UNIVERSITAT POLITÈCNICA DE VALÈNCIA ESCUELA POLITÉCNICA SUPERIOR DE ALCOY

TRABAJO FIN DE GRADOGRADO EN INGENIERÍA MECÁNICA

"Proyecto de mejoras en la instalación de transporte de fluidos contaminados de la empresa BEMARSA"

Autor: SERGIO BONET SÁNCHEZ

Dirigido por: RAFAEL PLÁ FERRANDO

Febrero, 2021

RESUMEN

PROYECTO DE MEJORAS EN LA INSTALACIÓN DE TRANSPORTE DE FLUIDOS CONTAMINADOS DE LA EMPRESA BEMARSA

El proyecto trata sobre el dimensionamiento y diseño de un red de conductos para transportar fangos procedentes de las distintas operaciones realizadas en la fabrica siguiendo la normativa vigente.

En primer lugar, se ubicara la fabrica, la superficie que abarca y a que se dedica.

A continuación, se hace la previsión de caudal que es demandado por cada maquinaria para dimensionar los conductos y poder seleccionar la bomba. Al tener las bombas seleccionadas se hará una previsión de la potencia necesaria para proyectar el cuadro de mando y potencia. Al haber sistema eléctrico deberos de poner protecciones tal y como se indica en el Reglamento Electrotécnico de Baja Tensión.

Posteriormente se detalla un pliego de condiciones donde se especifica normativas, condiciones y responsabilidades del proyecto

Mas adelante se hará un presupuesto realizado por MENFIS donde aparecerá detallado todos los precios incluyendo IVA y el beneficio industrial.

Por ultimo, se mostrara los planos de la instalación.

SUMMARY

PROYECT OF IMPROVEMENTS IN THE SETTING OF CONTAMINANTED FLUID TRANSPORT OF THE COMPANY BEMARSA

The Project deals witch the sizing and design f a network of pipes to transport mud coming from different operations made in the factory following the current regulation.

First of all factory location will be determined, the surface it encompasses at what its purpose is.

Secondly, the prevision of flow that each machine requires is established, in order to measure the pipes and select the pump. Once the pipes are selected an estimate of required power will be completed, in order to protect the control panel and power. Since there is an electric system, protections have to be set as Low Tension Electronic Regalement indicates.

Furthermore, a conditions sheet is itemized, where rules, conditions and responsibilities of the project are specified.

Later on, a budget will be made by MENFIS, where all prices, including taxes, and industrial profits will appear.

Finally, design of the installation will be shown.

RESUM

PROJECTE DE MILLORES EN LA INSTAL·LACIÓ DE TRANSPORT DE FLUIDS CONTAMINATS DE L'EMPRESA BEMARSA

El projecte tracta sobre el dimensionament i disseny d'un xarxa de conductes per a transportar fangs procedents de les diferents operacions realitzades en la fabrica seguint la normativa vigent.

En primer lloc, se situara la fabrica, la superfície que abasta i al fet que es dedica.

A continuació, es fa la previsió de cabal que és demandat per cada maquinària per a dimensionar els conductes i poder seleccionar la bomba. En tindre les bombes seleccionades es farà una previsió de la potència necessària per a projectar el quadre de comandament i potència. A l'haver sistema elèctric havervos de posar proteccions tal com s'indica en el Reglament Electrotècnic de Baixa Tensió.

Posteriorment es detalla un plec de condicions on s'especifica normatives, condicions i responsabilitats del projecte

Mes avant es farà un pressupost realitzat per MEMFIS on apareixerà detallat tots els preus incloent IVA i el benefici industrial.

Per ultime, es mostrara els plans de la instal·lació.

Tabla de Contenidos

1	MEMORIA	. 13
1.1	ANTECEDENTES	13
1.2	OBJETIVOS	13
1.3	JUSTIFICACIÓN	13
1.4	MOTIVACIÓN	13
1.5	TITULAR DE LA INSTALACIÓN	14
1.5.	1 Nombre, domicilio social	14
1.6	EMPLAZAMIENTO DE LAS INSTALACIONES.	14
1.7	REGLAMENTACIÓN Y NORMAS TÉCNICAS CONSIDERADAS.	14
1.7.	1 Instalación eléctrica	15
1.7.	2 Instalaciones hidráulicas	15
1.8	CLASIFICACIÓN Y CARACTERÍSTICAS DE LAS INSTALACIONES ELÉCTRICAS	15
1.8.	1 SISTEMA DE ALIMENTACIÓN. TENSIONES DE ALIMENTACIÓN	15
1.8.	2 Clasificación	15
1.8.	3 CARACTERÍSTICAS DE LA INSTALACIÓN.	16
1.9	PROGRAMA DE NECESIDADES	17
1.9.	1 CONDICIONES HIDRÁULICAS DE CADA UNA DE LAS ACTUACIONES A REALIZAR	17
1.9.	2 POTENCIA TOTAL PREVISTA DE LA INSTALACIÓN.	18
1.10	DESCRIPCIÓN DE LA INSTALACIÓN	18
1.10	0.1 Elementos Hidráulicos	18
1.10	0.2 Instalaciones receptoras fuerza y/o alumbrado.	23
1.10	0.3 Alumbrados especiales	25
2	CÁLCULOS JUSTIFICATIVOS	. 29
	CÁLCULOS HIDRÁULICOS	
2.1.		
2.1.		
	3 SELECCIÓN DE BOMBAS	
	CALCULOS ELECTRICOS.	
2.2.		
2.2.		
	3 POTENCIA PREVISTA DE CÁLCULO.	

2.2.4	4 CÁLCULO DE LA SECCIÓN.	60
2.2.5	CÁLCULO DE LAS PROTECCIONES A INSTALAR EN LAS DIFERENTES LÍNEAS GENERALES Y DERIVADAS	63
2.2.6	CÁLCULO DEL SISTEMA DE PROTECCIÓN CONTRA CONTACTOS INDIRECTOS	65
3 I	PLIEGO DE CONDICIONES	69
3.1 (CALIDAD DE MATERIALES	69
3.1.1	L ELEMENTOS DEL SISTEMA HIDÁULICO	69
3.1.2	2 Materiales eléctricos	69
3.2	NORMAS DE EJECUCIÓN DE LAS INSTALACIONES	71
3.3 F	PRUEBAS REGLAMENTARIAS	71
3.4 (CONDICIONES DE USO, MANTENIMIENTO Y SEGURIDAD	72
	CERTIFICADOS Y DOCUMENTACIÓN QUE DEBE DISPONER EL TITULAR. AUTORIZACIÓN DE L ALACIÓN	
4 I	PRESUPUESTO	75
4.1	MEDICIONES	75
4.2 (CUADRO DE PRECIO N1	82
4.3 (CUADRO DE PRECIO N2	88
4.4 F	PRESUPUESTO	99
4.5 F	RESUMEN PRESUPUESTO	.105
5 I	PLANOS 2	L 0 9
LISTA	ADO DE TABLAS	.111

1.MEMORIA

1 MEMORIA

1.1 ANTECEDENTES.

Se ha realizado una instalación de bombas hidráulicas con sus correspondientes conductos, accesorios y instalación eléctrica, donde proporcionara el abastecimiento de agua a la maquinaria de la fabrica.

España es actualmente el segundo productor de mármol del mundo, focalizándose la producción en Alicante, Murcia y Almería.

El sector del mármol es amplio se puede especializar en la construcción y decoración, estatuas y monumentos, mobiliario u otros..., pero la principal demanda es la de la construcción.

Actualmente Bemarsa se sitúa en sexta posición de empresas con mas facturación en este sector.

En este momento el crecimiento del sector va a la baja debido a la gran competencia que esta creando la imitación del mármol en el sector porcelánico.

1.2 OBJETIVOS

Se definirá y dimensionará la instalación para el transporte de fango en la fabrica.

El transporte de los residuos se llevara desde la balsa hasta los silos de decantación, definiendo los diferentes equipos e instalaciones utilizadas.

La instalación ha de cumplir toda normativa vigente. Se incluirá un pliego de condiciones técnica donde se reflejara las condiciones técnicas. Para terminar se ha realizado el presupuesto de la instalación.

1.3 JUSTIFICACIÓN.

Se trata de la mejorar el rendimiento de una instalación antigua siendo responsables de cumplir la normativa actual.

1.4 MOTIVACIÓN

Se realiza este trabajo de fin de grado con el objetivo de mejorar el sistema de trasporte de fangos además de obtener la titulación del gado en ingeniería mecánica.

1.5 TITULAR DE LA INSTALACIÓN.

1.5.1 NOMBRE, DOMICILIO SOCIAL.

Nombre: Sergio

Apellidos: Bonet Sánchez Domicilio: Valencia

Dirección: Calle Clariano 18 Teléfono: +34 669156024

1.6 EMPLAZAMIENTO DE LAS INSTALACIONES.

La industria se sitúa en la Carretera Estación, S/N Elda, en la provincia de Alicante con coordenadas Latitud 38°26'24.46"N Longitud 0°48'50.85"O y un área total de 32.745 m².

Figura 1. Emplazamiento.

1.7 REGLAMENTACIÓN Y NORMAS TÉCNICAS CONSIDERADAS.

- Reglamento Europeo de Productos de Construcción (UE) 305/2011 de 9 de marzo de 2011 por el que se establecen condiciones armonizadas para la comercialización de productos de construcción y se deroga la Directiva 89/106/CEE del Consejo
- Reglamento (UE) 2019/1020 del Parlamento Europeo y del Consejo, de 20 de junio de 2019 relativo a la vigilancia del mercado y la conformidad de los productos y por el que se modifican la Directiva 2004/42/CE y los Reglamentos (CE) nº 765/2008 y (UE) 305/2011
- Reglamento (UE) 2019/1020 del Parlamento Europeo y del Consejo, de 20 de junio de 2019 relativo a la vigilancia del mercado y la conformidad de los productos y por el que se modifican la Directiva 2004/42/CE y los Reglamentos (CE) nº 765/2008 y (UE) 305/2011.

1.7.1 INSTALACIÓN ELÉCTRICA

- Real Decreto 842/2002, de 2 de agosto, por el que se aprueba el Reglamento electrotécnico para baja tensión (BOE núm. 224, de 18/09/2002).
- Real Decreto 560/2010, de 7 de mayo, por el que se modifican diversas normas reglamentarias en materia de seguridad industrial para adecuarlas a la Ley 17/2009, de 23 de noviembre, sobre el libre acceso a las actividades de servicios y su ejercicio, y a la Ley 25/2009, de 22 de diciembre, de modificación de diversas leyes para su adaptación a la Ley sobre el libre acceso a las actividades de servicios y su ejercicio (BOE núm. 125, de 22/05/2010).
- Resolución de 20 de junio de 2003, de la Dirección General de Industria y Energía, por la que se modifican los anexos de las órdenes de 17 de julio de 1989 de la Conselleria de Industria, Comercio y Turismo, y de 12 de febrero de 2001 de la Conselleria de Industria y Comercio, sobre contenido mínimo de los proyectos de industrias e instalaciones industriales (DOGV núm. 4589, de 17/09/03).
- Decreto 141/2012, de 28 de septiembre, del Consell, por el que se simplifica el procedimiento para la puesta en funcionamiento de industrias e instalaciones industriales.(DOCV nº, 6873, de 01/10/2012).
- Real Decreto 1890/2008, de 14 de noviembre, por el que se aprueba el Reglamento de eficiencia energética en instalaciones de alumbrado exterior y sus Instrucciones técnicas complementarias EA-01 a EA-07 (BOE núm. 279, de 19/11/2008).
- Reglamento (UE) 2019/1781 (Motores eléctricos)
- Directiva 2014/35/UE del Parlamento Europeo y del Consejo de 26 de febrero de 2014 sobre la armonización de las legislaciones de los Estados miembros en materia de comercialización de material eléctrico destinado a utilizarse con determinados límites de tensión
- Real Decreto 187/2016, de 6 de mayo, por el que se regulan las exigencias de seguridad del material eléctrico destinado a ser utilizado en determinados límites de tensión (BOE 10/05/2016)

1.7.2 INSTALACIONES HIDRÁULICAS

- Reglamento (UE) 174/2013 (Etiquetado de la eficiencia energética para los equipos ofimáticos)
- Reglamento (UE) 547/2012 (Bombas hidráulicas)
- Reglamento (UE) 2016/2282 que modifica al Reglamento (UE) 547/2012
- Comunicación 2012/C 402/07

1.8 CLASIFICACIÓN Y CARACTERÍSTICAS DE LAS INSTALACIONES ELÉCTRICAS.

1.8.1 SISTEMA DE ALIMENTACIÓN. TENSIONES DE ALIMENTACIÓN

Se tendrá una alimentación que vendrá dado por la red de distribución desde la acometida fijada por la empresa suministradora, ya montada anteriormente.

La alimentación será trifásica con una tensión de 400 V y monofásica con una tensión de 230 V.

1.8.2 CLASIFICACIÓN.

La tarea de bombeo se dividirá en dos estaciones:

- Nave de tablas y taller. Engloba a la nave dedicada a la producción de tablas y taller a los acabados. Esta estación de bombeo contara con unca superficie de 28 m² y una profundidad de 3,66 metros.
- Nave de losas. Engloba a la maquinaria designada para la producción de losas. Esta estación de bombeo contara con unca superficie de 19,5 m² y una profundidad de 4,83 metros.

1.8.2.1 LOCALES HÚMEDOS (ITC-BT-30)

El local se clasifica como como local húmedo, ya que esta fabrica al trabajar con agua para realizar los procesos de corte y pulido el suelo y paredes están húmedos.

Las canalizaciones, empalmes, terminales y conexiones tendrán estarán estancas con una protección IPX1.

El cableado a utilizar tendrá una tensión de 0.6/1 kV, todo elemento debe de disponer del grapo de protección IPX1 donde cita la protección correspondiente a la caída vertical de gotas, con una resistencia a la corrosión 3, según ITC-BT-21.

Se instalara un dispositivo de protección al principio de cada circuito según ITC-BT-22.

El alumbrado estarán protegidos contra la caída de agua con IPX1.

1.8.2.2 LOCALES MOJADOS (ITC-BT-30)

La instalación también se ha considerado mojada, ya que tiene un agitador sumergido en una balsa, además de cumplir la normativa vista anteriormente debe de cumplir la siguiente.

Las canalizaciones, empalmes, terminales y conexiones tendrán estarán estancas con una protección IPX4.

El cableado a utilizar tendrá una tensión de 0.6/1 kV, todo elemento debe de disponer del grapo de protección IPX4 donde cita la protección correspondiente a la caída vertical de gotas, con una resistencia a la corrosión 4, según ITC-BT-21.

El alumbrado estarán protegidos contra la caída de agua con IPX4.

1.8.3 CARACTERÍSTICAS DE LA INSTALACIÓN.

Se montara conductos sobre pared de mampostería desde el cuadro de mando hasta las bombas y agitador.

1.8.3.1 TIPOS DE CONDUCTORES E IDENTIFICACIÓN DE LOS MISMOS.

Los conductores serán de cobre de una tensión de 0,6/1 kV según UNE-21123-4.

Para la alimentación de las bombas utilizaremos especial para cuartos húmedos según la UNE-EN 50200, resistentes al fuego según ITC-BT 28.

Para la alimentación de los agitadores utilizaremos cables especiales para motores sumergidos del fabricante PRYSMIAN que sigue la normativa UNE 21166, resistentes al fuego.

1.8.3.2 CANALIZACIONES FIJAS.

Se utilizara tubos rígidos Tipo 4321 de PVC, y en caso necesario los tubos podrán ser flexibles. Se ha de cumplir la normativa ITC-BT-21, el diseño debe de cumplir la norma UNE-EN-61386, UNE-EN-60423 y UNE-EN-60529.

1.8.3.3 SISTEMA DE PROTECCIÓN CONTRA CONTACTOS INDIRECTOS.

Utilizaremos interruptores diferenciales para los contactos indirectos.

1.8.3.4 PROTECCIÓN CONTRA SOBRECARGAS Y CORTOCIRCUITOS.

Los circuitos tienen que estar protegidos contra sobreintensidades, interrumpiendo en un tiempo optimo.

Las sobreintensidades se dan por sobrecargas o por algún defecto de alimentación, por descargas atmosféricas o cortacircuitos.

Utilizaremos interruptores automáticos de corte omnipolar para protegerlos, poniéndolos al inicio del cada circuito.

1.9 PROGRAMA DE NECESIDADES.

1.9.1 CONDICIONES HIDRÁULICAS DE CADA UNA DE LAS ACTUACIONES A REALIZAR.

1.9.1.1 CAUDALES DE LOS DIFERENTES CIRCUITOS

Cada maquina tiene su consumo de agua que viene marcado por el fabricante, en las tres siguiente tablas e muestra los consumos de agua.

Tabla 1. Consumos de máquinas en nave de losas.

Máquina	Caudal (m³/h)
Calibre de losas	18
Pulidora de losas	20,4
Relifadora 1	3,6
Refiladora 2	3,6
Multidisco	4,8
Desdobladora 4	14,4
Desdobladora 6	20,4
Rodapie	12

Tabla 2. Consumos de máquinas en nave de tablas.

Máquina	Caudal (m³/h)
Calibre de tablas 1	19,2
Calibre de tablas 2	19,2
Pulidora de tabla	20,4
Telar 1	42
Telar 2	42
Telar 3	42
Telar 4	42

Tabla 3. Consumos de máquinas en taller.

Máquina	Caudal (m³/h)
Discopuente 1	2,7
Discopuente 2	2,1
Pulidora manual	0,9
Cortadora	2,1
Multidiscos	4,8
Pulidora de cantos	6

1.9.2 POTENCIA TOTAL PREVISTA DE LA INSTALACIÓN.

Basándonos en el ITC-BT-10 se ha realizado una tabla donde recoge la potencia que tendrá nuestra teniendo en cuenta la actuación de la bomba, el agitador y la iluminaria.

Tabla 4. Potencia prevista en nave de losas.

Máquina	Potencia unitaria (kW)
Bomba GNI-26/10	7,5
Agitador	0,6
LED B65	0,03

Tabla 5. Potencia prevista en nave de tablas y taller.

Máquina	Potencia unitaria (kW)
Bomba GNI 150-26/30	22
Agitador	0,6
LED B65	0,03

Tabla 6. Potencia total prevista.

Máquina	Unidades	Potencia unitaria (kW)
Bomba GNI-26/10	1	7,5
Bomba GNI 150-26/30	1	22
Agitador	2	0,6
LED B65	6	0,2
		30,3

1.10 DESCRIPCIÓN DE LA INSTALACIÓN.

1.10.1 ELEMENTOS HIDRÁULICOS

1.10.1.1 TUBOS

Para los tubos se ha utilizado tubos de polietileno de alta densidad (PE) fabricadas según la normativa UNE-EN 12201.

Tiene una durabilidad de al menos 50 años, resistencia a la corrosión y a la mayor parte de los agente químicos.

Al tener una superficie lisa tiene un factor de fricción bajo, alta flexibilidad y al fabricarse en royos podemos conseguir grandes longitudes sin necesidad de empalmes.

Este materia es buen aislante térmico consiguiendo así que el agua de las tubería no se cógele en invierno.

En nuestra instalación contará con dos medidas diferentes de tubos.

Tabla 7. Características de los conductos.

Emplazamiento	Tramo	Modelo	Diámetro (mm)	Longitud (m)
Nave de tablas y taller	Aspiración	DN125	125	4,20
	Impulsión	DIN125	125	14
Nava da lacas	Aspiración	DN225	225	1,886
Nave de losas	Impulsión	DINZZS	225	181,39

El fabricante encargado de suministrar este material es TUYPER.

1.10.1.2 BOMBAS

Las bombas utilizadas serán centrifugas monobloc normalizadas según DIN 24555, lleva acoplada un motor estándar.

El cuerpo de la bomba, rodete y soporte es de hierro fundido y el eje de acero inoxidable. Cuenta con un cierre mecánico de grafito-cerámica normalizado según DIN 24960

Este modelo de bombas (GNI) están preparados para trabajar con fangos de poca densidad.

En la fabrica se contara con dos modelos diferentes como se muestra a continuación.

En la balsa que corresponde a la nave de losas se instalara la bomba centrifuga GNI 65-26/10 con una potencia de 7,5 kW. Se monta en el suelo anclado con 2 tornillos de métrica 14 de acero inoxidables.

En la balsa que corresponde a la nave de tablas y taller se instalara la bomba centrifuga GNI 125-35 con una potencia de 22 kW. Se monta en el suelo anclado con 2 tornillos de métrica 23 de acero inoxidables.

Se dispondrá en cada estación de bombeo de tres bombas del modelo correspondiente, las bombas se alternaran cada día una.

El fabricante elegido para las bombas es IDEAL.

Figura 2. Bomba centrifuga Ideal GNI.

1.10.1.3 AGITADOR

La instalación contara con un agitador en cada balsa. Su función será la de homogeneizar los fangos del fondo para que no se depositen en el fondo y creen obstrucción.

Esta medida hará que las labores de mantenimiento sean reducidas.

El modelo escogido es AGS 17-2SHG/0,9 de unas potencia de 600 W del fabricante Ideal. Consta de una hélice y un motor.

Figura 3. Agitador AGS.

1.10.1.4 ELEMENTOS DE SEGURIDAD

VALVULAS DE CORTE

Estas válvulas nos permite cerrar el flujo de fango que circula por la tubería.

Las válvulas de corte están diseñadas para bloquear el agua de forma segura para realizar operaciones de mantenimiento o de instalación de algún componente del sistema.

Las válvulas escogidas son válvulas de compuerta.

Estas válvulas siguen la normativa UNE-EN-12201-2.

Las válvulas se montaran como se indican a continuación:

- Tuberías de aspiración: Se montara una válvula en cada tubería, esta impedirá el paso del lodo a la bomba.
- Tuberías de impulsión: Se montara una válvula en cada tubería, cortando el paso de lodo hacia las otras bombas.

En nuestra instalación tendremos un total de doce válvulas de corte, tal y como se ve reflejado en el plano 5.4.1 y 5.4.2.

En la instalación que corresponde a la nave de tablas y taller dispondremos de válvulas de corte con un tamaño de DN 225.

En la instalación que corresponde a la nave de losas dispondremos de válvulas de corte con un tamaño de DN 125.

El fabricante encargado de suministrarnos esta válvula es MASA.

Figura 4. Válvula de corte de compuerta (PE).

- VALVULA DE RETENCIÓN

Es una válvula que permite el flujo del lodo en un solo sentido. Las válvulas que utilizaremos será del tipo clapeta oscilante.

La función de estas válvulas es evitar cuando se pare la bomba el lodo que se encuentra en la tubería de impulsión vuelva a la balsa, otra de las funciones que tiene es la circulación de fangos cuando otra bomba se ponga en funcionamiento pudiendo bombear así el total del caudal hacia los silos de decantación.

Al estar la bomba en carga no será necesario un segunda válvula de retención en la tubería de aspiración para evitar el descebado de la misma.

Se instala una válvula de retención en la tubería de impulsión tal y como se ve reflejado en el plano 5.4.1 y 5.4.2.

En la instalación que corresponde a la nave de tablas y taller dispondremos de válvulas de retención con un tamaño de DN 225.

En la instalación que corresponde a la nave de losas dispondremos de válvulas de retención con un tamaño de DN 125.

El fabricante encargado de suministrarnos esta válvula es MASA.

Figura 5. Válvula de retención de clapeta (PE).

1.10.1.5 ARRANCADORES Y VARIADORES

En la instalación contaremos con variadores de frecuencia para regular la velocidad de giro de la bomba.

Al contar con un variador de frecuencia nos da múltiples beneficios como el ahorro energético y una mejor regulación.

Estos variadores cuentan con una protección IP20, irán alojador en el cuadro de mando de la instalación.

El variador elegido cuenta con un PDI el cual ira conectado a un sensor de proximidad, cuando la sonda note que el nivel de la balsa sube la velocidad de giro aumentara para así mantener el fango a un nivel constante.

La sonda será ultrasónica de 4-20 mA modelo 3RG623, del fabricante Bero.

El fabricante encargado de suministrarnos el variador es Schneider Electric.

Tabla 8. Modelo del variador.

Emplazamiento	Variador	Potencia (kW)
Nave de tablas y taller	ATV/220	7,5
Nave de losas	ATV320	22

Figura 6. Variador de frecuencia ATV320.

Figura 7. Sonda ultrasónica de 4..20mA SONAR BERO 3RG623.

1.10.2 INSTALACIONES RECEPTORAS FUERZA Y/O ALUMBRADO.

1.10.2.1 CUADROS SECUNDARIOS Y SU COMPOSICIÓN.

La instalación se compone de dos cuadros secundarios, el subcuadro uno hace referencia a la instalación de la nave de tablas y taller y el subcuadro dos hace referencia a la nave de losas.

