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Abstract

The electromagnetic spectrum is not the only way for humans to study the stars; in fact,
the study of the trajectory of neutrinos arriving at Earth can allow the study of mas-
sive and energetic celestial objects at distances much greater than the electromagnetic
spectrum would allow. However, these subatomic particles can only be studied indirectly
using the Cherenkov light captured by the photoreceptor lines that form neutrino tele-
scopes such as the ANTARES Telescope. Currently, the data obtained by the ANTARES
telescope is analyzed by two algorithms that are able to estimate the neutrino trajectory
components. The problem with these algorithms is that they require the event to be
captured by multiple lines to obtain a good result, but most of the events captured by
the telescope are recorded by a single line, so there are many events from which not all
the useful information can be extracted. Taking into account the existing gap in the
current capability of estimating trajectories of these events, the objective of this work is
to create an algorithm capable of improving the prediction capabilities of existing algo-
rithms for the estimation of the Zenith component of the trajectory of events captured
at the ANTARES telescope by a single line. In addition, the resulting model will also be
used to make a first estimate of the neutrino energy.

On the other hand, and unlike the algorithms currently used, in our case we will choose
to use a neural network model, since, being a multipurpose machine learning algorithm,
these models are capable of identifying and performing the regression of any type of
nonlinear function. Specifically, the final model obtained is a convolutional neural network
capable of obtaining a probabilistic distribution of the Zenit component of the neutrino
trajectory based on images made with the information received in the photoreceptors.
The capacity of the developed algorithm has managed to reduce the trajectory estimation
error by 50% compared to current algorithms, thus demonstrating that using a machine
learning model can be a better option for trajectory estimation.
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Resumen

Las radiaciones electromagnéticas no son la única forma que el ser humano tiene para
estudiar los astros, de hecho, el estudio de la trayectoria de los neutrinos que llegan a
la Tierra puede permitir el estudio de objetos celestes masivos y energéticos a distancias
mucho mayores de lo que el espectro electromagnético podría permitir. Sin embargo,
estas partículas subatómicas solo pueden ser estudiadas indirectamente utilizando la luz
de Cherenkov captada por las líneas de fotorreceptores que forman los telescopios de neu-
trinos como el Telescopio ANTARES. Actualmente, los datos obtenidos por el telescopio
ANTARES son analizados mediante dos algoritmos que son capaces de estimar las com-
ponentes de la trayectoria de los neutrinos. El problema de estos algoritmos reside en que
requieren que el evento sea captado por múltiples líneas para obtener un buen resultado,
pero la mayoría de eventos captados por el telescopio son registrados por una única línea,
por tanto, hay muchos eventos de los cuales no se puede extraer toda la información útil.
Teniendo en cuenta el vacío existente en la capacidad actual de estimación de trayecto-
rias de estos eventos, el objetivo de este trabajo es la creación de un algoritmo capaz de
mejorar las capacidades de predicción de los algoritmos existentes para la estimación de
la componente Zenit de la trayectoria de los eventos captados en el telescopio ANTARES
por una única línea. Además, el modelo resultante también será utilizado para realizar
una primera estimación de la energía del neutrino.

Por otro lado, y a diferencia con los algoritmos utilizados actualmente, en nuestro caso
optaremos por utilizar un modelo de red neuronal, ya que, al ser un algoritmo de apren-
dizaje automático multipropósito, estos modelos son capaces de identificar y realizar la
regresión de cualquier tipo de función no lineal. Concretamente, el modelo final obtenido
es una red neuronal convolucional capaz de obtener una distribución probabilística de
la componente Zenit de la trayectoria del neutrino en base a imágenes realizadas con la
información recibida en los fotorreceptores. La capacidad del algoritmo dearrollado ha
logrado disminuir el error de estimación de la trayectoria en un 50% comparado con los
algoritmos actuales, demostrando así que utilizar un modelo de aprendizaje automático
puede suponer una mejor opción para realizar la estimación de trayectorias.
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Chapter 1

Introduction

This chapter starts with section 1.1 with a brief explanation of the importance of particle
physics and the motivation behind this whole thesis. Then an overview of the current
state of neutrino detection and reconstruction algorithms is given in section 1.2. After
studying the needs on the matter, the objectives are defined in section 1.3 and with those
a possible solution to the problem will be proposed in 1.4.

1.1 Thesis Purpose

For centuries, the human being has being capable of observing celestial bodies that sur-
round us with the use of electromagnetic radiation. In the beginning, the visible light
spectrum was observed with the bare eye to determine the planets and the stars that
make up the solar system. Later, with the invention of the telescope, we were capable
of achieving a more in-depth study of those celestial bodies. Nowadays, the telescope
has evolved into a complex machine that can receive the whole electromagnetic spectrum
(infrared and ultraviolet light, gamma rays, radio waves, etc) for the observation of far-
away galaxies. To this arsenal of observation techniques, a new method has been added
for the observation of extremely far and massive celestial bodies using the detection and
reconstruction of their neutrino’s trajectory.

According to the standard model, neutrinos are subatomic particles with no charge
and almost no mass, so they are not affected by neither electromagnetic or gravitational
fields (neutrinos are only affected by the weak force presents in the atomic nucleus), which
makes them travel through the space without being affected, unlike photons or cosmic
rays. This property makes them extremely useful for the study of distant celestial bodies.
If the trajectory components of the neutrino are known then the body position can be
accurately known. This trajectory is described by the Azimuth and Zenith angles as it
is shown in Figure 1.1. Moreover, knowing the energy of the neutrino can give a more
complete picture of the object that produced it. Although the intrinsic properties of
neutrinos make them an extremely efficient carrier of information, they also make them
hard to be detected, as normally neutrinos do not interact with any matter.
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Figure 1.1: Azimuth (θA) and Zenith (θz) angles obtained from the neutrino’s trajectory
[1].

