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TINGLEY’S PROBLEM FOR p-SCHATTEN VON NEUMANN

CLASSES

FRANCISCO J. FERNÁNDEZ-POLO, ENRIQUE JORDÁ, AND ANTONIO M. PERALTA

Abstract. Let H and H′ be a complex Hilbert spaces. For p ∈ (1,∞)\{2} we
consider the Banach space Cp(H) of all p-Schatten von Neumann operators,
whose unit sphere is denoted by S(Cp(H)). We prove that every surjective
isometry ∆ : S(Cp(H)) → S(Cp(H′)) can be extended to a complex linear or
to a conjugate linear surjective isometry T : Cp(H) → Cp(H′).

1. Introduction

Tingley’s problem has lured a multitude of researchers interested in determining
if this problem admits a positive solution in the general setting or in some particular
classes of Banach spaces. Given a Banach space X , the symbol S(X) will stand
for the unit sphere of X . D. Tingley proved in [38] that, for finite dimensional
Banach spaces X and Y , a surjective isometry ∆ : S(X) → S(Y ) satisfies ∆(−x) =
−∆(x), for every x ∈ S(X). Tingley’s theorem gives rise to the so-called Tingley’s
problem, which can be considered as a generalization of the Mazur-Ulam theorem.
The problem studied nowadays can be settled in the following terms: Suppose
∆ : S(X) → S(Y ) is a surjective isometry between the unit spheres of two arbitrary
Banach spaces X and Y . Does ∆ extend to a real linear isometry from X onto
Y ? The question remains open when X and Y are arbitrary 2-dimensional Banach
spaces.

The achievements obtained during the thirty years of history around Tingley’s
problem can be hardly resumed in one or two paragraphs. Part of the most relevant
results to place Tingley’s problem in its true historical perspective for our purposes
include positive answers for surjective isometries between the unit spheres of ℓp(Γ)
spaces with 1 ≤ p ≤ ∞ [4, 5, 6, 7]. In the setting of commutative structures
positive solutions to Tingley’s problem have been also established for spaces of
measurable functions of the form Lp(Ω,Σ, µ), where (Ω,Σ, µ) is a σ-finite measure
space and 1 ≤ p ≤ ∞ [32, 33, 34], and spaces of continuous functions [39]. Some
of these spaces actually satisfy a stronger property, the Mazur-Ulam property. We
briefly recall that a Banach space X satisfies the Mazur-Ulam property if for every
Banach space Y , Tingley’s problem admits a positive solution for every surjective
isometry ∆ : S(X) → S(Y ). Real sequence spaces like c(Γ,R), c0(Γ,R), and
ℓ∞(Γ,R) satisfy the Mazur-Ulam property. The spaces C(K,R), Lp((Ω,Σ, µ),R)
also have this property (see [20, 11, 33, 32] and [34]). The results in the recent
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papers [19, 27] show that the spaces of complex sequences c0(Γ) and ℓ∞(Γ) also
satisfy the Mazur-Ulam property.

The commutative triplet (c0, c∗0 = ℓ1, ℓ
∗
1 = ℓ∞) admits a non-commutative ana-

logue of the form (K(H),K(H)∗ = C1(H), C1(H)∗ = B(H)), where H is a complex
Hilbert space and K(H), C1(H), and B(H) are the spaces of compact, trace class,
and bounded linear operators on H , respectively. R. Tanaka gave a positive so-
lution to Tingley’s problem for surjective isometries between the unit spheres of
two finite von Neumann algebras [35, 36, 37]. R. Tanaka and the third author of
this note found a complete solution to Tingley’s problem for surjective isometries
between the unit spheres of two K(H) spaces or between two compact C∗-algebras
(see [29]). J. Garcés, I. Villanueva in collaboration with the first and third author of
this note solved the problem for the space of trace class operators [12]. Additional
solutions to Tingley’s problem for B(H) spaces, atomic von Neumann algebras and
JBW∗-triples, and general von Neumann algebras are due to the first and third
author of this note in [13, 14, 15], and [16]. The most recent achievement in this
line is a result by M. Mori, which establishes that a surjective isometry between
the unit spheres of two von Neumann algebra preduals admits a unique extension
to a surjective real linear isometry between the corresponding spaces [25]. We refer
to the surveys [9, 28, 40] for a detailed overview on Tingley’s problem.

During a talk presented by the third author of this note in the Conference on Non-
Linear Functional Analysis held at the Universitat Politècnica de Valencia (Spain)
in 2017, Professor Andreas Defant asked whether Tingley’s problem admits a pos-
itive solution for the spaces, Cp(H), of p-Schatten von Neumann operators on a
complex Hilbert space H . By the non-commutative Clarkson-McCarthy inequali-
ties, the space Cp(H) is uniformly convex for every 1 < p < ∞ (compare [21]), and
hence strictly convex. Every point in S(Cp(H)) is an extreme point of the closed
unit ball of Cp(H). In particular, the unit sphere of Cp(H) contains no segments.
This is just one of the reasons due to which the usual techniques applied in the dif-
ferent solutions to Tingley’s problem presented in the forerunners surveyed above
are useless in this particular setting. No answer to Tingley’s problem has been
established for this non-commutative generalizations of ℓp spaces, this is the aim of
this paper.

In this note we present a complete solution to Tingley’s problem for surjective
isometries between the unit spheres of two p-Schatten von Neumann spaces for
every p ∈ (1,∞) (see Theorem 2.16). In order to present our results, let the
symbol Umin(H) stand for the set of all minimal partial isometries in Cp(H). In
our arguments we first establish that, given two complex Hilbert spaces H and
H ′, 1 < p < ∞, p ≠ 2, and a surjective isometry ∆ : S(Cp(H)) → S(Cp(H ′)),
then ∆ maps minimal partial isometries in Cp(H) to minimal partial isometries in
Cp(H ′), that is, ∆(Umin(H)) = Umin(H ′) (see Proposition 2.4). Consequently, the
restriction ∆|

Umin(H)
: Umin(H) → Umin(H ′) is a surjective isometry (see Corollary

2.5). Several technical results are established to determine that ∆ or a certain
composition of ∆ with a conjugation preserves the transition probabilities between
elements in Umin(H). These technical results provide the appropriate conditions
to apply a generalization of Wigner’s theorem established by L. Molnár in [24].

Our strategy is completed with a generalization of a result obtained by G. Nagy.
Let S(Cp(H)+) denote the unit sphere of positive operators in Cp(H). In [26] G.
Nagy proves that every surjective isometry ∆ : S(Cp(H)+) → S(Cp(H)+) admits
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a unique extension to a surjective complex linear or a conjugate linear isometry on
Cp(H). In [26, Lemma in page 3] Nagy proves the following: Let H be a finite
dimensional complex Hilbert space, 1 < p < ∞ and 1 ≤ γ. If a, b ∈ S(Cp(H)+)
satisfy ∥a − γp∥p = ∥b − γp∥p for every minimal projection p ∈ Cp(H)+, then
a = b. Our generalization is another identity principle established in Proposition
2.10, where we prove that if a, b ∈ S(Cp(H)) satisfy ∥a−γe∥p = ∥b−γe∥p for every
e ∈ Umin(H), then a = b. These are the main tools leading to our main result.

2. The results

Let H be a complex Hilbert space. We are interested in different subclasses
of the space K(H) of all compact operators on H . We briefly recall the basic
terminology. For each compact operator a, the operator a∗a lies in K(H) and
admits a unique square root |a| = (a∗a)

1
2 . The singular values of the operator a are

precisely the eigenvalues of |a| arranged in decreasing order and repeated according
to multiplicity. Since |a| belong to K(H), only an at most countable number of
its eigenvalues are greater than zero. Accordingly to the standard terminology,
we usually write σn(a) for the n-th singular value of a. It is well known that
(σn(a))n → 0.

Given 1 ≤ p < ∞ the class Cp(H) is the set of all a in K(H) such that

tr(|a|p) = ∥a∥pp :=

(
∞∑

n=1

|σn(a)|
p

)

< ∞.