Estos subcuadros se encargaran de darle potencia a las bombas, el agitador y el alumbrado.

Deberán de cumplir la ITC-BT-17 que hace referencia a la situación. Como mínimo ha de situarse a un metro de altura y todos los interruptores se coloran dentro de una caja que contara con una protección IP30 e IK07.

Tabla 9. Composición de los cuadros secundarios.

Línea	Interruptor magnetotérmico	Interruptor diferencial				
Subcuadro 1	Mag. 63 A Curva C 4P	I dif. 300 mA característica S				
Bomba GNI 125-32/30	Mag. 50 A Curva C 4P	I dif. 300 mA característica S				
B65 LED	Mag. 10 A Curva C 2P	I dif. 30 mA característica S				
Agitador AGS 170	Mag. 16 A Curva C 4P	I dif. 300 mA característica S				
Subcuadro 2	Mag. 20 A Curva C 4P	I dif. 300 mA característica S				
Bomba GNI 125-32/30	Mag. 16 A Curva C 4P	I dif. 300 mA característica S				
B65 LED	Mag. 10 A Curva C 2P	I dif. 30 mA característica S				
Agitador AGS 170	Mag. 16 A Curva C 4P	I dif. 300 mA característica S				

1.10.2.2 LÍNEAS SECUNDARIAS DE DISTRIBUCIÓN Y SUS CANALIZACIONES.

Los cuadros serán alimentados por líneas de trifásica contando así con 3 conductores, el neutro y el cable de protección.

Se utilizara tubo superficial para el montaje de las líneas siguiendo la ITC-BT-21.

Las líneas que se utilicen para llevar la tensión a los cuadros contaran con un aislamiento RZ1-K(AS) de alta seguridad de acuerdo con la normativa UNE-21123-4.

Las líneas que alimentan a los receptores también contaras con un aislamiento RZ1-K(AS).

Tabla 10. Características de las líneas.

Línea	Longitud (m)	Potencia (kW)	Sección (mm²)	Diámetro tubo (mm)	Tipo de montaje	Aislamiento
Bomba 1 GNI 125-32/30	13,5	22	10	32	Unipolares en tubo de superficie	RZ1-K-(AS)
Bomba 2 GNI 125-32/30	13,5	22	10	32	Unipolares en tubo de superficie	RZ1-K-(AS)
Bomba 3 GNI 125-32/30	13,5	22	10	32	Unipolares en tubo de superficie	RZ1-K-(AS)
B65 LED	13,5	0,1	1,5	16	Unipolares en tubo de superficie	RZ1-K-(AS)
Agitador AGS 170	18	0,6	2,5	16	Unipolares en tubo de superficie	RZ1-K-(AS)
Bomba 1 GNI 125-32/30	7,13	7,5	2,5	20	Unipolares en tubo de superficie	RZ1-K-(AS)
Bomba 2 GNI 125-32/30	7,13	7,5	2,5	20	Unipolares en tubo de superficie	RZ1-K-(AS)
Bomba 3 GNI 125-32/30	7,13	7,5	2,5	20	Unipolares en tubo de superficie	RZ1-K-(AS)
B65 LED	15	0,1	1,5	16	Unipolares en tubo de superficie	RZ1-K-(AS)
Agitador AGS 170	10	0,6	2,5	16	Unipolares en tubo de superficie	RZ1-K-(AS)

1.10.2.3 PROTECCIÓN DE MOTORES Y/O RECEPTORES.

Se utilizara magnetotérmicos para protegerlos de sobreintensidades, teniendo en cuenta la intensidad admisible de los conductores y el cortocircuito.

La curva del magnetotérmico será la C.

Se utilizara diferenciales de 300mA y 30 mApara los contactos indirectos. Además se contara con aislamiento para que los operarios no puedan acceder a las partes activas.

1.10.3 ALUMBRADOS ESPECIALES

Se ha utilizado la iluminaria permanente que hace función de iluminaria de emergencia ya que es una de las características de la serie B65 Led del fabricante Legrand.

Sera alimentado por los subcuadros correspondientes a la instalación, los tubos se regirán por la normativa ITC-BT-21.

Valencia, Febrero 2021

Sergio Bonet Sánchez

2 . ANEXO. CÁLCULOS

2 CÁLCULOS JUSTIFICATIVOS

2.1 CÁLCULOS HIDRÁULICOS

2.1.1 CONDICIONES HIDRÁULICAS DE LOS CIRCUITOS

Cada maquina tiene su consumo de agua que viene marcado por el fabricante, en las tres siguiente tablas se muestra los consumos de agua.

Tabla 11. Consumos de máquinas en nave de losas.

Máquina	Caudal (m ³ /h)
Calibre de losas	18
Pulidora de losas	20,4
Relifadora 1	3,6
Refiladora 2	3,6
Multidisco	4,8
Desdobladora 4	14,4
Desdobladora 6	20,4
Rodapie	12

Tabla 12. Consumos de máquinas en nave de tablas.

Máquina	Caudal (m³/h)
Calibre de tablas 1	19,2
Calibre de tablas 2	19,2
Pulidora de tabla	20,4
Telar 1	42
Telar 2	42
Telar 3	42
Telar 4	42

Tabla 13. Consumos de máquinas en taller.

Máquina	Caudal (m³/h)
Discopuente 1	2,7
Discopuente 2	2,1
Pulidora manual	0,9
Cortadora	2,1
Multidiscos	4,8
Pulidora de cantos	6

Después de un seguimiento en la fabrica se ha realizado una tabla donde se muestra las horas de funcionamiento de cada maquina.

Tabla 14. Consumos por horas en la nave de losas.

	Caudal (m³/h)																							
Maquina / Hora	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Calibre de losas	18	18	18	10	18	18	18	10	18	18	18	10	18	18	18	10	18	18	18	10	18	18	18	10
Pulidora de losas	20,4	20,4	20,4	10	20,4	20,4	20,4	10	20,4	20,4	20,4	10	20,4	20,4	20,4	10	20,4	20,4	20,4	10	20,4	20,4	20,4	10
Refiladora I	3,6	3,6	3,6	10	3,6	3,6	3,6	10	3,6	3,6	3,6	10	3,6	3,6	3,6	10	3,6	3,6	3,6	10	3,6	3,6	3,6	10
Refiladora II	3,6	3,6	3,6		3,6	3,6	3,6		3,6	3,6	3,6		3,6	3,6	3,6		3,6	3,6	3,6		3,6	3,6	3,6	
Multidiscos															4,8									
Desdobladora 4									14,4	14,4	14,4													
Desdobladora 6																	20,4	20,4	20,4	·				
Rodapie													12	12										

Tabla 15. Consumos por horas en la nave de tablas y taller.

												Caudal	(m³/ł	າ)										
Maquina/Hora	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Calibre de tablas I	19,2	19,2	19,2		19,2	19,2	19,2		19,2	19,2	19,2		19,2	19,2	19,2		19,2	19,2	19,2		19,2	19,2	19,2	
Calibre de tablas II	19,2	19,2	19,2		19,2	19,2	19,2		19,2	19,2	19,2		19,2	19,2	19,2		19,2	19,2	19,2		19,2	19,2	19,2	
Pulidora de tablas	20,4	20,4	20,4		20,4	20,4	20,4		20,4	20,4	20,4		20,4	20,4	20,4		20,4	20,4	20,4		20,4	20,4	20,4	
Telar 1	42	42	42	42	42	42	42	42			42	42	42	42	42	42	42	42	42	42			42	42
Telar 2	42	42	42	42			42	42	42	42	42	42	42	42	42	42			42	42	42	42	42	42
Telar 3			42	42	42	42	42	42	42	42	42	42			42	42	42	42	42	42	42	42	42	42
Telar 4	42	42	42	42	42	42	42															42	42	42
Discopuente								2,7	2,7							2,7	2,7							
Discopuente II											2,1	2,1												
Pulidora Manual								0,90		0,90		0,90		0,90		0,90		0,90						
Cortadora									2,1		2,1		2,1		2,1		2,1		2,1					
Multidiscos																	4,8	4,8	4,8					
Pulidora de cantos									6	6			6	6		6	6							

Seguidamente se ha realizado una suma de los caudales de las maquinas por horas.

Tabla 16. Necesidades hídricas de la fabrica.

	Caudal (m³/h)						
Hora	Nave de losas	Nave de tablas y taller					
0	45,6	184,8					
1	45,6	184,8					
2	45,6	226,8					
3	30	168					
4	45,6	184,8					
5	45,6	184,8					
6	45,6	226,8					
7	30	129,6					
8	60	153,6					
9	60	149,7					
10	60	189					
11	30	129					
12	57,6	150,9					
13	57,6	149,7					
14	50,4	186,9					
15	30	135,6					
16	66	158,4					
17	66	148,5					
18	66	191,7					
19	30	126					
20	45,6	142,8					
21	45,6	184,8					
22	45,6	226,8					
23	30	168					

Para facilitar los posteriores cálculos se proceder a eliminar los caudales que se repiten, quedando reflejado a continuación y denominándolos puntos para un mejor planteamiento de los problemas.

Tabla 17. Puntos con carácter representativos.

	Puntos
	45,6
	30
Nava da lacas	60
Nave de losas	57,6
	50,4
	66
	184,8
	226,8
	168
	129,6
	153,6
	129
	150,9
Nave de	149,7
tablas y talle	186,9
	135,6
	158,4
	148,5
	191,7
	126
	142,8
	189

2.1.2 DIMENSIONAMIENTO DE CONDUCCIONES

2.1.2.1 SELECCIÓN DEL MATERIAL

Se ha optado por utilizar polietileno (PE) de alta densidad por la alta durabilidad, resistencia a la corrosión y a la mayor parte de agentes químicos.

Su factor de fricción es bajo, tiene una alta flexibilidad y se fabrica en royos evitando hacer así empalmes.

Este material es buen aislante térmico permitiendo así que la tubería no se congele a bajas temperaturas.

2.1.2.2 VELOCIDAD DEL CIRCUITO

Para determinar la velocidad de nuestro circuito para el flujo de fangos estará entre los valores de 0.7 y 1,8 m/s dato facilitado en el libro de (Warring, 1977).

Se elije el diámetro comercial y con los datos facilitados por el fabricante TUYPER se le resta el espesor para así obtener el diámetro hidráulico con el cual se realizara todos los cálculos posteriores.

Tabla 18. Características de la tubería.

	Diámetro (mm)	Espesor (mm)	Diámetro hidráulico (mm)
Nave de losas	125	4,8	120,2
Nave de tablas y taller	225	8,6	216,4

Una vez haya elegido los diámetros se procede a sacar la sección de las dos tuberías.

$$S = \pi r^2$$

Donde:

S: Sección hidraulica. r: Radio hidrualico.

Tabla 19. Sección hidráulica.

	r (mm)	S (mm ²)
Nave de losas	60,1	11.347,464
Nave de tablas y taller	112,5	36.779,38

Seguidamente se realizara el calculo de la velocidad que tendrá nuestra instalación para cada caudal.

$$V = \frac{Q}{S}$$

Donde:

V: Velocidad del fluido. Q: Caudal del sistema.

S: Sección hidraulica.

Tabla 20. Velocidad en DN125 (PE).

Punto	$Q(m^3/s)$	S (mm ²)	V(m/s)		
45,6	0,013		1,116		
30	0,008		0,734		
60	0,017	11347,46 · 10 ⁻⁶	1,469		
57,6	0,016	11347,46 · 10	1,410		
50,4	0,014		1,234		
66	0,018		1,616		

Tabla 21. Velocidad en DN225 (PE).

Punto	$Q(m^3/s)$	S (mm ²)	V (m/s)
184,8	0,051		1,396
226,8	0,063		1,713
168	0,047		1,269
129,6	0,036		0,979
153,6	0,043		1,160
129	0,036		0,974
150,9	0,042		1,140
149,7	0,042	26770 20 10-6	1,131
186,9	0,052	$36779,38 \cdot 10^{-6}$	1,412
135,6	0,038		1,024
158,4	0,044		1,196
148,5	0,041		1,122
191,7	0,053		1,448
126	0,035		0,952
142,8	0,040		1,079
189	0,053		1,427

VISCOSIDAD

Para calcular la viscosidad se recogieron 3 muestras de un litro y se saco que por cada m³ habían 2,137 kg de residuos.

$$\rho_{H_20}(7^\circ) = 999,96$$

$$\rho_{fango}(7^{\circ}) = 1002,098 \ kg/m^{3}$$

$$v = \frac{\mu}{\rho} = \frac{0.001429}{1002,098}$$

$$v = 1,426 \cdot 10^{-6} \ m^{2}/s$$

Donde:

v: Viscosidad cinemática.

μ: Viscosidad dinámica.

 ρ : Densidad.

- <u>NÚMERO DE REYNOLDS</u>

$$Re = \frac{VD}{v}$$

Donde:

Re: Número de Reynolds.V: Velocidad caracteristica.v: Viscosidad cinematica.

Tabla 22. Número de Reynolds en DN125 (PE).

Punto	V (m/s)	D (m)	$v\left(m^2/s\right)$	Re
45,6	1,116			93.893,551
30	0,734			61.772,073
60	1,469	0,120	$1,426 \cdot 10^{-6}$	123.544,146
57,6	1,410			118.602,380
50,4	1,234			103.777,083
66	1,616			135.898,561

Tabla 23. Número de Reynolds en DN225 (PE).

Punto	V (m/s)	D (m)	$v\left(m^2/s\right)$	Re
184,8	1,396			211.358,686
226,8	1,713			259.394,751
168	1,269			192.144,26
129,6	0,979			148.225,572
153,6	1,160			175.674,752
129	0,974			147.539,342
150,9	1,140			172.586,719
149,7	1,131	0,216	$1,429 \cdot 10^{-6}$	171.214,26
186,9	1,412			213.760,489
135,6	1,024			155.087,867
158,4	1,196			181.164,588
148,5	1,122			169.841,801
191,7	1,448			219.250,325
126	0,952			144.108,195
142,8	1,079			163.322,621
189	1,427			216.162,292

- RUGOSIDAD ABSOLUTA (ε)

$$\varepsilon = \frac{\varepsilon_r}{D}$$

Donde:

 ε : Rugosidad absoluta. ε_r : Rugosidad relativa. D: Diametro hidraulico.

Tabla 24. Rugosidad absoluta.

	ε_{r} (mm)	D (mm)	ε
Nave de losas	$1,5 \cdot 10^{-3}$	120,2	$1,247 \cdot 10^{-5}$
Nave de tablas y taller	$1,5 \cdot 10^{-3}$	216,4	$6,931 \cdot 10^{-6}$

CÁLCULO DEL FACTOR DE FRICCIÓN

Como el número de Reynolds es mayor de 4.000 se empleara la ecuación de Swamee – Jain.

$$f = \frac{0.25}{\left[\log\left(\frac{1}{3.7 \cdot \varepsilon} + \frac{5.74}{Re^{0.9}}\right)\right]^2}$$

Donde:

f: Factor de fricción. Re: Número de Reynolds. ε : Rugosidad absoluta.

Tabla 25. Factor de fricción en tubería DN125 (PE).

Punto	Re	3	f
45,6	93.893,551		0,018
30	61.772,073		0,020
60	123.544,146	1 2 4 7 1 0 = 5	0,017
57,6	118.602,380	$1,247 \cdot 10^{-5}$	0,017
50,4	103.777,083		0,018
66	135.898,561		0,017

Tabla 26. Factor de fricción en tubería DN225 (PE).

Punto	Re	ε	f
184,8	211.358,686		0,015
226,8	259.394,751		0,015
168	192.144,26		0,016
129,6	148.225,572		0,017
153,6	175.674,752		0,016
129	147.539,342		0,017
150,9	172.586,719		0,016
149,7	171.214,26	$6,931 \cdot 10^{-6}$	0,016
186,9	213.760,489	6,931 · 10	0,015
135,6	155.087,867		0,016
158,4	181.164,588		0,016
148,5	169.841,801		0,016
191,7	219.250,325		0,015
126	144.108,195		0,017
142,8	163.322,621		0,016
189	216.162,292		0,015

2.1.3 SELECCIÓN DE BOMBAS

Para seleccionar las bombas debemos de calcular primero la curva resistente de la instalación de la nave de losas y de la nave de tabla junto el taller.

2.1.3.1 PÉRDIDAS DE CARGA CONTINUAS

Estas pérdidas que curre por el rozamiento de la tubería en su longitud, para su calculo nos basaremos en la ecuación de Darcy-Weisbach.

$$h_f = \frac{8 f L}{\pi^2 g D^5} Q^2$$

Donde:

 h_f : Perdidas de carga continua.

f : Factor de fricción.

L: Longitud de la tubería.

g: Gravedad.

D: Diametro hidráulico.

Q: Caudal del sistema.

Tabla 27. Pérdidas continuas en DN125 (PE).

Punto	f	L aspiración (m)	L impulsión (m)	$g(m^2/s)$	D (m)	$\mathbf{h_f}$
45,6	0,018					10.968,668 Q ²
30	0,020					11.988,776 Q ²
60	0,017	1,886	181,39	9,81	0,120	10.372,084 Q ²
57,6	0,017					10.457,516 Q ²
50,4	0,018					
66	0,017					10.176,913 Q ²

Tabla 28. Pérdidas continuas en DN225 (PE).

Punto	f	L aspiración (m)	L impulsión (m)	$g(m^2/s)$	D (m)	$\mathbf{h_f}$
184,8	0,015					925,292 Q ²
226,8	0,015					890,312 Q ²
168	0,016					942,327 Q ²
129,6	0,017					991,307 Q ²
153,6	0,016					958,801 Q ²
129	0,017					992,219 Q ²
150,9	0,016					962,115 Q ²
149,7	0,016	4,20	14	9,81	0,216	963,613 Q ²
186,9	0,015					923,305 Q ²
135,6	0,016					982,481 Q ²
158,4	0,016					953,093 Q ²
148,5	0,016					965,126 Q ²
191,7	0,015					918,871 Q ²
126	0,017					996,864 Q ²
142,8	0,016					972,541 Q ²
189	0,015					921,347 Q ²

2.1.3.2 PÉRDIDA DE CARGA SINGULARES

Estas perdidas son causadas debido al cambio de movimiento que sufre el fluido debido a estrechamiento, ensanchamiento, cambios de dirección, etc.

Para poder calcular las perdidas singulares de la instalación se basara en los estudios realizados por McGraw-Hill en el libro CRANE. Para los estrechamientos y ensanchamiento se guiara por la formulación utilizada en la pagina 2-14 y para el resto de accesorios se utilizara las formulas que van desde las paginas A-46 a la A-49.

$$h_s = \frac{8 k}{\pi^2 g D^4} Q^2$$

Donde:

 h_s : Perdidas de carga continua.

k: Resistencia al flujo.

L: Longitud de la tubería.

g: Gravedad.

D: Diametro hidráulico.

Q: Caudal del sistema.

- ENTRADA DE TUBERIA

$$k = 0.78$$

Tabla 29. Pérdidas en entrada.

	k	D (m)	h _s
DN125	0,78	0,120	308,743 Q ²
DN225	0,78	0,216	29,389 Q ²

- CODO 90°

$$k = 30f$$

Donde:

k: Resistencia al flujof: Factor de fricción

Tabla 30. Pérdidas por codo de 90° en DN125 (PE).

Punto	f	k	D (m)	h _s	Uds. aspiración	Uds. impulsión	$\sum \mathbf{h_s}$
45,6	0,018	0,545		215,811 Q ²			1.726,490 Q ²
30	0,020	0,596		235,882 Q ²			1.887,057 Q ²
60	0,017	0,516	0,120	204,073 Q ²	1	7	1.632,586 Q ²
57,6	0,017	0,520		205,754 Q ²			1.646,033 Q ²
50,4	0,018	0,534		211,409 Q ²			1.691,275 Q ²
66	0,017	0,506		200,233 Q ²			1.601,866 Q ²

Tabla 31. Pérdidas por codo de 90° en DN225 (PE).

Punto	f	k	D(m)	h _s	Uds. aspiración	Uds. impulsión	$\sum \mathbf{h_s}$
184,8	0,015	0,463		17,444 Q ²			87,219 Q ²
226,8	0,015	0,445		16,784 Q ²			83,922 Q ²
168	0,016	0,471		17,765 Q ²			88,825 Q ²
129,6	0,017	0,496		18,688 Q ²			93,442 Q ²
153,6	0,016	0,480		18,076 Q ²			90,378 Q ²
129	0,017	0,496		18,706 Q ²			93,528 Q ²
150,9	0,016	0,481		18,138 Q ²			90,690 Q ²
149,7	0,016	0,482	0.216	18,166 Q ²	1	4	90,831 Q ²
186,9	0,015	0,462	0,216	17,406 Q ²	1	4	87,032 Q ²
135,6	0,016	0,492		18,522 Q ²			92,610 Q ²
158,4	0,016	0,477		17,968 Q ²			89,840 Q ²
148,5	0,016	0,483		18,195 Q ²			90,974 Q ²
191,7	0,015	0,460		17,323 Q ²			86,614 Q ²
126	0,017	0,499		18,793 Q ²			93,966 Q ²
142,8	0,016	0,487		18,335 Q ²			91,673 Q ²
189	0,015	0,461		17,369 Q ²			86,847 Q ²

- CODO DE 45°

k = 16f

Donde:

k: Resistencia al flujof: Factor de fricción

Tabla 32. Pérdidas por codo de 45° en DN125 (PE).

Punto	f	k	D (m)	h _s	Uds. aspiración	Uds. impulsión	$\sum \mathbf{h_s}$
45,6	0,018	0,291		115,099 Q ²			345,298 Q ²
30	0,020	0,318		125,804 Q ²			377,411 Q ²
60	0,017	0,275	0.120	108,839 Q ²	1	2	326,517 Q ²
57,6	0,017	0,277	0,120	109,736 Q ²	1	2	329,207 Q ²
50,4	0,018	0,285		112,752 Q ²			338,255 Q ²
66	0,017	0,270		106,791 Q ²			320,373 Q ²

Tabla 33. Pérdidas por codo de 45° en DN225 (PE).

Punto	f	k	D (m)	h _s
184,8	0,015	0,247		9,303 Q ²
226,8	0,015	0,238		8,952 Q ²
168	0,016	0,251		9,475 Q ²
129,6	0,017	0,265		9,967 Q ²
153,6	0,016	0,256		9,640 Q ²
129	0,017	0,265		9,976 Q ²
150,9	0,016	0,257		9,674 Q ²
149,7	0,016	0,257	0,216	9,689 Q ²
186,9	0,015	0,246	0,210	9,283 Q ²
135,6	0,016	0,262		9,878 Q ²
158,4	0,016	0,254		9,583 Q ²
148,5	0,016	0,258		9,704 Q ²
191,7	0,015	0,245		9,239 Q ²
126	0,017	0,266		10,023 Q ²
142,8	0,016	0,260		9,778 Q ²
189	0,015	0,246		9,264 Q ²

- <u>ESTRECHAMIENTO</u>

El ángulo de estrechamiento será de 8° , un ángulo muy suave para minimizar las perdidas de carga.

$$k = 0.5 \left(1 - \frac{{d_1}^2}{{d_2}^2} \right)$$

Donde:

k: Resistencia al flujo.

 d_1 : Diametro hidráulico de la tuberia pequeña.

 d_2 : Diametro hidráulico de la tuberia grande.

Tabla 34. Pérdidas estrechamiento.

	d ₁ (mm)	d ₂ (mm)	k	D (m)	h_s
Nave de losas	80	120,2	0,278	0,120	561,839 Q ²
Nave de tablas y taller	150	216,4	0,259	0,216	42,397 Q ²

VALVULA DE COMPUERTA

k = 8f

k: Resistencia al flujo.f: Factor de fricción.

Tabla 35. Perdidas por válvula de compuerta en DN125 (PE).

Punto	f	k	D(m)	h _s	Uds. aspiración	Uds. impulsión	$\sum \mathbf{h_s}$
45,6	0,018	0,145		57,550 Q ²			115,099 Q ²
30	0,020	0,159		62,902 Q ²			125,804 Q ²
60	0,017	0,137	0,120	54,420 Q ²	1	1	108,839 Q ²
57,6	0,017	0,139		54,868 Q ²	1	1	109,736 Q ²
50,4	0,018	0,142		56,376 Q ²			112,752 Q ²
66	0,017	0,135		53,396 Q ²			106,791 Q ²

Tabla 36. Pérdidas por válvula de compuerta en DN225 (PE).

