

Journal of Software Engineering Research and Development, 2020, 8:1, doi: 10.5753/jserd.2019.457

 This work is licensed under a Creative Commons Attribution 4.0 International License.

Supporting a Hybrid Composition of Microservices.

The EUCalipTool Platform

Pedro Valderas [PROS Research Center – Universitat Politècnica de València, Spain | pvalderas@pros.upv.es]
Victoria Torres [PROS Research Center – Universitat Politècnica de València, Spain | vtorres@pros.upv.es]
Vicente Pelechano [PROS Research Center – Universitat Politècnica de València, Spain | pele@pros.upv.es]

Abstract
To provide complex and elaborated functionalities, Microservices may cooperate with each other either by follow-
ing a centralized (orchestration) or decentralized (choreography) approach. It seems that the decentralized nature
of microservices makes the choreography approach more appropriate to achieve such cooperation, where lighter
solutions based on events and message queues are used. However, orchestration through the usage of a process
model facilitates the analysis of the composition when this is modified. To benefit from the goodness of these two
approaches, this paper presents a hybrid solution based on the choreography of business process pieces that are
obtained from a previously defined description of the complete microservice composition. To support this solution,
the EUCalipTool platform is presented.

Keywords: microservice, composition, choreography, orchestration

1 Introduction

Companies such as Amazon, Airbnb, Twitter, Netflix, Apple,
Uber, and many others have shifted towards a microservices
architecture intending to be more agile in doing their busi-
ness. The technology and functionality independence ac-
quired when applying this architecture allows companies to
replace, scale, and upgrade their applications easily and very
fast (Newman, 2015; Bucchiarone et al., 2018; Shadija et al.,
2017). However, to provide their customers with valuable
services, developer teams are forced to build microservice
compositions due to the small granularity level in which
these operate (Dragoni et al, 2017). The definition of such
compositions is being made by many organizations program-
matically ad-hoc. The major problem when creating compo-
sitions in this way is that their complexity grows, making
more difficult their visualization, understanding, and mainte-
nance. This complexity has forced many companies to build
their solution to compose microservices. Among these solu-
tions, we find Zeebe (the evolution of the Camunda project
to orchestrate microservices), Netflix Conductor, ING Baker
or Uber Cadence. Apart from Zeebe, the other solutions have
been developed by non-software companies to deal with the
growing number of microservices handled by each company
to develop their business. In general, to achieve micro-
services compositions we can find two major different ap-
proaches, these are choreography and orchestration.

As a motivating example, let us consider a process de-
signed to place orders in a webshop, which is supported by
four microservices: Customers, Payment, Inventory, and
Shipment. The sequence of steps to process an order is the
following:
1. A customer places an order in the webshop.
2. The Customers microservice checks customer data and

logs the request.
3. If the customer is accepted, the Payment microservice

starts to collect the money. If it is required, payment

details can be asked to the customer. In any case, the
customer must be informed.

4. As soon as the payment is performed, the Inventory mi-
croservice starts to fetch the ordered items. If some
problem occurs, the customer is informed and the order
is canceled.

5. Finally, once the items are fetched correctly, the Ship-
ping microservice creates an order of shipment and as-
signs a driver.

When following the choreography approach (Dragoni et al.,
2017; Butzin et al., 2016), the logic of the composition is dis-
tributed through microservices, which communicate to each
other through an event bus (usually supported by a message
queue). Thus, once the client places an order in the webshop
(see Fig. 1), an "Order created" event is issued in the queue.
The Customers microservice, which is listening to this event,
reacts to performing its assigned tasks, and a "Customer ac-
cepted" event is triggered when the customer data is ok.
Then, the Payment microservice, which is listening to this
event, performs its tasks and generates the event that makes
the next microservice in the composition perform the next
tasks. And so on.

Let us now suppose that our company wants to provide
special treatment to its VIP customers, so they can proceed
with the payment by the end of the process. To maintain these
low-coupled microservices, this small change would imply
the introduction of several changes in different micro-
services: the Customers microservice should generate a dif-
ferent event depending on the type of customer to allow the
participation of either the Payment microservice (regular
customers) or the Inventory microservice (VIP customers);
in the same way, the Shipment microservice should generate
a different event to proceed with the payment or on the con-
trary with the delivery of the order; and the Payment micro-
service should be also modified to allow delivering the order
in case of VIP customers. Note how a single change requires
the modification of several microservices. The major

Supporting a Hybrid Composition of Microservices. The EUCalipTool Platform Valderas et al. 2019

problem with this approach is that there is not a clear picture
of how microservices participate in the process since the
composition is hard-coded and distributed along with multi-
ple microservices. Therefore, when engineering decisions
need to be taken, it is difficult to analyze the composition's
flow.

Figure 1. Microservice collaboration through Choreography.

On the other hand, when building compositions with the
orchestration approach (Singhal et al., 2019; Hamidehkhan,
2019), the logic of the microservice composition is central-
ized in an orchestrator microservice. One of the possible so-
lutions for this approach is to define compositions as BPMN
models and endow the orchestrator microservice with a
BPMN engine that is in charge of executing it. The BPMN
representation of the motivating example presented above is
shown in Fig. 2.

Figure 2. BPMN representation of the motivating example.

In this case (see Fig. 3), a client asks the Orchestrator micro-
service to process an order, and this microservice executes
the BPMN model that describes the microservice composi-
tion that manages customer orders. According to the logic of
this composition, the first step the orchestrator does is asking
the Customers microservice to check the customer data, and
then waits for a response from this microservice. Once the
response from the Customer microservice is received, the Or-
chestration microservice asks the Payment microservice to
collect the money and waits for a response. And so on.

With this approach, the logic of the microservice compo-
sition is centralized in the orchestrator microservice. If we
want to change the composition to support VIP customers,
we just need to update the BPMN model accordingly.

However, all microservices depends on the orchestrator, re-
ducing the degree of decoupling among them. Also, there are
some misconceptions within the microservice community
that can make the adoption of this solution difficult: (1) Many
times, the task of process modeling is considered as an over-
head for a software project; and (2) BPM tools are considered
to be heavyweight and to take weeks to set up.

Figure 3. Orchestration to support microservice collaboration.

In this paper, we face the challenge of defining a hybrid
solution to compose microservices that combine the benefits
of both approaches. This solution is based on the following:
1. Developers describe the complete microservice compo-

sition by means of a centralized model. This allows hav-
ing the big picture of the composition, which facilitates
the following maintenance and analysis tasks.

2. The centralized model of the composition is split into
different pieces whose execution responsibility is dele-
gated to the different participating microservices. Each
microservice is in charge of executing its piece and in-
forming the other microservices about its execution. To
do so, an event-based orchestration is proposed, which
provides a degree of decoupling among microservices
higher than the one provided by orchestration solutions.