1.2 State of the Art

This section will briefly explain the operating principle behind the ANTARES underwater
telescope and the algorithms used to estimate the trajectory from the events captured
by the telescope. Finally, a full analysis will be carried out on the current state on the
subject to determine which will be the objectives and needs of this thesis.

1.2.1 ANTARES Neutrino Telescope and working principle

The ANTARES telescope [4] was built on early 2008 near the coast of France with
the purpose of indirectly detecting high-energy ascending neutrinos using the Cherenkov
radiation. This electromagnetic radiation is emitted by any kind of charged particle
moving faster than the speed of light in a specific dielectric medium where light speed is
much lower than the light speed in vacuum, such as water [9]. When a charged particle
moves through the medium, it will polarize the molecules around it and as the molecules
returns to their ground state, they will re-emit the energy given from the particle as
photons in the range of blue visible light, which will propagate in spherical wavefronts. If
the moving particle is moving faster than the speed of light in the medium, the spherical
wavefronts will get pushed together creating a constructive inference that will lead to
a cone-shaped wavefront as seen on Figure 1.2. It should be stated that the neutrino
does not create the Cherenkov radiation as it has no charge, however the muons which
are created in the rare event that the neutrino interacts with the nucleus of an atom
in the medium through the weak force are the ones responsible for this electromagnetic
radiation.
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Figure 1.2: Constructive inference creating a cone-shaped wavefront, similar to the sonic-
boom created by an airplane when it travels faster than the speed of sound [2].

Due to the low level of visible light emitted by the muon, it is extremely important
for the detector to be located at 2.5 Km deep in the ocean, where no light is present and
the usage of extremely sensitive photomultipliers is possible. These photomultipliers or
optical modules are able to measure the amplitude and time of arrival of the photon cone
created by the muon to a nanosecond scale.

Figure 1.3: Close view representation of a line floor composed by three optical modules
[3].

To be able to record events in a wide area and have enough data to estimate the
trajectory, the telescope is composed of 12 vertical lines that rise 500 meters over the sea
floor (Figure 1.4). Each one of those lines have 25 floors with three photomultipliers in
each one of them pointing 120º one from another and positioned 45º below the horizontal
axis to enhance the detection of ascending neutrinos (Figure 1.3).
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Figure 1.4: Schematic of the ANTARES telescope [4].

1.2.2 Current estimation algorithms

As the ANTARES telescope has several different lines far from one another, the major-
ity of the events are registered only by one line (single-line events), while other, more
energetic events are registered by multiple lines (multi-line events). To estimate their
trajectory, two algorithms where chosen as standards for the ANTARES telescope, the
AAFit algorithm uses the information from multiple lines to estimate the Azimuth and
Zenith components of high-energy neutrinos. On the other hand the BBFit algorithm
is capable of accurately estimating the Zenith component for low-energy muons in both
single and multi-line events. Although both of these algorithms have a high accuracy and
reliability when fed with multilineal events, the BBFit algorithm performs very poorly for
Zenith estimation on single-line events, and as these events represent a high percentage of
the total amount registered by the ANTARES telescope, it is a priority to enhance or
develop a new algorithm that can accurately estimate the Zenith component
of single-line events.

Currently, the Astroparticle Physics research group at the UPV is working on de-
veloping a new algorithm that is capable of improving the prediction accuracy of these
events using machine learning algorithms. Their current approach is a fully-connected
neural network which is fed using preprocessed data and an off-line convolution, which is
explained with greater detail in section 3.1. Using this approach, the group was able to
beat the BBFit prediction’s capability and is planning on applying the same principle for
the estimation of neutrino’s energy, a characteristic that none of the current algorithms
have.
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1.3 Thesis Objective

As explained in subsection 1.2.2, there is a need for improvement in the estimation of
the Zenith component in single-line events registered in the ANTARES telescope. Thus,
the main objective of this thesis will be the development of a machine learning
algorithm to estimate the Zenith component in collaboration with the Astroparticle
Physics research group. Using their prepossessing code as a foundation and optimizing
it for future work [10].

Furthermore, to continue with the current line of work of the research group, the
proposed architecture for the Zenith estimation algorithm will be applied to make an
initial energy estimation algorithm.

1.4 Justified solution

In the realm of machine learning algorithms, there is a wide variety of algorithms so-
lutions that could be used in this thesis, but as the output of the model should be a
numerical value, only regression algorithms shall be considered. In this category, multi-
variate regression, random-forest an support vector machines should be taken as possible
solutions.

1.4.1 Neural Networks

Although some of these lines of work may be interesting and even yield the best solution
possible, the algorithm that has been chosen for this project thesis are neural networks.
These algorithms work by the segmentation of the problem in smaller, simpler units called
perceptrons. Each one of them having their own weights (ωi) and biases (b), which are
used to create a lineal combination of their inputs (xi) to get an output (ŷ) by means of
a non-linear activation function (σ) selected by the programmer (1.1).