We set ∥a∥∞ = ∥a∥, where the latter stands for the operator norm of a. The set
Cp(H) is a two-sided ideal in the space B(H) of all bounded linear operators on
H , and (Cp(H), ∥.∥p) is a Banach algebra. C2(H) is the class of Hilbert-Schmidt
operators, C1(H) is the space of trace class operators, and Cp(H) is the space of
p-Schatten von Neumann operators. If tr(.) denotes the usual trace on B(H) and
a ∈ K(H), we know that a ∈ C1(H) if, and only if, tr(|a|) < ∞ and ∥a∥1 = tr(|a|).
It is further known that the predual of B(H), and the dual of K(H), both can be
identified with C1(H) under the isometric linear mapping a (→ ϕa, where ϕa(x) :=
tr(ax) (a ∈ C1(H), x ∈ B(H)).

An element e ∈ B(H) is a partial isometry if ee∗ (equivalently, e∗e) is a projec-
tion, or equivalently, if and only if ee∗e = e. It is known that every element a in
Cp(H) can be written as a (possibly finite) sum

(1) a =
∞∑

n=1

λnηn ⊗ ξn,

where (λn) ⊂ R
+
0 , (ξn), (ηn) are orthonormal systems in H , and ∥a∥pp =

∞∑

n=1

λp
n.

Given an element a in Cp(H) written in the form given in (1), the element

s(a) =
∞∑

n=1

ηn ⊗ ξn,

is a partial isometry in B(H) (called the support partial isometry of a in B(H)).

We refer to [21], [18, Chapter III], [10, §9], [31, Chapter II] and [30, §1.15] for
the basic results and references on Cp(H) spaces.
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The non-commutative Clarkson-McCarthy inequalities state that the formulae

(2) 2p−1
(
∥a∥pp + ∥b∥pp

)
≤ ∥a+ b∥pp + ∥a− b∥pp ≤ 2

(
∥a∥pp + ∥b∥pp

)
(0 < p ≤ 2);

(3) 2
(
∥a∥pp + ∥b∥pp

)
≤ ∥a+ b∥pp + ∥a− b∥pp ≤ 2p−1

(
∥a∥pp + ∥b∥pp

)
(2 ≤ p < ∞),

hold for all a, b in Cp(H) (cf. [21, Theorem 2.7]). It is further known that if
p ∈ [1,∞)\{2}, equality

∥a+ b∥pp + ∥a− b∥pp = 2
(
∥a∥pp + ∥b∥pp

)

holds in (2) or in (3) if and only if (a∗a)(b∗b) = 0. Since ∥c∥p = ∥c∗∥p for every
c ∈ Cp(H) (see [21, Theorem 1.3]), it follows that the previous equalities hold if
and only if a and b are orthogonal as elements in B(H) (a ⊥ b in short), that is
ab∗ = 0 = b∗a, or in other words s(a) and s(b) are orthogonal partial isometries in
B(H) (i.e. s(a)s(b)∗ = 0 and s(b)∗s(a) = 0). Consequently, for 1 ≤ p < ∞, p ≠ 2,
if we fix a, b ∈ S(Cp(H)), we can conclude that

(4) ∥a± b∥pp = 2 ⇐⇒ a ⊥ b (in Cp(H)) ⇐⇒ s(a) ⊥ s(b) (in B(H)).

Let us recall a technical result due to G.G. Ding (see [4]).

Lemma 2.1. [4, Lemma 2.1] Let X and Y be normed spaces. Suppose X is strictly
convex, and ∆ : S(X) → S(Y ) is a mapping. If −∆(S(X)) ⊂ ∆(S(X)) and

∥∆(x1)−∆(x2)∥ ≤ ∥x1 − x2∥ ∀x1, x2 ∈ S(X),

then ∆ is one-to-one, and ∆(−x) = −∆(x) for all x ∈ S(X). !

We can now deduce a result similar to that obtained by Tingley in [38] for
surjective isometries from the unit sphere of Cp(H) (1 < p < ∞) onto the unit
sphere of another normed space.

Remark 2.2. It follows from the non-commutative Clarkson-McCarthy inequalities
that Cp(H) is uniformly convex for every 1 < p < ∞ (compare [21]). It is known
that every uniformly convex space is strictly convex. Thus, given a normed space Y,
and a surjective isometry ∆ : S(Cp(H)) → S(Y ), it follows from Lemma 2.1 that
∆(−x) = −∆(x), for every x ∈ S(Cp(H)).

Suppose {ξi}i∈I is an orthonormal basis of H . The elements in the set {ξi ⊗ ξi :
i ∈ I} are mutually orthogonal in Cp(H). Actually, the dimension of H is precisely
the cardinal of the biggest set of mutually orthogonal elements in Cp(H).

We can state now a non-commutative version of [7, Lemma 3], [5, Lemma 3],
[34, Lemma 3.7], and an extension of [12, Lemma 2.2] for 1 < p < ∞, p ≠ 2.

Lemma 2.3. Let H and H ′ be complex Hilbert spaces, let 1 ≤ p < ∞, p ≠ 2,
and let ∆ : S(Cp(H)) → S(Cp(H ′)) be a surjective isometry. Then ∆ preserves
orthogonal elements in both directions, that is, a ⊥ b in S(Cp(H)) if and only if
∆(a) ⊥ ∆(b) in S(Cp(H ′)). In particular, dim(H) = dim(H ′).

Proof. Take a, b in S(Cp(H)). We have already commented that a ⊥ b if and only
if ∥a± b∥pp = 2 (compare (4)). Since ∆ is an isometry we deduce that

∥∆(a)−∆(b)∥pp = 2.

Remark 2.2 implies that ∆(−x) = −∆(x) for every x ∈ S(Cp(H)), and hence

∥∆(a) +∆(b)∥pp = ∥∆(a)−∆(−b)∥pp = ∥a+ b∥pp = 2.
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Therefore ∥∆(a)±∆(b)∥pp = 2, and hence ∆(a) ⊥ ∆(b).

The final conclusion follows from the comments preceding this lemma. !

We recall that a partial isometry is called minimal if it is a rank one partial
isometry. The set of all minimal partial isometries in Cp(H) will be denoted by
Umin(H). Along the paper, T will stand for the unit sphere of C.

Proposition 2.4. Let H and H ′ be complex Hilbert spaces, let 1 < p < ∞, p ≠ 2,
and let ∆ : S(Cp(H)) → S(Cp(H ′)) be a surjective isometry. Then the following
statements hold:

(a) ∆ maps minimal partial isometries in Cp(H) to minimal partial isometries in
Cp(H ′). Furthermore, ∆(Umin(H)) = Umin(H ′);

(b) For each e0 ∈ Umin(H) we have ∆(λe0) = λ∆(e0) or ∆(λe0) = λ∆(e0), for all
λ ∈ T;

(c) For each e0 ∈ Umin(H) if ∆(µe0) = µ∆(e0) (respectively, ∆(µe0) = µ∆(e0))
for some µ ∈ T\{±1}, then ∆(λe0) = λ∆(e0) (respectively, ∆(λe0) = λ∆(e0)),
for every λ ∈ C with |λ| = 1;

(d) Let {ηj : j ∈ J} and {ξj : j ∈ J} be orthonormal bases of H. Then there exist

orthonormal bases {η̃j : j ∈ J} and {ξ̃j : j ∈ J} of H ′ such that ∆(ηj ⊗ ξj) =

η̃j ⊗ ξ̃j for all j ∈ J .

Proof. (a) Let e = ξ0 ⊗ η0 be a minimal partial isometry in Cp(H).

Let us pick a family {zi : i ∈ I} ⊂ S(Cp(H)) such that
(
⋂

i∈I

{zi}
⊥

)

∩ S(Cp(H)) = Te.

If ∆(e) is not a minimal partial isometry, we can find a (possibly finite) collection
of mutually orthogonal minimal partial isometries {vn : n ∈ J} ⊆ Cp(H ′), with
♯J ≥ 2, and a sequence (µn)n ∈ ℓp, with µj ≠ 0 for all j ∈ J , such that ∆(e) =
∞∑

n=1

µnvn. By Lemma 2.3 ∆(e) ⊥ ∆(zi), for all i ∈ I. Let us take j1 ≠ j2 in J . We

observe that vj1 ⊥ vj2 , and vj1 , vj2 ⊥ ∆(zi), for all i ∈ I. By applying Lemma 2.3
to ∆−1 we conclude that ∆−1(vj1 ) ⊥ ∆−1(vj2 ) and ∆−1(vj1),∆

−1(vj2) ⊥ zi, for all
i ∈ I, which is impossible.

