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1 Introduction 

The debate on regions’ ability to create and attract new industries, as well as to managing 

their decline, is a staple of economic geography. Inspired by Schumpeter’s (1939) tenet 

of creative destruction, scholars concur that innovation is the main thrust of regional 

development as industries move from infancy to maturity and, eventually, decline 

(Norton and Rees, 1979; Gort and Klepper, 1982; Markusen, 1985; Storper and Walker, 

1989; Klepper, 1997; Audretsch and Feldman, 1996). Other studies point out that, akin 

industries, also technologies develop along a life-cycle path (e.g., Abernathy and 

Utterback, 1978; Abernathy and Clark, 1985; Achilladelis et al., 1990; Achilladelis, 1993; 

Andersen, 1999). Although these works explore primarily the characteristics of 

technology evolution (e.g. take-off, duration of the stages, etc.), the question of ‘where’ 

different technologies develop along the life-cycle, and how this connects with the local 

competence base has been neglected. The present paper fills this gap by investigating 

whether and to what extent regional knowledge structures matter for the development of 

technology, and whether their influence differs along the path of technology life-cycle. 

We do so by focussing on green technology, a particular instantiation of innovation 

consisting of standards and artefacts aimed at mitigating or reversing the negative effects 

of human action on the environment. 

The contributions of the present paper are manifold. First, we engage the literature on the 

spatial contingencies along the industry life-cycle (Henderson et al., 1995; Duranton and 

Puga, 2001; Neffke et al., 2011a). Therein, learning opportunities provided by local 

diversity attract new, young industries, whereas mature ones thrive in specialised local 

environments. While prior research focuses on industry evolution, we focus on the 

technology life-cycle with a view to shed light on the association between different 

structures of regional know-how and technological progress. To our knowledge, this is 

the first attempt to operationalise the empirical connection between the technology life-

cycle and the knowledge base, which had so far only been approached on conceptual 

grounds (Vona and Consoli, 2015). In so doing, the paper draws on the long-term 

perspective on the evolution of the regional knowledge base to systematically capture the 

diversity of technology dynamics. 

Second, we take the cue from literature on the effects of regional characteristics along the 

industry life cycle arguing that agglomeration economies are not dichotomous. Rather, 

accounting for variation of the regional knowledge base over degrees of relatedness 



3 

 

affords the opportunity to better identify the drivers of knowledge generation. Economic 

geographers and innovation scholars maintain that the more diverse the spectrum of 

know-how in a region, the greater the potential of successfully exploiting both available 

inputs and unexplored interdependences between them (Rigby and Essletzbichler, 1997; 

Frenken and Boschma, 2007; Balland and Rigby, 2016). This rests on the premise that 

the composition of activities through which knowledge is channelled into productive uses 

affects the rate and direction of technical change in a region. In this vein, the more sectors 

are related, the easier is knowledge transfer from one domain of application to another. A 

review of empirical studies by Content and Frenken (2016) confirms that relatedness is 

an important driver of regional diversification across various dimensions (e.g., products, 

industries, technologies) and spatial units (e.g., countries, regions, cities, labour market 

areas), but also concludes that the evidence is still mixed. Related diversification is often 

found to be a stronger driver compared to unrelated diversification, not surprising 

considering the nature of these constructs. Diversification is an uncertain process that can 

be better dealt with by relying on available local resources, and on well-tested connections 

across them, both trademark features of related variety. Unrelated diversification, on the 

other hand, entails implementing new forms of coordination across different and formerly 

unassociated capabilities (Desrochers and Leppälä, 2011; Boschma, 2017). At the same 

time, Boschma and Frenken (2006) call for caution against determinism, highlighting that 

spatial contingencies are less important at early stages of a sector’s development due to 

gaps between the requirements of new knowledge and the established environment. 

Within this debate, the question of whether and to what extent both related and unrelated 

variety affect technological innovation was addressed only recently by Castaldi et al. 

(2015). Their empirical analysis on the United States (US) shows that the two forms of 

regional diversification are not opposite but, rather, complementary forces. In particular, 

radical innovation is more frequent in federal states with a diversified knowledge base 

across unrelated domains, whereas incremental innovation has a stronger association with 

related variety in local knowledge. The present paper contributes to this strand by 

distinguishing between related and unrelated variety along the life cycle path of green 

technology. In so doing, we take issue with the notion that either related or unrelated 

variety are drivers of innovation regardless of the life-cycle stage of the technology. 

Third, we propose that it is important to consider simultaneously region-specific and 

external factors that may favour the emergence of new technologies. To this end, we adopt 
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a regional knowledge production (RKP) function approach that incorporates qualitative 

features of the local knowledge base as well as the life cycle of technology. So far, the 

literature has looked at the extent to which R&D and human capital interact (Charlot et 

al., 2015) and affect (Crescenzi et al., 2015) regional innovation. However, following the 

evolutionary tenet that innovation stems from recombination of existing ideas 

(Schumpeter, 1939; Basalla, 1989; Weitzman, 1998; Arthur, 2007), our contribution 

extends the RKP framework to account for the influence of regional knowledge bases and 

of relatedness between their components (Frenken et al., 2007; Castaldi et al., 2015). 

Against this backdrop, we expect that the particular stage of a technology’s life cycle 

determines whether local diversification across knowledge domains benefits innovation. 

Fourth, we provide new empirical evidence on the connection between environmental 

sustainability and regional studies. From a policy perspective, the green economy is often 

touted as holding the potential for new growth and job creation. At the local scale, the 

pressure is on regions’ and countries’ institutions to create the adequate premises for 

innovation in adaptation and mitigation strategies. A pillar of the present paper is that 

green technologies, usually treated as a homogenous block, differ substantially from one 

another. The paper claims novelty in being the first to empirically grasp one dimension 

of this heterogeneity, namely the degree of technology maturity, which we measure as a 

combination of volume of inventive efforts and of geographical distribution. In so doing, 

it also pushes the agenda of the nascent, but still underdeveloped (Truffer and Coenen, 

2012) sub-discipline of environmental economic geography. 

The study builds on the above conceptual grounds to test two conjectures. The first is that 

unrelated variety of the local knowledge stock matters for innovation at early stages of 

the technology life cycle, while related variety has little or no effect. The second is that, 

as technology moves towards maturity, related variety is the main driver and unrelated 

variety progressively loses prominence. The empirical analysis is on green technology 

development in a panel of 48 US federal states and District of Columbia (D.C.) between 

1980 and 2009. Our main data source is the catalogue of patent applications in PATSTAT 

from which we extract information on patent families to develop an original indicator for 

the stage of development of green technologies and on the location of inventors. For the 

goal of studying the relationship between technology life cycle and regional knowledge 

structure, we build entropy indicators at different levels of relatedness between 

technological domains (Jacquemin and Berry, 1979; Attaran, 1986; Frenken et al., 2007; 
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Castaldi et al., 2015). Finally, we follow the parametric approach of Charlot et al. (2015) 

and adopt a random growth specification of the unobservable part of the model to control 

for time-invariant regional characteristics, common time effects and time-varying 

unobservable features. 

The analysis yields two main findings. First, green technology development exhibits 

stronger association with unrelated variety than with related variety. This is for two 

reasons. On the one hand, the transition towards environmentally sustainable production 

is, on the whole, at early stages (OECD, 2015). On the other hand, green technology is 

more complex than non-green technology and therefore requires the orchestration of 

diverse, and cognitively distant, knowledge inputs (De Marchi, 2012; Cainelli et al., 2015; 

Barbieri et al., 2018). The second key finding, in line with our expectation, is that 

unrelated variety has stronger association with early stages of the green technology life 

cycle while related variety becomes more important as technology enters into maturity. 

The remainder of the paper is organised as follow. The next section overviews the relevant 

literature. Section 3 outlies the data, variables and empirical strategy. Section 4 presents 

the descriptive statistics and discuss the results. Section 5 concludes and summarises. 

 

2 Theoretical background 

2.1 Industry life cycle and agglomeration economies 

Research in economic geography points to two key mechanisms of regional development. 

The first builds on Marshall’s (1920) tenet based on the interaction and proximity of goals 

and competences, whereas the second stems from Jacobs’ (1969) emphasis on the 

diversity of competences in the local economy. Building on these insights, scholars have 

often pointed out that the benefits of agglomeration externalities depend on life cycle 

dynamics. Empirical evidence both from regional economics (Norton and Rees, 1979; 

Markusen, 1985) and industrial dynamics (e.g. Gort and Klepper, 1982; Abernathy and 

Clark, 1985; Storper and Walker, 1989; Audretsch and Feldman, 1996; Klepper, 1996; 

1997; Agarwal and Gort, 2002) supports the conjecture that emerging industries grow at 

a faster pace than those locked into old, mature industries.1 Duranton and Puga (2001) 

                                                 

1 For instance, Norton and Rees (1979) find that the decline of the US Manufacturing Belt during the late 

sixties was essentially a core-periphery realignment, which has theoretical roots in the product life cycle 

framework. The decentralisation of production towards peripheral Southern and Western states followed 

the dispersion of innovative capacity and the rise of new, high-tech sectors at the beginning of the life cycle. 
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elaborate a conceptual framework to explains how diversification and specialisation 

favour, respectively, young and mature industries. At the beginning of the life cycle, when 

young firms need to experiment with prototypes of new products, diversified local 

environments are seedbeds for alternative production processes that can be tried, adopted 

or discarded. When the product design reaches maturity and are ripe for mass production 

specialised cities provide a more suitable environment due to benefits such as knowledge 

pools and lower production costs. Empirical studies corroborate this framework showing 

that there is a continuity between Marshall and Jacob once the life cycle is accounted for 

(Henderson et al., 1995; Neffke et al, 2011a) and that diversification facilitates regional 

growth due to knowledge spillovers and learning opportunities in diverse urban settings 

(Glaeser et al., 1992; Duranton and Puga, 2001; Frenken et al., 2007; Neffke et al., 

2011b). Therein Jacob’s externalities favour the adoption of new processes and products 

whereas at early stages Marshall externalities could even be detrimental (Harrison et al., 

1996; Kelley and Helper, 1999; Feldman and Audretsch, 1999; Castaldi et al., 2015).  