ŷ = σ[
∑
i

(ωi · xi) + b] (1.1)

At first glance, one could argue that this algorithm will yield the same results as
multivariate regression, and if the analysis is done from a unitary standpoint it is, as
the activation function of a perceptron in (1.1) is the same one used by multivariate
regression (except for the non-linear activation function). But as the name implies,
when using multiple layers consisting of several perceptrons (hidden layers), each one
with its corresponding weights and biases, neural networks are capable of identifying and
approximating complex non-linear functions [11, 12]. The regression capabilities of a
network will be highly dependent on its architecture, which is defined by the number of
hidden layers and perceptrons in each layer. This property of neural networks make them
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extremely useful multi-purpose algorithms, which is the reason why they have been
chosen for this thesis.

Figure 1.5: Sample architecture with ten inputs and one output. The network is made of
two hidden layers, each one of them consisting of six and four perceptrons. Each layers
feeds the next one until the final solution is given by the output layer.

To identify and approximate the functions and relationships between the input data
(xi) and the expected output (y), the main goal of the network shall be to minimize a
loss function J(ŷ, y) that tracks the error of the algorithm when finding the function
between the input and output data. For regression problems, mean square error can
be used as the loss function (1.2). As ŷ will be a function of all the features of the
network, finding the global minima of the loss function even in a simple network as Figure
1.5 using pure function optimization techniques would be impossible, as the net is made
out of hundreds or even thousand of weights and biases, so other numerical methods
should be used.

J(ŷ, y) =
1

N

N∑
i=0

(yi − ŷi)2 (1.2)

To fine-tune the parameters that minimize J(ŷ, y), after computing a forward-pass
to calculate ŷ and J(ŷ, y), the algorithm will compute the backpropagation [13] of the
loss functions through all the features (weights and biases or θ) of the network. Meaning
that it will compute the derivative of the loss function with respect to those features
and they will get updated according to the results of an optimization algorithm, such as
gradient descent in equation (1.3). Other, more complex optimization algorithms may
be used, such as Adam [14] or Adadelta [15] optimizers, but all of them work with the
same goal, finding the values for the features that minimize the loss function
as much as possible.
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θj := θj − α
∂

∂θj
J(θ) (1.3)

1.4.2 Convolutional Neural Networks

As stated in subsection 1.2.2, the research group is currently working on feeding pre-
processed images with an off-line convolution that feeds the fully-connected layers of the
neural network. This convolution is applied to enhance and extract the details and fea-
tures of the image by multiplying each one of the image’s pixels and its neighbouring
pixels by a matrix, also known as a kernel, as shown in Figure 1.6. Each kernel is de-
fined by its size and the numerical values of the matrix, which are known as the kernel’s
weights, which will determine the extracted features of the convoluted images, for exam-
ple in Figure 1.7 a predefined canny kernel is applied to extract the edges of objects in
the image.

Figure 1.6: Visual representation of the convolution operation of an image [5].

Figure 1.7: Canny Filter applied for edge detection [6].

Although this approach could lead to good results if the kernel’s weights are fine-tuned,
selecting those weights by hand can be almost impossible. Luckily, the convolution can be
made on-line and the weights can be optimized by the network using Convolutional Neural
Networks or CNNs. These networks are made out of two separate parts: convolutional
layers and fully-connected or dense layers (which are the same ones explained in subsection
1.4.1). The convolutional layers apply a series of kernels through convolution operations
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to the input image, generating new image’s channels and giving more depth to it. Once
the features of the images has been extracted, the convolution operation is followed by
a pooling operation to reduce the XY components of the image as the location of the
features becomes irrelevant [7]. Pooling layers become extremely important when dealing
with big input images, as they greatly reduce the number of trainable parameters, thus
reducing the computational requirements of the network.

Figure 1.8: MaxPooling operation performed with a 2x2 window, the resulting pixel from
each window corresponds to the highest one. The original 4x4 image has been reduced
to a 2x2 image [7].

Convolutional layers can be applied in series until the final image is flattened (con-
verted to a one-dimensional vector) and fed to the dense layers of the model, which are
the ones responsible for obtaining the final result of the network. As the convolution op-
erations are made on-line, the weights of the kernels are backpropagated and optimized
the same way as perceptron’s weights to minimize the loss function.

Figure 1.9: Sample CNN aquitecture comprised of one convolutional layer which applies
eight 16x16 filters and a 2x2 Max-Pooling layer. The output image is flattened and fed
to two hidden layers dense network.
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1.4.3 Mixture Density Networks

Finally, to be able to qualify the results of the model and estimate the standard deviation
(or error) of each output of the network, the model will include a Mixture Density Network
[16] for its final stage. These kind of networks do not only output the numerical result
of the regression, but instead the result is a normal distribution, with its corresponding
mean (µ) and standard deviation (σ). To achieve a good estimation for both of these
components, the algorithm will maximize the probability that its results are inside the
normal distribution of the output. Or in other words, the model will try to maximize the
probability density function (PDF) given by the equation (1.4). But as all the optimizers
are built to minimize a function, the loss will be defined as (1.5), therefore minimizing
the negative logarithm of the PDF will be the same as maximizing it.

φi(y | x) =
1

(2π)1/2σi(x)
exp

{
−‖yi − µi(x)‖

2

2σi(x)2

}
(1.4)

J(y, x) = − ln

{
n∑

i=0

φi (yi | xi)

}
(1.5)

Figure 1.10: Probability density function plot for distributions with µ = 0 and different
σ. A lower σ results in a more centered distribution, hence it is more likely for the output
value to be equal to µ.
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1.4.4 Final Model Structure

As stated in subsections 1.4.2 and 1.4.3, the model that will be used for Zenith regression
will be based on a Convolutional Neural Network with a Mixture Density Network, as it is
shown in Figure 1.11. Using this configuration, the model will output a normal probability
distribution where µ will represent the most likely Zenith value with its corresponding
deviation or σ, which will provide an error or prediction quality estimation. The plot
in Figure 1.10 demonstrates how the value of σ affects the likelihood of the real zenith
component being equal to the µ output.

