Proyecto Final de Grado

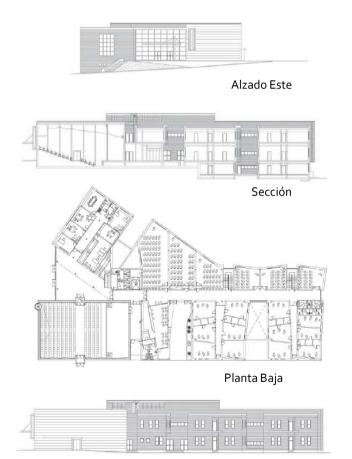
Estudio acústico de algunas dependencias del Conservatorio Profesional de Música de Torrent

Alumno:

Ezequiel Martínez Hernández

Tutor académico UPV:

Vicente Gómez Lozano, Salvadora Reig García-San Pedro


Junio 2012



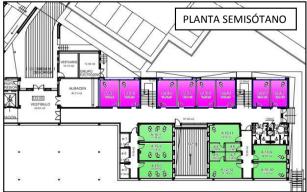
Antecedentes

Localización del edificio

Localización del edificio.

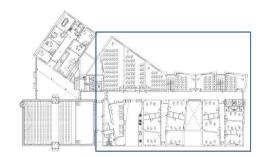
Alzado Sur

Introducción Justificación del proyecto


Estudio subjetivo Estudio objetivo Propuestas de mejora Presupuesto

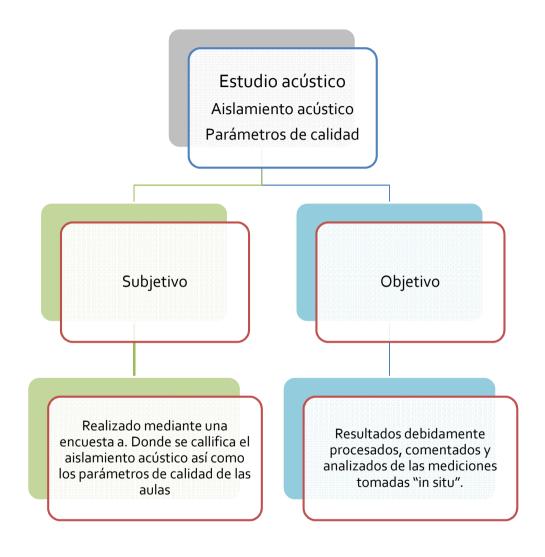
Bibliografía Conclusiones

Tipología de las aulas



Aulas de 60 y 90 m² (instrumentales)

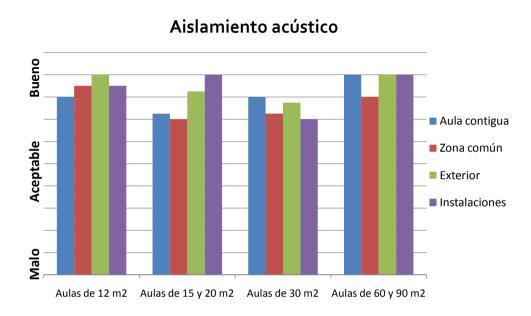
Aulas de 30 m² (no instrumentales)


Aulas de 15 y 20 m² (instrumentales)

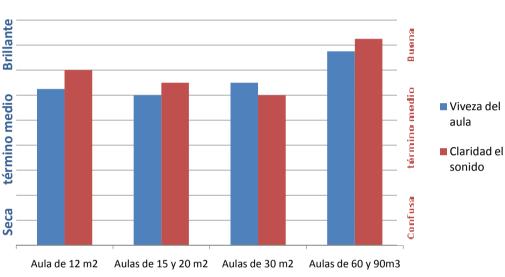
Aulas de 12 m² (instrumentales)

Objetivos

El **Objetivo** del trabajo es estudiar las principales dependencias (salón de actos y las aulas) del conservatorio en busca de mejoras en el acondicionamiento acústico o aislamiento acústico en función de los resultados que se obtengan según proceda.


En el conservatorio de Torrent es anterior a CTE-HR pero las exigencias musicales son las mismas, el confort se consigue con un aislamiento entre aulas de 60dBA.

Encuesta



Los usuarios están conformes con el aislamiento, confort adecuado para desarrollar las clases en buenas condiciones.

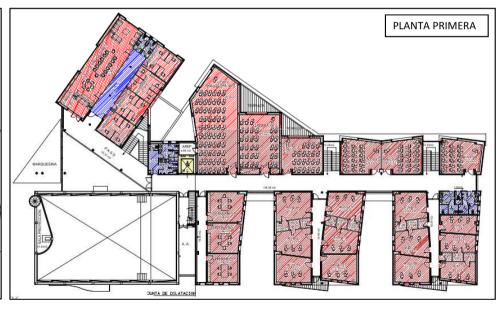
Observaciones

La mayoría de los encuestados citan que algunas notas concretas como "mib" para trombones o "sol#" en el caso de saxofones, provocan que las láminas de las luminarias del aula vibren de forma molesta.

Los usuarios están satisfechos con la viveza del aula, así como en la claridad y nitidez del sonido. consideran que las aulas reúnen las condiciones necesarias para desarrollar con normalidad las clases.

Zoonificación

Mediante la zonificación del edificio se persigue hacer


ZOONIFICACIÓN

Protegido
Instalaciones
Habitable
Actividad
Actividad ruidosa

una selección de los casos a estudiar agrupándolos por tipologías constructivas y exigencias del CTE-HR en

función del uso de cada recinto.

