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ABSTRACT 11 

Climate Impact Response Functions (CIRFs) could be useful for exploring potential risks of 12 

system failure under climate change. The performance of a water resource system could be 13 

synthesized through a CIRF that relates climate conditions to system behavior regarding a 14 

certain threshold of deliveries to demands or environmental flow requirements. However, in 15 

highly regulated water resource systems this relationship could be quite complex, depending 16 

on storage capacity and system operation. In this paper we define a CIRF for these types of 17 

systems through a multivariable logistic regression (LR) model where a binary variable (system 18 

response) is explained by two continuous variables or predictors (precipitation and 19 

temperature). The approach involves generating multivariate synthetic inflow time series and 20 

relate them to specific climate conditions. Next, these inflows are used as inputs in a water 21 

management model, and the outcome is coded as a dichotomous variable (failure or its 22 

absence) depending on selected vulnerability criteria. To identify the time span before the 23 

failure event in which climate variables are relevant, we characterized drought development 24 

stages through relative standardized indices. Mean values of precipitation and temperature for 25 
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the selected time span are computed and used as explanatory variables through a LR model, 26 

which is validated using data from several climate models and scenarios. Results show that the 27 

predictive capacity of LR models is acceptable, so that they could be used as screening tools to 28 

detect challenging climate conditions for the system which would require adaption actions. 29 

Keywords: water management; climate change; climate impact response functions; synthetic 30 

streamflow generation; multivariable logistic regression. 31 

1. INTRODUCTION 32 

A Climate Impact Response Function (CIRF) could be defined as a function explaining the 33 

relationship between changes in the climate variables and the environmental and 34 

socioeconomic impacts resulting of those changes (Toth et al., 2000). According to Füssel et al. 35 

(2003), there are three main application modes for CIRFs: 1) the "forward mode", which 36 

determines the likely impacts of a specific climate state or scenario; 2) the "overview mode", 37 

which allows the detection of possible non-linear responses of a system to changes in the 38 

forcing variables and; 3) the "inverse mode", which identifies the subset of climate states 39 

where a previously defined impact threshold is not violated. 40 

The sources of climate information involved in CIRF definition are different depending on the 41 

mode. Traditionally, the computation of a CIRF in the "forward mode" involves the application 42 

of a geographically explicit impact model to a representative subset of plausible future climate 43 

states (Füssel et al., 2003). This impact-oriented or top-down approach moves from the global 44 

to the local scale: climate variables for different scenarios are derived from climate models 45 

(usually Global Climate Models (GCM), downscaled for a particular region through Regional 46 

Climate Models (RCM)), and used as inputs for a particular impact model (e.g. hydrological 47 

model). According to Wilby and Dessai (2010), the whole process could be defined as a 48 

"cascade of uncertainty", because uncertainty is propagated and enlarged from one step to 49 

the following one. In recent years, many authors have cast serious doubts on the adequacy of 50 
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climate-model driven approaches to tackle climate change adaptation (Stainforth et al., 2007; 51 

Koutsoyiannis et al., 2008; Blöschl and Montanari, 2010) and top-down combined with 52 

participatory-based “bottom-up” approaches have been proposed as an alternative (Bhave et 53 

al., 2013; Girard et al., 2015). 54 

Nevertheless, climate models cannot be regarded as the only available source of climate 55 

information. Ray and Brown (2015) defined two types of climate scenarios: ex-ante scenarios 56 

(climate-model driven) and ex-post scenarios (independent of climate model outcomes). The 57 

later involve two steps: identification of historical climate conditions related to system 58 

problems and scenario generation through parametric or stochastic variation of the climate. As 59 

ex-post scenarios cover a wider range of climate conditions than ex-ante scenarios, they are 60 

more able to identify system susceptibility to failure. Therefore, they could be suitable to 61 

define CIRFs in the "inverse mode". This vulnerability-oriented (also called “bottom-up” or 62 

scenario-free) approach is being increasingly applied to address water management issues 63 

under climate change conditions (e.g. Cunderlik and Simonovic, 2004; Brown et al., 2012; 64 

Steinschneider et al., 2015; Poff et al, 2015; Soundharajan et al., 2016). On the one hand, this 65 

approach has the advantage of avoiding the credibility problems of GCM-based climate 66 

projections at the local scale (Brown and Wilby, 2012), expanding the analysis of climate 67 

threats to the system to a broader range of possible climate outcomes; on the other hand, 68 

when it comes to define the most likely future climate conditions, it still depends on the 69 

information generated by climate models.  70 

The definition of inverse CIRFs in water resource systems could be challenging, since their 71 

ability to supply water demands is not only related to climate factors, but also to non-climate 72 

ones (such as the available infrastructure or management rules and constraints; Martin-73 

Carrasco and Garrote, 2006). Highly regulated systems with large storage capacity could show 74 

greater inertia against climate variability: temporary meteorological droughts (low 75 
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precipitation periods) not always lead to water scarcity and, even if they do, there could be a 76 

significant time lag between the climate trigger and the impacts on water supply. 77 

To simplify, the problem could be ultimately defined by two continuous, explanatory variables 78 

