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Abstract:

Purpose: The present paper aims to analyze the Operations Management (OM) research between 2014
and 2018 that has made use of  Partial Least Squares (PLS) to determine whether the trends shown in
previous literature reviews focused on this topic are maintained and whether the analyzed papers comply
with the recommendations for reporting.

Design/methodology/approach: A systematic literature review has been carried out of  OM articles
that use PLS as an analysis tool. A total of  102 references from 45 journals from 2014 to 2018, published
in WOS and Scopus, has been analyzed. Bibliometric analysis and a review of  the PLS reporting standards
applied in the context of  OM have been developed.

Findings: PLS is gaining importance and is widely adopted in OM as a statistical analysis method of
choice. In general, certain aspects of  PLS are correctly applied and adequately reported in the publications.
However, some shortcomings continue to be observed in terms of  their application and the reporting of
results. A detailed comparison has been developed between the current research and previous OM research
(as well as previous research on other disciplines) on this topic. 

Research  limitations/implications: OM  researchers  making  use  of  PLS  should  be  aware  of  the
importance of  correctly reasoning and justifying their choice and fully reporting the main parameters in order
to provide other researchers with useful information and enable them to reproduce the performed analysis.

Originality/value: This article builds a study with results based on a greater number of  articles and
journals than the two previous literature reviews focused on this topic. Therefore, it provides a richer and
more up-to-date evaluation of  trends in the use and reporting of  PLS. Additionally, the present paper
assesses  whether  the  studies  follow the  indications  suggested  in  recent  years  triggered by  significant
changes in the standards of  reporting results obtained through the use of  PLS.
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1. Introduction

Partial Least Squares (PLS) is a statistical regression method, first introduced and developed by the Swedish statistician,
Wold, for econometrics in the late 60s (1966), extended by Lohmöller in the late 80s (1989) and introduced into
business research by Chin (1998) in the late 90s, that has become increasingly popular in the last decade. 

It is one of  the methods of  the family of  variance-based structural equations modelling (SEM) developed in several
stages. In the first stage, the Latent Variable Scores (LVS) are estimated iteratively; in the second, the measurement
model is resolved, estimating the outer weights and loadings (based on the LVS estimated in the first stage); and, in
the third, the parameters of  the structural model are estimated (Marin-Garcia & Alfalla-Luque, 2019a; Ringle,
Wende & Becker, 2015; Sarstedt, Ringle & Hair 2017)

There are many reasons for PLS’ popularity. The method allows researchers to deal with more complex models
with a large number of  constructs and indicator variables (Ringle,  Sarstedt,  Mitchell  & Gudergan,  2018); the
mathematical and statistical procedures are rigorous and robust (Wold, 1980); the mathematical model is flexible
(Falk & Miller, 1992); PLS is robust even with extremely non-normal data (Cassel, Hackl & Westlund, 1999; Hair,
Hult, Ringle, Sarstedt & Thiele, 2017); it does not establish strict premises in data distribution or the measurement
scale (Peng & Lai, 2012) and it provides a high level of  statistical power for relatively small sample sizes (Mitchell &
Nault, 2007; Reinartz, Haenlein & Henseler, 2009; Wold, Martens & Wold, 1983).

In fact, Partial Least Squares Structural Equation Modeling (PLS-SEM) has quickly spread to research in multiple
disciplines such as accounting, human resources management, international business research, information systems,
strategic  management,  marketing  management,  hospitality  management,  tourism,  supply  chain  management,
consumer behavior, healthcare, knowledge management, and Operations Management (OM), as indicated by Usakli
and Kucukergin (2018). Undoubtedly, the availability of  software applications has been a determinant factor in the
popularity of  PLS-SEM.

A detailed explanation of  the different aspects of  the PLS method can be found in current publications (Hair, Hult,
Ringle & Sarstedt, 2014; Hair, Sarstedt, Ringle & Gudergan, 2017; Hair, Risher, Sarstedt & Ringle, 2019; Kaufmann
& Gaeckler, 2015;  Marin-Garcia & Alfalla-Luque, 2019a; Nitzl, 2018; Ringle et al., 2018; Usakli  & Kucukergin,
2018). Therefore, the purpose of  the present paper is not to focus on these aspects. Given the importance that the
use of  PLS is gaining in research, the objective of  this paper is to analyze its use in research in OM from 2014 to
2018  to  update  and  enhance  previous  research  studies  based  on  a  smaller  number  of  journals  and  articles
(Kaufmann & Gaeckler, 2015; Peng & Lai, 2012). Peng and Lai (2012) researched 42 articles in OM in general from
8 journals spanning from 2000 to 2011. Kaufmann and Gaeckler (2015) focused on 75 articles in Supply Chain
Management from 10 journals spanning from 2002 to 2013. 

In contrast, the present article reviews 102 papers on OM taken from 45 journals and spanning from 2014 to 2018.
This article builds a study with results based on more articles and journals than any previous research and therefore
provides a richer and more up-to-date evaluation of  the trends in the use and reporting of  PLS. Additionally, this
article  assesses  whether  the  studies  follow indications  given  after  the  introduction in  the  said  period,  of  the
significant change in the reporting standards for results obtained through the use of  PLS.

Therefore, the objective of  this study is to fill the gap in recent OM PLS reviews by providing a comprehensive,
detailed, and systematic review of  the deployment and reporting of  the PLS-SEM method in the area and to
determine whether the tendencies shown in previous papers are maintained and the obtained results are adequately
reported. For this, a systematic literature review has been carried out to select OM articles that use PLS as an
analysis tool. An investigation will be carried out of  these articles with a bibliometric analysis and a review of  the
PLS reporting standards applied to the context of  OM.

To be more precise, we intend to answer the following research questions using a specific protocol (Marin-Garcia &
Alfalla-Luque, 2019b): 

• What characterizes OM publications between 2014 and 2018 that have used PLS?
• Do recently published articles comply with reporting recommendations? 
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• Are the results of  previous reviews on the subject based on a very limited set of  journals and conducted
before substantial modifications to the PLS-based study reporting methods, still valid?

For this, we follow the methodology detailed in section 3. Then, the main results are set out in section 4 and the
main conclusions are explained in section 5.

2. Previous Research

It is important to note that many disciplines have regularly reviewed the PLS method, used to ensure rigorous
research and publication practices. This method has gained importance, particularly in the wake of  the intense
academic debate and controversy surrounding PLS that has taken place in recent years that led to the drafting of
guidelines and recommendations for its use and reporting standards for articles that use PLS-SEM as an analytical
tool (Hair et al., 2019). Despite the controversy and debate surrounding PLS, interest in PLS has been growing
among OM researchers.

Some authors have reviewed and summarized the method’s application in systematic literature reviews in diverse social
science disciplines such as accounting (Lee, Petter, Fayard & Robinson, 2011; Nitzl, 2016), information systems (Hair,
Hult,  Ringle,  Sarstedt  et  al.,  2017),  strategic  management  (Hair,  Sarstedt,  Pieper  &  Ringle,  2012),  marketing
management (Hair, Sarstedt, Ringle & Mena, 2012), hospitality management (Ali, Rasoolimanesh, Sarstedt, Ringle &
Ryu, 2018),  tourism (do Valle & Assaker, 2016) and healthcare (Avkiran, 2018), among others. Some of  these reviews
have also presented guidelines for evaluating and using PLS-SEM tailored to their specific fields.

Regarding the discipline of  OM, the most recent article (Peng and Lai, 2012) reviews papers published up to 2011.
There is also a publication on Supply Chain Management (SCM) which revises publications up to 2013 (Kaufmann
& Gaeckler, 2015). Therefore, an updated assessment of  PLS-SEM use and reporting in OM seems timely and
necessary  to  evaluate  compliance  with  the  recommendations by  comparing  and contrasting what  is  currently
reported  in  OM literature  with  the  suggested  reporting  protocols  and  guidelines.  This  review is  particularly
important given the intense academic debate and controversy surrounding PLS of  recent years, which resulted in
new guidelines and recommendations for its use and the reporting standards of  articles that use PLS-SEM as an
analytical tool (Cepeda-Carrion, Cegarra & Cillo, 2018; Hair et al., 2019; Marin-Garcia & Alfalla-Luque, 2019a;
Sharma, Sarstedt, Shmueli, Kim & Thiele, 2019). The present article is especially focused on evaluating whether the
procedures for using and reporting PLS follow the current recommendations and an exhaustive comparison has
been made with two more recent review articles related to OM (Kaufmann & Gaeckler, 2015; Peng & Lai, 2012).
There is also a third review article in the field of  OM by Shah and Goldstein (2006). This article has not been
analyzed and compared to the other two since it is older and predates the significant changes in PLS reporting
whose implementation in articles we intend to analyze.