The conceptual explanation of the positive relationship between regional diversification 

and innovation is rooted in the recombinant innovation theory (Schumpeter, 1939; Nelson 

and Winter, 1982; Weitzman, 1998; Fleming, 2001) whereby higher variety of local 

know-how increases the likelihood of original recombination and innovation. In this 

context, local search and bounded rationality are important dimensions (March and 

Simon, 1958; Nelson and Winter 1982) in that innovators recombine bits of knowledge 

they are familiar with in order to decrease the risk of failure. In so doing, however, they 

reduce the chances of developing radical innovation. On the contrary, innovators who 

recombine cognitively distant bits of knowledge face higher uncertainty but, also, higher 

payoffs if the innovative effort is successful. 

The recent evolutionary turn in economic geography builds on tenet that Jacobs 

externalities do not merely lead to a more efficient division of labour within regions. 

Rather, in a diversified environment the opportunities for innovation increase due to the 

availability of different types of knowledge that is geographically close and can be 

recombined. Along these lines, Frenken et al. (2007) shifted the debate on agglomeration 

economies by acknowledging that diversification per se does not fully capture the 

mechanism that spur regional economic growth. The flow of knowledge within regions 

requires a balance of cognitive distance to avoid lock-ins and of cognitive proximity to 

enable effective learning (Nooteboom, 2002; Boschma and Iammarino, 2009). Such an 
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intuition has given way to the notion of related (unrelated) variety. In short, two industries 

are related when they share some cognitive structures that enhance learning opportunities 

and knowledge spillovers. Relatedness, in turn, has been to yield benefits such as regional 

growth (Frenken et al., 2007; Essletzbichler 2007; Bishop and Gripaios 2010). A recent 

review by Content and Frenken (2016) however concludes that evidence on the 

prominence of related variety is still mixed, and more research should articulate the role 

of unrelated variety. This echoes Boschma and Frenken’s (2006) warning over the risk 

that sectoral and territorial dynamics change, and so do the connections with the 

underlying knowledge base. 

Adding to the latter, we observe that prior literature portrays related and unrelated variety 

as binary, mutually exclusive, drivers. In a first attempt to debunk this view Castaldi et 

al. (2015) show that radical innovations emerge in regions with diversified knowledge 

bases – i.e. connecting distant technological domains – whereas incremental innovation 

is more likely in regions that feature related variety in local knowledge. In the following 

subsection we will build on this insight. 

2.2 Technology life cycle in the regional knowledge production function 

The literature reviewed so far emphasises the pivotal role of technological change in 

regional development. Along the life cycle industries rely on different types of innovation 

that require different sources (Norton and Rees, 1979). The birth of new industries 

typically follows radical innovation and the development of immature technologies, 

whereas once a dominant design is established, technological disruptions are less likely 

and the industry reaches a maturity stage in which innovation is mostly incremental 

(Neffke et al., 2011a). Such a mechanism implies that industries exploit different types 

of agglomeration externalities according to their stage of maturity. Existing studies 

however treat technology as a latent element that evolves and leads to industry maturity. 

Thereby, agglomeration economies are beneficial for industry and regional growth 

because of their indirect effect via knowledge spillovers and learning opportunities. No 

study has, to this day, directly studied the mechanisms through which agglomeration 

externalities trigger technology. 

Like industries or products, technology evolves along a S-shaped (or double S-shaped) 

life cycle path: introduction, growth, maturity and decline (Achilladelis et al., 1990; 

Achilladelis, 1993; Andersen, 1999; Haupt et al., 2007). In the earliest phase different 

pieces of knowledge are recombined to obtain a new technology that differs from what 
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was before. Herein, usually few firms experiment and strive with the high degree of 

uncertainty. The technology that emerges from this phase is often associated with high 

production costs, low penetration in the market and uncertainty in the potential use of the 

technology itself (Callon, 1998). In the subsequent phase, uncertainty is lower, risk 

associated to R&D decrease, innovation is less radical and the number of competitors 

increases (Haupt et al., 2007). Finally, when a dominant design is reached the technology 

enters a maturity phase that mainly advances through incremental innovation with high 

degrees of standardisation and widespread diffusion. 

A critical issue in the diffusion literature is the implicit assumption that neither the new 

technology nor the one that is being replaced change (Hall, 2004). This static view stands 

in contrast with empirical evidence on the incremental adaptations that ultimately leads 

to improvement of technology (Christensen, 1997; Foster, 1986). Moreover, and closer 

to our goal, the balance between intrinsic performance characteristics and the specific 

features of the selection environment is central to the dynamics technology (Vona and 

Consoli, 2015). These features can be bottlenecks – see e.g. the analysis of the American 

machine tool industry by Rosenberg (1976) or Hughes’ (1983) account of the evolution 

of the electrical power system – or can be facilitating circumstances of the ecosystem – 

as is the case in Constant’s (1980) study on aircraft piston-engine or in Henderson’s 

(1995) analysis on optical lithography.  The broader point is that acknowledging the role 

of the context of adoption entails shifting the focus from substitution between new and 

old technology to the evolution of the selection environment. This resonates with 

Boschma and Frenken’s (2006) cautionary remark about deterministic accounts of 

regional variety: spatial contingencies, and the associated uncertainties, matter. 

Building on these premises, we study how agglomeration economies and technology life 

cycle interact. In the geography of innovation literature, the RKP function approach 

provides a suitable theoretical framework to investigate these issues (see e.g. Crescenzi 

et al., 2007, 2012; Ponds et al., 2010; Feldman et al., 2014; Charlot et al., 2015). Therein 

the regional perspective is embedded in the knowledge production function framework 

proposed by Griliches (1979) to observe the regional determinants of the generation of 

innovation. However, whether regional innovation inputs (e.g. human capital and R&D 

investments) and agglomeration economies exert heterogeneous effects on innovation 

output according to the maturity of the technology remains an unexplored question. We 

expect that delving into these details will provide useful insights into the type of know-
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how that enables regions to innovate and move along the life cycle. Accordingly, we 

extend the RKP framework to incorporate knowledge diversification at different levels of 

variety (Frenken et al., 2007; Castaldi et al., 2015). Moreover, since the regional 

endowment of innovation inputs and given the heterogeneity of regional structural 

characteristics, we also test whether specific features of the local knowledge base exert 

different impacts on innovation output depending on the level of development of regions. 

 

2.3 Green technological developments 

The present paper focuses on a particular instantiation of innovation that aims at reducing 

the impact of human activity on natural resources and ecosystems. Environmental-related 

innovation attracts growing interest in the economics of innovation (see reviews by Popp 

et al., 2010; Barbieri et al. 2016). The literature points out that the transition to low-carbon 

economies does not happen on a blank canvas, and that achieving green growth entails 

dealing with the inertia of existing productive structures which ought to be adapted or 

dismantled while new ones are put in place. Such a path entails striking a delicate balance 

between achieving lower environmental impacts while maintaining efficiency (Ghisetti 

et al., 2015). This higher complexity calls upon a broader and diverse set of skills, 

knowledge inputs and competences (De Marchi, 2012; Vona et al, 2018). 

Recent evidence also indicates that green technologies exhibit peculiar geographical 

connotations (Truffer and Coenen, 2012). The literature emphasises that the development 

of green technologies is crucial to sustainable local development (Montresor and 

Quatraro, 2019). Spatial local levers, such regional knowledge spillovers and 

agglomeration economies, facilitate the development and the adoption of eco-innovations 

(Cainelli et al. 2012; Antonioli et al., 2016). Even in the case of green technologies, 

diversification and relatedness are key to green technology and industry development. 

Using patent data, Tanner (2014) and Montresor and Quatraro (2019) show that high 

endowment of local environmental related knowledge is a positive predictor of green 

technological development. We contribute to this literature by articulating the connection 

between local eco-innovation capacity and degrees of knowledge relatedness. 
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3 Empirical application 

3.1 Data 

The empirical analysis builds on an original dataset that incorporates information on 

patenting activities and socio-economic data in 49 US Federal States over the period 

1980-2009. The use of patent data in economic geography has gained relevance recently 

(see e.g. Crescenzi et al., 2007; Tanner, 2014; Balland and Rigby, 2017; Montresor and 

Quatraro, 2017). Patents provide a wealth of information on inventive activities such as 

the location of the inventors or applicants, the knowledge base of the invention (such as 

citations to prior patents or studies), and its technical content. A key benefit of this type 

of data is the granular analysis of specific knowledge domains (Popp, 2005), which is 

essential for the purposes of the present paper. At the same time, use of patent data entails 

some limitations. For instance, not all the inventions are patented and the quality of 

patents varies according to the technology under study (Hascic & Mingotto, 2015). 