(precipitation and temperature) and a dependent dichotomous variable (system failure, 79 

defined as the inability to meet a certain performance criteria). Herein, we propose the use of 80 

a multivariable logistic regression (LR) model to define a CIRF for the inverse analysis of highly 81 

regulated water resource systems, using precipitation and temperature in the previous months 82 

as predictors of system failure. Once implemented, the LR model could be used as a screening 83 

model to identify climate change conditions that pose potential risks to the system, instead of 84 

the traditional model chain. Another advantage of this method is that it could be applied in 85 

any water resource system. 86 

The selected case study and the climate series are described in Section 2. Section 3 explains in 87 

detail the selected methodology. To build the LR model, we generated synthetic streamflow 88 

time series through a Simulated Annealing algorithm (Section 3.3) and used them as inputs for 89 

a previously calibrated water management model (Section 3.1). Under the selected 90 

vulnerability criteria (Section 3.2), we were able to obtain the system response (coded as a 91 

binary variable) for each synthetic time series. The next step was relating synthetic 92 

streamflows to precipitation and temperature (Section 3.5). In Section 3.6, we characterized 93 

drought development stages through relative standardized indices, in order to identify the 94 

time span before the failure event in which precipitation and temperature conditions are 95 

relevant. Section 3.7 is devoted to LR model development and calibration, while Section 3.8 96 

describes the validation process using climate change time series. Section 4 shows the main 97 

results for the selected approach. Finally, Section 5 discuss further research lines while Section 98 

6 is devoted to the main conclusions.   99 

2. MATERIALS 100 
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2.1 Case study description 101 

The case study is the Jucar River Basin, a Mediterranean basin of 22,261 km2 in Eastern Spain 102 

(Fig. 1). The basin shows two main climate zones, continental in the upper part and 103 

Mediterranean in the coastal area. During the period from 1980/81 to 2011/12, the mean 104 

annual precipitation was 475.2 mm/year (495.5 mm in 1940/41 to 2011/12), while mean 105 

annual temperature was 14.2oC (13.8oC in 1940/41 to 2011/12) (Jucar River Basin Authority 106 

(CHJ), 2015). The system is highly regulated through 3 main reservoirs: Alarcon and Contreras 107 

(located in parallel in the upper basin) and Tous, downstream. Regarding to groundwater, the 108 

main water body is La Mancha Oriental, one of the most extensive carbonate aquifers in 109 

Southern Europe (7,260 million m3) and hydraulically connected to the Jucar river. Agriculture 110 

is the most prominent water user in the basin (with a share of about 80% of the total demand), 111 

and its principal withdrawals (Agricultural Demand Units, ADUs) are located in the lower part 112 

basin (except for groundwater irrigation in Mancha Oriental). Main urban demands (Urban 113 

Demand Units, UDUs) correspond to the cities of Valencia, Albacete and Sagunto.  114 

Water availability has historically been a main issue in the region, where a frail equilibrium 115 

between resources and demands already exists: 1713.4 million m3 of average inflow in the 116 

period 1980/81 to 2011/12 against a total demand of 1648.4 million m3 (CHJ, 2015). Drought 117 

events are relatively frequent and, when they develop into water scarcity, significant 118 

economic, social and environmental impacts arise (CHJ, 2018). Besides, in a climate change 119 

context water resources in the basin could experiment an important decrease (Chirivella Osma 120 

et al., 2015; Marcos-Garcia and Pulido-Velazquez, 2017), along with an increase in drought 121 

frequency, magnitude and intensity (Marcos-Garcia et al., 2017; Escriva-Bou et al., 2017) due 122 

to the combined effects of rainfall reduction and evapotranspiration increase. Using a hydro-123 

economic approach, Escriva-Bou et al. (2017) showed that the system is very vulnerable to 124 
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climate and land use change, especially over the mid and long term, and that innovative 125 

adaptation actions can significantly reduce the potential economic losses. 126 

 127 

Figure 1. Location of the Jucar basin (left) and sub-basins and main demands (right) 128 

For the representation of the main elements the water resource management model of the 129 

system (WRSM model), we used a classic flow network approach with nodes and links. Several 130 

types of nodes were considered: 8 inflow nodes (which match the sub-basin division of Figure 131 

1, although Molinar inflow is split in two nodes), 5 surface reservoir nodes (Alarcon, Contreras, 132 

Tous, Forata and Bellus), 5 aquifer nodes (La Mancha Oriental aquifer, Cabriel aquifer and 3 133 

nodes corresponding to La Plana de Valencia aquifer), 18 junction nodes, 4 urban demand 134 

nodes or UDUs (Albacete, La Mancha Oriental, Valencia and Sagunto) and 13 agricultural 135 

demand nodes or ADUs (La Mancha Oriental, Magro, Jucar-Turia, Flowing, Acequia Real, 136 

Cuatro Pueblos, Cullera, Escalona and Sueca). The agricultural demands of Acequia Real, 137 

Cuatro Pueblos, Cullera and Sueca have 2 corresponding nodes each, considering the two main 138 

crop types: citrus fruits and rice (Figure 4): 139 
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 140 