(b) Let us pick a minimal partial isometry e = η0 ⊗ ξ0 in Cp(H) and λ ∈ T.
We can find orthonormal bases {η0} ∪ {ηj : j ∈ J} and {ξ0} ∪ {ξj : j ∈ J} in H .

Clearly, the element e belongs to the set
(⋂

j∈J{ej}
⊥
)
∩ S(Cp(H)) = T(η0 ⊗ ξ0),

where ej = ηj ⊗ ξj . We deduce from Lemma 2.3 that

λ∆(e) ∈

⎛

⎝
⋂

j∈J

{∆(ej)}
⊥

⎞

⎠ ∩ S(Cp(H
′)) = ∆(T(η0 ⊗ ξ0)) = ∆(Te),

and thus, there exists µ ∈ T satisfying ∆(µe) = λ∆(e). Now, by Remark 2.2 we
get

|µ± 1| = ∥µe± e∥ = ∥∆(µe)±∆(e)∥ = ∥λ∆(e)±∆(e)∥ = |λ± 1|,

which assures that µ ∈ {λ,λ} as desired.
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(c) Suppose now that e0 ∈ Umin(H) with ∆(µe0) = µ∆(e0) (respectively,
∆(µe0) = µ∆(e0)) for some µ ∈ T\{±1}. Take λ ∈ T\{±1}. By (b) we have
∆(λe0) = λ∆(e0) or ∆(λe0) = λ∆(e0). Since

∥∆(λe0)− µ∆(e0)∥ = ∥∆(λe0)−∆(µe0)∥ = ∥λe0 − µe0∥ = |λ− µ|

(respectively, ∥∆(λe0)− µ∆(e0)∥ = ∥∆(λe0)−∆(µe0)∥ = ∥λe0 − µe0∥ = |λ − µ|),
it can be easily deduced that ∆(λe0) = λ∆(e0) (respectively, ∆(λe0) = λ∆(e0)).

(d) In the hypothesis of our statement, it follows from (a) that, for each j ∈ J ,
the element ∆(ηj ⊗ ξj) must be a minimal partial isometry. Lemma 2.3 implies
that ∆(ηj ⊗ ξj) ⊥ ∆(ηk ⊗ ξk) for all j ≠ k in J . We can therefore find orthonormal

systems {η̃j : j ∈ J} and {ξ̃j : j ∈ J} in H ′ such that ∆(ηj ⊗ ξj) = η̃j ⊗ ξ̃j for

all j ∈ J . Fix j0 in J . If {ξ̃j : j ∈ J} is not a basis in H ′, then there exists a

norm-one element ξ̃0 in H ′ such that ξ̃0 ⊥ ξ̃j for all j ∈ J . By (a), the element

∆−1(η̃j0 ⊗ ξ̃0) = η ⊗ ξ is a minimal partial isometry in B(H). Since η̃j0 ⊗ ξ̃0 is

orthogonal to η̃j⊗ ξ̃j for every j ≠ j0, Lemma 2.3 assures that ∆−1(η̃j0 ⊗ ξ̃0) = η⊗ξ
is orthogonal to ηj ⊗ ξj for every j ≠ j0. Since {ηj : j ∈ J} and {ξj : j ∈ J} are

orthonormal bases in H , we deduce that ∆−1(η̃j0 ⊗ ξ̃0) = η⊗ ξ must be an element

in Tηj0 ⊗ ξj0 . That is, ∆
−1(η̃j0 ⊗ ξ̃0) = η⊗ ξ = µηj0 ⊗ ξj0 for a unique µ ∈ T. Now,

applying (b) we get

η̃j0 ⊗ ξ̃0 ∈ {µ η̃j0 ⊗ ξ̃j0 , µ η̃j0 ⊗ ξ̃j0},

which is impossible. Similar arguments show that {η̃j : j ∈ J} is an orthogonal
basis in H ′. !

Corollary 2.5. Let H and H ′ be complex Hilbert spaces, let 1 < p < ∞, p ≠ 2,
and let ∆ : S(Cp(H)) → S(Cp(H ′)) be a surjective isometry. Then the restriction
∆|

Umin(H)
: Umin(H) → Umin(H ′) is a surjective isometry.

Remark 2.6. Let us briefly recall some basic facts on the relative position of
two minimal partial isometries. Let v and e be two minimal partial isometries in
Cp(H) ⊆ K(H) ⊆ B(H), where dim(H) ≥ 2. Arguing as in the proof of [12, Lemma
3.3] (see also [13, Proposition 3.3 and its proof]), we can choose two orthonormal
systems {η1, η2} and {ξ1, ξ2} in H to write e and v in the form e = η1 ⊗ ξ1,

v = η̃1 ⊗ ξ̃1, and

v = αv11 + βv12 + δv22 + γv21,

where e1 = v11, v12 = η2 ⊗ ξ1, v21 = η1 ⊗ ξ2, v22 = η2 ⊗ ξ2, α = ⟨ξ1|ξ̃1⟩⟨η̃1|η1⟩, β =

⟨ξ1|ξ̃1⟩⟨η̃1|η2⟩, γ = ⟨ξ2|ξ̃1⟩⟨η̃1|η1⟩, δ = ⟨ξ2|ξ̃1⟩⟨η̃1|η2⟩ ∈ C, with |α|2+ |β|2+ |γ|2+ |δ|2

= |⟨ξ1|ξ̃1⟩|2∥η̃1∥2 + |⟨ξ2|ξ̃1⟩|2∥η̃1∥2 = ∥ξ̃1∥2 = 1, and αδ = βγ. The appropriate

matrix representation in these two systems reads as follows: e =

(
1 0
0 0

)
, and

v =

(
α γ
β δ

)
.

We can now enlarge the orthonormal systems {η1, η2} and {ξ1, ξ2} to get two
orthonormal bases {η1, η2}∪ {ηj : j ∈ J} and {ξ1, ξ2}∪ {ξj : j ∈ J} in H. If we set
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ej := ηj⊗ξj j ∈ {1, 2}∪J , then
⋂

j∈J

{ej}
⊥ ∼= Cp(H1), where H1 is a two dimensional

complex Hilbert space, with e, v ∈ S

⎛

⎝
⋂

j∈J

{ej}
⊥

⎞

⎠ ∼= S(Cp(H1)) ⊂ S(Cp(H)).

We continue with our study on the relative position of the image of an arbitrary
minimal partial isometry v and the images of the elements in Tv under a surjective
isometry between the spheres.

Proposition 2.7. Let H and H ′ be complex Hilbert spaces, let p ∈ (1,∞)\{2}, and
let ∆ : S(Cp(H)) → S(Cp(H ′)) be a surjective isometry. Then one, and precisely
one, of the following statements holds:

(a) ∆(λv) = λ∆(v) for every λ ∈ T and every v ∈ Umin(H);
(b) ∆(λv) = λ∆(v) for every λ ∈ T and every v ∈ Umin(H).

Proof. Let us define D1 := {v ∈ Umin(H) : ∆(λv) = λ∆(v) for all λ ∈ T} and
D2 := {v ∈ Umin(H) : ∆(λv) = λ∆(v) for all λ ∈ T}. Proposition 2.4(b) and (c)

implies that D1
◦
∪ D2.

We pick v ∈ D1 and w ∈ Umin(H) with ∥v − w∥p < ε for some 0 < ε < 1.
Proposition 2.4(b) assures that ∆(iw) = i∆(w) or ∆(iw) = −i∆(w). In the second
case we deduce from Remark 2.2 that

∥v−w∥p = ∥∆(iv)−∆(iw)∥p = ∥i∆(v) + i∆(w)∥p = ∥∆(v) +∆(w)∥p = ∥v+w∥p,

and hence

1 = ∥v∥p =

∥∥∥∥
v − w

2
+

v + w

2

∥∥∥∥
p

≤

∥∥∥∥
v − w

2

∥∥∥∥
p

+

∥∥∥∥
v + w

2

∥∥∥∥
p

< ε < 1,

which is impossible. Therefore ∆(iw) = i∆(w) and Proposition 2.4(c) proves that
w ∈ D1. We have therefore shown that D1 is open. Similar arguments assure that
D2 is also open.

Finally, since it is well known that Umin(H) is a connected set, then Umin(H) =
D1 or Umin(H) = D2, which concludes the proof. !

The conclusion of the above proposition in the case p = 1 was established in [12].

