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Abstract: Vulnerable Road User (VRU) detection is a major application of object detection with
the aim of helping reduce accidents in advanced driver-assistance systems and enabling the
development of autonomous vehicles. Due to intrinsic complexity present in computer vision and
to limitations in processing capacity and bandwidth, this task has not been completely solved
nowadays. For these reasons, the well established YOLOv3 net and the new YOLOv4 one are
assessed by training them on a huge, recent on-road image dataset (BDD100K), both for VRU
and full on-road classes, with a great improvement in terms of detection quality when compared
to their MS-COCO-trained generic correspondent models from the authors but with negligible
costs in forward pass time. Additionally, some models were retrained when replacing the original
Leaky ReLU convolutional activation functions from original YOLO implementation with two
cutting-edge activation functions: the self-regularized non-monotonic function (MISH) and its
self-gated counterpart (SWISH), with significant improvements with respect to the original activation
function detection performance. Additionally, some trials were carried out including recent data
augmentation techniques (mosaic and cutmix) and some grid size configurations, with cumulative
improvements over the previous results, comprising different performance-throughput trade-offs.

Keywords: on-road detection; artificial intelligence; machine learning; convolutional neural networks;
resource-constrained hardware; one-stage detectors; advanced driver-assistance systems; vulnerable
road users

1. Introduction

Object detection is one of the main tasks regarding Computer Vision, with the aim of detecting
instances (objects) or continuous patterns (textures) in images or videos. Some principal cases of study
are video surveillance, industrial inspection, face identification, and autonomous driving assistance,
with particular challenges for each case.

Regarding the latter, much effort has been put into it lately, especially in the last decade, when it
has been noticed that the fully autonomous vehicle (SAE 5) could become a reality in the foreseeable
future. In the on-road context, different objects have to be confidently detected, mainly other vehicles,
but with a special focus on the so-called Vulnerable Road Users (VRU), including pedestrians, cyclists,
motorcyclists and road workers because they clearly constitute, with almost no exception, the weak
party in any road traffic crash [1].

Just to report the magnitude of the problem, approximately 2 out of 3 fatalities involve VRU on
urban road networks [2]. Besides this, the relatively reduced size when compared to other instances
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(e.g., vehicles) and the intrinsic variability in the VRU appearance (e.g., people in different clothes, poses
and light conditions) makes it especially challenging to confidently detect them. Therefore, despite
improvements in recent years, the VRU detection task still poses many difficulties that require further
dedication on design, optimization, and assessment [3].

During the last two decades, many approaches have been developed with the aim of confidently
detecting on-road objects, especially VRU. First, attempts included the use of traditional, computing
extensive algorithms, such as AdaBoost and Cascade based detection structures, known as Viola–Jones
(VJ) [4] or Histogram of Oriented Gradients plus Support Vector Machine structures (HOG+SVM) [5],
usually leading to poor results.

Later, other models such as Deformable Part Model (DPM) [6], Integral Channel Features (ICF) [7],
Locally Decorrelated Channel Features (LDCF) [8] or Fast Feature Pyramids (FFP) [9] were developed,
with intermediate performances but depending on ad hoc, predefined features. Other approaches
comprised adaptive neuro-fuzzy inference systems and feature descriptors such as Histogram
of Oriented Gradients (HOG) and Local Binary Pattern (LBP) [10] or ad hoc preprocessing [11].
In addition, structured learning has been applied for training structured ensembles in order to address
the pedestrian detection problem [12].

In the last decade, however, the dramatic increase in computing capacity that led to the
development of Convolutional Neural Networks (CNN) made it possible to get much better object
detectors, such as Region Based Rich Feature Hierarchies (R-CNN) [13], Faster R-CNN [14], Single Shot
Multibox Detector (SSD) [15], and You Only Look Once versions (YOLO) [16–19].

Because of the high computational requirements of many CNN variants, some one-stage
developments are focused on reducing it so as to run fast on mobile platforms (high throughput). In the
past, these were considerably worse in terms of detection quality when compared to heavy, two-stage
CNN algorithms [20], but nowadays the gap between them is being dramatically reduced [18].