To support this solution, we present the EUCalipTool
platform, which includes the following:
1. An authoring tool to define microservices compositions

through a Domain Specific Modeling Language
(DSML) that facilitates the modeling activity. This tool
has been developed to alleviate the misconceptions of
using a process model for composing microservices.
Developers can design the whole composition using
constructors that are easier to use than business model-
ing elements. This tool also supports the transformation
of descriptions based on our DSML into executable
BPMN specifications, and the split of it into pieces.

2. A microservice architecture that facilitates both, the de-
ployment of each BPMN piece into the corresponding
microservice, and the distributed execution of the mi-
croservice compositions through an event-based chore-
ography. It also supports the maintenance and evolution
of the microservice composition.

The remainder of the paper is structured as follows. Sec-
tion 2 outlines the hybrid solution proposed in this work to

Supporting a Hybrid Composition of Microservices. The EUCalipTool Platform Valderas et al. 2019

achieve microservice compositions. Section 3 presents the ar-
chitecture designed to support this solution. Section 4 pre-
sents the authoring tool proposed to model microservices
compositions. Section 5 explains how a microservice compo-
sition is transformed into BPMN and split into pieces to be
deployed in the proposed microservice architecture. Section
6 analyzes how the evolution of microservice compositions
are supported. Section 7 introduces the related work. Finally,
Section 8 concludes the paper and provides insights into di-
rections for future work.

2 A Hybrid Approach to Compose Mi-
croservices

In this section, we present a hybrid approach to achieve mi-
croservice compositions. The stages proposed in this ap-
proach are the following:
1. Developers define a centralized description of the

complete microservice composition.
2. The centralized description is split into BPMN pieces

and these pieces are distributed among microservices.
3. The microservice composition is executed through an

event-based choreography of BPMN pieces.
To illustrate the proposed approach, we make use of the

motivating example. First, developers start defining a micro-
service composition in a centralized model. In the case of the
motivation example, developers should create a composition
as the one shown in Fig. 2. Note that this microservice com-
position is defined with BPMN. However, we propose a
DSML to facilitate this modeling activity, which is presented
in Section 4.

Once developers have described the complete micro-
service composition, the BPMN model is split into pieces
whose execution responsibility is delegated to the different
participating microservices. As Fig. 4 shows, the BPMN
model of the motivating example is split into four pieces that
must be executed by the different microservices.

Figure 4. Microservice orchestration split into different fragments.

An event-based choreography of BPMN pieces is proposed
to support the execution of a microservice composition. In
this sense, each microservice is in charge of executing its
piece and informing the others about it. Following with the
motivating example, once the client places an order in the
webshop (see Fig. 5), an "Order Process" event is issued in

the message broker. The Customers microservice, which is
listening to this event, reacts executing their associated
BPMN piece, and the "Piece1_Completed" event is triggered
whether the customer data is ok. Then, the Payment micro-
service, which is listening to this event, performs its BPMN
piece and generates the event that makes the next micro-
service in the composition to execute the next piece. And so
on.

Note that current business process management (BPM)
tools provide little support to create a business process model
and split it into pieces that can be deployed into different mi-
croservices. There is also little help to implement the com-
munication mechanisms that are required to coordinate the
execution of the different pieces to complete a process. In
addition, note that we propose to have two versions of the
composition. On the one hand, we have the model of the
whole microservice composition. On the other hand, we have
a split version that is distributed along with the micro-
services. Thus, when the microservice composition needs to
be evolved due to changes in requirements, both versions
must be updated, which implies additional efforts for devel-
opers.

Therefore, if we want that developers adopt our proposal
we need to provide them with tools that facilitate the tasks of
modeling and provide a high degree of automation to deploy
composition pieces and configure the execution environ-
ment. To achieve this, we present the EUCalipTool platform.
The next section introduces the supporting microservice ar-
chitecture.

Figure 5. Event-based orchestration of BPMN pieces.

3 Supporting Microservice Architec-
ture

In a microservice architecture, applications are structured as
a collection of loosely coupled services, which implement the
business capabilities of a system. Apart from those business
microservices, it is usual to find in this type of architecture
other microservices that are focused on supporting infrastruc-
ture issues. Examples of this type of microservices are the
Service Registry that gives support to service discovery, con-
taining the network locations of microservice instances; an

Supporting a Hybrid Composition of Microservices. The EUCalipTool Platform Valderas et al. 2019

API Gateway that provides addressability capabilities; an Au-
thentication Server that is in charge of controlling the access
to the microservices; and a Configuration Server that man-
ages microservice configuration on the cloud. In addition, it
is also common the use of tools to monitor microservices’
status and log their executions, as well as to deploy a message
queue to manage asynchronous communication among mi-
croservices. Finally, microservices are usually comple-
mented with a client-side load balancer and some library that
implements the circuit breaker pattern to support fault toler-
ance.

Microservices architectures have already been used to
build business process modeling and analysis tools (Alpers et
al., 2015). In this work, we extend the typical microservice
architecture with three main elements (see red-colored blocks
in Fig. 6):
1. EUCalipTool Composer. It is a microservice endowed

with an authoring tool to facilitate the creation of mi-
croservices compositions. This microservice also is in
charge of transforming the compositions created
through the authoring tool into a BPMN executable
specification, splitting it into BPMN pieces, and send-
ing them to the EUCalipTool Server. In addition, this
microservice stores the whole description of the micro-
service composition created with the authoring tool.

2. EUCalipTool Server. It is a microservice that plays the
role of gateway among business microservices and the
EUCalipTool Composer. It is responsible for the fol-
lowing tasks:
a. Receiving the split BPMN processes sent by the

EUCalipTool Composer, registering them into a
process repository, and distributing the pieces
among the different microservices.

b. Launching the execution of each process by trig-
gering the first BPMN piece and delegating the re-
sponsibility of continuing the process to the corre-
sponding microservice. To achieve this, a message
queue is used.

c. Providing the EUCalipTool Composer with the
list of available microservices and their opera-
tions. To achieve this, microservices must be reg-
istered into this server using the EUCalipTool Cli-
ent.

3. EUCalipTool Client. It is a client library that endows
each microservice with: (1) a lightweight Activiti 1
BPMN engine and (2) a microservice composition au-
thoring tool. The BPMN engine is included to support
the execution of BPMN pieces. The authoring tool is
included to support the evolution of these pieces by the
developers of each microservice. This library is also in
charge of automatically registering microservice's oper-
ations into the EUCalipTool Server.

1 https://www.activiti.org/
2 https://projects.spring.io/spring-boot/

Figure 6. Microservice orchestration split into different fragments.

To satisfy the responsibilities associated with each architec-
tural element, they must interact with each other. This inter-
action is done through the HTTP protocol. Thus, each archi-
tectural element is in charge of publishing the required HTTP
end-points. For instance, the EUCalipTool Client library is in
charge of publishing an HTTP end-point to allow the EUCa-
lipTool Server to send the BPMN pieces to each micro-
service. In the same way, the EUCalipTool Server must pub-
lish an HTTP end-point to allows the EUCalipTool Client li-
brary to register the operations of each microservice.