Punto	f	k	D(m)	h _s	Uds. aspiración	Uds. impulsión	$\sum \mathbf{h_s}$
184,8	0,015	0,123		4,652 Q ²			9,303 Q ²
226,8	0,015	0,119		4,476 Q ²			8,952 Q ²
168	0,016	0,126		4,737 Q ²			9,475 Q ²
129,6	0,017	0,132		4,984 Q ²			9,967 Q ²
153,6	0,016	0,128		4,820 Q ²			9,640 Q ²
129	0,017	0,132		4,988 Q ²			9,976 Q ²
150,9	0,016	0,128		4,837 Q ²			9,674 Q ²
149,7	0,016	0,129	0.216	4,844 Q ²	1	1	9,689 Q ²
186,9	0,015	0,123	0,216	4,642 Q ²	1	1	9,283 Q ²
135,6	0,016	0,131		4,939 Q ²			9,878 Q ²
158,4	0,016	0,127		4,791 Q ²			9,583 Q ²
148,5	0,016	0,129		4,852 Q ²			9,704 Q ²
191,7	0,015	0,123		4,619 Q ²			9,239 Q ²
126	0,017	0,133		5,012 Q ²			10,023 Q ²
142,8	0,016	0,130		4,889 Q ²			9,778 Q ²
189	0,015	0,123		4,632 Q ²			9,264 Q ²

- ENSANCHAMIENTO

El ángulo de estrechamiento será de 9° , un ángulo muy suave para minimizar las perdidas de carga.

$$k = \left(1 - \frac{{d_1}^2}{{d_2}^2}\right)^2$$

Donde:

k: Resistencia al flujo.

 d_1 : Diametro hidráulico de la tuberia pequeña.

 d_2 : Diametro hidráulico de la tuberia grande.

Tabla 37. Pérdidas por ensanchamiento.

	d ₁ (mm)	d ₂ (mm)	k	D (m)	h _s
Nave de losas	65	120,2	0,444	0,120	2.317,448 Q ²
Nave de tablas y taller	125	216,4	0,5	0,216	150,270 Q ²

- VALVULA DE RETENCIÓN

$$k = 50f$$

Donde:

k: Resistencia al flujo.f: Factor de fricción.

Tabla 38. Pérdidas por válvula de retención en DN125 (PE).

Punto	f	k	D (m)	h _s
45,6	0,018	0,909		359,685 Q ²
30	0,020	0,993		393,137 Q ²
60	0,017	0,859	0.120	340,122 Q ²
57,6	0,017	0,866	0,120	342,924 Q ²
50,4	0,018	0,890		352,349 Q ²
66	0,017	0,843		333,722 Q ²

Tabla 39. Pérdidas por válvula de retención en DN225 (PE).

Punto	f	k	D (m)	h _s
184,8	0,015	0,772		29,073 Q ²
226,8	0,015	0,742		27,974 Q ²
168	0,016	0,786		29,608 Q ²
129,6	0,017	0,827		31,147 Q ²
153,6	0,016	0,800		30,126 Q ²
129	0,017	0,827		31,176 Q ²
150,9	0,016	0,802		30,230 Q ²
149,7	0,016	0,804	0,216	30,277 Q ²
186,9	0,015	0,770		29,011 Q ²
135,6	0,016	0,819		30,870 Q ²
158,4	0,016	0,795		29,947 Q ²
148,5	0,016	0,805		30,325 Q ²
191,7	0,015	0,766		28,871 Q ²
126	0,017	0,831		31,322 Q ²
142,8	0,016	0,811		30,558 Q ²
189	0,015	0,768		28,949 Q ²

- <u>"T" DE 45°</u>

k = 32f

Donde:

k: Resistencia al flujo.f: Factor de fricción.

Tabla 40. Pérdidas por "T" de 45° en DN125 (PE).

Punto	f	k	D (m)	h _s	Unidades	$\sum \mathbf{h_s}$
45,6	0,018	0,636		251,780 Q ²		345,298 Q ²
30	0,020	0,695		275,196 Q ²		377,411 Q ²
60	0,017	0,601	0,120	238,085 Q ²	2	326,517 Q ²
57,6	0,017	0,606		240,047 Q ²	3	329,207 Q ²
50,4	0,018	0,623		246,644 Q ²		338,255 Q ²
66	0,017	0,590		233,605 Q ²		320,373 Q ²

Tabla 41. Pérdidas por "T" de 45° en DN225 (PE).

Punto	f	k	D (m)	h _s
184,8	0,015	0,540		20,351 Q ²
226,8	0,015	0,520		19,582 Q ²
168	0,016	0,550		20,726 Q ²
129,6	0,017	0,579		21,803 Q ²
153,6	0,016	0,560		21,088 Q ²
129	0,017	0,579		21,823 Q ²
150,9	0,016	0,562		21,161 Q ²
149,7	0,016	0,562	0.216	21,194 Q ²
186,9	0,015	0,539	0,216	20,307 Q ²
135,6	0,016	0,574		21,609 Q ²
158,4	0,016	0,556		20,963 Q ²
148,5	0,016	0,563		21,227 Q ²
191,7	0,015	0,536		20,210 Q ²
126	0,017	0,582		21,925 Q ²
142,8	0,016	0,568		21,390 Q ²
189	0,015	0,538		20,264 Q ²

SALIDA DE TUBERIA

k = 1

Tabla 42. Perdidas por salida de tubería.

	k	D(m)	h_s
DN125	1	0,120	395,825 Q ²
DN225	1	0,216	37,678 Q ²

2.1.3.3 ALTURA GEODÉSICA

En la nave de tablas y taller tendremos una altura de 13,5.

En la nave de losas tendré que superar una altura de 12,5.

2.1.3.4 CURVA RESISTENTE

La curva resistente indica en el sistema la altura total (perdidas de carga mas altura geométrica), en los diferentes caudales.

H: Altura geométrica.

 $\sum h_s$: Pérdidas singulares. $\sum h_r$: Pérdidas contínuas.

 H_r : Curva resistente.

Tabla 43. Ecuación de la curva resistente con DN125 (PE).

Punto	H (m)	$\sum \mathbf{h_s}$	$\sum \mathbf{h_r}$	$H_{ m r}$
45,6		6.360,628 Q ²	10.968,668 Q ²	12,5 + 17.329,295 Q ²
30		6.618,873 Q ²	11.988,776 Q ²	12,5 + 18.607,649 Q ²
60	12,5	6.209,600 Q ²	10.372,084 Q ²	12,5 + 16.581,684 Q ²
57,6		6.231,227 Q ²	10.457,516 Q ²	12,5 + 16.688,743 Q ²
50,4		6.303,991 Q ²	10.744,942 Q ²	12,5 + 17.048,933 Q ²
66		6.160,191 Q ²	10.176,913 Q ²	12,5 + 16.337,104 Q ²

Tabla 44. Ecuación de la curva resistente con DN225 (PE).

Punto	H (m)	$\sum \mathbf{h_s}$	$\sum \mathbf{h_r}$	$H_{\rm r}$
184,8		413,240 Q ²	925,292 Q ²	13,5 + 1.338,533 Q ²
226,8		407,437 Q ²	890,312 Q ²	13,5 + 1.297,750 Q ²
168		416,066 Q ²	942,327 Q ²	13,5 + 1.358,393 Q ²
129,6		424,192 Q ²	991,307 Q ²	13,5 + 1.415,499 Q ²
153,6		418,799 Q ²	958,801 Q ²	13,5 + 1.377,600 Q ²
129		424,343 Q ²	992,219 Q ²	13,5 + 1.416,563 Q ²
150,9		419,349 Q ²	962,115 Q ²	13,5 + 1.381,464 Q ²
149,7	13,5	419,598 Q ²	963,613 Q ²	13,5 + 1.383,210 Q ²
186,9		412,911 Q ²	923,305 Q ²	13,5 + 1.336,216 Q ²
135,6		422,728 Q ²	982,481 Q ²	13,5 + 1.405,209 Q ²
158,4		417,852 Q ²	953,093 Q ²	13,5 + 1.370,945 Q ²
148,5		419,849 Q ²	965,126 Q ²	13,5 + 1.384,975 Q ²
191,7		412,175 Q ²	918,871 Q ²	13,5 + 1.331,046 Q ²
126		425,114 Q ²	996,864 Q ²	13,5 + 1.421,978 Q ²
142,8		421,079 Q ²	972,541 Q ²	13,5 + 1.393,620 Q ²
189		412,586 Q ²	921,347 Q ²	13,5 + 1.333,933 Q ²

Se ha cogido el máximo caudal y aplicando la ecuación de la curva resistente se obtendrá la altura necesaria para bombear el caudal.

Tabla 45. Altura máxima.

	$Q\left(m^3/s\right)$	$H_{\mathbf{r}}$	H_r (mca)
Nave de tablas y taller	0,063	13,5 + 1.297,750 Q ²	18,65
Nave de losas	0,018	12,5 + 1.6337,104 Q ²	17,79

Una vez obtenido estos punto seleccionaremos la bomba consultando el diagrama que nos facilita el fabricante IDEAL para sacar la curva de la bomba.

Para seleccionar la bomba tenemos que ver que para el caudal máximo la altura tiene que ser mayor que la que nos da en la curva resistente.

Tabla 46. Selección de la bomba.

	Modelo	$Q(m^3/s)$	H _B	H _B (mca)
Nave de tablas y taller	GNI 65-26/10	0,063	$34,074 - 12,052 Q - 2275,4 Q^2$	24,28
Nave de losas	GNI 125-32/30	0,018	$23,054 + 411,38 Q - 24916 Q^2$	22,38

2.1.3.5 PUNTO DE FUNCIONAMIENTO DE LOS CIRCUITOS

Para conocer el punto de funcionamiento se ha de conocer primero la altura manométrica.

Tabla 47. Altura manométrica en DN125 (PE).

Punto	$Q(m^3/s)$	$H_{\mathbf{r}}$	H _r (mca)
45,6	0,013	12,5 + 17.329,295 Q ²	15,280
30	0,008	12,5 + 18.607,649 Q ²	13,792
60	0,017	12,5 + 16.581,684 Q ²	17,106
57,6	0,016	12,5 + 16.688,743 Q ²	16,772
50,4	0,014	12,5 + 17.048,933 Q ²	15,841
66	0,018	12,5 + 16.337,104 Q ²	17,991

Tabla 48. Altura manométrica en DN225 (PE).

Punto	$Q_{P0}\left(m^3/s\right)$	$H_{\mathbf{r}}$	H_{r} (mca)
184,8	0,051	13,5 + 1.338,533 Q ²	17,027
226,8	0,063	13,5 + 1.297,750 Q ²	18,651
168	0,047	13,5 + 1.358,393 Q ²	16,458
129,6	0,036	13,5 + 1.415,499 Q ²	15,334
153,6	0,043	13,5 + 1.377,600 Q ²	16,008
129	0,036	13,5 + 1.416,563 Q ²	15,319
150,9	0,042	13,5 + 1.381,464 Q ²	15,927
149,7	0,042	13,5 + 1.383,210 Q ²	15,892
186,9	0,052	13,5 + 1.336,216 Q ²	17,102
135,6	0,038	13,5 + 1.405,209 Q ²	15,494
158,4	0,044	13,5 + 1.370,945 Q ²	16,154
148,5	0,041	13,5 + 1.384,975 Q ²	15,857
191,7	0,053	13,5 + 1.331,046 Q ²	17,274
126	0,035	13,5 + 1.421,978 Q ²	15,242
142,8	0,040	13,5 + 1.393,620 Q ²	15,693
189	0,052	13,5 + 1.333,933 Q ²	17,177

Para adaptarse al caudal, la bomba deberá disminuir su velocidad de giro para cada situación.

$$H_{PC} = \frac{{H_0}^2}{{Q_{P0}}^2} \ Q^2$$

Donde:

 H_{PC} : Parabola de congruencia.

 H_r : Altura manometrica.

 Q_{P0} : Caudal.

Tabla 49. Parábola de congruencia en bomba GNI 65-26/10.

Punto	H ₀	Q_{P0}	H _{PC}
45,6	15,280	0,013	95.237,8825 Q ²
30	13,792	0,008	19.8607,649 Q ²
60	17,106	0,017	95.237,882 Q ²
57,6	16,772	0,016	65.516,868 Q ²
50,4	15,841	0,014	80.824,443 Q ²
66	17,991	0,018	53.527,186 Q ²

Tabla 50. Parábola de congruencia en bomba GNI 150-26/30.

Punto	H ₀	Q_{P0}	H _{PC}
184,8	17,027	0,051	6.461,656 Q ²
226,8	18,651	0,063	4.699,110 Q ²
168	16,458	0,047	7.557,372 Q ²
129,6	15,334	0,036	11.832,166 Q ²
153,6	16,008	0,043	8.793,371 Q ²
129	15,319	0,036	11.930,354 Q ²
150,9	15,927	0,042	9.064,985 Q ²
149,7	15,892	0,042	9.190,408 Q ²
186,9	17,102	0,052	6.344,860 Q ²
135,6	15,494	0,038	10.920,441 Q ²
158,4	16,154	0,044	8.344,085 Q ²
148,5	15,857	0,041	9.318,859 Q ²
191,7	17,274	0,053	6.092,006 Q ²
126	15,242	0,035	12.442,386 Q ²
142,8	15,693	0,040	9.973,523 Q ²
189	17,177	0,052	6.231,892 Q ²

Igualando la curva de la bomba, a la curva resistente se puede obtener los puntos de funcionamiento.

$$H_{PC} = H_B$$

Donde:

 H_{PC} : Curva de la congruencia. H_B : Ecuacion de la bomba. Q_{P1} : Puntos de funcionamiento.

Tabla 51. Puntos de funcionamiento en bomba GNI 65-26/10.

Caudal	H _{PC}	H_{B}	$Q_{P1}\left(m^3/s\right)$
45,6	95.237,882 Q ²		0,015
30	198.607,649 Q ²		0,011
60	95.237,882 Q ²	$23,054 + 411,38 Q - 2.4916 Q^2$	0,018
57,6	65.516,868 Q ²		0,018
50,4	80.824,443 Q ²		0,016
66	53.527,186 Q ²		0,019

Tabla 52. Puntos de funcionamiento en bomba GNI 125-32/30.

Punto	H _{PC}	H _B	$Q_{P1}\left(m^3/s\right)$
184,8	6.461,656 Q ²		0,062
226,8	4.699,110 Q ²		0,069
168	7.557,372 Q ²		0,058
129,6	11.832,166 Q ²		0,049
153,6	8.793,371 Q ²		0,055
129	11.930,354 Q ²		0,049
150,9	9.064,985 Q ²		0,054
149,7	9.190,408 Q ²	24.074 12.052.0 2.275.4.02	0,054
186,9	6.344,860 Q ²	$34,074 - 12,052 Q - 2.275,4 Q^2$	0,062
135,6	10.920,441 Q ²		0,050
158,4	8.344,085 Q ²		0,056
148,5	9.318,859 Q ²		0,054
191,7	6.092,006 Q ²		0,063
126	12.442,386 Q ²		0,048
142,8	9.973,523 Q ²		0,052
189	6.231,892 Q ²		0,063

Los puntos PO y P1 son homólogos, por tanto.

$$\alpha = \frac{Q_{P0}}{Q_{P1}}$$

Donde:

 α : Relación de velocidad.

 Q_{P0} : Caudal de funcionamiento. Q_{P1} : Nuevo caudal de funcionamiento.

Tabla 53. Relación de velocidad bomba GNI 65-26/10.

Punto	$Q_{P0} \left(m^3/s \right)$	$Q_{P1} \left(m^3/s \right)$	α
45,6	0,013	0,015	0,808
30	0,008	0,011	0,749
60	0,017	0,018	0,882
57,6	0,016	0,018	0,869
50,4	0,014	0,016	0,831
66	0,018	0,019	0,918

Tabla 54. Relación de velocidad bomba GNI 125-32/30.

Punto	$Q_{P0}\left(m^3/s\right)$	$Q_{P1} \left(m^3/s \right)$	α
184,8	0,051	0,062	0,831
226,8	0,063	0,069	0,913
168	0,047	0,058	0,801
129,6	0,036	0,049	0,739
153,6	0,043	0,055	0,777
129	0,036	0,049	0,738
150,9	0,042	0,054	0,772
149,7	0,042	0,054	0,770
186,9	0,052	0,062	0,835
135,6	0,038	0,050	0,748
158,4	0,044	0,056	0,785
148,5	0,041	0,054	0,768
191,7	0,053	0,063	0,844
126	0,035	0,048	0,734
142,8	0,040	0,052	0,759
189	0,052	0,063	0,839

Para sacar la nueva velocidad de la bomba se multiplicara la velocidad de giro por la relación de velocidad calculado anteriormente.

$$n = n_0 \cdot \alpha$$

Tabla 55. Nueva velocidad de funcionamiento en bomba GNI 65-26/10.

Punto	n (rpm)	α	n ₀ (rpm)
45,6		0,808	1.172,165
30		0,749	1.086,869
60	1.450	0,882	1.280,290
57,6		0,869	1.260,718
50,4		0,831	1.205,572
66		0,918	1.331,505

Tabla 56. Nueva velocidad de funcionamiento en GNI 125-32/30.

Caudal	n (rpm)	α	n ₀ (rpm)
184,8		0,831	1.205,133
226,8		0,913	1.323,190
168		0,801	1.161,509
129,6		0,739	1.071,420
153,6		0,777	1.126,046
129		0,738	1.070,132
150,9	1.450	0,772	1.119,611
149,7		0,770	1.116,773
186,9		0,835	1.210,744
135,6		0,748	1.084,514
158,4		0,785	1.137,657
148,5		0,768	1.113,950
191,7		0,844	1.223,693
126		0,734	1.063,754
142,8		0,759	1.100,733
189		0,839	1.216,388

2.1.3.6 CAVITACIÓN

PRESIÓN ATMOSFÉRICA

Al no estar la fabrica en el nivel del mar se calculara la presión atmosférica en la localidad donde se Encuentra (Elda).

$$P_{atm} = 101325 \cdot (1 - 2,25577 \cdot 10^{-5} \cdot H)^{5,2559}$$

Donde:

H: Altura de BEMARSA. P_{atm} : Presión atmosférica.

$$P_{atm} = 101325 \cdot (1 - 2,25577 \cdot 10^{-5} \cdot 395)^{5,2559}$$
$$P_{atm} = 96668,894 Pa$$

- DENSIDAD

$$\begin{split} \rho_{H_2O}(25^{\circ}C) &= 997,\!13 \\ \rho_{fango}(25^{\circ}C) &= 999,\!26\,kg/m^3 \end{split}$$

- <u>NPSH</u>d

$$NPSH_{d} = (z_{0} - z_{asp}) + \frac{P_{atm}}{\rho \cdot g} - \frac{P_{v}}{\rho \cdot g} - \sum h_{r1-2} - \sum h_{s1-2}$$

Donde:

 $NPSH_d$: Altura de cavitación del sistema. z_0 : Altura del nivel de agua.

 z_{asp} : Altura del tubo de aspiración.

 P_{atm} : Presión atmosferica. ρ : Densidad del fango.

g: Gravedad.

 P_{v} : Presión vapor de agua. $\sum h_{r1-2}$: Suma de perdida de carga continuas. $\sum h_{s1-2}$: Suma de perdida de carga singulares.

Tabla 57. Ecuación de la curva resistente con DN125 (PE).

Punto	z ₀ (mca)	z _{asp} (mca)	P _{atm} (Pa)	P _v (Pa)	$\rho \left(kg/m^3 \right)$	$g(m/s^2)$	$\sum h_{r1-2}$ (mca)	$\sum h_{s1-2}$ (mca)	NPSH _d (mca)
45,6							0,018	0,184	9,840
30							0,009	0,209	9,824
60	0.004	0.201	06 669 904	2 167 206	000.36	0.01	0,030	0,228	9,784
57,6	0,894	0,391	96.668,894	3.167,206	999,26	9,81	0,028	2,237	7,777
50,4							0,022	0,052	9,967
66							0,035	2,156	7,850

Tabla 58. Ecuación de la curva resistente con DN125 (PE).

Punto	z ₀ (mca)	z _{asp} (mca)	P _{atm} (Pa)	P _v (Pa)	$\rho \left(kg/m^3 \right)$	$g(m/s^2)$	$\sum h_{r1-2}$ (mca)	$\sum h_{s1-2}$ (mca)	NPSH _d (mca)
184,8							0,563	0,247	11,145
226,8							0,817	0,369	11,520
168							0,474	0,205	11,014
129,6							0,297	0,124	10,755
153,6							0,403	0,172	10,910
129							0,294	0,123	10,751
150,9							0,391	0,166	10,891
149,7	1.70	0.66	00.000.004	2 167 206	000.26	0.01	0,385	0,164	10,883
186,9	1,76	0,66	96.668,894	3.167,206	999,26	9,81	0,575	0,253	11,162
135,6							0,322	0,135	10,792
158,4							0,426	0,183	10,944
148,5							0,379	0,161	10,875
191,7							0,602	0,266	11,202
126							0,282	0,117	10,734
142,8							0,354	0,149	10,837
189							0,587	0,198	11,119

$\frac{\mathsf{NPSH}_r}{\mathsf{P}}$

Tabla 59. Puntos de la grafica NPSH_r GNI65-26/10.

H (mca)	Q (m ³ /h)
1,5	30,434
2	60,368
3	83,852
4	95,570

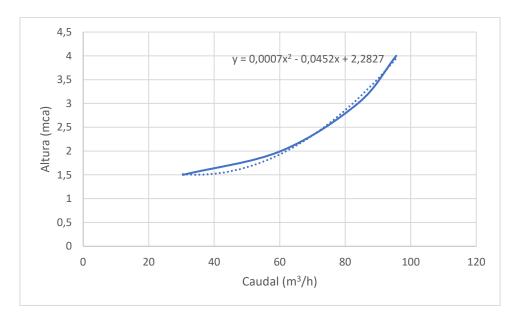


Figura 8. Curva de cavitación NPSH_r GNI65-26/10.

$$NPSH_r = 2,282 + 0,452 Q + 7 \cdot 10^{-4} Q^2$$

Tabla 60. Altura cavitación GNI65-26/10.

Caudal (m³/h)	NPSH _r (mca)	NPSH _d (mca)
45,6	3,738	9,840
30	2,912	9,824
60	4,802	9,784
57,6	4,605	7,777
50,4	4,060	9,967
66	5,331	7,850

 $\label{eq:Vemos como NPSH} \mbox{Vemos como NPSH}_{\mbox{\scriptsize d}} \mbox{ Por tanto la bomba GNI65-26/10 no cavita}.$

Tabla 61. Puntos de la grafica NPSH_r GNI125-32/30.

H (mca)	Q (m ³ /h)
1	84,751
1,5	140,551
2	186,048
2,5	214,088

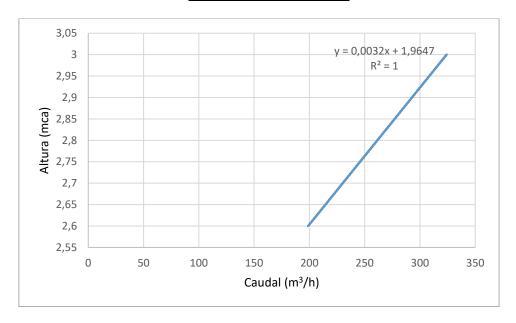


Figura 9. Curva de cavitación NPSH_r GNI125-32/30.

$$NPSH_r = 1,964 + 0,0032 Q$$

Tabla 62. Altura cavitación GNI125-32/30.

Caudal (m³/h)	NPSH _r (mca)	$NPSH_d$ (mca)
184,8	0,801	11,145
226,8	0,800	11,520
168	0,801	11,014
129,6	0,801	10,755
153,6	0,801	10,910
129	0,801	10,751
150,9	0,801	10,891
149,7	0,801	10,883
186,9	0,801	11,162
135,6	0,801	10,792
158,4	0,801	10,944
148,5	0,801	10,875
191,7	0,801	11,202
126	0,801	10,734
142,8	0,801	10,837
189	0,801	11,119

Vemos como $NPSH_r < NPSH_d$ por tanto la bomba GNI125-32/30 no cavita.

2.1.3.7 POTENCIA DE BOMBEO PREVISTA.

- <u>POTENCIA GNI 65-26/10</u>

Tabla 63. Puntos representativos Caudal – Potencia GNI 65-26/10.

Caudal (m³/h)	Potencia (kW)
0	2,51
111,6	7,43

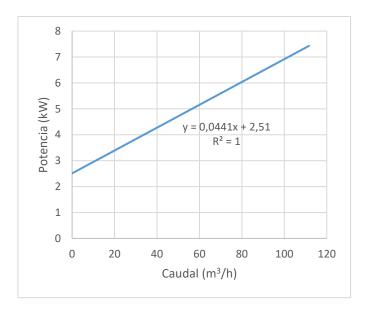


Figura 10. Gráfica recta de potencia de la bomba GNI 65-26/10.

Tabla 64. Puntos representativos del caudal estudiado, Caudal – Potencia GNI 65-26/10.