Instrumentos utilizados

Calibrador Bruel&Kjaer modelo 4231 nº ID: 2061525

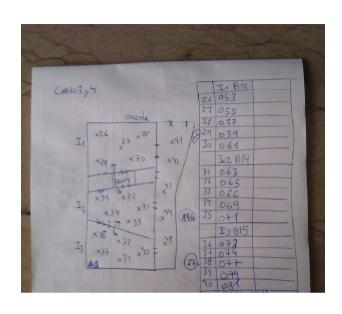
Micrófono Bruel&Kjaer modelo 4188 nº ID: 2725728

Amplificador Bruel&Kjaer modelo AP4224 nº ID: 1142210

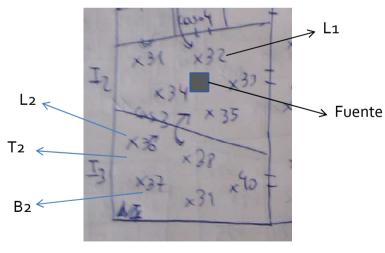
Sonómetro Bruel&Kjaer modelo 2238 mediator nº ID: 2725728

Maquina de impactos: Bruel&Kjaer modelo 3204 nº ID: 1213809

Justificación del proyecto Estudio subjetivo **Estudio objetivo** Propuestas de mejora Presupuesto Bibliografía Conclusiones Introducción


Toma de datos "in situ"

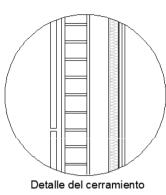
Normativa

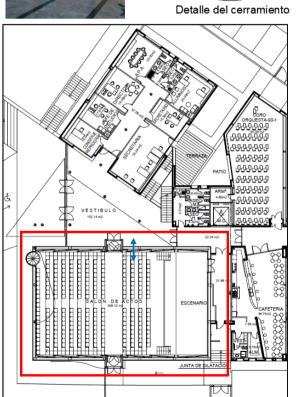

Medición del aislamiento a ruido aéreo entre recintos

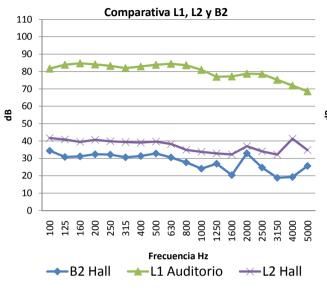
UNE-EN ISO 140-4

- -Medir el ruido de fondo del recinto receptor (B₂)
- -Medir el nivel de presión acústica en el recinto emisor (L1) y en el receptor (L2)
- -Medir el tiempo de reverberación del (T2) con el método de la respueta impulsiva (ISO 354)
 - -Entre el L2 y el B2 al menos 10 dB de diferencia, aplicar correcciones
 - -Calcular la diferencia de niveles D = L1-L'2
 - -Calcular la diferencia de niveles estandarizada $DnT = D + 10 Log (T_2/0,5)$

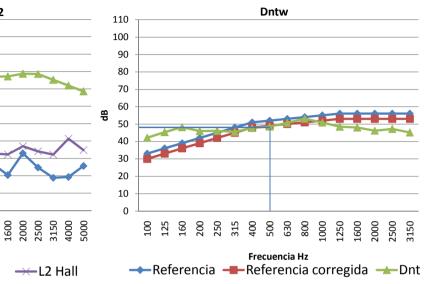
RECINTO EMISOR (I2)




RECINTO RECEPTOR (I₃)



Aislamiento Auditorio-Hall



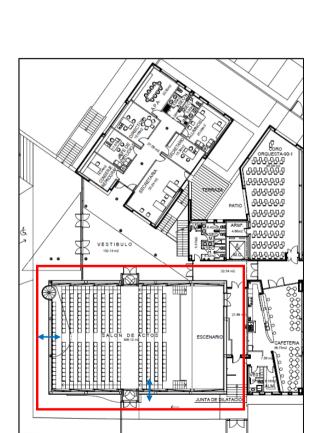
Referencia desplazada

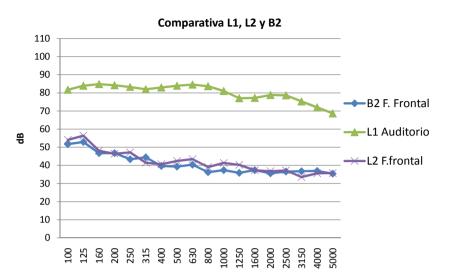
Desfase N -3

Sumatorio= 31,92 <= 32

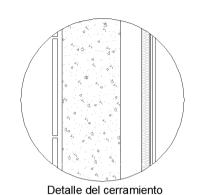
Índice global a 500Hz DnTw = 49,00 dB **UNE-EN ISO 717-1**

Dn,Tw((C;Ctr)=49(-1;-1) dB

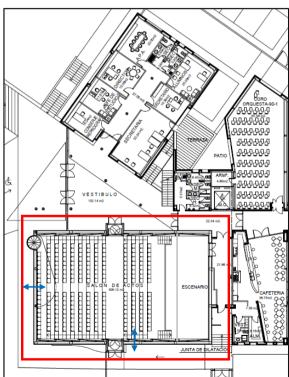

Blanco 49,00 dB Rosa 48,00 dB Trafico 48,00 dB DnT,A 48,50 dBA

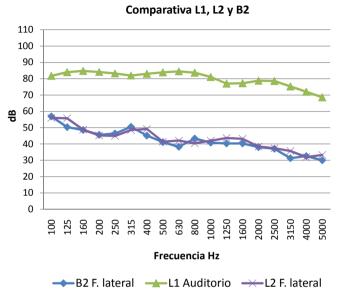

Confort	Cálculo	Medida	Exigencia CTE	
60	57	48,5	55	NO CUMPLE

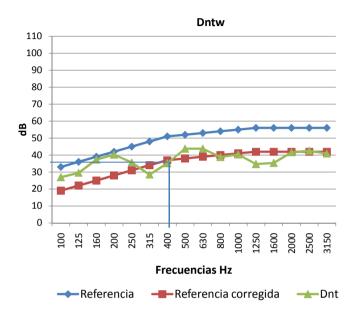


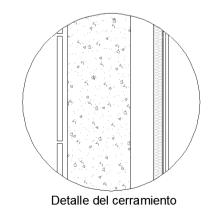

Aislamiento Auditorio-Fachada

Frecuencia Hz








Aislamiento Auditorio-Fachada

Confort	Cálculo CTE 1	Cálculo CTE 2	Ord. municipal	
60	54	66	Max. 60	CUMPLE

Cálculo CTE 1; estimando un valor de $\rm R_A$ de 35 para la doble puerta de salida de emergencia.