Nevertheless, since patents are usually filed early in the innovation process, they provide 

a good indicator of research and development activities (Griliches, 1990). 

Patent data are extracted from the 2016 version of PATSTAT (source: European Patent 

Office, EPO). Relevant to our analysis is the subset of environmental-related patents 

identified through the Env-Tech classification of the OECD (2016), which lists 

International Patent Classification (IPC) and Cooperative Patent Classification (CPC)2 

codes concerning 95 environmental-related technologies, grouped into 8 families and 36 

subgroups.3 These technologies are designed to reduce anthropogenic pressure on natural 

resources and improve adaptation to the changing environment and, as such, encompass 

a broad spectrum of domains including environmental pollution, water scarcity and 

climate change mitigation (Hascic & Mingotto, 2015).4 We collected all environmental-

related patents coded in the Env-Tech classification and, following prior literature, 

extracted from PATSTAT information on patent families, which are our main unit of 

                                                 
2 Patent offices use IPC and CPC to classify patent documents. Both classification systems exhibit a 

hierarchical structure based on the technical content of the patents through codes. At the lowest level, i.e. 

full-digit, the codes are very specific and refer to narrow technological fields, e.g. IPC full-digit G06F9/02 

– “Arrangements for program control using wired connections”. At the highest level, i.e. 1-digit, the codes 

refer to broad technological domains, e.g. IPC 1-digit G - “Physics”. 
3 In an intermediate step, we convert the IPC codes listed in the Env-Tech into CPC codes using a 

correspondence table provided by the European Patent Office (EPO) and the United States Patent and 

Trademark Office (USPTO). This allows us to use a unique classification system. 
4 Specifically, Env-Tech classification codes cover eight technology groups: environmental management, 

water management, energy production, capture and storage of greenhouse gases, transportation, buildings, 

waste management and production of goods. 
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analysis (see e.g. Hall and Helmers, 2013). To avoid double counting of inventions for 

which protection was sought at different national offices, we identify 1,071,869 

environmental-related patent families filled between 1980 and 2009. 

3.2 Measuring regional knowledge base 

To measure the regional knowledge base, we use information from PATSTAT and assign 

patent families to US states by feeding the geographical coordinates of inventors’ 

addresses into GeoNames5, a database containing worldwide geographical information 

on, among others, administrative borders and postal codes.6 In order to reduce noise, we 

limit the search to cities with at least five thousand inhabitants and manually check if the 

city name is far from the end of the address string. Finally, we use the Google Maps API 

– a programmable interface developed by Google since 2005, to assign the geographical 

coordinates of the remaining addresses not found in the first steps.7  

In spite of EPO’s constant updates, a non-negligible share of inventor’s addresses is still 

missing from the PATSTAT database. Therefore, after the data cleaning process (detailed 

in Appendix A) we exploit the work by the Institut Francilien Recherche Innovation 

Société (IFRIS) where missing addresses have been filled using sources such as REGPAT 

and National Patent Databases.8 This allows us to geo-localise 798,455 (74.5%) green 

patent families worldwide, 149,161 of which in the US (91.3 % have half or more of their 

inventors geo-localised and 67.1 % have all their inventors geo-localised). We then group 

patent families according to the state of residence of the inventor.  

The choice of US federal states as units of analysis is dictated by data availability. 

Information for some key variables that are described below (e.g. R&D expenditures and 

human capital endowment) limits our analysis to this geographical level. Indeed, the long-

                                                 
5 The GeoNames database provides geographical coordinates of a wide range of features such as mountains, 

lakes, countries borders, etc. In particular, it includes information on the latitude and longitude of the 

majority of the cities around the world. See http://www.geonames.org (last access: 25 August 2019) for 

more information. 
6 When the postcode is missing, we identify the city in the address string using GeoNames, that is, we split 

addresses in several elements in order to isolate the street, city, etc. Then, since the city is usually provided 

at the end of the address, we browse the address string from right to left. Our algorithm compares each 

element of the address with the city name information included in GeoNames. We repeat this process for 

all the elements of the address string moving from the end to the beginning and associate the address to the 

city name in case of matching. For example, in the address: John Smith, 1 West 72nd Street, New York, NY, 

there are four elements to check: “John Smith”, “1 West 72nd Street”, “New York” and “NY”. Starting 

from the right, the city will be detected in the second loop of the algorithm, i.e. New York. 
7 Daily search limits and costs did not enable us to use Google Maps API to search for the geographical 

coordinates of all addresses. 
8 For more details, check https://github.com/cortext/patstat (last access: 25 August 2019). 

http://www.geonames.org/
https://github.com/cortext/patstat
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term perspective of our analysis (1980-2009) further restricts the availability of these 

information which are fundamental to control for in a regional knowledge production 

function. In particular, the state level enables us to control for idiosyncratic features of 

each state, such as environmental policy.  

Figure 1 shows the geographical distribution of patenting activities at state level. Not 

surprisingly, most innovative states such as New York, Pennsylvania, Ohio, Illinois, 

California, Florida, Georgia and Texas, fall in the top quintile of the patent distribution.  

Moreover, Figure 1 also provides information on the percentage of green patents in each 

US state. It is worth noting that the greening process follows two main patterns. First, 

among the states in the top quintile of total patenting the share of green patents ranges 

from less than 5% in California to a 7.6% in Pennsylvania. Second, another noticeable 

element is that some states rank high in terms of percentage of green patent families and 

low in total patenting activities, i.e. Wyoming (10.7%), West Virginia (8.1%) and Main 

(8.5%). This is probably due to the patenting history of these states. 

The overall green patenting trend by groups as per Env-Tech (OECD, 2016) is reported 

in Figure 2. Therein we observe that patenting in most green technologies experience an 

acceleration after 2000. Technologies that improve the sustainability of the energy and 

building sectors lead the trend followed by green products and processes and 

transportation. The number of patent families related to water-related and carbon capture 

and storage technologies is relatively smaller compared to other green technologies 

(Panel A). However, the latter increases faster relative to 1980 levels, as showed in Panel 

B. Patenting on transportation and energy efficiency buildings experiences a sharp 

increase after 2005. Conversely, environmental management and water-related 

technologies exhibit lower growth rates over the period. 

FIGURES ONE AND TWO ABOUT HERE 

 

3.3 Measuring regional knowledge base diversification 

To measure diversification of regional innovative activities we calculate entropy 

indicators that can be scaled at different levels of aggregation associated with specific 

degrees of relatedness. In the seminal paper by Frenken et al. (2007), the entropy measure 

is decomposed into related and unrelated variety to capture the extent to which relatedness 

and diversification characterise the regional cognitive structures. Castaldi et al. (2015) 
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employ the same measure to assess diversification in technological capabilities of US 

federal states. In the present paper, we follow Castaldi et al. (2015) in the use of 

geographical information on patent families (as detailed in Section 3.2) to calculate the 

entropy indicators using patent data at the state level in US. To do so, we exploit the 

technological classification codes assigned to each patent. The hierarchical structure of 

the International Patent Classification (IPC) system can be exploited to calculate variety 

at different code digits.9 In the present paper the IPC codes are used to capture the 

technological fields that characterise the inventions.  

We calculate related, semi-related and unrelated variety of invention activities assuming 

relatedness between two patents when they share an IPC code at different level of 

disaggregation. Accordingly, relatedness increases together with the number of IPC 

digits. Specifically, unrelated variety (UV) is measured using the entropy of the patent 

family distribution over IPC 3-digit classes: 

𝑈𝑉𝑖𝑡 = ∑𝑝𝑓𝑘,𝑖𝑡ln(
1

𝑝𝑓𝑘,𝑖𝑡
)

𝑁

𝑘=1

 

Where pfk,it is the share of patent families in technological section k = [1…N] at IPC 3-

digit level, with at least one inventor located in state i at time t. Semi-related variety 

(SRV) is equal to the entropy at 4-digit within each IPC 3-digit section. Given the 

decomposition theorem developed by Theil (1972), SRV is the difference between the 

entropy measure calculated at 4-digit and 3-digit level (i.e. UV): 

𝑆𝑅𝑉𝑖𝑡 =∑𝑝𝑓𝑙,𝑖𝑡ln(
1

𝑝𝑓𝑙,𝑖𝑡
)

𝑃

𝑙=1

− 𝑈𝑉𝑖𝑡 

Where pfl,it represents the share of patent families in each state over technological 

subclasses l=[1…P] (IPC 4-digit level). Finally, we calculate related variety (RV) at the 

IPC 8-digit level (subgroups). As before, RV is obtained by subtracting to the entropy at 

8-digit, the one at 4-digit level (subclass). In so doing, we calculate variety across narrow 

                                                 
9 IPC 3-digit classes capture generic domains of application while higher disaggregation, IPC 8 digits, refer 

to specific applications. The first 4 digits of the code indicate the class and subclass, whereas the last 4 

digits are the groups and subgroups. To illustrate, IPC code “A61B 5/022” identifies inventions that allow 

the “measurement of pressure in heart or blood vessels by applying pressure to close blood vessels”, while 

subclass “A61B” describes inventions related to “diagnosis, surgery and identification”, and finally class 

“A61” is associated with “Medical or Veterinary Science; Hygiene”. 
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technological subgroups (i.e. IPC 8-digit level) within each broader technological 

subclass (i.e. 4-digit level):  

  

𝑅𝑉𝑖𝑡 =∑ 𝑝𝑓𝑚,𝑖𝑡ln(
1

𝑝𝑓𝑚,𝑖𝑡
)

𝑅

𝑚=1

−∑𝑝𝑓𝑙,𝑖𝑡ln(
1

𝑝𝑓𝑙,𝑖𝑡
)

𝑃

𝑙=1

 

Where pfm,it is the share of patent families in state 𝑖 at time 𝑡 over technological subgroups 

m=[1…R]. As far as we move from UV to RV, the cognitive distance between 

technological fields decreases. RV is calculated across very similar and specific 

technological fields (subgroups) compared to UV, which is measured across distant and 

broad technological fields (classes).  