Peng and Lai (2012) select OM journals recognized as having published relevant and rigorous empirical research and
review articles from 2000 to 2011. After narrowing the OM journals down to 10, they perform a keyword search using
the following keywords:  “partial-least-squares”,  “partial  least  squares”,  “PLS”,  “formative”,  “PLS Graph” “PLS-
Graph”, and “SmartPLS”, resulting in the selection of  42 articles. They then conduct a review of  the way that
researchers have used PLS in these articles with the analysis of  20 specific aspects grouped into 6 categories (Table 1). 

Items Description

(1) Rationale for using PLS

(2) to (6) Sample size

(7) to (13) Formative constructs

(14) Bootstrapping

(15) PLS software used

(16) to (21) Reported results

Table 1. Number of  items reviewed (Peng & Lai, 2012) 
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These authors conclude that some studies exhibit deficiencies or a lack of  familiarity with certain aspects of  PLS
while others demonstrate a reasonably good understanding of  the PLS method. However, overall, many of  the
reviewed articles do not adequately assess the properties of  the formative constructs. Despite the importance of
using the right criteria to evaluate formative constructs, 16% of  the articles that use the latter do not perform any
analysis of  their measurement properties, 26% use techniques for evaluating reflective constructs, 37% examine
formative construct item weights, 21% evaluate the multicollinearity of  the formative measurement items (mostly
using the variance inflation factor - VIF) and only 16% examine discriminant validity. It is also interesting to
mention that, in some cases, the reasons for using PLS or the performed analysis are not fully consistent with the
characteristics of  the study carried out: only 42% of  the articles that use formative constructs state that their use is
the reason for using PLS; although a small sample size is the most cited reason for using PLS, only 5% of  the
articles perform a power analysis. 

The second review, Kaufmann and Gaeckler (2015), focuses on ten OM journals, specifically in the discipline of
SCM, and reviews 75 articles from 2002 to 2013. The authors perform a keyword search using the following
keywords: “partial least squares” and “PLS”. They examine the way that researchers have used PLS in these articles
by analyzing 26 key dimensions comprising 46 specific aspects grouped into 7 categories (Table 2).

Items Description

(1) Reasons for using PLS

(2) to (6) Sampling characteristics

(7) to (24) Model descriptive analysis

(25) to (30) Reported reflective measurement model statistics

(31) to (35) Reported formative measurement model statistics.

(36) to (43) Reported structural model statistics

(44) to (46) Technical reporting (software and resampling method)

Table 2. Number of  items reviewed by Kaufmann and Gaeckler (2015)

These authors conclude that not all of  the reviewed articles provide sufficient or complete results, so the PLS
analyses are not fully documented. Some researchers meticulously perform all  the tests and report data on all
necessary criteria, but others inadequately document their approach. Consequently, some important criteria and
data seem to be underrepresented (see Table 11 for further details).

Despite  the  importance  of  using  the  right  criteria  to  evaluate  formative  constructs,  23% use  techniques  for
evaluating reflective constructs, 73% examine formative construct item weights and 19% report their sign and
magnitude, 38% evaluate the multicollinearity of  the formative measurement items (mostly using the variance
inflation  factor  -  VIF).  More  comparative  details  of  the  characteristics  and  conclusions  of  both  articles  are
presented in Table 11.

3. Methodology
In order  to conduct  the analysis  that  is  the  object  of  the  present  investigation,  we have followed a detailed
procedure to perform a systematic literature review following Tranfield et al. (2003), Denyer and Tranfield (2009),
and Medina-López, Marin-Garcia and Alfalla-Luque (2010). 

3.1. References Selection

The first step is the identification of  the field of  the study - OM articles that have used PLS methodology in their
research – and the choice of  the period to be analyzed, 2014-2018. This period has been chosen as the last review
in OM includes articles up to 2013 (Kaufmann & Gaeckler, 2015), as seen in the previous section, and, especially,
due to a significant change being developed during this period in the standards for reporting results obtained from
PLS use.
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The next step is to define the information sources. In our case, we focus on articles published in scientific journals.
To select the journals, we start from the list in Annex II of  the article by Boronat-Soler (2018) and identify the
journals labeled as OM. These authors perform an exhaustive classification of  the journals indexed in the Web of
Science and Scopus databases  by  these  journals’  sub-areas in the  field of  Economics  and Business Sciences,
particularly in the areas of  OM and Human Resource Management (HRM). For this, they simultaneously classify
the 715 journals in field D15 of  the Spanish National Agency for Quality Assessment and Accreditation (ANECA)
indexed in Scopus and JCR. After analyzing the public information in each journal and, in some cases where the
classification was not clear, the subject matter of  the articles published in the last two issues of  the journal, they
construct the classification of  the journals (this classification is included in Annex II of  the Boronat-Soler (2018)
article mentioned above). We take the 67 journals labeled as OM as the basis for the present research. Our selected
journals include all 10 journals used by (Kaufmann & Gaeckler, 2015) (journals that have received an Impact Factor
rating above 1.0 by Thomson Reuters in the recent past). It also includes all journals defined by Peng and Lai (2012)
as “journals that are recognized as publishing relevant and rigorous empirical research”. As Peng  and Lai (2012
state,  these  were  cited  as  journals  “whose  missions  involve  publishing  empirical  research  examining  topics”
(Barman, Hanna & LaForge, 2001; Goh, Holsapple, Johnson & Tanner, 1997; Malhotra & Grover, 1998; Soteriou,
Hadjinicola & Patsia, 1999; Vokurka, 1996). Therefore, this present article includes the journals analyzed in previous
studies and widens the spectrum by adding over 50 relevant journals in OM, some more recent articles and a more
comprehensive analysis than the previous literature.  

We perform a search of  publications taking as the starting point for our selection the keywords used in previous
reviews in OM with similar objectives to this research(Kaufmann & Gaeckler, 2015; Khan, Sarstedt, Shiau, Hair,
Ringle & Fritze, 2019; Peng & Lai, 2012). The keywords are: “partial least squares”, “partial-least-squares”, “PLS”,
“PLS Graph”,  “PLS-Graph”,  and “SmartPLS”.  The term “formative” was  not  included to prevent  any false
positives (since they refer to training/learning and not to constructions of  an alternative type to the common
factor) and adding the term “ADANCO” (another software application currently used to analyze PLS models).

The two main journal databases have been considered: Web Of  Science (WOS) and Scopus. Initially, important
differences have been observed in the number of  results obtained in the search in the two databases for the field
“journal name”. These differences were caused by the search by journal name generating false positives, as journals
from other areas whose names include the search terms but only differ in a single word, are included in the results.

For this reason, we chose to carry out the searches by ISBN field (see Figure 1), limiting the search strategy by
keywords to the OM journals that are simultaneously indexed in WOS and Scopus (Boronat-Soler, 2018). For this,
we used the Boronat-Soler (2018) list filtered by the ISBN field.

After this initial search performed in March 2019, we obtained a preliminary list of  OM articles: 362 articles in
Scopus and 369 in  WOS.  A manual  filter  was  then  applied  using the  following  inclusion  criteria:  (i)  articles
published in journals or conferences in the WOS core collection databases (which includes the journals contained
in the Journal Citation Reports and in the Emerging Source Citation Index) and in Scopus; (ii) empirical studies that
analyze models with PLS; (iii) research whose contribution focuses on the field of  OM (in the scientific areas of
business administration or engineering); (iv) articles indexed between 2014 and 2018 (both years inclusive). This 5-
year time window starts immediately after the date of  the last reference used by Kaufmann and Gaeckler (2015),
(2013), and prevents any overlaps with the previous research.

