R do
4 start with no tests in T
5 N ←∞
6 while there are uncovered t-tuples in T do
7 start with an empty test C and an empty test BestCandidate
8 for j ← 1 to M do
9 select the first pair that appears in the largest number of uncovered pairs

10 while free factors remain do
11 randomly select a factor f
12 select a level v that is in the largest number of uncovered pairs with

uniform factors
13 end while
14 if C covers more t-tuples than BestCandidate then
15 BestCandidate ← C
16 end if

17 end for
18 add test BestCandidate to T
19 N ← N + 1

20 end while
21 if T has N < MinArray tests then
22 MinArray ← N
23 BestArray ← T

24 end if

25 end for

26 end

a non-ascending order of the cardinality of each factor. Each level for the factor is
evaluated and a count of the number of pairs that are covered is used to determine
whether or not to select a level for a factor. Algorithm 2 shows pseudocode for
TCG.

3.4.3 Deterministic Density Algorithm (DDA)

Bryce and Colbourn (2007) presented an algorithm called Deterministic Density
Algorithm (DDA). The DDA constructs one row of a covering array at a time
using a steepest ascent approach. Factors are dynamically fixed one at a time in
an order based on density. New rows are continually added until all interactions
have been covered.

The main advantage of DDA over other one-row-at-a-time methods is that it
provides a worst-case logarithmic guarantee on the size N of the covering ar-
ray. In order to make the previous discussion precise, consider the pseudocode in
Algorithm 3. Four decisions must be made to instantiate this prototype:
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Algorithm 2: TCG, Test Case Generation (Tung and Aldiwan, 2000).

1 begin
2 start with no tests in T
3 sort factors in non-ascending order of cardinality
4 while there are uncovered t-tuples in T do
5 for i← 1 to M do
6 assign k0vi to k0

7 for j ← 1 to k − 1 do
8 select a level for ki that covers the largest number of uncovered t-tuples in

relation to uniform factors
9 break ties by selecting the least recently used level

10 end for

11 end for
12 add the candidate that covers the most uncovered t-tuples to T

13 end while

14 end

1. Factor density, the manner in which densities are computed for factors

2. Factor tie-breaking rule, what tie-breaking is done when two or more max-
imum densities for factors are equal

3. Level density, the manner in which densities are calculated for levels

4. Level tie-breaking rule, what tie-breaking is done when two or more maxi-
mum densities for levels are equal

Algorithm 3: DDA, Deterministic Density Algorithm (Bryce and Colbourn,
2007).

1 begin
2 start with empty test suite
3 while uncovered pairs remain do
4 compute factor density for each factor
5 initialize new test with all factors not fixed
6 while a factor remains whose level is not fixed do
7 select such a factor f with largest density, using a factor tie-breaking rule

8 compute level density for each level of factor f
9 select a level ℓ for f with maximum density using a level tie-breaking rule

10 fix factor f to level ℓ
11 recompute densities for each factor

12 end while
13 add test to test suite

14 end while

15 end
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3.4.4 In-parameter-order (IPO)

Lei and Tai (1998) introduced a new algorithm called In-Parameter-Order (IPO),
for pairwise testing. For a system with two or more input parameters, the IPO
strategy generates a pairwise test set for the first two parameters, extends the test
set to generate a pairwise test set for the first three parameters, and continues
to do so for each additional parameter. Contrary to many other algorithms that
build covering arrays one row at a time, the IPO strategy constructs them one
column at a time. The extension of a test set for the addition of a new parameter
includes the following two steps:

⊲ Horizontal growth, which extends each existing test by adding one value of
the new parameters

⊲ Vertical growth, which adds new tests, if necessary, after the completion of
horizontal growth

Assume that system S has parameters f1, f2, . . . , fn with n ≤ 2. Algorithm 4
shows IPO pseudocode for generating a pairwise test set T for S.

Algorithm 4: IPO, In-Parameter-Order (Lei and Tai, 1998).

1 begin
/* for the first two parameters f1 and f2 */

2 T ← {(v1, v2) | v1 and v2 are values of f1 and f2 respectively}
3 if n = 2 then
4 stop
5 end if

/* for the remaining parameters */

6 for fi ← 3 to n do
/* horizontal growth */

7 foreach test(v1, v2, . . . , vi−1) in T do
8 replace it with v1, v2, . . . , vi
9 where vi is a value of fi

10 end foreach
/* vertical growth */

11 while T does not cover all pairs between fi and each of f1, f2, . . . , fi−1 do
12 add a new test for f1, f2, . . . , fi to T
13 end while

14 end for

15 end

Lei et al. (2008) introduced an algorithm for the efficient production of cover-
ing arrays, called In-Parameter-Order-General (IPOG), which generalizes the IPO
strategy from pairwise testing to multi-way testing. The main idea is that cover-
ing arrays of k − 1 columns can be used to efficiently build a covering array with
degree k.
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In order to construct a covering array, IPOG initializes a vt × t matrix which
contains each of the possible vt distinct rows having entries from {0, 1, . . . , v− 1}.
Then, for each additional column, the algorithm performs two steps, called hori-
zontal growth and vertical growth. Horizontal growth adds an additional column
to the matrix and fills in its values, then any remaining uncovered t-tuples are
covered in the vertical growth stage. The choice of which rows will be extended
with which values is made in a greedy manner: it picks an extension of the matrix
that covers as many previously uncovered t-tuples as possible. Algorithm 5 shows
the pseudocode of the IPOG algorithm. The algorithm takes two parameters:

1. An integer t specifying the strength of coverage

2. A parameter set ps containing the input parameters and their values

The output of this algorithm is a t-way test set for the parameters in set ps.

Algorithm 5: IPOG, In-Parameter-Order-General (Lei et al., 2008).

Input: Strenght t and set ps containing the input parameters and their values
Output: A t-way test set for the parameters in set ps

1 begin
2 initialize test set ts to be an empty set
3 sort the parameters in set ps in a non-increasing order of their domain sizes, and denote

them as P1, P2, . . . , andPk

4 add into test set ts a test for each combination of values of the first t parameters
5 for i = t+ 1 to k do
6 let π be the set of all t-way combinations of values involving parameter Pi and any

group of (t− 1) parameters among the first i− 1 parameters
/* horizontal extension for parameter Pi */

7 for τ = (v1, v2, . . . , vi − 1 in test set ts do
8 choose a value vi of Pi and replace τ with τ ’ = (v1, v2, . . . , vi−1, vi) so that τ ’

covers the most number of combinations of values in π
9 remove from φ the combinations of values covered by τ ’

10 end for
/* vertical extension for parameter Pi */

11 for each combinations σ in set π do
12 if there exists a test τ in test set ts such that it can be changed to cover σ

then
13 change test τ to cover σ
14 else
15 add a new test to cover σ
16 end if

17 end for

18 end for
19 return ts

20 end

IPOG is currently implemented in a software package called Advanced Combi-
natorial Testing System (ACTS), which was written in Java. Even if IPOG is
a very fast algorithm for producing covering arrays it generally provides poorer
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quality results than other state-of-the-art algorithm like the algebraic procedures
proposed by Chateauneuf and Kreher (2002).

3.4.5 Building-Block Algorithm (BBA)

Ronneseth and Colbourn (2009) introduced a new algorithm for constructing cov-
ering arrays, the Building-Block Algorithm (BBA). The BBA’s fundamental idea
is to combine smaller covering arrays by reordering the rows and then to append
additional rows for the remaining uncovered pairs.

The BBA consists of four major steps:

1. Partition the k factors {f1, f2, . . . , fk} into ǫ factor groups {G1, G2, . . . , Gǫ}.
Let φ(Gi) denote the collection of numbers of levels in the factors of Gi.

2. For each 1 ≤ i ≤ ǫ, construct Mi, an MCA(ni; t, φ(Gi)) called a building
block for factor group Gi. All building blocks have the same strength as the
original covering array. Let η = max1≤i≤ǫni.

3. Construct a partial covering array, PMCA(η; t, k, (v1v2 . . . vk)), by combin-
ing the building blocks M1,M2, . . . ,Mǫ.

4. Complete the PMCA(N ; t, k, (v1v2 . . . vk)) by adding rows to cover the cross
pairs left uncovered.

Several decisions must be made. An algorithm must choose ǫ and the assignment
of the k factors to the ǫ factor groups. To construct the building blocks, an imple-
mentation of BBA may select any method (including applying itself recursively).
The most important decision is how the rows are reordered and combined. Re-
ordering can be done implicitly by selecting, for each factor group, an unused row
from the corresponding building block. To do this, it can treat the factor groups in
any order in order to select a row, and hence the algorithm must also determine in
what order to consider the factor groups. The building blocks are rarely the same
size, so the algorithm must decide, for building blocks Mi and Mj with ni > nj ,
how to combine rows in Mi with nonexistent rows in Mj after nj rows have been
fixed. If there are don not-care positions in the building blocks, the algorithm
must also decide how and when to fix them.

Finally, additional rows are appended to cover as yet uncovered cross pairs. Al-
gorithms that can complete a partial covering array are suitable, such as AETG,
DDA, and TCG. Indeed, heuristic search approaches such as simulated annealing,
tabu search, and hill climbing could complete the covering array. However, meth-
ods such as TConfig that generate an entire array, or IPO that adjoins factors,
seem unsuited to this task. The entire algorithm is summarized in Algorithm 6.
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Algorithm 6: BBA, Building-Block Algorithm (Ronneseth and Colbourn,
2009).

1 begin
2 Divide f1, f2, . . . , fk into ǫ factor groups G1, G2, . . . , Gk

3 for i← 1 to ǫ do
4 Compute Mi and mark all of its rows as unused
5 end for
6 while rows are unused in any building block do
7 Mark all factor groups free
8 for j ← 1 to ǫ do
9 Select free factor group f to fix

10 Select unused row from Mf to use

11 end for
12 Add newly created row to MCA

13 end while
14 Cover remaining uncovered tuples in MCA by adding additional test rows

15 end

3.4.6 Intersection Residual Pair Set Strategy (IRPS)

Younis et al. (2010) introduced a novel pairwise test data generation strategy called
Intersection Residual Pair Set Strategy (IRPS). The IRPS for generating pairwise
test data set takes the following steps:

1. Generates all pairs and stores them into compact linked list called Pi. For a
test set with k parameters, the Pi list contains (k−1) linked list. Each linked
list contains nodes equal to the number of values defined by its parameter as
well as an array of linked list that represents the pair of all other variables
in the next linked lists.

2. Searches the Pi list and takes the desired weight of the candidate case as a
test case then deletes it from the Pi list.

3. Repeats step 2 until the Pi list is empty.

The generated pairs are stored in compact linked list called Pi, which is a linked
list of linked lists. For a test set with k parameters, the Pi list contains (k − 1)
linked list. Each linked list contains nodes equal to the number of values defined
by its parameter as well as an array of linked list that represents the pair of all
other variables in the next linked lists.

To understand how the Pi list works, consider a system with t = 2, k = 4, and
v = 3, see Table 3.3. In this example, we have

(
4
2

)
32 = 54 possible pairs of

combinations.

Table 3.4 shows the Pi linked list. Node a0 with the pairs linked list array con-
tains the following pairs ({a0, b0}, {a0, b1}, {a0, b2},. . . , {a0, d2}). Here, this list

47



Chapter 3. State of the Art

Table 3.3: IRPS example for a system with t = 2, k = 4, and v = 3.

A B C D

a0 b0 c0 d0
a1 b1 c1 d1
a2 b2 c2 d2

contains only pairs that are based on a0. Similarly, the same observation can be
seen with other nodes in the lists.

Table 3.4: IRPS example, Pi linked list for storing combination pairs for a system
with t = 2, k = 4, and v = 3.

index

0 1 2
b0 bl b2 c0 c1 c2 d0 d1 d2

a0 c0 cl c2 b0 d0 d1 d2 c0
d0 dl d2
b0 b1 b2 c0 c1 c2 d0 d1 d2

a1 c0 c1 c2 b1 d0 d1 d2 c1
d0 d1 d2
b0 b1 b2 c0 c1 c2 d0 d1 d2

a2 c0 c1 c2 b2 d0 d1 d2 c2
d0 d1 d2

To describe the IRPS in detail, it is necessary to define a number of terminologies.
The weight of the candidate test case is defined as the number of pairs that are
covered by that candidate. For example, the test case combination of a0b0c0d0
covers the pairs ({a0, b0},{a0, c0},{a0, d0},{b0, c0},{b0, d0}, and {c0, d0}) and the
variables b0, c0, d0 in node a0, c0, d0 in node b0, and finally d0 in node c0, so its
weight = 6. The maximum weight, wmax, for k parameters can be calculated
by (3.4):

wmax =
k × (k − 1)

2
. (3.4)

Here, if k = 4, then wmax = 4 × 3/2 = 6. The miss variable is defined as the
difference between the maximum weight and the weight of the candidate test
case. The intersection of node in the list i with the list (i + 1) is defined as the
intersection between the node and all nodes given by the first row. IRPS constructs
a double linked list that stores the original i node and the intersection with the
second node in i + 1 list, as well as the rest of the nodes. If the first row in the
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pairs array is empty, the intersection process will be performed with all values of
the nodes in the next list and the miss variable is reduced by one (if miss > 0).
Otherwise, the intersection process will be terminated and the iteration moves to
the next node. The candidate test case is obtained by taking the node value in
each node in the double linked list. For the last node, the candidate test case
takes the current value and the first element in the pair array. The candidate test
case is taken as a test case only if its weight satisfies the desired weight criteria.
If not, the intersection process will continue with the other nodes in the list (by
deleting the last node in the double linked list and replace it with the intersection
with next node in the list, or when there is no next node in the list, the strategy
will delete the last two nodes and continue with the iteration). In other words,
the intersection process goes horizontally when the target weight is not found and
grows vertically in recursive fashion. Finally, the delete operation operates by
deleting each variable (if they exist) in each node. Table 3.5 shows the test set
constructed using the IRPS construction and the values from Table 3.3 and the
structure Table 3.4.

Table 3.5: IRPS example: the constructed test set.

No. Test case miss weight

1 a0 b0 c0 d0 0 6
2 a0 bl cl dl 0 6
3 a0 b2 c2 d2 0 6
4 a1 b0 c1 d2 0 6
5 a1 b1 c2 d0 0 6
6 a1 b2 c0 d1 0 6
7 a2 b0 c2 d1 0 6
8 a2 b1 c0 d2 0 6
9 a2 b2 c1 d0 0 6

3.5 Metaheuristic methods

Some stochastic algorithms in artificial intelligence, such as tabu search (Nurmela,
2004; Gonzalez-Hernandez et al., 2010), simulated annealing (Cohen et al., 2003),
genetic algorithms and ant colony optimization algorithm (Shiba et al., 2004) pro-
vide an effective way to find approximate solutions. In these algorithms, the
optimization focuses on one value of N at a time, attempting to find a covering
array for that size.
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3.5.1 Tabu search (TS)

Tabu Search (TS) metaheuristic is a local search optimization approach that copes
with different problems of combinatorial optimization. The TS was proposed by
Glover, 1986. The overall approach is to avoid entrainment in cycles by forbidding
or penalizing moves which take the solution, in the next iteration, to points in
the solution space previously visited (hence “tabu”). The TS method was partly
motivated by the observation that human behavior appears to operate with a
random element that leads to inconsistent behavior given similar circumstances.
As Glover points out, the resulting tendency to deviate from a charted course,
might be regretted as a source of error but can also prove to be source of gain.
The TS method operates in this way with the exception that new courses are
not chosen randomly. Instead the TS proceeds according to the supposition that
there is no point in accepting a new poor solution unless it is to avoid a path
already investigated. This insures new regions of a problems solution space will
be investigated in with the goal of avoiding local minima and ultimately finding
the desired solution.

The TS begins by marching to a local minima. To avoid retracing the steps used,
the method records recent moves in one or more tabu list. The original intent of
the list was not to prevent a previous move from being repeated, but rather to
insure it was not reversed. The tabu lists are historical in nature and form the
TS memory. The role of the memory can change as the algorithm proceeds. At
initialization the goal is make a coarse examination of the solution space, known
as “diversification”, but as candidate locations are identified the search is more
focused to produce local optimal solutions in a process of “intensification”. In
many cases the differences between the various implementations of the TS method
have to do with the size, variability, and adaptability of the TS memory to a
particular problem domain.

TS has been used successfully by Nurmela (2004) for finding covering arrays. This
algorithm starts with an N × k randomly generated matrix that represents a
potential covering array. The number of uncovered t-tuples is used to evaluate the
cost of a candidate solution (matrix)2. Next an uncovered t-tuple is selected at
random and the rows of the matrix are searched to find those that require only the
change of a single element in order to cover the selected t-tuple. These changes,
called moves, correspond to the neighboring solutions of the current candidate
solution. The variation of cost corresponding to each such move is calculated
and the move having the smallest cost is selected, provided that the move is not
tabu. If there are several equally good non-tabu moves, one of them is randomly
chosen. Then another uncovered t-tuple is selected and the process is repeated
until a matrix with zero cost (a covering array) is found or a predefined maximum
number of moves is reached. The tabu condition prevents changing an element of
the matrix, if it has been changed during the last T moves. This feature prevents
looping and increases the exploration capacity of the algorithm.
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The results have demonstrated that Nurmela’s TS implementation is able to
slightly improve some previous best-known solutions. However, an important
drawback of this algorithm is that it consumes considerably much more com-
putational time than any of the previously presented algorithms.

Walker II and Colbourn (2009) presented another TS implementation for covering
arrays construction. It employs a compact representation of covering arrays based
on permutation vectors and Covering Perfect Hash Families (CPHF) (Seroussi
and Bshouty, 1988) in order to reduce the size of the search space. Using this
algorithm, improved covering arrays of strengths three to five have been found, as
well as the first arrays of strength six and seven found by computational search.

Gonzalez-Hernandez et al. (2010) proposed a TS approach to construct MCA. The
key features of their TS implementation are: the use of mixture of three neigh-
borhood functions to create neighbors, an efficient calculation of the objective
function and a novel initialization function. Given that the performance of TS
depends on the values of the probabilities assigned, they presented a fine tuning of
the probabilities configurations based on a complete test set of discretized prob-
abilities. The evaluation function C(s) of a solution s is defined as the number
of combination of symbols missing in the matrix M . Then, the expected solution
will be zero missing. The pseudocode of their TS is shown in Algorithm 7. In
this algorithm the function F (s, ρ1, ρ2, ρ3) makes a roulette-wheel selection with
the values ρ1, ρ2, ρ3; the result will indicate which neighborhood function will be
used to create a neighbor. The function NumEvalRequired(s, ρ1, ρ2, ρ3) will de-
termine the number of evaluations performed by the neighborhood function used
by F (s, ρ1, ρ2, ρ3) to create a new neighbor.

Algorithm 7: MiTS, Tabu Searh for constructing mixed covering arrays
(Gonzalez-Hernandez et al., 2010).

1 begin
2 s← s0
3 sbest ← s
4 while C(sbest) > 0 and e < E do
5 s’ ← F (s, ρ1, ρ2, ρ3)
6 if C(s’) ¡ C(sbest) then
7 sbest ← s’
8 end if
9 if NotInTabuList(s’) then

10 s← s′

11 UpdateTebuList(s, s’)

12 end if
13 e← NumEvalRequired(s, ρ1, ρ2, ρ3)

14 end while

15 end

51



Chapter 3. State of the Art

Their TS approach was compared against IPOG using a benchmark taken from
the literature. Their TS implementation improved the size of the matrices in
comparison with the ones constructed by IPOG, finding the optimal solution in
all the cases considered.

3.5.2 Ant colony optimization (ACO)

Ant Colony Optimization (ACO) is a metaheuristic algorithm for the approximate
solution of combinatorial optimization problems that has been inspired by the for-
aging behavior of real ant colonies proposed by Dorigo et al. (1996). The structured
behavior of an ant colony is possible by a chemical substance called pheromone,
which establish the best possible route from the colony to their food source. Real
ants are capable of finding the shortest trajectory from a food source to their
nest, without using visual cues by exploiting pheromone information. While walk-
ing, ants deposit pheromone on the ground, and follow, in probability, pheromone
previously deposited by other ants.

The computational method follows the ant behavior by giving more pheromone to
better solutions. Shiba et al. (2004) proposed the ACO to generate test cases using
a one-test-at-a-time approach. In their algorithm a test case can be represented as
a route from a starting point to the final objective. A given amount of ants start
their travel to the final objective. Each time an ant reach to its final objective, it
deposits a certain quantity of pheromone to each point visited. When a new ant
starts, it will prefer those points where the scent of the pheromone is stronger.

3.5.3 Simulated annealing (SA)

Simulated Annealing (SA) is a general-purpose stochastic optimization method
that has proven to be an effective tool for approximating globally optimal solutions
to many types of NP-hard combinatorial optimization problems.

SA is a randomized local search method based on the simulation of annealing of
metal. The acceptance probability of a trial solution is given by (3.5), where T is
the temperature of the system, ∆E is the difference of the costs between the trial
and the current solutions (the cost change due to the perturbation), (3.5) means
that the trial solution is accepted by nonzero probability e(−∆E/T ) even though
the solution deteriorates (uphill move).