Caudal (m³/h)	Potencia (kW)
45,6	4,521
30	3,833
60	5,156
57,6	5,05
50,4	4,733
66	5,421

- POTENCIA GNI 65-26/10

Tabla 65. Puntos representativos Caudal – Potencia GNI 150-26/30.

Caudal (m³/h)	Potencia (kW)				
0	9				
115,886	20,531				

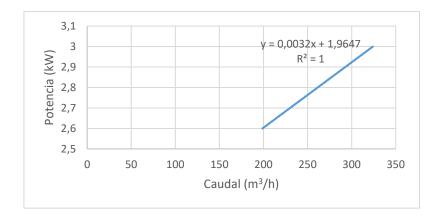


Figura 11. Gráfica recta de potencia de la bomba GNI 150-26/30.

Tabla 66. Puntos representativos del caudal estudiado, Caudal – Potencia GNI 150-26/30.

Caudal (m ³ /h)	Potencia (kW)
184,8	14,201
226,8	15,348
168	13,743
129,6	12,694
153,6	13,349
129	12,678
150,9	13,276
149,7	13,243
186,9	14,258
135,6	12,858
158,4	13,480
148,5	13,210
191,7	14,390
126	12,596
142,8	13,055
189	14,316

2.2 CALCULOS ELECTRICOS.

2.2.1 TENSIÓN NOMINAL Y CAÍDA DE TENSIÓN MÁXIMA ADMISIBLE

Para dimensionar y calcular la instalación se ha tenido en cuenta que se trabaja con líneas de trifásica tensiones de 400 V y monofásica con tensiones de 230 V.

En la caída de tensión máxima se ha considerado seguir las especificaciones del REBT ITC-BT-19 en la que hace referencia que los motores tienes una caída máxima admisible de 5% y el alumbrado un 3%.

2.2.2 PROCEDIMIENTO DE CÁLCULO UTILIZADO.

Al diseñar y calcular la instalación, se ha utilizado calculo por caída de tensión y capacidad térmica.

- CAPACIDAD TERMICA

El requisito indispensable que ha de cumplir nuestra instalación es la siguiente.

$$I_B \leq I_Z$$

Donde:

 I_B : Intensidad de servicio.

 I_Z : Intensidad maxima admisible por el conductor.

Para el realizar el calculo de la intensidad de servicio utilizaros las siguientes expresiones dependiendo de la tensión del sistema.

Tensión trifásica:

$$I_B = \frac{P}{\sqrt{3} \cdot V \cdot \cos \varphi}$$

Tensión monofásica:

$$I_B = \frac{P}{V \cdot \cos \varphi}$$

Donde:

 I_{R} : Intensidad de servicio.

P: Potencia.

V: Voltaje.

- CAIDA DE TENSIÓN

Para llevar a cabo el calculo de la caída de tensión utilizaremos las siguientes formulas.

Para alimentación monofásica con calibres menores de 120 mm²:

$$\%v = \frac{200 \cdot P \cdot l}{c \cdot s \cdot V}$$

Para alimentación trifásica con calibres menores de 120 mm²:

$$\%v = \frac{P \cdot l}{c \cdot s \cdot V}$$

Donde:

P: Potencia.

l: Longitud.

c: Coeficiente de conductividad del material.

s: Sección del conductor.

V: Voltaje.

2.2.3 POTENCIA PREVISTA DE CÁLCULO.

En este apartado el calculo se ha realizado según las indicaciones de ITC-BT-10 del REBT.

2.2.3.1 RELACIÓN DE RECEPTORES DE ALUMBRADO Y FUERZA MOTRIZ, INDICANDO SU POTENCIA ELÉCTRICA EN KW.

Tabla 67. Potencia en nave de losas.

Tipo	N° Uds	Modelo	Potencia Total (kW)
Bomba	1	65-26/10	7,5
Iluminaria	6	B65 LED	0,1
Agitador AGS 170	2	AGS 170	0,6
			8,2

Tabla 68. Potencia en nave de tablas y taller.

Tipo	N° Uds	Modelo	Potencia Total (kW)
Bomba	1	GNI 125-32/30	22
Iluminaria	6	B65 LED	0,1
Agitador AGS 170	2	AGS 170	0,6
			22,7

2.2.3.2 POTENCIA TOTAL PREVISTA.

Tabla 69. Potencia total prevista.

	Potencia Total (kW)
Nave de tablas y taller	22,7
Nave de losas	8,2
	30,9

2.2.4 CÁLCULO DE LA SECCIÓN.

Para calcular la sección utilizaremos la tabla A.52-1 BIS del REBT.

Nuestra instalación será de cable multiconductor aislado en un conducto sobre una pared de madera o mampostería, el cable a utilizar es XLPE.

Tabla 70. Intensidades de los elementos de la instalación.

Línea	I _B (A)
Bomba GNI 125-32/30	39,69
B65 LED	0,46
Agitador AGS 170	1,08
Bomba GNI 125-32/30	13,5
B65 LED	0,46
Agitador AGS 170	1,08

				Tabla y	columna			Inte	nsida	ides a	ıdmi	sibles	en a	mpe	rios	Ten	pera	tura	amb	iente	40 °	C en	el air	re				
			Intensidad	d admisible p	ara los circuit	tos simples	Método																					
		- [Aislar	niento	Aisla	miento	de instala-			N1.6																		
			PV	/C	XLPE	o EPR	ción de			Nu	mer	o ae	con	auct	ores	car	gado	s y	tipos	pos de aislamiento								
Instala	ción de referencia			Número de	conductores		la tabla B.52-1																					
		_	2	3	2	3	A1		PVC 3	PVC 2				XLPE 3		XLPE 2									Г			
Z Loca	Conductores aislados en un conducto en una pared térmicamente aislante	A1	Tabla C.52-1 bis columna 4	T la C.5. I bis columa 3	Tabla C.52-1 bis columna 7b	Tabla C.52-1 bis columna 6b	A2	PVC 3	PVC	Ĺ	PVC	XLPE 3	PVC	XLPE 2				XLPE				XLPE			ı			
	Cable multiconductor en		Tabla	Tola	Tabla	Tabla	B1 B2		_	PVC	3		2	_	_	XLPE 3		3 XLPE 2				2			i			
Local	un conducto en una pared térmicamente aislante	A2	C.52-1 bis columna 3	C.5 l bis col ha 2	C.52-1 bis columna 6b	C.52-1 bis columna 5b	С			J	-		PVC 3				PVC 2			XLPE 3			XLPE 2		Ι			
)	pared de madera o	В1	Tabla C.52-1 bis columna 6a	Tola C.5. 1 bis columna 5a	Tabla C.52-1 bis columna 10b	Tabla C.52-1 bis columna 8b	E F								3	ı	PVC 3		PVC 2		PVC 2	XLPE 3	XLPE 3	XLPE 2	XL			
	mampostería	_		coran ma cu	Coramina 100	coramina ou	1	2	3	4	5a	5b	6a	6b	7a	1.4	8a	8b	9a	9b	10a	10b	11	12				
	Cable multiconductor en un conducto sobre una pared de madera o mampostería	В2	Tabla columna 5a	Tabla C.52-1 bis columna 4	Tabla C.52-1 bis columna 8b	Tabla C.52-1 bis columna 7b	Sección mm² Cobre 1,5	44	11 6	12.5	12.5	14	14 5	16.6	10	16,5	17	17,5	19	20	20	20	21	23				
	Cables unipolares o	\neg					2,5	15	11,5	12,5	13,5	14	14,5	15,5	16	22	23	24	26	27	26	28	30	32	h			
	multipolares sobre una	С	Tabla C.52-1 bis	Tabla C.52-1 bis	Tabla C.52-1 bis	Tabla C.52-1 bis	4	20	20	22	24	25	26	28	29	30	31	32	34	36	36	38	40	44	П			
)	pared de madera o	·	columna 8a	columna 6a	columna 11	columna 9b	6	25	26	29	31	32	34	36	37	39	40	41	44	46	46	49	52	57				
	mampostería	_	corumnu ou	corumnu ou	COTAMINA TT	coramina 75	10	33	36	40	43	45	46	49	52	54	54	57	60	63	65	68	72	78				
	Cable multiconductor en	D1					16	45	48	53 69	59 77	61	63 82	66 86	69 87	72 91	73 95	77 100	81	85 108	87 110	91 115	97	104 135	Ŀ			
	conductos enterrados	DI	Tabla	Tabla	Tabla	Tabla	25 35	59	63	- 69	95	100	101	106			119		103	133		143	122					
	Cables con cubierta		C.52-2 bis columna 3	C.52-2 bis columna 4	C.52-2 bis columna 5	C.52-2 bis columna 6	50	-	-	-	116	121	122	128	133	139	145	151	155	162		174	188	204				
ı	unipolares o multipolares	D2	columna 3	columna 4	columna 5	columna 6	70	-	-	-	148	155	155	162		178	185	193	199	208		223		262				
##	directamente en el suelo						95	-	-	-	180	188	187	196		216		234		252		271		320				
	Cable multiconductor al aire libre		Tabla	Tabla	Tabla	Tabla	120	-	-	-	207	217	216	226		251	260		280	293		314		373				
	Distancia al muro no inferior a	E	C.52-1 bis	C.52-1 bis	C.52-1 bis	C.52-1 bis	150 185	-	-	-	-	-	247	259 294		289 329	299 341	313 356	322 368	337 385		359 409	401	430				
	0,3 veces el diámetro del cable		columna 9a	columna 7a	columna 12	columna 10b	240	-	-	-	-	-		345				419		455			545					
	Cables unipolares en		Tabla	Tabla	Tabla	Tabla	Alu-				\Box													-	Ť			
	contacto al aire libre	F	C.52-1 bis	C.52-1 bis	C.52-1 bis	C.52-1 bis	minio			l l							١		l l	l l		II	l	١				
	Distancia al muro no inferior al diámetro del cable		columna 10a	columna 8a	columna 13	columna 11	2,5	11,5		13	14	15	16	16,5		17,5	18	19	20	20	20 27	21	23	25				
							6	15	16 20	17	19	20	21	22	22	23 30	24 31	25 32	26 33	28 35	36	29 38	31 40	34 44	ŀ			
	Cables unipolares espaciados al aire libre			Ver U	NE-HD		10	26	27	31	33	35	38	40	40	41	42	44	46	49	50	52	56	60	г			
_	Distancia entre ellos como	G		60364			16	35	37	41	46	48	50	52	53	55	57	60	63	66	66	70	76	82				
	mínimo el diámetro del cable						25	46	49	54	60	63	63	66	67	70	72	75	78	81	84	88	91		1			
tileno	reticulado (90°C) EPR: E	tiler	o-propileno (9	90°C) PVC :	Policloruro de	vinilo (70°C)	35	-	-	-	74	78	78	81	83	87	89	93	97	101	104	109	114	122				
	Cobre: ρ ₂₀ = 1/56 Ωmm	² /m;	Aluminio:	ρ ₂₀ = 1/35 Ω	2mm ² /m		50 70	-	-	-	90	94	95 121	100	101	106 136	108	113	118	123 158	127 162	132	140	149				
20	Para el cobre y el alumi					→ K ₀ = 1,28	95	-	-	-	140	146	147	154	159	166	169	177	183	192		206	219	233				
-					-	,	120	_	-	_	161	169	171	179	184	192	196	205	213	222	228	239	254	273	1			
	ORMALIZADAS DE TE						150	-	-	-	-	-	196	205	213					257			294					
0, 30,	50, 75, 100, 125, 160, 20	00, 2	250, 315, 400	, 500, 630, 8	300, 1000, 12	250, 1600, 20	185	-	-	-	-	-	222	232		254	259	271	281	293			337	361	14			
	MAYORACIÓN Ko: 1						240	-	-	-	-	-	261	273	287	300	306	320	332	34/	355	3/2	399	427	1			

Figura 12. Sección cable bomba GNI 65-26/10.

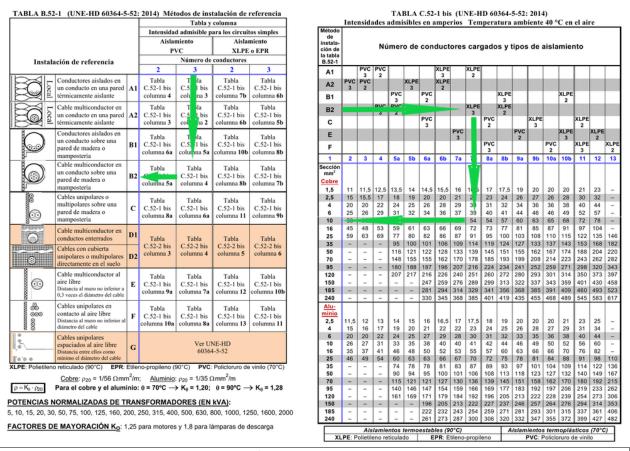


Figura 13. Sección cable bomba GNI 150-26/30.

Para el agitador utilizaremos sección 2,5 mm² ya que es la mínima que permite el REBT para motores.

$$\delta = \frac{P}{U} \cdot \rho \cdot \frac{L}{S}$$

Donde:

δ: Caida de tensión.

P: Potencia.

U: Tensión.

 ρ : Conductividad del cobre a 70°.

L: Longitud del cable.

S: Sección del cable.

Tabla 71. Caída de tensión.

	P(W)	U(V)	$\rho\left(\Omega mm^2/m\right)$	L(m)	$S(mm^2)$	δ
GNI 65-26/10	7.500			7,241	2,5	1,131
GNI 150-26/30	22.000	400	1/48	13,136	10	0,082
AGS 170 2SHG	600			8	2,5	0,1

La sección, según REBT, será la mismo que las fases ya que no pasa de 16 mm², se puede observa en la siguiente imagen.

Sección de los conductores de	Sección mínima de los
fase de la instalación	conductores de protección
S (mm²)	S _p (mm²)
S ≤ 16	S _p = S
1 8 < 8 ≤ 35	$S_p = 16$
S > 35	$S_p = S/2$

Figura 14. Tabla REBT sección mínima puesta a tierra.

2.2.5 CÁLCULO DE LAS PROTECCIONES A INSTALAR EN LAS DIFERENTES LÍNEAS GENERALES Y DERIVADAS.

2.2.5.1 SOBRECARGA

Se deberá de proteger la instalación contra sobreintensidad en un tiempo determinado. La condición que ha de cumplir es la siguiente:

$$I_B \le I_N \le I_Z$$

Donde:

 I_R : Intensidad del circuito.

 I_N : Intensidad nominal del interruptor.

 I_Z : Intensidad maxima admisible del conductor.

2.2.5.2 CORTOCIRCUITOS.

Para calcular la protección contra cortocircuito se ha de averiguar la Intensidad mínima y máxima.

Para averiguar el poder de corte de los dispositivos de protección se ha de utilizar la intensidad máxima y para asegurar que el magnetotérmico salta utilizaremos la intensidad mínima

A continuación mostraremos como se calcula.

Intensidad máxima para tensión monofásica al principio de la línea.

$$I_{ccmax} = \frac{230}{Z_E + Z_N}$$

Donde:

 I_{ccmax} : Intensidad maxima monofasica.

 Z_F : Impedancia de la fase. Z_N : Impedancia del neutro.

Intensidad máxima para tensión trifásica.

$$I_{ccmax} = \frac{400}{\sqrt{3} \cdot Z_1}$$

Donde:

 I_{ccmax} : Intensidad maxima trifasica.

 Z_1 : Impedancia de la fase.

Intensidad mínima para tensión monofásica al terminar la línea.

$$I_{ccmax} = \frac{230}{Z_F + Z_N}$$

Donde:

 I_{ccmax} : Intensidad maxima monofasica. Z_F : Impedancia de la fase.

 Z_N : Impedancia del neutro.

Intensidad máxima para tensión trifásica.

$$I_{ccmax} = \frac{400}{\sqrt{3} \cdot Z_1}$$

Donde:

 I_{ccmax} : Intensidad maxima trifasica.

 Z_1 : Impedancia de la fase.

Las condiciones a cumplir un magnetotérmico so las siguientes:

$$I_{rm} \leq I_{ccmin}$$

Donde:

 I_{rm} : Intensidad que dispara electromagnetica.

$$I_{ccmax} \leq Poder de corte$$

Tabla 72. Protección contra sobrecargas.

Línea	I _B (A)	Iz (A)	I _{ccmin} (A)	I _{ccmax} (A)	Dispositivo
Subcuadro 1	40,96	72	1140	2.950	Mag. 63 A Curva C 4P
Bomba GNI 125-32/30	39.69	54	740	2.005	Mag. 50 A Curva C 4P
B65 LED	0,46	17,5	360	1.300	Mag. 10 A Curva C 2P
Agitador AGS 170	1,08	22	590	2.005	Mag. 16 A Curva C 4P
Subcuadro 2	14,79	30	510	2.950	Mag. 20 A Curva C 4P
Bomba GNI 125-32/30	13,5	22	580	2.005	Mag. 16 A Curva C 4P
B65 LED	0,46	17,5	360	1.300	Mag. 10 A Curva C 2P
Agitador AGS 170	1,08	22	590	2.005	Mag. 16 A Curva C 4P

2.2.6 CÁLCULO DEL SISTEMA DE PROTECCIÓN CONTRA CONTACTOS INDIRECTOS.

Tabla 73. Protección contra contactos indirectos y directos.

Línea	Dispositivo	Calibre (A)	Sensibilidad (mA)	Característica	Clase	Polos
Subcuadro 1	Diferencial	63	300	Selectivo	Α	4
Bomba GNI 125-32/30	Diferencial	50	300	Selectivo	Α	4
B65 LED	Diferencial	10	30	Instantáneo	Α	3
Agitador AGS 170	Diferencial	16	300	Selectivo	Α	4
Subcuadro 2	Diferencial	20	300	Selectivo	Α	4
Bomba GNI 125-32/30	Diferencial	16	300	Selectivo	Α	4
B65 LED	Diferencial	10	30	Instantáneo	Α	3
Agitador AGS 170	Diferencial	16	300	Selectivo	Α	4

Valencia, Febrero 2021

Sergio Bonet Sánchez

2	DI		\sim	DE	CON	וחו	CIO	NES
J.	L	ILC		νL	CUI	וטו	LIU	ロマロン

3 PLIEGO DE CONDICIONES

3.1 CALIDAD DE MATERIALES.

Los materiales ha utilizar han de ser de primera calidad, fabricados según normativa vigente. Deberán de haber pasado pruebas por cuenta de la contrata.

Los materiales eléctricos deben de estar aceptados por la compañía suministradora.

3.1.1 ELEMENTOS DEL SISTEMA HIDÁULICO

3.1.1.1 MOTORES Y ELECTROBOMBAS

Las electrobombas serán suministrada y montadas por el contratista. Cada bomba tiene que llevar su placa identificativa con la información de la misma.

La bomba debe de llevar señalado el sentido de giro.

Al montarse la bomba debe de quedar bien fijada para evitar las vibraciones y resonancias.

Antes de la puesta en marcha se debe comprobar que no existen fugas.

3.1.1.2 VÁLVULAS

Las válvulas instaladas deben de soportar, sin deformación, los esfuerzos de presión ejercidas por la actividad de la instalación.

El fabricante hará las pruebas oportunas para garantizar el buen estado del producto.

Se utilizara válvulas de retención para proteger a las bombas. Esta válvula se abrirá por el propio flujo.

Se utilizara válvulas de compuerta para facilitar las labores de mantenimiento o sustitución.

3.1.1.3 TUBOS

La red de transporte de fangos esta formada por una serie de tuberías, se utiliza conductos de polietileno de alta densidad (PE), deben de tener una presión admisible de 6 bares.

Serán fabricados según la normativa UNE EN-12201

Una vez finalizada la instalación de hará una prueba de estanqueidad, la prueba se realizara con la máxima estática.

Los accesorios deben están fabricados según la UNE EN-12201-2 y UNE EN12201-3.

3.1.2 MATERIALES ELÉCTRICOS

3.1.2.1 CONDUCTORES ELÉCTRICOS.

Conforme a la normativa ITC-BT-15 del REBT las derivaciones individuales son formados por:

Conductos aislados en el interior de tubos, empotrados, enterrados, montaje superficial, canales protectoras y canalizaciones prefabricadas eléctricas (UNE-EN60439-2)

Deberán tener la Declaración de prestaciones sometido al reglamento de productos para la construcción.

Los conductores serán de cobre, aislados y unipolares a una tensión de 450/750 V con una sección mínima de 6 mm². No deben ser propagadores de fuego, emisiones de humos y tener una opacidad reducida.

3.1.2.2 CONDUCTORES DE PROTECCIÓN.

Para protegerse contra contactos indirecto se utilizara conductores de protección unidas eléctricamente a las masas de la instalación.

Se podrá utilizar conductores separados desnudos o conductores aislados o multiconductores.

Se aplicara la norma UNE-HD 60364-5-54, si cuenta con protección mecánica se utilizara 2,5 mm² y no tienen 4 mm², si el conductor es común se aplicara la ITC-BT-19.

3.1.2.3 IDENTIFICACIÓN DE LOS CONDUCTORES.

En los conductores eléctricos el neutro será de color azul, el verde será de protección y de color marrón o negro la fase según ITC-BT-19.

3.1.2.4 TUBOS PROTECTORES.

Estos son los diferentes tipos de tubos protectores:

- Tubos y accesorios no metálicos
- Tubos y accesorios metálicos
- Tubos y accesorios compuestos

Esta es su clasificación según sus características:

- UNE-EN-61386-2-1 (Tubos rígidos)
- UNE-EN-61386-2-2 (Tubos curvables)
- UNE-EN-61386-2-3 (Tubos flexibles)
- UNE-EN61386-2-4 (Tubos enterrados)

Deberán de cumplir las especificaciones recogidas en ITC-BT-21.

3.1.2.5 CAJAS DE EMPALME Y DERIVACIÓN.

Los conductores serán conectados en cajas aislantes no propagadora de fuego y si fuese metálicas serán protegidas contra la corrosión. Los conductores deberán de estar holgaos dentro de la caja. La profundidad de ser el doble o mayor que el tubo siendo como mínimo 40 mm.

Se utilizara bornes, regletas o bridas de conexión para la unión de conductores. Nunca se harán empalmes o derivaciones con retorcimiento.

3.1.2.6 APARATOS DE MANDO Y MANIOBRA.

En el punto mas cercano de la entrada a la derivación individual se colocara los dispositivos generales de mando y protección.

Se pondrá el interruptor de control de potencia antes de los dispositivos precintado.

Se pondrá a una altura entre 1,2 y 2 m.

Los cuadros eléctricos deberán de seguir la normativa UNE 20451 y UNE-EN 60439-3 con una protección de IP30 según UNE 20324 y UNE-EN 50102 IK07.

Como mínimo habrá un interruptor general automático para permitir el accionamiento manual y elementos de protección contra sobrecarga y cortocircuito, para contactos directos un interruptor diferencial, para sobrecargas un dispositivo de corte omnipolar y según la ITC-BT-23 un dispositivo para sobretensiones.

El interruptor general automático tendrá que tener poder la cortar la intensidad de cortocircuito. El resto de diferenciales e interruptores automáticos también deberá de resistir.

3.2 NORMAS DE EJECUCIÓN DE LAS INSTALACIONES.

La colocación e instalación de tubos se indica en ITC-BT-21, UNE-HD 60.364-5-52 y IRC-BT-19 o ITC-BT-20.

A continuación se indica lo general:

- Las canalizaciones deben ser verticales, horizontales o paralelas.
- Los tubos se unirán mediante accesorios.
- Las curvas deben de ser continuas sin reducciones. Los radios están señalados en la norma UNE-EN-61386-22.
 - Se usa registros con una separación no mas de 15 metros y no superar 3 curvas entre ellos.
 - Las cajas de derivación o empalmes se consideran registros.
 - Si los extremos son metálicos se deben de recubrir para introducirlos en los conductos.
 - Se colocaran conductores según la ITC-BT-20.

3.3 PRUEBAS REGLAMENTARIAS.

Se llevara a cabo verificaciones previas e inspecciones.

La empresa instaladora llevara acabo las verificación previstas y el Organismo de Control realizara las inspecciones.

Las verificación previas se regirá por la normativa UNE-HD 60364-6, esta se realizara en dos fase:

- Verificación por ensayo, esta se describe en la ITC-BT 18 e ITC-BT-19
- Verificación por examen, esta se procede con ensayos sin tensión y comprobar lo instalado con la memoria del proyecto.