The next lemma is probably part of the folklore in the theory of inequalities,
however we do not know an explicit reference. For each 1 ≤ j ≤ m (j,m ∈ N), let
ej denote the element in ℓmp whose jth-component is 1 and all its other component
are zero.

Lemma 2.8. Let â be a hermitian element in S(ℓ2np ), with p ∈ (1,∞)\{2}, and let
γ be a real number with γ ≥ 1. Let us assume that

â =

(
1

2
1
p

λ1, . . . ,
1

2
1
p

λn,−
1

2
1
p

λn, . . . ,−
1

2
1
p

λ1

)
,

where λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0 and

n∑

j=1

λp
j = 1. We set a = (λ1, . . . ,λn) ∈ S(ℓnp ),

Us
2 (ℓ

2n
p ) =

{
sij :=

1

2
1
p

(ei − ej) : 1 ≤ i ≠ j ≤ 2n

}
⊂ S(ℓ2np ),

and Proj±1 (ℓ
n
p ) = {±ej : 1 ≤ j ≤ n} ⊂ S(ℓnp ). Then the following statements hold:
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(a) The minimum value of the mapping ka : Proj±1 (ℓ
n
p ) → R

+
0 , ka(z) := ∥a− γz∥pp

is (γ−λ1)
p+

n∑

j=2

λp
j = (γ−λ1)

p+1−λp
1, and it is attained only at those points

z ∈ Proj±1 (ℓ
n
p ) satisfying z = ei with λi = λ1;

(b) The minimum value of the mapping hâ : Us
2 (ℓ

2n
p ) → R

+
0 , hâ(sij) := ∥â− γsij∥pp

is (γ−λ1)
p +

n∑

j=2

λp
j = (γ−λ1)

p +1−λp
1, and it is attained only at those point

sij ∈ Us
2 satisfying 1 ≤ i ≤ n, n+ 1 ≤ j ≤ 2n, λi = λj = λ1.

Proof. (a) Let us pick ej with λj < λ1 and ei with λi = λ1. It is easy to check
that, since (γ−λj)p > (γ−λi)p = (γ−λ1)p, and the function t (→ (γ− t)p +1− tp

(t ∈]0, 1]) is strictly decreasing, we have

ka(ej) = ∥a− γej∥
p
p =

∑

k≠j

λp
k + (γ − λj)

p = 1− λp
j + (γ − λj)

p

> 1− λp
1 + (γ − λ1)

p = ka(e1) = ka(ei).

On the other hand, for any j we have

ka(−ej) = ∥a+γej∥
p
p =

∑

k≠j

λp
k+(λj+γ)p >

∑

k≠j

λp
k+(γ−λj)

p = ∥a−γej∥
p
p = ka(ej),

which concludes the proof of (a).

(b) Let us take i, j ∈ {1, . . . , n} and compute

hâ(sij) := ∥â− γsij∥
p
p =

n∑

k=1,k≠i,j

λp
k

2
+

(γ − λi)p

2
+

(λj + γ)p

2
+

n∑

k=1

λp
k

2

=
1

2
−

λp
i

2
−

λp
j

2
+

(γ − λi)p

2
+

(λj + γ)p

2
+

1

2

≥
1

2
(1− λp

1 + (γ − λ1)
p) +

1

2

(
1− λp

j + (λj + γ)p
)

>
1

2
(1− λp

1 + (γ − λ1)
p) +

1

2

(
1− λp

j + (γ − λj)
p
)
≥ 1− λp

1 + (γ − λ1)
p.

We can similarly prove that for i, j ∈ {n+ 1, . . . , 2n} we have

hâ(sij) > 1− λp
1 + (γ − λ1)

p.

It is not hard to check that for (i, j) ∈ {1, . . . , n}× {n+1, . . . , 2n} (respectively,
for (j, i) ∈ {1, . . . , n}× {n+ 1, . . . , 2n}) the identity

hâ(sij) = ∥â− γsij∥
p
p =

1

2
∥a− γei∥

p
p +

1

2
∥a− γej∥

p
p =

1

2
ka(ei) +

1

2
ka(ej),

(respectively,

hâ(sij) = ∥â− γsij∥
p
p =

1

2
∥a+ γei∥

p
p +

1

2
∥a+ γej∥

p
p =

1

2
ka(−ei) +

1

2
ka(−ej))

holds. Finally, the desired statement is a straight consequence of the above identi-
ties, what is proved in the first two paragraphs, and statement (a). !

We continue with another technical result.
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Proposition 2.9. Let H be a finite dimensional complex Hilbert space, and let p
be a real number in (1,∞)\{2}. Given a ∈ Cp(H) and a real constant γ ≥ 1, we
consider the mapping fa : Umin(H) → R

+
0 defined by the assignment e (→ fa(e) :=

∥a − γe∥pp. Suppose a =
n∑

j=1

σj(a)ej, where e1, . . . , en are mutually orthogonal

minimal partial isometries, σ1(a) = . . . = σj0 (a) > σj0+1(a) ≥ . . . ≥ σn(a) ≥ 0 are

the singular values of a and ∥a∥pp =
n∑

j=1

σj(a)
p = 1. Then

(5) min
e∈Umin(H)

fa(e) = fa(ej) = (γ−σ1(a))
p+

n∑

j=2

σj(a)
p = (γ−σ1(a))

p+1−σ1(a)
p,

for every 1 ≤ j ≤ j0. Furthermore, if em denotes the partial isometry em =
j0∑

j=1

ej,

then

(6) fa attains its minimum value at v ∈ Umin(H) if, and only if, v ≤ em.

Proof. We observe that, since H is finite dimensional, the set Umin(H) is ∥.∥p-
compact. Obviously fa is ∥.∥p-continuous, and thus fa attains its maximum and
minimum values in Umin(H). Next we shall determine the points in Umin(H) at
which fa attains its minimum value.

We have assumed that σ1(a) = . . . = σj0 (a) > σj0+1(a) ≥ . . . ≥ σn(a) for some
j0 ∈ {1, . . . , n}. Having in mind that ∥.∥p is unitarily-invariant, we deduce from [1,
Theorem 9.8], applied to a and γe, that

∥diag(σ1(a), . . . ,σn(a))− diag(σ1(γe), . . . ,σn(γe))∥p ≤ ∥a− γe∥p,

where diag(., . . . , .) stands for the diagonal matrix whose entries are given by the
corresponding list. Since, clearly diag(σ1(γe), . . . ,σn(γe)) = diag(γ, 0, . . . , 0), we
get

fa(ej) = (γ − σ1(a))
p + 1− σ1(a)

p

= ∥diag(σ1(a), . . . ,σn(a))− diag(σ1(γe), . . . ,σn(γe))∥
p
p ≤ ∥a− γe∥pp = fa(e),

for every 1 ≤ j ≤ j0, which proves (5).

Let em denote the partial isometry em =
j0∑

j=1

ej . Accordingly to our notation the

support partial isometry of a, s(a) =
∑

σj(a)≠0

ej, satisfies em ≤ s(a). Let v be any

minimal partial isometry such that v ≤ em, that is, em = vv∗emv∗v+(1−vv∗)em(1−

v∗v) = v+(1− vv∗)em(1− v∗v). Since a = σ1(a)v+σ1(a)(em− v)+
n∑

j=j0+1

σj(a)ej ,

we can easily compute that

fa(v) = ∥a− γv∥pp = (γ − σ1(a))
p +

n∑

j=2

σj(a)
p = min

e∈Umin(H)
fa(e) = fa(ej).

We have therefore shown that fa attains its minimum value at every minimal partial
isometry v ∈ Umin(H) with v ≤ em.
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In order to prove (6) we shall make use of an ingenious device due to Wielandt
(see for example [1, page 24]). Let ã denote the matrix in M2(Mn(C)) = M2n(C)

defined by ã = 1

2
1
p

(
0 a
a∗ 0

)
. It is known that ã is hermitian and the eigenvalues

of ã are precisely the singular values of 1

2
1
p

a together with their negatives (cf. [1,

page 24]). Consequently,

∥ã∥pp = 2
n∑

j=1

(
1

2
1
p

)p

σj(a)
p = ∥a∥pp = 1.

Let us consider the set

Usym
2 (M2n(C)) =

{ 1

2
1
p

p1 −
1

2
1
p

p2 : p1, p2 ∈ Proj1(M2n(C)), p1 ⊥ p2

}
.