(P ) =

{
1 if∆E < 0

e(−
∆E
T

) otherwise
(3.5)

Uphill moves enable the system to escape from the local minima; without them,
the system would be trapped into a local minimum. Too high of a probability
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for the occurrence of uphill moves, however, prevents the system from converging.
In SA, the probability is controlled by temperature in such a manner that at
the beginning of the procedure the temperature is sufficiently high, in which a
high probability is available, and as the calculation proceeds the temperature is
gradually decreased, lowering the probability (Jun and Mizuta, 2005).

Stardom (2001) made a study of different metaheuristics including SA, TS and
Genetic Algorithms (GA). He used a matrix of size N×k to represent the solution.
His comparisons suggest that the SA algorithm was the best option to solve the
CAC problem. Besides the quality of the obtained covering arrays are frequently
optimal or near optimal, the output result from a SA algorithm depends directly
on the selected number of rows. This is, the SA algorithm needs the parameter
N for the required covering array to be searched. An extensive search must be
performed for looking the best value for parameter N if that parameter is not set
as an input parameter to the SA algorithm.

A SA metaheuristic has been applied by Cohen et al. (2003) for constructing
covering arrays. Their SA implementation starts with a randomly generated initial
solution M which cost E(M) is measured as the number of uncovered t-tuples.
A series of iterations is then carried out to visit the search space according to
a neighborhood. At each iteration, a neighboring solution M ′ is generated by
changing the value of the element mi,j by a different legal member of the alphabet
in the current solutionM . The cost of this iteration is evaluated as ∆E = E(M ′)−
E(M). If ∆E is negative or equal to zero, then the neighboring solution M ′ is
accepted. Otherwise, it is accepted with probability P (∆E) = e−∆E/Tn , where
Tn is determined by a cooling schedule. In their implementation, Cohen et al.
use a simple linear function Tn = 0.9998Tn−1 with an initial temperature fixed at
Ti = 0.20. At each temperature, 2000 neighboring solutions are generated. The
algorithm stops either if a valid covering array is found, or if no change in the cost
of the current solution is observed after 500 trials. The authors justify their choice
of these parameter values based on some experimental tuning. They conclude
that their SA implementation is able to produce smaller covering arrays than
other computational methods, sometimes improving upon algebraic constructions.
However, they also indicate that their SA algorithm fails to match the algebraic
constructions for larger problems, especially when t = 3.

Cohen et al. (2008) presented a hybrid metaheuristic called Augmented Anneal-
ing. It employs recursive and direct combinatorial constructions to produce small
building blocks which are then augmented with a simulated annealing algorithm
to construct a covering array. This method has been successfully used to con-
struct covering arrays that are smaller than those created by using their simple
SA algorithm (Cohen et al., 2003).
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Martinez-Pena et al. (2010) propose a SA algorithm for the construction of ternary
covering arrays using a trinomial coefficient representation. This algorithm imple-
ments the following key features:

1. A novel representation of the search space using trinomial coefficients.

2. A mixture of neighborhood functions. A set of four neighborhood functions
were implemented. They were able to form the ternary covering arrays by
exploring and exploiting diverse zones of the search space.

3. An evaluation function that guides the search process. The evaluation func-
tion measures the number of missing combinations and the quality of the
solution.

In order to provide a good global performance of the SA algorithm, they followed
a fine tuning methodology for optimizing the assigned probabilities of execution
for each of the four neighborhood functions using a linear Diophantine equation.
The results obtained with this algorithm show that the best values of N were
given by this SA implementation than the IPOG algorithm for all the instances
CA(t, t + 1, 3) and CA(t, t + 2, 3). However, for a degree k ≥ t+ 3 the size of the
CA(t, k, 3) instances obtained through IPOG were better.

Rodriguez-Tello and Torres-Jimenez (2009) present a new Memetic Algorithm
(MA) designed to compute near-optimal solutions for the CAC. It incorporates
several distinguished features including an efficient heuristic to generate a good
quality initial population, and a local search operator based on a fine tuned simu-
lated annealing algorithm employing a carefully designed compound neighborhood.
From the data presented in this work the authors make the next observations: first,
the solution quality attained by the proposed MA is very competitive with respect
to that produced by the state-of-the-art techniques; second, in their experiment
the IPOG procedure returns poorer quality solutions than their MA in 19 out 20
benchmark instances. Indeed, IPOG produces covering arrays which are in average
73.16% worst than those constructed with a MA.

3.6 Construction of orthogonal arrays of index unity using

logarithm tables for Galois fields

A wide variety of problems found in computer science deals with combinatorial ob-
jects. Combinatorics is the branch of mathematics that deals with finite countable
objects called combinatorial structures. These structures find many applications
in different areas such as hardware and software testing, cryptography, pattern
recognition, computer vision, among others.
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Of particular interest in this section are the combinatorial objects called Orthogonal
Arrays(OAs). These objects have been studied given of their wide range of applica-
tions in the industry, Gopalakrishnan and Stinson (2006) present their applications
in computer science; among them are in the generation of error correcting codes
presented by (Hedayat et al., 1999; Stinson, 2004), or in the design of experiments
for software testing as shown by Taguchi (1994).

To motivate the study of the orthogonal arrays, it is pointed out their importance
in the development of algorithms for the cryptography area. There, orthogonal
arrays have been used for the generation of authentication codes, error correcting
codes, and in the construction of universal hash functions (Gopalakrishnan and
Stinson, 2006).

This section proposes an efficient implementation for the Bush’s construction
(Bush, 1952) of orthogonal arrays of index unity, based on the use of logarithm
tables for Galois Fields. This is an application of the algorithm of Torres-Jimenez
et al. (2011a). The motivation of this research work born from the applications of
orthogonal arrays in cryptography as shown by Hedayat et al. (1999). Also, it is
discussed an alternative use of the logarithm table algorithm for the construction
of cyclotomic matrices to construct covering arrays (Colbourn, 2010).

3.6.1 The Bush’s construction

The Bush’s construction is used to construct OA(vt; t, v + 1, v), where v = pn is
a prime power. This construction considers all the elements of the Galois Field
GF (v), and all the polynomials yj(x) = at−1x

t−1 + at−2x
t−2 + . . . + a1x + a0,

where ai ∈ GF (v). The number of polynomials yj(x) are vt, due to the fact that
there are v different coefficients per each of the t terms.

Let’s denote each element of GF (v) as ei, for 0 ≤ i ≤ v − 1. The construction of
an orthogonal array following the Bush’s construction is done as follow:

1. Generate a matrixM formed by vt rows and v + 1 columns;

2. Label the first v columns ofM with an element ei ∈ GF (v);

3. Label each row ofM with a polynomial yj(x);

4. For each cell mj,i ∈ M, 0 ≤ j ≤ vt − 1, 0 ≤ i ≤ v − 1, assign the value u
whenever yj(ei) = eu (i.e., evaluates the polynomial yj(x) with x = ei and
determines the result in the domain of GF (v)); and

5. Assign value u in cell mj,i, for 0 ≤ j ≤ vt − 1, i = v, if eu is the leading
coefficient of yj(x), i.e., eu = at−1 in the term at−1x

t−1 of the polynomial
yj(x).
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The constructed matrix M following the previous steps is an orthogonal array.
We point out in this moment that the construction requires the evaluation of the
polynomials yj(x) to construct the orthogonal array. The following subsection
describes the general idea of the algorithm that does this construction with an
efficient evaluation of these polynomials.

This section presented a survey of some construction reported in the scientific
literature that are used to generate orthogonal arrays. The following section will
present an algorithm for the generation of logarithm tables of finite fields.

3.6.2 Algorithm for the construction of logarithm tables of
Galois fields

In Barker (1986) a more efficient method to multiply two polynomials in GF (pn) is
presented. The method is based on the definition of logarithms and antilogarithms
in GF (pn). According with Niederreiter (1990), given a primitive element ρ of a
finite field GF (pn), the discrete logarithm of a nonzero element u ∈ GF (pn) is
that integer k, 1 ≤ k ≤ pn − 1, for which u = ρk. The antilogarithm for an
integer k given a primitive element ρ in GF (pn) is the element u ∈ GF (pn) such
that u = ρk. Table 3.6 shows the table of logarithms and antilogarithms for the
elements u ∈ GF (32) using the primitive element x2 = 2x+1; column 1 shows the
elements in GF (32) (the antilogarithm) and column 2 the logarithm.

Table 3.6: Logarithm table of GF (32) using the primitive element 2x+ 1.

Element u ∈ GF (pn) log2x+1(u)

1 0
x 1

2x+ 1 2
2x+ 2 3

2 4
2x 5

x+ 2 6
x+ 1 7

Using the definition of logarithms and antilogarithms inGF (pn), the multiplication
between two polynomials P1(x)P2(x) ∈ GF (pn) can be done using their logarithms
l1 = log(P1(x)), l2 = log(P2(x)). First, the addition of logarithms l1 + l2 is done
and then the antilogarithm of the result is computed.

Torres-Jimenez et al. (2011a) proposed an algorithm for the construction of loga-
rithm tables for Galois Fields GF (pn). The pseudocode is shown in Algorithm 8.
The algorithm simultaneously finds a primitive element and constructs the loga-
rithm table for a given GF (pn).
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Algorithm 8: BuildLogarithmTable(p,n), an algorithm for the construction
of logarithm tables for Galois fields GF (pn) (Torres-Jimenez et al., 2011a).

Input: A prime number p and a power n.
Output: L logarithm table.

1 begin
2 foreach ρ ∈ GF (pn)− 0 do
3 L ← ∅

4 P(x)← 1
5 k ← 0
6 while (P(x), k) 6∈ L and k < pn − 1 do
7 L ← L

⋃

(P(x), k)
8 k ← k + 1
9 P(x)← p · P(x)

10 end while
11 if k = pn − 1 then return ρ

12 end foreach
13 return L

14 end

Now, it follows the presentation of the core of this chapter, the efficient implemen-
tation of the Bush construction for orthogonal arrays, based on a modification of
the algorithm presented in this section.

3.6.3 Efficient construction of orthogonal arrays

The idea that leads to an efficient construction of orthogonal arrays through the
Bush’s construction relies on the algorithm proposed in (Torres-Jimenez et al.,
2011a). This algorithm computes the logarithm tables and the primitive element
of a given Galois Field GF (v). In this chapter, it is proposed an extension of this
algorithm such that it can be used in combination with the Bush’s construction to
efficiently construct orthogonal arrays of index unity. The result is an algorithm
that uses only additions and modulus operations to evaluate the polynomials yj(x).

Let’s show an example of this contribution. Suppose that it is wanted to construct
the OA(43; 3, 5, 4). This array has an alphabet v = pn = 22 = 4 and size 64 × 5.
To construct it, it is required the polynomial x + 1 as the primitive element of
GF (22), and the logarithm table shown in Table 3.7(a) (both computed using the
algorithm in (Torres-Jimenez et al., 2011a)). Table 3.7(b) is a modified version of
the logarithm table that contains all the elements ei ∈ GF (22) (this includes e0,
the only one which can not be generated by powers of the primitive element).

The following step in the construction of the orthogonal array is the construction
of the matrixM. For this purpose, firstly it is labeled its first v columns with the
elements ei ∈ GF (22); after that, the rows are labeled with all the polynomials of
maximum degree 2 and coefficients ej ∈ GF (22). Next, it is defined the integer
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Table 3.7: Logarithm table for GF (22), with primitive element x+ 1.

(a)

Power Polynomial in GF(22)

0 1
1 x
2 x+ 1

(b)

Element ei ∈ GF(22) Polynomial in GF(22)

e0 0
e1 1
e2 x
e3 x+ 1

value u for each cell mj,i ∈ M, where 0 ≤ j ≤ vt− 1 and 0 ≤ i ≤ v− 1, as the one
satisfying yj(ei) = eu. Finally, it is generated the values of cell mj,i, where the
column i = v, using the value of the leading coefficient of the polynomial yj(x), for
each 0 ≤ j ≤ vt− 1. Table 3.8 shows part of the construction of the OA(43; 3, 5, 4)
through this method.

During the definition of values eu, the polynomials yj(ei) must be evaluated. For
example, the evaluation of the polynomial y14 = e3x + e1 at value x = e2 yields
y14(e2) = e3x + e1 = e3 · e2 + e1 = e0. To obtain the result e0 it is necessary to
multiply the polynomials e3 and e2, and to add the result to e1. Here is where lies
the main contribution shown in this chapter, it is proposed to use the primitive
element and the logarithm table constructed by the algorithm in (Torres-Jimenez
et al., 2011a) to do the multiplication through additions. To do that they are used
equivalent powers of the primitive element of the elements ei ∈ GF (22) involved in
the operation, e.g. instead of multiplying (x+1)·(x) we multiply x2 ·x1. Then, the
sum of indices does the multiplication, and the antilogarithm obtains the correct
result in GF (22). For the case of x2 · x1 the result is x3 = x0 = e1. Finally, we
add this result to e1 to complete the operation (this yield the expected value e0).
Note that whenever and operation yields a result outside of the field, a modulus
operations is required.

The pseudocode for the construction of orthogonal arrays using the Bush’s con-
struction and the logarithm tables is shown in Algorithm 9. The logarithm and
antilogarithm table Li,j is obtained through the algorithm reported by Torres-
Jimenez et al. (2011a). After that, each element ei and each polynomial yj(x) in
GF (pn) are considered as the columns and rows ofM, the orthogonal array that
is being constructed. Given that the value of each cell mi,j ∈ M is the index
u of the element eu ∈ GF (pn) such that yj(ei) = eu, the following step in the
pseudocode is the evaluation of the polynomial yj(x). This evaluation is done by
determining the coefficient of each term ak ∈ yj(x) and its index, i.e., the value
of the element el ∈ GF (pn) that is the coefficient of ak, and then adding it to
i · d (the index of ei raised to the degree of the term ak). A modulus operation is
applied to the result to obtained v, and then the antilogarithm is used over v such
that the index it is able to get the value u of the element eu. Remember that the
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Table 3.8: Example of a partial construction of the OA(43; 3, 4, 5), using the Bush’s
construction.

M Elements of GF (22)

e0 e1 e2 e3
yj(x) Polynomial 0 1 x x + 1

0 e0 {u|y0(e0) = eu} {u|y0(e1) = eu} {u|y0(e2) = eu} {u|y0(e3) = eu} e0
1 e1 {u|y1(e0) = eu} {u|y1(e1) = eu} {u|y1(e2) = eu} {u|y1(e3) = eu} e0
2 e2 {u|y2(e0) = eu} {u|y2(e1) = eu} {u|y2(e2) = eu} {u|y2(e3) = eu} e0
3 e3 {u|y3(e0) = eu} {u|y3(e1) = eu} {u|y3(e2) = eu} {u|y3(e3) = eu} e0
4 e1x {u|y4(e0) = eu} {u|y4(e1) = eu} {u|y4(e2) = eu} {u|y4(e3) = eu} e0
5 e1x+ e1 {u|y5(e0) = eu} {u|y5(e1) = eu} {u|y5(e2) = eu} {u|y5(e3) = eu} e0
6 e1x+ e2 {u|y6(e0) = eu} {u|y6(e1) = eu} {u|y6(e2) = eu} {u|y6(e3) = eu} e0
7 e1x+ e3 {u|y7(e0) = eu} {u|y7(e1) = eu} {u|y7(e2) = eu} {u|y7(e3) = eu} e0
8 e2x {u|y8(e0) = eu} {u|y8(e1) = eu} {u|y8(e2) = eu} {u|y8(e3) = eu} e0
9 e2x+ e1 {u|y9(e0) = eu} {u|y9(e1) = eu} {u|y9(e2) = eu} {u|y9(e3) = eu} e0
10 e2x+ e2 {u|y10(e0) = eu} {u|y10(e1) = eu} {u|y10(e2) = eu} {u|y10(e3) = eu} e0
11 e2x+ e3 {u|y11(e0) = eu} {u|y11(e1) = eu} {u|y11(e2) = eu} {u|y11(e3) = eu} e0
12 e3x {u|y12(e0) = eu} {u|y12(e1) = eu} {u|y12(e2) = eu} {u|y12(e3) = eu} e0
13 e3x+ e1 {u|y13(e0) = eu} {u|y13(e1) = eu} {u|y13(e2) = eu} {u|y13(e3) = eu} e0
14 e3x+ e2 {u|y14(e0) = eu} {u|y14(e1) = eu} {u|y14(e2) = eu} {u|y14(e3) = eu} e0
15 e3x+ e3 {u|y15(e0) = eu} {u|y15(e1) = eu} {u|y15(e2) = eu} {u|y15(e3) = eu} e0
16 e1x

2 {u|y16(e0) = eu} {u|y16(e1) = eu} {u|y16(e2) = eu} {u|y16(e3) = eu} e1
17 e1x

2 + e1 {u|y17(e0) = eu} {u|y17(e1) = eu} {u|y17(e2) = eu} {u|y17(e3) = eu} e1
18 e1x

2 + e2 {u|y18(e0) = eu} {u|y18(e1) = eu} {u|y18(e2) = eu} {u|y18(e3) = eu} e1
19 e1x

2 + e3 {u|y19(e0) = eu} {u|y19(e1) = eu} {u|y19(e2) = eu} {u|y19(e3) = eu} e1
20 e1x

2 + e1x {u|y20(e0) = eu} {u|y20(e1) = eu} {u|y20(e2) = eu} {u|y20(e3) = eu} e1
21 e1x

2 + e1x+ e1 {u|y21(e0) = eu} {u|y21(e1) = eu} {u|y21(e2) = eu} {u|y21(e3) = eu} e1
22 e1x

2 + e1x+ e2 {u|y22(e0) = eu} {u|y22(e1) = eu} {u|y22(e2) = eu} {u|y22(e3) = eu} e1
23 e1x

2 + e1x+ e3 {u|y23(e0) = eu} {u|y23(e1) = eu} {u|y23(e2) = eu} {u|y23(e3) = eu} e1
24 e1x

2 + e2x {u|y24(e0) = eu} {u|y24(e1) = eu} {u|y24(e2) = eu} {u|y24(e3) = eu} e1
25 e1x

2 + e2x+ e1 {u|y25(e0) = eu} {u|y25(e1) = eu} {u|y25(e2) = eu} {u|y25(e3) = eu} e1
26 e1x

2 + e2x+ e2 {u|y26(e0) = eu} {u|y26(e1) = eu} {u|y26(e2) = eu} {u|y26(e3) = eu} e1
27 e1x

2 + e2x+ e3 {u|y27(e0) = eu} {u|y27(e1) = eu} {u|y27(e2) = eu} {u|y27(e3) = eu} e1
28 e1x

2 + e3x {u|y28(e0) = eu} {u|y28(e1) = eu} {u|y28(e2) = eu} {u|y28(e3) = eu} e1
29 e1x

2 + e3x+ e1 {u|y29(e0) = eu} {u|y29(e1) = eu} {u|y29(e2) = eu} {u|y29(e3) = eu} e1
30 e1x

2 + e3x+ e2 {u|y30(e0) = eu} {u|y30(e1) = eu} {u|y30(e2) = eu} {u|y30(e3) = eu} e1
31 e1x

2 + e3x+ e3 {u|y31(e0) = eu} {u|y31(e1) = eu} {u|y31(e2) = eu} {u|y31(e3) = eu} e1
...

...
...

...
...

algorithm BuildLogarithmTable simultaneously find the primitive element and
computes the logarithm and antilogarithm tables.

Note that in the pseudocode the more complex operation is the module between
integers, which can be reduced to shifts when GF (pn) involves powers of two.
This fact makes the algorithm easy and efficient for the construction of orthogonal
arrays, requiring only additions to operate, and modulus operations when the field
is over powers of primes different of two. After the construction of the orthogonal
array, the number of operations required by the algorithm are bounded by O(N ·t2),
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Algorithm 9: BuildOrthogonalArray(p,n), an algorithm for the construc-
tion of orthogonal arrays using the Bush’s construction and the logarithm tables
(Torres-Jimenez et al., 2012).

Input: A prime number p and a power n.
Output: An orthogonal arrayM.

1 begin
2 L ← BuildLogarithmTable(p, n)
3 M← ∅

4 foreach element ei ∈ GF (pn) do
5 c← i
6 foreach polynomial yj(x) ∈ GF (pn) do
7 r ← j
8 foreach term ak ∈ yj(x) do
9 d← GetDegree(ak)

10 l← GetIndexCoefficient(ak)
11 v ← (i · d+ l)mod(pn − 1)
12 s← Lv,1

13 end foreach
14 mr,c ← s

15 end foreach

16 end foreach
17 returnM

18 end

due to it requires t operations for the construction of an orthogonal array matrix
of size N × (t+ 1).

3.6.4 Efficient constructions of covering arrays

This section analyzes the case when Covering Arrays can be constructed from
cyclotomy by rotating a vector created from an orthogonal array (Colbourn and
Torres-Jimenez, 2010). It is another process that can be benefited from the pre-
viously constructed logarithm tables. The cyclotomy process requires the test of
different cyclotomic vectors for the construction of covering arrays. This vectors
can be constructed using the logarithm table. The remainder of this section gives
more details about the covering arrays and this construction process.

The trivial mathematical lower bound for a covering array is vt ≤ CAN(t, k, v),
however, this number is rarely achieved. Therefore determining achievable lower
bounds is one of the main research lines for covering arrays; this problem has been
overcome with the reduction of the known upper bounds. The construction of
cyclotomic matrices can help to accomplish this purpose.