3.1 Supporting Technology

One of the most important supporters of the microservice ar-
chitecture is Netflix. This video streaming company has de-
veloped its software infrastructure by using microservices
and has published all its supporting tools as open source. One
of the main characteristics of these tools is their ease of use.
These tools are based on the Spring Boot2 framework and are
distributed as Java libraries3. They propose the use of simple
annotations and configuration files to develop and deploy the
different components of the architecture. For instance, to
build a Service Registry to support microservice discovery it
is enough to create a Spring Boot Java class and annotate it
with the annotation @EnableEurekaServer. Then, you just
need to define some parameters in a configuration file and
the “magic” is done. You have a functional Service Registry.

We want to follow the same strategy to facilitate the use
of the EUCalipTool infrastructure in a real microservice ar-
chitecture. Thus, we have created three Java packages that
encapsulate the functionality of the three proposed architec-
tural elements and they are complemented with the following
three annotations:

 @EUCalipToolComposer

 @EUCalipToolServer

 @EUCalipToolClient

Thus, to create these microservices, developers just need
to create a Spring Boot Java class, use these annotations and,
in some cases, define some configuration parameters.

3 https://netflix.github.io/

Supporting a Hybrid Composition of Microservices. The EUCalipTool Platform Valderas et al. 2019

For instance, to create an EUCalipTool Sever micro-
service developers just need to import the corresponding Java
libraries, and create a Java Class as follows:

@EUCalipToolServer
public class Server {

 public static void main(String[] args) {
 SpringApplication.run(Server.class,

args);
 }

}

The SpringApplication class is a Spring utility that
creates a Java application with an embed Tomcat. When the
above code is executed, we intercept the run method and
search for our annotations by using reflection capabilities.
When the @EUCalipToolServer is found, we deploy
the functionality of this component into the embed Tomcat.
We also create an HTTP Controller that publishes the re-
quired end-points to interact with the rest of the architectural
elements. The configuration that is required for this compo-
nent is the end-points of the components that need to interact
with. In particular, the API Gateway, the Service Registry,
and the Message Cue. This configuration is done through a
YML file.

By using and configuring the other two annotations we
achieve the following:

 @EUCalipToolComposer. It creates a Spring ap-
plication with the EUCalipTool Composer deployed
into the embed Tomcat. This annotation needs a config
file that indicates the end-points of the EUCalipTool
Server that (1) provides the list of microservices and
their operations, and (2) allows sending a split compo-
sition. It also creates an HTTP Controller that publishes
the end-points required to interact with the EUCa-
lipTool Server.

 @EUCalipToolClient. It transforms a micro-
service into a EUCalipTool client. To do so, it includes
a lightweight version of the Activiti engine to execute
BPMN pieces. It also includes a web graphical editor
deployed into the embed Tomcat. Also, it creates an
HTTP Controller that publishes end-points to both re-
ceiving BPMN pieces and subscribing the micro-
services to choreography events. This annotation needs
a config file that indicates the end-points of the EUCa-
lipTool Server in order to register microservice’s oper-
ations and send BPMN pieces when are modified.

4 Specifying Microservice Composi-
tions

The EUCalipTool Composer includes a web-based authoring
tool that proposes a Domain Specific Modeling Language
(DSML) to facilitate the modeling of microservice composi-
tion. It is based on a previous work that focuses on helping
end-users to compose services by using a visual interface
from a mobile device (Valderas et al., 2017).

Next, we present the abstract syntax of the DSML (i.e. the
conceptual elements) and the concrete syntax (i.e. the graph-
ical components that define the web interface).

4.1 DSML Abstract Syntax

The abstract syntax of the DSML supported by the web
graphical editor is based on the Change patterns (Weber et
al., 2008) developed within the context of the process of pro-
cess modeling. Change patterns are high-level abstractions
aimed at achieving flexible and easy adaptations of a busi-
ness process. These abstractions are defined in terms of high-
level change operations (e.g., the creation of a parallel
branch) which are based on the execution of a set of change
primitives (e.g., add/delete activity). As opposed to change
primitives, change pattern implementations typically guaran-
tee model correctness after each transformation (Casati,
1998) by associating pre/post conditions with high-level
change operations. Usually, process modeling environments
supporting the correctness-by-construction principle (e.g.,
Dadam et al., 2009) just provide process modelers with those
change patterns that transform a sound process model into
another sound one. For this purpose, structural restrictions on
process models (e.g., block structuredness) are imposed. In
addition, correct usage of change patterns allows speeding up
the creation of the composition. Some change patterns are
(Weber et al., 2008): Insert Process Fragment, Embed Pro-
cess Fragment in Loop, Embed Process Fragment in Condi-
tional Branch, etc.

Inspired by the concept of fragment introduced by change
patterns, the abstract syntax of the DSML proposed to com-
pose microservices is shown in Fig. 7.

Figure 7. Domain Specific Language designed for EUCalipTool.

A microservice Composition is made up of Composi-
tionElements of two types which are Operations (of a Micro-
Service) and Fragments. Each operation has some Inputs and
one Output. Inputs are classified into three types depending
on the source from which their value is obtained. This source
can be the output of another operation; it can be obtained at
runtime; or can be defined at design time. In the next subsec-
tion, this issue is explained with some examples. Regarding
Fragments, there are four types: Parallel, which has two or
more Branches of elements that must be executed in parallel;
Conditional, which has one or more branches of elements
that must be executed when a condition is satisfied; Loop,
which has a branch of elements that must be executed while

Supporting a Hybrid Composition of Microservices. The EUCalipTool Platform Valderas et al. 2019

a condition is satisfied; and WithError, which has two
branches of elements, a major one that is executed by de-
fault, and a compensation one the is executed if some errors
occur with some of the major branch's operations. The pre-
viousElement relationship between CompositionElements al-
lows establishing the sequence order between operations and
fragments.

To better understand the concepts of this metamodel, Fig.
8 illustrates them in a process that is composed of a sequence
of four operations followed by a parallel fragment. In turn,
this latter parallel fragment is made up of a conditional frag-
ment and two operations that are executed in parallel to it.

Figure 8. DSL Concepts applied in an example.

4.2 DSML Concrete Syntax

To create a composition of microservices we have defined a
web interface based on the "adding element" metaphor
where microservice developers just need to add a set of op-
erations or fragments to a composition.

To exemplify this interface, Fig. 9 shows some of the
screens needed to define the Payment piece marked in green
in Fig. 4. Fig. 9A shows the composition after adding the
checkCustomer and logRequest operations of the micro-
service Customers. To add more elements, designers just
need to click on the "+" symbol. The type of elements that
can be added to a composition are single operations and frag-
ments (note that there are two tabs in Fig. 9B). Fig. 9B shows
a list of fragments that are ready to be used in the current
composition. In this case, the designer is selecting a With Er-
ror fragment. As a result, a fragment of this type is included
after the existing operations (see Fig. 9C). Here, the designer
should specify two things, the major branch of operations to
perform and the compensation branch of operations in case
the major branch fails. In this case, the designer selects the
paymentProcess operation offered by the Payment micro-
service to be included in the major branch (see Fig. 9D). This
is offered as a single operation from the available catalog.
This list shows the microservice operations that the EUCa-
lipTool Server sends to the EUCalipTool Composer. These
operations are automatically registered into the EUCa-
lipTool Server by the EUCalipTool Client library that is in-
stalled in each microservice.