3.4 Measuring life cycle stages 

To identify the maturity of green technologies, we develop a measure of technology life 

cycle based on two indicators: the geographical ubiquity of patenting and volume of 

patenting intensity. We calculate these using worldwide patent families for each macro-

technology reported in the Env-Tech classification.10 It is worth noting that such an 

exercise uses information on all patent families worldwide, and not only those filed in the 

US. This enables us to measure the overall stage of development of green technologies to 

which all worldwide inventors contributed to. 

The ubiquity indicator captures the extent to which innovative activities are 

geographically spread relative to countries’ specialisation in green technologies. 

Following Balland and Rigby (2017), the geographical scope of inventions is calculated 

using the Revealed Technological Advantage (RTA) for each green technology, country 

and time period as follows: 

𝑅𝑇𝐴𝑐𝑗𝑡 =
𝑃𝑎𝑡𝑒𝑛𝑡𝑠𝑐𝑗𝑡/∑ 𝑃𝑎𝑡𝑒𝑛𝑡𝑠𝑐𝑗𝑡𝑗

∑ 𝑃𝑎𝑡𝑒𝑛𝑡𝑠𝑐𝑗𝑡𝑐 /∑ 𝑃𝑎𝑡𝑒𝑛𝑡𝑠𝑐𝑗𝑡𝑐𝑗
 

The RTA measures the intensity of the contribution of each country c to the development 

of Env-Tech technology j at time t. That is, it captures a country’s efforts towards 

                                                 
10 The Env-Tech classification OECD (2016) groups green technologies at different digits (up to four). In 

the present paper we exploit the 2-digit level which is a compromise between narrow (three digits) and 

broad (1-digit) technological fields. Moreover, the 2-digit level guarantees coverage of all the technologies 

listed in the classification since some of them (e.g. 4 and 3-digit codes) are not provided for all the 

technologies. Finally, the 2-digit level ensure that all the classes of the Env-Tech classification have at least 

one patent family over the period 1980-2009. Table 2 provides the list of green technological domains 

employed to define technology life cycle stages. 
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developing a specific green technology (numerator) relative to global efforts 

(denominator). This allows us to identify green technological domains that show a 

relative high rate of patenting in some countries compared to the world average. The 

ubiquity indicator of each Env-Tech technological field is given by the number of 

countries with RTA higher than one in a particular green technology at time t: 

𝑈𝐵𝐼𝑄𝑈𝐼𝑇𝑌𝑗𝑡 = ∑𝑀𝑐𝑗𝑡

𝑐

 

Where Mcjt = 1 if RTAcjt>1. Since UBIQUITY increases with the number of countries 

specialised in the development of a particular green technology, we interpret this indicator 

as a proxy for the diffusion of green inventive activities. The advantage of such a measure 

with respect to other patent indicators of diffusion like i.e. citations, family size, et cetera 

is that it captures specialisation patterns in specific green technologies relative to their 

global counterparts. 

We calculate a second indicator based on the number of patent families at country level 

as a proxy of global invention intensity in green technologies. Finally, we measure the 

average growth rate over four years of both patenting intensity and ubiquity to smooth 

the trends and capture their dynamics over time. 

Using ubiquity and patenting intensity together, we define the life cycle stages of each 

Env-Tech technological domain at world level. Table 1 shows that the emergence phase 

exhibits a low level of technological diffusion and intensity. This is the lowest level of 

maturity of the technology whereby inventive activities are concentrated in few countries 

and the number of patents is relatively low. To determine the step into maturity we follow 

two (non-exclusive) strategies. The first is moving from emergence to the development 

phase in which technological advances are still geographically concentrated and patenting 

activity increases at a faster pace. Alternatively, technologies can be in the diffusion 

phase, characterised by a growing number of countries specialised in the green technology 

and low patenting intensity. Finally, in the maturity phase standardisation in the design 

and knowledge-related activities is achieved, both patenting intensity and geographical 

diffusion of inventive activities are relatively high. We argue that such an approach 

affords a dynamic view of technological evolution, in that not all stages are always 

achieved, and, coherent with the framework of Section 2.2, maturity may be an 

intermediate stage before the appearance of further developments. 
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Building on the above, we assign green technologies to a particular stage of development 

as follows: we standardise the indicators and define the low (high) values shown in Table 

1 if the technology exhibits ubiquity or patenting intensity below (above) the average 

value.11 It is worth noting that such a procedure enables the technology life cycle indicator 

to be contingent on both idiosyncratic features of the technology under analysis and on 

the stage of development of the other green technologies. Table 2 reports the results of 

this process showing the life cycle stages of green technology in 1980, 1990, 2000 and 

2010. The results of this exercise resonate with insights from specialised literature and 

policy reports. To illustrate, “Air pollution abatement” (ENV-TECH 1.1), “Renewable 

energy generation” (ENV-TECH 4.1), etc., is found in the maturity stage since the 1980s. 

Conversely, “Environmental monitoring” (ENV-TECH 1.5) or “Rail transport” (ENV-

TECH 6.2) remain in the emergence phase with respect to other green technologies. Table 

2 also shows some technologies that move from emergence to maturity stages – i.e. 

“Energy efficiency in buildings” (ENV-TECH 7.2), “Wastewater treatment” (ENV-

TECH 8.1). Importantly, to reach maturity a technology does not necessarily go through 

all the life cycle stages in that development (high patenting and low ubiquity) and 

diffusion (low patenting and high ubiquity) are alternative pathways to achieve 

maturity.12 

TABLES ONE AND TWO ABOUT HERE 

Finally, we obtain the regional green technological efforts at each stage of the technology 

life cycle as follow: 

𝐺𝑃𝑖𝑡
𝐿 =∑𝑃𝑖𝑗(𝐿)𝑡

𝑗

 

𝑓𝑜𝑟𝑒𝑎𝑐ℎ𝐿 = [𝐸𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑒, 𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡, 𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛,𝑀𝑎𝑡𝑢𝑟𝑖𝑡𝑦] 

where the green patent families in state 𝑖 and time 𝑡 are summed according to the life 

cycle stage 𝐿 of green technology 𝑗 they belong to (see Table 2 and Figure A1). The 

resulting four variables capture the geographical distribution of green patenting activities 

in each stage of the technology life cycle. 

                                                 
11 We employ standard scores to normalise the values: 

𝑋−𝜇

𝜎
 where 𝑋 are the values of patenting intensity or 

ubiquity, 𝜇 is the mean and 𝜎 the standard deviation. 
12 An exhaustive description of the yearly patterns is provided in Appendix B. 
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Figure 3 shows the distribution of population-weighted green patenting across US states 

per life cycle stages, i.e. 𝐺𝑃𝑖𝑡
𝐿 . A comparison across the different panels of the figure 

shows persistence of leading states in the top quintile of all stages of the life cycle. These 

states are also characterised by medium-high green patenting activity. Other states are 

more effective in the production of green technological knowledge only in some stages 

of the life cycle. For example, Washington ranks high in the development of green 

technologies in the emerging and diffusion stage, whereas Alabama in the development 

and diffusion stages. Michigan is effective especially in the production of knowledge 

related to emerging, developing and mature green technologies but not in those in the 

diffusion phase.  

FIGURE THREE ABOUT HERE 

3.5 The empirical model 

To test whether and what type of knowledge base diversification is associated with the 

generation of new environmental technologies, the paper employs a Knowledge 

Production Function (KPF) inspired approach previously formalised by Griliches (1979) 

that is extended in three directions. First, following Jaffe (1989) and Crescenzi et al. 

(2007) we exploit the geographical dimension of the dataset (in our case US states), rather 

than focussing on firms (Jaffe, 1986), as unit of analysis to investigate the spatial 

organisation of innovative activities. Second, we acknowledge that local knowledge 

diversification plays a pivotal role in the knowledge production process (Jacobs, 1969; 

Glaeser et al., 1992) and that various forms of variety are associated with different degrees 

of relatedness between technological domains (Frenken et al., 2007; Castaldi et al., 2015). 

Third, we integrate the technology life cycle heuristic into the KPF framework in order 

to assess which type of variety in the knowledge base is associated with knowledge 

production process at different the levels of technological maturity.  

We estimate the following empirical model: 

𝐺𝑃𝑗𝑡
𝐿 = 𝛽1Varietyjt + 𝛽2𝑅&𝐷𝑗𝑡 + 𝛽3𝐻𝐶𝑗𝑡 + Controlsjt + τj + γt + δjt + 𝑒𝑗𝑡(1) 

where the dependent variable is the number of patent families in all green technologies 

and separately for green technologies at different stages of the technology life cycle (L) 
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in state j and year t13. Variety is a proxy for regional knowledge base diversification 

discussed above that includes UV, SRV and RV. R&D are research and development 

expenditures and HC human capital. In some specifications we also include a battery of 

controls that capture R&D and human capital in neighbouring states and population 

density (Controls).14 We also include time fixed effects (γt), state fixed effects (τj) and 

region specific time trends that control for unobservable heterogeneity that varies linearly 

over time in each state (Charlot et al., 2015). The latter enables us to capture, among 

others, state-specific time patterns that we are not able to control for due to data 

availability, such as policy intervention, green fiscal reforms, etc. which are usually 

introduced at federal state level. Overall, these issues supports the choice of adopting a 

state-level perspective.15 Finally, ejt captures the residual variation.  