The strategy to construct a cyclotomic matrix involves the identification of a good
vector starter. This task can be facilitated using the logarithm table derived from
a Galois field. The construction is simple. The first step is the generation of the
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logarithm table for a certain GF (pn). After that, the table is transposed in order
to transform it into a vector starter v. Then, by using all the possible rotations
of it, the cyclotomic matrix is constructed. Finally, the validation of the matrix is
done such that a covering array can be identified.
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Figure 3.12: Covering array where N = 9, t = 2, k = 4 and v = 3.

Figure 3.13 shows an example of a cyclotomic matrix.

(a) Vector Starter

0 0 1 1 0 0 0 0 0 0 1 1 0

(b) Cyclotomic matrix
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Figure 3.13: Example of a cyclotomic vector V , or a vector starter, and the cyclo-
tomic matrix formed with it. The matrix constitutes a CA(13; 2, 13, 2).

The pseudocode to generate the cyclotomic vector and construct the covering array
is presented in Algorithm 10. There, the algorithm BuildLogarithmTable(p,n)

is used to construct the table of logarithm and antilogarithms L, where the ith
row indicate the element ei ∈ GF (pn), and the column 0 its logarithm, and the
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column 1 its antilogarithm. The first step is the construction of the vector starter
V , which is done by transposing the logarithm table L∗,0, i.e., the first column
of L. After that, the cyclotomic matrix M is constructed by rotating the vector
starter pn times, each time the vector rotated will constituted a row ofM. Finally,
the cyclotomic matrixM must be validated as a covering array to finally return
it; one strategy to do so is the parallel algorithm reported by Avila-George et al.
(2010b).

Algorithm 10: BuildCoveringArray(p,n), an algorithm to generate a cy-
clotomic vector and then construct a covering array (Torres-Jimenez et al.,
2012).

Input: A prime number p and a power n.
Output: A covering arrayM.

1 begin
2 L ← BuildLogarithmTable(p, n)
3 foreach ei ∈ GF (pn) do
4 Vi ← Li,0

5 end foreach
6 foreach ei ∈ GF (pn) do
7 foreach ej ∈ GF (pn) do
8 k ← (i+ j)mod(pn)
9 mi,j ← Vk

10 end foreach

11 end foreach
12 if IsACoveringArray(M) then
13 returnM
14 else
15 return ∅

16 end if

17 end

For more details about this construction, the reader is referred to (Torres-Jimenez
et al., 2012).

3.7 Verification of covering arrays

Some of the algorithms used to solve the CAC problem are approximated, meaning
that rather than constructing optimal covering arrays, they construct matrices of
size close to that value. Some of these approximated strategies must verify that
the matrix they are building is a covering array. If the matrix is of size N × k
and the interaction is t, there are

(
k
t

)
different combinations which implies a cost

of O(N ×
(
k
t

)
) for the verification. For small values of t and v the verification of

covering arrays is overcame through the use of sequential approaches; however,
when we try to construct covering arrays of moderate values of t, v and k, the
time spent by those approaches is impractical. Then, the necessity of parallel or
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Grid strategies to solve the verification of covering arrays appears, for more details
please refer (Avila-George et al., 2010b; Avila-George et al., 2011; Avila-George
et al., 2012e).

A matrixM of size N × k is a CA(N ; t, k, v) if and only if every t-tuple contains
the set of combination of symbols described by {0, 1, . . . , v − 1}t. Avila-George
et al. (2010b) proposed a strategy that uses two data structures called P and J ,
and two injections between the sets of t-tuples and combinations of symbols, and
the set of integer numbers, to verify thatM is a covering array.

Let C = {c1, c2, . . . , c(kt)
} be the set of the different t-tuples. A t-tuple ci =

{ci,1, ci,2, . . . , ci,t} is formed by t numbers, each number ci,1 denotes a column of
the matrixM. The set C can be managed using an injective function f(ci) : C → I
between C and the integer numbers, this function is defined in (3.6):

f(ci) =

t∑

j=1

(
ci,j − 1

i+ 1

)

. (3.6)

Now, letW = {w1, w2, . . . , wvt} be the set of the different combination of symbols,
where wi ∈ {0, 1, . . . , v − 1}t. The injective function g(wi) : W → I is defined in
(3.7). The function g(wi) is equivalent to the transformation of a v-ary number
to the decimal system.

g(wi) =

t∑

j=1

wi,j · v
t−i. (3.7)

The inverse g−1(wi) is obtained using the same algorithm that maps a decimal
number to a v-ary numeric system.

The use of the injections represents an efficient method to manipulate the infor-
mation that will be stored in the data structures P and J used in the verification
process ofM as a covering array. The matrix P is of size

(
k
t

)
× vt and it counts

the number of times that each combination appears inM in the different t-tuples.
Each row of P represents a different t-tuple, while each column contains a different
combination of symbols. The management of the cells pi,j ∈ P is done through the
functions f(ci) and g(wj); while f(ci) retrieves the row related with the t-tuple
ci, the function g(wi) returns the column that corresponds to the combination of
symbol wi.

Table 3.9 shows an example of the use of the function g(wj) for the Covering Array
CA(9; 2, 4, 3) (shown in Figure 2.6(b)). Column 1 shows the different combination
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Table 3.9: Mapping of the set W to the set of integers using the function g(wj) in
CA(9; 2, 4, 3) shown in Figure 2.6(b).

W g(wi) I

w1 ={0,0} 0 · 31 + 0 · 30 0
w2 ={0,1} 0 · 31 + 1 · 30 1
w3 ={0,2} 0 · 31 + 2 · 30 2
w4 ={1,0} 1 · 31 + 0 · 30 3
w5 ={1,1} 1 · 31 + 1 · 30 4
w6 ={1,2} 1 · 31 + 2 · 30 5
w7 ={2,0} 2 · 31 + 0 · 30 6
w8 ={2,1} 2 · 31 + 1 · 30 7
w9 ={2,2} 2 · 31 + 2 · 30 8

of symbols. Column 2 contains the operation from which the equivalence is derived.
Column 3 presents the integer number associated with that combination.

The matrix P is initialized to zero. The construction of matrix P is direct from the
definitions of f(ci) and g(wj); it counts the number of times that a combination
of symbols wj ∈ W appears in each subset of columns corresponding to a t-tuple
ci, and increases the value of the cell pf(ci),g(wj) ∈ P in that number.

Table 3.10(a) shows the use of injective function f(ci). Table 3.10(b) presents the
matrix P of CA(9; 2, 4, 3). The different combination of symbols wj ∈ W are in
the first rows. The number appearing in each cell referenced by a pair (ci, wj) is
the number of times that combination wj appears in the set of columns ci of the
matrix CA(9; 2, 4, 3).

Table 3.10: Example of the matrix P resulting from CA(9; 2, 4, 3) presented in
Figure 2.6(b).

(a) Applying f(ci).

ci
index t-tuple f(ci)

c1 {1, 2} 0
c2 {1, 3} 1
c3 {1, 4} 3
c4 {2, 3} 2
c5 {2, 4} 4
c6 {3, 4} 5

(b) Matrix P .

g(wj)
f(ci) {0,0} {0,1} {0,2} {1,0} {1,1} {1,2} {2,0} {2,1} {2,2}

0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1

In summary, to determine if a matrixM is a covering array or not, the number of
different combinations of symbols per t-tuple is counted using the matrix P . The
matrix M will be a covering array if and only if the matrix P contains no zero
in it. Several approaches can be followed to implement this strategy to verify a
covering array. The traditional one is the sequential algorithm; one instruction at
a time. The other two approaches are parallel computing and Grid computing.
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These strategies use the data structures described in this section and are discussed
in the following subsections.

3.7.1 Sequential algorithm to verify covering arrays

Usually, the first programming model followed to solve a problem is the sequential
one. This section presents the implementation details of the sequential approach
to verify a covering array.

The Sequential Algorithm to Verify Covering Arrays (SAVCA) takes as input
a matrix M and the parameters N, k, v, t that describe the covering array that
M can be. Also, the algorithm requires the sets C and W and, without lost of
generality, the values Kl and Ku that represent the first and last t-tuple to be
verified. SAVCA outputs the total number of missing combinations in the matrix
M to be a covering array. The algorithm first counts for each different t-tuple ci
the times that a combination wj ∈ W is found in the columns ofM corresponding
to ci. After that, SAVCA calculates the missing combinations wj ∈ W in ci.
Finally, the algorithm transforms ci into ci+1, i.e., it determines the next t-tuple
to be evaluated.

Algorithm 11: SAVCA, sequential algorithm to verify a covering array (Avila-
George et al., 2010b).

1 t wise(MN,k, N, k, v, t,W , C,Kl,Ku)
Output: Number of missing combination of symbols

2 Miss← 0;
3 foreach J ∈ {ci|ci ∈ C,Kl ≤ i ≤ Ku} do
4 Covered← 0;
5 foreach wj ∈ W do
6 Pg(wj )

← Count(J, wj);

7 if Pg(wj)
> 0 then

8 Covered← Covered+ 1;
9 end if

10 end foreach
11 Miss←Miss+ vt − Covered;

12 end foreach
13 return Miss;

The pseudocode for SAVCA is presented in Algorithm 11. The matrixM can be
stored column-wise to allow a more efficient management of the memory. Instead
of completely allocating the matrix P in memory, SAVCA can manage it as a
single vector P of size vt and associate it with the current t-tuple analyzed, found
in vector J . Then, for each different t-tuple (lines 3 to 12) the algorithm performs
the following actions: counts the expected number of times a combination wj

appears in the set of columns indicated by J (line 6); then, the counter Covered
is increased in the number of different combinations with a number of repetitions
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greater than zero (line 8). After that, the algorithm calculates the number of
missing combinations (line 11). The algorithm ends when all the t-tuples ci, where
Kl ≤ i ≤ Ku, have been analyzed. SAVCA sets the values of Kl and Ku to 0 and
(
k
t

)
− 1, respectively. The t-tuples are generated in lexicographical order.

3.7.2 Parallel approach to verify covering arrays

Parallel computing has been an area of active research interest and application for
decades, mainly the focus of high performance computing, but it is now emerging
as the prevalent computing paradigm due to the semiconductor industry shift to
multi-core processors. As multi-core processors bring parallel computing to main-
stream customers, the key challenge in computing today is to make the transition
of sequential software to parallel software programming.

The main motivation is the idea that the verification problem is easily paralleliz-
able. To show that, four different parallel implementations were proposed; each
implementation was characterized by a distribution method of the workload among
the different available cores. The challenge that all the distribution methods must
confront was the designing of a workload distribution with a low communication
cost. This task was accomplished through the design of a strategy that calculates
the starting point for each core, given the set of t-tuples to be analyzed for the
problem.

According with the definition presented in Section 3.7 for the problem of verifying
a covering array, a matrix M is a covering array if and only if each t-tuple in C
contains all the symbol combinations derived from {0, 1, . . . , v−1}t. Given that the
symbol combination existing in a particular t-tuple does not affect other t-tuples,
a workload distribution with low communication cost for a parallel approach can
be achieved by uniformly distributing all the t-tuples in C among the available
cores (denoted by P). Following this way, the ith core must start the verification,

of the matrixM, at the t-tuple Kl = l · |C|P . Some of the different ways in which
the value of l can be defined resulted in the parallel implementations presented in
this section.

To make the distribution of work, it is necessary to calculate the initial point Kl

for each core. Therefore, a method to convert the scalar Kl to the equivalent
t-tuple is necessary . Based on an index i, Algorithm 12 determines the tuple
ci ∈ C in lexicographical order of the t-tuples. This algorithm is used once in
line 3 of Algorithm 11 to determine the first t-tuple and store it in the vector
J . Once the first t-tuple is identified, the following tuples are taken following the
lexicographical order. Algorithm 12 is of particular use when the initial t-tuple is
not c0.
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Algorithm 12: Get initial t-tuple (Avila-George et al., 2011).

1 getInitialTuple(k, t, ci)
Output: Initial t-tuple each core

2 Θ← i;
3 iK ← 1;
4 iT ← 1;

5 kint←
(

k−iK
t−iT

)

;

6 foreach i← 0; i < t; i← i+ 1 do
7 while Θ ≥ kint do
8 Θ← Θ− kint;
9 kint← (kint · ((k − iK)− (t− iT )))/(k − iK);

10 iK ← iK + 1;

11 end while
12 Ji ← iK − 1;
13 kint← (kint · (t − iT ))/(k − iK);
14 iK ← iK + 1;
15 iT ← iT + 1;

16 end foreach
17 return J

To explain the purpose of Algorithm 12, let’s consider the CA(9; 2, 4, 3) shown in
Figure 2.6(b). This covering array has as set C the elements found in column 1 of
Table 3.10(a). The algorithm getInitialTuple with input k = 4, t = 2, Kl = 3
must return J = {1, 4}, i.e., the values of the t-tuple c3. Algorithm 12 is optimized
to find the vector J = {J1, J2, . . . , Jt} that corresponds to Kl. The value Ji is
calculated according to

Ji = min
j≥1






∆i ≤

j
∑

l=Ji−1+1

(
k − l

t− i

)






where

∆i = Kl −
i−1∑

m=1

Jm−1∑

l=Jm−1+1

(
k − l

t−m

)

and
J0 = 0.

The following paragraphs describe in detail the four proposed implementations.

Static Assignment of Tasks to Workers Approach (SATWA). This strategy is
simple, it uses a master-worker scheme with a coarse-grain static distribution.
Here, the set C is divided into P − 1 blocks, one block for each worker. The size of
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each block, i.e., the number of t-tuples to be analyzed by each worker, is defined
according to (3.8).

B =

⌈
C

P − 1

⌉

. (3.8)

Algorithm 13 shows the pseudocode corresponding to the strategy SATWA. One
of the cores is the master, and it must distribute the workload among the rest of
the cores, i.e., the workers. In line 3, it determines the size for each block. The
distribution of the work is done from lines 4 to 7. Finally, the results from each
worker are obtained from lines 8 to 11. Summarizing, in this parallel implemen-
tation, each worker counts the number of symbol combinations missing in each of
its t-tuples, and reports it to the master, which finally sums up all of them and
reports as the final result.

Algorithm 13: SATWA, static assignment of tasks to workers approach
(Avila-George et al., 2012e).

Input: An arrayM of size N × k with alphabet v and strength t, the set of the different
combination of symbols W , the set of different t-tuples C, the number of cores P.

Output: miss, the number of missing combination of symbols
1 begin
2 if MASTER then

3 B ← ⌈ C
P−1
⌉, miss← 0

4 for i← 0 to i < P − 1 do
5 Kl ← Pi × B, Ku ← Kl + B
6 send task(Kl,Ku) to WORKER Pi

7 end for
8 for i = 1 to i < P do
9 receive partial miss from any WORKER

10 miss← miss+ partial miss

11 end for

12 else
13 receive task(Kl,Ku) from MASTER
14 partial miss← t wise(M, N, k, v, t,W , C,Kl,Ku)
15 send partial miss to MASTER

16 end if

17 end

Dynamic Assignment of Tasks to Workers Approach (DATWA). This strategy
uses a fine-grain dynamic distribution of the workload. It also follows a master-
worker scheme, and defines the size of each block according to (3.9). DATWA
uses blocks of t-tuples of smaller size than those used by SATWA, improving the
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balance in the workload among the workers but increasing the communication with
the master:

B =

⌈
C

(P − 1)× t× v

⌉

. (3.9)

Algorithm 14 shows the pseudocode corresponding to the DATWA strategy. Ini-
tially, in line 2, the size of each block B is compute, and every worker is assigned a
block of t-tuples according with their rank (see lines 15 to 21). Then, the master
computes the first subset of t-tuples that is pending to be processed (line 4), and
after that if waits for an available worker to assign it (lines 5 to 9). The algorithm
iterates the assignment of pending blocks of t-tuples, until all of them have been
processed. Finally, the master joins the results coming from each worker to count
the total number of missing symbol combinations (lines 10 to 13).

Algorithm 14: DATWA, dynamic assignment of tasks to workers approach
(Avila-George et al., 2012e).

Input: An arrayM of size N × k with alphabet v and strength t, the set of the different
combination of symbols W , the set of different t-tuples C, the number of cores P

Output: miss, the number of missing combination of symbols
1 begin

2 B ← ⌈ C
(P−1)×t×v

⌉

3 if MASTER then
4 Kl ← P × B, Ku ← Kl + B, miss← 0
5 repeat
6 receive requests for task from any WORKER
7 send task(Kl,Ku) to WORKER Pi

8 Kl ← Kl + B, Ku ← Kl + B

9 until Kl < C;
10 for i = 1 to i < P do
11 receive partial miss from any WORKER
12 miss← miss+ partial miss

13 end for

14 else
15 Kl ← Pi × B, Ku ← Kl + B, partial miss← 0
16 repeat
17 partial miss← partial miss+ t wise(M,N, k, v, t,W , C,Kl,Ku)
18 request task from MASTER
19 receive task(Kl,Ku) from MASTER

20 until Kl < C;
21 send partial miss to MASTER

22 end if

23 end

Assigning Tasks by Blocks Approach (ATBBA). This strategy uses a coarse-grain
static distribution as SATWA, but with the difference that all the cores have an
assigned verification task. The set of t-tuples C is divided into P blocks, one for
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each core. The size of the block B is defined in (3.10). The block distribution
model maintains the simplicity in the code.

B =

⌈
C

P

⌉

(3.10)

Algorithm 15 shows the pseudocode corresponding to the strategy ATBBA. Ini-
tially, the subset of t-tuples that will be verified by each core is computed in lines
2 and 3, according to their rank Pi. After that, each core verifies its corresponding
t-tuples, and reports the results to one of the processes, which accumulates the
total number of missing symbol combinations (lines 4 to 13).

Algorithm 15: ATBBA, Assigning tasks by blocks approach (Avila-George
et al., 2012e).

Input: An arrayM of size N × k with alphabet v and strength t, the set of the different
combination of symbols W , the set of different t-tuples C, the number of cores P

Output: miss, the number of missing combination of symbols
1 begin

2 B ← ⌈C
P
⌉

3 Kl ← Pi × B, Ku ← Kl + B
4 partial miss← t wise(M,N, k, v, t,W , C,Kl,Ku)
5 if Pi 6= P − 1 then
6 send partial miss to P − 1
7 else
8 miss← partial miss
9 for i = 1 to i < P do

10 receive partial miss from Pi

11 miss← miss+ partial miss

12 end for

13 end if

14 end

Assigning Tasks by Cyclic Blocks Approach (ATBCBA). This strategy uses a
cyclic fine-grain distribution for the workload. The granularity for each task in
this scheme is defined according to (3.11):

B =

⌈
C

P × t× v

⌉

. (3.11)

Algorithm 16 shows the pseudocode corresponding to the strategy ATBCBA. Line
2 shows the computation of the size of the block B, i.e., the number of t-tuples
from C to be analyzed. After that, the specific subsets of t-tuples to be verified
for each core are determined in lines 3 to 6, based on the cyclic distribution. The
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computation of the initial t-tuple for each block analyzed by a core is done through
(3.12), where n corresponds to the block number of that process:

Kl = (n× P × B) + (Pi × B). (3.12)

Algorithm 16: ATBCBA, assigning tasks by cyclic blocks approach (Avila-
George et al., 2012e).

Input: An arrayM of size N × k with alphabet v and strength t, the set of the different
combination of symbols W , the set of different t-tuples C, the number of cores P

Output: miss, the number of missing combination of symbols
1 begin

2 B ← ⌈ C
P∗t∗v

⌉, partial miss← 0

3 for n← 0 to n < t× v do
4 Kl ← (n×P × B) + (Pi × B), Ku ← Kl + B
5 partial miss← partial miss+ t wise(M,N, k, v, t,W , C,Kl,Ku)

6 end for
7 if Pi 6= P − 1 then
8 send partial miss to MASTER
9 else

10 miss← 0
11 for i = 1 to i < P do
12 receive partial miss from any WORKER
13 miss← miss+ partial miss

14 end for

15 end if

16 end

3.7.3 Grid approach to verify covering arrays

In order to fully understand the Grid implementation developed in this work, this
subsection will introduce all the details regarding the Grid Computing Platform
used.

The evolution of Grid Middlewares has enabled the deployment of Grid e-Science
infrastructures delivering large computational and data storage capabilities. Cur-
rent infrastructures, such as the one used in this work, European Grid Infrastruc-
ture (EGI), rely on gLite mainly as core middleware supporting several services
in some cases. World-wide initiatives, such as EGI, aim at linking and sharing
components and resources from several European National Grid Initiatives (NGI).

In the EGI infrastructure, jobs are specified through a job description language or
JDL (Pacini, 2011) that defines the main components of a job: executable, input
data, output data, arguments, and restrictions. The restrictions define the features
a resource should provide, and could be used for meta-scheduling or for local
scheduling (such as in the case of MPI jobs). Input data could be small or large
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and job-specific or common to all jobs, which affects the protocols and mechanisms
needed. Executables are either compiled or multiplatform codes (scripts, Java,
Perl), and output data suffer from similar considerations as input data.

The key resources in gLite middleware are extensively listed in the literature, and
can be summarized as:

1. User Interface (UI): The access point to any gLite Grid, normally any
machine where the user certificate is installed. It provides Command Line
Interface Tools (CLI) to perform some basic Grid operations (submission,
cancellation, monitoring, data management, retrieval of results).

2. Workload Management System / Resource Broker (WMS/RB): Meta-sche-
duler that coordinates the submission and monitoring of jobs.

3. Computing Elements (CE): The access point to a farm of identical comput-
ing nodes, which contains the Local Resource Management System (LRMS).
The LRMS is responsible for scheduling the jobs submitted to the CE, al-
locating the execution of a job in one (sequential) or more (parallel) com-
puting nodes. In the case that no free computing nodes are available, jobs
are queued. Thus, the load of a CE must be considered when estimating
the turnaround of a job.