The selection of this single operation results in the screen
shown in Fig. 9E. At this point, the designer still has to spec-
ify what to do when the major branch fails. This can be spec-
ified by selecting the tab labeled with the warning icon, and
proceeding similarly to the definition of the major branch. In
this case, the designer selects the operation ChangePay-
mentDetails. With this action, the second element of the

composition is already completed (see Fig. 9F). At this point,
the designer should continue by selecting the most appropri-
ate operations or fragments until the composition is com-
pletely defined.

Once microservice composition's flow is described, de-
velopers must define the inputs that some microservice op-
erations require to be properly executed. To facilitate this,
we provide a graphical component (see Fig. 10) that allows:
(1) linking an input with any compatible previous output, (2)
indicating that the input value should be obtained at runtime;
or (3) defining an input value at design time. For instance,
let us consider that the operation cancelOrder, which must
be executed by the Inventory microservice in case of error,
needs two inputs: the customer ID, which is a String, and the
order number, which is an Integer. Let us consider also that
all previous microservice operations generate a string value
as output. Fig. 10B shows the options that are available for
the customer input. In this case, it can be associated to any
previous operation since their data types are compatible, and
also can be defined as an input to be obtained At runtime or
an input that is associated to a Predefined Value (defined at
design time in this screen). Fig. 10 shows the options avail-
able for the order input. In this case, none of the previous
operations is compatible so they are not available to be asso-
ciated with this input.

If a developer selects the option Predefined Value for a
microservice's input, an input component is shown in order
to allow the developer to introduce the value associated with
the microservice's input at design time. Regarding the option
of defining an input to be obtained at runtime it implies that
the values must be obtained when executing the micro-
service composition, and from a data source different from
the own operations included in the composition. Currently,
we are considering that the data source is the client that
launches the microservice composition (see Fig. 5). Thus,
any time a microservice needs to execute an operation that
has some input to be obtained at runtime, the corresponding
BPMN piece generates an event in order to ask the client for
this data. In further work, we want to consider other data
sources such as the results of other microservice composi-
tions or some physical devices in the context of the Internet
of Things.

Supporting a Hybrid Composition of Microservices. The EUCalipTool Platform Valderas et al. 2019

Figure 9. Example of the DSML Concrete Syntax to create microservice
compositions.

Figure 10. Configuration of microservice operation’s inputs.

5 Supporting the execution of Split
BPMN processes

Once a microservice composition is defined with the EUCa-
lipTool Composer three main stages are followed to distrib-
ute the responsibility of the process execution:

(1) Generation. The composition is transformed into a set
of BPMN pieces.

(2) Distribution. BPMN pieces are sent to the EUCa-
lipTool Server which registers the process and deploys
the pieces into the corresponding microservices.

(3) Choreography. Each microservice participates in the
composition through an event-based orchestration.

5.1 Generation of BPMN pieces

The EUCalipTool Composer analyzes each process defined
with the DSML and creates groups of actions according to
the microservices that support them. Each of these groups
will be transformed into a BPMN piece. For instance, let us
consider the composition presented in the motivation exam-
ple (cf. Fig. 11). In this case, the first two operations must be
executed by the customer microservice and, therefore, they
constitute the first piece. The second piece is defined by the
third and fourth elements of the composition (a With Error
Boundary block and a single operation), which both must be
executed by the payment microservice. The third piece is de-
fined from the operations that the inventory microservice
must execute, i.e. fetch the items and the composition actions
in case of error. Finally, the fourth piece is made up of the
two last operations that must perform the shipment micro-
service.

Figure 11. Identification of BPMN pieces.

For each BPMN piece, the EUCalipTool Composer gener-
ates a specification with the BPMN tasks to be performed as
well as additional tasks to trigger the events that must man-
age the orchestration. For instance, let us consider the oper-
ations that must perform the microservice Inventory (the
third piece of BPMN). This microservice must fetch the
items of the order and, in case of error, inform the user and
cancel the order. Fig. 12 shows the definition built with the
EUCalipTool Composer and the generated BPMN process
model. As we can see, two additional BPMN tasks are in

Supporting a Hybrid Composition of Microservices. The EUCalipTool Platform Valderas et al. 2019

charge of 1) triggering an Ok event in case there is no error,
and 2) triggering a fail event if some problem occurs. These
tasks are preconfigured to publish the event in a message
queue.

Figure 12. Generated piece of BPMN.

The EUCalipTool Composer internally manages each com-
position in JSON format. To transform JSON descriptions
into BPMN (which is based on XML) it uses Java parsers of
JSON and XML. The JSON description is parsed into a
structure of Java objects that are maintained in memory.
Next, this structure is analyzed in order to generate a BPMN
specification by using the XML parser. In particular, we gen-
erate BPMN specifications that will be executed in the Ac-
tiviti engine, i.e. the engine included in the microservice by
the EUCAlipTool Client library.

5.2 Distribution of BPMN pieces

Once the set of BPMN pieces has been generated, the EU-
CalipTool Composer sends them to the EUCalipTool Server.
To do so, the latter publishes an HTTP end-point that accepts
this data through POST connections.

When the EUCalipTool Server receives a split composi-
tion, it performs the following actions (see Fig. 13):
(1) It registers the composition into its repository and cre-

ates an HTTP end-point to launch it.
(2) It deploys each piece of BPMN into the corresponding

microservice.
(3) It defines an event to launch the first piece of BPMN

and configures the first microservice to listening to it.
(4) For each event generated by a piece of BPMN, it con-

figures the microservice that must execute the next
piece to listen to this event.

Note that the EUCalipTool Server must interact with the
microservices to deploy each piece of BPMN as well as to
configure the microservice to listen to specific events. This
can be done using a set of HTTP endpoints that each micro-
service has available when including the EUCalipTool Cli-
ent.

Figure 13. Actions done by EUCalipTool Server.

5.3 Orchestration of BPMN pieces

The orchestration of the BPMN pieces deployed in micro-
services is done as follows (see Fig. 14):
(1) A client accesses the end-point published by the EU-

CalipTool Server.
(2) The EUCalipTool Server launches the start event for

this process.
(3) The microservice that is listening to this event executes

the first piece of BPMN. This execution finishes by
triggering an event that indicates that the execution of
the first BPMN piece is completed.

(4) The microservice that is listening to the event that indi-
cates the execution of the first BPMN piece launches
its BPMN piece (the second one) and when executed,
it generates another event that indicates that the execu-
tion of the second BPMN piece is completed.

(5) The microservice that is waiting for the event that indi-
cates the execution of the second BPMN piece does the
same actions as the previous one: launches its corre-
sponding BPMN piece and generates an event that in-
dicates its execution.

(6) And so on until the process is completed.