For this reason, one-stage methods have become very common: they use a single pass to detect
relevant objects of all aspect ratios at multiple scales in the image. They comprise lighter algorithms
that are much more suitable for the available onboard hardware [19].

YOLO algorithms belong to the one-stage category and are used on on-road applications for
object detection including instances such as pedestrians [21–24], vehicles [25], traffic flows [26],
and non-helmeted motorcyclists [27].

In this context, many developments tend to rely on the MS-COCO dataset [28] for training,
thus leading to well-balanced detectors for the 80 classes included. However, due to this high number
of classes to be detected and their great context variability, the detection performance for these models
is suboptimal when applied to on-road datasets, which have a reduced group of classes with a
common context.

Because of that, we adapted both YOLOv3 and YOLOv4 models and trained them with Berkeley
DeepDrive 100K (BDD100K), one of the most diverse and large automotive datasets captured on the
street, including data from multiple cities. The dataset comprises day and night images, with different
weather and adverse lighting conditions, with the focus on vehicles and VRU [29]. After that,
we experimented with two new activation functions for the convolutional layers from YOLOv4,
namely MISH [30] and SWISH [31], with promising results for this task.

As an additional development, we retrained the best of these algorithms with some recent data
augmentation techniques, including mosaicand cutmix, with improvements from the previous results.
In addition, we explored further the best algorithm performance for a wide range of grid configurations,
with some specific findings due to this particular on-road detection task.

All this work is part of the European project PRYSTINE [32], which will strengthen and extend
traditional core competencies of the European industry, research organizations, and universities in
smart mobility and in particular in the electronic component and systems and cyber-physical systems
domain. In particular, this development is part of the sensor fusion system to reduce uncertainty and
to improve precision in the perception of the vehicle surroundings.
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The paper is organized as follows: first, the detectors and the dataset used are presented. Then,
the training settings and development are reported. Later, an ad-hoc training with a reduction of the
number of categories is carried out for YOLOv3 and YOLOv4, leading to a significant increase detection
performance. Additionally, YOLOv4 training processes are developed both for MISH and SWISH
activation functions and some data augmentation techniques and grid sizes, with improvements in
terms of detection performance. Finally, conclusions and future work on the topic are drawn.

2. Materials and Methods

Our experiments were aimed at obtaining the most accurate model for on-road detection suitable
for a resource-constrained hardware platform, typically a mobile board (e.g., Nvidia Jetson TX2 or
any other Nvidia Drive computer platforms). For this reason, due to our experience on the field and
after thorough research among the latest developments regarding CNN for real-time object detection,
we selected YOLOv3 and YOLOv4 as the most balanced net structures to train. These nets combine
a relatively low computational load with an outstanding detection performance for the common
0.5 Intersection over Union (IoU) threshold due to some features such as batch-normalization and
residual-connections, which are applicable to the majority of models, tasks, and datasets [18,19].
YOLOv4 variants were developed by improving and enhancing the YOLOv3 previous structures.

Furthermore, a bunch of different versions are available, with different input sizes. Once the
most adequate algorithm versions were selected, a particular dataset or a combination of some had
to be used to train the nets. Although generic-class databases, such as MS-COCO [28], are usually
the starting point to develop general detection algorithms, we focused our effort on specific on-road
databases, especially those including VRU.

After extensive research on the literature of the last 10 years and according to the number of images,
number of categories, dissemination and variety, we preselected some specific on-road databases,
namely Caltech-USA [33], EuroCity Persons [34], and BDD100K [29]. However, by analyzing the
particular class set, the image quality and the topicality from each one, we chose BDD100K to train
the algorithms: a huge, complete dataset including different weather conditions, places and times of
the day, and a wide range of light conditions, occlusion, and cropping. This semantic variety can be
noticed in Figure 1.