4. Working Nodes (WN): Each one of the computing resources accessible
through a CE. Due to the heterogeneous nature of Grid infrastructure, the
response time of a job will depend on the characteristics of the WN hosting
it.

5. Storage Element (SE): Storage resources in which a task can store long-
living data to be used by the computers of the Grid. This practice is nec-
essary due to the size limitation imposed by current Grid Middlewares in
the job file attachment (10 MB in the gLite case). So, use cases which re-
quire the access to files which exceed that limitation are forced to use these
Storage Elements. Nevertheless, the construction of covering arrays is not
a data-intensive use case and thus the use of SEs can be avoided.

6. Logic File Catalog (LFC): A hierarchical directory of logical names refer-
encing a set of physical files and replicas stored in the SEs.

7. Berkley Database Information System (BDII): Service point for the Infor-
mation System which registers, through LDAP, the status of the Grid. Use-
ful information relative to CEs, WNs and SEs can be obtained by querying
this element.

8. Relational Grid Monitoring Architecture (R-GMA): Service for the regis-
tration and notification of information in most of the EGI services.
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9. Virtual Organisation (VO): Subset of the computing and storage resources
of the infrastructure dedicated to a certain scientific field (Life Sciences,
Earth Sciences, Physics...).

10. Virtual Organisation Management System (VOMS): Authorization infras-
tructure to define the access rights to resources.

All these terms will be referenced along the text.

With respect to the job submission, there are different strategies in Grid environ-
ments that can be broken into two paradigms: asynchronous and synchronous ones.
In this work, we use a synchronous mechanism known as pilot jobs submission that
is based on a master-worker architecture and supported by the DIANE (DIANE,
2011) + Ganga (Moscicki et al., 2009) tools. In this schema, the processing begins
with the creation of a master process (a server) in the UI, which will dispatch
tasks to the worker agents until all the tasks have been completed, being then
dismissed. The worker agents are jobs running on the WN (Working Nodes) of
the Grid capable of communicating with the master. The mission of the master
is to keep track of the tasks to ensure that all of them are successfully completed
while workers provide the access to a CPU reached through scheduling. If for
any reason a task fails or a worker losses contact with the master, the master will
immediately reassign the task to another worker. The whole process is exposed in
Figure 3.14.

Figure 3.14: Pilot jobs schema offered by DIANE-Ganga.

Nevertheless, prior to beginning the execution of a experiment, it is mandatory
to configure certain aspects. Firstly, the specification of a run must include the
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master and workers heartbeat timeout. It is also necessary to establish master
scheduling policies such as the maximum number of times that a lost or failed
task is assigned to a worker; the reaction when a task is lost or fails; and the
number of resubmissions before a worker is decided to be removed. Finally, the
master must know the arguments of the tasks (the covering array filename and
the task id), the input files (the covering array source code, the execution script,
and the covering array file), and the output file. The execution script is necessary
for compiling on-the-fly the source code in every worker and then executing and
then execute the covering array validation program with the arguments indicated
by the master.

At this point, the master can be started using the specification described above.
Upon checking that all is right, the master process will wait for incoming connec-
tions from the workers.

Workers are generic jobs that can perform any operation requested by the master
which are submitted to the Grid. When a worker registers with the master, the
master will automatically assign it a task.

This schema has several advantages derived from the fact that a worker can exe-
cute more than one task. When a worker demands a new task it is not necessary
to submit a new job. This way, the queuing time of the task is intensively re-
duced. Moreover, the dynamic behavior of this schema allows achieving better
performance results, in comparison to the asynchronous schema.

However, there are also some disadvantages that must be mentioned. The first
issue refers to the unidirectional connectivity between the master host and the
worker hosts (Grid node). While the master host needs inbound connectivity,
the worker node needs outbound connectivity. The connectivity problem in the
master can be solved easily by opening a port in the local host; however, the
connectivity in the worker will rely on the remote system configuration (the CE).
So, in this case, this extra detail must be taken into account when selecting the
computing resources. Another issue is defining an adequate timeout value. If, for
some reason, a task working correctly suffers from temporary connection problems
and exceeds the timeout threshold, it will cause the worker being removed by
the master. Finally, a key factor will be to identify the rightmost number of
worker agents and tasks. In addition, if the number of workers is on the order of
thousands, bottlenecks could be met, resulting in the master being overwhelmed
by the excessive number of connections.

This Grid model of computation can also be applied to the process of verification
of covering array. The Grid Algorithm to Verify Covering Arrays (GAVCA) uses a
block partitioning scheme like the one described in the parallel ATBBA approach.
The GAVCA model takes advantage of the huge number of cores that can be
involved in the solution of the problem of verification of covering arrays. Each
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different core will output the number of missing combinations in a different file.
At the end, these results are joined and the total number of missing combinations
is counted and reported. Algorithm 17 shows the pseudocode of the GAVCA for
the problem of verification of covering arrays; particularly, the algorithm shows
the process performed by each core involved in the verification of covering arrays.
The strategy followed by GAVCA is simple, each core determines the block of
t-tuples to be analyzed by it (lines 2 and 4) and calls the SA for that specific block
(line 5).

Algorithm 17: GAVCA, Grid approach to verify covering arrays. This al-
gorithm assigns the set of t-tuples C to P different cores (Avila-George et al.,
2012e).

Input: An arrayM of size N × k with alphabet v and strength t, the set of the different
combination of symbols W , the set of different t-tuples C, the number of cores P

Output: miss, the number of missing combination of symbols
1 begin

2 B ← ⌈C
P
⌉

3 Kl ← Pi × B
4 Ku ← Kl + B
5 miss← t wise(M,N, k, v, t,W , C,Kl,Ku)

6 end

For more details we refer the reader to Avila-George et al. (2010b); Avila-George
et al. (2011); Avila-George et al. (2012e).

3.8 Summary

In this chapter, we have described in general terms the distinct types for construct-
ing covering arrays: (1) Algebraic constructions, (2) Recursive constructions, (3)
Greedy methods, and (4) Metaheuristic methods.

Algebraic constructions often provide a better bound in less computational time.
Unfortunately, algebraic approaches often impose serious restrictions on the system
configurations to which they can be applied. For example, many approaches for
constructing orthogonal arrays require that the domain size be a prime number or
a power of a prime number. This significantly limits the applicability of algebraic
approaches for software testing.

There are sophisticated recursive constructions that combine small covering arrays.
While the more sophisticated constructions yield substantially smaller covering ar-
rays when they can be applied, these same constructions do not apply as generally
as we require.
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Greedy algorithms are more flexible than algebraic constructions and recursive
constructions. These methods can generate any covering array using as input t,
k, and v. The problem with these methods are the results, greedy methods rarely
obtain optimal covering arrays.

Metaheuristic methods appear to produce smaller covering arrays compared to
greedy algorithms but with more time to spend.

Finally, some of the algorithms used to solve the CAC problem are approximated,
meaning that rather than constructing optimal covering arrays, they construct
matrices of size close to that value. This chapter has presented a methodology to
verify a given matrix as a covering array.

The remaining of this thesis focuses on building small and flexible interaction test
suites using an improved simulated annealing algorithm.
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Methodology

In this chapter, we present the specific details that were involved in the develop-
ment of the simulated annealing proposed to construct covering arrays. Section 4.1
presents an overview about the simulated annealing technique. Section 4.2 intro-
duces an improved simulated annealing to construct covering arrays. Section 4.3
presents a Grid deployment of the parallel simulated annealing algorithm for con-
structing covering arrays, introduced in Section 4.2. In order to fully understand
the Grid implementation developed in this work, this section will introduce all
the details regarding the Grid Computing Platform used and then, the different
execution strategies will be exposed. Finally, Section 4.4 introduces three parallel
simulated annealing approaches to solve the CAC problem. The objective is to
find the best bounds for covering arrays by using parallelism.

4.1 Simulated annealing overview

Often the solution space of an optimization problem has many local minima. A
simple local search algorithm proceeds by choosing a random initial solution and
generating a neighbor from that solution. The neighboring solution is accepted if it
is a cost decreasing transition. Such a simple algorithm has the drawback of often
converging to a local minimum. The simulated annealing algorithm (SA), though
by itself it is a local search algorithm, avoids getting trapped in a local minimum
by also accepting cost increasing neighbors with some probability. Simulated an-
nealing is a general-purpose stochastic optimization method that has proven to
be an effective tool for approximating globally optimal solutions to many types of
NP-hard combinatorial optimization problems. In this section, we briefly review
simulated annealing algorithm.
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Simulated annealing is a randomized local search method based on the simulation
of annealing of metal. A typical structure of simulated annealing consists of two
nested loops, this method is represented in pseudocode format in Algorithm 18.
It starts from an arbitrarily selected configuration so with an appropriate initial
temperature (Ti) and works to minimize a given cost function.

At a fixed temperature, the inner loop (it represents a Markov chain) repeatedly
executes the following three step operation, to be referred to as iteration, until an
inner loop break condition is satisfied. It randomly perturbs the current solution
(or configuration), evaluates the corresponding cost, and accepts the new solution
with the probability given by (4.1), it means that the trial solution is accepted by
nonzero probability e(−∆E/T ) even though the solution deteriorates (uphill move),
where ∆E is the difference of the costs between the trial and the current solutions
(the cost change due to the perturbation), and T is the temperature of the system.

P =

{
1 if∆E < 0

e(−
∆E
T

) otherwise
(4.1)

Uphill moves enable the system to escape from the local minima; without them,
the system would be trapped into a local minimum. Too high of a probability for
the occurrence of uphill moves, however, prevents the system from converging. In
simulated annealing, the probability is controlled by temperature in such a manner
that at the beginning of the procedure the temperature is sufficiently high, in which
a high probability is available, and as the calculation proceeds the temperature is
gradually decreased, lowering the probability (Jun and Mizuta, 2005).

The outer loop decreases temperature according to a geometrical cooling scheme,
T ← αT , where α, the cooling coefficient, satisfies 0 < α < 1. It can be said
that SA consists of a sequential chain of consecutive perturbation, evaluation and
decision steps.

Algorithm 18: Typical structure of simulated annealing.

1 begin
2 choose the initial solution s← s0
3 choose the initial temperature T ← Ti

4 repeat
5 repeat
6 perturb the current solution s to s′

7 evaluate the cost function ∆E ← E(s′)− E(s)
8 accept the trial solution as a new solution by acceptance probability

min(1, e
−∆E

T )
9 until termination condition is satisfied;

10 temperature is lowered according to the cooling schedule T ← αT

11 until termination condition is satisfied;

12 end
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The previously mentioned parameters, which control the execution of the nested
loops are called scheduling parameters, i.e., initial temperature (Ti), cooling coeffi-
cient (α), and equilibrium conditions for the inner and outer loops. The execution
time and solution quality are heavily dependent on the scheduling parameters.
Next, we describe the developed simulated annealing algorithm to solve the CAC
problem.

4.2 An improved simulated annealing to construct

covering arrays

In this section we propose a simulated annealing to solve the CAC problem. Our
approach constructs uniform and mixed covering arrays. Contrary to existing SA
implementations for the CAC problem (Stardom, 2001; Cohen et al., 2003), the
developed algorithm has the merit of improving two key features that have a great
impact on its performance: an efficient method to generate initial solutions with
maximum Hamming distance and a composed neighborhood function. Next all
the implementation details of the proposed SA algorithm are presented.

4.2.1 Internal representation

The following paragraphs will describe each of the components of the Developed
Sequential Simulated Annealing (DSSA). The description is done given the matrix
representation of a covering array. A covering array can be represented as a matrix
M of size N×k, where the columns are the parameters and the rows are the cases
of the test set that is constructed. Each cell mi,j in the array accepts values from
the set {0, 1, . . . , vj−1} where vj is the cardinality of the alphabet of j-th column.

In order to describe DSSA approach, we first introduce a list of sets (C, V, U,W,
and R) derived from an MCA(N ; t, k, v11v

2
2 . . . v

w
g ):

⊲ Let C = {c1, c2, . . . , c(kt)
} be the set of the different t-tuples. A t-tuple

ci = {ci,1, ci,2, . . . , ci,t} is formed by t numbers, each number ci,j denotes a
column of matrixM. The set C can be managed using an injective function
f(ci) : C → I between C and the integer numbers, this function is defined
in (4.2).

f(ci) =

j=t
∑

j=1

(
ci,j − 1

i+ 1

)

(4.2)

⊲ Let V = {v1, v2, . . . , vk} be the vector that stores the cardinalities of the
columns ofM.
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⊲ Let U = {u1, u2, . . . , ut} be the vector that contains the t larger cardinali-
ties, arranged in decreasing order, from the cardinalities of the columns of
M.

⊲ Let W = {W1,W2, . . . ,W(kt)
} be the set in which each of its elements Wi =

{w1, w2, . . . , w∏
i=t
i=1

vi
} is a set containing the combinations of symbols that

must be covered in the t-tuple ci ∈ C, where vi is the cardinality of the
alphabet of column i in the mixed covering array that is constructed. Now,
let wi = {wi,1, wi,2, . . . , wi,vmax

} be the set of the different combinations of

symbols, where wi,j ∈ {0, 1, . . . , v − 1}, vmax =
∏i=t

i=1 ui, and ui is the i-th
cardinality taken in decreasing order from the t larger cardinalities of the
columns of M. The injective function g(wi) : W → I is defined in (4.3).
The function g(wi) is equivalent to the transformation of a v-ary number
to the decimal system:

g(wi) =

t∑

j=2

Jj , s.t. Jj = wi,j−1 × Vci,j + wi,j . (4.3)

⊲ The use of the injections represents an efficient method to manipulate the
information that will be stored in the data structure P used in the construc-
tion process ofM as a covering array. The matrix P is of size

(
k
t

)
× vmax.

The matrix P counts the number of times that each combination appears
inM in the different t-tuples. Each row of P represents a different t-tuple,
while each column contains a different combination of symbols. The man-
agement of the cells pi,j ∈ P is done through the functions f(ci) and g(wj);
while f(ci) retrieves the row related with the t-tuple ci, the function g(wi)
returns the column that corresponds to the combination of symbol wi.

⊲ The set R = {r1, r2, . . . , rN}, where each element ri ∈ R will be a test set
of the covering array that will be constructed. The cardinality of the set R
is N , the expected number of rows in the covering array.

4.2.2 Initial solution

The initial solutionM is constructed by generatingM as a matrix with maximum
Hamming distance. The Hamming distance d(x, y) between two rows x, y ∈M is
the number of elements in which they differ. Let ri be a row of the matrixM. To
generate a random matrixM of maximum Hamming distance, follow these steps:

1. Generate the first row r1 at random.

2. Generate s rows l1, l2, . . . , ls at random, which will be candidate rows.
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3. Select the candidate row li that maximizes the Hamming distance according to (4.4) and
added to the i-th row of the matrix M .

g(ri) =

i−1
∑

s=1

k
∑

v=1

d(ms,v ,mi,v),where d(ms,v ,mi,v) =

{

1 if ms,v 6= mi,v

0 Otherwise
(4.4)

4. Repeat from step 2 until M is completed.

Figure 4.1 illustrates this method. Figure 4.1(a) Shows an example of the Ham-
ming distance between two rows r1, r2 that are already in the matrix M and
two candidate rows l1, l2; the row l1 is which maximizes the Hamming distance.
Figure 4.1(b) Shows the entire initial solution matrixM generated according with
the method described for MCA(16; 2, 6, 423222), the last column shows the Ham-
ming distance for each row of the matrix.

(a)

Rows







r1 =
{

1 1 1 2 0 0
}

r2 =
{

3 2 0 1 1 1
}

l1 =
{

0 3 2 0 0 1
}

l2 =
{

0 3 2 2 1 0
}

Distances







d(r1, l1) = 5
d(r2, l1) = 5
g(l1) = d(r1, l1) + d(r2, l1) = 10

d(r1, l2) = 4
d(r2, l2) = 5
g(l2) = d(r1, l2) + d(r2, l2) = 9

(b)



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
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
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1 1 1 2 0 0
3 2 0 1 1 1 6
0 3 2 0 0 1 10
2 0 0 2 1 0 14
1 1 2 0 0 0 16
3 2 1 1 1 1 22
2 0 0 0 0 1 24
0 3 2 1 1 0 30
2 3 1 2 1 0 32
3 1 1 2 0 1 36
0 0 0 1 0 0 40
1 2 2 0 1 1 46
3 2 2 0 1 0 46
1 0 0 2 0 1 52
2 1 1 1 0 1 56
0 3 2 2 1 0 60
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Figure 4.1: Example of how to construct a initial solution for MCA(16; 2, 6, 423222).
(a) Example of the hamming distance between two rows r1, r2 that are al-
ready in the matrix M and two candidate rows l1, l2; (b) Initial solution M for
MCA(16; 2, 6, 423222), the last column shows the Hamming distance for each row of
the matrix.

Figure 4.2 contains the sets C,W , and R derived from the MCA(16; 2, 6, 423222)
shown in Figure 4.1(b).
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(a) C

c1 = {1, 2}
c2 = {1, 3}
c3 = {1, 4}
c4 = {1, 5}
c5 = {1, 6}
c6 = {2, 3}
c7 = {2, 4}
c8 = {2, 5}
c9 = {2, 6}
c10 = {3, 4}
c11 = {3, 5}
c12 = {3, 6}
c13 = {4, 5}
c14 = {4, 6}
c15 = {5, 6}

(b) W

w1 = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1), (2, 2), (2, 3), (3, 0), (3, 1), (3, 2), (3, 3)}
w2 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2)}
w3 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2)}
w4 = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1)}
w5 = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1)}
w6 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2)}
w7 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2)}
w8 = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1)}
w9 = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1)}
w10 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}
w11 = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)}
w12 = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)}
w13 = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)}
w14 = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)}
w15 = {(0, 0), (0, 1), (1, 0), (1, 1)}

(c) R
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4 3 2 2 2 2
3 1 1 1 1 2
1 4 3 2 2 1
3 4 2 3 2 1
4 2 2 3 1 2
1 1 1 2 1 1
2 3 3 1 2 2
4 3 3 1 2 1
2 1 1 3 1 2
3 2 2 2 1 2
1 4 3 3 2 1































Figure 4.2: Example of the sets C,W, and R. (a) Shows an example of set C; (b)
Shows an example of the set W; (c) Shows an example of the set R.

4.2.3 Evaluation function

The evaluation function is used to estimate the goodness of a candidate solution.
Previously reported metaheuristic algorithms for constructing covering arrays have
commonly evaluated the quality of a potential solution (covering array) as the
number of combination of symbols missing in the matrixM (Cohen et al., 2003;
Nurmela, 2004; Shiba et al., 2004). Then, the expected solution will be zero miss-
ing. In the proposed simulated annealing implementation this evaluation function
was also used.

For a particular matrixM that represents a mixed covering array, and sets C and
W (previously described), a formal definition for this function is shown in (4.5):

E(M, C,W) =
∑

∀c∈C

∑

∀Wi∈W

∑

∀w∈Wi
g(M, c, w),

where g(M, c, w) =

{
1 if w in c has not been covered yet inM
0 otherwise

(4.5)

The computational complexity of evaluating E(M, C,W) is equivalent to (4.6),
because the operation requires to examine the N rows of the matrix M and the
(
k
t

)
different t-tuples.

O

(

N

(
k

t

))

. (4.6)

With the aim of improving the time of this calculation, we implemented a matrix
called P . Each element pi,j ∈ P contains the number of times that the i-th
combination of symbols is found in the t-tuple cj ∈ C; the value of pi,j is not taken
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4.2 An improved simulated annealing to construct covering arrays

into account if the i-th combination of symbols must not be included in the t-tuple
cj.

An example of the use of the evaluation function E(M, C,W) is shown in Ta-
ble 4.1, where the number of missing symbol combinations in matrixM shown in
Figure 4.2(c) is counted. Table 4.1(a) shows the use of injective function f(ci).
Table 4.1(b) presents the matrix P . A symbol ∗ represents that a combination of
symbols must not be satisfied in a certain combination c. Note that the matrix
M still has 16 missing combinations making it a non mixed covering array.

Table 4.1: Matrix P of symbol combinations covered in M (see Figure 4.2(c)) and
results from evaluating M with E(M,C,W).

(a) Applying f(ci).