Figure 2. Water management system scheme 141 

According to the Spanish Water Law, urban supply has the highest priority in water system 142 

management, followed by irrigation demand (MMA, 2001). Environment is not considered as a 143 

user, but as a restriction to water allocation. Therefore, in case of water scarcity, agricultural 144 

demands are going to suffer a water shortage before urban water supply is concerned. 145 

Besides, in the Jucar basin there are also priorities among agricultural users due to the Alarcon 146 

Reservoir Agreement, which establishes a reserve curve in favor of Acequia Real, Cuatro 147 

Pueblos, Cullera, Escalona, Sueca and Flowing irrigation demands. This reserve curve and other 148 

system operating rules (integrated in the management model presented before) are further 149 

described in Macian-Sorribes et al. (2017). 150 

2.2 Observed data 151 
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To characterize the climate variables (precipitation and temperature) for the selected historical 152 

period (1980-2012), we used three sources of information: 1) SPAIN02 v4 dataset (Herrera et 153 

al., 2010), which provides daily time series with high spatial resolution (0.11o) for peninsular 154 

Spain from 1971 to 2007; 2) ECA&D dataset (Haylock et al., 2008), which supplies daily time 155 

series at the European level from 1950 to the current date, with a spatial resolution of 0.25o 156 

and; 3) meteorological records from the State Meteorological Agency (AEMET).  157 

Regarding the inflows for the period 1980-2012, monthly naturalized time series were 158 

provided by the Jucar river basin authority (CHJ) for each of the 7 sub-basins in which the case 159 

study is divided (Figure 1). The CHJ also provided reservoir storage time series, which were 160 

used to calibrate the water management model for the period 2003-2012. Finally, water 161 

demands were extracted from the 2009-2015 basin plan (CHJ, 2014). 162 

2.3 Climate change data 163 

Figure 2 represents the evolution of the precipitation and temperature from 2011 to 2070, 164 

predicted by 6 climate model combinations and two emissions scenarios (RCPs 4.5 and 8.5). 165 

The selected combinations of GCMs and RCMs are: CNRM-CERFACS-CNRM-CM5/SMHI-RCA4 166 

(CNRM_RCA4), MIROC-MIROC5/SMHI-RCA4 (MIROC_RCA4), MOHC-HadGEM2-ES/SMHI-RCA4 167 

(MOHC_RCA4), MPI-M-MPI-ESM-LR/SMHI-RCA4 (MPI_RCA4), MPI-M-MPI-ESM-LR/MPI-CSC-168 

REMO2009 (MPI_REMO_r2) and an ensemble (ENSEMBLE) of several climate models. These 169 

data at the monthly scale were obtained from the research presented in Marcos-Garcia and 170 

Pulido-Velazquez (2017).  171 

Table 1 shows the minimum, mean and maximum annual temperature and precipitation in the 172 

Jucar basin for the periods 1980-2012, 2011-2040 and 2041-2070. Regarding temperature, all 173 

statistics increase in the RCP scenarios in comparison to the observed period. This increase is 174 

larger in the midterm than in the short term, and for the RCP 8.5 scenario.  175 
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Table 1. Annual temperature (T) and precipitation (P) in the Jucar basin 176 

Variable Statistic 
1980-2012 
Observed 

2011-2040 2041-2070 

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 

T (
o
C) 

Minimum 13.00 13.78 13.53 14.95 15.45 

Mean 14.33 14.67 14.78 15.50 16.27 

Maximum 15.27 15.88 15.59 16.24 17.74 

P (mm) 

Minimum 350 308 242 267 246 

Mean 521 541 536 507 478 

Maximum 798 792 843 819 758 

Regarding precipitation, there is a decrease of the minimum annual precipitation in all the 177 

future scenarios. This decrease is larger in the midterm than in the short term, and for the RCP 178 

8.5 scenario. The mean annual precipitation could increase slightly in the short term, although 179 

it decreases in the midterm. Finally, some of the scenarios show an increase of the maximum 180 

annual precipitation.  181 

182 

183 
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184 

 185 

Figure 3. Annual precipitation and temperature from 2011 to 2070 for RCP 4.5 and 8.5 186 

3. METHODS 187 

The selected approach (Figure 3) involves 8 main steps, further described in the following 188 

sections: 189 

 190 

 Figure 4. Overall approach scheme 191 
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3.1 Implementation and calibration of the water resource system management model 192 

The system network was implemented using the Hydra Modeller software (build on the 193 

foundation of Hydra Platform; Meier et al., 2014), and then exported to General Algebraic 194 

Modeling System (GAMS; GAMS Development Corporation, 2013) format. Using GAMS 195 

software, a monthly simulation model of the system was built, considering environmental 196 

restrictions, water allocation rules under Spanish legal framework, and current agreements. 197 

The model was calibrated for the period 2003-2012, based on the observed storage time series 198 

of the three main reservoirs (Alarcon, Contreras and Tous) and the historical releases from 199 