Therefore, our aim was to train some YOLOv3 and YOLOv4 variants with BDD100K and to
compare the performance of these models with their generic MS-COCO-trained counterparts when
applied to the same on-road dataset and classes present in BDD100K. To achieve this, we used the
original YOLOv4 repository [35] and semantically assigned some MS-COCO classes to the existing
BDD100K ones. For every training process, we used a single Nvidia Tesla V100 GPU.

To assess the performance of each model, some metrics are especially useful. IOU is a commonly
used basic metric that refers to the area overlap ratio of the obtained detection and the ground truth
boxes and can be expressed as:

IoU =
A∩ B
A∪ B

Based on it, one of the main indicators used to compare different models is mAP50, which
represents the Mean Average Precision at IoU = 0.5. In addition, Precision and Recall were assessed in
the grid size analysis. All of these metrics are briefly explained below:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

where TP, TN, and FN stand for true positives, true negatives, and false negatives, respectively.
From these indicators, the AP (Average Precision) can be calculated as follows:
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AP =
1

101

100

∑
i=0

Precision(Recall =
i

100
)

If IoU is selected as the overlap measure between the ground-truth and the detected bounding
boxes, and a 0.5 lower threshold is defined to consider that a particular detection is carried out properly,
the AP50 measure can be calculated for each class. Finally, mAP50 can be found as the weighted AP50
average for all classes.

Figure 1. Image samples from BDD100K dataset, in which a great variability (occlusion, bad weather,
glare, low light, low contrast, light reflection, blur ...) can be noticed.

Regarding the input–output relation, it consists of a net structure (predefined depending on the
particular detector used, but modifiable to enhance its performance, as we did in the grid size analysis)
and its weights (automatically obtained in the training process). Therefore, thanks to the deep learning
approach, only the hyperparameters must be defined previously.

The global functioning of YOLO detectors [18,19] is as follows: they divide an image into grids
at three different scales creating three grids of different sizes. Each cell of the grid is responsible for
predicting up to three bounding boxes for objects whose center pixel is within the cell. Whereas the
input of the algorithm consists of a single image (a frame), the output bounding box format is as follows:

(x, y, w, h, c, C1, C2, ..., Cn)
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in which x and y are the shifts relative to the top-left corner of the cell; w and h are width and height of
the bounding box relative to some preselected anchor boxes; c is the confidence that YOLO estimates
for the detection, and C1, C2...Cn are the confidences of belonging to each class.

Finally, when the enhanced BDD100K trained YOLOv4 models were obtained, a retraining process
was carried out replacing the original Leaky ReLU activation functions with two new, cutting-edge
functions recently added called MISH and SWISH, with slight improvements from the original
detections performances. Subsequent experiments used data augmentation techniques in the training
process. Finally, a special postprocess (grid size) analysis was performed. Both approaches led to
improved performances.

3. Experiments

In order to carry out our experiments, the first thing needed was to adapt the BDD100K dataset to
the format that Darknet framework expects. In addition, after a semantic analysis of the classes present
in BDD100K and the 80 MS-COCO classes, the assignment presented in Table 1 may be established
among them.

Table 1. Assignment among the MS-COCO and the BDD100K classes.

BDD100K Equivalent Equivalent
Class Name MS-COCO Class Name MS-COCO Class Index

Person + Rider Person 0

Bike Bicycle 1

Car Car 2

Motor Motorbike 3

Bus Bus 5

Train Train 6

Truck Truck 7

Traffic light Traffic light 9

Traffic sign - -

Therefore, we considered these equivalences to compare the detection performance of both
MS-COCO 80-class original model and ours, which was trained with BDD100K. In order to compare
the detection performance of the newly BDD100K-trained models numerically, we assessed the mAP50
comparison between each of the BDD100K trained weights (10-class and VRU-class) and the official
YOLOv3/v4 weights from the author. Of course, the assessment was carried out applying these
algorithms to the same on-road dataset (that is, the BDD100K full test dataset).