Cálculo CTE 2; estimando un valor de R_Ade 50 para la doble puerta de salida de emergencia.

El valor estaría comprendido entre 54 y 66 DnTAdBA.

Caso más desfavorable: 104-54=50 dBA cumple la ordenanza municipal.

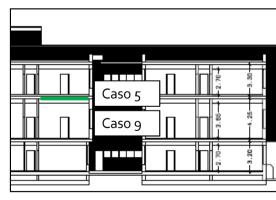
Estudio de casos para las aulas

Aislamiento a ruido aéreo aulas

Caso 1: Elemento vertical entre las aulas Bo2-Bo3 Caso 2: Elemento vertical entre las aulas Bo4-Bo5

Caso 3: Elemento vertical entre las aulas B14-B13

Caso 4: Elemento vertical entre las aulas B14-B15 Caso 5: Elemento horizontal entre B03-P03

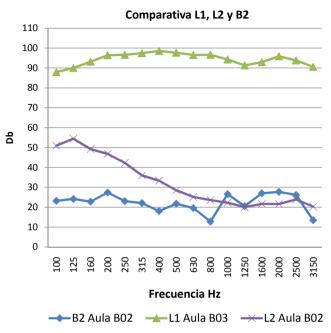

Caso 6: Elemento vertical entre Bo₃-Pasillo

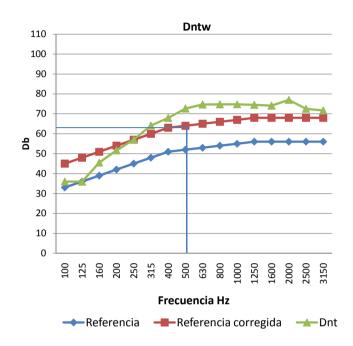
Caso 7: Elemento vertical entre Bo4-Pasillo

Caso 8: Elemento vertical entre So1-So2

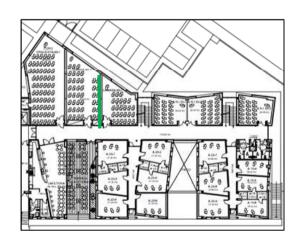
Aislamiento a ruido por impacto

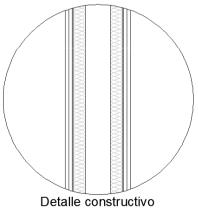
Caso 9: Elemento horizontal entre Bo3-Po3





Caso 8


Caso 1: Aula Bo2 y Bo3

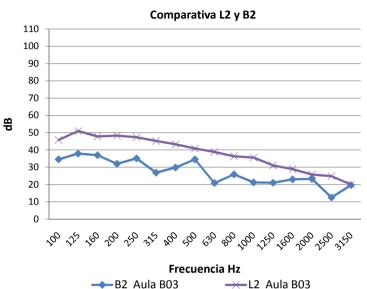


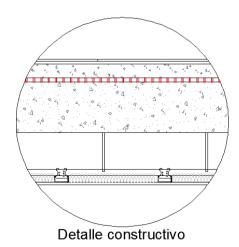
UNE-EN ISO 717-1

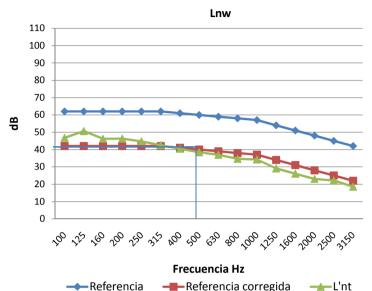
Referencia despi		
Desfase N	12	
Sumatorio=	28,83	<= 32
Índice global a 5	00Hz	
DnTw =	64,00	dB
_		dB

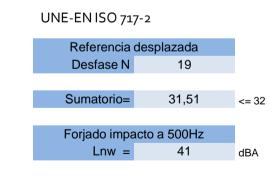
,	
64,00	dB
59,00	dB
52,00	dB
60,20	dBA
	59,00 52,00

Dn,Tw((C;Ctr)=64(-5;-12) dB


Confort	Cálculo	Medida	Exigencia CTE	
60	64	60,2	50	CUMPLE




Caso 9: Aula Po3 y Bo3



Confort	Cálculo	Medida	Exigencia CTE	
-	40	41	65	CUMPLE

Resumen

Aislamiento a ruido aéreo auditorio

Elemento vertical fachada en esquina. Elemento vertical entre el auditorio y el hall.

Aislamiento a ruido aéreo aulas

Caso 1: Elemento vertical entre las aulas Bo2-Bo3 Caso 2: Elemento vertical entre las aulas Bo4-Bo5 Caso 3: Elemento vertical entre las aulas B14-B13 Caso 4: Elemento vertical entre las aulas B14-B15 Caso 5: Elemento horizontal entre Bo3-Po3 Caso 6: Elemento vertical entre Bo3-Pasillo

Caso 7: Elemento vertical entre Bo4-Pasillo Caso 8: Elemento vertical entre So1-So2

Aislamiento a ruido por impacto

Caso 9: Elemento horizontal entre Bo3-Po3

Aislamiento a ruido aéreo aulas

Caso 2: Elemento vertical entre las aulas Bo4-Bo5

Confort	Cálculo	Medida	Exigencia CTE	
60	51	46,5	50	NO CUMPLE

Caso 3: Elemento vertical entre las aulas B14-B13

Confort	Cálculo	Medida	Exigencia CTE	
60	62	59,8	50	CUMPLE

Caso 4: Elemento vertical entre las aulas B14-B15

Confort	Cálculo	Medida	Exigencia CTE	
60	62	59,9	50	CUMPLE

Caso 5: Elemento horizontal entre Bo3-Po3

Confort	Cálculo	Medida	Exigencia CTE	
60	74	75,3	50	CUMPLE

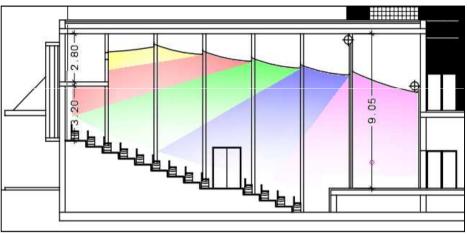
Caso 6: Elemento vertical entre Bo3-Pasillo