Figure 14. Event-based orchestration of a split BPMN process.

6 Supporting the evolution of micro-
service compositions

Following the proposed hybrid approach, we have two de-
scriptions of a microservice composition. On the one hand,
we have the whole picture of the composition that is stored
by the EUCalipTool Composer. This centralized description

Supporting a Hybrid Composition of Microservices. The EUCalipTool Platform Valderas et al. 2019

helps developers to analyze the whole composition to take
engineering decisions. On the other hand, we have the split
version of the composition that is distributed through the dif-
ferent microservices. This split description provides a high
degree of decoupling among microservices when the com-
position is executed through an event-based choreography.

One of the most important challenges to be faced within
this context is the evolution of the microservice composition
and the synchronization of both descriptions. Our main goal
is to propose a solution that provides developers with a high
degree of flexibility to perform changes. So these can be
done either at the centralized composition, i.e., at the whole
composition, or at the microservice level, i.e., at the pieces
deployed in each microservice.

To achieve this, as introduced in Section 3, the following
mechanisms are provided by the proposed three architectural
elements:
 The EUCalipTool Client library includes a web editor

like the one shown in Section 6 where developers can
independently evolve their composition pieces.

 The EUCalipTool Server publishes an HTTP end-point
to receive modified composition pieces from micro-
services to send them to the EUCalipTool Composer.

 The EUCalipTool Composer publishes an HTTP end-
point to receive modified composition pieces from the
EUCalipTool Server to update the whole version of the
composition.

Thus, the evolution of a microservice composition can be
done in two ways:

1 Developers update the whole description of the compo-
sition from the EUCalipTool Composer microservice
(see Fig. 15A). In this case:
1.1 The EUCalipTool Composer microservice gen-

erates the corresponding BPMN pieces and
sends those pieces that have been changed to the
EUCalipTool Server.

1.2 The EUCalipTool Server microservice distrib-
utes the pieces among the corresponding busi-
ness microservices.

1.3 Microservices that receive a new version of a
piece, replace the old version by the new one.

2 Developers change a composition piece from a busi-
ness microservice (see Fig. 15B). In this case:
2.1 The microservice sends the new version of the

piece to the EUCalipTool Server.
2.2 The EUCalipTool Server sends the received

piece to the EUCalipTool Composer.
2.3 The EUCalipTool Composer updates the whole

description with the changes that introduce the
modified piece.

Figure 15. Evolution of a microservice composition.

To update the whole composition when an updated BPMN
piece is received, the EUCalipTool Composer applies the
transformation inverse to the one used to generate the BPMN
pieces and obtains a JSON representation of the piece. This
JSON representation is based on the DSML presented above
and the EUCalipTool Composer just needs to replace the el-
ements of the whole description that correspond with the up-
dated piece. Note that updating the whole description of the
microservice composition is easy since pieces are composed
of operations and fragments that are added to a container.
There are no connections with previous or further elements
that need to be managed like can happen with a BPMN
model. In order to better understand this aspect Fig. 16 illus-
trates how the composition of the motivating example is up-
dated with a new piece 2.

Figure 16. Example of composition update by replacing a piece.

7 Evaluation

This section presents the experiment that we have conducted
to show the efficiency of our proposal in the development and
evolution of microservice compositions. This experiment
aimed to compare the efficiency measurement obtained by a
development based on EUCalipTool with the measurement
obtained by an ad-hoc implementation of an event-based cho-
reography. This ad-hoc implementation was done by using
the technology provided by Spring and Netflix. To support
the exchange of messages among microservices, a RabbitMQ
message broker was used in both cases.

To do the experiment, we followed the guidelines pre-
sented by Kitchenham et al. (1995) and Wohlin et al. (2012).
According to these guidelines, we have divided the experi-
ment into three main phases: scoping, planning, operation
and analysis, and interpretation

7.1 Scope

The scope of an experiment is set by defining its goal. To do
so, we have used the template proposed by Basili et al.

Supporting a Hybrid Composition of Microservices. The EUCalipTool Platform Valderas et al. 2019

(1988). The goal of our experiment is characterized as fol-
lows:

Analyze: Our approach based on EUCalipTool
For the purpose of: evaluating the impact of our approach
compared to ad-hoc development
With respect to: efficiency
From the point of view of: microservice developers
In the context of: researchers in software engineering com-
posing microservices

7.2 Experimental Design

In the planification activity, we must formalize the hypothe-
ses, determine the dependent and independent variables, de-
scribe the context of the experiment and the instrumentation
used, and consider the threats of validity we can expect.

Hypothesis. The hypotheses defined for the experiment
were the following:

 Null hypothesis 1, H10. The efficiency of the EUCa-
lipTool approach for developing and evolving micro-
service compositions is the same as an ad-hoc develop-
ment.

 Alternative hypothesis 1, H11. The efficiency of the
EUCalipTool approach for developing and evolving
microservice compositions is greater than an ad-hoc de-
velopment.

Identification of variables. We identified two types of
variables:

 Dependent variables: Variables that correspond to the
outcomes of the experiment. In this work, the efficiency
in composing microservices was the target of the study,
which was measured in terms of the following software
quality factors: development time and evolving time.

 Independent variables: Variables that affect the depend-
ent variables. The development method was identified
as a factor that affects the dependent variable. This var-
iable had two alternatives: (1) EUCalipTool approach
and (2) an ad-hoc implementation.

Context. The context of the experiment was the follow-
ing:

 Experimental subjects. Ten subjects participated in the
experiment, all of the researchers in software engineer-
ing. Their ages ranged between 28 and 45 years old. The
subjects had an extensive background in Java program-
ming and modeling tools; however, they did not have
experience in the use of EUCalipTool. Only 3 of them
have experience in using the Spring Framework and
message queues, and 4 of them have previously worked
with BPMN.

 Objects of study. The experiment was conducted using
a case study similar to the motivating example used
throughout the paper, i.e. the microservice composition
to manage a purchase order in a webshop (see Section
1).

Instrumentation. The instruments that were used to
carry out the experiment were:

o A demographic questionnaire: a set of questions to
know the level of the users’ experience in Java/Spring
programming, modeling tools, and BPMN.

o Work description: the description of the work that the
subjects should carry out in the experiment by using
EUCalipTool and the ad-hoc solution. This work de-
scription explained two activities: (1) the development
of the microservice composition to support purchase or-
ders, and (2) the modification of this composition to
support new requirements.

o A form: a form was defined to capture the start and
completion times of the proposed work. For each task
that was proposed in the experiment, participants had to
annotate the starting and completion times by using the
clock of the computer. If some interruptions occur
while performing the work, subjects wrote down the
times every time they started and stopped carrying out
the activity; thus, the total time was derived using these
start and completion times. Finally, additional space
was left after the completion time of the work for addi-
tional comments about the subjects about the performed
activity.