Given the pivotal inducement of regulation in environmental innovation (see Popp et al., 

2010 and Barbieri et al., 2016 for a survey) the analysis should control for environmental 

policy implementation. A suitable strategy however ought to account for a number of 

issues. First, as previously stressed, the state-level perspective enables us to control for 

the idiosyncratic state-specific features that vary over time (e.g. environmental policy 

efforts). Second, environmental regulatory efforts may depend on the pressure that 

governments exert through monitoring and enforcement activities (Brunnermeier and 

Cohen, 2003). Penalty threats lead to higher abatement expenditures to comply with 

regulation. To operationalise regulatory monitoring and enforcement, we rely on prior 

literature and use the number of environmental inspections over the total of 

establishments per US state and year (see e.g. Laplante and Rilstone, 1996). Data on the 

number of establishments and inspections are collected from, respectively, US Census 

Bureau (County Business Patterns dataset) and Environment Protection Agency (ECHO 

dataset). That said, we acknowledge that the number of inspections better captures 

                                                 
13 Alternative patent indicators have been used to test the robustness of our results. The findings described 

in the following section hold even if we consider just patent families with at least one granted patent. Results 

are available upon request.  
14 Neighbouring states are those that share a border.  
15 In a set of ancillary regressions, we control for concentration of inventive activities in some areas within 

states. Although data availability restricts our analysis at the state level in order to control for R&D, human 

capital, neighbouring states and environmental policy, we estimate a model in which the units of analysis 

are the Core-Based Statistical Areas (CBSAs). In this model R&D, human capital and environmental policy 

proxies are at state level whereas inventive activity is at the CBSA which is a combination of metropolitan 

and micropolitan areas. The results – including fixed effects at the CBSA level estimations – confirm the 

main findings. In an additional specification we also estimate the model in Equation 1 restricted to 

inventions developed in metropolitan statistical areas within each state. Once again, the robustness of our 

finding is confirmed. The results of these alternative empirical strategies are available upon request. 
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perceived stringency and use energy intensity as additional proxy for environmental 

regulation. Following previous studies, environmental policy stringency can be implicitly 

measured through its effects on energy consumption (Fredriksson and Vollebergh, 2009). 

Given the regulatory efforts of both energy and environmental policies to reduce energy 

consumption in the US (Joskow, 2002), energy efficiency carries the benefit of capturing 

combined regulatory strategies that concern a broader spectrum including physical energy 

constraints, performance standards, energy taxes, etc. (Fredriksson and Vollebergh, 2009; 

Chang et al., 2018). We measure energy intensity as the total energy consumed (in Btu) 

per unit of GDP (Fredriksson and Vollebergh, 2009). Data on energy consumption are 

from the U.S. Energy Information Administration, whereas data on GDP from the US 

Bureau of Economic Analysis.16 

Table 3 provides descriptive statistics of the variables used in the econometric analysis.  

TABLE THREE ABOUT HERE 

 

4 Econometric results 

Before exploring the results of the econometric analysis, Figure 4 provides a graphical 

indication of a positive relationship between patenting activities and variety at different 

level of relatedness. As regards related variety, green and total patents follow an almost-

overlapping pattern with the majority of inventions stemming from states with higher 

related variety. The distribution of patenting over quintiles of unrelated variety shows that 

this type of diversification is particularly relevant for the generation of green knowledge 

relative to all patents. At lower levels of unrelated variety, total patenting prevails over 

green patenting. Conversely, the growth of unrelated diversification in the regional 

knowledge is associated with higher patenting. 

FIGURE FOUR ABOUT HERE 

The econometric estimation of the model detailed in Section 3.5 (Table 4) confirms these 

initial indications. We propose two main specifications to check for differences between 

                                                 
16 Energy intensity is measured using data on energy consumption by all the sectors of the US economy 

(i.e. residential, commercial, transportation and industrial sectors). The results are robust if we employ data 

on energy consumption by the industrial sector. Moreover, we adopt an alternative strategy that accounts 

for emission intensity (CO2 emissions from fossil fuel consumption per unit of GDP). This proxy allows 

controlling for the use of fossil fuels not merely employed for energy generation (Mazzanti et al, 2015). 

Using this alternative strategy does not change the main results. Tables are available upon request. 
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green patent families and non-green patent families. Common to all models is that 

whereas UV and RV variety are positive and statistically significant in the case of green 

patents, SRV and RV are positively associated with non-green patenting. This suggests 

that green inventive activities emerge in states where the knowledge base is diversified 

across unrelated technological domains. Focusing on the specification in Column 5, an 

increase of 1% in UV is associated with an increase of 1.5% in green patenting activities. 

For instance, moving from a US state at the 25th percentile of the distribution of UV 

(Maryland) in 2005 to a US state at the 75th percentile (Florida), increases the number of 

green patents by 11.4%. On the other hand, non-green patenting activities proliferate in 

states characterised by semi-related and related diversification. In addition, when testing 

the difference between the coefficients in each respective specification, UV and RV are 

significantly different at 5% in Column 5 while for non-green patenting the null 

hypothesis of equality between SRV and RV coefficients is rejected.17 This confirms that 

green technologies require diversification across both unrelated and related knowledge 

domains, and differ from non-green patenting that instead relies more on related 

diversification. This is in line with studies that emphasise the higher complexity of green 

innovation relative to non-green due to the recombination of more distant know-how (De 

Marchi, 2012; Cainelli et al., 2015; Barbieri et al, 2018). The result also resonates with 

empirical studies showing that hybrid green and non-green competences matter for the 

transition to low carbon (Barbieri and Consoli, 2019; Quatraro and Scandura, 2019). 

Finally, we observe that human capital is positive and slightly significant across almost 

all specifications while R&D expenditures is not in both the green and non-green RKP 

functions. 

TABLE FOUR ABOUT HERE 

Moving to the core of our analysis, Table 5 presents estimates of the model using green 

patent families at each stage of the technology life cycle as dependent variable. Therein, 

the coefficient of UV is statistically significant for emerging technologies, thus implying 

that diversification across unrelated technological fields favours green technologies in the 

emerging phase. An increase of 1% in UV is associated with 1.1% additional green 

patenting, that is, moving from the 25th to the 75th percentile of the UV distribution leads 

to an increase of 8.4% in green patenting. According to the recombinant innovation 

theory, in the early stage of the life cycle technological development benefits from the 

                                                 
17 The null hypothesis is rejected at 5% 
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richness of cognitively distant bits of knowledge. Together with unrelated variety, R&D 

expenditures play a key role in this stage of technology evolution. In the subsequent stage 

of the life cycle (i.e. development), characterised by higher patenting intensity, all types 

of variety exert a positive effect on green innovative activities. In this phase, human 

capital is positively associated with green patent production. Moving to the diffusion 

phase, related variety in the local knowledge base is positively correlated with the 

generation of environmental-related patents, although the coefficient is significant at only 

10%.18 In addition, both the main innovation inputs, i.e. R&D and human capital are 

positive and significant. Finally, at maturity, related variety becomes the main driver of 

green innovative activities. In this case, a 1% increase in RV is associated with a 0.6% 

increase in green patenting so that moving from the 25th to the 75th percentile of the RV 

distribution in 2005 leads to an increase of almost 10% in green patents. 

These results confirm the propositions outlined in the introduction, and are coherent with 

the conceptual framework of Section 2. The development of green technology relies on 

different types of regional know-how along the life cycle path. Specifically, unrelated 

variety exerts more influence at the beginning of the life cycle when technologies are still 

at early stages and knowledge recombination of cognitive distant knowledge is necessary 

for experimentation and trial and error. At early phases also R&D and human capital are 

fundamental to trigger patenting activity. However, in the maturity phase, when a 

dominant design is established, regional diversification is the main driver of green 

knowledge production though at a higher level of technological relatedness. 

 

TABLE FIVE ABOUT HERE 

5 Conclusions 

The paper has explored empirically the relationship between local knowledge structures 

and the generation of environmental-related technology in the US over a thirty-year 

period. We framed the analysis in the life cycle heuristic to test whether the development 

of green technology benefits from specific types of agglomeration economies at different 

levels of technological relatedness. While prior literature in economic geography had 

                                                 
18 In Appendix C we test the robustness of the assignment of green technologies to the life cycle stage. 

Using an alternative methodology to assign Env-Tech 2-digit technologies close to the mean value, the 

coefficient of RV in the diffusion phase is not significantly different from zero. 
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acknowledged the industry life cycle the present paper is, to the best of our knowledge, 

the first to employ such a heuristic to empirically study the spatial contingences of 

innovation processes. 