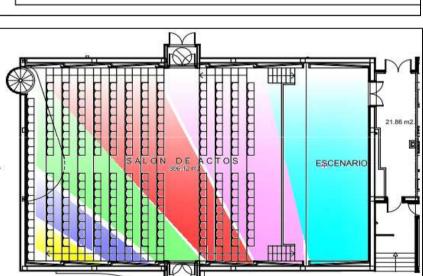
Confort	Cálculo	Medida	Exigencia CTE	
60	55	52,4	30	CUMPLE

Caso 7: Elemento vertical entre Bo4-Pasillo

Confort	Cálculo	Medida	Exigencia CTE	
60	38	36	30	CUMPLE

Caso 8: Elemento vertical entre So1-So2


Confort	Cálculo	Medida	Exigencia CTE	
60	51	48,80	50	CUMPLE

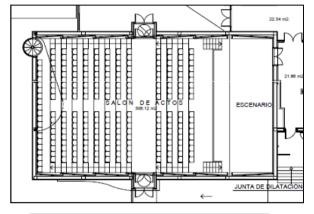


Parametros de calidad del salón de actos

Aspectos geométricos

0,4

Diseño de las superficies: El falso techo y las paredes laterales producen primeras reflexiones para reforzar el sonido directo.

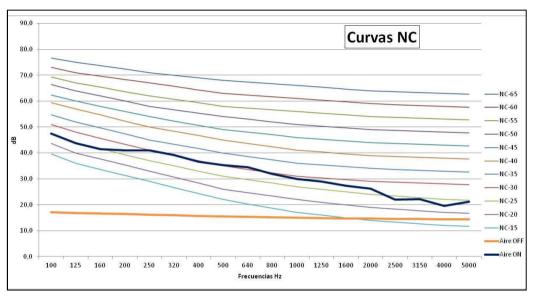


Visuales

Parametros de calidad del salón de actos

Relación señal fondo

Ruido de fondo



Relación señal/fondo

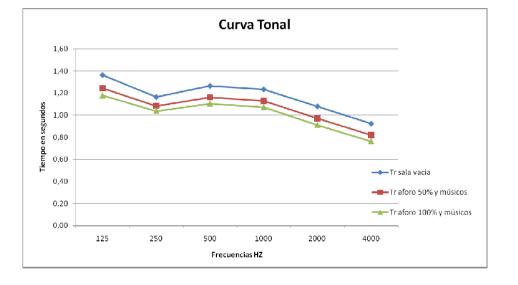
Potenciar al máximo la señal del escenario y reducir el ruido de fondo. Cuanto mayor sea la diferencia entre ambos mejor.

Forma en planta de la sala y la pendiente de del patio de butacas. Cuanto más cerca este el público más potencia.

Para salas de conciertos se recomienda un curva comprendida entre la NC-15 y NC-25

Parametros de calidad del salón de actos

Tiempo de reverberación


El tiempo de reverberación (Tr) se define como el tiempo que transcurre desde que la fuente emisora se detiene hasta que el nivel de presión sonora cae 60 dB. El término común que se utiliza es el de "viveza", cuanto mayor sea la viveza de la sala mayor el Tr.

Frecuencia (Hz)	125	250	500	1000	2000	4000
Abs. Vacía	237,86	278,49	256,29	262,80	300,29	350,89
Abs. 50% aforo y						
músicos	260,42	299,17	278,85	287,24	334,13	396,01
Abs. 100% aforoy						
músicos	274,58	312,15	293,01	302,58	355,37	424,33
Tr sala vacía	1,36	1,16	1,26	1,23	1,08	0,92
Tr50% aforo y músicos	1,24	1,08	1,16	1,13	0,97	0,82
Tr 100% aforo y						
músicos	1,18	1,04	1,11	1,07	0,91	0,76

$$Tr_{mid} = \frac{Tr_{500} + Tr_{1000}}{2}$$

	Trmid
Tr sala vacía	1,25
Tr aforo 50% y músicos	1,14
Tr aforo 100% y músicos	1,09

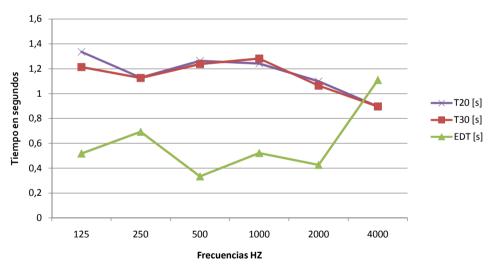
Datos de la sala: Volumen de la sala= 2000m³ Nº de butacas=236 Nº Músicos = 70



Parametros de calidad del salón de actos

Early Decay Time (EDT)

El EDT mide el tiempo que transcurre desde que la fuente sonora deja de emitir hasta que le nivel cae 10 dB multiplicado por seis. Si el EDT y el Tr son iguales significa que la sala es perfectamente difusa, ya que la pendiente de las dos rectas de aproximación será la misma.


EDTmid = 0.60 sTrmid (sala llena) = 1.14

Como 1.14<0.60 el salón de audiciones del conservatorio es relativamente poco difuso. Pero los ataques de las notas se apreciaran más claros y nítidos.

Comparativa Tr20, Tr30 y EDT

Frecuencia(Hz)	125	250	500	1000	2000	4000
Tr 20	1,335	1,128	1,263	1,241	1,098	0,896
Tr 30	1,213	1,125	1,237	1,281	1,063	0,896
EDT	0,517	0,693	0,333	0,521	0,426	1,109

Comparativa Tr20, Tr30 y EDT

Parametros de calidad del salón de actos

Equilibrio. Calidez (BR) y Brillo (Br)

Claridad C₈₀

Se dice que una sala tiene calidez acústica si presenta una buena respuesta a frecuencias bajas. La palabra calidez representa, pues, la riqueza de graves.