Threats of Validity. Our experiment was threatened by
the random heterogeneity of subjects. This threat appears
when some users within a user group have more experience
than others. This threat was minimized with a demographic
questionnaire that allowed us to evaluate the knowledge and
experience of each participant beforehand. This question-
naire revealed that all the users had experience in Java pro-
gramming and modeling techniques. Some of them had ex-
perience in the use of technologies related to the implemen-
tation of choreographies, while others did not. This problem
could affect the evaluation of the development with an ad-
hoc solution since this type of development requires these
technologies. Some participants had experience in BPMN
which could affect the evaluation of the development based
on EUCalipTool since it is based on some abstractions of
BPMN. To minimize this threat, all subjects participated in
training sessions about both choreography implementation
technologies and EUCalipTool.

In addition, to minimize the effect of the order in which
the subjects applied the approaches, the order was assigned
randomly to each subject. However, in order to have a bal-
anced design, the same number of subjects was assigned to
start with each approach. To do so, the ten participants were
aleatorily divided into two groups, and each group was ini-
tially assigned to a development type. Then, each group
changed of development type to do again the same tasks. In
this way, we minimized the threat of learning from previous
experience.

Finally, our experiment was threatened by the reliability
of measures threat: objective measures, that can be repeated
with the same outcome, are more reliable than subjective
measures. In this experiment, the precision of the measures
may have been affected since the activity completion time
was measured manually by users using the computer clock.
To reduce this threat, we observed subjects while they were
performing different tasks to guarantee their exclusive

Supporting a Hybrid Composition of Microservices. The EUCalipTool Platform Valderas et al. 2019

dedication in the activities and supervise the times that they
wrote down.

7.3 Execution

We followed a within-subjects design where all subjects
were exposed to every treatment/approach (EUCalipTool so-
lution and ad-hoc solution). The main advantage of this de-
sign was that it allowed statistical inference to be made with
fewer subjects, making the evaluation much more stream-
lined and less resource-heavy (Wohlin et al., 2012).

To perform the experiment, we arranged a workshop of
three days with two sessions per day (see Table 1).

Table 1. Sessions of the experiment

 Session 1 Session 2
Day 1 Duration: 4h

All participants: Train-
ing in choreography im-
plementation

Duration: 4h
All participants: Train-
ing in EUCalipTool

Day 2 Duration: 5h
Group A: Development
of a microservice com-
position with an ad-hoc
solution
Group B: Development
of a microservice com-
position with EUCa-
lipTool

Duration: 3h
Group A: Evolution of a
microservice composi-
tion with an ad-hoc solu-
tion
Group B: Evolution of a
microservice composi-
tion with EUCalipTool

Day 3 Duration: 5h
Group A: Development
of a microservice com-
position with EUCa-
lipTool
Group B: Development
of a microservice com-
position with an ad-hoc
solution

Duration: 3h
Group A: Evolution of a
microservice composi-
tion with EUCalipTool
Group B: Evolution of a
microservice composi-
tion with an ad-hoc solu-
tion

During the first day, we had two sessions of 4 hours in which
participants were proposed to fill in a demographic question-
naire to capture participants’ background and were trained in
choreography technologies and EUCalipTool. In particular:

 Regarding choreography technologies, we provided the
subjects with the necessary tutorials and tools to learn
the basics of the Spring and Netflix technologies needed
to develop the case study. We also made an introduction
to message queues and RabbitMQ. The subjects also
participated in the implementation of some guided ex-
amples to gain experience with the technologies.

 Regarding EUCalipTool, we provided the subjects with
a tutorial where the web authoring tool included in the
EUCalipTool Composer was explained. The subjects
also worked with some examples to gain experience
with the DSML of this tool. We also explained the pro-
posed architecture and how the proposed EUCalipTool
architectural elements interact among them and need to
be configured.

During the second and third days, participants were di-
vided aleatorily into two groups, A and B, and two sessions
of five and three hours respectively were proposed for each

day. We did the same experiment in both days. In one day,
group A used an ad-hoc solution to develop and evolve a mi-
croservice composition while group B used EUCalipTool.
The second day groups changed the development methods.

The tasks designed for the experiment were initiated with
a short presentation in which general information and in-
structions were given. Afterward, the work description and
the form were given to the subjects and they started to de-
velop and evolve the microservice composition following the
development method (EUCalipTool and ad-hoc) that was in-
dicated for each group. The microservice composition that
participants had to develop was described in a textual way.
After performing this work, participants filled in a form to
capture the development times. Once the subjects developed
the composition, they started to modify it to evaluate the evo-
lution. For these activities, they also filled in the form to cap-
ture the time taken to evolve the composition.
To properly perform this work, we previously developed the
microservice architecture required to support the case study.
To do so, we used Netflix’s technology. The EUCalipTool
Composer and the EUCalipTool Server microservices were
also created, and every business microservice was defined as
a EUCalipTool client.

In a more detailed way, the activities carried out with
each development approach were the following:

 Ad-hoc development: From the case study description,
they started the implementation of the microservice
composition for the management of purchase orders.
Generally, they identified the operations that each mi-
croservice should perform, and defined for them both,
a starting event and an end event. Once this data was
clear, they updated each microservice with the classes
required to connect to RabbitMQ and listen at the start-
ing event to launch the operations corresponding to
each microservice. To execute these operations, they
implemented some classes that call the corresponding
methods. These classes also were in charge of launch-
ing the ending event. Once they modified each micro-
service and achieved the compilation of the code, they
spent some time testing the composition and detecting
code errors. Finally, we provided a set of requirement
changes for the composition to evaluate the evolution.
In particular, we proposed them to support VIP custom-
ers in such a way it was introduced in Section 1. In this
activity, the participants changed the code of the in-
volved microservices to support the new requirements.
Then, the participants tested the new composition and
corrected the errors.

 EUCalipTool-based development. Following this ap-
proach, the participants first designed the microservice
composition with the EUCalipTool Composer accord-
ing to the case study description. Then, they asked the
EUCalipTool Composer to deploy the composition. Af-
terward, they spent some time testing the composition
and detecting errors in the composition design. Finally,
we asked participants to support the same new require-
ments as explained in the previous activity. In this case,
the participants changed the composition done with the
EUCalipTool Composer and deployed it again. Then,

Supporting a Hybrid Composition of Microservices. The EUCalipTool Platform Valderas et al. 2019

the participants tested the new composition and cor-
rected the errors.

7.4 Analysis of results

In this subsection, we analyze and compare the usefulness of
both approaches based on the time used for the development
and evolution of a microservice composition. The results
have been studied based on time mean comparison and the
standard deviation. Table 2 presents the descriptive statistics
for each of the studied quality factors.