C
index t-tuple f(ci)

c1 1 2 0
c2 1 3 1
c3 1 4 3
c4 1 5 6
c5 1 6 10
c6 2 3 2
c7 2 4 4
c8 2 5 7
c9 2 6 11
c10 3 4 5
c11 3 5 8
c12 3 6 12
c13 4 5 9
c14 4 6 13
c15 5 6 14

(b) Matrix P .

g(wi,j)
f(ci) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 0 0 1 1 1 1 0 1 1 0 1 0 1 1 0
1 1 0 1 1 1 1 1 1 0 1 1 1 ∗ ∗ ∗ ∗
2 1 1 1 1 0 1 1 1 1 1 1 1 ∗ ∗ ∗ ∗
3 1 1 1 1 1 1 1 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
4 1 1 1 1 1 1 1 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
5 1 0 0 0 1 1 1 1 1 0 1 1 ∗ ∗ ∗ ∗
6 1 1 1 1 1 1 1 1 0 1 1 1 ∗ ∗ ∗ ∗
7 1 1 1 0 0 1 1 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
8 1 1 1 1 1 1 1 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
9 1 1 1 0 1 1 1 1 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
10 1 1 1 1 1 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
11 1 1 1 1 1 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
12 1 1 1 1 1 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
13 1 1 1 1 1 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
14 1 1 1 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

To avoid the expensive cost (see (4.6)) at every call of E(M, C,W), the matrix
P is used for a partial recalculation of the cost ofM, i.e., the cost of changing a
symbol in a cell mi,j ∈ M is determined and only the affected t-tuples in P are
updated, modifying the results from E(M, C,W) according to that changes. The
cells in P that must be updated when changing a symbol from mi,j ∈ M are the
t-tuples that involve the column j of the matrixM. On this way, the complexity
taken for the update of E(M, C,W) is reduced to (4.7):

O

(

2×

(
k − 1

t− 1

))

. (4.7)
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4.2.4 Neighborhood function

Given that the developed simulated annealing implementation is based on Local
Search (LS) then a neighborhood function must be defined. The main objective
of the neighborhood function is to identify the set of potential solutions which
can be reached from the current solution in a LS algorithm. In case two or more
neighborhoods present complementary characteristics, it is then possible and inter-
esting to create more powerful compound neighborhoods. The advantage of such
an approach is well documented in (Cavique et al., 1999). Following this idea, and
based on the results of our preliminary experimentations, a neighborhood struc-
ture composed by two different functions is proposed for this simulated annealing
algorithm implementation.

Two neighborhood functions were implemented to guide the local search of DSSA
algorithm. The neighborhood function N1(s) randomly chooses a position (i, j)
of the matrix M and makes all possible changes of symbol. The neighborhood
function N2(s) makes a random search of a missing t-tuple, then tries by setting
the j-th combination of symbols in every row of M. During the search process
a combination of both N1(s) and N2(s) neighborhood functions is employed by
DSSA. The former is applied with probability P, while the latter is employed at
an (1−P) rate. This combined neighborhood function N3(s, x) is defined in (4.8),
where x is a random number in the interval [0, 1).

N3(s, x) =

{
N1(s) if x ≤ P

N2(s) if x > P
(4.8)

4.2.5 Cooling schedule

The cooling schedule determines the degree of uphill movement permitted during
the search and is thus critical to the simulated annealing algorithm’s performance.
The parameters that define a cooling schedule are: an initial temperature, a final
temperature or a stopping criterion, the maximum number of neighboring solu-
tions that can be generated at each temperature, and a rule for decrementing the
temperature. The cooling schedule governs the convergence of the SA algorithm.
At the beginning of the search, when the temperature is large, the probability of
accepting solutions of worse quality than the current solution (uphill moves) is
high. It allows the algorithm to escape from local minima. The probability of
accepting such moves is gradually decreased as the temperature goes to zero.

Cooling schedules which rapidly decrement the temperature can lead the search
process to get trapped in an early local minima. On the contrary, a very slow
cooling of the temperature guides the algorithm towards non-promising searching
regions, resulting often in a waste of computational time. A good selection of the
cooling schedule is thus critical to the SA algorithm’s performance.
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4.2 An improved simulated annealing to construct covering arrays

The literature offers a number of different cooling schedules, see for instance (Aarts
and Van Laarhoven, 1985; Atiqullah, 2004). They can be divided into two main cat-
egories: static and dynamic. In a static cooling schedule, the parameters are fixed
and cannot be changed during the execution of the algorithm. With a dynamic
cooling schedule the parameters are adaptively changed during the execution.

In DSSA we preferred a geometrical cooling scheme mainly for its simplicity. It
starts at an initial temperature Ti which is decremented at each round by a factor
α using the relation (4.9). For each temperature, the maximum number of visited
neighboring solutions is L. It depends directly on the parameters (N , k, and V ) of
the studied covering array. This is because more moves are required for covering
arrays with alphabets of greater cardinality.

Tk = α Tk−1. (4.9)

4.2.6 Termination condition

The stop criterion for DSSA is either when the current temperature reaches Tf ,
when it ceases to make progress, or when a valid covering array is found. In
the proposed implementation a lack of progress exists if after φ (frozen factor)
consecutive temperature decrements the best-so-far solution is not improved.

4.2.7 Simulated annealing pseudocode

Algorithm 19 presents the simulated annealing heuristic as described above. The
meaning of the four functions is obvious: INITIALIZE computes a start solution
and initial values of the parameters T and L; GENERATE selects a solution
from the neighborhood of the current solution, using the neighborhood function
N3(s, x); CALCULATE CONTROL computes a new value for the parameter T
(cooling schedule) and the number of consecutive temperature decrements with no
improvement in the solution.

In the following sections we propose the use of Supercomputing and Grid Comput-
ing in order to accelerate the construction of covering arrays using the developed
simulated annealing algorithm.
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Algorithm 19: Sequential simulated annealing for the CAC problem

1 INITIALIZE(M,T,L) ; /* Create the initial solution. */

2 M⋆ ←M ; /* Memorize the best solution. */

3 repeat
4 for i← 1 to L do
5 Mi ← GENERATE(M) ; /* Perturb current state. */

6 ∆E ← E(Mi)− E(M) ; /* Evaluate cost function. */

7 x← random ; /* Range [0,1). */

8 if ∆E < 0 or e(−
∆E
T

) > x then
9 M←Mi ; /* Accept new state. */

10 if E(M) < E(M⋆) then
11 M⋆ ←M ; /* Memorize the best solution. */

12 end if

13 end if

14 end for
15 CALCULATE CONTROL(T, φ)

16 until termination condition is satisfied ;

4.3 Grid approach

Simulated annealing is inherently sequential and hence very slow for problems with
large search spaces. Several attempts have been made to speed up this process,
such as development of special purpose computer architectures (Ram et al., 1996).
As an alternative, we propose a Grid deployment of the parallel simulated anneal-
ing algorithm for constructing covering arrays, introduced in the previous section.
In order to fully understand the Grid implementation developed in this work, this
section will introduce all the details regarding the Grid Computing Platform used
and then, the different execution strategies will be exposed.

4.3.1 Grid computing platform

The evolution of Grid Middlewares has enabled the deployment of Grid e-Science
infrastructures delivering large computational and data storage capabilities. Cur-
rent infrastructures, such as the one used in this work, EGI, rely on gLite mainly as
core middleware supporting several services in some cases. World-wide initiatives,
such as EGI, aim at linking and sharing components and resources from several
European NGI.

In the EGI infrastructure, jobs are specified through a job description language (Pacini,
2011) or JDL that defines the main components of a job: executable, input data,
output data, arguments, and restrictions. The restrictions define the features a re-
source should provide, and could be used for meta-scheduling or for local schedul-
ing (such as in the case of MPI jobs). Input data could be small or large and
job-specific or common to all jobs, which affects the protocols and mechanisms
needed. Executables are either compiled or multiplatform codes (scripts, Java,
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Perl), and output data suffer from similar considerations as input data. In this
section, it shows the details about Developed Grid Simulated Annealing (DGSA).

4.3.2 Preprocessing task: selecting the most appropriate
compute elements

A production infrastructure such as EGI involves tens of thousands of resources
from hundreds of sites, involving tens of countries and a large human team. Since
it is a general-purpose platform, and although there is a common middleware
and a recommended operating system, the heterogeneity in the configuration and
operation of the resources is inevitable. This heterogeneity, along with other social
and human factors such as the large geographical coverage and the different skills
of operators introduces a significant degree of uncertainty in the infrastructure.
Even considering that the service level required is around 95%, it is statistically
likely to find in each large execution sites that are not working properly. Thus,
prior to beginning the experiments, it is necessary to do empirical tests to define
a group of valid computing resources (CEs) and this way facing resource setup
problems. These tests can give some real information like computational speed,
primary and secondary memory sizes and I/O transfer speed. These data, in case
there are huge quantities of resources, will be helpful to establish quality criteria
choosing resources.

4.3.3 Asynchronous schema

Once the computing elements, where the jobs will be submitted, have been se-
lected, the next step involves correctly specifying the jobs. In that sense, it will be
necessary to produce the specification using the job description language in gLite.
An example of a JDL file can be seen in Figure 4.3.

--------------------------------------------------------------------

Type = "Job";

VirtualOrganisation = "biomed";

Executable = "test.sh";

Arguments = "16 21 3 2";

StdOutput = "std.out";

StdError = "std.err";

InputSandbox = {"/home/CA_experiment/DGSA.c",

"/home/CA_experiment/N16k21v3t2.ca",

"/home/CA_experiment/test.sh"};

OutputSandbox = {"std.out","std.err","N16k21v3t2.ca"};

__________________________________________________________________

Figure 4.3: JDL example for the case of N = 16, k = 21, v = 3, t = 2.
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As it can be seen in Figure 4.3, the specification of the job includes: the virtual
organisation where the job will be launched (VirtualOrganisation), the main file
that will start the execution of the job (Executable), the arguments that will used
for invoking the executable (Arguments), the files in which the standard outputs
will be dumped (StdOutput y StdError), and finally the result files that will be
returned to the user interface (OutputSandBox).

So, the most important part of the execution lies in the program (a shell-script)
specified in the Executable field of the description file. The use of a shell-script
instead of directly using the executable (DGSA) is mandatory due to the heteroge-
neous nature present in the Grid. Although the conditions vary between different
resources, as it was said before, the administrators of the sites are recommended to
install Unix-like operative systems. This measure makes sure that all the developed
programs will be seamlessly executed in any machine of the Grid infrastructure.
The source code must be dynamically compiled in each of the computing resources
hosting the jobs. Thus, basically, the shell-script works like a wrapper that looks
for a gcc-like compiler (the source code is written in the C language), compiles the
source code and finally invokes the executable with the proper arguments (values
of N, k, v and t respectively).

One of the most crucial parts of any Grid deployment is the development of an
automatic system for controlling and monitoring the evolution of an experiment.
Basically, the system will be in charge of submitting the different gLite jobs (the
number of jobs is equal to the value of the parameter S = number of workers),
monitoring the status of these jobs, resubmitting (in case a job has failed or it
has been successfully completed but the simulated annealing algorithm has not
already converged) and retrieving the results. This automatic system has been
implemented as a master process which periodically (or asynchronously as the
name of the schema suggests) oversees the status of the jobs.

This system must possess the following properties: completeness, correctness,
quick performance and efficiency on the usage of the resources. Regarding the
completeness, we have take into account that an experiment will involve a lot of
jobs and it must be ensured that all jobs are successfully completed at the end.
The correctness implies that there should be a guarantee that all jobs produce cor-
rect results which are comprehensive presented to the user and that the data used
is properly updated and coherent during the whole experiment (the master must
correctly update the file with the .ca extension showed in the JDL specification
in order the Simulated Annealing algorithm to converge). The quick performance
property implies that the experiment will finish as quickly as possible. In that
sense, the key aspects are: a good selection of the resources that will host the
jobs (according to the empirical tests performed in the preprocessing stage) and
an adequate resubmission policy (sending new jobs to the resources that are being
more productive during the execution of the experiment). Finally, if the on-the-
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fly tracking of the most productive computing resources is correctly done, the
efficiency in the usage of the resources will be achieved.

Due to the asynchronous behavior of this schema, the number of slaves (jobs) that
can be submitted (the maximum size of N) is only limited by the infrastructure.
However, other schemas such as the one showed in the next point, could achieve
a better performance in certain scenarios.

4.3.4 Synchronous schema

This schema a sophisticated mechanism known, in Grid terminology, as submission
of pilot jobs. The submission of pilot jobs is based on the master-worker archi-
tecture and supported by the DIANE (DIANE, 2011) + Ganga (Moscicki et al.,
2009) tools. When the processing begins a master process (a server) is started
locally, which will provide tasks to the worker nodes until all the tasks have been
completed, being then dismissed. On the other side, the worker agents are jobs
running on the Working Nodes of the Grid which communicate with the master.
The master must keep track of the tasks to assure that all of them are success-
fully completed while workers provide the access to a CPU previously reached
through scheduling, which will process the tasks. If, for any reason a task fails or
a worker losses contact with the master, the master will immediately reassign the
task to another worker. The whole process is exposed in Figure 3.14. master is
continuously in contact with the slaves.

However, before initiating the process or execution of the master/worker jobs,
it is necessary to define their characteristics. Firstly, the specification of a run
must include the master configuration (workers and heartbeat timeout). It is also
necessary to establish master scheduling policies such as the maximum number of
times that a lost or failed task is assigned to a worker; the reaction when a task is
lost or fails; and the number of resubmissions before a worker is removed. Finally,
the master must know the arguments of the tasks and the files shared by all tasks
(executable and any auxiliary files).

At this point, the master can be started using the specification described above.
Upon checking that all is right, the master will wait for incoming connections from
the workers.

Workers are generic jobs that can perform any operation requested by the master
which are submitted to the Grid. In addition, these workers must be submitted
to the selected CEs in the pre-processing stage. When a worker registers to the
master, the master will automatically assign it a task.

This schema has several advantages derived from the fact that a worker can execute
more than one task. Only when a worker has successfully completed a task the
master will reassign it a new one. In addition, when a worker demands a new
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task it is not necessary to submit a new job. This way, the queuing time of the
task is intensively reduced. Moreover, the dynamic behavior of this schema allows
achieving better performance results, in comparison to the asynchronous schema.

However, there are also some disadvantages that must be mentioned. The first
issue refers to the unidirectional connectivity between the master host and the
worker hosts (Grid node). While the master host needs inbound connectivity,
the worker node needs outbound connectivity. The connectivity problem in the
master can be solved easily by opening a port in the local host; however the
connectivity in the worker will rely in the remote system configuration (the CE).
So, in this case, this extra detail must be taken into account when selecting the
computing resources. Another issue is defining an adequate timeout value. If, for
some reason, a task working correctly suffers from temporary connection problems
and exceeds the timeout threshold it will cause the worker being removed by the
master. Finally, a key factor will be to identify the rightmost number of worker
agents and tasks. In addition, if the number of workers is on the order of thousands
(i.e. when N is about 1000) bottlenecks could be met, resulting on the master
being overwhelmed by the excessive number of connections.

4.4 Parallel simulated annealing

Parallelization is recognized like a powerful strategy to increase algorithms effi-
ciency; however, simulated annealing parallelization is a hard task because it is
essentially a sequential process. The best parallel scheme is still the object of cur-
rent research, since the “annealing community” has so far not achieved a common
agreement with regards to a general approach for the serial simulated annealing.

In evaluating performance of a Parallel Simulated Annealing (PSA), it needs to
consider solution quality as well as execution speed. The execution speed may be
quantified in terms of speed-up (S) and efficiency (E). The S is defined as the ratio
of the execution time (on one processor) by the sequential simulated annealing to
that by the PSA (on P processors) for an equivalent solution quality. In the ideal
case, S would be equal to P . The E is defined as the ratio of the actual S to the
ideal S(P).

Next, we propose three parallel implementations of the simulated annealing al-
gorithm described in Section 4.2. For these cases, let P denote the number of
processors and L the length of Markov chain.
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4.4.1 Independent search approach

A common approach to parallelizing simulated annealing is the Independent Search
Approach (ISA) (Aarts and Van Laarhoven, 1985; Lee and Lee, 1996; Czech,
2006). In this approach each processor independently perturbs the configuration,
evaluates the cost, and decides on the perturbation. The processors Pi, i =
0, 1, . . . ,P−1, carry out the independent annealing searches using the same initial
solution and cooling schedule as in the sequential algorithm. At each temperature
Pi executes N × k× v2 annealing steps. When each processor finishes, it sends its
results to processor P0. Finally, processor P0 chooses the final solution among the
local solutions.

We have implemented a simulated annealing algorithm using ISA approach for
constructing covering arrays. In the developed implementation, the processors do
not interact during individual annealing processes until all processors find their
final solution. Then, the best of the solutions is saved and the others are discarded.

4.4.2 Semi-independent search approach

Aarts and Van Laarhoven (1985) introduced a new parallel simulated annealing
algorithm named division algorithm. In the division algorithm, the number of
iterations at each temperature is divided equally between the processors. After
a change in temperature, each processor may simply start from the final solution
obtained by that processor at the previous temperature. The best solution from
all the processors is then taken to be the final solution. Another variant of this
approach is to communicate the best solution from all the processors to each
processor every time the temperature changes. Aarts and Van Laarhoven found
no significant differences in the performance of these two variants.

We have developed an implementation of division algorithm; we named the im-
plementation Semi-Independent Search Approach (SSA). In SSA, parallelism is
obtained by dividing the effort of generation a Markov chain over the available
processors. A Markov chain is divided into P sub-chains of the length ⌊L/P⌋. In
this approach, the processors exchange local information including intermediate
solutions and their costs. Then, each processor restarts from the best intermediate
ones.

Compared to the ISA, communication overhead in this SSA approach would be
increased. However, each processor can utilize the information from other proces-
sors such that the decrease in computations and idle times can be greater than the
increase in communication overhead. For instance, a certain processor which is
trapped in an inferior solution can recognize its state by comparing it with others
and may accelerate the annealing procedure. That is, processors may collectively
converge to a better solution.
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4.4.3 Cooperative search approach

In order to improve the performance of the SSA approach, we propose the Cooperative
Search Approach (CSA), it used asynchronous communication among processors
accessing the global state to eliminate the idle times. Each processor follows a
separate search path, accesses the global state which consists of the current best
solution and its cost whenever it finished a Markov subchain and updates the state
if necessary. Once a processor gets the global state, it proceeds to the next Markov
subchain with any delay.

Unlike SSA, CSA having the following characteristics:

⊲ Idle times can be reduced since asynchronous communications overlap a
part of the computation.

⊲ Less communication overhead, an isolated access to the global state is
needed by each processor at the end of each Markov subchain.

⊲ The probability of being trapped in a local optimum can be smaller. This
is because not all the processors start from the same state in each Markov
subchain.

For more details about this construction, the reader is referred to (Avila-George
et al., 2012c). Additionally, the constructed covering arrays have been uploaded to
the Covering Array Repository (CAR) described in Appendix A. This repository
is available under request at http://www.tamps.cinvestav.mx/~jtj/CA.php.

4.5 Summary

In this chapter we introduced the simulated annealing technique and described its
basic structure. We have presented an improved simulated annealing algorithm for
constructing covering arrays. We proposed the use of Grid Computing in order to
accelerate the DSSA. We ended with the presentation of three parallel simulated
annealing approaches to construct covering arrays.

The next chapter presents the experimental results obtained from the implemen-
tation of simulated annealing algorithm, following the details described in the
present chapter.
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Chapter 5

Experimental results

This chapter presents the results obtained by the developed simulated annealing
algorithm. Section 5.1 analyzes the global performance of the developed simu-
lated annealing algorithm and the influences that some of its key features have
on it. Section 5.2 presents a methodology for fine-tuning the developed simulated
annealing approach. Section 5.3 presents the results obtained from the DSSA.
The results are compared against the best algorithms obtained from the literature
for constructing uniform and mixed covering arrays. Section 5.4 presents the re-
sults of comparing DGSA against two of the best algorithms from the literature;
it created a new benchmark composed by 60 ternary covering arrays instances
where 5 ≤ k ≤ 100 and 2 ≤ t ≤ 4. Section 5.5 presents the results of comparing
Developed Parallel Simulated Annealing (DPSA) against the best bounds from
the literature. Finally, Section 5.6 is designed to illustrate the development of test
configurations for real software applications.

5.1 Analyzing the performance of simulated annealing

The purpose of this section is to experimentally analyze the global performance of
the developed simulated annealing algorithm and the influences that some of its
key features have on it. Next, we present the results of the experiments carried
out for this purpose.
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Chapter 5. Experimental results

5.1.1 Influence of the initial solution

In this experiment we compare the performance of two different methods for con-
structing the initial solution of the developed simulated annealing. The first one
is commonly used in the literature (Cohen et al., 2008), and creates the initial
solution by assigning randomly a symbol in vi at each element mij of the array.
The second one is the procedure described in Section 4.2.2.
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Figure 5.1: Performance comparison of two different initialization methods for the
developed simulated annealing over the instances: (a) MCA(29; 2, 22, 514133422) and
(b) MCA(137; 3, 9, 524433).

Both initialization methods (called here Maximum Hamming Distance and Ran-
dom, respectively) were integrated into the developed simulated annealing source
code and executed 31 times over the next two mixed covering arrays: MCA(137; 3,
9, 524433) and MCA(29; 2, 22, 514133422). The results achieved by the developed
simulated annealing over these instances are illustrated in Figure 5.1. The plot
represents the iterations of the developed simulated annealing against the average
solution quality attained from the starting arrays generated with the compared
initialization methods. Figure 5.1 discloses that the developed simulated anneal-
ing using Maximum Hamming Distance solutions performs much better than the
simulated annealing algorithm that starts from a randomly generated solution.