Our empirical analysis yields two main findings. First, environment-related innovation is 

positively correlated with local knowledge base that is diversified across unrelated 

technological fields. This is coherent with the notion that green technology is on average 

more radical and complex than non-green technology, and that it draws upon knowledge 

inputs across cognitively distant domains (De Marchi, 2012; Barbieri et al., 2018; Vona 

et al, 2018). Second, we find that diversification across unrelated technological domains 

in local innovative activities favours green innovation mostly at early stages of 

development. Conversely, mature technologies benefit from diversification across related 

knowledge domains. This confirms our main conjecture and is consistent with Castaldi et 

al. (2015) concerning the role of local knowledge variety on technological innovation. 

These results add to various scholarly and policy debates. First, we propose a novel 

empirical operationalisation to study environmental innovation within economic 

geography. Taking the cue from Truffer and Coenen (2012), we believe that the pressure 

of taking practical steps towards tackling climate change is upon regions and cities. 

Exposure to environmental phenomena however differs across territories, as does the 

ability to deal with the associated hazards (Perruchas et al, 2019). Add to the latter that 

green technologies are often treated as a homogenous block but, as our analysis shows, 

they differ substantially both from one another and from standard technologies (Barbieri 

et al., 2018; Quatraro and Scandura, 2019). While on the whole green technologies are at 

initial stages of development (OECD, 2011; Barbieri and Consoli, 2019), some are more 

mature than others (e.g. photovoltaics panels vs carbon capture). By reviving the notion 

that (green) technologies change over the life cycle as the selection environment alters 

their standing relative to knowledge domains and space, we shed light on the spatial 

diversity of invention capacity and of its evolution over time (Henning, 2019). In so 

doing, we provide a richer understanding of the strategies available (or not) to regions for 

tackling climate change by calling attention to the complexities at the interface of three 

sources of heterogeneity: environmental, spatial and technological. 

Second, the articulation of technology maturity over degrees of relatedness validates 

empirically prior warnings on the perils of determinism (Boschma and Frenken, 2006). 

There is an incredibly rich range of knowledge configurations between the two extremes, 
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related and unrelated, and there is scope for empirical research to delve into the 

connection between technology development and the organisation of local competences. 

We enter this debate by proposing an original method to capture the technology life cycle 

based on patent indicators. Although we focus on green technology, our method can be 

applied to any technology, and is scalable across levels of spatial aggregation (i.e. 

country, region, etc) as well as across technological domains (i.e. one-, two-, three-digits). 

Further, the paper provides initial insights into the dynamic links between technology and 

industry. While prior literature acknowledges that industry evolution is contingent on 

agglomeration economies, we find that also technology evolution depends on the regional 

knowledge structure. The present paper therefore paves the way for future research on 

another piece of the puzzle: do agglomeration economies affect industry dynamics 

through their impact on the knowledge generation process? 

A third contribution is that we complement qualitative approaches rooted in the socio-

technical transition agenda on sustainability. Given the common ground on evolutionary 

drivers of regional and industrial development, we analyse quantitative data through the 

lenses of a qualitative heuristic. In so doing, we cross-fertilise methods along the lines 

indicated by Truffer (2012) and Boschma (2017). What is integral to both approaches is 

the need to account for spatial contingencies that bring to bear on the capacity of cities, 

regions and countries to adapt production and consumption. This paper has identified a 

connection between the organisation of local knowledge and the differential state of 

development of green technology that advances the subfield of environmental economic 

geography (Tanner, 2014; Montresor and Quatraro, 2019). 

Fourth, the method and the findings of the present paper are relevant for the policy debate 

on smart specialisation and on the design of strategies that assist regions in leveraging 

available assets to deal with their particular socio-economic challenges. As the European 

Commission acknowledges, successful smart specialisation calls for, among other things, 

bottom-up knowledge of the overall innovation support system.19 The database created 

for the present study is a useful toolbox to aid the identification of local competitive 

strengths and of opportunities for entrepreneurial discovery.20 To illustrate, targeting 

green technology that appears close to a region’s prior specialisation may entail 

additional, unexpected, costs and trade-offs if the technology is at early stages of the life 

                                                 
19 See i.e. https://s3platform.jrc.ec.europa.eu/what-is-smart-specialisation- (last accessed: 25 August, 2019) 
20 The data are freely available at https://www.greentechdatabase.com/ (last accessed: 16 December, 2019).  

https://s3platform.jrc.ec.europa.eu/what-is-smart-specialisation-
https://www.greentechdatabase.com/
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cycle and thus require high degrees of tacit know-how for successful implementation. 

Conversely, pursuing smart specialisation in mature domains may hinder entrepreneurial 

incentives if the developmental potential has been already widely exploited and the 

prospective returns are low, even if the technology related to the region’s competence 

domain. All in all, there is much to be gained from the systematic articulation of 

technology life cycle and local knowledge structures. 
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Figures 

Figure 1. Quintiles of total patent families and percentage of green patents (average 1980-

2010) 

 

 

Notes: Darker colours correspond to top quintiles of the distribution of total patents. 48 

US federal states and District of Columbia are included in the maps. Alaska and Hawaii 

are. The numbers within US states borders correspond to the percentage of green patent 

families. The cartographic boundary shapefile is provided by the US Census Bureau 

(Accessed in 2018). Source: Own elaboration 
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Figure 2. Evolution of the number of green patent families by Env-Tech families, 1980 

– 2009. Top panel: nominal values; bottom panel: 1980= 100. 

Source: Own elaboration 
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Figure 3. Quintiles of green patent families over technology life cycle stages (average 

1980-2009) 

 

 

 

 

 

 

 

 

 

Note: Darker colours correspond to top quintiles. 48 US federal states and District of 

Columbia are included in the maps. Alaska and Hawaii are not included. The 

cartographic boundary shapefile is provided by the US Census Bureau (Accessed in 

2018). Source: Own elaboration.  



36 

 

Figure 4. Distribution of green and total patent families over quintiles of Unrelated, Semi-

Related and Related variety (average 1980-2009) 
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Tables  

Table 1. Life cycle stages 

 Ubiquity 

Patenting intensity 

 Low High 

Low Emergence (1) Diffusion (3) 

High Development (2) Maturity (4) 

 

Notes: The numbers in parenthesis are labels for the stage of development. The same 

notation is used in Table 2.  
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Table 2. Life cycle stages and number of patent families by Env-Tech 2-digit codes 

ID ENV-TECH 1980 1990 2000 2010 

# of patent 

families 

1980-2009 

1.1 AIR POLLUTION ABATEMENT 4 4 4 4 97,729 

1.2 WATER POLLUTION ABATEMENT 3 4 4 4 55,246 

1.3. WASTE MANAGEMENT 3 3 4 4 44,353 

1.4 SOIL REMEDIATION 1 1 3 3 3,813 

1.5 ENVIRONMENTAL MONITORING 1 1 1 1 3,523 

2.1 DEMAND-SIDE TECH (water conservation) 1 3 3 3 13,507 

2.2 SUPPLY-SIDE TECH (water availability) 1 1 1 3 3,716 

4.1 RENEWABLE ENERGY GENERATION 4 4 4 4 158,579 

4.2 ENERGY GENERATION FROM FUELS OF NON-FOSSIL ORIGIN 1 3 3 4 24,354 

4.3 COMBUSTION TECH WITH MITIGATION POTENTIAL 1 1 1 3 11,519 

4.4 NUCLEAR ENERGY 2 2 1 1 33,734 

4.5 
EFFICIENCY IN ELECTRICAL POWER GENERATION, 

TRANSMISSION OR DISTRIBUTION 
1 2 1 1 18,635 

4.6 ENABLING TECH IN ENERGY SECTOR 1 2 2 2 152,431 

4.7 
OTHER ENERGY CONVERSION OR MANAGEMENT SYSTEMS 

REDUCING GHG EMISSIONS 
1 1 1 3 2,788 

5.1 CO2 CAPTURE OR STORAGE (CCS) 1 1 1 3 4,930 

5.2 
CAPTURE OR DISPOSAL OF GREENHOUSE GASES OTHER THAN 

CARBON DIOXIDE (N2O, CH4, PFC, HFC, SF6) 
1 1 1 3 2,353 

6.1 ROAD TRANSPORT 2 4 2 2 147,386 

6.2 RAIL TRANSPORT 1 1 1 1 2,568 

6.3 AIR TRANSPORT 1 1 1 3 12,984 

6.4 MARITIME OR WATERWAYS TRANSPORT 1 1 1 3 3,917 

6.5 ENABLING TECH IN TRANSPORT 1 1 1 2 10,678 

7.1 
INTEGRATION OF RENEWABLE ENERGY SOURCES IN 

BUILDINGS 
1 1 1 4 20,883 

7.2 ENERGY EFFICIENCY IN BUILDINGS 1 3 4 4 91,836 

7.3 
ARCHITECTURAL OR CONSTRUCTIONAL ELEMENTS 

IMPROVING THE THERMAL PERFORMANCE OF BUILDINGS 
1 1 1 1 2,879 

7.4 ENABLING TECH IN BUILDINGS 4 4 4 4 214,003 

8.1 WASTEWATER TREATMENT 1 3 4 4 40,568 

8.2 SOLID WASTE MANAGEMENT 3 3 4 4 66,033 

8.3 
ENABLING TECH OR TECH WITH A POTENTIAL OR INDIRECT 

CONTRIBUTION TO GHG MITIGATION 
1 1 1 1 3,499 

9.1 TECH RELATED TO METAL PROCESSING 3 3 3 4 39,059 

9.2 TECH RELATING TO CHEMICAL INDUSTRY 1 4 4 4 67,329 

9.3 
TECH RELATING TO OIL REFINING AND PETROCHEMICAL 

INDUSTRY 
1 1 1 3 4,149 

9.4 TECH RELATING TO THE PROCESSING OF MINERALS 1 3 1 3 12,215 

9.5 
TECH RELATING TO AGRICULTURE, LIVESTOCK OR 
AGROALIMENTARY INDUSTRIES 

1 3 1 3 8,980 

9.6 
TECH IN THE PRODUCTION PROCESS FOR FINAL INDUSTRIAL 

OR CONSUMER PRODUCTS 
1 1 2 4 58,171 

9.7 
CLIMATE CHANGE MITIGATION TECH FOR SECTOR-WIDE 

APPLICATIONS 
1 1 1 1 2,249 

9.8 
ENABLING TECH WITH A POTENTIAL CONTRIBUTION TO GHG 
EMISSIONS MITIGATION 

1 1 1 4 24,302 

Notes: ID and ENV-TECH correspond to green technology groups listed in OECD (2016). 