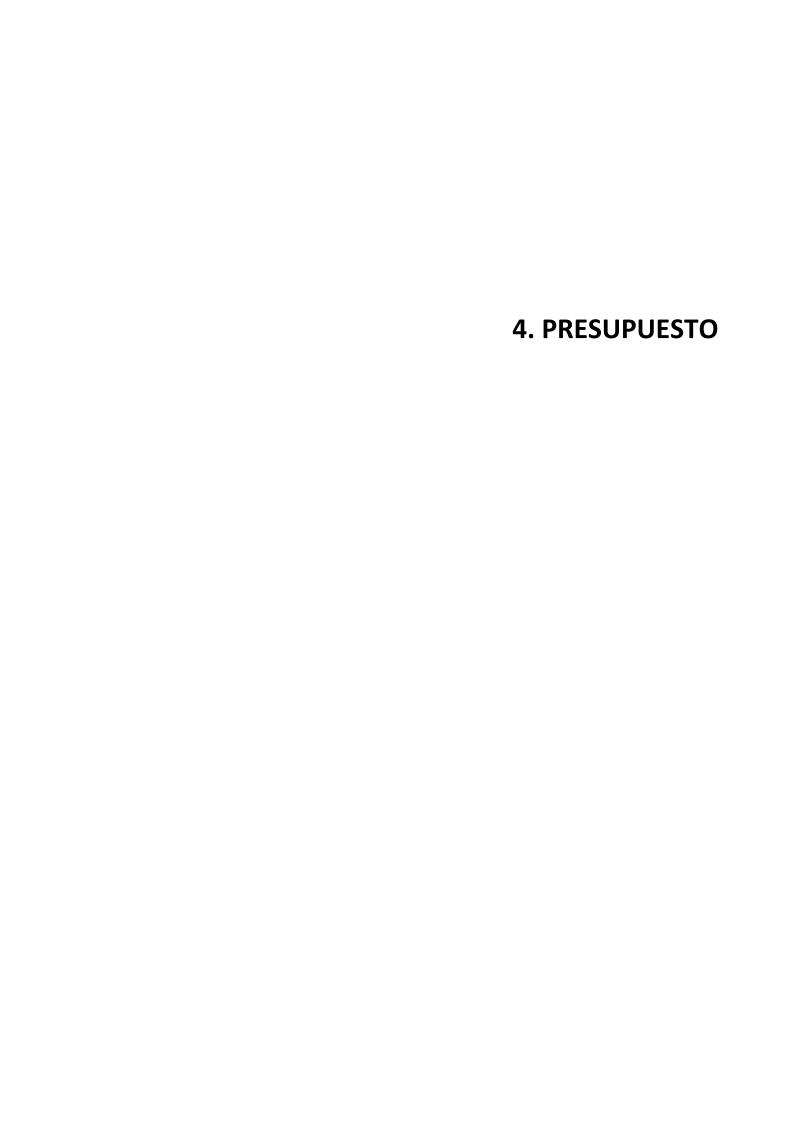
Las inspecciones realizadas por el Organismo de Control se encargan del cumplimiento del Reglamento en el inicio y en periodos de 5 años.

3.4 CONDICIONES DE USO, MANTENIMIENTO Y SEGURIDAD.

La ley de prevención de riesgos laborales elabora las siguientes normas:

- A la hora de hacer una intervención se ha de realizar sin tensión comprobándolo con aparatos de medición, habiendo como mínimo dos trabajadores.
- Cuando se haga uso de aparatos eléctricos ha de contar con un grado de aislamiento 2 o una alimentación de 50V.
- No se reestablecerá la actividad hasta que no haya una comprobación de que no hay ningún peligro.
- Se ha de limpiar todo material de desperdicio de la obra.
- Los trabajadores deberán de llevar herramientas y guantes aislantes.
- Los trabajadores no llevaras ropa con accesorio de metal.

3.5 CERTIFICADOS Y DOCUMENTACIÓN QUE DEBE DISPONER EL TITULAR. AUTORIZACIÓN DE LA INSTALACIÓN.


Los instaladores autorizados son los encargados de llevar acabo las instalaciones en el ámbito de Reglamento donde se hace referencia en la ITC-BT 03

Se deberá de contar con una licencia de puesta en marcha de la obra con previa autorización municipal y un certificado de instalación para baja tensión por la GVA.

Al acabar la obra se el instalador autorizado emitirá un certificado a la Administración sobre las verificaciones e inspecciones , done contendrá los datos y las características de la instalación, potencia, el certificado del Organismo de Control con resultado favorable, identificación del instalador y una declaración donde se llevado a cabo la instalación según al REBT.

Valencia, Febrero 2021

Sergio Bonet Sánchez

4 PRESUPUESTO

4.1 MEDICIONES.

N.º Orden		Descripción de las unidades de obra	Uds.	Longitud	Latitud	Altura	Total
01		CAPITULO 1 TUBERIA					
01.01	m	Tubo de polietileno de designación PE 100, de 225 mm de diámetro nominal, de 6 bar de presión nominal, serie SDR 26, UNE-EN 12201-2, soldado					
		Tubo aspiracion Tubo impulsion de cada bomba Tubo impulsion Total partida: 01.01	3 3 1	2,000 5,000 15,000			36,00
01.02	m	Tubo de polietileno de designación PE 100, de 125 mm de diámetro nominal, de 6 bar de presión nominal, serie SDR 26, UNE-EN 12201-2, soldado					
		Tubo de aspiración, nave losas Tubo de impulsión de cada bomba, nave losas Tubo de impulsión Total partida: 01.02	3 3 1	2,000 3,000 177,000			192 00

N.º Orden		Descripción de las unidades de obra	Uds.	Longitud	Latitud	Altura	Total
02		CAPITULO 2 ACCESORIOS					
02.01	kg	Acero S275JR según UNE-EN 10025-2, en perfiles laminados en caliente serie L, LD, T, redondo, cuadrado, rectangular y plancha, trabajado en taller y con una capa de imprimación antioxidante, para refuerzo de elementos de empotramiento, apoyo y rigidizado, colocado en obra con soldadura					
		Placa antivortice Nave de losas Placa antivortice Nave de tablas y taller Total partida: 02.01	3 3	5,000 9,000	5,000 9,000	0,200 0,200	63,60
02.02	u	Carrete extensible de desmontaje con bridas, con virola interior y exterior de PE 1.4301, junta de estanqueidad de etileno propileno dieno (EPDM), de 225 mm de diámetro nominal, de 16 bar de presión nominal, montado en arqueta de canalización enterrada					
		Tubo de aspiración Tubo de impulsión Total partida: 02.02	1				2,00
02.03	u	Válvula de retención de clapeta, según la norma UNE-EN ISO 16137, para montar entre bridas, DN 125 (para tubo de 125 mm de diámetro nominal), de 10 bar de presión nominal , cuerpo de PE y juntas de estanqueidad de etileno propileno dieno (EPDM)					
		Tubo de impulsion a*b Total partida: 02.03	Nº uds 1	Nº bombas 3,000			3,00
02.04	u	Válvula de retención de clapeta, según la norma UNE-EN ISO 16137, para montar entre bridas, DN 225 (para tubo de 225 mm de diámetro nominal), de 10 bar de presión nominal , cuerpo de PE y juntas de estanqueidad de etileno propileno dieno (EPDM)					
		Tubo de impulsion a*b Total partida: 02.04	Nº uds 1	Nº bombas 3,000			3,00
02.05	u	Derivación de polietileno inyectada, de densidad media de 125 mm de DN, serie SDR 11, según UNE-EN 1555-3 con ramal a 45° de 125 mm de DN, para soldar, soldada y colocada en el fondo de la zanja					
		Nave de losas Total partida: 02.05	2				2,00
02.06	u	Derivación de polietileno inyectada, de densidad media de 225 mm de DN, serie SDR 11, según UNE-EN 1555-3 con ramal a 45° de 225 mm de DN, para soldar, soldada y colocada en el fondo de la zanja					
		Nave de tablas y taller Total partida: 02.06	2				2,00
02.07	u	Codo de polietileno de 90°, manipulado, de densidad alta, de 125 mm de DN y 6 bar de presión nominal, según UNE-EN 12201-3, para soldar, soldado y colocado en el fondo de la zanja					
		Tubo de impulsión Tubo de aspiración a*b	7 Nº uds 1	Nº bombas 3,000			
		Total partida: 02.07					10,00

02.08	u	Codo de polietileno de 90°, manipulado, de densidad alta, de 225 mm de DN y 6 bar de presión nominal, según UNE-EN 12201-3, para soldar, soldado			
	C E	a*b	4 Nº uds 1	Nº bombas 3,000	7,00
02.09	u	Codo de polietileno de 45°, manipulado, de densidad alta, de 125 mm de DN y 6 bar de presión nominal, según UNE-EN 12201-3, para soldar, soldado			
		Tubo de impulsion a*b Total partida: 02.09	Nº uds 1	Nº bombas 3,000	3,00
02.10	u	Codo de polietileno de 45°, manipulado, de densidad alta, de 225 mm de DN y 6 bar de presión nominal, según UNE-EN 12201-3, para soldar, soldado			
		Tubo de impulsion a*b Total partida: 02.10	Nº uds 1	№ bombas 3,000	3,00
02.11	u	Cono de reducción de fundición para pasar de 125 mm de DN a 80 mm de DN, con 2 uniones de campana con anilla elastomérica para agua y contrabrida de estanqueidad y colocada en el fondo de la zanja			
		Bomba GNI 65-26/10 Total partida: 02.11	3		3,00
02.12	u	Cono de reducción de fundición para pasar de 125 mm de DN a 65 mm de DN, con 2 uniones embridadas con anilla elastomérica de estanqueidad para agua y colocada en el fondo de la zanja			
		Bomba GNI 65-26/10 Total partida: 02.12	3		3,00
02.13	u	Cono de reducción de fundición para pasar de 225 mm de DN a 125 mm de DN, con 2 uniones de campana con anilla elastomérica para agua y contrabrida de estanqueidad y colocada en el fondo de la zanja			
		Bomba GNI 150-26/30 Total partida: 02.13	3		3,00
02.14	u	Cono de reducción de fundición para pasar de 225 mm de DN a 150 mm de DN, con 2 uniones de campana con anilla elastomérica para agua y contrabrida de estanqueidad y colocada en el fondo de la zanja			
		Bomba GNI 150-26/30 Total partida: 02.14	3		3,00
02.15	u	Carrete extensible de desmontaje con bridas, con virola interior y exterior de acero inoxidable 1.4301 (AISI 304), junta de estanqueidad de etileno propileno dieno (EPDM), revestimiento de resina epoxy (150 micras), de 125 mm de diámetro nominal, de 16 bar de presión nominal, montado en arqueta de canalización enterrada			
		Bomba GNI 65-26/10 Total partida: 02.15	6		6,00

N.º Orden		Descripción de las unidades de obra	Uds.	Longitud	Latitud	Altura	Total
03		CAPITULO 3 MAQUINARIA					
03.01	u	Bomba centrífuga compacta, normalizada según UNE-EN 733, tamaño normalizado 80-250, diámetro nominal de la impulsión 80 mm, diámetro nominal del rotor 250 mm, diámetro nominal de la aspiración 100 mm, presión nominal 10 bar, índice de eficienciamínima de la bomba (MEI)<=0,4 según REGLAMENTO (UE) 547/2012, motor trifásico de 400 V y 7,5 kW a 1450 rpm con una clase de eficiencia energética IE3 según REGLAMENTO (CE) 640/2009, cuerpo de acero inoxidable 1.4401 (AISI 316), montada superficialmente					
		Bomba nave de losas Total partida: 03.01	3				3,00
03.02		Agitador sumergido.,norm.80-250,400V,0,6kW,1380rpm,cuerpo inox.1.4401,mont.superf.					
		Agitador nave de losas Agitador nave de tablas y taller Total partida: 03.02	1				2,00
03.03		Bomba centrífuga compacta, normalizada según UNE-EN 733, tamaño normalizado 80-200, diámetro nominal de la impulsión 80 mm, diámetro nominal del rotor 125 mm, diámetro nominal de la aspiración 150 mm, presión nominal 10 bar, índice de eficiencia mínima de la bomba (MEI)<=0,4 según REGLAMENTO (UE) 547/2012, motor trifásico de 400 V y 22 kW a 1450 rpm con una clase de eficiencia energética IE3 según REGLAMENTO (CE) 640/2009, cuerpo de acero inoxidable 1.4401 (AISI 316), montada superficialmente					
		Bomba nave de tablas y taller Total partida: 03.03	3				3,00

N.º Orden		Descripción de las unidades de obra	Uds. Longitud Latitud Altura Total
04		CAPITULO 4 ELECTRICIDAD	
04.01	u	Interruptor diferencial de la clase AC, gama terciario, de 63 A de intensidad nominal, tetrapolar (4P), de sensibilidad 0,03 A, de desconexión fijo instantáneo, con botón de test incorporado y con indicador mecánico de defecto, construido según las especificaciones de la norma UNE-EN 61008-1, de 4 módulos DIN de 18 mm de ancho, montado en perfil DIN	
		Subcuadro 1 Total partida: 04.01	1,00
04.02	u	Interruptor diferencial de la clase AC, gama terciario, de 10 A de intensidad nominal, bipolar (2P), de sensibilidad 0,03 A, de desconexión fijo instantáneo, con botón de test incorporado y con indicador mecánico de defecto, construido según las especificaciones de la norma UNE-EN 61008-1, de 2 módulos DIN de 18 mm de ancho, montado en perfil DIN	
		LEDS Nave tablas y taller LEDS Nave losas Total partida: 04.02	1 1 2,00
04.03	u	Interruptor diferencial de la clase AC, gama terciario, de 16 A de intensidad nominal, tetrapolar (4P), de sensibilidad 0,3 A, de desconexión fijo instantáneo, con botón de test incorporado y con indicador mecánico de defecto, construido según las especificaciones de la norma UNE-EN 61008-1, de 4 módulos DIN de 18 mm de ancho, montado en perfil DIN	
		Agitador nave de tablas y taller Agitador de nave de losas Bomba GNI 125-32/30 Total partida: 04.03	1 1 1 3,00
04.04	u	Interruptor diferencial de la clase AC, gama terciario, de 50 A de intensidad nominal, bipolar (4P), de sensibilidad 0,3 A, de desconexión fijo instantáneo, con botón de test incorporado y con indicador mecánico de defecto, construido según las especificaciones de la norma UNE-EN 61008-1, de 4 módulos DIN de 18 mm de ancho, montado en perfil DIN	
		Bomba GNI 125-32/30 Total partida: 04.04	1,00
04.05	u	Interruptor automático magnetotérmico de 10 A de intensidad nominal, tipo PIA curva C, bipolar (2P), de 500 A de poder de corte según UNE-EN 60898 y de 10 kA de poder de corte según UNE-EN 60947-2, de 2 módulos DIN de 18 mm de ancho, montado en perfil DIN	
		LEDS Nave de losas LEDS Nave de tablas y taller Total partida: 04.05	1 1 2,00
04.06	u	Interruptor automático magnetotérmico de 50 A de intensidad nominal, tipo PIA curva C, tripolar (3P), de 50 kA de poder de corte según UNE-EN 60947-2, de 4,5 módulos DIN de 18 mm de ancho, montado en perfil DIN	
		Bomba GNI 125-32/30 Total partida: 04.06	1,00

04.07	u	Interruptor automático magnetotérmico de 63 A de intensida nominal, tipo PIA curva C, tetrapolar (4P), de 7500 A de poder o corte según UNE-EN 60898 y de 7,5 kA de poder de corte segú UNE-EN 60947-2, de 6 módulos DIN de 18 mm de ancho, montac en perfil DIN	de ún
		Subcuadro 1	1
		Total partida: 04.0	
04.08	m	Cable con conductor de cobre de 0,6/ 1kV de tensión asignada, co designación RV-K, tetrapolar, de sección 4 x 2,5 mm2, con cubier del cable de PVC, colocado en tubo	on ta
		Agitador nave de tablas y taller Agitador nave de losas	3 14,000 3 14,000
		· ·	0884,00
04.09	m	Cable con conductor de cobre de 0,6/1kV de tensión asignada, co designación RV-K, tetrapolar, de sección 4 x 10 mm2, con cubier del cable de PVC, colocado en tubo	
		GNI 150-26/30	3 14,000
		Total partida: 04.0	0942,00
04.10	u	Luz de emergencia combinada y no estanca, con grado o protección IP4X, de forma rectangular con difusor y cuerpo o policarbonato, con lámpara fluorescente de 33 W, flujo aproximad de 500 lúmens, 2 h de autonomía, precio alto, colocada superficia	de do
		Nave de losas Nave de tablas y taller	3 3
			6,00
04.11	u	Armario metálico desde 700x900x180 hasta 900x1000x180 mm para servicio exterior, con puerta con ventanilla, fijado a columna	n,
		Nave de losas Nave de tablas y taller	1 1
		Total partida: 04.1	2,00
04.12	m	Cable con conductor de cobre de 0,6/ 1kV de tensión asignada, co designación RV-K, tetrapolar, de sección 3 x 1,5 mm2, con cubier del cable de PVC, colocado en tubo	
		LED nave de tabla y taller LED nave de losas	3 8,000 3 8,000
			12
04.13		Cable con conductor de cobre de 0,6/ 1kV de tensión asignada, co designación RV-K, tetrapolar, de sección 4 x 2,5 mm2, con cubier del cable de PVC, colocado en tubo	
		GNI 65-26/10	3 13,000
		Total partida: 04.1	39,00
04.14		Variador ATV320 Scheider 7,5kw con PDI	
		Nave de losas	1
			1,00

04.15	Variador ATV320 Scheider 22kw con PDI			
	NAve de tablas y taller	Total partida: 04.15	1,1,(00
04.16	Sonda ultrasónica de 420mA SONAR BERO	3RG623		
	Nave de tablas y taller Nave de losas	Total partida: 04.16	1 1 2,(00

4.2 CUADRO DE PRECIO N1.

Nº Actividad	Código		Descripción de las unidades de obra	Precio
01	01		CAPITULO 1 TUBERIA	
01.01	GFB1L325	m	Tubo de polietileno de designación PE 100, de 225 mm de diámetro nominal, de 6 bar de presión nominal, serie SDR 26, UNE-EN 12201-2, soldado	46,44
			CUARENTA Y SEIS EUROS CON CUARENTA Y CUATRO CÉNTIMOS	
01.02	GFB1F325	m	Tubo de polietileno de designación PE 100, de 125 mm de diámetro nominal, de 6 bar de presión nominal, serie SDR 26, UNE-EN 12201-2, soldado	17,02
			DIECISIETE EUROS CON DOS CÉNTIMOS	

Nº Actividad	Código		Descripción de las unidades de obra	Precio
02	02		CAPITULO 2 ACCESORIOS	
02.01	G44Z5A25	kg	Acero S275JR según UNE-EN 10025-2, en perfiles laminados en caliente serie L, LD, T, redondo, cuadrado, rectangular y plancha, trabajado en taller y con una capa de imprimación antioxidante, para refuerzo de elementos de empotramiento, apoyo y rigidizado, colocado en obra con soldadura TRES EUROS CON ONCE CÉNTIMOS	3,11
02.02	GNZ116G4	u	Carrete extensible de desmontaje con bridas, con virola interior y exterior de PE 1.4301, junta de estanqueidad de etileno propileno dieno (EPDM), de 225 mm de diámetro nominal, de 16 bar de presión nominal, montado en arqueta de canalización enterrada	347,53
			TRESCIENTOS CUARENTA Y SIETE EUROS CON CINCUENTA Y TRES CENTIMOS	
02.03	GN8L35E4	u	Válvula de retención de clapeta, según la norma UNE-EN ISO 16137, para montar entre bridas, DN 125 (para tubo de 125 mm de diámetro nominal), de 10 bar de presión nominal , cuerpo de PE y juntas de estanqueidad de etileno propileno dieno (EPDM)	50,20
			CINCUENTA EUROS CON VEINTE CÉNTIMOS	
02.04	GN8L35G4	u	Válvula de retención de clapeta, según la norma UNE-EN ISO 16137, para montar entre bridas, DN 225 (para tubo de 225 mm de diámetro nominal), de 10 bar de presión nominal , cuerpo de PE y juntas de estanqueidad de etileno propileno dieno (EPDM)	75,02
			SETENTA Y CINCO EUROS CON DOS CÉNTIMOS	
02.05	GFBA6686	u	Derivación de polietileno inyectada, de densidad media de 125 mm de DN, serie SDR 11, según UNE-EN 1555-3 con ramal a 45° de 125 mm de DN, para soldar, soldada y colocada en el fondo de la zanja	42,07
			CUARENTA Y DOS EUROS CON SIETE CÉNTIMOS	
02.06	GFBA6A8A	u	Derivación de polietileno inyectada, de densidad media de 225 mm de DN, serie SDR 11, según UNE-EN 1555-3 con ramal a 45° de 225 mm de DN, para soldar, soldada y colocada en el fondo de la zanja	99,69
			NOVENTA Y NUEVE EUROS CON SESENTA Y NUEVE CÉNTIMOS	
02.07	GFBB1625	u	Codo de polietileno de 90°, manipulado, de densidad alta, de 125 mm de DN y 6 bar de presión nominal, según UNE-EN 12201-3, para soldar, soldado y colocado en el fondo de la zanja	58,04
			CINCUENTA Y OCHO EUROS CON CUATRO CÉNTIMOS	
02.08	GFBB1935	u	Codo de polietileno de 90°, manipulado, de densidad alta, de 225 mm de DN y 6 bar de presión nominal, según UNE-EN 12201-3, para soldar, soldado	115,89
			CIENTO QUINCE EUROS CON OCHENTA Y NUEVE CÉNTIMOS	
02.09	GFBB7625	u	Codo de polietileno de 45°, manipulado, de densidad alta, de 125 mm de DN y 6 bar de presión nominal, según UNE-EN 12201-3, para soldar, soldado	50,75
			CINCUENTA EUROS CON SETENTA Y CINCO CÉNTIMOS	
02.10	GFBB7A25	u	Codo de polietileno de 45°, manipulado, de densidad alta, de 225 mm de DN y 6 bar de presión nominal, según UNE-EN 12201-3, para soldar, soldado	131,15
			CIENTO TREINTA Y UN EUROS CON QUINCE CÉNTIMOS	
02.11	GF3C1853	u	Cono de reducción de fundición para pasar de 125 mm de DN a 80 mm de DN, con 2 uniones de campana con anilla elastomérica para agua y contrabrida de estanqueidad y colocada en el fondo de la zanja	208,46
			DOSCIENTOS OCHO EUROS CON CUARENTA Y SEIS CÉNTIMOS	

Presu	nu	Acto	n
riesu	υu	COL	J

02.12	GF3C1877	u	Cono de reducción de fundición para pasar de 125 mm de DN a 65 mm de DN, con 2 uniones embridadas con anilla elastomérica de estanqueidad para agua y colocada en el fondo de la zanja DOSCIENTOS TRES EUROS CON DOCE CÉNTIMOS	203,12
02.13	GF3C1A73	u	Cono de reducción de fundición para pasar de 225 mm de DN a 125 mm de DN, con 2 uniones de campana con anilla elastomérica para agua y contrabrida de estanqueidad y colocada en el fondo de la zanja	339,85
			TRESCIENTOS TREINTA Y NUEVE EUROS CON OCHENTA Y CINCO CÉNTIMOS	
02.14	GF3C1A93	u	Cono de reducción de fundición para pasar de 225 mm de DN a 150 mm de DN, con 2 uniones de campana con anilla elastomérica para agua y contrabrida de estanqueidad y colocada en el fondo de la zanja	351,49
			TRESCIENTOS CINCUENTA Y UN EUROS CON CUARENTA Y NUEVE CÉNTIMOS	
02.15	GNZ116E4	u	Carrete extensible de desmontaje con bridas, con virola interior y exterior de acero inoxidable 1.4301 (AISI 304), junta de estanqueidad de etileno propileno dieno (EPDM), revestimiento de resina epoxy (150 micras), de 125 mm de diámetro nominal, de 16 bar de presión nominal, montado en arqueta de canalización enterrada	200,41
			DOSCIENTOS EUROS CON CUARENTA Y UN CÉNTIMOS	

Nº Actividad	Código		Descripción de las unidades de obra	Precio
03	03		CAPITULO 3 MAQUINARIA	
03.01	GNH4A4BX	u	Bomba centrífuga compacta, normalizada según UNE-EN 733, tamaño normalizado 80-250, diámetro nominal de la impulsión 80 mm, diámetro nominal del rotor 250 mm, diámetro nominal de la aspiración 100 mm, presión nominal 10 bar, índice de eficiencia mínima de la bomba (MEI)<=0,4 según REGLAMENTO (UE) 547/2012, motor trifásico de 400 V y 7,5 kW a 1450 rpm con una clase de eficiencia energética IE3 según REGLAMENTO (CE) 640/2009, cuerpo de acero inoxidable 1.4401 (AISI 316), montada superficialmente	4.276,54
			CUATRO MIL DOSCIENTOS SETENTA Y SEIS EUROS CON CINCUENTA Y CUATRO CÉNTIMOS	
03.02	GNH4A401		Agitador sumergido.,norm.80-250,400V,0,6kW,1380rpm,cuerpo inox.1.4401,mont.superf.	2.389,39
			DOS MIL TRESCIENTOS OCHENTA Y NUEVE EUROS CON TREINTA Y NUEVE CÉNTIMOS	
03.03	GNH4I1AA		Bomba centrífuga compacta, normalizada según UNE-EN 733, tamaño normalizado 80-200, diámetro nominal de la impulsión 80 mm, diámetro nominal del rotor 125 mm, diámetro nominal de la aspiración 150 mm, presión nominal 10 bar, índice de eficiencia mínima de la bomba (MEI)<=0,4 según REGLAMENTO (UE) 547/2012, motor trifásico de 400 V y 22 kW a 1450 rpm con una clase de eficiencia energética IE3 según REGLAMENTO (CE) 640/2009, cuerpo de acero inoxidable 1.4401 (AISI 316), montada superficialmente	8.165,80
			OCHO MIL CIENTO SESENTA Y CINCO EUROS CON OCHENTA CÉNTIMOS	