The following exclusion criteria have been considered: (i) the theme of  the article does not correspond to the area
of  OM. For example, topics such as a.  civil  or construction engineering,  b.  material  or electrical  or chemical
engineering (i.e.  surface treatments,  mechanical  process,  etc.),  c.  ICT unrelated to OM, d.  management issues
unrelated to OM (corporate social responsibility, management capability, soft skills, retail, etc.); (ii) PLS does not
stand for Partial Least Squares (e.g., product or process layout systems (PLS), Pareto Local Search (PLS)); (iii) PLS is
not used as an SEM technique to test empirical models, e.g., analysis with PLS regression (to prevent false positives
of  this  type,  it  is  recommended  to  change  the  term  “PLS”  to  “PLS-SEM”  in  the  search  strategy);  (iv)
Methodological articles on how to use PLS for topics not linked to our objectives or guidelines for the use of  PLS;
(v) The focus of  the paper is solely on the PLS method and does not include any empirical results, e.g., editorials,
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conceptual  papers,  method explanation.  Following these considerations  and after  applying the acceptance and
discard criteria, 102 references for PLS in OM were initially selected.

Scopus 

TITLE-ABS-KEY (“partial least squares” OR “partial-least-squares” OR “PLS” OR “PLS Graph” OR “PLS-Graph” OR
“SmartPLS” OR “ADANCO”) AND PUBYEAR > 2013 AND PUBYEAR < 2019 AND ISSN(1619-4500 OR 1854-6250
OR 0254-5330 OR 0890-0604 OR 0217-5959 OR 0144-5154 OR 0964-4733 OR 1435-246X OR 0007-8506 OR 1535-3958
OR 0011-7315 OR 0305-215X OR 1751-5254 OR 0377-2217 OR 1936-6582 OR 0926-2644 OR 1090-8471 OR 2156-3950
OR 0018-9391 OR 1471-678X OR 1366-2716 OR 0092-2102 OR 0957-4093 OR 1367-5567 OR 0890-6955 OR 0144-3577
OR 0960-0035 OR 2288-6206 OR 0925-5273 OR 0020-7543 OR 0263-7863 OR 1756-6517 OR 0969-6016 OR 1881-3054
OR 0735-3766 OR 0925-5001 OR 1547-5816 OR 0956-5515 OR 1526-6125 OR 1087-1357 OR 0278-6125 OR 0924-0136 OR
0272-6963 OR 0022-3239 OR 0737-6782 OR 0895-562X OR 1478-4092 OR 1094-6136 OR 1757-5818 OR 1094-6705 OR
2055-6225 OR 1523-2409 OR 0160-5682 OR 1523-4614 OR 0361-0853 OR 1042-6914 OR 1432-2994 OR 0364-765X OR
0894-069X OR 1109-2858 OR 1936-9735 OR 0030-364X OR 0167-6377 OR 0171-6468 OR 0233-1934 OR 0269-9648 OR
0954-4054 OR 1059-1478 OR 0953-7287 OR 8756-9728 OR 0898-2112 OR 1684-3703 OR 0257-0130 OR 0033-6807 OR
0399-0559 OR 0934-9839 OR 1862-8516 OR 0264-2069 OR 0038-0121 OR 1696-2281 OR 1359-8546 OR 1478-3363 OR
0965-8564 OR 1366-5545 OR 1524-1904 OR 1976-1597 OR 0007-6805 OR 0305-0548 OR 0167-9236 OR 0424-267X OR
1077-2618 OR 0263-5577 OR 0378-7206 OR 1471-7727 OR 1047-7047 OR 1385-951X OR 1091-9856 OR 0268-3768 OR
0267-5730 OR 1530-9827 OR 0923-4748 OR 0268-3962 OR 0742-1222 OR 1546-2234 OR 0022-4065 OR 0963-8687 OR
1091-0344 OR 1540-1960 OR 0276-7783 OR 1532-9194 OR 0268-1072 OR 0748-8017 OR 0048-7333 OR 0895-6308 OR
0736-5845 OR 0883-7066 OR 1094-429X OR 0953-7325 OR 0166-4972) 
Results 362

WOS

(TS= ((“partial  least  squares” or “partial-least-squares” or “PLS” or “PLS Graph” or “PLS-Graph” or “SmartPLS” or
“ADANCO”)) AND IS=(1619-4500 OR 1854-6250 OR 0254-5330 OR 0890-0604 OR 0217-5959 OR 0144-5154 OR 0964-
4733 OR 1435-246X OR 0007-8506 OR 1535-3958 OR 0011-7315 OR 0305-215X OR 1751-5254 OR 0377-2217 OR
1936-6582 OR 0926-2644 OR 1090-8471 OR 2156-3950 OR 0018-9391 OR 1471-678X OR 1366-2716 OR 0092-2102 OR
0957-4093 OR 1367-5567 OR 0890-6955 OR 0144-3577 OR 0960-0035 OR 2288-6206 OR 0925-5273 OR 0020-7543 OR
0263-7863 OR 1756-6517 OR 0969-6016 OR 1881-3054 OR 0735-3766 OR 0925-5001 OR 1547-5816 OR 0956-5515 OR
1526-6125 OR 1087-1357 OR 0278-6125 OR 0924-0136 OR 0272-6963 OR 0022-3239 OR 0737-6782 OR 0895-562X OR
1478-4092 OR 1094-6136 OR 1757-5818 OR 1094-6705 OR 2055-6225 OR 1523-2409 OR 0160-5682 OR 1523-4614 OR
0361-0853 OR 1042-6914 OR 1432-2994 OR 0364-765X OR 0894-069X OR 1109-2858 OR 1936-9735 OR 0030-364X
OR 0167-6377 OR 0171-6468 OR 0233-1934 OR 0269-9648 OR 0954-4054 OR 1059-1478 OR 0953-7287 OR 8756-9728
OR 0898-2112 OR 1684-3703 OR 0257-0130 OR 0033-6807 OR 0399-0559 OR 0934-9839 OR 1862-8516 OR 0264-2069
OR 0038-0121 OR 1696-2281 OR 1359-8546 OR 1478-3363 OR 0965-8564 OR 1366-5545 OR 1524-1904 OR 1976-1597
OR 0007-6805 OR 0305-0548 OR 0167-9236 OR 0424-267X OR 1077-2618 OR 0263-5577 OR 0378-7206 OR 1471-7727
OR 1047-7047 OR 1385-951X OR 1091-9856 OR 0268-3768 OR 0267-5730 OR 1530-9827 OR 0923-4748 OR 0268-3962
OR 0742-1222 OR 1546-2234 OR 0022-4065 OR 0963-8687 OR 1091-0344 OR 1540-1960 OR 0276-7783 OR 1532-9194
OR 0268-1072 OR 0748-8017 OR 0048-7333 OR 0895-6308 OR 0736-5845 OR 0883-7066 OR 1094-429X OR 0953-7325
OR 0166-4972)) AND DOCUMENT TYPES: (Article OR Proceedings Paper OR Review) 
Indexes=SCI-EXPANDED, SSCI, CPCI-S, CPCI-SSH, ESCI Timespan=2014-2018
369 results

Table 3. Search strategy in Scopus and WOS

3.2. Codification Process

We then encoded the full articles in the list of  102 PLS references in OM. For this, we had previously defined 46
codes (see full list in Marin-Garcia et al (2019b) designed to extract information from the articles. This information
was grouped into 5 sections:  (i)  Reasoning behind the use  of  PLS-SEM; (ii)  Data characteristics;  (iii)  Model
characteristics; (iv) Model evaluation and (v) Reporting of  other aspects.

-570-



Journal of  Industrial Engineering and Management – https://doi.org/10.3926/jiem.3416

3.3. Analysis

Once the data had been exported, the R Bibliometrix package (Cuccurullo, Aria & Sarto, 2016; Garfield, 2004;
Wulff  Barreiro,  2007)  (http://www.bibliometrix.org/index.html#header3-d)  was  used,  enabling  the  following
analysis: annual scientific production, most relevant sources, journals, single-author articles, citations per document,
most productive authors, most productive countries. An analysis of  the results is given in section 4.1.

Additionally,  the 102 selected articles have been coded,  for which 46 codes had previously been defined and
grouped into 5 key dimensions: (i) reasoning behind the use of  PLS (ii) data characteristics (iii) model characteristics
(iv) model evaluation and (v) reporting of  other aspects. The main outcomes are broken down in section 4.2.