5.1.2 Influence of the neighborhood functions

The neighborhood function is a critical element for the performance of any local
search algorithm. In order to further examine the influence of this element on
the global performance of the developed simulated annealing implementation we
have performed some experimental comparisons using the following neighborhood
functions (described in Section 4.2.4):
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⊲ N1(M)

⊲ N2(M,P )

⊲ N3(M,P )

For this experiment each one of the studied neighborhood functions was imple-
mented within the developed simulated annealing algorithm, compiled and exe-
cuted independently 31 times over the next two mixed covering arrays: MCA(137;
3, 9, 524433) and MCA(29; 2, 22, 514133422). The results of this experiment are
summarized in Figure 5.2. It shows the differences in terms of average solution
quality attained by the developed simulated annealing, when each one of the stud-
ied neighborhood relations is used to solve the instances MCA(137; 3, 9, 524433)
and MCA(29; 2, 22, 514133422). From this graph it can be observed that the worst
performance is attained by the developed simulated annealing approach when the
neighborhood function called N1 is used. The functions N2 and N3 produce better
results compared with N1 since they improve the solution quality faster. Finally,
the best performance is attained by the developed simulated annealing algorithm
when it is employed the neighborhood function N3, which is a compound neigh-
borhood combining the complementary characteristics of both N1 and N2.
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Figure 5.2: Performance comparison of four neighborhood functions using
simulated annealing over the instances: (a) MCA(29; 2, 22, 514133422) and (b)
MCA(137; 3, 9, 524433).
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5.2 Fine tuning of the neighborhood functions

It is well-known that the performance of a simulated annealing algorithm is sensi-
tive to parameter tuning. In this sense, we follow a methodology for a fine tuning
of the two neighborhood functions used in the developed simulated annealing al-
gorithm. The fine tuning was based on the linear Diophantine equation (5.1),
where xi represents a neighborhood function and its value set to 1, Pi is a value
in {0.0, 0.1, . . . , 1.0} that represents the probability of executing xi, and q is set to
1.0 which is the maximum probability of executing any xi.

P1x1 + P2x2 = q (5.1)

A solution to the given linear Diophantine equation must satisfy (5.2). This equa-
tion has 11 solutions, each solution is an experiment that test the degree of par-
ticipation of each neighborhood function in the developed simulated annealing
implementation to accomplish the construction of a covering array.

2∑

i=1

Pixi = 1.0 (5.2)

Every combination of the probabilities was applied by the developed simulated
annealing to construct the set of mixed covering arrays shown in Table 5.1(a) and
each experiment was run 31 times, with the obtained data for each experiment we
calculate the median. A summary of the performance of the developed simulated
annealing with the probabilities that solved the 100% of the runs is shown in
Table 5.1(b).

Table 5.1: Fine tuning of the neighborhood functions. (a) A set of 7 mixed covering
arrays configurations; (b) Performance of the developed simulated annealing with the
11 combinations of probabilities which solved the 100% of the runs to construct the
mixed covering arrays listed in (a).

(a)

Id MCA description

mca1 MCA(81; 2, 16, 9282726252423222)
mca2 MCA(42; 2, 19, 716151453823)
mca3 MCA(36; 2, 20, 624929)
mca4 MCA(30; 2, 19, 6151463823)
mca5 MCA(29; 2, 61, 415317229)
mca6 MCA(360; 3, 7, 101624331)
mca7 MCA(49; 2, 10, 7262423222)

(b)

p1 p2 mca1 mca2 mca3 mca4 mca5 mca6 mca7

0 1 4789.763 3.072 46.989 12.544 3700.038 167.901 0.102
0.1 0.9 1024.635 0.098 0.299 0.236 344.341 3.583 0.008
0.2 0.8 182.479 0.254 0.184 0.241 173.752 1.904 0.016
0.3 0.7 224.786 0.137 0.119 0.222 42.950 1.713 0.020
0.4 0.6 563.857 0.177 0.123 0.186 92.616 3.351 0.020
0.5 0.5 378.399 0.115 0.233 0.260 40.443 1.258 0.035
0.6 0.4 272.056 0.153 0.136 0.178 69.311 2.524 0.033
0.7 0.3 651.585 0.124 0.188 0.238 94.553 2.127 0.033
0.8 0.2 103.399 0.156 0.267 0.314 81.611 5.469 0.042
0.9 0.1 131.483 0.274 0.353 0.549 76.379 4.967 0.110
1 0 7623.546 15.905 18.285 23.927 1507.369 289.104 2.297
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5.2 Fine tuning of the neighborhood functions

Finally, given the results shown in Figure 5.3, the best configuration of probabilities
was P1 = 0.3 and P2 = 0.7 because it found the mixed covering arrays in smaller
time (median value). The values P1 = 0.3 and P2 = 0.7 were kept fixed in the
following experiments.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

[0.0,1.0] [0.1,0.9] [0.2,0.8] [0.3,0.7] [0.4,0.6] [0.5,0.5] [0.6,0.4] [0.7,0.3] [0.8,0.2] [0.9,0.1] [1.0,0.0]
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

B
es

t t
im

es

Probabilities
mca1 mca2 mca3 mca4 mca5 mca6 mca7

Figure 5.3: Performance of the developed simulated annealing algorithm. We used
a Diophantine equation with 11 solutions, every combination of the probabilities was
applied by the developed simulated annealing to construct the set of mixed covering
arrays shown in Table 5.1(a). Each experiment was run 31 times and we used the
median.

The following three sections presents the performance of the developed simulated
annealing when solving benchmarks reported in the literature. Each section cor-
responds to a different implementation of the developed simulated annealing al-
gorithm, i.e., Sequential, Grid, and Parallel. The results were compared against
state-of-the-art algorithms for the construction of uniform and mixed covering
arrays.
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5.3 Sequential simulated annealing

The simulated annealing algorithm was coded in C and compiled with gcc using the
optimization flag -O3. It was run sequentially into a CPU Intel(R) Xeon(TM) a
2.8 GHz, 2 GB of RAM with Linux operating system. In all the experiments the
following parameters were used for DSSA:

⊲ Initial temperature Ti = 4.0

⊲ Final temperature Tf = 1.0E − 10

⊲ Cooling factor α = 0.99

⊲ Maximum neighboring solutions per temperature L = NkV2

⊲ Frozen factor φ = 11

⊲ According to the results shown in Section 5.2, the neighborhood function
N1 was applied using a probability P = 0.3 and the neighborhood function
N2 was applied using a probability P = 0.7.

5.3.1 Uniform covering arrays

The results of DSSA are compared with those obtained by a tool called ACTS1

(Automated Combinatorial Testing for Software) which was developed by the
NIST (National Institute of Standards and Technology), an agency of the United
States Government that works to develop tests, test methodologies, and assurance
methods. The tool ACTS can compute tests for 2-way through 6-way interactions.
The NIST reports that a comparison of ACTS with similar tools shows that ACTS
produces smaller test suites; moreover it has over 800 users as of September 2011,
in nearly all major industries. Due to these features, ACTS was selected as a point
of comparison for our SA, the non deterministic algorithm IPOG-F was used in
ACTS to solve all cases reported in this section.

The objective of this experiment is to make a fair comparison between IPOG-F
and the developed sequential simulated annealing (DSSA) algorithm.

The experimental comparison between SSA and IPOG-F was accomplished run-
ning once each compared method over 96 benchmark instances of strengths 3 ≤
t ≤ 6, degrees 7 ≤ k ≤ 30 and, v = 2. IPOG-F was executed with the parameter
values suggested by its authors in (Forbes et al., 2008).

The results from this experiment are summarized in Table 5.2, which presents in
the first three columns the strength t, the degree k, and the cardinality of the
selected benchmark instances.

1http://csrc.nist.gov/groups/SNS/acts/index.html
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5.3 Sequential simulated annealing

Table 5.2: Improved bounds on CAN(t, k, 2) for strengths 3 ≤ t ≤ 6 and degrees
7 ≤ k ≤ 30 produced by DSSA. For each instance of strength t and degree k, the best
solution, in terms of the size N , found by IPOG-F and DSSA are listed. Last column
depicts the difference between the best result produced by DSSA and the best solution
obtained by IPOG-F (∆ = DSSA − IPOG-F ).

(a)

t k IPOG-F DSSA ∆

3 7 16 10 -6
3 8 17 10 -7
3 9 17 10 -7
3 10 18 10 -8
3 11 18 12 -6
3 12 19 15 -4
3 13 20 15 -5
3 14 21 16 -5
3 15 21 16 -5
3 16 22 17 -5
3 17 24 17 -7
3 18 24 17 -7
3 19 24 17 -7
3 20 25 18 -7
3 21 25 18 -7
3 22 26 19 -7
3 23 26 20 -6
3 24 26 20 -6
3 25 27 21 -6
3 26 27 22 -5
3 27 28 22 -6
3 28 28 23 -5
3 29 28 23 -5
3 30 28 23 -5

Avg. 23.13 17.13 -6.00

(b)

t k IPOG-F DSSA ∆

4 7 32 21 -11
4 8 34 21 -13
4 9 37 21 -16
4 10 41 21 -20
4 11 43 21 -22
4 12 47 24 -23
4 13 49 32 -17
4 14 52 32 -20
4 15 53 32 -21
4 16 56 32 -24
4 17 57 35 -22
4 18 60 36 -24
4 19 62 36 -26
4 20 65 39 -26
4 21 68 42 -26
4 22 69 44 -25
4 23 70 44 -26
4 24 71 46 -25
4 25 74 50 -24
4 26 74 51 -23
4 27 76 51 -25
4 28 77 53 -24
4 29 78 53 -25
4 30 80 56 -24

Avg. 59.38 37.21 -22.17

(c)

t k IPOG-F DSSA ∆

5 7 57 42 -15
5 8 68 52 -16
5 9 77 54 -23
5 10 87 56 -31
5 11 95 56 -39
5 12 105 56 -49
5 13 111 56 -55
5 14 119 64 -55
5 15 127 79 -48
5 16 134 99 -35
5 17 140 104 -36
5 18 144 107 -37
5 19 148 116 -32
5 20 155 119 -36
5 21 160 122 -38
5 22 163 124 -39
5 23 168 132 -36
5 24 175 132 -43
5 25 181 132 -49
5 26 184 132 -52
5 27 188 132 -56
5 28 192 132 -60
5 29 196 132 -64
5 30 200 132 -68

Avg. 140.58 98.42 -42.17

(d)

t k IPOG-F DSSA ∆

6 7 79 64 -15
6 8 118 85 -33
6 9 142 108 -34
6 10 165 116 -49
6 11 192 118 -74
6 12 215 118 -97
6 13 237 118 -119
6 14 256 118 -138
6 15 276 128 -148
6 16 292 179 -113
6 17 309 235 -74
6 18 327 280 -47
6 19 343 299 -44
6 20 363 314 -49
6 21 375 330 -45
6 22 382 344 -38
6 23 397 357 -40
6 24 411 372 -39
6 25 426 385 -41
6 26 438 399 -39
6 27 449 410 -39
6 28 463 421 -42
6 29 474 435 -39
6 30 481 444 -37

Avg. 317.08 257.38 -59.71

From Table 5.2 we can clearly observe that in this experiment the IPOG-F algo-
rithm consistently returns poorer quality solutions than DSSA.

5.3.2 Mixed covering arrays

The purpose of this experiment is to carry out a performance comparison of the
best bounds achieved by DSSA with respect to those produced by the following
state-of-the-art procedures: AETG (Cohen et al., 1996), TCG (Tung and Aldi-
wan, 2000), SA (Cohen et al., 2003), GA (Shiba et al., 2004), ACO (Shiba et al.,
2004), DDA (Bryce and Colbourn, 2007), Tconfig (Williams, 2000), ACTS (Lei
et al., 2007), AllPairs (McDowell, 2011), Jenny (Jenkins, 2011) and TS (Gonzalez-
Hernandez et al., 2010). Table 5.3 displays the detailed computational results
produced by this experiment. The benchmark is shown in the column two; from
column 3 to 13 the results reported by some of the state-of-the-art approaches
are presented. The previous best-known (β) solution is shown in column 14. The
results of constructing the mixed covering arrays for the benchmark using DSSA
are shown in column 15. The difference between the best result produced by DSSA
and the previous best-known solution (∆ = Θ− β) is depicted in the last column.
Next, Figure 5.4 compares the results shown in Table 5.3.

The empirical evidence presented in this section showed that DSSA improved the
size of the mixed covering arrays in comparison with the tools that are among
the best found in the state-of-the-art of the construction of mixed covering arrays.

99



C
h
a
p
ter

5
.
E
xperim

en
ta
l
resu

lts
Table 5.3: For each instance shown in column 2, the best solution, in terms of the size N , found by AETG, TCG, SA, GA,
ACO, DDA, Tconfig, ACTS, AllPairs, Jenny, TS and DSSA are listed. The * means that the solution is optimal. The difference
between the best result produced by DSSA and the previous best-known solution (∆ = Θ− β) is depicted in the last column.

N
ID MCA description AETGa TCGb SAc GAd ACOe DDAf Tconfigg ACTSh AllPairsi Jennyj TSk Best Our SA Improvements

β Θ ∆

1 t2k11v513822 20 20 15 15 16 21 21 19 20 23 15 15* 15 0
2 t2k9v4534 - - - - - 25 28 24 22 26 19 19 19 0
3 t2k75v41339235 27 - 21 27 27 27 30 28 26 31 22 21 20 -1
4 t2k21v514431125 28 30 21 26 25 27 32 26 27 32 22 21 21 0
5 t2k61v415317229 37 33 30 37 37 35 40 33 35 39 30 30 29 -1
6 t2k19v6151463823 35 - 30 33 32 34 50 36 34 40 30 30* 30 0
7 t2k20v624929 - - - - - - 90 39 38 44 36 36* 36 0
8 t2k16v644527 - - - - - - 90 44 45 53 38 38 38 0
9 t2k19v716151453823 44 45 42 42 42 43 91 43 43 50 42 42* 42 0
10 t2k14v655534 - - - - - 58 90 56 53 56 50 50 45 -5
11 t2k18v674823 - - - - - - 90 54 55 63 47 47 47 0
12 t2k19v694327 - - - - - - 90 61 59 64 51 51 51 0
13 t2k8v82726252 - - - - - 74 64 72 64 76 64 64* 64 0
14 t3k9v4534 - - - - - - 103 138 - 115 85 85 80 -5
15 t3k6v524232 114 - 100 108 106 - 106 111 - 131 100 100* 100 0
16 t3k7v101624331 377 - 360 360 361 - 372 383 - 399 360 360* 360 0
17 t3k12v102413227 - - - - - - 472 400 - 413 400 400* 400 0
18 t3k14v655534 - - - - - - 400 420 - 414 370 370 370 0
19 t3k8v82726252 - - - - - - 594 614 - 645 540 540 535 -5

aCohen et al., 1996.
bTung and Aldiwan, 2000.
cCohen et al., 2003.
dShiba et al., 2004.
eShiba et al., 2004.
fBryce and Colbourn, 2007.
gWilliams, 2000.
hLei et al., 2007.
iMcDowell, 2011.
jJenkins, 2011.
kGonzalez-Hernandez et al., 2010.
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Figure 5.4: Graphical comparison of the best bounds achieved by DSSA with re-
spect to those produced by the state-of-the-art procedures (TConfig (Williams, 2000),
ACTS (IPOG) (Lei et al., 2007), AllPair (McDowell, 2011), Jenny (Jenkins, 2011)
and TS (Gonzalez-Hernandez et al., 2010)), when the strength t = 2. Note that the
performance of DSSA improves or equals the best-known solutions.

The performance of the proposed simulated annealing algorithm was assessed with
a benchmark, composed by 19 mixed covering arrays of strengths two and three
taken from the literature. The computational results are reported and compared
with previously published ones, showing that our algorithm was able to find 4
new upper bounds and to equal 15 previous best-known solutions on the selected
benchmark instances.

5.4 Grid simulated annealing

For this experiment we have obtained the ACTS and TConfig software. We create
a new benchmark composed by 60 ternary covering arrays instances where 5 ≤
k ≤ 100 and 2 ≤ t ≤ 4.
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Table 5.4: Comparison among TConfig, IPOG-F and DGSA to construct ternary
covering arrays when 5 ≤ k ≤ 100 and 2 ≤ t ≤ 4.

(a) CAN(2, k, 3)

t k TConfig IPOG-F Our SA

5 15 13 11
10 15 19 14
15 17 20 15
20 21 21 15
25 21 21 17
30 21 23 18
35 21 23 19
40 21 24 20
45 23 25 20

2 50 25 26 21
55 25 26 21
60 25 27 21
65 27 27 21
70 27 27 21
75 27 28 21
80 27 29 21
85 27 29 21
90 27 30 21
95 27 30 22
100 27 30 22

(b) CAN(3, k, 3)

t k TConfig IPOG-F Our SA

5 40 42 33
10 68 66 45
15 83 80 57
20 94 92 59
25 102 98 72
30 111 106 87
35 117 111 89
40 123 118 89
45 130 121 90

3 50 134 126 101
55 140 131 101
60 144 134 104
65 147 138 120
70 150 141 120
75 153 144 120
80 155 147 129
85 158 150 130
90 161 154 130
95 165 157 132
100 167 159 133

(c) CAN(4, k, 3)

t k TConfig IPOG-F Our SA

5 115 98 81
10 241 228 165
15 325 302 280
20 383 358 330
25 432 405 400
30 466 446 424
35 518 479 475
40 540 513 510
45 572 533 530

4 50 581 559 528
55 606 581 545
60 621 596 564
65 639 617 581
70 657 634 597
75 671 648 610
80 687 663 624
85 699 678 635
90 711 690 649
95 723 701 660
100 733 714 669

The simulated annealing implementation reported by Cohen et al. (2003) for solv-
ing the CAC problem was intentionally omitted from this comparison because as
their authors recognize this algorithm fails to produce competitive results when
the strength of the arrays is t ≥ 3.

The results from this experiment are summarized in Table 5.4, which presents in
the first two columns the strength t and the degree k of the selected benchmark
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instances. The best size N found by the TConfig tool, IPOG-F algorithm and
DGSA algorithm are listed in columns 3, 4, and 5 respectively. Next, Figure 5.4
compares the results shown in Table 5.4.

From Table 5.4, Figure 5.5, Figure 5.6, and Figure 5.7 we can observe that DGSA
algorithm gets solutions of better quality than the other two tools. Finally, each of
the 60 ternary covering arrays constructed by DGSA algorithm have been verified
by the algorithm described in Section 3.7. In order to minimize the execution time
required by DGSA algorithm, the following rule has been applied when choosing
the rightmost Grid execution schema: experiments involving a value of the param-
eter N equal or less than 500 have been executed with the synchronous schema
while the rest have been performed using the asynchronous schema.
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Figure 5.5: Graphical comparison of the performance among TConfig, IPOG-F and
DGSA to construct ternary covering arrays when 5 ≤ k ≤ 100 and t = 2.
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Figure 5.6: Graphical comparison of the performance among TConfig, IPOG-F and
DGSA to construct ternary covering arrays when 5 ≤ k ≤ 100 and t = 3.
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Figure 5.7: Graphical comparison of the performance among TConfig, IPOG-F and
DGSA to construct ternary covering arrays when 5 ≤ k ≤ 100 and t = 4.
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5.5 Parallel simulated annealing

5.5.1 Comparison of the ISA, SSA and CSA approaches

To test the performance of the ISA, SSA, and CSA approaches, we propose the
construction of a covering array with N = 80, t = 3, k = 22 and v = 3. Each
approach was executed 31 times (for provide statistical validity to experiment)
using P = {4, 8, 16, 32}.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

 0  2  4  6  8  10  12  14  16  18  20  22  24  26  28  30  32

Sp
ee

du
p

P

ISA approach
SSA approach
CSA approach

Figure 5.8: Median speed-up for the ISA, SSA and CSA approaches.

The performance of the algorithms has been compared based on median speed-up
as a function of the number of processors, the results are shown in Figure 5.8.

The ISA approach, had difficulty in handling the large problem instances, it does
not scale. The SSA approach provides reasonable results, however, because it is
a synchronous algorithm, the idle and communication times are inevitable. The
CSA approach is who offers the best results, it reduces the execution time of the
SSA approach by employing asynchronous information exchange.

In the next subsection, it is presented the third experiment of this work, the
purpose is to measure the performance of the CSA algorithm against the best-
known solutions reported in the literature.
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5.5.2 Comparing the CSA approach against the
state-of-the-art procedures

The purpose of this experiment is to carry out a performance comparison of the
bounds achieved by the CSA approach with respect to the best-known solutions
reported in the literature Colbourn, 2011., which were produced using the fol-
lowing state-of-the-art procedures: orthogonal array construction, Roux type con-
structions, doubling constructions, algebraic constructions, Deterministic Density
Algorithm (DDA), Tabu Search and IPOG-F.

For this experiment we have fixed the maximum computational time expended
by our PSA for constructing a covering array to 72 hours and 50 processors. We
create a new benchmark composed by 182 covering arrays distributed as follows:

⊲ 47 covering arrays with strength t = 3, degree 4 ≤ k < 50 and order v = 3

⊲ 46 covering arrays with strength t = 4, degree 5 ≤ k < 50 and order v = 3

⊲ 45 covering arrays with strength t = 5, degree 6 ≤ k < 50 and order v = 3

⊲ 44 covering arrays with strength t = 6, degree 7 ≤ k < 50 and order v = 3

The detailed results produced by this experiment are listed in Table 5.5. The
first two columns in each subtable indicate the strength t and the degree k of the
selected instances. Next two columns show, in terms of the size N of the covering
arrays, the best-known solution reported in the literature and the improved bounds
produced by the CSA approach. Last column depicts the difference between the
best result produced by our CSA approach and the best-known solution (∆ =
β − ϑ).