Numbers in the columns indicate the life cycle stage of green technologies: 1=“Emergence”, 

2=“Development”, 3=“Diffusion”, 4=“Maturity” (as per Table 1). Dark colours are associated 

to later stages of the technology life cycle.  
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Table 3. Descriptive statistics 

Variable Description Obs Mean 

Std. 

Dev. Min Max 

UV  Unrelated variety at 3-digit level 1,470 3.773 .221 2.832 4.204 

SRV  Semi-Related Variety at 4-digit level 1,470 1.248 .205 .268 1.528 

RV  Related Variety at 8-digit level 1,470 1.453 .361 .246 1.916 

GP Number of Green patent families 1,470 27.69 26.64 0 300.94 

Tot Pat Number of Total patent families 1,470 429.6 
351.2

4 
36.18 2810.15 

Emergence 
Number of Green patent families, 

Emergence stage 
1,470 4.451 4.781 0 51.61 

Development  
Number of Green patent families, 

Development stage 
1,470 6.821 9.026 0 95.21 

Diffusion 
Number of Green patent families, 

Diffusion stage 
1,470 6.163 6.345 0 83.79 

Maturity 
Number of Green patent families, 

Maturity stage 
1,470 24.08 25.93 0 320.18 

R&D 
Research and Development expenditures 

(w.r.t. GDP) 
1,470 .014 .011 .001 .066 

HC 
% Population with bachelor degree or 

more 
1,470 .057 .021 .0321 .541 

R&D Neighb  
Research and Development expenditures 

in neighbouring states (w.r.t. GDP) 
1,470 .015 .007 .002 .047 

HC Neighb  
% Population with bachelor degree or 

more in neighbouring states 
1,470 .055 .007 .037 .093 

Pop Dens Population Density 1,470 4.80 1.476 1.53 9.14 

Inspections  
Number of inspections over the number 

of establishments 
1,470 .22 0.33 0 1.98 

Energy intensity Energy consumption over GDP 1,470 15.41 8.43 1.91 61.15 

Notes: Number of States: 49; Coverage: 1980-2009 
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Table 4. Regression results 

 (1) (2) (3) (4) (5) (6) 

 GP (log) Non-GP (log) GP (log) Non-GP (log) GP (log) Non-GP (log) 

UV (log)  1.339*** -1.093** 1.330*** -1.098** 1.541*** -1.018**  

 (0.455) (0.528) (0.443) (0.513) (0.469) (0.491)    

SRV (log) 0.289 0.218*** 0.277 0.205*** 0.295 0.205*** 

 (0.179) (0.0690) (0.179) (0.0716) (0.186) (0.0729)    

RV (log) 0.387** 0.523*** 0.384** 0.521*** 0.414** 0.535*** 

 (0.146) (0.0943) (0.145) (0.0946) (0.168) (0.103)    

R&D (log)   0.0222 0.00674 0.0242 0.00650    

   (0.0188) (0.00971) (0.0156) (0.00903)    

HC (log)   0.108* 0.113* 0.0668 0.0754**  

   (0.0565) (0.0602) (0.0562) (0.0365)    

R&D Neighb (log)     0.0317 0.0196    

     (0.0617) (0.0249)    

HC Neighb (log)     0.285 0.208**  

     (0.210) (0.0791)    

Pop Dens     0.000868** 0.000421*** 

     (0.000370) (0.000113)    

Inspections     0.0844  

     (0.0500)  

Energy Intensity     -0.00326  

     (0.00627)  

       

State FE  Y Y Y Y Y Y 

Time Dummies Y Y Y Y Y Y 

Random growth Y Y Y Y Y Y 

Obs. 1466 1470 1466 1470 1466 1470 

R2 0.889 0.974 0.890 0.975 0.892 0.975    

F 1416331.9 127000.0 2445371.2 197715.2 2115086.2 15295553.0    

Notes: The analysis covers 48 US Federal States and the District of Columbia over 1980-

2009. Driscoll and Kraay’s (1998) standard errors, robust to heteroskedasticity and 

serial and spatial correlation, in parentheses. * p < 0.1; **p < 0.05; *** p < 0.01.  
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Table 5. Regression results over the life cycle 

 GP (log) Emergence Development  Diffusion Maturity 

UV (log)  1.541*** 1.133** 1.380** 0.753 0.755    

 (0.469) (0.446) (0.649) (0.804) (0.464)    

SRV (log) 0.295 -0.395 0.812*** 0.148 -0.254    

 (0.186) (0.291) (0.189) (0.229) (0.150)    

RV (log) 0.414** 0.495 0.545*** 0.458* 0.587*** 

 (0.168) (0.311) (0.163) (0.253) (0.0888)    

R&D (log) 0.0242 0.0815*** 0.0266 0.0588** -0.0311    

 (0.0156) (0.0273) (0.0440) (0.0221) (0.0212)    

HC (log) 0.0668 -0.147* 0.305** 0.153* -0.0331    

 (0.0562) (0.0829) (0.137) (0.0772) (0.0517)    

R&D Neighb (log) 0.0317 0.153*** 0.0664 0.115 -0.0679    

 (0.0617) (0.0417) (0.103) (0.0821) (0.0437)    

HC Neighb (log) 0.285 -0.209 0.263 -0.0213 0.792*** 

 (0.210) (0.304) (0.898) (0.289) (0.270)    

Pop Dens 0.000868** 0.00196*** 0.000925*** 0.00130*** 0.000699    

 (0.000370) (0.000244) (0.000327) (0.000353) (0.000435)    

Inspections 0.0844 -0.0485 0.180** -0.112* 0.0591    

 (0.0500) (0.0786) (0.0800) (0.0615) (0.0496)    

Energy Intensity -0.00326 0.00930 -0.0154 0.000977 0.00677    

 (0.00627) (0.0124) (0.0132) (0.00626) (0.00412)    

      

State FE  Y Y Y Y Y 

Time Dummies Y Y Y Y Y 

Random growth Y Y Y Y Y 

Obs. 1466 1392 1371 1424 1452 

R2 0.892 0.591 0.794 0.687 0.906    

F 2115086.2 128218.5 238252.4 528859.7 634091.9    

Notes: The analysis covers 48 US Federal States and the District of Columbia over 1980-2009. 

Driscoll and Kraay’s (1998) standard errors, robust to heteroskedasticity and serial and spatial 

correlation, in parentheses. * p < 0.1; **p < 0.05; *** p < 0.01.  
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APPENDIX A (Online publication) – Missing inventor’s address  

Before geo-localisation we collect all the inventors’ addresses from the PATSTAT 

database. Two main issues arise. First, although the European Patent Office (EPO) 

assigns an unambiguous ID to each applicant or inventor, we may still find multiple IDs 

for the same person due to misspelling, name variations, second names, etc. For instance, 

the inventor’s name may appear as John Paul Smith, J. Smith or J.P. Smith and be 

assigned to different patents. Second, address information is provided in PATSTAT only 

for some inventors. In relation to the first issue, address information for an inventor may 

be provided for some IDs and missing for others. For example, address information may 

be provided for John Paul Smith and not for J. Smith due to differences in their IDs.  

To reduce the number of inventors/applicants with a missing address we exploit the 

information on the patent family – our unit of analysis. Within each patent family we link 

multiple inventors’ IDs assuming that they are the same person based on a string-

matching indicator. We calculate the Levenshtein distance between the inventor name for 

which the address is provided and all the other names with missing information within 

the patent family. We consider two or more inventors as the same person if the indicator 

is below three. This means that their full names differ for less than three characters. Then, 

if the address information is provided for one of these inventors we assign it also to the 

other IDs for which this information is not provided (even though they have different 

IDs). For example, the same patent family can feature two inventors with different IDs, 

the first with a complete address, the second with a missing one: “Gehri, Martin Christian 

Adrian” and “GEHRI, MARTIN, CHRISTIAN, ADRIAN”. As the Levenshtein distance 

between the two names is less than 3 when both strings are converted to uppercase, we 

assume it is the same person and we use the complete address to fill the missing one. 
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APPENDIX B (Online publication) – Technology Life Cycle indicator 

Prior literature offers insights into methodologies to assess the stage of development of 

technologies through patent data. Haupt et al. (2007) use patent indicators and empirically 

test their difference along the technology life cycle stages. Although they do not directly 

use patent indicators to detect the stage of development of technologies, they show that 

these indicators follow specific patterns depending on technology development over life 

cycle stages that are defined a priori by a pool of experts and literature review. Other 

studies directly employ patent indicators (Gao et al., 2013; Chang and Fan, 2016). These 

works define life cycle stages of a benchmark technology through expert interviews and 

assess the trends of patent indicators over its technological evolution. Subsequently, these 

patent indicators are compared with those of the benchmark technology and the life cycle 

stage of the latter is then assigned to the former. Finally, stochastic techniques have been 

used to measure technology life cycle. Lee et al. (2012; 2016) run Hidden Markov Models 

to analyse patent indicators over time. Such a technique allows calculating the highest 

probability path that yields the most probable stage of development at each step. 