4. Results
4.1. Bibliometric Study: Results

The 102 references analyzed are distributed over a total of  45 journals in the 2014-2018 period, 13 of  which are
proceedings papers. The number of  articles per year (Figure 1) shows an increasing trend in the analyzed period,
with a peak of  35 in 2018.

Figure 1. Time evolution of  publications

With a total of  45 sources, the articles are not concentrated in any specific publications. Figure 2 shows the journals
with the most published OM papers that concern PLS. Specifically, there are only 3 journals with 10 or more
articles: Industrial Management & Data Systems (14), International Journal of  Production Economics (13) and
International Journal of  Production Research (10). Following these are the Journal of  Management in Engineering
and the Journal of  Manufacturing Technology Management, with 5 publications. Production Planning & Control
has 3 articles and the remaining publications have 2 or 1.

Most of  the research has been co-authored, with only conducted by a single author. On average, publications have
3 authors and 11.78 citations per document prior to the date that the search was conducted. Figure 3 shows the
authors who have the highest number of  publications that make use of  PLS in the OM area during the analyzed
period. In this figure, the size of  the circle is proportional to the number of  articles of  the corresponding year, and
the darker the color, the more cited the papers have been.

Regarding authors’ affiliations, there is a low concentration in a small number of  universities, indicating that this
tool is being used in different contexts (universities and countries). Figure 4 shows affiliations that appear in 2 or
more articles. The University of  Ciudad de Juárez stands out with 7 followed by the University of  Seville with 5.
The most active authors in Ciudad Juárez are Garcia-Alcaraz, JL (6 articles); Maldonado-Macias, AA (4); Avelar-
Sosa, L (2) and Alor-Hernandez, G (2). 
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Figure 2. Journals with most analyzed publications 

Figure 3. Top-Authors’ production over time
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Figure 4. Most relevant affiliations

Figure 5. Scientific production by country

The most published authors are affiliated with universities or research centers in the United Kingdom, China, India,
USA, Spain, and Malaysia. Figure 5 shows the geographical distribution of  the authors. Darker shading indicates
countries with greater numbers of  publications.

Finally, Figure 6 shows the main topics addressed in the publications in the different years. It should be highlighted
that 2017 shows a clear orientation toward publications in supply chain management.
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Figure 6. Trend Topics in the publications

4.2. Extraction of  Articles Information

4.2.1. Reasoning Behind the Use of  PLS

The first aspect to analyze in the coding process is the study of  the arguments that the authors use as reasons for
using PLS in their research. We found that out of  the 102 articles analyzed, a total of  20 (19.61%) did not clearly
explain the reasons why they chose to use the PLS method while 82 (80.39%) include one or more reasons for
choosing the method. The reasons that predominate are related to the benefits of  the method’s ease of  use and
lower demands when tackling research, such as its ability to be used with a smaller sample size (cited in 56.44% of
the articles) and the non-requirement of  data normality (cited in 33.66% of  the articles). Other reasons allude to
the power of  the method, mainly to its convenience when formulating hypotheses and predictions (cited in 35.64%
of  the articles) and to the power to implement more complex models (cited in 26.73% of  the articles), as well as
the possibility of  using formative and reflective constructs (cited in 17.82% of  the articles). 77.8% of  the articles
that include the possibility of  using formative and reflective constructs as a reason make use of  formative and
reflective constructs, 11.1% use only formative constructs while 11.1% do not use any formative but only reflective
constructs. 

Table 4 gives an overview of  the main reasons argued in favor of  using the PLS method.

4.2.2. Data Characteristics

The second analyzed aspect includes the sample characteristics and serves as the basis for carrying out the study
proposed by the authors. All the 102 analyzed articles report the sample size, which ranges from a minimum of  20
to a maximum of  533, with a mean of  186 and a median of  177. One aspect that is less cited in the publications is
the response rate, which is not reported by 34.65% of  the articles. It should be noted that even though the same
name is used for this ratio in all the articles, in some cases it includes values discarded for not containing sufficient
data to be included in the calculations, while in other cases it is only calculated with the complete values used for
the study after discounting discarded values.

Regarding the normality of  the distribution of  the data, this is only assessed in 10.89% of  the cases. 

Tables 4 and 5 give an overview of  the results.
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Description Articles reporting (%)

No reasons provided 19.6%

Most cited reasons

small sample size 69.5%

not limited to a normal distribution assumption constraint 41.5%

suitable for complex hierarchical models 30.5%

to develop new knowledge and theories in an exploratory rather than a confirmatory study 28.0%

can handle formative and reflective constructs in the same model 22.0%

specifically designed for prediction purposes 15.9%

suitable for examining the relationships between multiple independent variables and multiple 
dependent variables

7.3%

less demanding premises, limiting soft modeling assumptions, less stringent assumptions 6.1%

previously used in similar studies 2.4%

suitable for analyzing higher-order constructs 2.4%

handles missing data 2.4%

deals positively with specific problems

determines the relationships kept in the background due to multicollinearity problems and 
measurement errors

2.4%

independent equations that need to be estimated simultaneously 1.2%

more advisable when analyzing continuous scale moderators 1.2%

can solve issues (holdout sample, re-sampling, etc.), enabling researchers to estimate the 
robustness of  the data

1.2%

maximizes the explained variance when independent variables are approximated as linear 
combinations of  dependent variables

1.2%

maximizes the explained data-driven variance rather than estimation of  model fit 1.2%

robustness check of  maximum likelihood estimations 1.2%

great accuracy of  parameter estimation and ease of  model specification and interpretation 1.2%

avoids the limitations regarding improper solutions or empirical under-identification 1.2%

Table 4. Reasons given for using PLS (N=102)

Description Values

Sample size

mean 186

median 177

range (20; 533)

fewer than 150 observations 29.4%

fewer than 100 observations 12.8%

Provides response rate 65.7%

response rate mean 40.6%

Response rate median 35.9%

response rate range (9%; 85%)

Assess multivariate normal distribution 11.8%

Table 5. Data characteristics (N=102)
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4.2.3. Model Characteristics

The third analyzed aspect includes the main features of  models using PLS in OM research. In our analysis, we
found that  82.3% of  the  articles  include  the  description  of  the  indicators  while  17.7% do not  include  any
description at all; 6.4% of  the articles include latent variables with just one indicator. In 2.9% of  the cases, the
measurement model is only formative, in 21.6% it is formative and reflective and in 75.5% it is only reflective.
16.7% of  the articles report the mean and standard deviation for the indicators while 31.4% report these only for
constructs and 51.9% do not report them at all. 87.2% of  articles make use of  moderator latent variables and, of
these, 46.1% evaluate the moderation effect.

Only 2% of  the articles use the consistent PLS (PLSc) approach to remove the inconsistency of  PLS estimates by
correcting for measurement error; 7.8% check for heterogeneity, 2.9% use the finite mixture PLS (FIMIX-PLS)
method,  and  1% use  the  prediction-oriented  segmentation  in  PLS  (PLS-POS)  method  to  identify  and  treat
unobserved heterogeneity in PLS models. Advanced analysis regarding model assessment in PLS-SEM such as
confirmatory tetrad analysis (CTA-PLS) (Gudergan, Ringle, Wende & Will, 2008) to test the mode of  measurement
and importance-performance map analysis (IPMA) are used in 0% and 3.9% of  the articles respectively. 

Table 6 gives an overview of  the results.

Description Values

Indicators

provide item wording 82.3%

mean per variable 33.8

median per variable 29.0

range per variable (9;80)

mean & standard deviation, items 16.7%

mean & std. dev., constructs only 31.4%

Latent variables

mean 7.7

median 6

range (2;17)

Latent variables, 1st order

mean 7.1

median 6

range (2;17)

Latent variables, 2nd order 30.4%

mean 2.1

median 2

range (1;5)

Latent variables, 3rd order 3.9%

range (1)

Reflective variables

mean 6.9

median 6

range (1;21)
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Description Values

Formative variables

mean 3

median 2

range (1;7)

Single-item variables 6.4%

Reflective model only 75.5%

Formative model only 2.9%

Reflective + Formative model 21.6%

Consistent PLS (PLSc estimator) 2.0%

Mediating effects 46.1%

Interaction effects / Multigroup analysis 20.6%

Check for heterogeneity 7.8%

FIMIX (Finite MIXture segmentation) 2.9%

POS (Prediction Oriented Segmentation) 1.0%

Confirmatory tetrad analysis 0%

Importance-performance matrix 3.9%

PLSpredict 0%

Table 6. Model characteristics (N=102)

A total of  806 latent variables have been proposed in the 102 analyzed articles. We have compiled all the names
used for latent variables and have created a text cloud (Figure 7) which gives greater prominence to the words that
appear most frequently, allowing us to easily recognize the top terms used as names for the latent variables in the
analyzed OM-related articles.