Tous reservoir to supply the downstream demands. Due to the selected calibration period, the 200 

demands are those considered in CHJ (2014). 201 

3.2 Performance assessment and failure criteria 202 

In Spain, the Water Planning Act (MARM, 2008) introduces the legal definition of system 203 

failure in relation to agricultural water uses through 3 criteria: the 1-year criterion, when the 204 

annual deficit is greater than 50% irrigation demand; the 2-year criterion, when the deficit in 2 205 

consecutive years is greater than 75% irrigation demand) and; and the 10-year criterion,  when 206 

the deficit in 10 consecutive years is greater than 100% irrigation demand). For the purpose of 207 

the present work, only the 1-year criterion has been considered. 208 

3.3 Generation of synthetic streamflow time series 209 

The approach selected for this step was the one proposed by Borgomeo et al. (2015). This 210 

method involves  obtaining a random sampling  from observed streamflow records and then 211 

swapping  the values of this sampling through the Simulated Annealing algorithm (SA, Figure 212 

5). The shuffling stops when the generated series matches the hydrological properties imposed 213 

by the objective function. Besides, the objective function can be easily altered to generate 214 
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streamflow time series with specific characteristics (e.g. monthly mean decrease, standard 215 

deviation increase) to test system vulnerability. 216 

 217 

Figure 5. Simulated Annealing algorithm 218 

The selected hydrological properties of the observed time series (1980-2012) whose statistics 219 

we aim to reproduce were: 1) monthly mean (M); 2) monthly standard deviation (SD); 3) 220 

quantile 90% (Q); 4) monthly temporal correlation (auto-correlation, AC) and; 5) Pearson 221 

correlation coefficient between sub-basins (spatial cross-correlation of sub-basin "i" with sub-222 

basin "j", PCij). Here, it should be noted that spatial correlation was not considered in the 223 

precedent work by Borgomeo et al., (2015). Eq. 1 shows the objective function (F) selected to 224 

generate the synthetic streamflow time series, where a, b, c are coefficients (e.g. a=0.7 would 225 

mean a decrease of 30% in the monthly mean). Sub-index "0" is related to the observed time 226 

series and sub-index "s" to the synthetic one: 227 

Eq. 1                                                 
 
         )  228 

Here it should be noted that statistics values are previously normalized to have the same order 229 

of magnitude. 230 
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3.4 Testing of the system performance under synthetic streamflow time series 231 

Using the SA, 210 synthetic streamflow time series of 30 years time span were generated (30 232 

for each of the 7 sub-basins). We performed 30 simulations using the new time series as inputs 233 

for the water management model described in Section 3.1. The existence of failure was coded 234 

as 1 when the 1-year criterion is met for at least one of the agricultural demands described in 235 

Section 3.2, and 0 in any other case. 236 

3.5  Linking precipitation and temperature variables to synthetic streamflow time series 237 

To link climate conditions to the synthetic streamflow time series, in first place we explored 238 

the temporal correlation between precipitation and streamflow for the observed time series 239 

(1980-2012) at the monthly scale. Table 2 shows that the highest correlations are found for 240 

time lag 0, except for the headwaters basins (Alarcon and Contreras), where streamflow in a 241 

particular month is slightly more correlated with the precipitation in the previous month (time 242 

lag 1). 243 

Table 2. Correlation coefficients between precipitation and inflows for several time lags 244 

Lag 
(month) 

Alarcon Contreras Molinar Tous Forata Sueca Bellus 

0 0.50 0.45 0.26 0.38 0.66 0.65 0.74 

1 0.58 0.50 0.10 0.17 0.30 0.31 0.24 

2 0.40 0.33 0.07 0.13 0.13 0.17 0.17 

3 0.21 0.22 0.03 0.10 0.08 0.08 0.08 

 245 

For each of 210 synthetic streamflow time series, we obtained two vectors of precipitation and 246 

temperature replicating the transformation that SA did (Figure 6). We considered a time lag  0 247 

between precipitation and temperature conditions and streamflow production for each 248 

month.  249 
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 250 

Figure 6. Procedure to link precipitation (P) and temperature (T) to inflows (Q) 251 

3.6 Characterization of the time lag between drought development and system failure 252 

In highly regulated water resource system such as the Jucar basin, meteorological and 253 

hydrological droughts can begin months and even years before they cause a system failure. 254 

Therefore, characterizing the time lag between a meteorological/hydrological drought onset 255 

and the system failure could be important to identify previous climate sequences that head 256 

the system to fail. Villalobos (2007) studied the three main stages of drought development 257 

(meteorological, hydrological and operational drought) in the Jucar basin, applying 258 

standardized indices to precipitation, inflows and reservoir storage. He concluded that the 259 

Standardized Precipitation Index (SPI; McKee et al., 1993) has certain predictive capacity 260 

regarding operational droughts, when aggregation periods of 12 and 24 months were 261 

considered. According to his results, if the 24 months aggregated SPI identifies a 262 

meteorological drought,  an operational drought is likely to appear 18 months later. 263 

Here, we use two standardized drought indices: the Standardized Precipitation & 264 

Evapotranspiration Index (SPEI,  Vicente-Serrano  et  al.,  2010) to identify meteorological 265 

droughts and the Standardized Streamflow Index (SSI) for the hydrological ones. We fitted a 266 

Log-Logistic distribution to effective precipitation (precipitation minus potential 267 

evapotranspiration, PET) and a Log-Normal distribution streamflow time series, considering  268 
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the  observed  values during the  period  1980-2012  and  an  aggregation  time window  of  12  269 

months (Villalobos, 2007; Marcos-Garcia et al., 2017). PET was computed using the 270 