Figure 1.11: Block diagram of the Zenith regression structure

Once a proper model is chosen for the Zenith regression, it will be used for energy
estimation model, however it will require a distance to event variable to work properly,
as according to the inverse square law, the energy that arrives to the photoreceptors
(information that is inside the input image) depends on the energy at the source and
the distance between them. So, if the distance is unknown, the model will not tell the
difference between an high-energy event far from the line, and a low-energy event close
to it. Therefore, as an intermediate step for the energy estimation model, a new model
will be defined that will output the distance from the line to the event (dc) using the
image and zenith component as inputs. A visual representation of this new defined dc
magnitude can be found of Figure 1.12.

Once all of these variables have been correctly estimated, they will be fed to another
model whose objective is only to estimate the energy having both the Zenith and dc
components. The model will behave exactly as the Zenith one, but will output the
normal distribution of the energy of the event.

It is important to state that the three models will be trained and evaluated separately,
and the architecture used for all of them will be the same, the difference will be the inputs
and outputs of each one.
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Figure 1.12: Illustration of dc used to represent the distance from line to event which will
be estimated by the distance regression model.

Figure 1.13: Block Diagram illustration of the final model for energy estimation.
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Chapter 2

Materials

2.1 Dataset

As the adopted machine learning solution for this thesis falls under the supervised learning
category, the dataset that will be used to train the networks, it is required to have both
the input and output values for each event, making it impossible to train the models
using the real events registered at the ANTARES telescope, as the real components of
these events are unknown and can only be estimated using the algorithms described in
1.2.2. If this thesis objective is to beat the capabilities of those algorithms, the output
data from them can not be used to train the model, as it will perform equally or worse
than those algorithms, but will never outperform them if the output data is estimated
using those.

To be able to properly train and compare the new model with the other algorithms,
the dataset used through this thesis will be simulated using statistics from real events
[17]. Although the simulated data will not include possible noise and uncertainties which
are present in real events at the ANTARES telescope, it serves the purpose of comparing
the thesis’s model with current state of the art algorithms, as the dataset includes both
the simulated data and the predictions from those algorithms.

2.2 Software

For the creation of the different preprocessing scripts and learning models it was decided
to used python as the programming language, which has converted as an standard for the
creation of projects of automatic learning, due to the fact that it delivers the best ratio
between ease of programming and the speed at which the interpreter can execute the
code. Furthermore, the language offers libraries optimized for the creation of this type of
projects, such as Numpy for matrix calculation, pandas to read and store the simulated
dataset and the multiprocessing library for the easy and convenient parallelization of the
code.
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Apart of this libraries, it was necessary to choose a framework to declare and train
the different neural network models. At this point, it could be chosen between tensorflow,
developed by Google, and pytorch, developed by Facebook. Despite being tensorflow a
more mature framework that allows the declaration of models using high level APIs and
also the declaration of models in a generic way, finally pytorch was chosen as it allows to
make a programming of the models at a lower level in a clearer and more elegant way,
which enables to declare the models having an absolute control and understanding over
them. Moreover, pytorch allows and easy parallelization between different GPUs, so in
future works this option could be easily implemented.

2.3 Hardware

Optimizing the previous preprocessing script from the research group is one of the main
objectives of the thesis, and so it is important to state which are the characteristics of
the PC used to develop and carry out the benchmarks presented in section 3.1, which are
presented in the Table 2.1.

Operating System Manjaro Linux 64-bits
Central Processing Unit (CPU) AMD Ryzen 5 2600X @ 3.6GHz
Random-access Memory (RAM) 16 GB

Interal Storage 500 GB SATA SSD
Graphics Processing Unit (GPU) NVIDIA Geforce 1060

GPU Memory (VRAM) 6 GB

Table 2.1: Characterics of the development PC

This PC was used for development and training until the Zenith Regression models
grew to a point where a more powerful GPU was needed. So a server solution was used
in order to train the final models, whose characteristics are found in Table 2.2.

Operating System Ubuntu 20.04 LTS
Central Processing Unit (CPU) AMD Ryzen 5 3600X @ 3.6GHz
Random-access Memory (RAM) 32 GB

Interal Storage 500 GB SATA HDD
Graphics Processing Unit (GPU) NVIDIA Tesla K80

GPU Memory (VRAM) 16 GB

Table 2.2: Characteristics of the server PC to train the final models
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Chapter 3

Methodology

3.1 Event Prepocessing

To feed the event data to the different neural network models, the first step is to compress
all the information from the photomultipliers of the line into a simpler image that can
be read by the model. This task is handled by the preprocessing scripts of the project,
whose objective is to read the raw data from the simulation files and output three different
datasets to train, validate and test the models.

3.1.1 Working Principle

The working principle behind the preprocessing code is to codify the events into RGB
images, so that the resulting image contains the information of each photoreceptor in
the line, where the x axis in the image represents time in nanoseconds, the y axis cor-
responds to each one of the floors of the line, and each channel of a RGB pixel is the
amplitude received by each one of the three photoreceptors of the corresponding floor
in that particular timeframe. Thus the resulting image will have dimensions [25, Nt, 3],
where Nt is the timeframe ratio, that can be selected by the user in the preprocessing
script. The research group selected this ratio to be 161 nanoseconds which yields the
best results possible without having excessive computational requirement, therefore the
final dimensions of the processed images will be [25, 161, 3]. It should be noted that to
smooth the resulting image, a gaussian regression filter is applied to each one of the 75
photomultiplier’s channels of the line. Figure 3.1 serves as an example for the gaussian
filter application and also aids to corroborate the selection of the Nt parameter, as no
useful information is present passed 200 nanoseconds after the reception of the event.