Table 5.5: It shows the improved bounds produced by our CSA approach. Column
ϑ represents the best-known solution reported in the literature (Colbourn, 2011). Col-
umn β represents the best solution in terms of N produced by our CSA approach.
Last column (∆) depicts the difference between the best result produced by our CSA
approach and the best-known solution (∆ = β − ϑ).

t k ϑ β ∆ t k ϑ β ∆
3 4 27 27 0 4 4
3 5 33 33 0 4 5 81 81 0
3 6 33 33 0 4 6 111 111 0
3 7 40 39 -1 4 7 123 123 0
3 8 42 42 0 4 8 141 135 -6
3 9 45 45 0 4 9 159 135 -24
3 10 45 45 0 4 10 159 164 5
3 11 45 45 0 4 11 183 183 0
3 12 45 45 0 4 12 201 201 0
3 13 50 49 -1 4 13 219 219 0

continued on next page
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continued from previous page

t k ϑ β ∆ t k ϑ β ∆
3 14 51 50 -1 4 14 237 249 12
3 15 57 57 0 4 15 237 277 40
3 16 60 59 -1 4 16 237 277 40
3 17 60 59 -1 4 17 300 287 -13
3 18 60 59 -1 4 18 307 300 -7
3 19 60 59 -1 4 19 313 313 0
3 20 60 59 -1 4 20 315 321 6
3 21 66 67 1 4 21 315 338 23
3 22 66 71 5 4 22 315 347 32
3 23 69 71 2 4 23 315 359 44
3 24 72 71 -1 4 24 377 375 -2
3 25 75 72 -3 4 25 384 375 -9
3 26 78 72 -6 4 26 393 387 -6
3 27 81 79 -2 4 27 393 387 -6
3 28 81 79 -2 4 28 393 392 -1
3 29 87 84 -3 4 29 393 406 13
3 30 87 84 -3 4 30 393 401 8
3 31 90 88 -2 4 31 440 424 -16
3 32 90 89 -1 4 32 445 431 -14
3 33 90 89 -1 4 33 454 438 -16
3 34 90 89 -1 4 34 462 447 -15
3 35 90 89 -1 4 35 471 440 -31
3 36 90 89 -1 4 36 471 456 -15
3 37 90 89 -1 4 37 471 460 -11
3 38 90 89 -1 4 38 471 465 -6
3 39 90 89 -1 4 39 471 468 -3
3 40 90 89 -1 4 40 499 472 -27
3 41 98 94 -4 4 41 506 484 -22
3 42 98 94 -4 4 42 509 488 -21
3 43 100 99 -1 4 43 518 494 -24
3 44 100 99 -1 4 44 522 497 -25
3 45 103 99 -4 4 45 526 497 -29
3 46 103 101 -2 4 46 530 506 -24
3 47 106 101 -5 4 47 534 510 -24
3 48 106 101 -5 4 48 542 516 -26
3 49 108 101 -7 4 49 549 523 -26
3 50 108 102 -6 4 50 549 525 -24
5 6 243 243 0 6 6
5 7 351 351 0 6 7 729 729 0
5 8 405 405 0 6 8 1152 1152 0
5 9 483 405 -78 6 9 1431 1600 169
5 10 483 405 -78 6 10 1449 1849 400
5 11 705 550 -155 6 11 1449 2136 687
5 12 723 600 -123 6 12 2181 2482 301
5 13 723 828 105 6 13 2734 2744 10
5 14 922 890 -32 6 14 2907 3220 313
5 15 963 944 -19 6 15 3234 3338 104
5 16 963 1025 62 6 16 3443 3672 229
5 17 1117 1117 0 6 17 3658 3882 224
5 18 1167 1165 -2 6 18 3846 4098 252
5 19 1197 1190 -7 6 19 4054 4256 202
5 20 1266 1257 -9 6 20 4486 4400 -86
5 21 1317 1312 -5 6 21 4678 4600 -78
5 22 1346 1319 -27 6 22 4853 4732 -121
5 23 1405 1387 -18 6 23 4942 4941 -1
5 24 1447 1420 -27 6 24 5193 5100 -93

continued on next page
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continued from previous page

t k ϑ β ∆ t k ϑ β ∆
5 25 1486 1440 -46 6 25 5257 5238 -19
5 26 1521 1493 -28 6 26 5709 5380 -329
5 27 1538 1527 -11 6 27 5853 5810 -43
5 28 1579 1555 -24 6 28 6003 5965 -38
5 29 1615 1585 -30 6 29 6150 6110 -40
5 30 1647 1616 -31 6 30 6281 6250 -31
5 31 1681 1643 -38 6 31 6413 6393 -20
5 32 1724 1671 -53 6 32 6535 6518 -17
5 33 1783 1702 -81 6 33 6656 6642 -14
5 34 1783 1724 -59 6 34 6772 6760 -12
5 35 1851 1748 -103 6 35 6877 6871 -6
5 36 1882 1778 -104 6 36 6989 6978 -11
5 37 1909 1800 -109 6 37 7092 7086 -6
5 38 1937 1829 -108 6 38 7194 7187 -7
5 39 1960 1851 -109 6 39 7293 7284 -9
5 40 1986 1866 -120 6 40 7391 7385 -6
5 41 2023 1896 -127 6 41 7490 7478 -12
5 42 2046 1923 -123 6 42 7574 7569 -5
5 43 2069 1940 -129 6 43 7672 7661 -11
5 44 2091 2089 -2 6 44 7757 7748 -9
5 45 2112 2111 -1 6 45 7845 7836 -9
5 46 2130 2129 -1 6 46 7938 7928 -10
5 47 2150 2149 -1 6 47 8013 8005 -8
5 48 2174 2168 -6 6 48 8092 8089 -3
5 49 2191 2189 -2 6 49 8179 8176 -3
5 50 2213 2211 -2 6 50 8256 8253 -3
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Figure 5.9: Graphical comparison of the quality solutions between CSA and the
state-of-the-art (Colbourn, 2011) for t = 3, 4 ≤ k < 50 and v = 3.
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Figure 5.10: Graphical comparison of the quality solutions between CSA and the
state-of-the-art (Colbourn, 2011) for t = 4, 5 ≤ k < 50 and v = 3.
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Figure 5.11: Graphical comparison of the quality solutions between CSA and the
state-of-the-art (Colbourn, 2011) for t = 5, 6 ≤ k < 50 and v = 3.
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Figure 5.12: Graphical comparison of the quality solutions between CSA and the
state-of-the-art (Colbourn, 2011) for t = 6, 7 ≤ k < 50 and v = 3.

Figure 5.9, Figure 5.10, Figure 5.11, and Figure 5.12 compare the results shown in
Table 5.5 involving the CSA algorithm and the best-known solutions. The analysis
of the data presented let us to the following observation. The solutions quality
attained by the CSA approach is very competitive with respect to that produced
by the state-of-the-art procedures summarized in column 3 (ϑ). In fact, it is able
to improve on 134 previous best-known solutions.

5.6 Constructing test-suites for different real-case software
components

The purpose of this experiment is to evaluate the performance of the proposed
simulated annealing through the construction of different test suites for two real-
case softwares. The results of DSSA are compared with those obtained by a tool
called ACTS2 (Automated Combinatorial Testing for Software) which was devel-
oped by the NIST (National Institute of Standards and Technology), an agency
of the United States Government that works to develop tests, test methodologies,
and assurance methods. The tool ACTS can compute tests for 2-way through
6-way interactions. The NIST reports that a comparison of ACTS with similar
tools shows that ACTS produces smaller test suites; moreover it has over 800 users

2http://csrc.nist.gov/groups/SNS/acts/index.html
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as of September 2011, in nearly all major industries. Due to these features, ACTS
was selected as a point of comparison for the developed simulated annealing, the
non deterministic algorithm IPOG-F was used in ACTS to solve all cases reported
in this section.

5.6.1 Case 1: Test Suites for a Smartphone Application

.
The use of smartphones has increased in the last years, as can be seen in the first
quarterly mobile study of 2012 provided by comScore, which notes that 104 million
people in US were deemed smartphone owners, of which 50.1% have a mobile
device with Android. Many resources are available online for this application,
some of them define application permissions for system features. Table 5.6 shows
the description of a file with 35 options from different parameters of Android.
Table 5.7 indicates the name of each parameter and its possible configurations.
For a more detailed parameters’ explanation, see http://developer.android.

com/reference/android/package-summary.html

Table 5.6: Android resource configuration file.

Constants

int HARDKEYBOARDHIDDEN NO int NAVIGATIONHIDDEN YES int SCREENLAYOUT LONG UNDEFINED
int HARDKEYBOARDHIDDEN UNDEFINED int NAVIGATION DPAD int SCREENLAYOUT LONG YES
int HARDKEYBOARDHIDDEN YES int NAVIGATION NONAV int SCREENLAYOUT SIZE LARGE
int KEYBOARDHIDDEN NO int NAVIGATION TRACKBALL int SCREENLAYOUT SIZE MASK
int KEYBOARDHIDDEN UNDEFINED int NAVIGATION UNDEFINED int SCREENLAYOUT SIZE NORMAL
int KEYBOARDHIDDEN YES int NAVIGATION WHEEL int SCREENLAYOUT SIZE SMALL
int KEYBOARD 12KEY int ORIENTATION LANDSCAPE int SCREENLAYOUT SIZE UNDEFINED
int KEYBOARD NOKEYS int ORIENTATION PORTRAIT int TOUCHSCREEN FINGER
int KEYBOARD QWERTY int ORIENTATION SQUARE int TOUCHSCREEN NOTOUCH
int KEYBOARD UNDEFINED int ORIENTATION UNDEFINED int TOUCHSCREEN STYLUS
int NAVIGATIONHIDDEN NO int SCREENLAYOUT LONG MASK int TOUCHSCREEN UNDEFINED
int NAVIGATIONHIDDEN UNDEFINED int SCREENLAYOUT LONG NO

Table 5.7: Android configuration options.
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1 DPAD LARGE 12KEY LANDSCAPE MASK FINGER NO NO NO
2 NONAV MASK NOKEYS PORTRAIT NO NOTOUCH UNDEFINED UNDEFINED UNDEFINED
3 TRACKBALL NORMAL QWERTY SQUARE UNDEFINED STYLUS YES YES YES
4 UNDEFINED SMALL UNDEFINED UNDEFINED YES UNDEFINED
5 WHEEL UNDEFINED

Derived of the information shown in Table 5.7, the total number of configurations
is 3 × 3 × 4 × 3 × 5 × 4 × 4 × 5 × 4 = 172, 800. Taking into account that every
configuration used in the testing process requires the verification of the output
and the report of the failures (as the case), supposed that each takes at least 10
minutes, then it will take about 16 staff-years testing all cases; therefore to carry
out the testing in this way is infeasible.
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Instead of using the exhaustive approach to test this file for Android, the proposed
simulated annealing and ACTS National Institute of Standards and Technology,
2011 were used to construct different test suites, which cover t-way combinations
of values. Every test suite is represented by a MCA(N ; t, 9, 524433), each instance
was run 31 times (to provide statistical validity to the experiment). The minimum
size achieved by each approach is shown in Figure 5.13.

(a)

t TLB IPOG-F SA ∆

2 25 29 25 -4
3 100 137 108 -29
4 400 625 540 -85
5 1600 2532 2189 -343
6 6400 8824 7880 -944

(b)
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Figure 5.13: Size of each test suite MCA(N ; 2, 9, 524433) for the resource configu-
ration file for Android indicated in Table 5.6. Column one represents the strength t

of each experiment, column two represents the theoretical lower bound, column three
shows the results obtained by the IPOG-F algorithm, column four shows the results
obtained by DSSA algorithm, finally, the last column depicts the difference between
the best bound produced by DSSA and the best bound obtained by IPOG-F algorithm.

Figure 5.14(a) shows the MCA(25; 2, 9, 524433) that covers 2-way interactions.
Finally, to make the mapping between the mixed covering array and a test suite
for Android applications every possible value of each parameter in Table 5.7 is
labeled by the row number. Figure 5.14(b) shows the corresponding pair-wise test
suite; each of its twenty-five experiments is analogous to one row of the mixed
covering array shown in Figure 5.14(a).

Based on the results in Figure 5.13, it can be seen that DSSA was able to construct
smaller test suites than those generated by ACTS. In comparison with the exhaus-
tive approach, there is a decrease of 95.43% in the test suite with interaction of
size 6; therefore in the example described above, instead of 16 staff-years of testing
process, it would take less than 9 and a half months if it test suite is used; and it
would take slightly more than 2 months for the case t = 5. These benefits are in
terms of time; however the impact of the reduction of even a test case, can result
in savings such that the salary and benefit costs for each tester, just to name a
few.
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TRACKBALL LARGE NOKEYS LANDSCAPE YES NOTOUCH YES NO YES
DPAD MASK UNDEFINED PORTRAIT MASK NOTOUCH UNDEFINED UNDEFINED YES
UNDEFINED MASK QWERTY LANDSCAPE YES UNDEFINED UNDEFINED NO NO
DPAD SMALL NOKEYS SQUARE YES STYLUS NO YES NO
DPAD UNDEFINED 12KEY LANDSCAPE NO FINGER UNDEFINED NO YES
UNDEFINED LARGE 12KEY PORTRAIT NO STYLUS UNDEFINED YES YES
NONAV MASK NOKEYS SQUARE NO STYLUS YES UNDEFINED UNDEFINED
NONAV SMALL QWERTY LANDSCAPE MASK FINGER UNDEFINED YES UNDEFINED
UNDEFINED SMALL UNDEFINED UNDEFINED UNDEFINED FINGER YES NO UNDEFINED
NONAV UNDEFINED 12KEY PORTRAIT UNDEFINED NOTOUCH NO NO NO
DPAD LARGE QWERTY PORTRAIT UNDEFINED UNDEFINED YES UNDEFINED UNDEFINED
TRACKBALL MASK QWERTY UNDEFINED UNDEFINED NOTOUCH NO YES YES
TRACKBALL NORMAL UNDEFINED LANDSCAPE NO FINGER NO UNDEFINED NO
TRACKBALL SMALL 12KEY PORTRAIT MASK UNDEFINED YES UNDEFINED NO
TRACKBALL UNDEFINED UNDEFINED SQUARE YES STYLUS UNDEFINED YES UNDEFINED
NONAV LARGE UNDEFINED UNDEFINED YES FINGER UNDEFINED NO NO
WHEEL MASK 12KEY SQUARE YES FINGER YES UNDEFINED UNDEFINED
NONAV NORMAL QWERTY SQUARE NO UNDEFINED YES YES YES
DPAD NORMAL 12KEY UNDEFINED MASK STYLUS NO NO NO
UNDEFINED UNDEFINED NOKEYS UNDEFINED MASK UNDEFINED NO UNDEFINED UNDEFINED
WHEEL LARGE UNDEFINED SQUARE MASK UNDEFINED NO NO YES
WHEEL NORMAL NOKEYS PORTRAIT YES FINGER UNDEFINED NO NO
UNDEFINED NORMAL NOKEYS SQUARE UNDEFINED NOTOUCH UNDEFINED UNDEFINED UNDEFINED
WHEEL SMALL NOKEYS UNDEFINED NO NOTOUCH UNDEFINED YES YES
WHEEL UNDEFINED QWERTY LANDSCAPE UNDEFINED STYLUS YES NO NO

Figure 5.14: Test suite for Android applications (a) MCA(25; 2, 9, 524433); (b) Pair-
wise test suite for Android applications, each row corresponds to an experiment.
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5.6.2 Case 2: Test Suites for the module Add park

.
Currently there are several companies that provide custom application software de-
velopment, maintenance, and support to add functionality and integrate disparate
packaged applications that need to be enhanced to achieve business objectives.
A real international company, which we named xCompany to avoid conflicts of
interest, dedicated to custom software development is currently constructing an
application to control the activities for a scientific park. This software is consti-
tuted by different modules, being one of them Add park. The parameters and their
corresponding values are shown in Table 5.8.

Table 5.8: Parameters of the module: Catalog of parks Add park.

Parameter name Values #values

Name alphanumeric, special, empty, length exceeds 4
Country selected, unselected 2
State selected, unselected 2
Population selected, unselected 2
Category aquatic, not defined, thematic 3
Address alphanumeric, special, empty, length exceeds 4
Description alphanumeric, special, empty, length exceeds 4
Services alphanumeric, special, empty, length exceeds 4
Stock checked, unchecked 2
Start of agreement valid date, invalid date, empty 3
End of agreement valid date, lower than start d., upper than start d., invalid date, empty 5
Business terms alphanumeric, special, empty, length exceeds 4
Public terms alphanumeric, special, empty, length exceeds 4
Description of the agreement alphanumeric, special, empty, length exceeds 4
Contact Name alphanumeric, special, empty, length exceeds 4
email contact valid, invalid, empty 3
Description of the contact alphanumeric, special, empty, length exceeds 4
Business name of contact alphanumeric, special, empty, length exceeds 4
RFC valid, invalid, empty 3
Bank alphanumeric, special, empty, length exceeds 4
Account alphanumeric, special, empty, length exceeds 4
CLABE alphanumeric, special, empty, length exceeds 4

xCompany views Quality Assurance (QA) as an integrated system of management
and testing that provides confidence that a software application will deliver its
specified performance; so it has to carry out the testing process with this goal in
mind. As mentioned in the Android case, test all configurations is infeasible, there-
fore our simulated annealing and ACTS were used to construct test suites for this
module. Every test suite was represented by the MCA(N ; t, 22, 514133424) where
2 < t ≤ 6 and was solved 31 times. The minimum size obtained by the proposed
simulated annealing and ACTS is shown in Figure 5.15. Figure 5.16 shown the
MCA(N ; 2, 22, 514133424) that covers 2-way interactions. The equivalent values
for each test as been obtained as specified in Figure 5.14(b).

Results in Figure 5.15 shows that the quality solution of our simulated annealing is
better for all cases in comparison with those obtained by ACTS. The constructed
test suites have the guarantee to cover all interactions of size t indicated in first
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(a)

t TLB IPOG-F SA ∆

2 20 29 28 -1
3 80 206 169 -37
4 320 995 900 -95
5 1280 4912 4824 -88
6 5120 22252 21400 -852

(b)
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Figure 5.15: Minimum size for each test suite for the module described in Table 5.8.
Column one represents the strength t of each experiment, column two represents the
theoretical lower bound, column three shows the results obtained by the IPOG-F al-
gorithm, column four shows the results obtained by DSSA algorithm, finally, the last
column depicts the difference between the best bound produced by DSSA and the best
bound obtained by IPOG-F algorithm.

column of Figure 5.15. It means that if exist a functional failure triggered by a
particular configuration among t parameters, it will be evidenced by using the cre-
ated test suites, thus the goal of confidence that a software application will deliver
its specified performance is guaranteed to the extent of the degree of interaction.

5.7 Summary

This chapter presented the experiments carried out to assess the performance of
the developed simulated annealing algorithm. The chapter was organized in six
sections, the results are described in the following paragraphs.

The global performance of the developed simulated annealing algorithm and the
influences that some of its key features have on it were presented in Section 5.1.
The empirical experimentation disclosed that the developed simulated annealing
using Maximum Hamming Distance solutions performs much better than the sim-
ulated annealing algorithm that starts from a randomly generated solution. The
neighborhood function is a critical element for the performance of any local search
algorithm. It was shown experimentally that our algorithm achieves its best per-
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Figure 5.16: MCA(28; 2, 22, 514133424) that represents a test suite for the Module
Add park

formance using the neighborhood function N3, which is a compound neighborhood
combining the complementary characteristics of both N1 and N2.

In order to provide a good global performance of the simulated annealing algo-
rithm, Section 5.2 presented a fine tuning methodology for optimizing the assigned
probabilities of execution for each of the two neighborhood functions using a linear
Diophantine equation.

Section 5.3 presented the results obtained from the sequential implementation of
simulated annealing. The results were compared against the best algorithms ob-
tained from the literature for constructing uniform and mixed covering arrays. The
computational results showed that our algorithm is able to improve the previous
bounds or at least match them.

Section 5.4 presented the results of comparing our Grid implementation of simu-
lated annealing algorithm against two of the best algorithms from the literature
(IPOG-F and TConfig); we created a new benchmark composed by 60 ternary
covering arrays instances where 5 ≤ k ≤ 100 and 2 ≤ t ≤ 4. The empirical evi-
dence presented in this section showed that DGSA algorithm improved the size of
many covering arrays in comparison with the tools that are among the best found
in the state-of-the-art of the construction of covering arrays.

Section 5.5 presented the results of comparing our parallel simulated annealing
algorithm against the best bounds from the literature over a benchmark composed
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5.7 Summary

by 182 covering arrays. The quality solutions attained by our parallel approach is
very competitive with respect to that produced by the state-of-the-art procedures,
in fact, it was able to improve on 134 previous best-known solutions and equaled
the solutions for other 29 instances.

Finally, Section 5.6 showed two real examples of how to apply the combinatorial
interaction testing.

The next chapter, and the last one, presents the main conclusions and contribu-
tions derived from this research work.
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Chapter 6

Conclusions

In this thesis we have examined the problem of constructing covering arrays for
software interaction testing. We have proposed the development of an improved
simulated annealing algorithm for constructing uniform and mixed covering arrays
of strength t >= 2. In addition, we have proposed the use of Grid computing
and Supercomputing to address the large amount of computing time necessary to
obtain near-optimal covering arrays. Finally, the constructed covering arrays have
been published in the repository described in Appendix A, in order that others can
study the actual covering arrays, build new covering arrays from them, and also
use these covering arrays without having to spend the computational resources.