Figure 7. Cloud text for Latent Variables names

4.2.4. Model Evaluation

The fourth analyzed aspect includes the two-stage approach for model evaluation in which stage 1 is the outer
model evaluation and stage 2, the inner model evaluation. 

4.2.4.1. Outer Model Evaluation

For stage 1, the outer model assessment differs depending on whether it is a reflective or formative measurement
model. In our analysis, there are 99 reflective models and 25 formative models.
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Regarding the outer model (reflective),  we found that 81.4% of  the articles report the indicator loadings when
assessing internal consistency, but only 18.6% report their complete loading scheme (significance levels, t values/p
values, confidence intervals). Composite reliability (CR), Cronbach’s alpha and Average Variance Extracted (AVE) are
used to assess the reflective models and are reported in the articles as 88.8%, 78.8%, and 91.9% respectively. A total of
4% of  the articles do not report or mention any assessment or CR or Cronbach’s alpha in only reflective models
(while 6% (CR) and 8% (Cronbach’s alpha) do not report their values but do mention their use in the research).

In relation to discriminant validity, only 20.2% of  articles report cross-loadings (66.7% do not report these at all,
while 13.1% do not report their values but mention their use in the research); the Fornell-Larcker criterion, which
compares the AVE estimates with the inter-construct correlations, is reported in 53.5% of  the articles (37.4% do
not report it, while 9.1% do not report its values but mention its use in the research); the heterotrait-monotrait
(HTMT) ratio of  correlations is reported in 13.2% of  the articles (83.8% do not report it and 3% do not report its
values but mention its use in the research). Finally, 32.3% of  articles do not report either the Fornell-Larcker
criterion or AVE or HTMT.

Moving to the outer model (formative), we found that 24% of  the articles report the redundancy analysis when
assessing the convergent validity,  72% of  the articles do not report it  and 4% mention having conducted the
redundancy analysis but do not report any value. For the assessment of  collinearity among formative indicators, it is
determined  through  the  variance  inflation  factor  (VIF)  in  76.9%  of  articles,  and  23.1%  do  not  assess
multicollinearity. Finally, 20% do not report either redundancy analysis or multicollinearity.

In order to examine the relevance and statistical significance of  outer weights, 96% of  articles report their values
and 40% report their complete weighing scheme (significance levels, t values/p values, confidence intervals). 4% of
the articles assess the formative constructs using the reflective criteria.

Table 7 gives an overview of  the results.

Description
Articles

reporting (%)
Articles not

reporting (%)
Articles mentioning

but not reporting (%)

Outer model: Reflective (N= 99 models)

Indicator loadings 83.8% 16.2%

Loadings data scheme 30.3% 69.7%

Composite reliability (CR) 88.8% 5.1% 6.1%

Cronbach’s Alpha Index (CAI) 78.8% 13.1% 8.1%

Average Variance Extracted (AVE) 91.9% 5.1% 3.0%

Fornell-Larcker criterion 53.5% 37.4% 9.1%

Cross-loadings 20.2% 66.7% 13.1%

Heterotrait – Monotrait (HTMT) 13.2% 83.8% 3%

Outer model: Formative (N= 25 models)

Multicollinearity (VIF) 76.9% 23.1%

Indicator weights 96% 4%

Significance of  weights 40% 60%

Redundancy analysis 24.0% 72.0% 4.0%

Use reflective criteria to assess formative constructs 4%

Table 7. Outer model evaluation
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4.2.4.2. Inner Model Evaluation

Stage 2 is the inner model assessment. To examine the explained variance of  endogenous constructs, 80.4% of  the
articles report the values of  the coefficient of  determination R2 (12.7% do not report it and 6.9% do not report its
values but mention its use in the research) and 19.6% of  the articles report the values of  Cohen's effect size f2
(76.5% do not report it and 3.9% do not report its values but mention its use in the research).

For predictive relevance, 30.4% of  the articles report the values of  Stone-Geisser’s cross-validated redundancy Q2
(61.8% do not report it and 7.8% do not report its values but mention its use in the research) and 3.9% of  the
articles report the values of  effect size q2 (95.1% do not report it and 1% do not report its values but mention its
use in the research).

In order to provide evidence of  the quality of  the inner model, 91.2% of  articles report the path coefficients (8.8%
do not give them) and 34.3% report their complete path scheme (significance levels, t values, p-value, confidence
intervals).

Regarding a global fit index, 64.7% of  the articles do not report any global measure, 2% mention having evaluated
it but do not report it and 33.3% do report it at all. 44.4% of  the articles that report the global fit index have done
so using the Standardized Root Mean Square Residual (SRMR), 27.8% using the Tenenhaus Goodness of  Fit (GoF)
and 27.8% using the model fit indices that are calculated by WarpPLS software: Average Path Coefficient (APC),
Average R-squared (ARS) and Average Variance Inflation Factor (AVIF).

Table 8 gives an overview of  the results.

Description
Articles

reporting (%)
Articles not

reporting (%)
Articles mentioning

but not reporting (%)

R² (coefficient of  determination) 80.4% 12.7% 6.9%

f²  (Cohen's effect size) 19.6% 76.5% 3.9%

Q² (Stone-Geisser value) 30.4% 61.8% 7.8%

q² (effect size) 3.9% 95.1% 1.0%

Path coefficients (β) 91.2% 8.8%

Significance of  paths 34.3% 65.7%

Model fit 64.7% 33.3% 2.0%

Standardized Root Mean Square Residual (SRMR) 44.4%

Tenenhaus Goodness of  Fit (GoF) 27.8%

Average Path Coefficient (APC), Average R-squared 
(ARS) and Average Variance Inflation Factor (AFVIF)

27.8%

Table 8. Inner model evaluation (N=102)

A total of  368 R2 values has been reported in the 102 analyzed articles. Their distribution per interval is presented
in Table 9.

R2 interval 0<R2<0.10 0.10 ≤R2<0.3 0.30 ≤R2<0.5 0.50 ≤R2<0.7 0.70 ≤R2

% 9.4% 23.0% 27.7% 24.8% 15.1%

Table 9. R2 value distribution
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4.2.5. Reporting of  Other Aspects

The fifth analyzed aspect comprises technical aspects, which are important for successfully understanding the way
that the method is applied in the specified research and being able to replicate it.

In our research, the statistical power is only reported in 6.9% of  the articles (92.2% do not report it and 1% do not
report its values but mention its use in the research). Bootstrapping has been the only resampling method used in,
and reported by, 60.8% of  articles (39.2% do not mention its use). The number of  bootstrap samples ranges from
100 to 5000, with the latter being the most employed (in 54.8% of  articles), followed by 500 in 22.6% and 1000 in
14.5% of  articles.

Since each PLS-SEM software program has a different set of  default values, the software used should be reported.
In 83.3% of  the articles the software is reported, with SmartPLS the most commonly used (in 82.4% of  articles),
followed by WarpPLS (in 12.9% of  articles). The PLS-SEM algorithm settings, which comprise weighting scheme,
stop criterion and sampling weights, is only reported in 6.9% of  articles while 3.9% of  articles provide partial
information.

The empirical covariance or correlation matrix has been reported for the indicator variables in only 5.9% of  the
articles. In 73.5% of  the articles, it has been reported only for the constructs and in 20.6% of  the articles it has not
been reported at all.

Table 10 gives an overview of  the results.