Cálculo de la Calidez

$$BR = \frac{Tr_{125} + Tr_{250}}{Tr_{500} + Tr_{1000}}$$

	Calidez
BR sala vacía	1,01
BR aforo 50% y músicos	1,02
BR aforo 100% y músicos	1,02

El brillo Br de una sala es la relación entre los tiempos de reverberación a frecuencias altas (2 kHz y 4 kHz) y frecuencias medias (500 Hz y 1 kHz)

Cálculo del Brillo

$$Br = \frac{Tr_{2000} + Tr_{4000}}{Tr_{500} + Tr_{1000}}$$

	Brillo
Br sala vacía	0,80
Br aforo 50% y músicos	0,78
Br aforo 100% y músicos	0,77

El C8o se define como la relación entra la diferencia entre la energía que llega al receptor durante los primeros 8o ms desde la llegada del sonido directo y la que le llega después de los primeros 8o ms.

Valores recomendados:

Sala vacía
$$-4 < C80 (3) < 0 dB$$

Sala llena $-2 < C80 (3) < +2 dB$

Frecuencias Hz	125	250	500	1000	2000	4000
Promedio	12,01	10,66	13,25	13,47	13,01	9,28

Cálculo de la Claridad C8o

$$C_{80} \, = \, \frac{C_{80} \, (500 \; Hz) + C_{80} \, (1 \; kHz) + C_{80} \, (2 \; kHz)}{3} \ \ \, dB$$

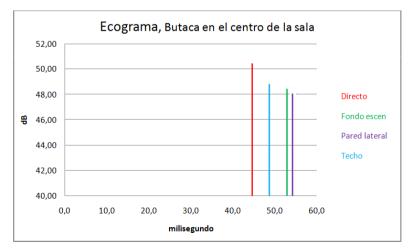
Sala vacía ClaridadC8o (3)= 13,244

Parametros de calidad del salón de actos

Intimidad

Se puede asociar la valoración de intimidad acústica con la sensación que tiene el oyente de escuchar la música en un espacio de dimensiones más reducidas que las dimensiones reales de la sala.

Formulas:


 $LD = LW - 11 - 20 \log r$

 $LR = LW - 11 - 20 \log (r1 + r2) + 10 \log (1 - a)$

Tabla:

_	Longitud	L dB	t (ms)
Directo	15,16	50,39	44,6
Fondo escenario	18	48,72	52,9
Pared lateral	18,47	48,49	54,3
Pared lateral	18,47	48,49	54,3
Techo	16,57	49,44	48,7

Tiempo de retardo del sonido inicial entre el directo y la primera reflexión deben haber menos de 20ms. 48,7 – 44,6= 4,1 ms. Buena intimidad.

El parámetro Grel sirve para ver la respuesta de la sala en cada frecuencia.

En las frecuencias medias y altas (desde la frecuencia 315 hasta la 5000Hz) responden a lo esperado. Se observa que la gráfica es sensiblemente plana (+-5 dB). Lo cual, indica que la respuesta de la sala es bastante lineal, es decir, se trata de una sala neutra. Y es así como debe ser, es bueno que trate a todas las frecuencias por igual.

Grel

ESTUDIO ACÚSTICO DE ALGUNAS DEPENDENCIAS DEL CONSERVATORIO PROFESIONAL DE MÚSICA (TORRENT)

Justificación del proyecto Estudio subjetivo **Estudio objetivo** Propuestas de mejora Presupuesto Bibliografía Conclusiones Introducción

Parametros de calidad del salón de actos

Difusión

El índice de difusión (SDI) se determina a través de una inspección visual de la sala con objeto de averiguar el grado de irregularidades de las paredes laterales y del techo.

El grado SDI sería cercano a o; la calificaría con un 0,15

Definición D

La definición D50, es la relación entre la energía que llega al oyente dentro de los primeros 50 ms desde la llegada del sonido directo (incluye el sonido directo y las primeras reflexiones) y la energía total recibida por el mismo. Se calculaen cada banda de frecuencias entre 125 Hz y 4 kHz:

El valor de dicho parámetro para cada punto de una sala ocupada, y en cada banda de frecuencias, debe cumplir:

D > 0.50

Frecuencia Hz	125	250	500	1000	2000	4000
D50	0,92	0,89	0,94	0,92	0,92	0,92

La sala es calificada como excelente para la palabra porque los valores superan con creces el mínimo de 0,50.

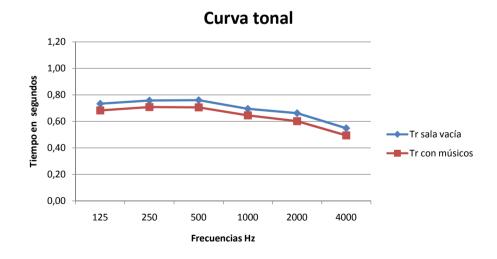
STI/RASTI

Los valores de RASTI y STI se han obtenido a partir de las medidas realizadas en 12 puntos con la sala vacía.

Medida	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
RASTI	0,97	0,95	0,96	0,96	0,95	0,96	0,86	0,86	0,85	0,84	0,84	0,85	0,84	0,84	0,84
STI Mujer	0,92	0,89	0,9	0,9	0,9	0,9	0,78	0,78	0,77	0,78	0,77	0,78	0,78	0,78	0,78
STI Hombre	0,93	0,9	0,92	0,91	0,91	0,92	0,79	0,79	0,79	0,78	0,78	0,79	0,79	0,79	0,79

	media	Valoración
RASTI	0,89	Excelente
STI Mujer	0,83	Excelente
STI Hombre	0,84	Excelente

Este valor es superior al valor mínimo recomendado de 0,65. La inteligibilidad es excelente