6.1 Summary

Initially, we proposed an improved simulated annealing algorithm for constructing
uniform and mixed covering arrays. The key features of the proposed simulated
annealing are:

⊲ An efficient method to generate initial solutions using maximum Hamming
distance

⊲ A carefully designed composed neighborhood function which allows the
search to quickly reduce the total cost of candidate solutions, while avoiding
to get stuck on some local minimal.

⊲ An effective cooling schedule allowing our simulated annealing algorithm to
converge faster, producing at the same time good quality solutions

In order to provide a good global performance of the proposed simulated anneal-
ing algorithm, we followed a fine tuning methodology for optimizing the assigned
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probabilities of execution for each of the three neighborhood functions using a
linear Diophantine equation.

The empirical evidence presented in this work showed that our simulated annealing
improved the size of the mixed covering arrays in comparison with the tools that
are among the best found in the state-of-the-art of the construction of mixed
covering arrays. The performance of the proposed simulated annealing algorithm
was assessed with a benchmark, composed by 19 mixed covering arrays of strengths
two and three taken from the literature. The computational results were reported
and compared with previously published ones, showing that our algorithm was
able to find 4 new upper bounds and to equal 15 previous best-known solutions
on the selected benchmark instances.

Subsequently, we proposed the use of Grid computing and Supercomputing to
address the large amount of computing time necessary to obtain near-optimal
covering arrays, mainly for t > 2 and v > 2.

The main conclusion extracted from Grid implementation was the possibility of
using two different schemas (asynchronous and synchronous) depending on the
size of the experiment. On the one hand, the synchronous schema achieves better
performance but is limited by the maximum number of slave connections that
the master can keep track of. On the other hand, the asynchronous schema is
slower but experiments with a huge value of slaves can be seamlessly performed.
In order to show the performance of the Grid simulated annealing algorithm, we
created a new benchmark composed by 60 ternary covering arrays instances where
5 ≤ k ≤ 100 and 2 ≤ t ≤ 4, and we have obtained the ACTS and TConfig
softwares in order to compare Grid simulated annealing algorithm against them.
The results showed that the Grid algorithm gets solutions of better quality than
the other two tools.

Next, we proposed three approaches to parallelize the simulated annealing al-
gorithm (independent search approach, semi-independent search approach, and
cooperative search approach). From the experimental results, we found that the
independent search approach is the worst performing offers, it does not scale.
The semi-independent search approach offers reasonable execution times; com-
pared to the independent search approach, communication overhead in the semi-
independent search approach would be increased. However, each processor can
utilize the information from other processors such that the decrease in computa-
tions and idle times can be greater than the increase in communication overhead.
For instance, a certain processor which is trapped in an inferior solution can rec-
ognize its state by comparing it with others and may accelerate the annealing
procedure. That is, processors may collectively converge to a better solution. The
cooperative search approach is who offers the best results, it significantly reduces
the execution time of the semi-independent search approach by employing asyn-
chronous information exchange.
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6.2 Future work

In order to show the performance of the cooperative search simulated annealing al-
gorithm, we created a new benchmark composed by 182 covering arrays distributed
as follows:

⊲ 47 CAs with strength t = 3, degree 4 ≤ k < 50 and order v = 3

⊲ 46 CAs with strength t = 4, degree 5 ≤ k < 50 and order v = 3

⊲ 45 CAs with strength t = 5, degree 6 ≤ k < 50 and order v = 3

⊲ 44 CAs with strength t = 6, degree 7 ≤ k < 50 and order v = 3

The analysis of results lead us to the following observation. The solutions quality
attained by the cooperative search simulated annealing algorithm is very compet-
itive with respect to that produced by the state-of-the-art procedures. In fact, it
is able to improve on 134 previous best-known solutions. Even some of the best
bounds were improved to reduce them hundreds of test cases.

These experimental results confirm the practical advantages of using our algo-
rithm in the software testing area. It is a robust algorithm yielding smaller test
suites than other representative state-of-the-art algorithms, which allows reducing
software testing costs.

Finally, we presented two examples of generating test suits for real software com-
ponents. The first one had been presented earlier by Kuhn et al. (2010), they
constructed the test suite using the ACTS tool, setting IPOG-F as solution algo-
rithm. Every test suite was solved 31 times by both approaches, the best solution
for each case was registered, then the results of both approaches were compared,
the results showed that our algorithm improves all previous bounds. The second
example is a new benchmark, corresponding to a software system to control the
activities for a scientific park, as the first case, the best solution achieved for each
approach was registered, the results showed that the quality solution of our sim-
ulated annealing is better for all the cases in comparison with those obtained by
ACTS.

6.2 Future work

The course of this research can take several ways, some of them are:

⊲ Increase the experimentation for v > 3 and t > 6.

⊲ Create a tool to merge the algebraic methods, recursive methods and meta-
heuristics methods, in order to create functional software tests.
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6.3 Publications

The research activity presented in this work has resulted in a total of 16 research
publications. Table 6.1 compiles all the works indicating the author position, the
type of publication and the book, conference or journal where it was published.
The author position is used as an indicator of the degree of contribution made by
the author of the present work in each one of the publications.

Table 6.1: Summary of Publications.

Publication ID Position Type Published

Avila-George et al. (2012e) 1 Journal J. Supercomput.
Avila-George et al. (2012b) 1 Journal Math. Probl. Eng.
Avila-George et al. (April 2012) 1 Journal IET Softw.
Torres-Jimenez et al. (September 2011) 2 Journal IET Softw.
Torres-Jimenez et al. (2011a) 4 Journal Int. J. Math. Educ. Sci. Technol.

Avila-George et al. (2010a) 1 Book LAP LAMBERT

Avila-George et al. (2012f) 1 Book chapter INTECH
Torres-Jimenez et al. (2012) 2 Book chapter INTECH

Avila-George et al. (2012a) 1 Conference IBERAMIA 2012
Avila-George et al. (2012c) 1 Conference PDPTA 2012
Avila-George et al. (2012d) 1 Conference DCAI 2012
Avila-George et al. (2011) 1 Conference PDPTA 2011
Torres-Jimenez et al. (2011b) 3 Conference DBKDA 2011
Torres-Jimenez et al. (2010) 2 Conference IBERAMIA 2010
Martinez-Pena et al. (2010) 4 Conference IBERAMIA 2010
Avila-George et al. (2010b) 1 Conference GLOBE 2010
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Appendix A

Covering arrays repository

This appendix shows in detail a new Covering Arrays Repository (CAR) which
is a very large database that contains a wide variety of covering arrays. Also, it
discusses the importance of CARs in the construction of better covering arrays.
The covering arrays that can be found in the repository have alphabet value of
v = {2, 3, . . . , 27}, strength of t = {2, 3, . . . , 17} and some of them involve up to
20000 parameters, or columns. The size N of some of the covering arrays included
in the repository are the best upper bounds known in the literature. Moreover, the
files containing the matrices of those covering arrays are available to be downloaded
in the repository. In general, the appendix presents a complete description of the
new repository that includes: the strategies that have been used to construct the
covering arrays; a set of tables showing some of the upper bounds in the covering
arrays that can be found there; a brief description of the web-based interface of it
and a graphical summary of the covering arrays that it contains.

The remaining of this appendix is structured as follows: Section A.1 describes the
relevant work related with the existence of repositories of covering arrays. Sec-
tion A.2 shows the theoretical basis and structure of the repository and presents a
summary of the new upper bounds that can be found in the repository. Section A.3
presents two cases of study for the construction of covering arrays, reported in the
literature, that were benefited from covering arrays matrices to improve upper
bounds of other covering arrays. Finally, conclusions and further work are pre-
sented in Section A.4.
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Chapter A. Covering arrays repository

A.1 Repositories for covering arrays

As it has been pointed out in the last section, there exist a lot of approaches
devoted to the construction of covering arrays. While some approaches proposes
new benchmarks for the problem of constructing covering arrays, some others
improves the size of the existing covering arrays. However, a closer looks in the
results reported by those works will show us that the research on the construction
of covering arrays lacks from a place where all those covering arrays can be located,
by other researches, or at least the best known covering arrays.

In general, given that the covering arrays have been studied from several viewpoints
and constructed from a wide variety of approaches, to get a covering array table
from determined values of (t, k, v) becomes difficult and sometimes impossible. The
repositories of covering arrays that can be found on the Web partially overcome
this situation. Some of these repositories contain information of the optimal size
of the covering arrays and how can they be constructed, others have available the
covering arrays tables. To the best of our knowledge, the repositories found in
the literature are: the one maintained by Colbourn (2011), the covering arrays
tables listed in the National Institute of Standards and Technology (2011) and the
covering arrays described by Sherwood (2011).

The repository maintained by Charlie Colbourn publishes the current best known
upper bounds for covering arrays. The repository does not contain the covering
array tables, instead it records the information of the smallest covering arrays that
have been constructed, and reported in the literature, for a wide variety of values
of (t, k, v). For each value (t, k, v), reported in the repository, a reference to the
technique used to construct the covering array is presented.

The NIST repository is maintained through the Automated Combinatorial Testing
for Software (ACTS) project at NIST. This repository stores covering arrays tables
that have been constructed by the IPOG-F algorithm (Forbes et al., 2008). The
IPOG-F algorithm is fast and can construct small covering arrays however, the
difference between the size of the covering arrays constructed by IPOG-F and the
minimum size possible of the covering arrays tends to grow rapidly with increasing
value of (t, k, v). Then, the NIST repository has the advantage of proportioning
the covering array tables but with the disadvantage that they commonly are not
the best possible ones.

The Sherwood repository has the peculiarity that it presents covering array ta-
bles and describes the method used to construct them in the same website. The
method of construction is based on orthogonal arrays and permutation vectors and
strategies that combines them to produce new covering arrays. The website does
not provide the covering arrays tables, instead it gives the methods that must be
used to construct them. The covering arrays described in this repository have the
minimum number of rows possible, for the values of (t, k, v) considered.
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A.1 Repositories for covering arrays

Table A.1 present a brief comparison of the repositories already described. The
comparison is made in terms of the covering arrays tables that can be found in each
of them. The column 1 shows the repository; the columns 2, 3 and 4 contains the
strengths t, alphabets v and columns k values, respectively, for which a covering
array table is reported in the repository. Finally, the column 5 shows a reference
of a constructed covering array table is available in the repository or not.

Table A.1: Description of the repositories for covering arrays available in the Web.

Repository t k v CA tables

Colbourn tables {2, . . . , 6} up to 20000 {2, . . . , 24} no
NIST {2, . . . , 6} up to 74 {2, . . . , 6} yes
Sherwood tables {2, . . . , 4} up to 273 {2, . . . , 13} no

Summarizing, the NIST repository is the only one from which we can download
explicit covering array tables however, these tables are not the best ones that can
be found in the literature (Bracho-Rios et al., 2009; Rodriguez-Tello and Torres-
Jimenez, 2009; Avila-George et al., 2012d; Avila-George et al., 2012f; Avila-George
et al., 2012c; Martinez-Pena et al., 2010;Martinez-Pena and Torres-Jimenez, 2010).
The Sherwood repository reports some of the best covering array tables, in terms
of their size, but these tables are not constructed (instead, a method to construct
them is provided) and only covers a reduce number of covering array tables (in
comparison with the other two repositories). Finally, the Charlie Colbourn repos-
itory contains the best found upper bounds for a range of values of (t, k, v) wider
than those reported in the NIST and Sherwood repositories. Also the Charlie
Colbourn repository includes a reference to the approach followed to achieve those
upper bounds. However, the repository does not includes the tables for the values
of (t, k, v) that it reports.

In conclusion, the scientific community lack from a repository that offers explicit
covering arrays tables for a wide range of (t, k, v) and guarantees that the sizes of
the table are competitive among the best known values reported in the literature.
For this purpose, in this appendix is proposed a new repository that includes
constructed covering array tables for values of (t, k, v). The next section presents
the new repository and compares it with the existing ones. The section begins with
the presentation of the techniques used for the construction of covering arrays,
next, it describes the web tools developed for its management and access. Finally,
it shows covering array tables with new upper bounds when t ≤ 6.
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A.2 CINVESTAV covering arrays repository

This section presents the new covering array repository (CAR), which is available
under request at http://www.tamps.cinvestav.mx/~jtj/CA.php. The covering
array repository is maintained by the Group of Optimal Experimental Design
(GOED)1.

The remaining of the section describes in dept details about the repository con-
cerning: the approaches used to construct the covering arrays, the web interface to
access the repository, a graphical presentation of some upper bounds for the size of
the covering arrays that can be found and a comparison against the state-of-the-art
repositories.

A.2.1 Algorithms

The algorithms that have been used to construct the covering arrays located in the
repository are based in a wide variety of approaches. A wide variety of approaches
form been follow in order to construct the covering arrays stored in the repository.
Table A.2 summarizes some of the most recent approaches that have been followed
to support the construction of the covering arrays of the repository.

Basically, the algorithms for the construction of covering arrays varies from exact
to approximated algorithms. The exact approaches construct optimal solution for
small covering arrays. The approximated algorithms allows the construction of
larger covering arrays than those produced by the exact algorithm but with the
disadvantage that they are not of the optimal size. Among the approaches referred
for the construction of covering arrays are also those ones that contributes in the
generation of new covering array by identifying special structures of them that
could help in the reduction of rows (as the case of the covering arrays with a large
number of constant rows) and to verify rapidly that a matrix is a covering array
(like the verification approaches).

The following subsection describes the graphical web interface of the repository.

A.2.2 Repository description

The repository has a multi-parametric interface to find a specific covering array
(see Figure A.1), the queries can be done by v, t, k or any combination of them.

grows logarithmically as the number of columns grows linearly.

1Found at the Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV)
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A.2 CINVESTAV covering arrays repository

Table A.2: Algorithms used to construct the covering arrays of the repository re-
ported in this appendix, they has been constructed by GOED.

Algorithm Description

CRMP (Quiz-Ramos et
al., 2009)

Exact approach for the maximization of the number of
constant rows in a CA.

B&B (Bracho-Rios et al.,
2009; Martinez-Pena and
Torres-Jimenez, 2010)

Exact approach for the construction of covering arrays.

SA (Avila-George et al.,
2012d; Avila-George et
al., 2012c)

Simulated annealing algorithm to construct covering ar-
rays.

SA & SAT models (Lopez-
Escogido et al., 2008)

An approach to construct covering arrays using the
propositional satisfiability problem (SAT).

SA & Trinomial Coeffi-
cients (Martinez-Pena et
al., 2010)

A Heuristic approach for constructing covering arrays
using trinomial coefficients.

MA (Rodriguez-Tello and
Torres-Jimenez, 2009)

Memetic algorithm to construct covering arrays.

MiTS (Gonzalez-
Hernandez et al., 2010)

Tabu search algorithm to construct mixed covering ar-
rays.

Grid (Torres-Jimenez et
al., 2004; Avila-George et
al., 2012f)

Grid approaches for covering arrays.

Figure A.1: Multi-parametric repository interface.

A.2.3 Scope and upper bounds of the repository

In this section, we show the kind of covering arrays that can be found in this
repository and the new upper bounds. The kind of covering arrays that can be
found in this repository are briefly described in Table A.3.
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A.3 Cases of study

Table A.3: Description of the covering array repository.

Level Columns Cardinality Strength

Fixed 3 ≤ k ≤ 20.000 2 ≤ v ≤ 27 2 ≤ t ≤ 17
Mixed 4 ≤ k ≤ 75 2 ≤ max v ≤ 11 2 ≤ t ≤ 6

Table A.4 shows covering array tables which contains new upper bounds and they
can be downloaded from our repository.

Table A.4: New upper bounds achieved with the algorithms described in Table A.2.

CAN(t, k, v) Upper bounds ∗

CAN(3,k,2) 26

CAN(4,k,2) 28

CAN(5,k,2) 21

CAN(6,k,2) 64

CAN(2,k,3) 15

CAN(2,k,4) 19

CAN(2,k,5) 20

CAN(2,k,6) 40

CAN(2,k,7) 10

CAN(2,k,8) 2

CAN(2,k,9) 3

CAN(2,k,10) 14

CAN(2,k,11) 6

CAN(2,k,12) 2

CAN(2,k,14) 13

CAN(2,k,15) 4
∗ See Colbourn tables (Colbourn, 2011).

A.3 Cases of study

In this section, we present two approaches for the construction of covering arrays,
reported in the literature, that were benefited from covering arrays matrices to
improve upper bounds of other covering arrays. For each approach, we present a
summary of the evidence about the best upper bounds attained by it.
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Chapter A. Covering arrays repository

A.3.1 Algebraic constructions

The use of algebraic constructions to improve the upper bounds of covering arrays.
The algebraic constructions are deterministic approaches that uses covering arrays
to construct larger ones. Examples of such methods are the Hartman Style Rais-
ing Procedures (Hartman and Raskin, 2004) and the product of covering arrays
(Colbourn et al., 2006a). This subsections discusses how such methods, combined
with matrices of covering arrays as the ones found at our repository, can be used
to improve existing upper bounds for covering arrays.

Our first case of study involves the product of covering arrays. Colbourn et al.
(2006a) describes several methods that constructs large covering arrays from two
relatively small covering arrays. One of them is the Direct Product, this method
constructs a CA(N +M ; 2, kl, v) from CA1(N ; t, k, v), CA2(M ; t, l, v). The other
method, called PCA × PCA, involves the product of special structures called
Partitioned Covering Arrays (or PCAs), which can yield better results than the
ones obtained with the direct product (i.e. the covering arrays produced would
have less rows).

Table A.5 presents the number of covering arrays whose best upper bounds so far
have been obtained using the algebraic methods of PCA × PCA, and the Direct
product generalized. The column 1 shows the different covering arrays analyzed;
column 2 presents the number of upper bound due to PCA × PCA; and column
3 shows the upper bounds derived from Direct product generalized.

Note that in the description presented in Table A.5, for some alphabets the number
of upper bounds due to PCA × PCA and Direct product generalized are large. If
we can have access to the small matrices that have produced those bounds, then
the large matrices could also be constructed. This fact reflects the importance of
a repository that keeps available matrices of covering arrays of size competitive
with the best upper bounds known so far, as the one presented in this appendix.

A.3.2 Metaheuristics

However, the algebraic constructions are not the only ones that can be benefited
from the repositories. Also, the construction of covering arrays by metaheuristics
can be enhanced by the use of existing covering arrays when the latter ones are
taken as initial solutions by the algorithms.

The method presented by Avila-George et al. (2012d) is an example of the use of
covering arrays as initial solutions. This method has improved upper bounds for
existing covering arrays. These kind of strategies have shown a good performance
in the construction of covering arrays; it is so because a great variety of upper
bounds have been obtained with them.
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Table A.5: Summary of the number of best upper bounds obtained using the meth-
ods PCA × PCA and Direct product generalized, in the construction of covering arrays.
The information is presented for covering arrays of strength t = 2 and different alpha-
bets v = {3, 4, . . . , 24}.

New Upper Bounds

CAN(t, k, v) PCA× PCA Direct product generalized

CAN(2, k, 3) 7 0
CAN(2, k, 4) 30 0
CAN(2, k, 5) 52 0
CAN(2, k, 6) 13 57
CAN(2, k, 7) 34 44
CAN(2, k, 8) 30 64
CAN(2, k, 9) 41 7
CAN(2, k, 10) 4 72
CAN(2, k, 11) 12 65
CAN(2, k, 12) 1 78
CAN(2, k, 13) 2 53
CAN(2, k, 14) 0 85
CAN(2, k, 15) 0 76
CAN(2, k, 16) 14 51
CAN(2, k, 17) 14 66
CAN(2, k, 18) 1 133
CAN(2, k, 19) 14 106
CAN(2, k, 20) 0 158
CAN(2, k, 21) 0 127
CAN(2, k, 22) 0 132
CAN(2, k, 23) 9 85
CAN(2, k, 24) 1 100

A.4 Conclusions

The main contributions presented in this appendix are listed in the following para-
graphs.

This appendix presents a brief summary of the different strategies used for the
construction of covering arrays. These strategies are grouped in exact, determin-
istic and non-deterministic approaches. It also presents a review of the available
repositories of covering arrays and compares them in terms of strength t, number
of columns k, alphabet v and in the availability of their matrices.

Through this appendix we describe a new repository that provides to the research
community a great list of covering arrays, with a wide variety of strengths t and
alphabets v. With this repository, others can use these arrays without having to
spend the computational resources for constructing them and use them to con-
struct new covering arrays. The main characteristic of this new repository is that
it has a web interface for the management of the covering array matrices; also,
these matrices are available under request at http://www.tamps.cinvestav.mx/
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Chapter A. Covering arrays repository

~jtj/CA.php. Besides the easy to use interface, and for given values of t, k, v,
the repository presents multidimensional graphs that describes the upper bounds
in the size of covering arrays.

An important contribution of the repository described in this appendix is that
it also contains matrices for Mixed Covering Arrays (MCAs), i.e., matrices for
covering arrays with different alphabets in the columns. In the repository we can
find matrices of covering arrays of strengths t, columns k and alphabets v of 17,
20000 and 27, respectively (i.e. it covers a wider ranges of values for t, k, v than
the other repositories). For the case of mixed covering arrays, the values for t, k, v
are 6, 75 and 11, respectively.

We point out in a case of study, the benefits that can be achieved from the existence
of the repository. Particularly, the repositories found applications in the construc-
tion of covering arrays as ingredients of algebraic methods, which are methods for
the construction of covering arrays that uses smaller covering arrays as inputs.
Another application of the repositories is in metaheuristics, where their matrices
can be used as inputs of such methods to improve existing upper bounds.
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