Description Articles
reporting (%)

Articles not
reporting (%)

Articles mentioning
but not reporting (%)

Statistical power 6.9% 92.2% 1.0%

Bootstrapping 60.8%

sign change options, etc. 9.8%

100 samples 1.6%

≤500 samples 22.6%

1000 samples 14.5%

1500 samples 1.6%

2000 samples 4.8%

5000 samples 54.8%

Software used 83.3%

SmartPLS 82.4%

WarpPLS 12.9%

R 2.4%

Adanco 1.2%

G*Power 1.2%

Partially Reported (%)

PLS-SEM algorithm settings 6.9% 89.2% 3.9%

Only for Constructs

Covariance / correlation matrix 6% 20.6% 73.5%

Table 10. Reporting of  other aspects (N=102)
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5. Findings
5.1. Reviews Results and Findings

The use of  PLS-SEM in OM has increased over time. We have reviewed and coded 102 articles published in 45
OM-related journals indexed in Scopus and WOS during the 2014-2018 period in which the PLS-SEM approach
was applied. The obtained results have been compared with the two previous studies carried out in OM in 2012 and
2015 (see Table 3) and with similar studies carried out in other research areas.

With respect to the authors’ reasoning for the use of  PLS-SEM, 19.6% of  the papers did not give any reasons for
the choice of  PLS-SEM, a significantly lower percentage than the two studies in OM (29% in both cases). The
reasoning is that they benefit more from the method’s lower demands (small sample size, non-normal distribution,
less demanding) than its strengths (suitable for complex hierarchical models, develops new knowledge and theories,
predictive purposes, handles formative variables). We also find that the 11.1% of  articles that give the use of
formative variables as their reason, do not in fact include any. 

The second question analyzed in the coding process was the data characteristics. Following the above, with regard
to sample size, it is important to emphasize that if  PLS use is based on small samples, it should be verified that the
statistical power is adequate for the sample size in question (in our case 29% of  articles used a sample of  150
observations or less and only 13%, of  100 or less; the smallest sample was 20 observations). If  PLS use is based on
non-normal  data,  it  is  important  to  note  that  extremely  non-normal  data  reduce  statistical  power  and  that,
therefore, parameters such as skewness and kurtosis should have been reported at the very least. Lastly, we also find
that the response rate is not included in 34.65% of  cases.

The third question analyzed in the coding process was the model characteristics. 17.7% of  the articles do not
provide the indicator wording used in the models and only 16.7% provide their mean and standard deviation
(31.4% for constructs). Very small numbers of  articles use methods to remove inconsistency from PLS estimates,
to identify and treat unobserved heterogeneity in PLS models but hardly use any methods for advanced model
assessment analysis, which results in valuable information missing about the choice of  the measurement model and
the importance of  one exogenous construct's influence on another endogenous construct of  interest. There is
almost  no  substantiation  for  (i)  heterogeneity-related  issues  (heterogeneity,  FIMIX-PLS,  PLS-POS);  (ii)
inconsistency  (PLSc);  (iii)  the  choice  of  measurement  model,  reflective  or  formative  (CTA-PLS);  (iv)  the
importance of  one exogenous construct's influence on another endogenous construct of  interest (IPMA). These
are verifications that need major improvement in the reporting.

The fourth question analyzed in the coding process was model evaluation. Starting with the outer model evaluation,
while the loadings (in reflective models) and weights (in formative models) are reported in 83.8% and 96% of  articles
respectively, the reporting of  their data scheme falls to 30.3% and 40% respectively. In reflective models, 11.2% of
articles do not report CR, 21.2% do not report Cronbach’s alpha and 4% do not report either of  these two values,
which raises an important concern about the assessment of  their reflective outer models. Convergent validity (AVE) is
not reported in 8.1% of  the articles and, regarding discriminant validity, only 20.2% of  articles report cross-loadings,
53.5% the Fornell-Larcker criterion, and 13.2% HTMT. Besides, 32.3% of  the articles with reflective models do not
report  any  of  these,  so  they  do  not  include  any  discriminant  validity  assessment  at  all.  In  formative  models,
redundancy analysis is not reported in 24% of  articles, 23.1% do not report multicollinearity and 20% do not report
either redundancy analysis or multicollinearity. OM researchers using PLS-SEM should improve the reporting and the
assessment of  formative measurement models. Although for the most part they assess potential collinearity issues and
the indicator weights, they give almost no consideration to any other important aspects.

Continuing with the inner model evaluation and starting with the endogenous constructs’ explained variance, 80.4%
report R2 values while only 19.6% report the f2 effect size. As for predictive relevance, only 30.4% of  articles
report Q2 and 3.9% q2 effect size.

Regarding the global fit index, 64.7% of  the articles do not report this (2% report its use but do not provide any
values) while the most used index among those who have reported it  is the Standardized Root Mean Square
Residual (SRMR), followed by Tenenhaus Goodness of  Fit (GoF) (27.8%) and indices calculated by WarpPLS
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(APC, ARS, AVIF). There is an ongoing debate about the appropriateness of  these global indices. In fact, some
articles argue that no index is provided because these indices are required by CB-SEM but not by PLS-SEM.

The fifth question analyzed in the coding process was the reporting of  other technical aspects. It is important to
note that only 6.9% of  articles report the statistical power, hence hardly any of  the analyzed studies provide proof
that the sample size is adequate. Although PLS-SEM relies on resampling procedures (Efron, 1979), only 60.8% of
articles report the bootstrapping method and 17.6% of  articles do not report the software used. 89.2% of  articles
do not report the PLS-SEM algorithm settings (weighting scheme, stop criterion, and sampling weights) and only
20.6% of  articles provide the empirical covariance/correlation matrix.

5.2. Comparison with the Previous OM Research 

Table 11 presents a comparison between this review and the two previous reviews in the OM area (Kaufmann &
Gaeckler, 2015; Peng & Lai, 2012). Only the main aspects that we were able to extract from the latter two reviews
are included Answering our first and second research questions, our findings indicate that the reasoning behind the
use of  PLS  is basically similar, with the main reasons being the sample size, non-normal data, and the use of
formative variables. The number of  articles not providing reasons has fallen by a third in our review. 

Referring to Peng and Lai (2012)
Kaufmann and -Gaeckler

(2015) Present research

Journals 8 journals 10 journals 45 journals

Keywords “partial-least-squares”, “partial least
squares”, “PLS”, “formative”, 
“PLS Graph” “PLS-Graph”, 
“SmartPLS”

“partial least squares”, “PLS” “partial least squares”, 
“partial-least-squares”, “PLS”, 
“PLS Graph”, “PLS-Graph”, 
“SmartPLS”

Time frame 2000 to 2011 2002 to 2013 2014 to 2018

Articles 
selected

42 articles 75 articles 102 articles

Reasons for 
using PLS

29% do not provide reasons
33% small sample size
26% exploratory or predictive 
nature of  the study
19% the use of  formative 
constructs
14% non-normal data
10% high model complexity

in addition to which … only 5% of
articles perform a power analysis
only 42% of  the articles using 
formative constructs mention this 
as the reason for using PLS

29% do not provide reasons
58% small sample size
42% non-normal data
32% formative measures
30% exploratory research
25% focus on prediction

in addition to which… only 65%
of  the articles using formative 
constructs mention that as the 
reason for using PLS

19.6% do not provide reasons
69% small sample size
41% non-normal data
22% formative measures
28 exploratory research
16% focus on prediction
30 for hierarchical models
7% relationships between multiple
independent and dependent 
variables
6% less demanding premises
12% solves some specific 
problems

in addition to which 90% of  the 
articles using formative constructs
mention that as the reason for 
using PLS

Assessment of
formative 
constructs

26% use techniques for evaluating 
reflective constructs; 
21% evaluate the multicollinearity 
of  the formative measurement 
items, for the most part using the 
variance inflation factor (VIF); 

23% use techniques for 
evaluating reflective constructs;
38% evaluate the 
multicollinearity of  the 
formative measurement items, 
for the most part using the 

4% use techniques for evaluating 
reflective constructs;
76% evaluate the multicollinearity 
of  the formative measurement 
items using the variance inflation 
factor (VIF); 
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Referring to Peng and Lai (2012)
Kaufmann and -Gaeckler

(2015) Present research

37% examine formative construct 
item weights;
16% of  the articles that use 
formative constructs do not 
perform any analysis of  their 
measurement properties;
16% examine discriminant validity.

variance inflation factor (VIF); 
73% examine formative 
construct item weights and 19% 
report their sign and magnitude

96% examine formative construct
item weights and 40% report their
sign and magnitude

PLS software 62% of  the articles report the PLS 
software used, with PLS-Graph the
most popular (45%)

69% of  the articles report the 
PLS software used, with 
SmartPLS the most popular 
(39%)