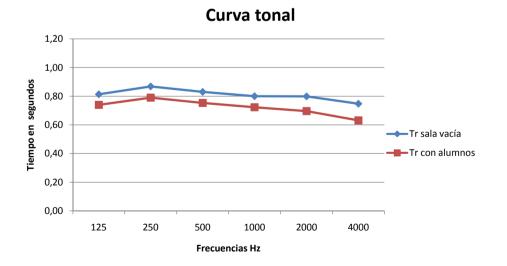

Parámetros de calidad de la aulas

Aulas de 60 y 90 m²

Frecuencia	125	250	500	1000	2000	4000
Tr sala vacía	0,73	0,76	0,76	0,70	0,66	0,55
Abs. músicos	0,12	0,11	0,12	0,13	0,18	0,24
45 músicos	5,4	4,95	5,4	5,85	8,1	10,8
Abs sala vacía	72,50	70,16	69,93	76,52	80,27	96,85
Abs. Total	77,90	75,11	75,33	82,37	88,37	107,65
Tr con 45 músicos	0,68	0,71	0,71	0,65	0,60	0,49

Trmid=	0,73	0,68
C80=	7,17	

BR=	1,02	1,03
Br=	0,83	0,81

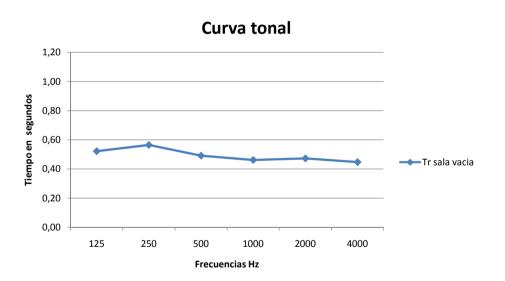


Aulas de 30 m² (No instrumentales)

Frecuencia	125	250	500	1000	2000	4000
Tr sala vacía	0,81	0,87	0,83	0,80	0,80	0,75
Alumno	0,12	0,11	0,12	0,13	0,18	0,24
18 Alumnos	2,16	1,98	2,16	2,34	3,24	4,32
Abs sala vacía	21,79	20,44	21,37	22,17	22,20	23,72
Abs. Total	23,95	22,42	23,53	24,51	25,44	28,04
Tr con 18 alumnos	0,74	0,79	0,75	0,72	0,70	0,63

Trmid=	0,82	0,74
D50=	0,61	
RASTI=	0,65	

BR=	1,03	1,04
Br=	0,95	0,90

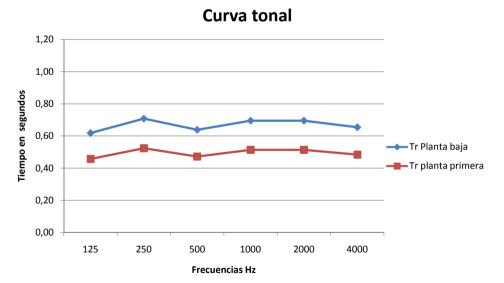

Parámetros de calidad de la aulas

Aulas de 12 m²

Frecuencia	125	250	500	1000	2000	4000
Tr sala vacía	0,52	0,57	0,49	0,46	0,47	0,45

Trmid=	0,48	
C80=	12,30	

BR=	1,14
Br=	0,97



Aulas de 15 y 20 m²

Frecuencia	125	250	500	1000	2000	4000
Tr Planta baja	0,62	0,71	0,64	0,70	0,70	0,65
Abs. sala vacía	17,22	15,03	16,68	15,31	15,31	16,27
Tr planta primera	0,46	0,52	0,47	0,51	0,51	0,48

Trmid=	0,67	0,49
C80=	7,04	

BR=	0,99	0,99
Br=	1,01	1,01

Aislamiento acústico

Salón de actos y vestíbulo

Resultados del estudio.

Confort	Cálculo	Medida	Exigencia CTE	
60	60	48,5	55	NO CUMPLE

Comentarios

El aislamiento no es suficiente si hay simultaneidad de usos entre el hall y el auditorio. Sólo es un problema cuando hay conciertos con la orguesta o banda al completo.

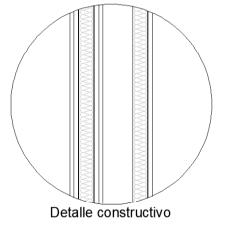
Solución propuesta

Mediante la simulación de CTE para el cálculo de aislamiento acústico se ha obtenido un valor de 60 dBA. hay un puente acústico en el cerramiento en cuestión. las hipótesis son las siguientes:

-Mala ejecución del elemento base del cerramiento

-el sistema de doble puerta no funciona, el R₄ del conjunto es inferior a 27dBA. Según los cálculos realizados con la simulación del CTE. Esto podría ser por un mal montaje y/o defectos/deterioro de las mismas.

Caso 2: Elemento vertical entre las aulas Bo4-Bo5


Confort	Cálculo	Medida	Exigencia CTE	
60	51	46,5	50	NO CUMPLE

Caso 8: Elemento vertical entre So1-So2

Confort	Cálculo	Medida	Exigencia CTE	
60	51	48,80	50	CUMPLE

Solución propuesta

Trasdosado autoportante formado por placa de yeso laminado de 15 mm de espesor, con aislante de lana de roca MW 48, sobre estructura galvanizada de canal y montante de 48 mm con una separación entre ejes de 40 cm.

Aulas

Caso 2: Elemento vertical entre las aulas Bo4-Bo5

Confort	Medida	Cálculo con mejoras	Exigencia CTE	
60	51	66	50	CUMPLE

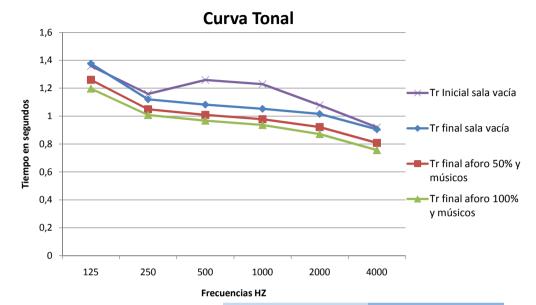
Caso 8: Elemento vertical entre So1-So2

Confort	Medida	Cálculo con mejoras	Exigencia CTE	
60	48	63	50	CUMPLE

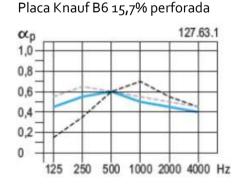
Parámetros de calidad del salón de actos

Tr mid de la sala

Trmid de la sala


Analizando la curva tonal de la sala, se observa que en la frecuencia de 250Hz hay un pico de absorción. Dotando a la curva de una forma conocida como "ratonera" en lenguaje menos técnico debido a la similitud con dicho roedor.