3.1. YOLOv3-416 Training with BDD100K

The 416 × 416 input YOLOv3 structure was selected due to its balance between detection quality
and throughput so as to meet the PRYSTINE project requirements in terms of computing capacity.
First, we trained the YOLOv3-416 structure for three class sets: 10-class (full BDD100K classes), 7-class
(main on-road classes) and VRU (person+rider, bike, car, and motor). Then, we tested them to
compare their AP50 to the original 80-class model AP50 only for the corresponding classes. To perform
this, we had to regenerate all the individual BDD100K label .txt ground-truth files with the classes
of interest in each case only. These results allow us to compare between original and both BDD100K
trained models, as the following results are obtained by analyzing the same test subset with the same
algorithm and weights.

The training process was performed for the three class subsets (namely, the full 10-class from
BDD100K, the main 7-class and the VRU-class models), with about 135k, 90k, and 80k iterations to
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achieve the best models, respectively, spending from 3.5 to 5 training days on a single V100 GPU.
The detection performance in terms of AP50 for each model is shown in Table 2. Notice that the AP50
for the train class is near zero because the number of train instances in the BDD100K ground-truth
is residual, thus leading to poor class learning. However, the detection of this type of vehicle is not
foreseen in the PRYSTINE project context.

Table 2. AP50 for each class with each YOLOv3 model trained with BDD100K: 10-class, 7-class and
VRU-class models, when applied to the BDD100K test subset (best result in bold).

BDD100K 10-Class 7-Class VRU-Class
Class Name Training Training Training

Person 46.67% 47.63% 48.33%

Bike 37.73% 40.44% 41.16%

Car 68.43% 68.61% -

Motor 34.71% 38.57% 36.77%

Rider 40.38% 37.93% 42.13%

Bus 58.13% 58.13% -

Truck 58.61% 57.67% -

Train 0.14% - -

Traffic light 45.04% - -

Traffic sign 61.69% - -

Average 45.15% 49.85% 42.10%

To establish a comparison, the original MS-COCO trained weights from the author were loaded
in order to test this generic model when applied to an on-road dataset such as BDD100K. The results
are shown in Table 3.

Table 3. AP50 for each class with the original MS-COCO-trained YOLOv3 model from the author when
applied to the BDD100K test subset.

MS-COCO Class Name 80-Class Original MS-COCO Training

Person 38.54%

Bicycle 26.68%

Car 51.74%

Motorbike 21.85%

Bus 32.99%

Train 0.54%

Truck 25.83%

Traffic light 15.01%

Traffic sign -

Average 10-class BDD100K 26.65%

Average 7-class BDD100K 32.94%

Average VRU-class BDD100K 29.02%

The above data show that the increase in detection quality is noticeable for the three BDD100K
trained models in terms of mAP50 when compared to the original 80-class MS-COCO model (45.15%
vs. 26.65% for 10-class, 49.85% vs. 32.94% for 7-class and 42.10% vs. 29.02% for VRU-class). It can
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also be noticed that the 7-class trained model pushes forward the AP50 for these classes by about 1%
on average, as it happens with the VRU-class model by about 2% on average, both with respect to
the 10-class trained model. The performance of each YOLOv3 algorithm can be visually assessed in
Figure 2, where some detected images from the test BDD100K subset are presented.

Figure 2. Some processed images from BDD100K test dataset with YOLOv3-416: original MS-COCO
model from the author (left column), our BDD100K 10-class training (central column) and our
BDD100K VRU-class training (right column).

3.2. YOLOv4-416 Training with BDD100K

After a while, YOLOv4 model was released in different sizes. Therefore, the training process was
replicated for the 7-class BDD100K subset, since it is the class subset of interest in the PRYSTINE project
context for the recently launched YOLOv4-416 algorithm. From the original YOLOv4 paper, one can
expect an increase in detection quality at the expense of a slight decrease in throughput, which we will
check afterwards. As before, the training process was performed for the main 7-class from BDD100K,
with about 90k iterations to achieve the optimal model and spending about 4.5 training days on a
single V100 GPU. The detection performance in terms of AP50 for the trained model is shown in
comparison with its YOLOv3-416 counterpart from the previous YOLOv3 section in Table 4.
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Table 4. AP50 for each class with YOLOv3 and YOLOv4 models trained with BDD100K when applied
to the BDD100K test subset.