3.1.2 Previous Script

The research group created a python script whose job is to preprocess all the events in the
simulation dataset. Firstly, the script separates the 2550 initial files into three different
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Figure 3.1: Comparison between the original signal (purple dots) and the result of the
corresponding gaussian regression filter applied on the 16th floor [8].

different datasets with the same number of files, by doing so, each file contains less events
than before. After separating the files in different folders, the methods described in
subsection 3.1.1 are applied to each event, obtaining its corresponding RGB image.

Figure 3.2: Sample event RGB image (after gaussian regression).

As seen on the sample event in Figure 3.2, it is difficult for a human to find any
features or details in the image, and for the proposed fully-connected neural network it
will be hard too. So after obtaining the RGB image, a new dimension is added to it to fit
the off-line convolution applied to the grey scale of the image. This convolution operation
uses a (2 × 10) kernel to highlight the features and details of the event by making the
final image that is fed to the fully-connected layers to have dimensions [25, 161, 4], where
the first three channels will correspond to the value of the RGB image and the fourth is
the result of the convolution operation.
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Figure 3.3: Result after applying the convolution to the sample event.

Once all the events have been processed, the images are normalized or "scaled" to
achieve the same range of values on all the input pixels of the neural network. This step
is extremely important as if no normalization is applied to the image, the algorithm will
give more importance or "weight" to events that took place closer to the lines or are more
energetic, therefore the amplitude picked up by the photomultiplier is much higher than
other events [18]. The final output of the script are three different folders with Numpy’s
compressed array format or ".npz".

3.1.3 Optimized Script

Although the prepossessing script provided by the research group carried out the task
successfully, it was extremely time consuming due to the high amount of data that it was
supposed to process. The initial dataset contained 2550 compressed files, so using only
one thread as in Figure 3.4 meant that it would take around 100 hours for the script to
process all the data on a powerful server CPU.

Figure 3.4: Preprocessing loop using a single-threaded process

The first step to reduce the running time of the script was to lower the number of files
which were read, meaning that instead of separating the files into three different datasets
at the beginning of the process (as stated in subsection 3.1.2), this step would take place
at the end of the script, just before normalization. This simple change meant that the
script would not have to be reading 7650 files in each step, but only the 2550 initial files,
reducing running time by around 66%.
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The second and most important step for the optimization of the script is paralleliza-
tion of the code, so that the machine that is running the preprocessing script can utilize
all the available threads in the CPU instead of just one of them. For this purpose, all
the loops of the code whose objective is to read or write files where written again as
functions that are called by parallel loops created by the multiprocessing library. This
way, if the user decides to allocate n threads for the execution of the script (n is selected
in the options of the script), the loops will be able to run their code n times faster when
compared to the previous script. In Figure 3.5 it can be appreciated that the library
comes with a high-level of abstraction, as synchronization and memory-management of
all the threads is handled internally by the Pool object of the library. This example only
shows the parallelization of the image processing step, but it was applied to almost all of
the steps of the script.

Figure 3.5: Preprocessing loop structure using a multi-threaded process.

After implementing both of these optimizations, the running time was cut down to
only 10 hours when using 10 threads of a consumer-grade CPU, making the process of
implementing and adding new features and changes to the prepossessing script easier than
before, as there is less time wasted between implementing and testing the new features
and changes.

As it will be explained in detail in further sections, due to the type of dataset that is
being used to train the model (which contains a large number of small events), it becomes
extremely important that the model can get access to the events as fast as possible for
the GPU not to waste time. This can not be achieved using the output default format of
the script (Numpy’s compressed array or ".npz") , as its compressed state makes it too
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slow to be read constantly. To solve this problem, a benchmark was carried out between
this file format a more suitable HDF5 format [19]. The purpose of the test was to find
out the required time to load the file’s contents and convert them into a Pytorch tensor,
which emulates the workflow of the model’s dataloader. The results of the benchmarks
on Table 3.1 show that using this new file format can greatly reduce the data loading
time, as each file takes close to 15 milliseconds less to be read with this format. It may
not seem as much, but considering that for an epoch to take place the model should read
more than a 1000 files, and 50 epochs are needed to train a solid model, the training time
may be reduced by 2 hours just by changing the file format.

File Format Number of files read Mean time to read one file
.npz 120 18.00 ms
.hdf5 120 5.46 ms

Table 3.1: Results from file format benchmark (with forward-pass emulation)

Furthermore, some other minor changes and options were added to the code, one of
the most significant is the option to generate a dataset for predicting both the Azimuth
an Zenith component using RGB images as in Figure 3.2, where the target data include
all the three dimensions of the neutrino’s trajectory, or the dataset can be optimized for
only Zenith and energy prediction, where the images have dimensions [25, 161, 1] as the
only channel contains the module of the RGB (Figure 3.6), the target vector only has the
energy and the Z component of the trajectory to calculate the Zenith angle. But for both
options the off-line convolution was discarded, as this dataset will be used for CNNs.

Figure 3.6: Sample event image for Zenith and energy estimation.