Precio

			·	
04	04		CAPITULO 4 ELECTRICIDAD	
04.01	GG4242JK	u	Interruptor diferencial de la clase AC, gama terciario, de 63 A de intensidad nominal, tetrapolar (4P), de sensibilidad 0,03 A, de desconexión fijo instantáneo, con botón de test incorporado y con indicador mecánico de defecto, construido según las especificaciones de la norma UNE-EN 61008-1, de 4 módulos DIN de 18 mm de ancho, montado en perfil DIN	346,83
			TRESCIENTOS CUARENTA Y SEIS EUROS CON OCHENTA Y TRES CÉNTIMOS	
04.02	GG42429D	u	Interruptor diferencial de la clase AC, gama terciario, de 10 A de intensidad nominal, bipolar (2P), de sensibilidad 0,03 A, de desconexión fijo instantáneo, con botón de test incorporado y con indicador mecánico de defecto, construido según las especificaciones de la norma UNE-EN 61008-1, de 2 módulos DIN de 18 mm de ancho, montado en perfil DIN	89,92
			OCHENTA Y NUEVE EUROS CON NOVENTA Y DOS CÉNTIMOS	
04.03	GG4243JD	u	Interruptor diferencial de la clase AC, gama terciario, de 16 A de intensidad nominal, tetrapolar (4P), de sensibilidad 0,3 A, de desconexión fijo instantáneo, con botón de test incorporado y con indicador mecánico de defecto, construido según las especificaciones de la norma UNE-EN 61008-1, de 4 módulos DIN de 18 mm de ancho, montado en perfil DIN	139,57
			CIENTO TREINTA Y NUEVE EUROS CON CINCUENTA Y SIETE CÉNTIMOS	
04.04	GG42439M	u	Interruptor diferencial de la clase AC, gama terciario, de 50 A de intensidad nominal, bipolar (4P), de sensibilidad 0,3 A, de desconexión fijo instantáneo, con botón de test incorporado y con indicador mecánico de defecto, construido según las especificaciones de la norma UNE-EN 61008-1, de 4 módulos DIN de 18 mm de ancho, montado en perfil DIN	243,83
			DOSCIENTOS CUARENTA Y TRES EUROS CON OCHENTA Y TRES CÉNTIMOS	
04.05	GG415D9H	u	Interruptor automático magnetotérmico de 10 A de intensidad nominal, tipo PIA curva C, bipolar (2P), de 500 A de poder de corte según UNE-EN 60898 y de 10 kA de poder de corte según UNE-EN 60947-2, de 2 módulos DIN de 18 mm de ancho, montado en perfil DIN	43,44
			CUARENTA Y TRES EUROS CON CUARENTA Y CUATRO CÉNTIMOS	
04.06	GG414RDB	u	Interruptor automático magnetotérmico de 50 A de intensidad nominal, tipo PIA curva C, tripolar (3P), de 50 kA de poder de corte según UNE-EN 60947-2, de 4,5 módulos DIN de 18 mm de ancho, montado en perfil DIN	149,26
			CIENTO CUARENTA Y NUEVE EUROS CON VEINTISEIS CÉNTIMOS	
04.07	GG415GKN	u	Interruptor automático magnetotérmico de 63 A de intensidad nominal, tipo PIA curva C, tetrapolar (4P), de 7500 A de poder de corte según UNE-EN 60898 y de 7,5 kA de poder de corte según UNE-EN 60947-2, de 6 módulos DIN de 18 mm de ancho, montado en perfil DIN	208,42
			DOSCIENTOS OCHO EUROS CON CUARENTA Y DOS CÉNTIMOS	
04.08	GG319534	m	Cable con conductor de cobre de 0,6/ 1kV de tensión asignada, con designación RV-K, tetrapolar, de sección 4 x 2,5 mm2, con cubierta del cable de PVC, colocado en tubo UN EURO CON NOVENTA Y DOS CÉNTIMOS	1,92
			UN EURO CON NOVENTA Y DOS CENTIMOS	
04.09	GG319564	m	Cable con conductor de cobre de 0,6/1kV de tensión asignada, con designación RV-K, tetrapolar, de sección 4 x 10 mm2, con cubierta del cable de PVC, colocado en tubo	5,83
			CINCO EUROS CON OCHENTA Y TRES CÉNTIMOS	
04.10	EH61NK8B	u	Luz de emergencia combinada y no estanca, con grado de protección IP4X, de forma rectangular con difusor y cuerpo de policarbonato, con lámpara fluorescente de 33 W, flujo aproximado de 500 lúmens, 2 h de autonomía, precio alto, colocada superficial	117,86
			CIENTO DIECISIETE EUROS CON OCHENTA Y SEIS CÉNTIMOS	

Descripción de las unidades de obra

Nº Actividad

Código

04.11	GG1A0949	Armario metálico desde 700x900x180 hasta 900x1000x180 mm, para servicio exterior, con puerta con ventanilla, fijado a columna	373,70
		TRESCIENTOS SETENTA Y TRES EUROS CON SETENTA CÉNTIMOS	
04.12	GG319524	Cable con conductor de cobre de 0,6/ 1kV de tensión asignada, con designación RV-K, tetrapolar, de sección 3 x 1,5 mm2, con cubierta del cable de PVC, colocado en tubo	1,47
		UN EURO CON CUARENTA Y SIETE CÉNTIMOS	
04.13	GG319001	Cable con conductor de cobre de 0,6/ 1kV de tensión asignada, con designación RV-K, tetrapolar, de sección 4 x 2,5 mm2, con cubierta del cable de PVC, colocado en tubo	1,91
		UN EURO CON NOVENTA Y UN CÉNTIMOS	
04.14	GG564001	Variador ATV320 Scheider 7,5kw con PDI	913,21
		NOVECIENTOS TRECE EUROS CON VEINTIUN CÉNTIMOS	
04.15	GG564002	Variador ATV320 Scheider 22kw con PDI	3.054,21
		TRES MIL CINCUENTA Y CUATRO EUROS CON VEINTIUN CÉNTIMOS	
04.16	GG564003	Sonda ultrasónica de 420mA SONAR BERO 3RG623	95,48
		NOVENTA Y CINCO EUROS CON CUARENTA Y OCHO CÉNTIMOS	

4.3 CUADRO DE PRECIO N2.

Nº Actividad	Código		Descripción de las unidades de obra	Rendimiento	Precio	Importe
0.4	04		CARITURO 4 TURERIA			
01	01		CAPITULO 1 TUBERIA			
01.01	GFB1L325	m	Tubo de polietileno de designación PE 100, de 225 mm de diámetro nominal, de 6 bar de presión nominal, serie SDR 26, UNE-EN 12201-2, soldado			
	A012M000	h	Oficial 1a montador	1,000	19,10	19,10
	A013M000	h	Ayudante montador	1,000	17,24	17,24
	BFB1L320	m	Tubo PE 100,DN=225mm,PN=6bar,serie SDR 26,UNE-EN 12201-2,soldado	1,020	9,36	9,55
	A%AUX001	%	Gastos auxiliares mano de obra	0,015	36,34	0,55
			Clase: Mano de Obra Clase: Material Clase: Medio auxiliar Coste Total			36,34 9,55 0,55 46,44
01.02	GFB1F325	m	Tubo de polietileno de designación PE 100, de 125 mm de diámetro nominal, de 6 bar de presión nominal, serie SDR 26, UNE-EN 12201-2, soldado			
	A012M000	h	Oficial 1a montador	0.360	19,10	6,88
	A013M000	h	Ayudante montador	0,360	17,24	6,21
	BFB1F320	m	Tubo PE 100,DN=125mm,PN=6bar,serie SDR 26,UNE-EN 12201-2,soldado	1,020	3,66	3,73
	A%AUX001	%	Gastos auxiliares mano de obra	0,015	13,09	0,20
			Clase: Mano de Obra Clase: Material			13,09 3,73
			Clase: Medio auxiliar			0,20
			Coste Total			17,02

Nº Actividad	Código		Descripción de las unidades de obra	Rendimiento	Precio	Importe
02	02		CAPITULO 2 ACCESORIOS			
02.01	G44Z5A25	kg	Acero S275JR según UNE-EN 10025-2, en perfiles laminados en caliente serie L, LD, T, redondo, cuadrado, rectangular y plancha, trabajado en taller y con una capa de imprimación antioxidante, para refuerzo de elementos de empotramiento, apoyo y rigidizado, colocado en obra con soldadura			
	A0125000 A0135000 B44Z5A2A	h h kg	Oficial 1a soldador Ayudante soldador Acero S275JR,pieza simp.,p/ref.elem.empo./apoy./rigid.,perf.lam.L,LD,T,red.,cuad.,rect ang.,trab.taller p/col.sold.+antiox.	0,040 0,040 1,000	18,79 17,31 1,19	0,75 0,69 1,19
	C200P000 CZ112000 A%AUX001	h h %	Equipo+elem.aux.p/soldadura eléctrica Grupo electrógeno de 20-30kVA Gastos auxiliares mano de obra	0,040 0,040 0,015	3,12 8,54 1,44	0,12 0,34 0,02
			Clase: Mano de Obra Clase: Maquinaria Clase: Material Clase: Medio auxiliar Coste Total			1,44 0,46 1,19 0,02 3,11
02.02	GNZ116G4	u	Carrete extensible de desmontaje con bridas, con virola interior y exterior de PE 1.4301, junta de estanqueidad de etileno propileno dieno (EPDM), de 225 mm de diámetro nominal, de 16 bar de presión nominal, montado en arqueta de canalización enterrada			
	A012M000 A013M000 BNZ116G0	h h u	Oficial 1a montador Ayudante montador Carrete desmontaje+bridas,1.4301 (AISI 304),EPDM,DN=225mm,PN=16bar	2,040 4,080 1,000	19,10 17,24 236,59	38,96 70,34 236,59
	A%AUX001	%	Gastos auxiliares mano de obra	0,015	109,30	1,64
			Clase: Mano de Obra Clase: Material Clase: Medio auxiliar Coste Total			109,30 236,59 1,64 347,53
02.03	GN8L35E4	u	Válvula de retención de clapeta, según la norma UNE-EN ISO 16137, para montar entre bridas, DN 125 (para tubo de 125 mm de diámetro nominal), de 10 bar de presión nominal , cuerpo de PE y juntas de estanqueidad de etileno propileno dieno (EPDM)			
	A012M000 A013M000 BN8L35E0	h h u	Oficial 1a montador Ayudante montador Válvula retención clap.,entre bridas,DN 125(tubo 125mm),PN=10bar,PE	0,596 0,596 1,000	19,10 17,24 28,22	11,38 10,28 28,22
	A%AUX001	%	Gastos auxiliares mano de obra	0,015	21,66	0,32
			Clase: Mano de Obra Clase: Material Clase: Medio auxiliar Coste Total			21,66 28,22 0,32 50,20

Presupuesto

					Tresupuesto	
02.04	GN8L35G4	u	Válvula de retención de clapeta, según la norma UNE-EN ISO			
			16137, para montar entre bridas, DN 225 (para tubo de 225 mm de diámetro nominal), de 10 bar de presión nominal , cuerpo de PE y juntas de estanqueidad de etileno propileno dieno (EPDM)			
	A012M000	h	Oficial 1a montador	0,935	19,10	17,86
	A013M000	h	Ayudante montador	0,935	17,24	16,12
	BN8L35G0	u	Válvula retención clap.,entre bridas,DN 200(tubo 200mm),PN=10bar,PVC-U/EPDM	1,000	40,53	40,53
	A%AUX001	%	Gastos auxiliares mano de obra	0,015	33,98	0,51
			Clase: Mano de Obra Clase: Material			33,98 40,53
			Clase: Medio auxiliar			0,51
			Coste Total			75,02
02.05	GFBA6686	u	Derivación de polietileno inyectada, de densidad media de 125 mm de DN, serie SDR 11, según UNE-EN 1555-3 con ramal a 45° de 125 mm de DN, para soldar, soldada y colocada en el fondo de la zanja			
	A012M000	h	Oficial 1a montador	0,472	19,10	9,02
	A013M000	h	Ayudante montador	0,472	17,24	8,14
	BFBA6686	u	Deriv.polietileno inyec.,dens.media,DN 125mm,SDR 11,DN ramal=125mm,p/soldar	1,000	24,65	24,65
	A%AUX001	%	Gastos auxiliares mano de obra	0,015	17,16	0,26
			Clase: Mano de Obra			17,16
			Clase: Material Clase: Medio auxiliar			24,65 0,26
			Coste Total			42,07
02.06	GFBA6A8A	u	Derivación de polietileno inyectada, de densidad media de 225 mm de DN, serie SDR 11, según UNE-EN 1555-3 con ramal a 45° de 225 mm de DN, para soldar, soldada y colocada en el fondo de la zanja			
	A012M000	h	Oficial 1a montador	0,800	19,10	15,28
	A013M000	h	Ayudante montador	0,800	17,24	13,79
	BFBA6A8A	u	Deriv.polietileno inyec.,dens.media,DN 225mm,SDR 11,DN ramal=225mm,p/soldar	1,000	70,18	70,18
	A%AUX001	%	Gastos auxiliares mano de obra	0,015	29,07	0,44
			Clase: Mano de Obra			29,07
			Clase: Material			70,18
			Clase: Medio auxiliar			0,44
			Coste Total			99,69
02.07	GFBB1625	u	Codo de polietileno de 90°, manipulado, de densidad alta, de 125 mm de DN y 6 bar de presión nominal, según UNE-EN 12201-3, para soldar, soldado y colocado en el fondo de la zanja			
	A012M000	h	Oficial 1a montador	0,457	19,10	8,73
	A013M000	h	Ayudante montador	0,457	17,24	7,88
	BFBB1625 A%AUX001	u %	Codo poliet. 90°,manip.,DN 125mm,6bar,p/soldar Gastos auxiliares mano de obra	1,000 0,015	41,18 16,61	41,18 0,25
			Clase: Mano de Obra			16,61
			Clase: Material			41,18
			Clase: Medio auxiliar Coste Total			0,25 58,04
			Coste Total			50,04

02.08	GFBB1935	u	Codo de polietileno de 90°, manipulado, de densidad alta, de 225 mm de DN y 6 bar de presión nominal, según UNE-EN 12201-3, para soldar, soldado			
	A012M000	h	Oficial 1a montador	0,718	19,10	13,71
	A013M000	h	Ayudante montador	0,718	17,24	12,38
	BFBB1935	u	Codo poliet. 90°,manip.,DN 225mm,6bar,p/soldar	1,000	89,41	89,41
	A%AUX001	%	Gastos auxiliares mano de obra	0,015	26,09	0,39
				,	,	•
			Clase: Mano de Obra			26,09
			Clase: Material			89,41
			Clase: Medio auxiliar			0,39
			Coste Total			115,89
02.09	GFBB7625	u	Codo de polietileno de 45°, manipulado, de densidad alta, de 125			
			mm de DN y 6 bar de presión nominal, según UNE-EN 12201-3, para soldar, soldado			
	A012M000	h	Oficial 1a montador	0,457	19,10	8,73
	A013M000	h	Ayudante montador	0,457	17,24	7,88
	BFBB7625	u	Codo poliet. 45°,manip.,DN 125mm,6bar,p/soldar	1,000	33,89	33,89
	A%AUX001	%	Gastos auxiliares mano de obra	0,015	16,61	0,25
			Olean Marra de Olean			40.04
			Clase: Mano de Obra Clase: Material			16,61 33,89
			Clase: Material Clase: Medio auxiliar			0,25
			Coste Total			50,75
			00000 1000.			00,.0
02.10	GFBB7A25	u	Codo de polietileno de 45°, manipulado, de densidad alta, de 225 mm de DN y 6 bar de presión nominal, según UNE-EN 12201-3,			
			para soldar, soldado			
	A012M000	h	Oficial 1a montador	0,813	19,10	15,53
	A013M000	h	Ayudante montador	0,813	17,24	14,02
	BFBB7A25	u	Codo poliet. 45°,manip.,DN 225mm,6bar,p/soldar	1,000	101,16	101,16
	A%AUX001	%	Gastos auxiliares mano de obra	0,015	29,55	0,44
			Clase: Mano de Obra			29,55
			Clase: Material			101,16
			Clase: Medio auxiliar			0,44
			Coste Total			131,15
			000.0 10.00			101,10
02.11	GF3C1853	u	Cono de reducción de fundición para pasar de 125 mm de DN a 80 mm de DN, con 2 uniones de campana con anilla elastomérica para agua y contrabrida de estanqueidad y colocada en el fondo de la zanja			
	A012M000	h	Oficial 1a montador	3,400	19,10	64,94
	A013M000	h	Ayudante montador	3,400	17,24	58,62
	BF3C1853 A%AUX001	u %	Cono red.fundición,DN=125-80mm,2campana agua,contrabrida Gastos auxiliares mano de obra	1,000 0,015	83,05 123,56	83,05 1,85
	A /0AUAUA	/0	Castos advillates Itlatio de Obia	0,010	123,30	1,00
			Clase: Mano de Obra			123,56
			Clase: Material			83,05
			Clase: Medio auxiliar			1,85
			Coste Total			208,46

_		
Drac	1101	iesto
PIES	LIL)U	12/11/1

					Tresupuesto	
02.12	GF3C1877	u	Cono de reducción de fundición para pasar de 125 mm de DN a 65 mm de DN, con 2 uniones embridadas con anilla elastomérica de estanqueidad para agua y colocada en el fondo de la zanja			
	A012M000	h	Oficial 1a montador	3,400	19,10	64,94
	A012M000 A013M000	h	Ayudante montador	3,400	17,24	58,62
	BF3C1877	u	Cono red.fundición,DN=125-65mm,2embridadas agua	1,000	77,71	77,71
	A%AUX001	%	Gastos auxiliares mano de obra	0,015	123,56	1,85
			Clase: Mano de Obra Clase: Material Clase: Medio auxiliar Coste Total			123,56 77,71 1,85 203,12
02.13	GF3C1A73	u	Cono de reducción de fundición para pasar de 225 mm de DN a 125 mm de DN, con 2 uniones de campana con anilla elastomérica para agua y contrabrida de estanqueidad y colocada en el fondo de la zanja			
	A012M000	h	Oficial 1a montador	1,943	19,10	37,11
	A013M000	h	Ayudante montador	1,943	17,24	33,50
	BF3C1A73	u	Cono red.fundición,DN=300-150mm,2campana agua,contrabrida	1,000	179,93	179,93
	C1503000	h	Camión grúa	1,943	45,42	88,25
	A%AUX001	%	Gastos auxiliares mano de obra	0,015	70,61	1,06
			Clase: Mano de Obra			70,61
			Clase: Maquinaria			88,25
			Clase: Material Clase: Medio auxiliar			179,93 1,06
			Clase: Medio auxiliai Coste Total			339,85
			oosie rotal			333,03
02.14	GF3C1A93	u	Cono de reducción de fundición para pasar de 225 mm de DN a 150 mm de DN, con 2 uniones de campana con anilla elastomérica para agua y contrabrida de estanqueidad y colocada en el fondo de la zanja			
	A012M000	h	Oficial 1a montador	1.042	19,10	37,11
	A013M000	h h	Ayudante montador	1,943 1,943	17,24	33,50
	BF3C1A93	u	Cono red.fundición,DN=225-150mm,2campana agua,contrabrida	1,000	191,57	191,57
	C1503000	ĥ	Camión grúa	1,943	45,42	88,25
	A%AUX001	%	Gastos auxiliares mano de obra	0,015	70,61	1,06
			Clase: Mano de Obra			70,61
			Clase: Mario de Obra Clase: Maquinaria			88,25
			Clase: Material			191,57
			Clase: Medio auxiliar			1,06
			Coste Total			351,49
02.15	GNZ116E4	u	Carrete extensible de desmontaje con bridas, con virola interior y exterior de acero inoxidable 1.4301 (AISI 304), junta de estanqueidad de etileno propileno dieno (EPDM), revestimiento de resina epoxy (150 micras), de 125 mm de diámetro nominal, de 16 bar de presión nominal, montado en arqueta de canalización enterrada			
	A 0.4 0 \$ 40.0 C			4 000	40.40	00.01
	A012M000 A013M000	h h	Oficial 1a montador Avudante montador	1,620 1,620	19,10 17,24	30,94 27,93
	BNZ116E0	u	Carrete desmontaie+bridas.1.4301 (AISI	1,020	140,66	140,66
		-	304),EPDM,DN=125mm,PN=16bar	.,000	, 00	
	A%AUX001	%	Gastos auxiliares mano de obra	0,015	58,87	0,88
			Clase: Mano de Obra			58,87
			Clase: Material			140,66
			Clase: Medio auxiliar			0,88
			Coste Total			200,41

Nº Actividad	Código		Descripción de las unidades de obra	Rendimiento	Precio	Importe
03	03		CAPITULO 3 MAQUINARIA			
03.01	GNH4A4BX	u	Bomba centrífuga compacta, normalizada según UNE-EN 733, tamaño normalizado 80-250, diámetro nominal de la impulsión 80 mm, diámetro nominal del rotor 250 mm, diámetro nominal de la aspiración 100 mm, presión nominal 10 bar, índice de eficiencia mínima de la bomba (MEI)<=0,4 según REGLAMENTO (UE) 547/2012, motor trifásico de 400 V y 7,5 kW a 1450 rpm con una clase de eficiencia energética IE3 según REGLAMENTO (CE) 640/2009, cuerpo de acero inoxidable 1.4401 (AISI 316), montada superficialmente			
	A012M000 A013M000	h h	Oficial 1a montador Ayudante montador	4,000 4,000	19,10 17,24	76,40 68,96
	BNH4A4B0	u	Bomba compac.,norm.80- 250,PN=10bar,400V,7,5kW,1450rpm,cuerpo inox.1.4401	1,000	4.129,00	4.129,00
	A%AUX001	%	Gastos auxiliares mano de obra	0,015	145,36	2,18
			Clase: Mano de Obra Clase: Material Clase: Medio auxiliar Coste Total			145,36 4.129,00 2,18 4.276,54
03.02	GNH4A401		Agitador sumergido.,norm.80-250,400V,0,6kW,1380rpm,cuerpo inox.1.4401,mont.superf.			
	A013M000 A%AUX001	h %	Ayudante montador Gastos auxiliares mano de obra	4,000 0,015	17,24 68,96	68,96 1,03
	A012M000 BNH4L4AA	h	Oficial 1a montador Agitador sumergido.,norm.80-250,400V,0,6kW,1380rpm,cuerpo inox.1.4401,mont.superf.	4,000 1,000	19,10 2.243,00	76,40 2.243,00
			Clase: Mano de Obra Clase: Material Clase: Medio auxiliar Coste Total			145,36 2.243,00 1,03 2.389,39
03.03	GNH4I1AA		Bomba centrífuga compacta, normalizada según UNE-EN 733, tamaño normalizado 80-200, diámetro nominal de la impulsión 80 mm, diámetro nominal del rotor 125 mm, diámetro nominal de la aspiración 150 mm, presión nominal 10 bar, índice de eficiencia mínima de la bomba (MEI)<=0,4 según REGLAMENTO (UE) 547/2012, motor trifásico de 400 V y 22 kW a 1450 rpm con una clase de eficiencia energética IE3 según REGLAMENTO (CE) 640/2009, cuerpo de acero inoxidable 1.4401 (AISI 316), montada superficialmente			
	A013M000 BNH4L3H0	h u	Ayudante montador Bomba compac.,norm.80- 250,PN=10bar,400V,22kW,1450rpm,cuerpo inox.1.4401,mont.superf.	3,000 1,000	17,24 8.056,00	51,72 8.056,00
	A%AUX001 A012M000	% h	Gastos auxiliares mano de obra Oficial 1a montador	0,015 3,000	51,72 19,10	0,78 57,30
			Clase: Mano de Obra Clase: Material Clase: Medio auxiliar Coste Total			109,02 8.056,00 0,78 8.165,80