Table 2. Descriptive statistics for each quality factor.
Quality
factor

Dev. method
Mean

(hours)
Num. of
Subjects

Std.dev.
(hours)

Develop.
time

Ad-hoc 4.38 10 0.52

EUCalipTool 1.15 10 0.44

Evolution
time

Ad-hoc 1.55 10 0.69
EUCalipTool 0.29 10 0.05

Next, we provide further analysis of the results for each
measured software quality factor:

 Development time. The development time following
the ad-hoc approach differed according to the subject
implementation experience, ranging from 3.25 hours
(the most experienced subject) to 5. Following the EU-
CalipTool approach, the development activity ranged
from 75 min to 2.10 hours. The difference between the
two approaches was high since developing the micro-
service composition in an ad-hoc way was more com-
plex and difficult for the participants since they had to
implement all the composition logic manually as well
as all the code required to connect with RabbitMQ to
participate in the event-based choreography. The EU-
CalipTool approach allowed participants to focus on the
required requirements instead of solving technological
problems. Note that by following this approach, none of
the participants had to implement anything to manage
the invocation of operations neither the events required
to participate in the choreography. Regarding the stand-
ard deviation, it was low for both development ap-
proaches (see Table 1) indicating that development
times tended to be close for each development ap-
proach.

 Evolution time. Concerning the ad-hoc development,
this activity took subjects from 1.10 to 2.3 hours since
they had to identify the microservices that must be up-
dated, and modify the corresponding code. Changing
the EUCalipTool description of the microservices com-
position took less than 30 min. for all the subjects (very
low standard deviation obtained). This is because
evolving the microservice composition to fit the new re-
quirements was as easy as modifying the whole descrip-
tion with the web authoring tool. In this case, partici-
pants focused again only on requirements. They did not
need to identify microservices and hardcoded changes.

1 Statistical analyses using spss,

http://www.ats.ucla.edu/stat/spss/whatstat/whatstat.htm#1sampt

With the EUCalipTool approach, the subjects took, on
average, 1.44 hours to develop the case study, whereas with
an ad-hoc implementation the subjects took 5.93 hours.
Therefore, the process for automating and evolving micro-
service compositions is more efficient using the EUCa-
lipTool approach than using an ad-hoc solution.

In order to verify whether we can accept the null hypoth-
esis, we performed a statistical study called paired T-test us-
ing the IBM SPSS Statistics V201 at a confidence level of
95% (α = 0.05). This test is a statistical procedure that is used
to make a paired comparison of two sample means, i.e., to
see if the means of these two samples differ from one an-
other. For our study, this test examines the difference in mean
times for every subject with the different approaches to test
whether the means of an ad-hoc development and the EUCa-
lipTool approach are equal. When the critical level (the sig-
nificance) is higher than 0.05, we can accept the null hypoth-
esis because the means are not statistically significantly dif-
ferent. For our experiment, the significance of the paired T-
test for the total time means is 0.000 (calculated using the
IBM SPSS Statistics), which means that we can reject the
null hypothesis H10 (the efficiency of the EUCalipTool ap-
proach for developing and evolving microservice composi-
tions is the same as an ad-hoc development). Based on this
test, we have given strong evidence that the kind of develop-
ment influences the usefulness. Specifically, the efficiency
using the EUCalipTool approach is significantly better than
using an ad-hoc solution, i.e., the mean values for all the
measures are lower when using the EUCalipTool approach;
thus, the alternative hypothesis H11 is fulfilled: The effi-
ciency of the EUCalipTool approach for developing and
evolving microservice compositions is greater than an ad-hoc
development.

7.5 Conclusions

The above-presented experiment evaluated our approach to
develop and evolve microservice compositions concerning
ad-hoc solutions based on choreographies. We have vali-
dated that our approach is more efficient than ad-hoc solu-
tions and have confirmed the expected benefits suggested in
the introduction. On the one hand, having the big picture of
the composition has facilitated its analysis to support its evo-
lution when requirements changed. On the other hand, the
visual editor of EUCalipTool, as well as the supporting in-
frastructure to manage event-based communication, have
significantly facilitated the definition and execution of cho-
reographed microservice compositions. Note that we have
evaluated ad-hoc solutions based on choreographies since the
decentralized nature of microservices seems to make chore-
ographies more appropriate to define microservices compo-
sitions (Dragoni et al., 2017; Butzin et al., 2016). A similar
experiment focusing on orchestration will be considered as
further work.

Supporting a Hybrid Composition of Microservices. The EUCalipTool Platform Valderas et al. 2019

8 Related work

Rajasekar et al. (2012) presented the integrated Rule Ori-
ented Data System (iRODS) to orchestrate microservices
within data-intensive distributed systems. A microservice
choreography is defined as a set of textual event-condition-
action (ECA) rules. Each rule defines the data management
actions that a microservice must execute. These actions gen-
erate events within the system that trigger the rules associated
with other microservices. The authors also proposed the use
of recovery microservices to maintain transactional proper-
ties. The main drawback of this work is that the logic of the
process is distributed along with the different rules that each
microservice implements, making the maintenance and evo-
lution difficult to perform.

Yahia et al. (2016) introduce Medley, an event-driven
lightweight platform for microservice orchestration. They
propose a textual domain-specific language (DSL) for de-
scribing orchestrations using high-level constructs and do-
main-specific semantics. These descriptions are compiled
into low-level code run on top of an event-driven process-
based and lightweight platform. The main drawback of this
approach is that developers need to explicitly manage service
orchestration issues at the modeling level. Our solution al-
lows developers to focus only on modeling business require-
ments. Also, a choreography solution is proposed to obtain a
major level of independence among microservices.

Kouchaksaraei et al. (2018) present Pishahang, a frame-
work for jointly managing and orchestrating cloud-based mi-
croservices. This framework introduces tools to easily inte-
grate SONATA (Dräxler et al., 2017), an orchestration
framework, with Terraform (2019), a multi-cloud tool. How-
ever, tools for modeling business processes and support them
within a decoupled microservice infrastructure are not pro-
vided.

Indrasiri & Siriwardena (2018) introduce Ballerina, an
emerging technology that is built as a programming language
and aims to make it easy to write programs that integrate and
orchestrate microservices. However, although they propose
an environment to design microservice integrations with se-
quence diagrams, most of the communication issues among
microservices need to be managed at programming level. Our
solution automatically generates the implementation artifacts
required to support microservice communication from busi-
ness process models.

Petrasch (2017) presents an approach based on UML to
design microservices and communication among them. How-
ever, complex business processes involving multiple micro-
services cannot be modeled.

Guidi et al. (2017) present the need for specific program-
ming languages aimed towards microservices composition.
Authors claim that these languages should include concepts
such as communication, interfaces, and dependencies. They
instantiate their proposal in terms of the Jolie (2019) pro-
gramming language. Similar work to this is the one presented
by Safina et al. (2016), which extends the Jolie programming
language to support data-driven workflows. This means that
the flow of microservice compositions is controlled at the
time of message passing according to the nature of the

message structure and type. Our work differs from these two
approaches in the fact that we provide a solution based on
business process modeling instead of programming lan-
guages to create ad-hoc solutions.

Finally, it is worth noting that in this paper we present an
extended version of the work proposed in (Valderas et al.,
2019). In this current work, we introduce the evolution of
microservice compositions from both, a top-down perspec-
tive (i.e. from the EUCalipTool composer to the micro-
services), and a bottom-up strategy (i.e. from the micro-
services to the EUCalipTool Composer). We have improved
the DSML defining how inputs and outputs of microservices
can be linked. We also present the development infrastruc-
ture implemented to support developers in the composition
of microservices by using our approach. In addition, our ap-
proach has been evaluated through a complete experiment
that compares it with ad-hoc solutions to compose micro-
services.