Clearly, Usym
2 (M2n(C)) ⊆ S(Cp(M2n(C))). Let gã : Usym

2 (M2n(C)) → R
+
0 be the

function defined by gã(z) = ∥ã − γz∥pp (∀z ∈ Usym
2 (M2n(C))). A compactness

argument shows that gã attains its minimum value at Usym
2 (M2n(C)). We shall

prove next that

(7) min
z∈Usym

2 (M2n(C))
gã(z) = (γ − σ1(a))

p +
n∑

j=2

σj(a)
p

= (γ − σ1(a))
p + 1− σ1(a)

p = min
e∈Umin(H)

fa(e).

Fix z ∈ Usym
2 (M2n(C)). Since ∥.∥p is unitarily-invariant, a new application of [1,

Theorem 9.8 or Theorem 9.7], applied to ã and γz, that

∥diag(σ1(ã), . . . ,σ2n(ã))− diag(σ1(γz), . . . ,σ2n(γz))∥p ≤ ∥ã− γz∥p,

where

(σ1(ã), . . . ,σ2n(ã)) =

(
1

2
1
p

σ1(a),
1

2
1
p

σ1(a), . . . ,
1

2
1
p

σn(a),
1

2
1
p

σn(a)

)
,

and

(σ1(γz), . . . ,σ2n(γz)) =

(
γ

2
1
p

,
γ

2
1
p

, 0, . . . , 0

)
.

We therefore have

(γ − σ1(a))
p + 1− σ1(a)

p = (γ − σ1(a))
p +

n∑

j=2

σj(a)
p

= 2

(
1

2
1
p

)p

(γ − σ1(a))
p + 2

n∑

j=2

(
1

2
1
p

)p

σj(a)
p

= ∥diag(σ1(ã), . . . ,σ2n(ã))− diag(σ1(γz), . . . ,σ2n(γz))∥
p
p ≤ ∥ã− γz∥pp = gã(z),

which proves (7).

Let us also observe that, given a minimal partial isometry v ∈ Umin(H) satisfying

fa(v) = mine∈Umin(H) fa(e), the matrix ṽ = 1

2
1
p

(
0 v
v∗ 0

)
lies in Usym

2 (M2n(C))

and, by orthogonality, the Clarkson-McCarthy inequalities (compare (2) and (3)),
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and the invariance of the p-norm under taking the involution ∗ (see [21, Theorem
1.3]), we get

gã(ṽ) = ∥ã− γṽ∥pp =

(
1

2
1
p

)p

∥a− γv∥pp +

(
1

2
1
p

)p

∥a∗ − γv∗∥pp

= ∥a− γv∥pp = min
e∈Umin(H)

fa(e) = min
z∈Usym

2 (M2n(C))
gã(z).

Now, let us fix two orthogonal minimal projections q1, q2 ∈ Proj1(M2n(C)) and
set b = 1

2
1
p
q1 −

1

2
1
p
q2 ∈ S(Cp(M2n(C))). It is clear that, accordingly to the termi-

nology in [2], the unitary orbit of b in S(Cp(M2n(C))) is the set

{ũbũ∗ : ũ unitary in M2n(C)}

and coincides with our set Usym
2 (M2n(C)). R. Bhatia and P. Šemrl prove in [2,

Theorem 1] that if an element b0 ∈ Usym
2 (M2n(C)) is a critical point for the mapping

gã, then b0 commutes with ã. By applying this conclusion to b0 = ṽ, we deduce
that ṽ and ã commute, and consequently, a∗v = v∗a and av∗ = va∗.

Furthermore, since ṽ and ã commute, ã is hermitian, and ṽ is a positive multiple
of a rank-2 hermitian partial isometry, we can easily deduce the existence of two
orthogonal minimal projections r1 and r2 in M2n(C) satisfying ṽ = 1

2
1
p
(r1 − r2), r1

and r2 commute with ã, and consequently, ã = r1ãr1 + r2ãr2 + (1 − r1 − r2)ã(1 −
r1 − r2). By applying a joint spectral resolution of ã and ṽ, and keeping the
notation in Lemma 2.8, we can represent ã and ṽ in a commutative ℓ2np space, with
a representation satisfying the following properties:

(1) ã =

(
1

2
1
p

σ1(a), . . . , 1

2
1
p

σn(a),− 1

2
1
p

σn(a), . . . ,− 1

2
1
p

σ1(a)

)
;

(2) ṽ ∈ Us
2 (ℓ

2n
p );

(3) min
z∈Us

2 (ℓ
2n
p )

hã(z) = (γ−σ1(a))
p+

n∑

j=2

σp
j (a) = (γ−σ1(a))

p+1−σp
1(a) = ∥ã−γṽ∥pp

= min
z∈Usym

2 (M2n(C))
gã(z).

We are in position to apply Lemma 2.8. We therefore conclude that ṽ = 1

2
1
p
(ei−

ej) with 1 ≤ i ≤ n, n + 1 ≤ j ≤ 2n, σi(a) = σj(a) = σ1(a), which implies that
v ≤ em. This concludes the proof of (6). !

We shall need later an appropriate generalization of [26, Lemma in page 3]. Our
next result extends the just quoted result in [26] to general matrices in the unit
sphere of Cp(Mn(C)).

Proposition 2.10. Let H be a finite dimensional complex Hilbert space, and let p
be a real number in (1,∞)\{2}. We fix a positive γ ≥ 1. If a, b ∈ S(Cp(H)) satisfy
∥a− γe∥p = ∥b− γe∥p for every e in Umin(H), then a = b.

Proof. Let a, b ∈ S(Cp(H)) satisfying ∥a−γe∥p = ∥b−γe∥p for every e ∈ Umin(H).
Our aim is to show that a = b. We shall argue by induction on the dimension of H .

The case dim(H) = 1 is clear. Let us write a =
n∑

j=1

σj(a)ej , and b =
n∑

j=1

σj(b)vj ,

where e1, . . . , en and v1, . . . , vn are two families of mutually orthogonal minimal
partial isometries, σ1(a) ≥ . . . ≥ σn(a) ≥ 0 and σ1(b) ≥ . . . ≥ σn(b) ≥ 0 are
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the singular values of a and b, respectively. As before em =
∑

j,σ1(a)=σj(a)

ej and

vm =
∑

j,σ1(b)=σj(b)

vj . It follows from the assumptions that the mappings fa, fb :

Umin(H) → R
+
0 , fa(e) = ∥a− γe∥pp = ∥b − γe∥pp = fb(e) coincide. Thus by Propo-

sition 2.9(5) we have

min
e∈Umin(H)

fa(e) = (γ−σ1(a))
p+1−σ1(a)

p = min
e∈Umin(H)

fb(e) = (γ−σ1(b))
p+1−σ1(b)

p,

and by Proposition 2.9(6)

fa attains its minimum value at v ∈ Umin(H) ⇔ v ≤ em,

and
fb attains its minimum value at v ∈ Umin(H) ⇔ v ≤ vm.

The equality fa = fb now implies that em = vm.

As observed by G. Nagy in the proof of [26, Lemma in page 3], the values of σ1(a)
and σ1(b) can be recovered from the mappings fa and fb. Namely, the function
t (→ (γ − t)p + 1− tp (t ∈]0, 1]) is strictly decreasing and thus injective. Therefore,
the equality

(γ − σ1(a))
p + 1− σ1(a)

p = (γ − σ1(b))
p + 1− σ1(b)

p,

holds if and only if σ1(a) = σ1(b). Therefore, eme∗mae∗mem = vmv∗mbv∗mvm. If
σ1(a) = σ1(b) = 1 or eme∗m = 1 we get a = b. We may assume that σ1(a) = σ1(b) ≠
1 and eme∗m ≠ 1, and hence

0 < ∥(1− eme∗m)b(1− e∗mem)∥p = ∥(1− eme∗m)a(1− e∗mem)∥p < 1.