Nº Actividad	Código		Descripción de las unidades de obra	Rendimiento	Preci	0	Importe
04	04		CAPITULO 4 ELECTRICIDAD				
04.01	GG4242JK	u	Interruptor diferencial de la clase AC, gama terciario, de 63 A de intensidad nominal, tetrapolar (4P), de sensibilidad 0,03 A, de desconexión fijo instantáneo, con botón de test incorporado y con indicador mecánico de defecto, construido según las especificaciones de la norma UNE-EN 61008-1, de 4 módulos DIN de 18 mm de ancho, montado en perfil DIN				
	A012H000 A013H000 BG4242JK	h h u	Oficial 1a electricista Ayudante electricista Interruptor dif.cl.AC,gam.terc.,l=63A,(4P),0,03A,fij.inst.,4mód.DIN,p/mont.perf.	0,500 0,200 1,000	19,10 17,21 333,27	9,55 3,44 333,27	
	BGW42000 A%AUX001	u %	DIN P.p.accesorios p/interr.dif. Gastos auxiliares mano de obra	1,000 0,015	0,38 12,99	0,38 0,19	
			Clase: Mano de Obra Clase: Material Clase: Medio auxiliar Coste Total			12,99 333,65 0,19 346,83	
04.02	GG42429D	u	Interruptor diferencial de la clase AC, gama terciario, de 10 A de intensidad nominal, bipolar (2P), de sensibilidad 0,03 A, de desconexión fijo instantáneo, con botón de test incorporado y con indicador mecánico de defecto, construido según las especificaciones de la norma UNE-EN 61008-1, de 2 módulos DIN de 18 mm de ancho, montado en perfil DIN				
	A012H000 A013H000 BG42429D	h h u	Oficial 1a electricista Ayudante electricista Interruptor dif.cl.AC,gam.terc.,l=10A,(2P),0,03A,fij.inst.,2mód.DIN,p/mont.perf. DIN	0,350 0,200 1,000	19,10 17,21 79,26	6,69 3,44 79,26	
	BGW42000 A%AUX001	u %	P.p.accesorios p/interr.dif. Gastos auxiliares mano de obra	1,000 0,015	0,38 10,13	0,38 0,15	
			Clase: Mano de Obra Clase: Material Clase: Medio auxiliar Coste Total			10,13 79,64 0,15 89,92	
04.03	GG4243JD	u	Interruptor diferencial de la clase AC, gama terciario, de 16 A de intensidad nominal, tetrapolar (4P), de sensibilidad 0,3 A, de desconexión fijo instantáneo, con botón de test incorporado y con indicador mecánico de defecto, construido según las especificaciones de la norma UNE-EN 61008-1, de 4 módulos DIN de 18 mm de ancho, montado en perfil DIN				
	A012H000 A013H000 BG4243JD	h h u	Oficial 1a electricista Ayudante electricista Interruptor dif.cl.AC,gam.terc.,l=16A,(4P),0,3A,fij.inst.,4mód.DIN,p/mont.perf.	0,500 0,200 1,000	19,10 17,21 126,01	9,55 3,44 126,01	
	BGW42000 A%AUX001	u %	DIN P.p.accesorios p/interr.dif. Gastos auxiliares mano de obra	1,000 0,015	0,38 12,99	0,38 0,19	
			Clase: Mano de Obra Clase: Material Clase: Medio auxiliar Coste Total			12,99 126,39 0,19 139,57	

04.04	GG42439M	u	Interruptor diferencial de la clase AC, gama terciario, de 50 A de intensidad nominal, bipolar (4P), de sensibilidad 0,3 A, de desconexión fijo instantáneo, con botón de test incorporado y con indicador mecánico de defecto, construido según las especificaciones de la norma UNE-EN 61008-1, de 4 módulos DIN de 18 mm de ancho, montado en perfil DIN			
	A012H000	h	Oficial 1a electricista	0,450	19,10	8,60
	A013H000	h	Ayudante electricista	0,200	17,21	3,44
	BG42439M	u	Interruptor dif.cl.AC,gam.terc.,l=50A,(4P),0,3A,fij.inst.,2mód.DIN,p/mont.perf. DIN	1,000	231,23	231,23
	BGW42000	u	P.p.accesorios p/interr.dif.	1,000	0,38	0,38
	A%AUX001	%	Gastos auxiliares mano de obra	0,015	12,04	0,18
			Clase: Mano de Obra			12,04
			Clase: Material Clase: Medio auxiliar			231,61
			Coste Total			0,18 243,83
			Coste Fotal			240,00
04.05	GG415D9H	u	Interruptor automático magnetotérmico de 10 A de intensidad nominal, tipo PIA curva C, bipolar (2P), de 500 A de poder de corte según UNE-EN 60898 y de 10 kA de poder de corte según UNE-EN 60947-2, de 2 módulos DIN de 18 mm de ancho, montado en perfil DIN			
	A012H000	h	Oficial 1a electricista	0,200	19,10	3,82
	A013H000	h	Ayudante electricista	0,200	17,21	3,44
	BG415D9H	u	Interruptor auto.magnet.,I=10A,PIA curvaC,(2P),corte=500A/0,5kA,2mód.DIN p/mont.perf.DIN	1,000	35,65	35,65
	BGW41000 A%AUX001	u %	P.p.accesorios p/interr.magnetot. Gastos auxiliares mano de obra	1,000 0,015	0,42 7,26	0,42 0,11
	A70A0X001	70	Castos auxiliares mano de obra	0,013	7,20	0,11
			Clase: Mano de Obra			7,26
			Clase: Material			36,07
			Clase: Medio auxiliar			0,11
			Coste Total			43,44
04.06	GG414RDB	u	Interruptor automático magnetotérmico de 50 A de intensidad nominal, tipo PIA curva C, tripolar (3P), de 50 kA de poder de corte según UNE-EN 60947-2, de 4,5 módulos DIN de 18 mm de ancho, montado en perfil DIN			
	A012H000	h	Oficial 1a electricista	0,210	19,10	4,01
	A013H000	h	Ayudante electricista	0,200	17,21	3,44
	BG414RDB	u	Interruptor auto.magnet.,I=50A,PIA curvaC,(3P),corte=50kA,4,5mód.DIN p/mont.perf.DIN	1,000	141,28	141,28
	BGW41000	u o/	P.p.accesorios p/interr.magnetot.	1,000	0,42	0,42
	A%AUX001	%	Gastos auxiliares mano de obra	0,015	7,45	0,11
			Clase: Mano de Obra			7,45
			Clase: Material			141,70
			Clase: Medio auxiliar			0,11
			Coste Total			149,26

04.07	GG415GKN	u	Interruptor automático magnetotérmico de 6: nominal, tipo PIA curva C, tetrapolar (4P), de corte según UNE-EN 60898 y de 7,5 kA de p UNE-EN 60947-2, de 6 módulos DIN de 18 i montado en perfil DIN	e 7500 A de poder de ooder de corte según			
	A012H000 A013H000 BG415GKN	h h u	Oficial 1a electricista Ayudante electricista Interruptor auto.magnet.,I=125A,PIA curvaC,(4P),corte=750A/7,5kA,6mód.DIN p/i	mont.perf.DIN	0,330 0,200 1,000	19,10 17,21 198,11	6,30 3,44 198,11
	BGW41000 A%AUX001	u %	P.p.accesorios p/interr.magnetot. Gastos auxiliares mano de obra	·	1,000 0,015	0,42 9,74	0,42 0,15
				Clase: Mano de Obra Clase: Material Clase: Medio auxiliar Coste Total			9,74 198,53 0,15 208,42
04.08	GG319534	m	Cable con conductor de cobre de 0,6/ 1kV d con designación RV-K, tetrapolar, de secció cubierta del cable de PVC, colocado en tubo	n 4 x 2,5 mmŽ, con			
	A012H000 A013H000 BG319530 A%AUX001	h h m %	Oficial 1a electricista Ayudante electricista Cable 0,6/ 1kV RV-K, 4x2,5mm2 Gastos auxiliares mano de obra		0,015 0,015 1,020 0,015	19,10 17,21 1,33 0,55	0,29 0,26 1,36 0,01
				Clase: Mano de Obra Clase: Material Clase: Medio auxiliar Coste Total			0,55 1,36 0,01 1,92
04.09	GG319564	m	Cable con conductor de cobre de 0,6/1kV d con designación RV-K, tetrapolar, de sección cubierta del cable de PVC, colocado en tubo	n 4 x 10 mm2, con			
	A012H000 A013H000 BG319560 A%AUX001	h h m %	Oficial 1a electricista Ayudante electricista Cable 0,6/ 1kV RV-K, 4x10mm2 Gastos auxiliares mano de obra		0,040 0,040 1,020 0,015	19,10 17,21 4,27 1,45	0,76 0,69 4,36 0,02
				Clase: Mano de Obra Clase: Material Clase: Medio auxiliar Coste Total			1,45 4,36 0,02 5,83
04.10	EH61NK8B	u	Luz de emergencia combinada y no estanca protección IP4X, de forma rectangular con d policarbonato, con lámpara fluorescente de de 500 lúmens, 2 h de autonomía, precio alt	ifusor y cuerpo de 33 W, flujo aproximado			
	A012H000 A013H000	h h	Oficial 1a electricista Ayudante electricista		0,150 0,150	19,10 17,21	2,87 2,58
	BH61NK8B	u	Luz de emergencia,combinada,IP4X,rect.,policarbor 200-240lúmens,auton<2h, precio alto	n.,lámp.fluoresc.,8W,	1,000	112,33	112,33
	A%AUX001	%	Gastos auxiliares mano de obra		0,015	5,45	0,08
				Clase: Mano de Obra Clase: Material Clase: Medio auxiliar Coste Total			5,45 112,33 0,08 117,86

04.11	GG1A0949	u	Armario metálico desde 700x900x180 hasta para servicio exterior, con puerta con ventan	900x1000x180 mm, illa, fijado a columna			
	A012H000 A013H000 BG1A0940	h h u	Oficial 1a electricista Ayudante electricista Armario metál.700x900x180 a 900x1000x180mm,ext.,puerta+ventanilla		0,380 0,420 1,000	19,10 17,21 354,03	7,26 7,23 354,03
	BGW1A000 A%AUX001	u %	P.p.accesorios p/armarios metálicos Gastos auxiliares mano de obra		1,000 0,015	4,96 14,49	4,96 0,22
				Clase: Mano de Obra Clase: Material Clase: Medio auxiliar Coste Total			14,49 358,99 0,22 373,70
04.12	GG319524	m	Cable con conductor de cobre de 0,6/ 1kV de con designación RV-K, tetrapolar, de sección cubierta del cable de PVC, colocado en tubo	n 3 x 1.5 mm2. con			
	A012H000 A013H000 BG319520 A%AUX001	h h m %	Oficial 1a electricista Ayudante electricista Cable 0,6/ 1kV RV-K, 3x1,5mm2 Gastos auxiliares mano de obra		0,015 0,015 1,020 0,015	19,10 17,21 0,89 0,55	0,29 0,26 0,91 0,01
				Clase: Mano de Obra Clase: Material Clase: Medio auxiliar Coste Total			0,55 0,91 0,01 1,47
04.13	GG319001		Cable con conductor de cobre de 0,6/ 1kV de con designación RV-K, tetrapolar, de sección cubierta del cable de PVC, colocado en tubo	n 4 x 2,5 mm2, con			
	A013H000 BG319530 A%AUX001 A012H000	h m % h	Ayudante electricista Cable 0,6/ 1kV RV-K, 4x2,5mm2 Gastos auxiliares mano de obra Oficial 1a electricista		0,015 1,020 0,015 0,015	17,21 1,33 0,26 19,10	0,26 1,36 0,29
				Clase: Mano de Obra Clase: Material Coste Total			0,55 1,36 1,91
04.14	GG564001		Variador ATV320 Scheider 7,5kw con PDI				
	A013H000 A%AUX001 BG562225 A012H000	h % u h	Ayudante electricista Gastos auxiliares mano de obra Variador ATV320 Scheider 7,5kw con PDI, 4 Oficial 1a electricista	95-65Hz	0,150 0,015 1,000 0,083	17,21 2,58 909,00 19,10	2,58 0,04 909,00 1,59
				Clase: Mano de Obra Clase: Material Clase: Medio auxiliar Coste Total			4,17 909,00 0,04 913,21
04.15	GG564002		Variador ATV320 Scheider 22kw con PDI				
	A013H000 BG563225 A%AUX001 A012H000	h u % h	Ayudante electricista Variador ATV320 Scheider 22kw con PDI,45 Gastos auxiliares mano de obra Oficial 1a electricista	i-65Hz	0,150 1,000 0,015 0,083	17,21 3.050,00 2,58 19,10	2,58 3.050,00 0,04 1,59
				Clase: Mano de Obra Clase: Material Clase: Medio auxiliar Coste Total			4,17 3.050,00 0,04 3.054,21

D	resi	ını	100	+~
_	וכאו	มมเ	ィヒコ	LL

95,48

04.16	GG564003		Sonda ultrasónica de 420mA SONAR BERO 3RG623			
	A013H000	h	Ayudante electricista	0,150	17,21	2,58
	BG564325	u	Sonda ultrasónica de 420mA SONAR BERO 3RG623	1,000	91,27	91,27
	A%AUX001	%	Gastos auxiliares mano de obra	0,015	2,58	0,04
	A012H000	h	Oficial 1a electricista	0,083	19,10	1,59
			Clase: Mano de C	Obra		4,17
			Clase: Mate	erial		91,27
			Clase: Medio aux	diliar		0,04

Coste Total

4.4 PRESUPUESTO

N.º Orden		Descripción de las unidades de obra	Medición	Precio	Importe
01		CAPITULO 1 TUBERIA			
01.01 GFB1L325	m	Tubo de polietileno de designación PE 100, de 225 mm de diámetro nominal, de 6 bar de presión nominal, serie SDR 26, UNE-EN 12201-2, soldado	36,00	46,44€	1.671,84 €
01.02 GFB1F325	m	Tubo de polietileno de designación PE 100, de 125 mm de diámetro nominal, de 6 bar de presión nominal, serie SDR 26, UNE-EN 12201-2, soldado	192,00	17,02€	3.267,84 €

Total Capítulo 01

4.939,68 €

N.º Orden		Descripción de las unidades de obra	Medición	Precio	Importe
02		CAPITULO 2 ACCESORIOS			
02.01 G44Z5A25	kg	Acero S275JR según UNE-EN 10025-2, en perfiles laminados en caliente serie L, LD, T, redondo, cuadrado, rectangular y plancha, trabajado en taller y con una capa de imprimación antioxidante, para refuerzo de elementos de empotramiento, apoyo y rigidizado, colocado en obra con soldadura	63,60	3,11€	197,80 €
02.02 GNZ116G4	u	Carrete extensible de desmontaje con bridas, con virola interior y exterior de PE 1.4301, junta de estanqueidad de etileno propileno dieno (EPDM), de 225 mm de diámetro nominal, de 16 bar de presión nominal, montado en arqueta de canalización enterrada	2,00	347,53€	695,06 €
02.03 GN8L35E4	u	Válvula de retención de clapeta, según la norma UNE-EN ISO 16137, para montar entre bridas, DN 125 (para tubo de 125 mm de diámetro nominal), de 10 bar de presión nominal , cuerpo de PE y juntas de estanqueidad de etileno propileno dieno (EPDM)	3,00	50,20€	150,60 €
02.04 GN8L35G4	u	Válvula de retención de clapeta, según la norma UNE-EN ISO 16137, para montar entre bridas, DN 225 (para tubo de 225 mm de diámetro nominal), de 10 bar de presión nominal , cuerpo de PE y juntas de estanqueidad de etileno propileno dieno (EPDM)	3,00	75,02€	225,06 €
02.05 GFBA6686	u	Derivación de polietileno inyectada, de densidad media de 125 mm de DN, serie SDR 11, según UNE-EN 1555-3 con ramal a 45° de 125 mm de DN, para soldar, soldada y colocada en el fondo de la zanja	2,00	42,07€	84,14 €
02.06 GFBA6A8A	u	Derivación de polietileno inyectada, de densidad media de 225 mm de DN, serie SDR 11, según UNE-EN 1555-3 con ramal a 45° de 225 mm de DN, para soldar, soldada y colocada en el fondo de la zanja	2,00	99,69€	199,38 €
02.07 GFBB1625	u	Codo de polietileno de 90°, manipulado, de densidad alta, de 125 mm de DN y 6 bar de presión nominal, según UNE-EN 12201-3, para soldar, soldado y colocado en el fondo de la zanja	10,00	58,04 €	580,40 €
02.08 GFBB1935	u	Codo de polietileno de 90°, manipulado, de densidad alta, de 225 mm de DN y 6 bar de presión nominal, según UNE-EN 12201-3, para soldar, soldado	7,00	115,89€	811,23 €
02.09 GFBB7625	u	Codo de polietileno de 45°, manipulado, de densidad alta, de 125 mm de DN y 6 bar de presión nominal, según UNE-EN 12201-3, para soldar, soldado	3,00	50,75€	152,25 €
02.10 GFBB7A25	u	Codo de polietileno de 45°, manipulado, de densidad alta, de 225 mm de DN y 6 bar de presión nominal, según UNE-EN 12201-3, para soldar, soldado	3,00	131,15€	393,45 €
02.11 GF3C1853	u	Cono de reducción de fundición para pasar de 125 mm de DN a 80 mm de DN, con 2 uniones de campana con anilla elastomérica para agua y contrabrida de estanqueidad y colocada en el fondo de la zanja	3,00	208,46 €	625,38 €
02.12 GF3C1877	u	Cono de reducción de fundición para pasar de 125 mm de DN a 65 mm de DN, con 2 uniones embridadas con anilla elastomérica de estanqueidad para agua y colocada en el fondo de la zanja	3,00	203,12€	609,36 €
02.13 GF3C1A73	u	Cono de reducción de fundición para pasar de 225 mm de DN a 125 mm de DN, con 2 uniones de campana con anilla elastomérica para agua y contrabrida de estanqueidad y colocada en el fondo de la zanja	3,00	339,85€	1.019,55€

02.14 GF3C1A93	u	Cono de reducción de fundición para pasar de 225 mm de DN a 150 mm de DN, con 2 uniones de campana con anilla elastomérica para agua y contrabrida de estanqueidad y colocada en el fondo de la zanja	3,00	351,49€	1.054,47€
02.15 GNZ116E4	u	Carrete extensible de desmontaje con bridas, con virola interior y exterior de acero inoxidable 1.4301 (AISI 304), junta de estanqueidad de etileno propileno dieno (EPDM), revestimiento de resina epoxy (150 micras), de 125 mm de diámetro nominal, de 16 bar de presión nominal, montado en arqueta de canalización enterrada	6,00	200,41€	1.202,46 €

Total Capítulo 02

8.000,59 €

42.105,80 €

N.º Orden		Descripción de las unidades de obra	Medición	Precio	Importe
03		CAPITULO 3 MAQUINARIA			
03.01 GNH4A4BX	u	Bomba centrífuga compacta, normalizada según UNE-EN 733, tamaño normalizado 80-250, diámetro nominal de la impulsión 80 mm, diámetro nominal del rotor 250 mm, diámetro nominal de la aspiración 100 mm, presión nominal 10 bar, índice de eficiencia mínima de la bomba (MEI)<=0,4 según REGLAMENTO (UE) 547/2012, motor trifásico de 400 V y 7,5 kW a 1450 rpm con una clase de eficiencia energética IE3 según REGLAMENTO (CE) 640/2009, cuerpo de acero inoxidable 1.4401 (AISI 316), montada superficialmente	3,00	4.276,54 €	12.829,62 €
03.02 GNH4A401		Agitador sumergido.,norm.80-250,400V,0,6kW,1380rpm,cuerpo inox.1.4401,mont.superf.	2,00	2.389,39 €	4.778,78€
03.03 GNH4I1AA		Bomba centrífuga compacta, normalizada según UNE-EN 733, tamaño normalizado 80-200, diámetro nominal de la impulsión 80 mm, diámetro nominal del rotor 125 mm, diámetro nominal de la aspiración 150 mm, presión nominal 10 bar, índice de eficiencia mínima de la bomba (MEI)<=0,4 según REGLAMENTO (UE) 547/2012, motor trifásico de 400 V y 22 kW a 1450 rpm con una clase de eficiencia energética IE3 según REGLAMENTO (CE) 640/2009, cuerpo de acero inoxidable 1.4401 (AISI 316), montada superficialmente	3,00	8.165,80 €	24.497,40 €

Total Capítulo 03

N.º Orden	Descripción de las unidades de obra	Medición	Precio	Importe

04		CAPITULO 4 ELECTRICIDAD			
04.01 GG4242JK	u	Interruptor diferencial de la clase AC, gama terciario, de 63 A de intensidad nominal, tetrapolar (4P), de sensibilidad 0,03 A, de desconexión fijo instantáneo, con botón de test incorporado y con indicador mecánico de defecto, construido según las especificaciones de la norma UNE-EN 61008-1, de 4 módulos DIN de 18 mm de ancho, montado en perfil DIN	1,00	346,83€	346,83 €
04.02 GG42429D	u	Interruptor diferencial de la clase AC, gama terciario, de 10 A de intensidad nominal, bipolar (2P), de sensibilidad 0,03 A, de desconexión fijo instantáneo, con botón de test incorporado y con indicador mecánico de defecto, construido según las especificaciones de la norma UNE-EN 61008-1, de 2 módulos DIN de 18 mm de ancho, montado en perfil DIN	2,00	89,92€	179,84 €
04.03 GG4243JD	u	Interruptor diferencial de la clase AC, gama terciario, de 16 A de intensidad nominal, tetrapolar (4P), de sensibilidad 0,3 A, de desconexión fijo instantáneo, con botón de test incorporado y con indicador mecánico de defecto, construido según las especificaciones de la norma UNE-EN 61008-1, de 4 módulos DIN de 18 mm de ancho, montado en perfil DIN	3,00	139,57 €	418,71 €
04.04 GG42439M	u	Interruptor diferencial de la clase AC, gama terciario, de 50 A de intensidad nominal, bipolar (4P), de sensibilidad 0,3 A, de desconexión fijo instantáneo, con botón de test incorporado y con indicador mecánico de defecto, construido según las especificaciones de la norma UNE-EN 61008-1, de 4 módulos DIN de 18 mm de ancho, montado en perfil DIN	1,00	243,83€	243,83 €
04.05 GG415D9H	u	Interruptor automático magnetotérmico de 10 A de intensidad nominal, tipo PIA curva C, bipolar (2P), de 500 A de poder de corte según UNE-EN 60898 y de 10 kA de poder de corte según UNE-EN 60947-2, de 2 módulos DIN de 18 mm de ancho, montado en perfil DIN	2,00	43,44 €	86,88 €
04.06 GG414RDB	u	Interruptor automático magnetotérmico de 50 A de intensidad nominal, tipo PIA curva C, tripolar (3P), de 50 kA de poder de corte según UNE-EN 60947-2, de 4,5 módulos DIN de 18 mm de ancho, montado en perfil DIN	1,00	149,26€	149,26 €
04.07 GG415GKN	u	Interruptor automático magnetotérmico de 63 A de intensidad nominal, tipo PIA curva C, tetrapolar (4P), de 7500 A de poder de corte según UNE-EN 60898 y de 7,5 kA de poder de corte según UNE-EN 60947-2, de 6 módulos DIN de 18 mm de ancho, montado en perfil DIN	1,00	208,42€	208,42 €
04.08 GG319534	m	Cable con conductor de cobre de 0,6/ 1kV de tensión asignada, con designación RV-K, tetrapolar, de sección 4 x 2,5 mm2, con cubierta del cable de PVC, colocado en tubo	84,00	1,92€	161,28 €
04.09 GG319564	m	Cable con conductor de cobre de 0,6/ 1kV de tensión asignada, con designación RV-K, tetrapolar, de sección 4 x 10 mm2, con cubierta del cable de PVC, colocado en tubo	42,00	5,83€	244,86 €
04.10 EH61NK8B	u	Luz de emergencia combinada y no estanca, con grado de protección IP4X, de forma rectangular con difusor y cuerpo de policarbonato, con lámpara fluorescente de 33 W, flujo aproximado de 500 lúmens, 2 h de autonomía, precio alto, colocada superficial	6,00	117,86€	707,16 €
04.11 GG1A0949	u	Armario metálico desde 700x900x180 hasta 900x1000x180 mm, para servicio exterior, con puerta con ventanilla, fijado a columna	2,00	373,70€	747,40 €