La absorción en estas frecuencias se atribuye a las membranas. El techo es una gran membrana con cámara de canto variable y además las paredes laterales de sala son de placas de yeso laminado.


Solución propuesta

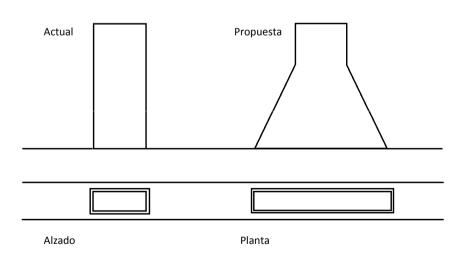
La solución propuesta para la mejora de la sala, sería añadir un material ranurado/perforado que absorba principalmente en frecuencias medias. Se dispondría en la parte trasera del techo de la sala yaque esa zona del techo no produce primeras reflexiones sobre el público. (Ver el estudio de las primeras reflexiones realizado en el apartado de parámetros de calidad de la sala de audiciones.)

Frecuencia (Hz)	125	250	500	1000	2000	4000
Placa Knauf B6 15,7%						
perforada	0,1	0,3	0,73	0,76	0,42	0,29
76,7 m2 de placa Knauf	7,67	23,01	55,991	58,292	32,214	22,243
Abs. Sala vacía final	245,53	301,50	312,28	321,09	332,51	373,13
Abs. 50% aforo y músicos	268,09	322,18	334,84	345,53	366,35	418,25
Abs. 100% aforo y músicos	282,25	335,16	349,00	360,87	387,59	446,57
Tr sala vacía	1,38	1,12	1,08	1,05	1,02	0,91
Tr50% aforo y músicos	1,26	1,05	1,01	0,98	0,92	0,81
Tr100% aforo y músicos	1,20	1,01	0,97	0,94	0,87	0,76

	Sala Inicial			Sala Final		
	Tr mid	BR	Br	Tr mid	BR	Br
Sala vacía	1,25	1,01	0,80	1,07	1,17	0,90
50% Aforo y músicos	1,14	1,02	0,78	0,99	1,16	0,87
100% Aforo y músicos	1,09	1,02	0,77	0,95	1,16	0,86

Parámetros de calidad del salón de actos

Ruido de fondo


Ruido de fon de la sala

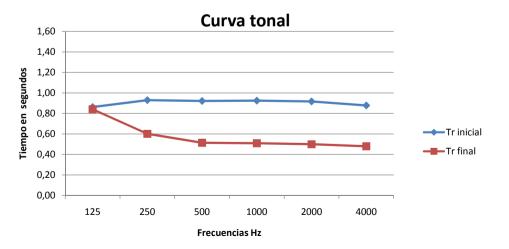
Se podría asociar al ruido generado al que produce típicamente el de soplido de aire, la causa del problema es que la velocidad del aire es demasiado alta en las bocas de salida.

Solución propuesta

El problema podría solucionarse bajando la velocidad del aire (mas bocas de salida y tubos más anchos y/o programar el caudal de aire.

Como la opción de abrir nuevas salidas de aire es compleja. La solución óptima pasaría por ensanchar las actuales bocas de salida de forma progresiva (ver detalle). De este modo se pretende bajar la velocidad de salida del aire.

Parametros de calidad zonas comunes


Pasillo

Solución propuesta: Aumentar la absorción para bajar el Tr.

Frecuencia	125	250	500	1000	2000	4000
Tr inicial	0,86	0,93	0,92	0,93	0,92	0,88
Lana de roca 100kg/m2 e30mm	0,07	0,4	0,88	0,92	0,96	1
m2 Sabine	2,1	12	26,4	27,6	28,8	30
Abs. sala vacía	82,22	76,30	76,96	77,71	77,38	80,82
Abs Total	83,32	88,30	100,36	104,31	106,18	110,82
Tr final	0,84	0,60	0,51	0,51	0,50	0,48

Trmid=	0,92	0,51
C80=	7,04	
RASTI=	0,71	

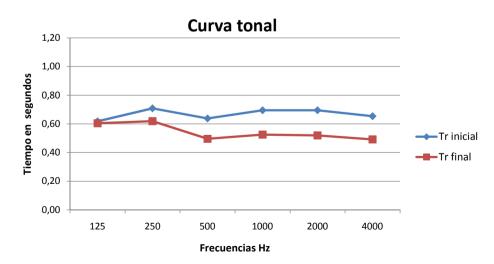
BR=	0,97	1,41
Br=	0,97	0,96

Justificación del proyecto Estudio subjetivo Estudio objetivo Propuestas de mejora Presupuesto Bibliografía Conclusiones Introducción

Parámetros de calidad en las aulas

Aulas de 15 y 20 m2 instrumental

Mejoras en las aulas de clases individuales situadas en planta baja.


Solución propuesta: Aumentar la absorción en el aula.

Colocar una banda de 30 cm de ancho en la parte superior del aula de Lana de roca 100 kg/m2 30 mm de espesor en todo el perímetro (18metros).

Frecuencia	125	250	500	1000	2000	4000
Tr inicial	0,62	0,71	0,64	0,70	0,70	0,65
Lana de roca 100kg/m2						
e30mm	0,07	0,4	0,88	0,92	0,96	1
m2 Sabine	0,378	2,16	4,752	4,968	5,184	5,4
Abs. sala vacía	17,22	15,03	16,68	15,31	15,31	16,27
Abs Total	17,60	17,19	21,43	20,28	20,50	21,67
Tr final	0,60	0,62	0,50	0,52	0,52	0,49

Trmid=	0,67	0,51
C80=	7,04	

BR=	0,99	1,20
Br=	1,01	0,99

Aulas de enseñanza instrumental

Mejoras en las aulas de enseñanza instrumental.

La mayoría de los encuestados citan que algunas notas concretas como "mib" para trombones o "sol#" en el caso de saxofones, provocan que las láminas de las luminarias del aula vibren de forma molesta.