BDD100K YOLOv3-416 YOLOv4-416
Class Name 7-Class Training 7-Class Training

Person 47.63% 50.32%

Bike 40.44% 43.02%

Car 68.61% 71.40%

Motor 38.57% 39.57%

Rider 37.93% 39.80%

Bus 58.13% 60.00%

Truck 57.67% 61.39%

Average 49.85% 52.21%

Again, the above data show that the increase in detection quality is noticeable for the YOLOv4
structure in comparison to the YOLOv3 one with the same 7-class subset. The new structure pushes
forward the AP50 for these classes by about 2.4% on average. However, the forward-pass time on
the 2 × Nvidia Jetson TX2 included in the final PRYSTINE demonstrator board (Nvidia Drive PX2
AutoChauffeur) also rose a bit, as it can be seen in Table 5. Additionally, the performance of both
YOLO algorithms when detecting the 7-class set can be visually assessed in Figure 3, where some
detected images from the test BDD100K subset are presented.

Table 5. Detection quality (mAP50) and throughput (FPS) with YOLOv3 and YOLOv4 models trained
with BDD100K when applied to the BDD100K test subset (run on the Nvidia Drive PX2).

Algorithm BDD100K mAP50 (7-Class) FPS

YOLOv3-416 49.85% 14.28

YOLOv4-416 52.21% 11.49

3.3. YOLOv4-416 Training with New Activation Functions: SWISH and MISH

Leaky ReLU [36] is one of the most common activation functions in current CNN which helped to
solve the dying ReLU problem by introducing a slight slope in the negative side. Recently, two activation
functions named SWISH [31] and MISH [30] have been proposed with reported improvements over
Leaky ReLU. SWISH activation function is defined as

f (x) =
x

1 + e−x

and MISH is defined as
f (x) = x ∗ tanh(ln(1 + ex))

SWISH activation function resembles ReLU, but it is smooth and non-monotonic in contrast to
common activation functions. Just a simple replacement brings about an improvement in classification
accuracy on ImageNet [37]. In addition, MISH activation function is inspired by the self gating property
of SWISH (see Figure 4a,b).

Both functions present similar properties: being unbounded on the positive side avoids saturation
which generally causes training to drastically slow down due to near-zero gradients. From the other
side, the fact of being bounded in the negative side results in strong regularization effects and
helps reduce overfitting. Moreover, in contrast to Leaky ReLU, SWISH and MISH are continuously
differentiable, which is good for gradient based optimization. YOLOv4 makes use of MISH and reports
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an increase of 2.1% in mAP50 in the MS-COCO object detection task [19]. Particularly, MISH functions
reside inside the backbone, which is known as CSP-Darknet53, but are not present in the rest of the
architecture, where Leaky ReLU is used.

Figure 3. Some processed images from BDD100K test dataset with BDD100K trained models:
YOLOv3-416 (left column) versus YOLOv4-416 (right column).
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Figure 4. Leaky ReLU, MISH, and SWISH activation functions (a) and their derivatives (b).

Given the performance achieved by SWISH and MISH functions on different object detection tasks,
we propose to extend its use to the whole YOLO network. For this reason, Leaky ReLU functions in
the neck section have been replaced by MISH functions (and the same for SWISH). These functions are
located on the joint between the CSPDarknet53 backbone and the SPP module. In addition, Leaky ReLU
activation functions inside PANet block have been substituted for MISH/SWISH functions.

Figure 5 shows YOLOv4 architecture and the changes performed to use MISH activation functions.
The CBM block corresponds to Convolution + Batch Normalization + MISH that originally was CBL
(namely, Convolution + Batch Normalization + Leaky ReLU). The change for SWISH is done in a
similar way resulting in a block called CBS that corresponds to Convolution + Batch Normalization
+ SWISH.