3.2 Model Structure

3.2.1 Dataloader

Dataloaders are a crucial part of every machine learning model, as its job is to load and
prepare batches or chunks of data from the dataset to be fed to it. But in the
bast majority of machine learning projects it is not considered at all when frameworks as
pytorch or tensorflow are used, as those frameworks come with their own general-purpose
dataloaders. These dataloaders are optimized to work with unitary files, meaning that
each event has its own separate file. But as the dataset from the simulation has over one
million events, the preprocessing script has to output files with n events each, as creating
one file per event would imply a huge waste in hard disk space as each separate file has
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to allocate a minimum amount of space for its own structural information. If these kind
of dataloaders would be considered for using in this project, those would need to open
a file with n events just to load one of them, which will not only slow down the loading
process, but also could generate a bottleneck if the hard disk bandwidth is surpassed,
thus wasting much of the GPU computing power.

Due to this inconveniences, a new dataloader was created for this project to load
multiple batches from the same file. For example, if a batch size of 50 and a file size of
1000 events were to be used to train the model, the new dataset would load a file in RAM
and get 20 different batches from the same file, reducing the batch loading time and the
hard disk’s bandwidth usage. To assess the difference between both dataloaders, another
benchmark was designed to measure the batch generation time, whose results are shown
in Table 3.2 where it has been confirmed that the idle time between the request and
arrival of a new batch has been lowered 33.66 milliseconds, reducing idle time in 98%.

Dataloader Number of batches generated Mean time to generate one batch
Pytorch’s Default Dataloader 300 34.40 ms

Custom Dataloader 300 0.74 ms

Table 3.2: Results from batch generation bechmark (with foward-pass emulation)

Despite of the implementation of the new dataloader in the script of the model, when
the first tests with simple architectures of neural networks were carried out, where the
time to do the forward and backward pass was minimum, the GPU’s usage was under
the 60%. This was due to the fact of having a so small process time of the events, as
the neural network was capable of processing the events faster than the hard disk was
able to read them, making the hard disk capability of read a bottleneck, preventing the
network from training at the maximum capacity of the GPU. It is for this reason that the
benchmarks carried out previously have a delay between each read. This is exemplified
in Table 3.3, where the benchmark carried out in Table 3.1 is repeated with no delay
between each read. During this test, hard disk capacity reach its limit and the results
show that both read times rise to levels where there is no considerable difference between
them.

File Format Number of files read Mean time to read one file (in ms)
.npz 120 40.09
.hdf5 120 34.73

Table 3.3: Results from file format benchmark (no forward-pass emulation)

For this reason, an option was included in the dataloader’s declaration to load the
whole dataset into RAM when it is initialized so that the batch can be read directly from it
and passed to the model from this high bandwidth memory. In Table 3.4, the dataloaders
benchmark is repeated with no forward-pass emulation or delay, and as expected the batch
generation time for both previous dataloaders rise while the batch generation time for the
custom dataloader using RAM goes to insignificant values. Although theoretically this
option is the best one to use, it shall only be restricted to machines with enough RAM
capacity and when the GPU usage falls bellow 90%.
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Dataloader Number of batches generated Mean time to generate one batch
Pytorch’s Default Dataloader 300 87.09 ms

Custom Dataloader 300 2.98 ms
Custom Dataloader (RAM) 300 0.025 ms

Table 3.4: Results from batch generation benchmark (no forward-pass emulation)

3.2.2 Zenith Regression Structure

As stated in section 1.4, the model that will be used its a Convolutional Neural Network
with a Mixture Density Network at its output for computing the normal distribution of
the Zenith component of the event. To find out the best architecture for the model, some
static hyperparameters will be set as a foundation to built the final architecture which
will be set by other variable hyperparameters.

Static Hyperparameters

• Input Dataset: The input images for the network will be obtained through the
optimized script described in subsection 3.1.3 with the options for Zenith and energy
regression, as such the input images will be similar to the sample event shown in
Figure 3.6. For the percentage of events dedicated to train, evaluate and test the
network, a standard 70/20/10 percent split has been selected.

• Number of hidden layers: In all of the proposed architectures there will be three
hidden fully-connected layers, which is more than enough for a normal CNN as the
images that will be fed to it will have all the features already extracted by the
convolutional layers. The number of perceptrons per layer will depend on the size
of the flattened image.

• Dropout: For preventing model overfitting, a 25% chance is added for every per-
ceptron to "shut-down" during training, helping the model to generalize the training
dataset into the validation and test datasets by making the training process more
difficult.

• Activation Function: All of the hidden and convolutional layers will use the same
activation function, which is set to be the ReLU activation function. This function
is used as its simplicity reduces the backpropagation computational costs. The
output layers of the MDN will use a different activation function, as the standard
deviation of a distribution can not be negative or zero, the activation function of
that layer shall be an exponential function [16].

• Loss Function: As stated in subsection 1.4.3, the loss function shall maximize the
probability density function from (1.4), as such the loss function is defined in (1.5).

• Optimizer: The Adadelta [15] optimizer has been selected by its impressive adap-
tive learning rate capabilities.

• Batch Size: It defines the number of events that the optimizer takes to update
the features of the model. A higher batch size implies a faster training but also

21



less updates and optimizations are applied to the model per epoch. Considering
that the training dataset is composed of 800.000 events, setting a batch size of 1000
events will yield the best results in the lowest training time possible.

• Number of epochs: Implies the number of times that the model is fed with the
whole training dataset. It will be set to 100 epochs but an early-stopping mechanism
will be implemented to end the training process if the model is not able to lower
the cost function in 15 epochs.