83% of  the articles report the 
PLS software used, with 
SmartPLS the most popular 
(82%)

Resampling 
methods

52% of  the articles report details 
of  their bootstrapping procedures 
with a 100 to 1,500 generated 
bootstrap sample range. 500 is the 
most common resampling number 
(26%)

71% mention the use of  
resampling methods and 51% 
report the number of  generated 
bootstrap samples 

61% of  the articles report details 
of  their bootstrapping procedures
with a 100 to 5000 generated 
bootstrap sample range. 5000 is 
the most common resampling 
number (55%)

Reporting of  
results

86% of  the articles report the 
endogenous variables’ R2. 
However, other techniques for 
evaluating predictive validity are 
underused. 
14% report the effect size (f2) and 
9% report predictive relevance 
(Q2).
14% report effect size

95% of  the articles report the 
endogenous variables’ R2. 
However, other techniques for 
evaluating predictive validity are 
underused. 
11% report the effect size (f2) 
and 
10% report predictive relevance 
(Q2).
11% report effect size.
93% report the item wording.
84% include the correlation 
matrix.
71% report scale means and 
standard deviation

80% of  the articles report the 
endogenous variables’ R2. 
However, 20% report the effect 
size (f2) and 
30% report predictive relevance 
(Q2).
4% report effect size.
82% report the item wording.
79% include the correlation 
matrix.
31% report scale means and 
standard deviation

Table 11. Most important characteristics and conclusions extracted from previous OM reviews

We find some significant improvements such as (i) the incorrect use of  techniques to evaluate reflective constructs
(a decrease from 26% to 4%); (ii) the evaluation of  the multicollinearity of  the formative measurement items using
the variance inflation factor (VIF) (an increase from 36% to 76%); (iii) the examination of  formative construct item
weights and the reporting of  their signs and magnitudes (an increase from 73%/19% to 96%/40%); (iv) articles
reporting the software used (an increase from 69% to 83%); (v) the reporting of  the f2 effect size (an increase from
11% to 20%) and (vi) the reporting of  Q2 (an increase from 10% to 30%).

To the contrary, some important assessment aspects are being less reported: (i) articles reporting details of  their
bootstrapping procedures (a decrease from 71% to 61%); (ii) articles reporting the R2 of  the endogenous variables
(a decrease from 95% to 80%); (iii) indicator wording (a decrease from 93% to 82%); (iv) q2 effect size (a decrease
from 11% to 4%) and (v) scale means and standard deviation (a decrease from 71% to 31%).

Although there has been some improvement in the reporting of  some of  the parameters, many still do not reach
the desired level of  reporting: R2 (80%), f2 (20%), Q2 (30%), q2 (4%), bootstrapping (61%), reasoning (80%),
among others. Researchers need to be aware of  the importance of  providing the information required to follow
and be able to replicate the research. Although it is likely that they will be required to reduce the length of  their
articles, some important, useful information about their research should not be left out.
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Therefore, in answer to our third research question regarding the current validity of  the results of  previous reviews,
based on a very limited set of  journals and given that the reviews were published before substantial modifications
were made to the PLS-based study reporting methods, we can argue that they are partially valid.

Our research has been conducted with a significant increase in the number of  journals and articles reviewed and all
of  the  latter  are,  on  average,  more  than  eight  years  more  recent  than  previous  reviews.  Consequently,  the
modifications to the PLS-based study reporting method have been partially implemented since more reporting
information has been provided, but further improvement is still required in aspects such as those stated in the
previous paragraph.

5.3. Comparison with the Previous Research in other Disciplines 
Table 12 presents a comparison of  the main findings in a total of  11 assessments (the present assessment included)
in a variety of  areas such as OM (Kaufmann & Gaeckler, 2015; Peng & Lai, 2012), Hospitality and Tourism (Usakli
& Kucukergin, 2018),  Tourism (do Valle & Assaker, 2016),  Hospitality Management  (Ali ewt al., 2018),  Human
Resources Management (Ringle et al., 2018), Accounting (Nitzl, 2016), International Business (Richter, Sinkovics,
Ringle & Schlägel, 2016), Information Systems (Hair, Hollingsworth, Randolph & Chong, 2017), Marketing (Hair,
Sarstedt, Ringle et al., 2012)  and Strategic Management (Hair, Sarstedt, Pieper et al., 2012).

Table 12 shows the 11 reviews in different areas carried out  previously sorted by  descending time-period of
reviewed articles. This enables the evolution of  PLS-SEM analysis reporting to be explored more easily.  Some
parameters have empty cells as the reviews do not explicitly mention their values.

1 2 3 4 5 6 7 8 9 10 11

N of  studies analyzed 102 206 29 82 77 44 37 43 75 42 37

Time-period covered 2014-18 2000-17 2001-15 2010-15 1985-14 2000-14 1980-13 1990-13 2002-13 2000-11 1981-10

Reasons for PLS-SEM

  Gives reasons 80.4% 66.0% 86.2% 85% 84.4% 95.5% 89.2% 90.7% 70.7% 71.4% 86.5%

  Most cited reason

    small sample size 69.5% 20.4% 31.0% 34% 66.2% 36.0% 42.4% 53.1%

    exploratory 28% 22.3% 24.1% 8.8% 26% 18.6% 33.3%

    formative constructs 22.0% 20.9% 17.2% 21.8% 19.5% 19.8% 24.2% 31.3%

    non-normal data 41.5% 16.0% 31.0% 25.2% 42.9% 46.5% 25,6% 68.8%

Data characteristics

  Sample Size

    mean 186 425 332 333 142.5 487 138 354 274 246 154.9

    median 177 341 382 145 321 105 168 126 83

    range (20;533)
(55;

2760)
(106;
1500)

(59;
1512)

(6;9623) (18;359)
(38;

5191)
(35;

2465)
(35;

3926)

    under 100    observ. 12.8% 2.9% 0% 23.1% 33.3% 4,5% 17.3% 33.3%

Gives response rate 65.7%

    resp. rate mean 40.6%

    resp. rate median 35.9%

    resp. rate range
(9%;85

%)

  Multiv. normal distrib. 11.8%

Model characteristics

  Indicators

    give item wording 82.3% 94.6% 79.2% 76.7% 93.3%

    mean per variable 33.8 28.1 24.7 32 34.9 24.9 29.1 27
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1 2 3 4 5 6 7 8 9 10 11

    median per variable 29.0 27 22 26 23 26.5 19

    range per variable (9;80) (2;62)
(12;78)

(5;1064) (7;161) (8;65) (9;70) (7;114)

    items mean & std.dev. 16.7% 58.5% 70.7%

    constructs only m & std. 31.4%

  Latent variables

    mean 7.7 7.8 7 7.3 7.8 6.0 7.0 7.5

    median 6 7 7 7 6 6 6

    range (2;17) (1;24) (3;20) (2;25) (3;32) (1;17) (3;21) (2;31)

  Latent variables 1st order

    mean 7.1 7.3 7.1

    median 6 7 6

    range (2;17) (1;24) (2;17)

  Latent variables 2nd order 30.4% 5.3% 35%

    range (1;5) (1;8)

  Latent variables 3rd order 3.9%

    range (1)

  Reflective variables

    mean 6.9

    median 6

    range (1;21)

  Formative variables

    mean 3

    median 2

    range (1;7)

  Single-item variables 6.4% 18.4% 20.7% 20.7% 76.3% 13.6% 32.4% 46.5% 29.3% 67.9%

  Only Reflective model 75.5% 62.6% 62.1% 87.8% 41.2% 61.4% 78.9% 60.5% 65.3% 10.7%

  Only Formative model 2.9% 2.4% 0% 1.2% 0% 2.3% 0% 2.3% 0.0% 10.7%

  Reflective + Formative 21.6% 29.6% 37.9% 22% 43% 36.4% 21.6% 34.9% 34.7% 50%

  Consistent PLS (PLSc) 2.0%

  Mediating effects 46.1%

  Check for heterogeneity 7.8% 24.7% 32.5% 21.6%

  FIMIX 2.9% 2% 2.3% 0%

  POS 1.0% 0%

  Confirm. tetrad analysis 0% 0.7% 0%

  Import.-perform. matrix 3.9%

  PLSpredict 0%

Outer model evaluation

  Outer model: Reflective

    Indicator loadings 83.8% 88.4% 93.1% 85.4% 76% 81.4% 48.7% 76% 84% 77.9%

    Loadings data scheme 30.3%

    Composite reliability 88.8% 94.2% 79.3% 86.6% 69.8% 100% 86.5% 48.7% 79% 45.5%

    Cronbach’s alpha 78.8% 60.5% 48.3% 78% 45.8% 48.7% 26.8% 41% 30.8%

    AVE Av. Variance Extracted 91.9% 96.8% 79.3% 89% 78.1% 97.7% 83.8% 80.4% 81% 42.7%