Thornthwaite method (Thornthwaite, 1948). Finally, we applied the same distributions to the 271 

synthetic time series, in order to obtain relative standardized indices (Dubrovsky et al., 2009; 272 

Marcos-Garcia et al., 2017). 273 

3.7 Fitting and calibrating a logistic regression model 274 

A LR model is able to describe the relationship between a binary variable (which is the 275 

response or dependent variable) and a set of continuous, independent variables (predictors or 276 

explanatory variables). In our case, the binary variable is the existence or the absence of 277 

system failure (coded as 1 and 0, respectively) and the explanatory variables are precipitation 278 

and temperature. Eq. 2 describes the general equation of the LR model and Eq. 3 the 279 

probability of system failure for a particular year: 280 

Eq. 2                           281 

Eq. 3         
                

                  
 282 

Where: 283 

 p: probability of system failure for a particular year 284 

 b0, b1, b2: regression coefficients  285 

 P: mean annual precipitation during a selected time period before the year under analysis 286 

 T: mean annual temperature during a selected time period before the year under analysis 287 

The selection of a time period to compute P and T must be relevant for the system and it is 288 

based on the assessment described in Section 3.6. According to the results we obtained 289 

(Section 4.3), four LR models were fitted computing P and T values for 2, 3, 4 and 5 years. The 290 

yearly time series of the response and the explanatory variables have been previously 291 
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obtained as described in Sections 3.4 and 3.5. To limit the influence of the system's initial 292 

conditions (e.g. reservoir and aquifer volume), we removed the four first years of the 293 

computed variables before using them to build the LR model. The explanation is the following: 294 

if the reservoirs are full at the beginning of the period, the system will not fail to fully meet the 295 

demands even if the precipitation in the first four years is really scarce, so the absence of 296 

failure in those years could not be related to the climate conditions but to the influence of the 297 

system’s initial conditions.  298 

A LR model could be considered as well calibrated if the predicted probabilities match the 299 

observed proportions of the response (Nattino et al., 2017). To assess the goodness of fit of 300 

the LR models, three approaches were selected: 1) Hosmer-Lemeshow test (Hosmer and 301 

Lemeshow, 1980); 2) pseudo R-squared measures (Cox-Snell (Cox and Snell, 1989), McFadden 302 

(McFadden, 1974), Nagelkerke (Nagelkerke, 1991) and Tjur (Tjur, 2009); 3) GiViTI calibration 303 

belt (Nattino et al., 2016; Nattino et al., 2017). 304 

Finally, we compare the goodness of fit results with the outcome of a stepwise logistic 305 

regression (performed through the stepAIC function of the MASS package in R (Venables and 306 

Ripley, 2002), where the possible variables to select are the mean annual precipitation in the 307 

previous 2, 3, 4 and 5 years. 308 

3.8 Validation of the LR model using climate change time series 309 

The validation of the LR model was done through climate change time series using the 310 

traditional top-down approach (Fig. 7). This approach involves the use of a chain of models: a 311 

GCM is downscaled to obtain a RCM. The bias of the climate variables from the RCM are 312 

corrected to match the observed values during the control period, and next they are used as 313 

inputs for a hydrological model. Finally, system behavior under climate change conditions is 314 

simulated using a water management model. 315 
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 316 

Figure 7. Top-down approach to characterize system failure under climate change 317 

Precipitation, temperature and inflow time series under climate change were generated by 318 

Marcos-Garcia and Pulido-Velazquez (2017) for the Jucar basin, using several combinations 319 

and an ensemble of GCM-RCM models, two climate change scenarios (RCP 4.5 and 8.5) in the 320 

short term (2011-2040) and in the mid-term (2041-2070) and the Temez hydrological model 321 

(Temez, 1977). Here, we used 6 of these inflow time series as inputs to the WRSM model 322 

described in Section 3.1. To characterize the existence/absence of failure, the vulnerability 323 

criteria and codification were the same that the ones explained in Section 3.2 and 3.4, 324 

respectively. Besides, we obtained the mean annual values of P and T for 3 and 4 years periods 325 

(see Section 4.4). 326 

We used the calibrated "3 years" and "4 years" LR models to predict the failure probability 327 

regarding the P and T time series obtained from a particular climate model, and compared this 328 

probability with the real incidence (coded as 0 and 1) from the WRSM model simulation for the 329 
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same climate model. As explained in Section 2.3, part of the climate conditions of the 330 

validation time series were outside the range of values of the calibration period..  331 

4. RESULTS 332 

4.1 Water resource system management model 333 

Figure 8 plots the evolution of water storage in the main reservoirs (Alarcon, Contreras and 334 

Tous) and the releases from Tous reservoir during the calibration period (2003-2012), for the 335 

observed (Obs., blue line) and the simulated values (Sim., red dotted line). R2 values range 336 

between 0.97 and 0.74, so it is possible to conclude that the model is able to accurately  337 

reproduce the system operating rules during the calibration period. 338 

 339 

Figure 8. Goodness of fit of the WRSM model (calibration period) 340 

4.2 Synthetic streamflow time series 341 

Figure 9 compares the monthly mean and standard deviation of the observed streamflow time 342 

series with the same statistics of one of the synthetic time series for Alarcon sub-basin. 343 
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According to the graphs, the SA algorithm is able to reproduce the monthly structure of both 344 

statistics, at the same time that it decreases the mean and increases the standard deviation 345 