Now, given a minimal partial isometry e ∈ Umin(H) with e ⊥ em = vm, we
deduce from the orthogonality of eme∗mae∗mem = vmv∗mbv∗mvm and e that

∥eme∗mae∗mem∥pp + ∥(1− eme∗m)a(1− e∗mem)− γe∥pp = ∥a− γe∥pp

= ∥b− γe∥pp = ∥eme∗mbe∗mem∥pp + ∥(1− eme∗m)b(1− e∗mem)− γe∥pp,

and consequently
∥∥∥∥

(1− eme∗m)a(1− e∗mem)

∥(1− eme∗m)a(1− e∗mem)∥p
−

γ

∥(1− eme∗m)a(1 − e∗mem)∥p
e

∥∥∥∥
p

=

∥∥∥∥
(1− eme∗m)b(1− e∗mem)

∥(1− eme∗m)b(1 − e∗mem)∥p
−

γ

∥(1− eme∗m)b(1− e∗mem)∥p
e

∥∥∥∥
p

p

,

for every minimal partial isometry e ∈ Umin(H) with e ⊥ em = vm. The induction
hypothesis implies that (1 − eme∗m)b(1 − e∗mem) = (1 − eme∗m)a(1 − e∗mem), which
proves a = b and finishes the proof. !

The case in which H is a 2-dimensional complex Hilbert space is treated inde-
pendently.

Theorem 2.11. Let H be a 2-dimensional complex Hilbert space, let p ∈ (1,∞)\{2}
be a fixed real number, and let ∆ : S(Cp(H)) → S(Cp(H)) be a surjective isometry.
Then there exists a complex linear or a conjugate linear surjective isometry T :
Cp(H) → Cp(H) whose restriction to S(Cp(H)) is ∆.
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Proof. We can identify Cp(H) with M2(C) equipped with the norm ∥.∥p. The ele-

ments∆

(
1 0
0 0

)
and∆

(
0 0
0 1

)
are two orthogonal minimal partial isometries.

By composing ∆ with a surjective linear isometry on M2(C) we may assume that

∆

(
1 0
0 0

)
=

(
1 0
0 0

)
and ∆

(
0 0
0 1

)
=

(
0 0
0 1

)
. We may also assume via

Proposition 2.7 that ∆(λe) = λ∆(e) for every e ∈ Umin(H), λ ∈ T.

We set a =
1

2
1
p

(
1 0
0 1

)
=

2∑

j=1

σj(a)ej and b = ∆(a) =
2∑

j=1

σj(b)vj , where

{e1, e2} and {v1, v2} are two families of mutually orthogonal minimal partial isome-
tries, while σj(a) and σj(b) stand for the singular values of a and b, respectively.

Keeping the notation employed in Proposition 2.9 we denote em =
∑

j,σ1(a)=σj(a)

ej ∈

B(H) and vm =
∑

j,σ1(b)=σj(b)

vj ∈ B(H). Clearly em = 1 because σ1(a) = σ2(a).

Let us consider the mappings fa, fb : Umin(H) → R
+
0 defined by fa(e) := ∥a−e∥pp

and fb(e) := ∥b − e∥pp. Proposition 2.4(a) assures that ∆(Umin(H)) = Umin(H).
Since fa(e) = ∥a − e∥pp = ∥∆(a) − ∆(e)∥pp = ∥b − ∆(e)∥pp = fb(∆(e)), we deduce
that

(
1−

1

2
1
p

)p

+
1

2
= min

e∈Umin(H)
fa(e) = min

e∈Umin(H)
fb(e) = (1 − σ1(b))

p + σ2(b)
p.

Then it follows that σ1(b) = σ2(b) = 1

2
1
p

, and consequently vm = 1 = em and

a = b = ∆(a). Furthermore, Proposition 2.4(b) gives
{
v ∈ Umin(H) : fa(v) = min

e∈Umin(H)
fa(e)

}
= {v ∈ Umin(H) : v ≤ 1}

= {minimal projections in B(H)} =

{
v ∈ Umin(H) : fb(v) = min

e∈Umin(H)
fb(e)

}
,

which guarantees that ∆ maps minimal projections in B(H) to minimal projections
in B(H).

Since ∆

(
1
2

1
2

1
2

1
2

)
must be a minimal projection, there exist t ∈ (0, 1) and

c ∈ T satisfying ∆

(
1
2

1
2

1
2

1
2

)
=

(
t c

√
t(1− t)

c
√
t(1− t) 1− t

)
. The hypothesis

implies that

2(1− t)
p
2 =

∥∥∥∥

(
t− 1 c

√
t(1− t)

c
√
t(1− t) 1− t

)∥∥∥∥
p

p

=

∥∥∥∥

(
t c

√
t(1− t)

c
√
t(1− t) 1− t

)
−

(
1 0
0 0

)∥∥∥∥
p

p

=

∥∥∥∥∆
(

1
2

1
2

1
2

1
2

)
−∆

(
1 0
0 0

)∥∥∥∥
p

p

=

∥∥∥∥

(
1
2

1
2

1
2

1
2

)
−

(
1 0
0 0

)∥∥∥∥
p

p

=
2

2
p
2

,

and consequently t = 1
2 and ∆

(
1
2

1
2

1
2

1
2

)
= 1

2

(
1 c
c 1

)
.
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We consider the surjective linear isometry T0 : B(H) → B(H) defined by

T0(x) :=

(
1 0
0 c

)
x

(
1 0
0 c

)
and the surjective isometry ∆1 = T0∆. The

mapping ∆1 satisfies ∆1

(
1 0
0 0

)
=

(
1 0
0 0

)
, ∆1

(
0 0
0 1

)
=

(
0 0
0 1

)
,

∆1

(
1
2

1
2

1
2

1
2

)
=

(
1
2

1
2

1
2

1
2

)
, ∆1(λe) = λ∆1(e) for every e ∈ Umin(H), λ ∈ T,

and ∆1 maps minimal projections to minimal projections.

Now, ∆1

(
1
2

i
2

− i
2

1
2

)
must be a minimal projection, and thus there exist s ∈

(0, 1) and c ∈ T satisfying ∆

(
1
2

i
2

− i
2

1
2

)
=

(
s c

√
s(1− s)

c
√
s(1− s) 1− s

)
. The

identities

2

2
p
2

=

∥∥∥∥

(
0 i−1

2
− i+1

2 0

)∥∥∥∥
p

p

=

∥∥∥∥

(
1
2

i
2

− i
2

1
2

)
−

(
1
2

1
2

1
2

1
2

)∥∥∥∥
p

p

=

∥∥∥∥∆1

(
1
2

i
2

− i
2

1
2

)
−∆1

(
1
2

1
2

1
2

1
2

)∥∥∥∥
p

p

=

∥∥∥∥

(
s c

√
s(1− s)

c
√
s(1− s) 1− s

)
−

(
1
2

1
2

1
2

1
2

)∥∥∥∥
p

p

=

∥∥∥∥

(
s− 1

2 c
√
s(1− s)− 1

2

c
√
s(1− s)− 1

2
1
2 − s

)∥∥∥∥
p

p

= 2

((
s−

1

2

)2

+

∣∣∣∣c
√
s(1− s)−

1

2

∣∣∣∣
2
) p

2

,

and

2

2
p
2
=

∥∥∥∥

(
1
2

i
2

− i
2

1
2

)
−

(
1 0
0 0

)∥∥∥∥
p

p

=

∥∥∥∥∆1

(
1
2

i
2

− i
2

1
2

)
−∆1

(
1 0
0 0

)∥∥∥∥
p

p

=

∥∥∥∥

(
s c

√
s(1 − s)

c
√
s(1− s) 1− s

)
−

(
1 0
0 0

)∥∥∥∥
p

p

= 2(1− s)
p
2 ,

guarantee that s = 1
2 and c = ±i. We have therefore shown that

∆1

(
1
2

i
2

− i
2

1
2

)
∈

{(
1
2

i
2

− i
2

1
2

)
,

(
1
2 − i

2
i
2

1
2

)}
.

By composing with the transpose, if necessary, we may assume that∆1

(
1
2

i
2

− i
2

1
2

)
=

(
1
2

i
2

− i
2

1
2

)
.