    Fornell-Larcker criterion 53.5% 86.8% 79.3% 81.7% 59.4% 95.4% 89.2% 80% 19.1%

    Cross-loadings 20.2% 34.7% 17.2% 28% 18.7% 21% 56.8% 75% 19.1%
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1 2 3 4 5 6 7 8 9 10 11

    HTMT heterotrait - monotrait 13.2% 18.8% 0%

  Outer model: Formative

    Multicollinearity (VIF) 76.9% 68.2% 27.7% 88.2% 18.3% 64.7% 62.5% 50% 38% 1.5%

    Indicator weights 96% 68.2% 18.2% 88.2% 18.4% 100% 62.5% 50% 73% 38.2%

    Significance of  weights 40% 51.5% 18.2% 3.7% 20.4% 82.4% 75% 25% 19% 4.4%

    Redundancy analysis 24%

    Use reflective criteria 4% 17.1% 65.3% 23%

Inner model evaluation

  R² (determination) 80.4% 96.1% 82.8% 94.1% 82.5% 97.6% 95% 95.3% 95% 85.7% 80.4%

  Q² (Stone-Geisser value) 30.4% 44.8% 24.1% 16.5% 7% 33.3% 10.8% 27.5% 13% 9.5% 2.7%

  f²  (Cohen's effect size) 19.6% 15.3% 17.2% 27.1% 5.3% 11.9% 8.1% 4.7% 11% 14.3% 10.7%

  q² (effect size) 3.9% 0.5% 5.9% 0% 0% 0% 0% 0% 0.0% 0%

  Path coefficients (β) 91.2% 99% 95.6% 82.4% 100% 100% 95.3% 97% 100.0% 95.5%

  Significance of  paths 34.3% 99.5% 55.2% 91.8% 99.1% 100% 100% 95.3% 97% 100.0% 95.5%

  Model fit 33.3%

    Tenenhaus GoF 9.8% 27.2% 7% 14.3% 5% 0%

    SRMR 15.7% 2.9% 0%

    APC, ARS, AFVIF 9.8%

Reporting of  other aspects

  Statistical power 6.9% 4.8%

  Jackknifing 66.2% 15.9% 27%

  Bootstrapping 60.8% 80.1% 41.4% 70.1% 19.5% 81.1% 71% 52.4%

    sign change options, etc 9.8% 16.3% 51%

    100 samples 1.6% 4.5%

    ≤500 samples 22.6% 72.7%

    1000 samples 14.5% 22.7%

    1500 samples 1.6%

    2000 samples 4.8%

    5000 samples 54.8%

  Software used 83.3% 65% 72.4% 67.1% 55.5% 81.8%5 67.6% 61% 61.9% 49.6%

    SmartPLS 82.4% 63.1% 44.8% 39% 24.7% 56.8% 27% 14.3% 5.4%

    WarpPLS 12.9% 4.4% 0% 0% 0% 2.3% 0%

    Adanco 1.2%

    G*Power 1.2%

    PLS-Graph 8.7% 20.6% 15.9% 26% 13.6% 40.5% 29% 45.2% 27%

    XLSTAT-PLS 4.9% 3.4% 0% 1.3% 4.5% 0%

    R 2.4%

  Algorithm settings 6.9% 93.1% 4.5%

  Covaria./correlate. matrix 6% 1.5% 85.7% 88.3% 67.6%

Table 12. Comparison with reviews in other areas. 1: OM Present article; 2: Hosp&Tour (Usakli & Kucukergin, 2018); 
3: Hospitality (Ali et al., 2018); 4: Inf. Systems (Hair, Hollingsworth, et al., 2017); 5: HRM (Ringle et al., 2018);6: Tourism 

(do Valle & Assaker, 2016); 7: Accounting (C Nitzl, 2018); 8: I. Business (Richter et al., 2016); 9: OM-SCM 
(Kaufmann & Gaeckler, 2015); 10: OM (Peng & Lai, 2012); 11: Strategic m. (Hair, Sarstedt, Pieper, et al., 2012)

It should be noted that the percentage of  articles that justify the use of  PLS-SEM has not improved over time but
it has fluctuated. The maximum was reached in 2000-2014 (Tourism) and the minimum in 2000-2017 (Hosp. &
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Tourism). Our value is in the range of  the results for these reviews. Regarding the reasons given for using PLS,
“small sample size” and for “non-normal data” are the reason most frequently referred to by articles over time. 

The data and model characteristics produce similar statistics. The only differences presented are in sample size
depending on the area of  research, with a range from 154.9 (mean) / 83 (median) to 487 (mean) / 321 (median),
which matches the OM sample size in this range. 

We find that the trend in the reporting of  outer and inner model evaluations has not improved over time. A better
statistic can always be found for each of  the assessed parameters in one of  the article reviews from 2014 or before,
the only exceptions being “using reflective criteria to assess formative constructs”, which has fallen to 4%, and
“model fit evaluation”, with the number of  articles in which it is reported rising to 33.3%.

Regarding the reporting of  other aspects, the technical reporting is found not to have improved over time either,
with the exception of  the software used, which has increased slightly.

6. Conclusions
The use  of  PLS-SEM in  OM has  increased  over  time  as  it  allows  researchers  to  plan  and assess  complex
hierarchical models with formative and reflective constructs while  imposing few restrictions on the data. Our
review has included the codification of  102 articles that applied the PLS-SEM approach and published in 45
journals related to OM indexed in Scopus and WOS during the 2014-2018 period. We have also compared our
findings and results with previous reviews in OM and other disciplines.

Our review has demonstrated that PLS is gaining importance and is widely adopted in OM as the statistical analysis
method of  choice. However, OM researchers using PLS should be aware of  the importance of  correctly reasoning
and justifying their choice and fully reporting the main parameters to enable other researchers to obtain useful
information and reproduce the performed analysis.

CB-SEM and PLS-SEM are two different approaches to the same problem, so the reasoning behind PLS-SEM
selection should be clearly explained. The arguments for the use of  the PLS method focus mainly on the less
stringent restrictions that the method imposes on the data. These arguments should not be those that determine
the use of  PLS in the investigation. Better argumentation can be found in recent publications on the subject
(Becker, Hwa, Ringle, Sarstedt & Hair, 2019;  Cepeda-Carrion, Cegarra-Navarro & Cillo, 2019; Hair et al., 2019;
Khan et al., 2019; Lin, Lee, Liang, Chang, Huang, & Tsai, 2020; Marin-Garcia & Alfalla-Luque, 2019a). Besides,
several  authors  (Hair,  Sarstedt,  Ringle  et  al,  2012)   argue  that  using  PLS-SEM  with  small  samples  can  be
problematic since it fails to capture heterogeneity in the population and can therefore result in a greater sampling
error. It is advisable to use sample sizes above 100 (Hair, Hollingsworth et al., 2017; Reinartz et al., 2009).

Although all  the reviewed publications  include the  sample  size,  the obtained response  rate  is  not  sufficiently
reported and is not uniformly assessed, as some authors include samples that are subsequently discarded while
others do not include them. Furthermore, although PLS-SEM is a non-parametric statistical method that does not
require normal distribution of  data, its verification is advisable (Baloglu & Usakli, 2017) and should be done by
calculating  its  skewness  and  kurtosis,  as  very  abnormally  distributed  data  cause  and  magnify  standard  errors
(Chernick, 2008).

Both  the  measurement  and  structural  models  lack  some  important  information  and  parameters  in  many
publications.  Therefore,  there  is  some  room  for  improvement  in  terms  of  reporting  and  justification.  OM
researchers should take the latest developments in the assessment and reporting of  PLS into consideration and
their articles should indicate a clear trend toward compliance.
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