Our focuses on a broad number of different environmental-related technologies reduces 

the chances to identify benchmark technologies – even with the contribution of a pool of 

experts. Moreover, in our opinion the stage of technology development should account 

for spatial diffusion, and not just for intensity of patenting. Finally, we aim at developing 

a technology life cycle indicator that provides values for broad technological fields not 

just single inventions. 

As described in Section 3.4 we develop our measure of technology life cycle based on 

two indicators, i.e. the geographical ubiquity and patenting intensity. We calculate these 

indicators using worldwide patent families for each macro-technology reported in the 

Env-Tech classification. Figure A1 shows the life cycle of green technologies over the 

entire period of the analysis (1980-2009). We can observe that the indicator captures the 

heterogeneity that characterises green technologies allowing for non-linear transition 

between life cycle stages. For instance, ENV-TECH 7.1 “Integration of renewable energy 

sources in buildings” falls in the emergence stage until 2000 moving to the diffusing 

phase until maturity is reached in 2008. Green technologies aimed at reducing the 

environmental impact of nuclear energy follow an opposite pattern starting in the 

development phase moving to the emergence stage from 1990 onwards.  
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Some illustrative examples are provided in Figure A2. Technologies related to renewable 

energy generation exhibit a stable level of patenting activity since the period 1980-1989, 

while geographical ubiquity reaches the highest value among all the other technologies. 

This is in line with what we expect from a set of technologies in a diffusion, or mature, 

stage (National Academy of Sciences et al, 2010). On the other hand, a small number of 

countries contribute to the enabling technologies in transport (application of fuel cell or 

hydrogen technology to transportation and charging of electric vehicle) but patenting 

activity is increasing over time, meaning that these technologies are not mature but still 

in a development phase, in line with the evidence available (i.e. US Department of 

Energy, 2010). The other three technologies (air pollution abatement – 1.1, CO2 capture 

and storage – 5.1 and technologies related to metal processing – 9.1) in Figure A2 are 

instances of a shift from development towards maturity in that they exhibit sustained 

growth in patenting during the whole period while geographical ubiquity increases only 

over the last two decades, and in line with prior empirical studies (Lim et al., 2009). This 

pattern differs from that of technologies related to efficiency and reduction of greenhouse 

gas emissions in metal processing (9.1): between 1980-1989 and 1990-1999 patenting is 

stable and spread over a higher number of countries, while in the last decade, ubiquity 

diminishes and patenting activity grows again. This trajectory suggests a future change 

in the trend of the life cycle of these technologies (The Boston Consulting Group, 2015). 

All the technologies follow a similar path, but some are more advanced in the TLC than 

others. For example, even if air pollution abatement and CO2 capture or storage are 

moving toward the diffusion stage, their movements start later compared to the average 

of all the other technologies. To characterize this evolution in the broader context of all 

green technologies, we calculate the average value of ubiquity and patenting growth rate 

for all the GT in each time period. The combination of these two characteristics gives rise 

to four different regimes (Table 1). “Emergence” technologies have patenting intensity 

and ubiquity below average; “development” technologies exhibit above average patenting 

and below average ubiquity; technologies in “diffusion” are above average in both 

intensity and ubiquity; in the “maturity” ubiquity is above average and patenting below 

the average of all the technologies in the same period. Figure A3 illustrates the 4 phases 

of TLC during the period 2000-2009 for the technologies shown in Figure A1 (dashed 

lines indicate mean values). In this example, CO2 capture or storage (5.1) and enabling 

technologies in transport (6.5) in the “emergence” phase, air pollution abatement (1.1) in 
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the “development” phase, renewable energy generation (4.1) would be in the “diffusion” 

phase and technologies related to metal processing (9.1) in the “maturity” phase. 

 

Figure A1. The life cycle of green technologies (1980-2009) 

Notes: Technology names are provided in Table 2 of the paper. For the sake of space the 

figure reports the two-digit label of Env-Tech (OECD, 2016). Numbers in the y-axis 

correspond to the technology life cycle stages: 1 “Emergence”, 2 “Development”, 3 

“Diffusion” and 4 “Maturity” (see Table 1 for a taxonomy).  
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Figure A2. Selected Green Technologies by stage of life-cycle, 2000-2009 
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Figure A3. All green technologies by stage of life cycle, 2000-2009 

 

Notes: Technology names are provided in Table 2 of the paper. For the sake of space, the 

figure reports the two-digit label of Env-Tech (OECD, 2016). Source: Own elaboration  
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APPENDIX C (Online publication) – Robustness checks on the 

technology life cycle indicators 

This appendix provides robustness checks on the relationship between the knowledge 

base diversification and green patenting activity along the technology life cycle (TLC). 

In Section 3.4 and Appendix B it has been shown that the TLC indicator is built using a 

combination of patenting intensity and ubiquity. Following the normalization of these 

indicators using the standard score, (2-digit Env-Tech) green technologies were assigned 

to TLC stages using the mean value as a threshold to separate each stage.  

We acknowledge that technologies located close to the mean value may have been 

characterized by an ambiguous assignment to the TLC stage. Accordingly, we check 

whether these technologies may have driven the main insights that arise from our 

empirical analysis. We identified this bunch of technologies that require a robustness 

check as those within a ±0.1 standard deviation from the mean value. In such a way we 

obtained a sample of 187 out of 1080 (36 2-digit Env-Tech for 30 years) which 

corresponds to 17.3% of all the green technologies considered in the present study. In 

order to check the assignment of these technologies to the TLC stage, we employed a k-

Nearest Neighbour (k-NN) classifier. First, the k-NN has been trained using a “training” 

sample of 893 (1080-187) technologies that were far away from the mean value. Second, 

we define the “test” sample as those 187 unlabeled technologies close to the mean value. 

The unlabeled “test” sample is classified by assigning the most frequent TLC stage among 

the k=5 training samples nearest to that query point. 

We find that 17 out of 187 may be assigned to another TLC stage due to their closeness 

to the mean value. For these technologies we employ the new assignments based on the 

k-NN algorithm and rerun the regressions of Table 5. The results in Table C1 show that 

our main findings are robust to the new assignments: regional diversification across 

unrelated technological domain is associated with patenting activities in technologies in 

an emerging phase, whereas as far as we move to maturity, unrelated variety loses 

importance in favour of a more related diversification. The only difference is that the 

coefficient of related variety in the diffusion phase is no longer significant, but this does 

not change the main interpretation. 
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Table C1. Regression results using k-NN technique to assign green technologies to life 

cycle stages 

 GP (log) Emergence Development  Diffusion Maturity 

UV (log)  1.541*** 1.038** 0.980 0.838 0.958*   

 (0.469) (0.497) (0.654) (0.912) (0.482)    

SRV (log) 0.295 -0.355 0.868*** 0.134 -0.298    

 (0.186) (0.276) (0.196) (0.251) (0.176)    

RV (log) 0.414** 0.563* 0.470** 0.400 0.559*** 

 (0.168) (0.286) (0.216) (0.285) (0.112)    

R&D (log) 0.0242 0.0715** 0.00668 0.0551** -0.0226    

 (0.0156) (0.0286) (0.0486) (0.0233) (0.0210)    

HC (log) 0.0668 -0.118 0.289** 0.139* 0.0126    

 (0.0562) (0.0826) (0.133) (0.0767) (0.0586)    

R&D Neighb (log) 0.0317 0.0931** 0.158* 0.131 -0.0730    

 (0.0617) (0.0447) (0.0817) (0.0816) (0.0437)    

HC Neighb (log) 0.285 -0.244 0.541 -0.207 0.810*** 

 (0.210) (0.332) (0.926) (0.247) (0.269)    

Pop Dens 0.868** 1.957*** 1.079*** 1.318*** 0.449    

 (0.370) (0.261) (0.260) (0.357) (0.515)    

Inspections 0.0844 -0.0701 0.201** -0.105 0.0558    

 (0.0500) (0.0767) (0.0825) (0.0655) (0.0525)    

Energy Intensity -0.00326 0.0115 -0.0223* -0.000123 0.00743    

 (0.00627) (0.0125) (0.0128) (0.00556) (0.00458)    

      

State FE  Y Y Y Y Y 

Time Dummies Y Y Y Y Y 

Random growth Y Y Y Y Y 

Obs. 1466 1394 1365 1426 1451 

R2 0.892 0.597 0.805 0.669 0.901    

F 2039542.3 42825.9 22523.5 553767.3 836393.0    

Notes: The analysis covers 49 US Federal States over 1980-2009. Driscoll and Kraay’s 

(1998) standard errors, robust to heteroskedasticity and serial and spatial correlation, 

in parentheses. Green technologies close to the mean value of ubiquity and patenting 

intensity indicators are assigned to the technology life cycle stage using k-Nearest 

Neighbour classification technique * p < 0.1; **p < 0.05; *** p < 0.01.  

 

 

 