• Number of models: For each proposed architecture, three models will be trained
and the metrics of each architecture will be extracted from the best performing
model.

• Evaluation Metrics: To easily compare the different models, three metrics will
be used: the value of the loss function, the Mean Absolute Error (3.1) and the Root
Mean Square Error (3.2). However, a more in depth analysis of the final models
will be carried out in Chapter 4.

MAE =
1

n

n∑
i=1

|yi − ŷi| (3.1)

RMSE =

√√√√ n∑
i=1

(ŷi − yi)2

n
(3.2)

Variable Hyperparameters

To select the best possible variable hyperparameters, a number of convolutional layers
and filters will be selected and then three different models will be trained, each one with
a different kernel size. The two best performing kernels will then be trained with more
convolutional layers to see if the model can benefit from the extra image depth.

Two Convolutional Layers Architecture

The first architecture to be tested will have two convolutional layers which will produce
a total of 36 output channels. The selected kernel sizes are the standard (3 × 3) and
(5 × 5) sizes, also a test will be carried out with the kernel size that the research group
was using for its off-line convolution in the preprocessing script, which is a (2×10) kernel.
The results after training the three models is presented in Table 3.5 where the (2 × 10)
kernel yielded the best results followed by the (3 × 3) kernel, which is not surprising as
the (2× 10) size takes into consideration the non-symmetrical shape of the input image
([25, 161, 1]).

22



Net Identifier Kernel Size Output Image Size Loss Value MAE RMSE
Conv11 (2× 10) [7, 35, 36] -0.00026 8.87º 13.17º
Conv12 (3× 3) [6, 40, 36] -0.00021 9.24º 13.52º
Conv13 (5× 5) [4, 38, 36] -0.00022 9.52º 13.65º

Table 3.5: Results from training the architectures with two convolutional layers

Figure 3.7: Architecture used for net Conv11 using a (2 × 10) kernel size. Dense layers
have been excluded for diagram simplification.

Three Convolutional Layers Architecture

Now that two kernel sizes have been selected from the previous test, a new test will be
carried out to study if the addition of more convolutional layer or more image depth is
going to have a positive impact on the prediction capability of the model. For this new
architecture, another convolutional layer will be added giving 64 channels to the output
image. Results in Table 3.6 show that both kernel sizes benefit from the addition of the
third layer when compared to the results from Table 3.5, but the (2× 10) kernel showed
such promising results that it will be selected as the kernel size to be used in the rest of
the architectures.
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Net Identifier Kernel Size Output Image Size Loss Value MAE RMSE
Conv21 (2× 10) [4, 14, 64] -0.00033 8.39º 12.47º
Conv22 (3× 3) [3, 20, 64] -0.00027 8.96º 13.17º

Table 3.6: Results from training the architectures with three convolutional layers

Figure 3.8: Architecture used for net Conv21. Dense and Maxpool layers have been
excluded for diagram simplification.

Four Convolutional Layers Architecture

As adding more convolutional layers resulted in better prediction capabilities, a final test
was done using the best performing (2×10) kernel and four convolutional layers capable of
producing 128 output channels. As the addition of the third layer produced output images
with small XY components, this fourth layer will be added but no MaxPooling operation
will be applied after the convolution operation as in Figure 3.9, this way more output
channels can be produced without reducing the image height and width. Table 3.7 shows
the results from all the tests that were done using the previously defined architectures,
showcasing that the addition of convolutional layers and image depth yielded the best
results.

Net Identifier Kernel Size Output Image Size Loss Value MAE RMSE
Conv11 (2× 10) [7, 35, 36] -0.00026 8.87º 13.17º
Conv12 (3× 3) [6, 40, 36] -0.00021 9.24º 13.52º
Conv13 (5× 5) [4, 38, 36] -0.00022 9.52º 13.65º
Conv21 (2× 10) [4, 14, 64] -0.00033 8.39º 12.47º
Conv22 (3× 3) [3, 20, 64] -0.00027 8.96º 13.17º
Final (2× 10) [4, 14, 128] -0.00041 7.67º 11.92º

Table 3.7: Results from all the Zenith Regression architectures.
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Figure 3.9: Final architecture for the Zenith Regression model.

3.2.3 Distance Regression Structure

At first, the architecture that was planned for using for the distance regression model
was going to be the same one that yielded the best results for the Zenith regression,
which is the one shown in Figure 3.9. However a alternative solution was proposed by
the research group using the same convolutional layers but with fewer perceptrons at the
fully-connected layers, as in Figure 3.10. Both architectures were trained and the results
displayed in Table 3.8 confirms that for distance regression a more simple approach offers
better results, as such, this alternative architecture was chosen for the distance regression
model. It should be stated that in order to incorporate the value from the zenith regression
model, both values µzenith and σzenith are concatenated to the flattened tensor from the
images after it is convoluted by all the convolutional layers, so the zenith values are used
only by the fully-connected layers.

Net Identifier Dense Layers Layout MAE RMSE
Final 600 → 200 → 50 → 2 6.27 m 9.81 m

Alternative 128 → 128 → 32 → 32 → 2 4.05 m 6.79 m

Table 3.8: Results from both distance regression architectures.