We consider next an arbitrary minimal projection

(
t c

√
t(1− t)

c
√
t(1− t) 1− t

)

with t ∈ (0, 1), c ∈ T. It follows from the above properties that

∆1

(
t c

√
t(1− t)

c
√
t(1− t) 1− t

)
=

(
s d

√
s(1 − s)

d
√
s(1− s) 1− s

)
,
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for a unique pair (s, d) ∈ (0, 1)× T. The equalities

2(1− t)
p
2 =

∥∥∥∥

(
t c

√
t(1− t)

c
√
t(1− t) 1− t

)
−

(
1 0
0 0

)∥∥∥∥
p

p

=

∥∥∥∥∆1

(
t c

√
t(1− t)

c
√
t(1− t) 1− t

)
−∆1

(
1 0
0 0

)∥∥∥∥
p

p

=

∥∥∥∥

(
s d

√
s(1− s)

d
√
s(1− s) 1− s

)
−

(
1 0
0 0

)∥∥∥∥
p

p

= 2(1− s)
p
2 ,

2

((
t−

1

2

)2

+

∣∣∣∣c
√
t(1− t)−

i

2

∣∣∣∣
2
) p

2

=

∥∥∥∥

(
t c

√
t(1− t)

c
√
t(1 − t) 1− t

)
−

(
1
2

i
2

− i
2

1
2

)∥∥∥∥
p

p

=

∥∥∥∥∆1

(
t c

√
t(1− t)

c
√
t(1 − t) 1− t

)
−∆1

(
1
2

i
2

− i
2

1
2

)∥∥∥∥
p

p

=

∥∥∥∥

(
s d

√
s(1− s)

d
√
s(1− s) 1− s

)
−

(
1
2

i
2

− i
2

1
2

)∥∥∥∥
p

p

2

((
s−

1

2

)2

+

∣∣∣∣d
√

s(1− s)−
i

2

∣∣∣∣
2
) p

2

,

and

2

((
t−

1

2

)2

+

∣∣∣∣c
√
t(1− t)−

1

2

∣∣∣∣
2
) p

2

=

∥∥∥∥

(
t c

√
t(1− t)

c
√
t(1− t) 1− t

)
−

(
1
2

1
2

1
2

1
2

)∥∥∥∥
p

p

=

∥∥∥∥∆1

(
t c

√
t(1− t)

c
√
t(1− t) 1− t

)
−∆1

(
1
2

1
2

1
2

1
2

)∥∥∥∥
p

p

=

∥∥∥∥

(
s d

√
s(1 − s)

d
√
s(1− s) 1− s

)
−

(
1
2

1
2

1
2

1
2

)∥∥∥∥
p

p

= 2

((
s−

1

2

)2

+

∣∣∣∣d
√
s(1 − s)−

1

2

∣∣∣∣
2
) p

2

,

imply that s = t and c = d. This shows that ∆1

(
t c

√
t(1 − t)

c
√
t(1− t) 1− t

)
=

(
t c

√
t(1− t)

c
√
t(1− t) 1− t

)
for every t and c as above, that is, ∆1 in the identity

mapping on rank one projections.

For every unitary u in B(H) = M2(C), there exist mutually orthogonal minimal
projections q1, q2 ∈ Proj1(B(H)) and s, t ∈ T such that u = sq1 + tq2. We set
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ã =
1

2
1
p

u =
2∑

j=1

σj(ã)ej and b̃ = ∆1(ã) =
2∑

j=1

σj (̃b)vj , where {e1 = sq1, e2 = tq2}

and {v1, v2} are two families of mutually orthogonal minimal partial isometries,

while σj(ã) and σj (̃b) stand for the singular values of ã and b̃, respectively. As

before, we denote em =
∑

j,σ1(ã)=σj(ã)

ej = u and vm =
∑

j,σ1 (̃b)=σj (̃b)

vj ∈ B(H).

By repeating the arguments in the third paragraph of this proof to the mappings
fã, fb̃ : Umin(H) → R

+
0 , fã(e) := ∥ã − e∥pp and f

b̃
(e) := ∥b − e∥pp, we deduce that

σ1(̃b) = σ2 (̃b) =
1

2
1
p
, and consequently vm = u = em and ã = b̃ = ∆1(ã), and by

Proposition 2.4(b) we have
{
v ∈ Umin(H) : fã(v) = min

e∈Umin(H)
fã(e)

}
= {v ∈ Umin(H) : v ≤ u}

=

{
v ∈ Umin(H) : fb̃(v) = min

e∈Umin(H)
fb̃(e)

}
,

which implies that if v is a minimal projection such that v ≤ u then ∆1(v) is a
minimal projection satisfying ∆1(v) ≤ u.

Let e be an arbitrary minimal partial isometry in B(H). Let us find another
minimal partial isometry v ∈ B(H) satisfying e ⊥ v. We consider the unitaries
u1 = e + v and u2 = e − v. Since e ≤ uj for all j = 1, 2, it follows from the
conclusion in the above paragraph that ∆1(e) ≤ uj for all j = 1, 2. It can be easily
deduced from this and the minimality of ∆1(e) that ∆1(e) = e. We have therefore
shown that ∆1(e) = e for every minimal projection e ∈ B(H).

Finally, let a be an element in S(Cp(H)). For each e ∈ Umin(H) we have

∥∆1(a)− e∥p = ∥∆1(a)−∆1(e)∥p = ∥a− e∥p,

and consequently, an application of Proposition 2.10 proves that ∆1(a) = a, for
every a in S(Cp(H)), which finishes the proof. !

Let e be a partial isometry in B(H). It is known that B(H) = B(H)0(e) ⊕
B(H)1(e)⊕B(H)2(e), where B(H)0(e), B(H)1(e) and B(H)2(e) are the so-called
Peirce subspaces associated with e, which are defined by

B(H)2(e) = ee∗B(H)e∗e,B(H)1(e) = (1− ee∗)B(H)e∗e⊕ ee∗B(H)(1 − e∗e),

and
B(H)0(e) = (1− ee∗)B(H)(1 − e∗e)

. The natural projection of B(H) onto B(H)j(e) is called the Peirce j-projection,
and it will be denoted by Pj(e). When e is a minimal partial isometry the Peirce
subspace B(H)2(e) coincides with Ce, and in such a case, for each x ∈ B(H), we
shall write ϕe(x) for the unique complex number satisfying P2(e)(x) = ϕe(x)e.

Our next result is a first application of the previous Theorem 2.11.

Proposition 2.12. Let H and H ′ be complex Hilbert spaces, let p ∈ (1,∞)\{2},
and let ∆ : S(Cp(H)) → S(Cp(H ′)) be a surjective isometry. Suppose e and v
are minimal partial isometries in S(Cp(H)). Then P2(∆(e))(∆(v)) belongs to the

set {ϕe(v)∆(e),ϕe(v)∆(e)}, equivalently, ϕ∆(e)(∆(v)) = ϕe(v) or ϕ∆(e)(∆(v)) =

ϕe(v), and ∥P0(∆(e))(∆(v))∥p = ∥P0(e)(v)∥p.
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Proof. By Remark 2.6 we can find a family of mutually orthogonal minimal partial

isometries {e1, e2} ∪ {ej : j ∈ J} such that
⋂

j∈J

{ej}
⊥ ∼= Cp(H1), where H1 is a two

dimensional complex Hilbert space, e = e1, and v ∈ S

⎛

⎝
⋂

j∈J

{ej}
⊥

⎞

⎠ ∼= S(Cp(H1)) ⊂

S(Cp(H)). By Lemma 2.3 and Proposition 2.4 we get

∆

⎛

⎝

⎛

⎝
⋂

j∈J

{ej}
⊥

⎞

⎠ ∩ S(Cp(H))

⎞

⎠ =

⎛

⎝
⋂

j∈J

{∆(ej)}
⊥

⎞

⎠ ∩ S(Cp(H
′)) ∼= S(Cp(H1)).

By restricting ∆ to

⎛

⎝
⋂

j∈J

{ej}
⊥

⎞

⎠ ∩ S(Cp(H)) we can assume that H = H ′ = H1

is a two dimensional complex Hilbert space, and ∆ : S(Cp(C2)) → S(Cp(C2)) is a
surjective isometry.

By Theorem 2.11 there exists a surjective real linear isometry T : Cp(C2) →
Cp(C2) whose restriction to S(Cp(C2)) is ∆. It is known that, in this case, there
exist unitaries u, v ∈ M2(C) such that one of the following statements holds:

(a) T (x) = uxv, for every x ∈ Cp(C2);
(b) T (x) = uxtv, for every x ∈ Cp(C2);
(c) T (x) = uxv, for every x ∈ Cp(C2);
(d) T (x) = ux∗v, for every x ∈ Cp(C2),

where (xij) = (xij) (just combine Proposition 2.7 and [17, Theorem 11.2.3]). Under
these circumstances, it is a routine exercise to check that the desired conclusions
hold. !

Combining Propositions 2.7 and 2.12 we get the following corollary.