Table 6 shows results for original YOLOv4 with Leaky ReLU and for SWISH/MISH replacements.
It can be seen that the MISH model gets the best average mAP50, followed by SWISH, both leading to
better results than the original Leaky ReLU implementation by +1.2% and +0.84% mAP50, respectively.
The importance of these results lies in the fact that this enhancement is achieved with a simple yet
effective change in the net. However, it comes at a cost: a slight decrease in throughput.

CBM SPP CBM CBM
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Concat CBM CBM Concat CBM CBM Conv

CBM

Up yolo

x3 x3

x5 x5

CSP
Darknet53

Image
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HeadNeckBackboneInput
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CBM

yolo

x5

Concat CBM CBM Conv yolo

x5

CBM Conv BN Mish=

 

 

 CBM

Figure 5. YOLOv4 architecture with all Leaky ReLU functions changed to MISH (Green CBM blocks).
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Table 6. AP50 for each class with YOLOv4 different activation functions trained with BDD100K when
applied to the BDD100K test subset.

BDD100K Original MISH SWISH
Class Name Leaky Relu YOLOv4 YOLOv4 YOLOv4

Person 50.32% 51.76% 52.15%

Bike 43.02% 44.23% 44.89%

Car 71.40% 72.14% 71.77%

Motor 39.57% 43.26% 40.27%

Rider 39.80% 42.42% 41.29%

Bus 60.00% 59.99% 59.87%

Truck 61.39% 60.03% 61.10%

Average 52.21% 53.41% 53.05%

3.4. Data Augmentation

The so-called mosaic is one of the improvements added to YOLOv4 [19] for data augmentation.
This method merges four training images into one, thus allowing detection of objects outside their
normal context. In addition, batch normalization calculates activation statistics from four different
images on each layer. This significantly reduces the need for a large mini-batch size.

Figure 6 shows an example of a mosaic augmentation. By using mosaic, we obtained 55.11% mAP50,
which surpassed the 52.21% achieved in the experiments with MISH activation functions only.

The combination of mosaic and cutmix did not obtain better results (see Table 7). This may be
related to the properties of the dataset and due to the fact that pasting a region from one image into
another places objects in a different context. Instead, mosaic combines four different contexts at the
same time, which keeps objects in their original context. Data augmentation performance depends on
the dataset, and whereas BDD100K does not appear to work better with cutmix, MS-COCO (a generic
dataset) shows a good behavior when cutmix is applied to the training process [19].

Figure 6. A mosaic example made up of four images.

3.5. Grid Size Analysis

YOLOv4 algorithm default configuration uses a 13 × 13 grid that corresponds to an image input
of 416 × 416 pixels (grids are regions of 32 × 32 pixels) and YOLOv4-608 corresponds to a 19 × 19
grid. Each grid cell predicts three objects at three different scales (the three YOLO blocks can be seen
in Figure 5), which are the original scale grid, 2× and 3× upscaled grids.
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In particular, for the 13× 13 default grid size, the scales are 13× 13, 26× 26 and 52× 52, resulting
in a total of 10,647 objects per image. As stated below, each detected object informs about its position,
size, objectness, and class confidences (x, y, w, h, c, C1, C2, ..., Cn). Then, objects are filtered by object
confidence c and passed to the Non-Maximum Suppression (NMS) algorithm in order to remove
redundant detections.

It could happen that the default 13 × 13 grid (see Figure 7) is not the best setup for the given
objects (i.e., the size, density, and distribution of the objects are different for each problem). Therefore,
in order to find the optimal size for this problem, an extensive analysis has been carried out for different
grid configurations varying width and height from 9 to 32, which correspond to input image sizes from
288 × 288 to 1024 × 1024 pixels. One of the advantages of YOLOv4 architecture is that image input
(grid) size for inference can be different from the input size used to train the network, thus allowing a
fine-tuning step to get the most from the model at different trade-off points with no need for retraining.

Figure 7. YOLOv4: default 13 × 13 grid.