(see Section 3.3). Nevertheless, monthly mean decrease is less than the 30% reduction 346 

specified in the objective function, as the SA is limited by the available values in the sampling. 347 

 348 

Figure 9. Monthly mean and standard deviation for observed and synthetic time series 349 

Figure 10 plots the autocorrelation function for the observed and the synthetic time series, 350 

after deseasonalizing them. The SA algorithm is not only able to reproduce the temporal 351 

autocorrelation, but also the spatial correlation between sub-basins. Although Pearson 352 

correlation coefficient between Alarcon and Contreras sub-basins (0.60) is lesser than the one 353 

obtained from the observed time series (0.86), it is necessary to take into account that the SA 354 

looks for a trade-off between the hydrological properties specified in the objective function. If 355 

we were more interested in the spatial correlation than in other characteristics, we could 356 

always increase the weight of this term to the detriment of the others.  357 
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 358 

Figure 10. Temporal correlation in the synthetic time series 359 

4.3 Time lag between drought development and system failure 360 

Figure 11 a) shows the drought indices evolution for the period 2000-2011 of the historical 361 

time series. Meteorological and hydrological drought started 30 and 29 months before the first 362 

system failure (in 2005), respectively. Therefore, while a meteorological drought developed 363 

quickly into a hydrological drought, it took 2.5 years to result in a system failure. The same 364 

analysis has been done for each of the synthetic time series (Figure 11 b and c), considering 365 

only the time lag between the meteorological/hydrological drought and the first failure if there 366 

were several consecutive ones. For a total amount of 44 failure events, the time lag oscillated 367 

between 24 month (2 years) and 60 months (5 years), being the mean value 40 months. Thus, 368 

to cover the entire range, we built four LR models considering the precipitation and 369 

temperature conditions in the 2, 3, 4 and 5 previous years (Section 3.7). 370 
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371 

372 

 373 

Figure 11. SPEI and SSI evolution and system failures 374 

4.4 System performance under synthetic streamflow time series 375 

Figure 12 shows the system performance regarding the mean annual precipitation (P), 376 

temperature (T) and inflow (Q) of the previous 3 years. The average annual values of P, T and 377 

Q for the failure events are 14.82oC, 490 mm and 974 million m3,  while for the absence of 378 

failure is 14.18oC, 566 mm and 1280 million m3.  379 
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 381 

Figure 12. System performance versus mean annual P, T and Q in the previous 3 years 382 

4.5 Goodness of fit of the LR model (calibration) 383 

Table 3 shows the outcome of the Hosmer-Lemeshow test (H-M test), the Cox-Snell (C-S), 384 

McFadden (M-F), Nagelkerke (N) and Tjur (T) pseudo R2 values and the p-value for the GiViTI 385 

calibration belt (GCB). 386 

Table 3. Parameters and goodness of fit results of the LR models 387 

 Parameters H-M test* Pseudo R2 GCB 
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Model b0 b1 b2 χ2 p-value C-S MF N T p-value 

2 yr -6.743 -0.018 0.986 58.896 0.000 0.18 0.25 0.33 0.22 0.935 

3 yr -12.238 -0.025 1.613 17.467 0.026 0.22 0.33 0.41 0.30 0.476 

4 yr -19.297 -0.025 2.114 5.623 0.689 0.23 0.33 0.42 0.31 0.501 

5 yr -20.727 -0.020 2.034 13.231 0.104 0.19 0.26 0.34 0.25 0.521 

 *number of quartiles of risk = 10 388 

According to the Hosmer-Lemeshow test and considering a confidence level of 99% (p=0.01), 389 

we only can reject the null hypothesis for model "2 years". Besides, the highest values of the 390 

four pseudo R2 are shown by models "3 years" and "4 years".  391 

Regarding the GiviTI calibration belt (Figure 13), no evidence of lack of calibration emerges 392 

from any of the four models, because the belt encompasses the bisector in the whole 0-1 393 

range (although is not defined for some probability values between 0.8 and 1, mainly for the 394 

models "2 years" and "5 years"). The p-values for the four models suggests that the calibration 395 

of the models is acceptable. Finally, it should be noted that the bands convey the uncertainty 396 

in the estimated relationship between predictions and the probabilities of the true response 397 

(Nattino et al., 2017). Therefore, model "2 years" shows the greatest uncertainty, while "3 398 

years" and "4 years" models' could be considered less uncertain. 399 
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 400 

Figure 13. GiViTI calibration belts  401 

The discussed goodness of fit measures for models "3 years" and "4 years" were coherent with 402 

the average time lag identified in Section 4.3 (36 months < 40 months < 48 months). Therefore, 403 

we selected the models "3 years" and "4 years for the validation stage. Moreover, the model 404 

selection procedure exposed in Sections 3.6 and 3.7 could be substituted by a stepwise logistic 405 

regression, which was able to identify the mean annual precipitation during the previous 3 and 406 