Corollary 2.13. Let H and H ′ be complex Hilbert spaces, let p ∈ (1,∞)\{2}, and
let ∆ : S(Cp(H)) → S(Cp(H ′)) be a surjective isometry. Suppose e and v are
two minimal partial isometries in S(Cp(H)). Then one of the following statements
hold:

(a) If ∆(λw) = λ∆(w) for every λ ∈ T and every w ∈ Umin(H), then

P2(∆(e))(∆(v)) = ϕe(v)∆(e),

equivalently, ϕ∆(e)(∆(v)) = ϕe(v);

(b) If ∆(λw) = λ∆(w) for every λ ∈ T and every w ∈ Umin(H), then

P2(∆(e))(∆(v)) = ϕe(v)∆(e),

equivalently, ϕ∆(e)(∆(v)) = ϕe(v).

Proof. We shall only prove statement (a), the proof of (b) is analogous. We therefore
assume that ∆(λw) = λ∆(w) for every λ ∈ T and every w ∈ Umin(H). Proposition
2.12 implies that P2(∆(e))(∆(v)) ∈ {ϕe(v)∆(e),ϕe(v)∆(e)}. If P2(∆(e))(∆(v)) =
ϕe(v)∆(e) there is nothing to prove. Suppose that P2(∆(e))(∆(v)) = ϕe(v)∆(e) ≠
0. By assumptions ∆(iv) = i∆(v), and by Proposition 2.12 we have

iϕe(v)∆(e) = P2(∆(e))(∆(iv)) ∈ {ϕe(iv)∆(e),ϕe(iv)∆(e)},

which proves that ϕe(v) ∈ R, and hence P2(∆(e))(∆(v)) = ϕe(v)∆(e).
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!

We are now in position to reveal a connection with the celebrated Wigner theo-
rem. Let Proj(H) denote the lattice of all projections on a Hilbert spaceH equipped
with the usual partial ordering, and let Proj1(H) stand for the set of minimal (rank-
one) projections on H . We recall that a conjugate-linear norm preserving bijection
on H is called an antiunitary operator. Wigner’s unitary-antiunitary theorem reads
as follows:

Theorem 2.14. (Wigner’s theorem [3]) If F : Proj1(H) → Proj1(H) is a bijective
function which preserves the transition probabilities, that is,

tr (F (p)F (q)) = tr(pq), (p, q ∈ Proj1(H)),

then there is an either unitary or antiunitary operator u on H such that F is of the
form F (p) = upu, for all p ∈ Proj1(H). !

We refer to [22, 23] and [24] for recent generalizations of Wigner’s theorem. We
are interested in a concrete extension established by L. Molnár in [24]. In the
just quoted paper, Molnár replaces the set, Proj1(H), of minimal projections on
H with the strictly wider set, Umin(H), of minimal partial isometries in B(H) and
determines the bijections on Umin(H) preserving the transition probabilities.

Theorem 2.15. [24, Theorem 2] Let F : Umin(H) → Umin(H) be a bijective
function preserving the transition probabilities, that is,

tr (F (e)∗F (v)) = tr(e∗v), for all e, v ∈ Umin(H),

then F is of one of the following forms:

(a) There exist unitaries û, v̂ on H such that F (e) = ûev̂, for all e ∈ Umin(H), that
is, F coincides with the restriction to Umin(H) of a complex linear bijection on
B(H) preserving triple products of the form {a, b, c} = 1

2 (ab
∗c+ cb∗a);

(b) There exist antiunitaries û, v̂ on H such that F (e) = ûe∗v̂, for all e ∈ Umin(H),
that is, F coincides with the restriction to Umin(H) of a complex linear bijection
on B(H) preserving triple products of the form {a, b, c} = 1

2 (ab
∗c+ cb∗a). !

If ∆ : S(Cp(H)) → S(Cp(H ′)) is a surjective isometry, where H and H ′ are
complex Hilbert spaces, we deduce from Lemma 2.3 thatH andH ′ are isometrically
isomorphic. We can therefore restrict our study to the case in which H = H ′.

We can now establish our main result.

Theorem 2.16. Let H be a complex Hilbert space, let p ∈ (1,∞)\{2} be a fixed
real number, and let ∆ : S(Cp(H)) → S(Cp(H)) be a surjective isometry. Then
there exists a complex linear or a conjugate linear surjective isometry T : Cp(H) →
Cp(H) whose restriction to S(Cp(H)) is ∆.

Proof. We deduce from Corollary 2.5 that the restricted mapping F = ∆|
Umin(H)

:
Umin(H) → Umin(H) is a surjective isometry. Corollary 2.7 assures that one of the
following statements holds:

(a) ∆(λv) = λ∆(v) for every λ ∈ T and every v ∈ Umin(H);
(b) ∆(λv) = λ∆(v) for every λ ∈ T and every v ∈ Umin(H).

Let us assume that (a) holds. Corollary 2.13 tells that P2(∆(e))(∆(v)) =
ϕe(v)∆(e), equivalently, ϕ∆(e)(∆(v)) = ϕe(v), for every e, v ∈ Umin(H). It is
a routine exercise to check that in this case tr(∆(e)∗∆(v)) = tr(e∗v), for every
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e, v ∈ Umin(H). Molnár’s theorem (see Theorem 2.15) combined with our hypoth-
esis assure the existence of two unitaries (respectively, two antiunitaries) û, v̂ on H
such that

(8) ∆(e) = û e v̂, (respectively, ∆(e) = û e∗ v̂),

for all e ∈ Umin(H). We define a surjective isometry ∆1 : S(Cp(H)) → S(Cp(H))
given by ∆1(x) = û∗ ∆(x) v̂∗ (respectively, ∆1(x) = v̂ ∆(x)∗ û). It follows from
(8) that ∆1(e) = e, for all e ∈ Umin(H).

Fix a finite rank operator a ∈ S(Cp(H)), and let us pick a family of mutu-
ally orthogonal minimal partial isometries {ej : j ∈ J} ⊂ S(Cp(H)) such that

a ∈ S

⎛

⎝
⋂

j∈J

{ej}
⊥

⎞

⎠ ∼= S(Cp(H1)) ⊂ S(Cp(H)), where H1 is a finite dimensional

complex Hilbert space. By Lemma 2.3 and Proposition 2.4 we get

∆1

⎛

⎝

⎛

⎝
⋂

j∈J

{ej}
⊥

⎞

⎠ ∩ S(Cp(H))

⎞

⎠ =

⎛

⎝
⋂

j∈J

{∆1(ej)}
⊥

⎞

⎠ ∩ S(Cp(H)) ∼= S(Cp(H1)).

By restricting ∆1 to

⎛

⎝
⋂

j∈J

{ej}
⊥

⎞

⎠ ∩ S(Cp(H)) we can assume that H = H1 is a

finite dimensional complex Hilbert space, and ∆1 : (Mm(C), ∥.∥p) → (Mm(C), ∥.∥p)
is a surjective isometry for a suitable natural m.

Under these assumptions we have

∥∆1(a)− e∥p = ∥∆1(a)−∆1(e)∥p = ∥a− e∥p,

for every e ∈ Umin(H). Proposition 2.10 now implies that ∆1(a) = a.

We have shown that ∆1(a) = a, for every finite rank operator a ∈ S(Cp(H)).
Since finite rank elements in S(Cp(H)) are norm dense in S(Cp(H)), we conclude
from the continuity of ∆1 that ∆1(x) = x, for every x ∈ S(Cp(H)), and conse-
quently ∆(x) = û x v̂, for every x ∈ S(Cp(H)).

We assume next that statement (b) holds. Let us take a conjugate linear ∗-
automorphism of period-2 · on B(H) whose restriction to Cp(H) defines a conju-
gate linear isometry of period-2 on the latter space. The mapping∆2 : S(Cp(H)) →

S(Cp(H)) given by ∆2(x) = ∆(x) is a surjective isometry satisfying

∆2(λv) = ∆(λv) = λ∆(v) = λ∆(v) = λ∆2(v)

for every λ ∈ T and every v ∈ Umin(H). Therefore, by applying the conclusion in
the previous part, we deduce the existence of unitaries or antiunitaries û, v̂ on H
such that ∆2(x) = ûxv̂, for every x ∈ S(Cp(H)). Consequently,

∆(x) = ∆2(x) = û x v̂ = û x v̂,

for every x ∈ S(Cp(H)). !
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