Figure 8a shows the detector mAP50 performance depending on different configurations for
width (w) and height (h). The best result (marked with a diamond) is obtained for the 20 × 17
configuration getting 60.38% mAP50, which clearly outperforms the 55.11% from the 13 × 13
YOLOv4-416 configuration (indicated with a star). It can be observed that the maximum value
is placed along h = 17 and also the fact that mAP50 is not symmetrical with respect to the diagonal.
Therefore, the results for w = 17 and h = 13 are better than its symmetric configuration, namely w = 13
and h = 17, and mAP50 is better for configurations where w > h in general.

Figure 8b,c show heatmaps for Recall and Precision, using the star symbol for the 13 × 13
configuration and a diamond for the best configuration. Depending on the measure to be optimized,
the best grid configuration can be different. For example, if Recall is the most important concern for
the particular application, a 23 × 18 setup would yield the best results. Thus, in a similar way, if time
is a hard constraint, then other configurations such as 12 × 12 would represent the optimal point
for mAP/time ratio, as shown in Figure 9b. Moreover, Figure 9a shows the inference time, which is
proportional to the grid size as expected (w × h presents the highest values for the highest w and h).

Finally, Table 7 shows results for the default configuration (Leaky ReLU) and for the models when
replacing Leaky ReLU with MISH or SWISH, applying mosaic and the best grid configuration. It can
be noticed that the combination of MISH, mosaic, or cutmix and the 20 × 17 grid offers the best results.
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Figure 8. YOLOv4: heatmaps for mAP50, Recall and Precision for different width and height
grid configurations.
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Figure 9. YOLOv4: heatmaps for inference time and mAP50/time ratio for different width and height
grid configurations.

Table 7. YOLOv4 AP50 for each class with different activation functions, data augmentation techniques,
and grid size configurations (BDD100K trained and applied to the BDD100K test subset).

Leaky ReLU 3
MISH 3 3 3 3

SWISH 3
mosaic 3 3 3
cutmix 3

13 × 13 grid (std) 3 3 3 3 3
20 × 17 grid (best) 3

Person 50.32% 51.76% 52.15% 52.46% 54.15% 64.47%

Bike 43.02% 44.23% 44.89% 42.22% 47.38% 52.54%

Car 71.40% 72.14% 71.77% 72.85% 73.32% 79.86%

Motor 39.57% 43.26% 40.27% 40.48% 42.33% 47.25%

Rider 39.80% 42.42% 41.29% 40.58% 44.37% 49.64%

Bus 60.00% 59.99% 59.87% 60.89% 62.02% 64.25%

Truck 61.39% 60.03% 61.10% 61.41% 62.21% 64.66%

Average 52.21% 53.41% 53.05% 52.98% 55.11% 60.38%
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4. Conclusions

In this paper, some specific trainings were developed using the BDD100K dataset in order to obtain
more precise models to confidently detect the on-road class set in the PRYSTINE project context. First,
we trained YOLOv3-416 for three class subsets, with a remarkable increase in detection performance
when compared to the original weights from the author with no additional costs. Then, we trained
YOLOv4-416 for the 7-class subset, with a moderate improvement in detection performance with
respect to YOLOv3-416 but at a cost: a slight decrease in throughput.

Then, we trained YOLOv4-416 for the same 7-class subset but replaced all the original Leaky ReLU
activation functions for the YOLOv4 convolutional layers with the new MISH and SWISH functions,
and better results were achieved, with slight detection quality improvements from the original Leaky
ReLU version. MISH was the function giving the best results.

Additional work was performed by testing mosaic data augmentation, obtaining good results.
Finally, the influence of grid configuration for a wide range of values was studied, finding that the best
configuration gets a major increase in mAP but at the expense of an important rise in processing time.
According to this information, depending on the particular application, it would be possible to select
the best working point in each case.

As a remarkable conclusion, we can see that the greater specialization of the networks with a low
number of categories generally yields higher precision values for the common classes. Therefore, it is
highly advisable to use a network specifically dedicated to the detection of the class group of interest
only (and trained with them only as well). The numeric figures presented along the paper can be
visually assessed in the analyzed images, where some examples from the BDD100K test subset are
passed to the trained nets presented.
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