				Presupuest	<u>:0</u>
04.12 GG319524	m	Cable con conductor de cobre de 0,6/ 1kV de tensión asignada, con designación RV-K, tetrapolar, de sección 3 x 1,5 mm2, con cubierta del cable de PVC, colocado en tubo	48,00	1,47€	70,56 €
04.13 GG319001		Cable con conductor de cobre de 0,6/ 1kV de tensión asignada, con designación RV-K, tetrapolar, de sección 4 x 2,5 mm2, con cubierta del cable de PVC, colocado en tubo	39,00	1,91€	74,49€
04.14 GG564001		Variador ATV320 Scheider 7,5kw con PDI	1,00	913,21 €	913,21 €
04.15 GG564002		Variador ATV320 Scheider 22kw con PDI	1,00	3.054,21 €	3.054,21€
04.16 GG564003		Sonda ultrasónica de 420mA SONAR BERO 3RG623	2,00	95,48€	190,96 €
		Total Capítulo 04			7.797,90€
		Total Presupuesto			62.843,97€

4.5 RESUMEN PRESUPUESTO

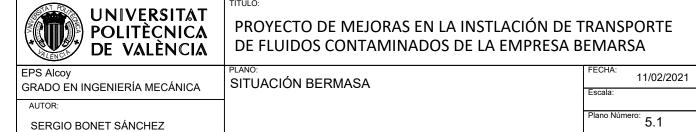
Nº Orden		Descripción de los capítulos					
01	CAPITULO 1 TUBERIA		4.939,68				
02	CAPITULO 2 ACCESORIOS		8.000,59				
03	CAPITULO 3 MAQUINARIA		42.105,80				
04	CAPITULO 3 ELECTRICIDAD		7.797,90				
	TOTAL EJECUCIÓN MATERIA	AL	62.843,97				
	13 % Gastos Generales		8.169,72				
	6 % Beneficio Industrial	6 % Beneficio Industrial					
	TOTAL EJECUCIÓN POR CO	TOTAL EJECUCIÓN POR CONTRATA					
		21 % I.V.A					
	TOTAL PRESUPUESTO C/IV	TOTAL PRESUPUESTO C/IVA					
		Asciende el presupuesto proyectado, a la expresada cantidad de: NOVENTA MIL CUATROCIENTOS OCHENTA Y NUEVE EUROS CON CUATRO CÉNTIMOS					
En Valencia, 12 FEBRERO 2021, 7 de Febrero de 2021							
	LA PROPIEDAD	LA DIRECCIÓN TÉCNICA	LA CONSTRUCTORA				

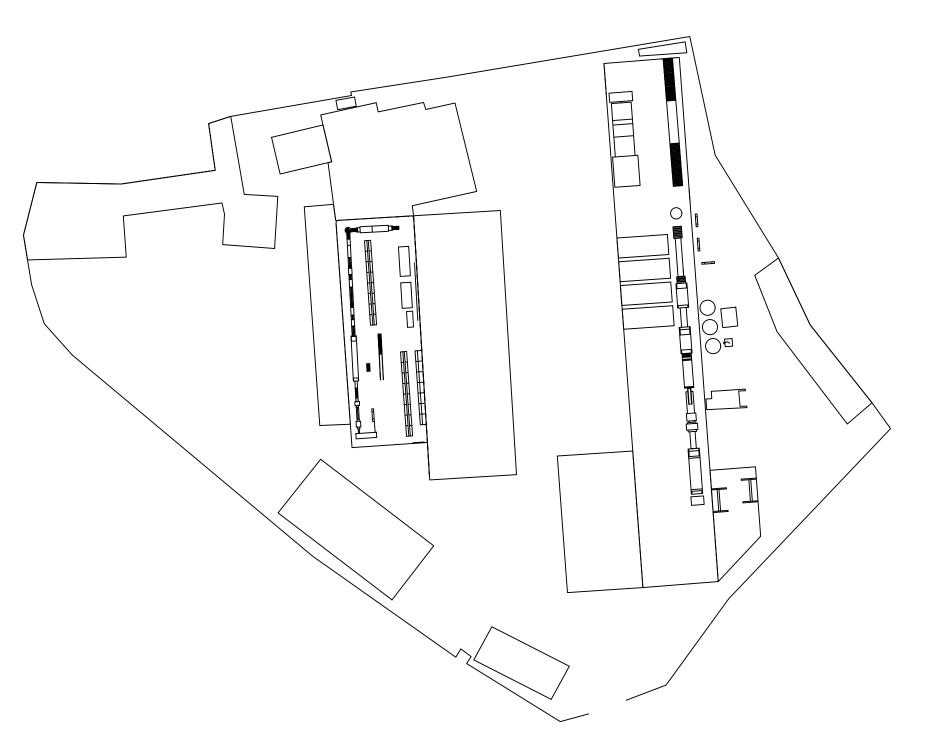
Fdo.:

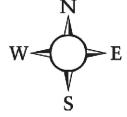
Fdo.:

Fdo.:

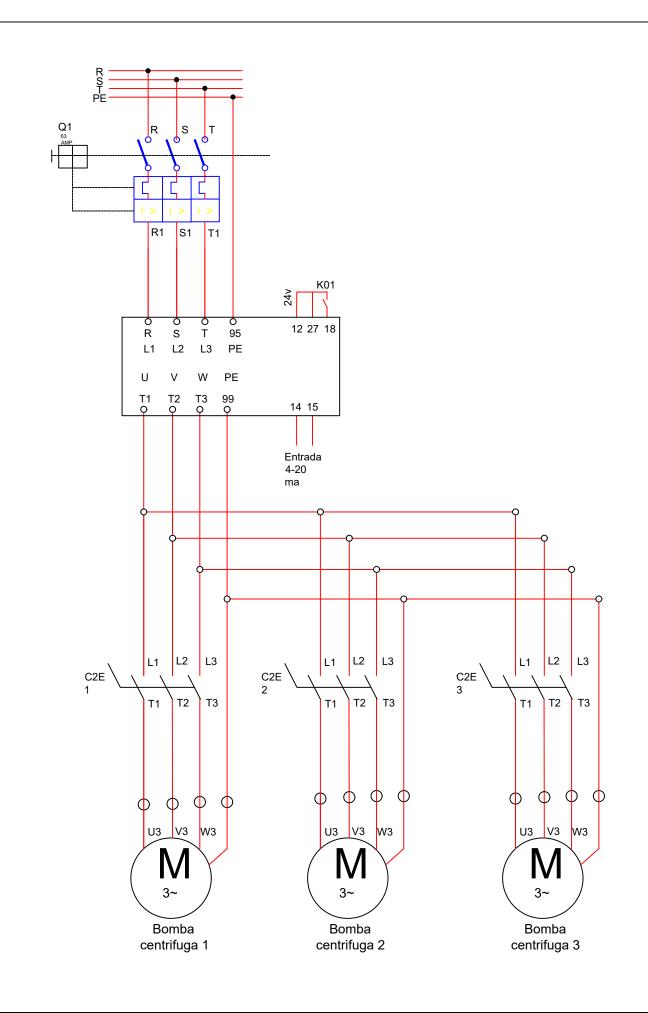
5. PLANOS

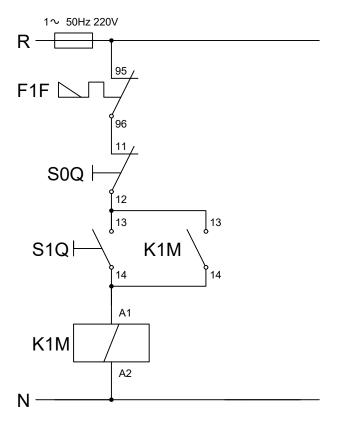

5 PLANOS


- 5.1 SITUACIÓN BEMARSA
- 5.2 PLANO GENERAL
- 5.3.1 ESQUEMA ELECTRICO POTENCIA Y MANDO
- 5.3.2 ESQUEMA ELECTRICO NAVE DE LOSAS
- 5.3.3 ESQUEMA ELECTRICO NAVE DE TABLAS Y LOSAS
- 5.4.1 INSTALACION HIDRAULICA EN NAVE DE TABLAS Y TALLER
- 5.4.2 INSTALACION HIDRAULICA EN NAVE DE LOSAS
- 5.4.3 ESQUEMA SISTEMA HIDRAULICO



PROYECTO DE MEJORAS EN LA INSTLACIÓN DE TRANSPORTE DE FLUIDOS CONTAMINADOS DE LA EMPRESA BEMARSA


EPS Alcoy GRADO EN INGENIERÍA MECÁNICA


SERGIO BONET SÁNCHEZ

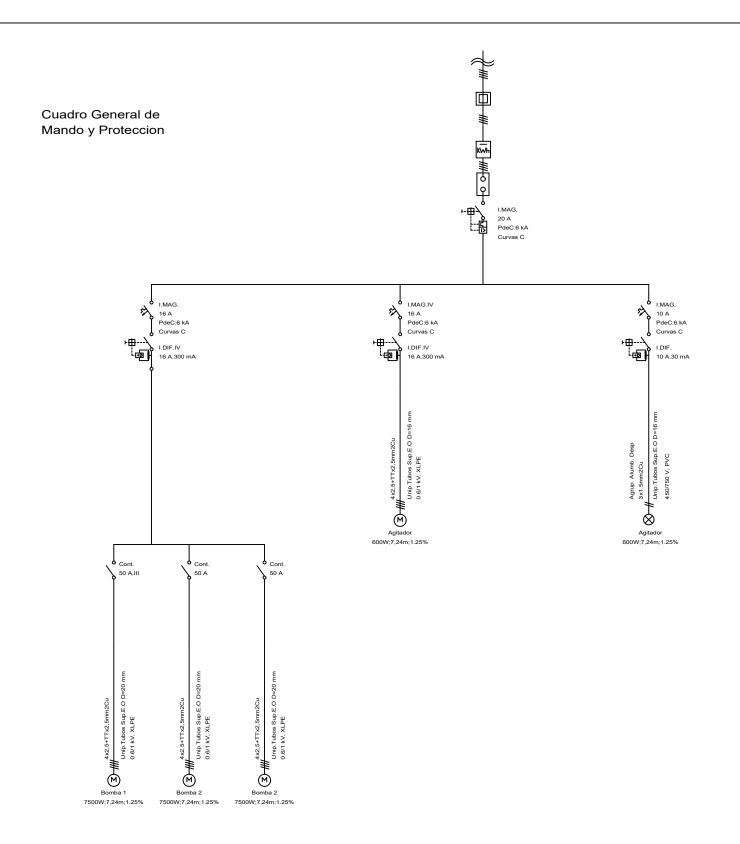
PLANO: PLANO GENERAL

11/02/2021 1/1

Plano Número: 5.2

TÍTULO:

PROYECTO DE MEJORAS EN LA INSTLACIÓN DE TRANSPORTE DE FLUIDOS CONTAMINADOS DE LA EMPRESA BEMARSA


EPS Alcoy GRADO EN INGENIERÍA MECÁNICA

AUTOR:

SERGIO BONET SÁNCHEZ

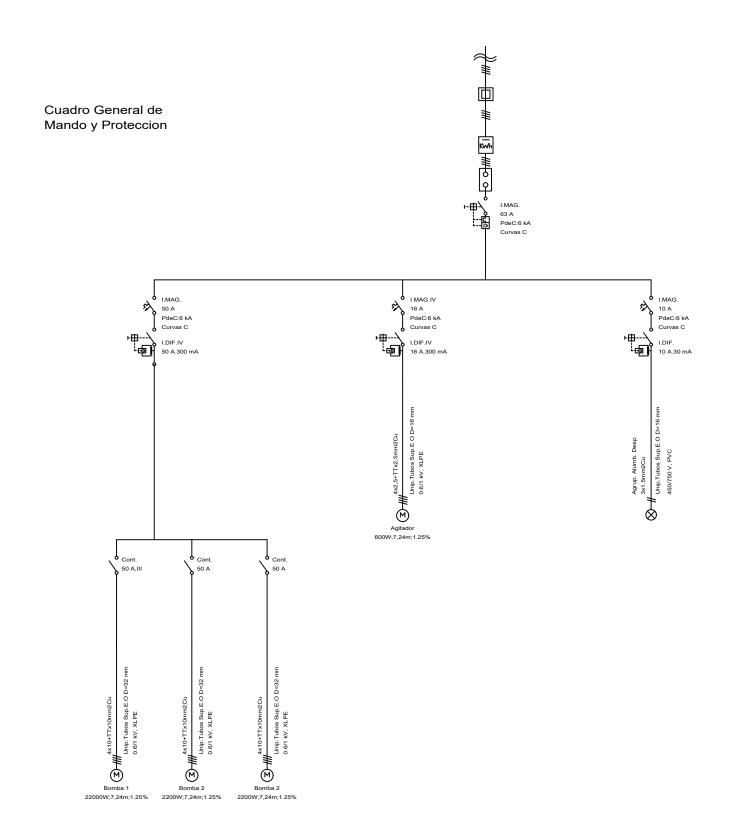
PLANO: ESQUEMA ELECTRICO POTENCIA Y MANDO FECHA: 11/02/2021

S/N
Plano Número: 5.3.1

	LEYENDA
M	MOTOR
\otimes	LUMINARIA
1,	CONTACTOR
	DIFERENCIAL
焓	MAGNETOTERMICO

TÍTULO:

PROYECTO DE MEJORAS EN LA INSTLACIÓN DE TRANSPORTE DE FLUIDOS CONTAMINADOS DE LA EMPRESA BEMARSA

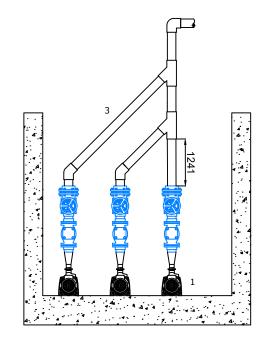

EPS Alcoy GRADO EN INGENIERÍA MECÁNICA

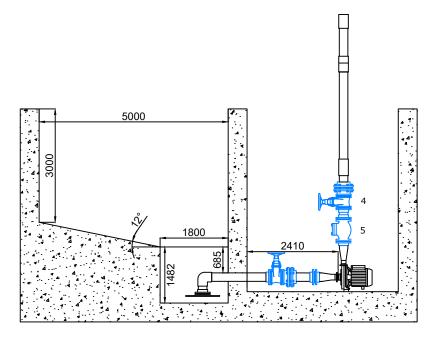

AUTOR:

SERGIO BONET SÁNCHEZ

PLANO: ESQUEMA ELECTRICO NAVE DE LOSAS FECHA: 11/02/2021

S/N
Plano Número: 5.3.2

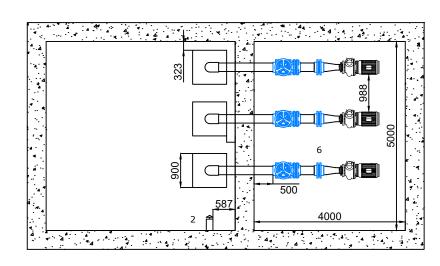

PROYECTO DE MEJORAS EN LA INSTLACIÓN DE TRANSPORTE DE FLUIDOS CONTAMINADOS DE LA EMPRESA BEMARSA


EPS Alcoy
GRADO EN INGENIERÍA MECÁNICA

AUTOR:
SERGIO BONET SÁNCHEZ

PLANO: ESQUEMA ELECTRICO NAVE DE TABLAS Y LOSAS

Escala: S/N
Plano Número: 5.3.3

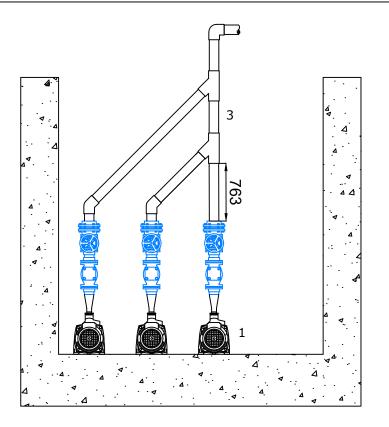


VISTA DE PERFIL **BOMBAS**

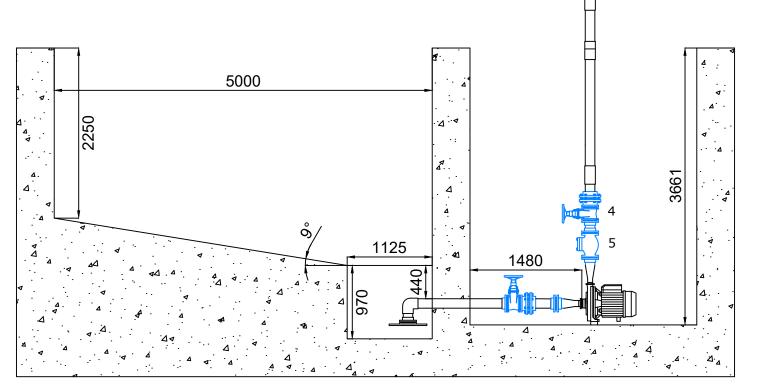
LEYENDA			
MOTOR	1	BOMBA GNI 150-26/30	
AGITADOR	2	AGITADOR AGS 17-2SHG/0,9	
CONDUCTO	3	DN225	
VALVULA	4	VALVULA DE CORTE	
VALVULA	5	VALVULA DE RETENCION	
CARRETE	6	CARRETE DE DESMONTAJE	
COTAS EN mm			

SECCION ALZADO

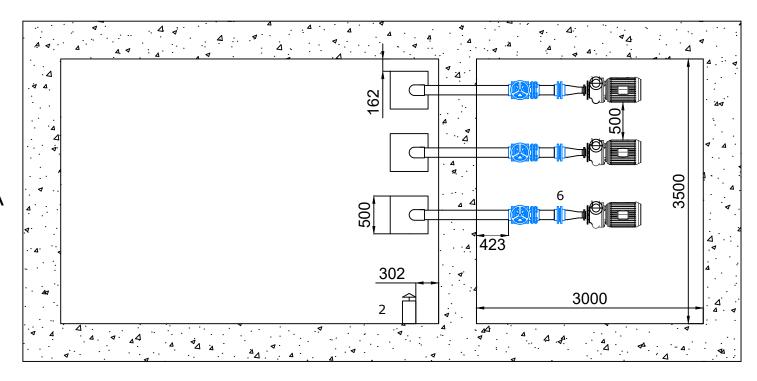
PLANTA


PROYECTO DE MEJORAS EN LA INSTLACIÓN DE TRANSPORTE DE FLUIDOS CONTAMINADOS DE LA EMPRESA BEMARSA

GRADO EN INGENIERÍA MECÁNICA


SERGIO BONET SÁNCHEZ

INSTALACION HIDRAULICA EN NAVE DE TABLAS Y **TALLER**


11/02/2021 1/100 Plano Número: 5.4.1

VISTA DE PERFIL BOMBAS

SECCION ALZADO

PLANTA

LEYENDA			
MOTOR	1	BOMBA GNI 65-26/10	
AGITADOR	2	AGITADOR AGS 17-2SHG/0,9	
CONDUCTO	3	DN125	
VALVULA	4	VALVULA DE CORTE	
VALVULA	5	VALVULA DE RETENCIÓN	
CARRETE	6	CARRETE DE DESMONTAJE	
COTAS EN mm			

TÍTULO

PROYECTO DE MEJORAS EN LA INSTLACIÓN DE TRANSPORTE DE FLUIDOS CONTAMINADOS DE LA EMPRESA BEMARSA

EPS Alcoy GRADO EN INGENIERÍA MECÁNICA AUTOR:

SERGIO BONET SÁNCHEZ

PLANO: INSTALACION HIDRAULICA EN NAVE DE LOSAS

11/02/2021
Escala: 1/200
Plano Número: 5.4.2

SILO BALSA

CONDUCTO

CONDUCTO

PROYECTO DE MEJORAS EN LA INSTLACIÓN DE TRANSPORTE DE FLUIDOS CONTAMINADOS DE LA EMPRESA BEMARSA

GRADO EN INGENIERÍA MECÁNICA

SERGIO BONET SÁNCHEZ

PLANO: ESQUEMA SISTEMA HIRAULICO

11/02/2021 1/1

Plano Número: 5.4.3

LISTADO DE TABLAS

En este apartado se listarán todas las **Tablas** que han aparecido en el texto, junto con el número de página para su fácil localización en caso de ser necesario. A modo de ejemplo se presenta el siguiente listado.

Tabla 1. Consumos de máquinas en nave de losas.	17
Tabla 2. Consumos de máquinas en nave de tablas	17
Tabla 3. Consumos de máquinas en taller	18
Tabla 4. Potencia prevista en nave de losas	18
Tabla 5. Potencia prevista en nave de tablas y taller	18
Tabla 6. Potencia total prevista	18
Tabla 7. Características de los conductos	19
Tabla 8. Modelo del variador	22
Tabla 9. Composición de los cuadros secundarios	23
Tabla 10. Características de las líneas.	24
Tabla 11. Consumos de máquinas en nave de losas.	29
Tabla 12. Consumos de máquinas en nave de tablas	29
Tabla 13. Consumos de máquinas en taller	29
Tabla 14. Consumos por horas en la nave de losas	30
Tabla 15. Consumos por horas en la nave de tablas y taller	31
Tabla 16. Necesidades hídricas de la fabrica	32
Tabla 17. Puntos con carácter representativos.	33
Tabla 18. Características de la tubería	34
Tabla 19. Sección hidráulica	34
Tabla 20. Velocidad en DN125 (PE).	34
Tabla 21. Velocidad en DN225 (PE)	35
Tabla 22. Número de Reynolds en DN125 (PE)	36
Tabla 23. Número de Reynolds en DN225 (PE).	36
Tabla 24. Rugosidad absoluta	36
Tabla 25. Factor de fricción en tubería DN125 (PE)	37
Tabla 26. Factor de fricción en tubería DN225 (PE)	37
Tabla 27. Pérdidas continuas en DN125 (PE)	38
Tabla 28. Pérdidas continuas en DN225 (PE)	38
Tabla 29. Pérdidas en entrada	39
Tabla 30. Pérdidas por codo de 90° en DN125 (PE)	40
Tabla 31. Pérdidas por codo de 90° en DN225 (PE)	40
Tabla 32. Pérdidas por codo de 45° en DN125 (PE)	41
Tabla 33. Pérdidas por codo de 45° en DN225 (PE)	41
Tabla 34. Pérdidas estrechamiento	42
Tabla 35. Perdidas por válvula de compuerta en DN125 (PE)	42
Tabla 36. Pérdidas por válvula de compuerta en DN225 (PE)	42
Tabla 37. Pérdidas por ensanchamiento.	43

	38. Pérdidas por válvula de retención en DN125 (PE).	
Tabla 3	39. Pérdidas por válvula de retención en DN225 (PE)	44
Tabla 4	40. Pérdidas por "T" de 45° en DN125 (PE)	44
Tabla 4	11. Pérdidas por "T" de 45° en DN225 (PE)	45
Tabla 4	12. Perdidas por salida de tubería	45
Tabla 4	13. Ecuación de la curva resistente con DN125 (PE)	46
Tabla 4	14. Ecuación de la curva resistente con DN225 (PE)	46
Tabla 4	15. Altura máxima	46
Tabla 4	16. Selección de la bomba	47
Tabla 4	17. Altura manométrica en DN125 (PE)	47
Tabla 4	18. Altura manométrica en DN225 (PE)	47
Tabla 4	19. Parábola de congruencia en bomba GNI 65-26/10	48
Tabla !	50. Parábola de congruencia en bomba GNI 150-26/30	48
Tabla !	51. Puntos de funcionamiento en bomba GNI 65-26/10	48
Tabla !	52. Puntos de funcionamiento en bomba GNI 125-32/30	49
	53. Relación de velocidad bomba GNI 65-26/10.	
Tabla !	54. Relación de velocidad bomba GNI 125-32/30.	50
Tabla !	55. Nueva velocidad de funcionamiento en bomba GNI 65-26/10	50
Tabla !	56. Nueva velocidad de funcionamiento en GNI 125-32/30	51
	57. Ecuación de la curva resistente con DN125 (PE)	
Tabla !	58. Ecuación de la curva resistente con DN125 (PE)	53
Tabla !	59. Puntos de la grafica NPSH _r GNI65-26/10	54
Tabla (50. Altura cavitación GNI65-26/10	54
Tabla (51. Puntos de la grafica NPSH _r GNI125-32/30.	55
Tabla (52. Altura cavitación GNI125-32/30	56
Tabla (53. Puntos representativos Caudal – Potencia GNI 65-26/10	56
Tabla (64. Puntos representativos del caudal estudiado, Caudal – Potencia GNI 65-26/10	57
Tabla (55. Puntos representativos Caudal – Potencia GNI 150-26/30	57
Tabla (66. Puntos representativos del caudal estudiado, Caudal – Potencia GNI 150-26/30	58
	67. Potencia en nave de losas	
Tabla (58. Potencia en nave de tablas y taller	60
	59. Potencia total prevista	
Tabla 🛚	70. Intensidades de los elementos de la instalación	60
Tabla :	71. Caída de tensión	62
	72. Protección contra sobrecargas	
Tabla 7	73. Protección contra contactos indirectos y directos	65