4 years as the most suitable predictors. Figure 14 plot the relationship between P, T and failure 407 

probability (z) of both models. 408 
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 409 

Figure 14. 3D plot relating P, T and failure probability for the calibrated LR models 410 

4.6 Prediction performance of the LR model (validation) 411 

Table 4 shows the results of the GiViTI calibration belt test for the LR models "3 years" and "4 412 

years", regarding the validation time series obtained from the climate change models. 413 

Considering a confidence level of 99% (p=0.01), the obtained p-values suggest that both "3 414 

years" and "4 years" models are able to predict the system failures in the case of CNRM_RCA4, 415 

MIROC_RCA4 and MPI_REMO_r2 data. Besides, the "3 years" model shows also predictive 416 

ability for MPI_RCA4 data (p-value larger than 0.01). Nevertheless, both "3 years" and "4 417 

years" models show p-values lesser than 0.01 for ENSEMBLE and MOHC_RCA4 data, so it is not 418 

possible to affirm that they show a good predictive ability in those cases. 419 

Table 4. Goodness of fit for the validation time series 420 

Model CNRM_RCA4 ENSEMBLE MIROC_RCA4 MOHC_RCA4 MPI_RCA4 MPI_REMO_r2 

"3 years" 0.911 0.005 0.049 0.005 0.142 0.134 

"4 years" 0.11 <0.001 0.457 <0.001 0.006 0.226 

 421 
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Figure 15  plots the GiViTI calibration belts for both LR models and the ENSEMBLE climate 422 

change data. These plots have an easy interpretation, when there is part of the confidence 423 

band under the bisector, the model is overestimating failure probability, and when the band is 424 

over the bisector, it is underestimating it. For example, regarding the ENSEMBLE data and the 425 

99% confidence level, failure probability is overestimated for high probabilities (approximately 426 

greater than 0.97 for the "3 years" model and 0.75 for the "4 years" one). If we take into 427 

account the 95% confidence level for the same data, the models are also underestimating 428 

failure probability for low probabilities (less than 0.10 for the "3 years" model and 0.09 for the 429 

"4 years" one. Validation results regarding the rest of climate change data is included as 430 

Supplementary Material. 431 

 432 

Figure 15. GiViTI calibration belt for ENSEMBLE 433 

Figure 16 plots the climate response map derived from the LR model "3 years" and the mean 434 

annual precipitation and temperature for the historical data (from 1980 to 2012) and the 435 

climate change scenarios (RCP 4.5 and 8.5 in the short and midterm). According to our results, 436 

average failure probabilities are 0.13 for the historical period; 0.27 for RCP 4.5 in the short 437 

term; 0.32 for RCP 8.5 in the short term; 0.50 for RCP 4.5 in the midterm and; 0.80 for RCP 8.5 438 

in the midterm. Therefore, failure probability is higher in the midterm than in the short term, 439 

especially for RCP 8.5, with the largest changes in mean annual temperature (increase) and 440 

mean annual precipitation (decrease) (see Section 2.3). 441 
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 442 

Figure 16. Climate response map and climate models' output 443 

5. DISCUSSION 444 

CIRFs could be used to assess the risks of a system under climate change, as well as the 445 

magnitude and possibility of potential adaptation efforts (Füssel et al., 2003). Therefore, CIRFs 446 

are valuable tools to help the decision making process, since they allow to make informed 447 

judgments about potential impacts of climate change and the value of different adaptation 448 

strategies.  449 

Here, we have defined a CIRF through a LR model, using precipitation and temperature in the 450 

previous years as predictors of system failure. The proposed method involves several steps: 451 

implementation of a water resource management (WRSM) model for assessing the 452 

performance of the system for different scenarios; generation and validation of synthetic time 453 

series to be used as inputs for the WRSM model; definition of vulnerability criteria and; 454 

calibration and validation of a LR model to link the system response to the climatic explanatory 455 

variables (precipitation and temperature). In the case of a highly regulated water resource 456 

system, this paper has shown CIRF to be a suitable tool to identify climate conditions that lead 457 

the system to fail in meeting certain pre-established performance conditions. Results show 458 

that the probability of system failure is higher in the midterm than in the short term, especially 459 
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for RCP 8.5 (which presents the largest increase in mean annual temperature and the largest 460 

decrease in mean annual precipitation).  461 

Characterizing a system response to climate involves finding a function f(y|x) which 462 

approximates the value of the dependent variable y (without knowing the probability density 463 

p(y|x)), for any value of the predictive variable x. Models such as logistic regression (LR) and 464 

Classification and Regression Trees (CART) are able to approximate such functions.  465 

However, sometimes it could be more interesting to identify regions in the input space 466 

associated with a very high (or low) value of y. For example, the "Patient" Rule Induction 467 

Method (PRIM) proposed by Friedman and Fisher (1999) directly seeks these regions and skips 468 

the finding of f(y|x). Regarding climate scenarios, PRIM has been widely used in scenario 469 

discovery, to find clusters of future states to which the systems are vulnerable (Lempert et al., 470 