9 Conclusion and further work

In this work, we have presented a hybrid solution that com-
bines the choreography and orchestration approaches to deal
with microservice compositions with the use of EUCa-
lipTool. The main reason to follow such a hybrid solution is
that we want to take advantage of the goodness of each ap-
proach. This is, we want to maintain the flexibility and de-
coupling nature offered in choreographies but also want to
keep the composition global vision and management offered
by an orchestration approach. For this purpose, the EUCa-
lipTool platform has been presented and integrated in a typi-
cal microservice architecture to provide: 1) tool support to
the specification of microservices compositions, 2) mecha-
nisms to automate the distributed deployment of micro-
service compositions and its execution through an event-
based choreography, and 3) support the evolution of compo-
sitions following a top-down strategy (i.e. from the global vi-
sion of the composition) or a bottom-up strategy (i.e. from a
piece of a specific business microservice).

In addition to the evaluation based on the motivating ex-
ample, it would be very interesting to evaluate also the per-
formance of the designed architecture in a real scenario. Fur-
thermore, since our objective is to improve how composi-
tions are made, as future work we plan to enrich EUCa-
lipTool with goal-oriented capabilities. This way, instead of
specifying compositions, users would just need to state their
goals. Then, based on them, EUCalipTool would propose an
initial composition intended to satisfy the user stated goals.

Acknowledgments

This work has been developed with the financial support of
the Spanish State Research Agency under the project
TIN2017-84094-R and co-financed with ERDF.

Supporting a Hybrid Composition of Microservices. The EUCalipTool Platform Valderas et al. 2019

References

Alpers, S., Becker, C., Oberweis, A., Schuster, T. (2015). Micro-
service Based Tool Support for Business Process Modeling.
EDOC Workshops: 71-78

Basili, V.R., Rombach, H.D. (1988). The TAME project: towards
improvement-oriented software environments. IEEE Trans.
Softw. Eng. 14(6), 758–773

Bucchiarone, A., Dragoni, N., Dustdar, S., Larsen, S. T., and Maz-
zara, M. (2018). From Monolithic to Microservices: An Experi-
ence Report from the Banking Domain. IEEE Software, vol. 35,
no. 3, pp. 50-55

Butzin, B., Golatowski, F., & Timmermann, D. (2016). Micro-
services approach for the internet of things. In 2016 IEEE 21st
International Conference on Emerging Technologies and Fac-
tory Automation (ETFA) (pp. 1-6). IEEE.

Casati, F.: Models, Semantics, and Formal Methods for the design
of Workflows and their Exceptions. (1998). PhD thesis, Milano

Dadam, P., Reichert, M. (2009). The ADEPT project: a decade of
research and development for robust and flexible process sup-
port. Comp Scie - R&D 23: 81-97

Dragoni, N, Giallorenzo, S., Lluch-Lafuente, A., Mazzara, M.,
Montesi, F., Mustafin, R., Safina, L. (2017). Microservices:
Yesterday, Today, and Tomorrow. Present and Ulterior Soft-
ware Engineering: 195-216

Dräxler, S., Karl, H., Peuster, M., Kouchaksaraei, H. R., Bredel, M.,
Lessmann, J., ... & Xilouris, G. (2017). SONATA: Service pro-
gramming and orchestration for virtualized software networks.
In 2017 IEEE International Conference on Communications
Workshops (ICC Workshops) (pp. 973-978). IEEE.

Guidi, C., Lanese, I., Mazzara, M., & Montesi, F. (2017). Micro-
services: a language-based approach. In Present and Ulterior
Software Engineering (pp. 217-225). Springer, Cham.

Hamidehkhan, P. (2019). Analysis and evaluation of composition
languages and orchestration engines for microservices (Master's
thesis).

Indrasiri, K., & Siriwardena, P. (2018). Integrating Microservices.
In Microservices for the Enterprise (pp. 167-217). Apress,
Berkeley, CA.

Jolie. (2019). A service oriented language. URL: https://www.jolie-
lang.org/ Last time accesed: November 2019.

Kitchenham, B., Pickard, L. and Pfleeger, S. L. (1995). Case studies
for method and tool evaluation, Software, IEEE, vol. 12, no. 4,
pp. 52–62, 1995.

Newman, S. (2015). Building Microservices, USA:O'Reilly Media
Inc., February 2015.

Petrasch, R. (2017). Model-based engineering for microservice ar-
chitectures using enterprise integration patterns for inter-service
communication. In 2017 14th International Joint Conference on
Computer Science and Software Engineering (JCSSE) (pp. 1-
4). IEEE.

Rajasekar, A., Wan, M., Moore, R., & Schroeder, W. (2012). Micro-
Services: A Service-Oriented Paradigm for. Data Intensive Dis-
tributed Computing. In: Challenges and Solutions for Large-
scale Information Management (pp. 74-93). IGI Global.

Safina, L., Mazzara, M., Montesi, F., & Rivera, V. (2016). Data-
driven workflows for microservices: Genericity in jolie. In 2016
IEEE 30th International Conference on Advanced Information
Networking and Applications (AINA) (pp. 430-437). IEEE.

Shadija, D., Rezai, M., Hill, R. (2017). Towards an understanding
of microservices. ICAC 2017: 1-6

Singhal, N., Sakthivel, U., & Raj, P. (2019). Selection Mechanism
of Micro-Services Orchestration Vs. Choreography. Interna-
tional Journal of Web & Semantic Technology (IJWesT), 10(1),
25.

Terraform. (2019). URL: https://www.terraform.io/ Last time ac-
cesed: November 2019.

Valderas, P., Torres, T., Mansanet, M., Pelechano, V. (2017). A mo-
bile-based solution for supporting end-users in the composition
of services. Multimedia Tools Appl. 76 (15): 16315-16345

Valderas, P, Torres, V, and Pelechano, V. (2019). Hybrid Compo-
sition of Microservices with EUCalipTool. Proceedings of the
XXII Iberoamerican Conference on Software Engineering,
CIbSE 2019, La Habana, Cuba, April 22-26, 2019: 2-15.

Weber, B., Reichert, M., Rinderle, S. (2008). Change Patterns and
Change Support Features - Enhancing Flexibility in Process-
Aware Information Systems. Data and Knowledge Engineering
66: 438-466

Wohlin, C., Runeson, P. , Höst, M., Ohlsson, M. C., Regnell, B.
and Wesslén, A. (2012). Experimentation in Software Engineer-
ing, Springer.

Yahia, E. B. H., Réveillère, L., Bromberg, Y. D., Chevalier, R., &
Cadot, A. (2016). Medley: An event-driven lightweight plat-
form for service composition. In International Conference on
Web Engineering (pp. 3-20). Springer, Cham.