Solución propuesta: Cambiar las luminarias

Colocar luminarias que no tengan elementos que produzcan vibraciones. Son idóneas las luminarias empotradas con acabado de vidrio.

ESTUDIO ACÚSTICO DE ALGUNAS DEPENDENCIAS DEL CONSERVATORIO PROFESIONAL DE MÚSICA (TORRENT)

Introducción Justificación del proyecto Estudio subjetivo Estudio objetivo Propuestas de mejora **Presupuesto** Bibliografía Conclusiones

Mediciones y presupuesto

Resumen del presupuesto

PRESUPUESTO								
Descripción	Uds	Longiutd	Anchura	Altura	Parciales	Cantidad	Precio	Importe
m2 Trds autoport PYL normal-15 Trasdosado autoportante formado por placa de yeso laminado de 15 mm de espesor, con aislante de lana de roca MW 48 de 50 mm de espesor, sobre estructura galvanizada de canal y montante de 48 mm con una separación entre ejes de 40 cm, listo para pintar, incluso replanteo, preparación, corte y colocación de las placas, nivelación y aplomado, formación de premarcos, ejecución de ángulos y paso de instalaciones, acabado de juntas, parte proporcional de mermas roturas y accesorios de fijación y limpieza.								
Cerramientos aulas B04-B05, P04-P05	2	3,8		3,65	27,74			
Cerramiento aula S01-S02 y entre el resto de	_	3,0		3,03	27,74			
aulas del sótano	5	4,6		2,7	62,1			
		·			,	89,94	32,00€	2.875,00 €
m2 PYL Knauf slotline B6 15,7% perforado Falso techo realizado con placas de yeso Knauf B6 15,7% perforado, con sustentación a base de estructura de maestra de 60x27 mm, cada 31.25 cm, suspendido mediante piezas metálicas galvanizadas, incluso parte proporcional de alquiler de andamio, tornillos, pasta y cinta de juntas, parte proporcional de mermas roturas y accesorios de fijación y limpieza.								
Superfie de los dos últimos tramos del techo de la sala	76,7				76,7			
						76	78,00€	5.983,00€

PRESUPUESTO								
Descripción	Uds	Longiutd	Anchura	Altura	Parciales	Cantidad	Precio	Importe
m2 Lana de roca 100 kg/m2 esp 30 mm Lana mineral (MW) de 30 mm de espesor, sin revestimiento, con una conductividad térmica de 30 W/mK y resistencia térmica 0.80 m2K/W, reacción al fuego Euroclase A1, código de designación MW-EN 13162 - T2-WS-MU1-AF5, incluso parte proporcional de elementos de sujeción y corte del aislante.								
Aulas de PB	12	18	0,3		64,8			
	1	30	1		30			
						94,8	8,00€	758,00€
u Luminarias								
Aulas instrumentales PB	32				32			
Aulas instrumentales P1	32				32			
Aulas instrumentales PSOT	15				15			
	ļ.					79	102.00€	8.058.00€
							PEM	17.674,00 €

RESUMEN DEL PRESUPUESTO		Importe
0.1 Trasosado de yeso autoportante		2.875,00€
0.2 PYL Knauf slotline B6 15,7% perforado		5.983,00€
0.3 Lana de roca 100Kg/m2 esp30mm		758,00€
0.4 Luminarias		8.058,00€
	PEM	17.674,00€
Honorarios y dirección de obra 10% PEM		1.767,40€
	TOTAL	19.441,40€
Impuestos IVA 18% PEM		3.499,45 €
	TOTAL PRESUPUESTO	22.940,85 €

Resumen del presupuesto

Asciende el presupuesto total a la referida cantidad de **VEINTIDOSMIL NOVECIENTOS CUARENTA EUROS Y OCHENTA Y CINCO CENTIMOS**

ESTUDIO ACÚSTICO DE ALGUNAS DEPENDENCIAS DEL CONSERVATORIO PROFESIONAL DE MÚSICA (TORRENT)

Introducción Justificación del proyecto Estudio subjetivo Estudio objetivo Propuestas de mejora Presupuesto **Bibliografía** Conclusiones

Bibliografía

Carrión Isbert, Antoni. (1998) Diseño acústico de espacios arquitectónicos; UPC

Documento Básico HR – Protección frente al ruido del Código Técnico de la Edificación

Instituto de Ciencias de la Construcción Eduardo Torroja; Guía de aplicación del DB HR Protección frente al ruido

Instituto de Ciencias de la Construcción Eduardo Torroja; Catálogo de elementosconstructivos del CTE

Grau García, Camilo (1999) Proyecto de ejecución de conservatorio profesional de música 540 p.e. en Torrent (valencia).

Instituto Valenciano de la Edificación. (1986) *Bases de Datos de la Construcción.* Recuperado en junio de 2012, de http://www.five.es/basedatos/Visualizador/Base11.htm

RD 37/2003, de 17 de noviembre, Ley del Ruido.

UNE-EN-ISO 140-4.(1999) Medición del aislamiento acústico en los edificios y de los elementos de construcción. Parte 4: Medición "in situ" del aislamiento acústico al ruido aéreo entre locales.

UNE-EN-ISO 140-5. (1999) Medición del aislamiento acústico en los edificios y de los elementos de construcción. Parte 5: Medición "in situ" del aislamiento acústico al ruido aéreo de elementos de fachada y de fachadas.

UNE-EN-ISO 140-7. (1999) Medición del aislamiento acústico en los edificios y de los elementos de construcción. Parte 7: Medición "in situ" del aislamiento acústico de suelos al ruido de impactos.

UNE-EN-ISO 717-1:1997/AM 1:2006 (2007) Evaluación del aislamiento acústico en los elementos de construcción. Parte 1: Aislamiento a ruido aéreo. Modificación 1: Normas de redondeo asociadas con los índices expresados por un único número y con las magnitudes expresadas por un único número.

UNE-EN-ISO 717-2:1996/AM 1:2006 (2007) Evaluación del aislamiento acústico en los elementos de construcción. Parte 2: Aislamiento a ruido de impactos. Modificación 1.

Conclusiones

Valoración personal