2006; Groves and Lempert, 2007; Kwakkel and Cunningham, 2016), although it could present 471 

some shortcomings, i.e.: 1) specific defects of high climbing optimization algorithms (local 472 

optima, plateaus, ridges and valleys), (Kwakkel and Cunningham, 2016); 2) it could not be 473 

suitable for all types of cluster shape and configuration within the multi-dimensional space of 474 

futures (Lempert et al., 2006); 3) it strives when the uncertain factors are a mix of data types 475 

(Kwakkel and Jaxa-Rozen, 2016). Here, we propose LR as a simple and fast approach to identify 476 

climate scenarios that lead to system failure. This approach was also used by Kim et al. (2019) 477 

for decision-centric assessment of climate change impacts on a complex river system. 478 

However, further research on comparing LR, PRIM and CART performance is suggested. 479 

Besides, the selected approach based on the generation of synthetic time series has also the 480 

advantage of not requiring a calibrated hydrological model to "translate" climate variables into 481 

inflows, because synthetic streamflow time series are first generated and then linked to 482 

precipitation and temperature conditions. However, it is necessary to note that the intra-483 

annual behavior of precipitation and temperature is not necessary preserved using the same 484 



29 
 

resampling applied to the streamflow time series. This fact is not relevant for the purpose of 485 

this study, because the synthetic precipitation and temperature time series are only used in 486 

the LR model (which takes into account the mean annual values instead of monthly values), 487 

but it could be significant for other applications. In addition, the procedure to generate the 488 

climate variables may add uncertainty to the response function. In this regard, it could be 489 

interesting to explore the use of a weather generator combined with a hydrological model for 490 

building a new LR model, and assess if its predictive capacity improves in relation to the same 491 

validation time series. 492 

Once we identify the climate conditions in which the system is prone to fail, a possible step 493 

forward could be to explore when these conditions are likely to take place, for example 494 

through the link between them and teleconnections. In the case of the North Atlantic 495 

Oscillation (NAO), it is well known that positive NAO phases are closely related to precipitation 496 

amounts lower than normal in the Iberian peninsula, whereas negative phases are linked to 497 

wetter conditions (Muñoz-Díaz and Rodrigo (2003); Trigo et al. (2004); Vicente-Serrano and 498 

Cuadrat (2007); Queralt et al. (2009); Vicente-Serrano et al. (2009)). However, with respect to 499 

temperature, Lopez-Moreno et al. (2011) observed a positive correlation in the European 500 

Mediterranean area. 501 

In addition, and regarding adaptation to climate change, this approach could be used to 502 

explore how the system response changes after implementing adaptation measures (i.e. 503 

decrease of failure probability in relation to the same climate conditions) and to relate 504 

effectiveness and cost for the selection of a portfolio of adaptation options. Nevertheless, 505 

climate change will not only have impacts on the supply but also on the demands, so it would 506 

be interesting to develop further research lines which include both sides of the problem. 507 

Finally, different CIRFs for each user could be used to assess the current allocation rules in a 508 

context of great reduction of the available resources and formulate new ones. 509 
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6. CONCLUSIONS 510 

A new method has been proposed for obtaining CIRFs in highly regulated systems. The method 511 

uses a LR model to relate climate variables to system failure. The main strength of finding a 512 

CIRF for a particular system is that it allows to identify climate change conditions which pose 513 

potential risks of system failure using a single model, instead of the traditional model chain in 514 

which uncertainty is propagated from one step to the following one. This approach could be 515 

applied to any water resource system, and it could be useful to explore how the system 516 

response changes after the implementation of adaptation measures.  517 
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SUPPLEMENTARY MATERIAL 1 

For MOHC_RCA4 data (Figure 3), the models again overestimate failure probability in the case 2 

of probabilities larger than 0.68 (model "3 years") and 0.41 (model "4 years"), while for 3 

MPI_RCA4 data only "4 years" model shows values under the bisector for probabilities larger 4 

than 0.74. 5 

Regarding the rest of the climate data and the 99% confidence level, as the bands do not 6 

intersect the bisector in the whole 0-1 range, it could be concluded that the logit models are 7 

neither underestimating, nor overestimating failure probability. Nevertheless, for example 8 

model "4 years" tends to overestimate the failure probability more than model "3 years" for 9 

the CNRM_RCA4 data (Figure 1), while model "3 years" tends to underestimate it in the 10 

MIROC_RCA4 and MPI_REMO_r2 cases (Figures 2 and 5) in comparison to the "4 years" model. 11 

For MPI_RCA4 the "3 years" model tends to underestimate low probabilities and overestimate 12 

the high ones (Figure 4). In general, it could be concluded that the "3 years" model shows a 13 

better predictive capacity than the "4 years" one, except for MIROC_RCA4 and MPI_REMO_r2 14 

data, where the performance of the "4 years" model is higher. 15 

 16 

Figure 1. GiViTI calibration belt for CNRM_RCA4 17 
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 19 

Figure 2. GiViTI calibration belt for MIROC_RCA4 20 

 21 

Figure 3. GiViTI calibration belt for MOHC_RCA4 22 

 23 

Figure 4. GiViTI calibration belt for MPI_RCA4 24 

 25 

Figure 5. GiViTI calibration belt for MPI_REMO_r2 26 
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