Figure 3.10: Proposed dense layers for the distance regression model. Convolutional
layers were omitted for diagram simplification.
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3.2.4 Energy Regression Structure

For the creation of the energy regression model, the first step is to closely inspect the
distribution of the values that the model will estimate. The histogram in Figure 3.11
shows that there is a big difference between the minimum and maximum energy values
(Et), as the values can be between 5 and 10.000 GeV, and the distribution is skewed
to the left. Using the energy values with this distribution resulted in poor training and
estimation capabilities as the model would try to fit very different output values and even
lead to exploding gradients (the derivatives of the features (1.3) went to infinity due to
the big output values and cost function). To relieve these problems, the target values of
the network (y and ŷ) were programmed to be the logarithm of the energy values, which
results in a more "normal" distribution of the target values as in Figure 3.12. This will
add a new step to the regression model, as the final predicted energy should be calculated
as Ep = 10ŷ. Finally, as the metrics of the model will be calculated using the energy
values and not the logarithm of it, it is important to add a new metric which does not
get affected by the skewness of the data, which will be defined as the mean relative error
or MRE (3.3). Unlike the MAE, that is more affected with bigger values of energy (hence
yielding to a greater deviation), the MRE will take into consideration the target value
for the energy, weighting the deviation with the magnitude of the real value.

MRE =
1

n

n∑
i=1

Ep − Et

Et
(3.3)

Two different architectures were considered as candidates for the energy regression
model, so both the zenith and distance regression architectures were trained using the
outputs from the Zenith and distance models as inputs at the fully-connected layers.
Surprisingly, results in Table 3.8 show that while the Zenith architecture achieved lower
errors, the distance architecture resulted in a lower cost function. Meaning that the
selected final architecture for the energy regression model will be the same one that was
used for the distance regression one, as it achieved a lower cost value that takes into
consideration both µenergy and σenergy outputs from the model, while MAE and MRE
metrics only use the µenergy for its calculations.

Net Identifier Loss Value MAE MRE
Zenith architecture 0.0005 957 GeV 2.179
Distance architecture 0.00026 977 GeV 2.41

Table 3.9: Results from both energy regression architectures.
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Figure 3.11: Distribution of energy values in the test dataset.

Figure 3.12: Distribution of the log energy values in the test dataset.
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Chapter 4

Results

This chapter will show a more in-depth analysis of the results from the final models
obtained in the previous chapter. Section 4.1 will cover the results from the Zenith
regression model when compared to the BBFit algorithm, section 4.2 will briefly cover
the results from the distance regression model as it is an intermediate step for computing
the values for the energy regression model in section 4.3.

4.1 Zenith Regression Model

Firstly, an analysis of the overall numerical error comparison will be carried out between
the Zenith regression model and the BBFit algorithm. Table 4.1 shows the resulting MAE
(3.1) and RMSE (3.2) metrics for both algorithms on the Z component (Z = cos(Zenith))
of the neutrino trajectory, where the new proposed regression algorithm was capable of
improving the estimation error by 50%. On Table 4.2 the mean and standard deviation
of the Zenith angle are computed for both models as the µ± σ, confirming that not only
the mean error has been improved, but also its dispersion. Finally, Table 4.3 represents
the distribution of the Zenith error of the proposed model using 100% of the data and the
50% with the lowest σ at the output of the Mixture Density Network, both distributions
can be graphically represented using the density plot in Figure 4.3. Furthermore, the data
where the sigma is lower resulted in better prediction quality, verifying that the sigma
output of the Mixture Density Network is working as expected providing an estimation
of the prediction error as shown in Figures 4.1 and 4.2.

The BBFit algorithm comes with its own reconstruction quality indicator, which is
done using the χ2 test [20]. Figure 4.1 demonstrates that for the cases where the recon-
struction quality for the BBFit algorithm is at its best, the new Zenith regression model
still manages to achieve a lower error. The overall comparison between the results of
both algorithms is presented in the density plot in Figure 4.4 where the Zenith regression
model achieved a more linear relationship between the predicted and real values of the
Zenith angles.
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Error Component Zenith Regression Model BBFit algorithm Difference (%)
MAE Z 0.099 m 0.198 m 50%
RMSE Z 0.1649 m 0.3353 m 50.82%

Table 4.1: Comparison between both Zenith regression model and BBFit using Z com-
ponent metrics.

Ang. deviation Zenith Regression Model BBFit
Zenith 7.66º ± 9.12º 15.5º ± 18.8º

Table 4.2: Comparison mean and standard deviation for the Zenith angle between both
Zenith regression model and BBFit.

σ Percentage Mean Median Q1 Q2
100 % 7.668 9.124 1.889 9.925
50 % 5.535 3.52 1.51 7.183

Table 4.3: Data from the distribution of the error on the Zenith regression model.
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Figure 4.1: Zenith error vs. σ output from the model. Data was smooth using quartiles.

Figure 4.2: Histogram representing Zenith error vs. σ output from the model.
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Figure 4.3: Density plots of the Zenith error from both the Zenith regression model (NN)
and BBFit algorithm.
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4.2 Distance Regression Model

In subsection 3.2.3, it was stated that the mean absolute error of the distance regression
model is 4.03 meters, but for this model the distribution of the error shall be taken into
consideration as the distribution of the distance in the test dataset is skewed to the left
as shown in Figure 4.5, meaning that rare high-distance events will greatly impact the
error metrics while other more common low-distance events won’t. The metrics of the
error are exposed in Table 4.4 and graphically represented in the Figure 4.6, where it is
clear now that the error of the model is much lower than the MAE reflected. Finally,
to assess the results from the reconstruction quality of this model (σd), Figure 4.7 shows
that the model is achieving a good approximation of the absolute real error with it.

Magnitude Mean Median Q1 Q2
dp − dt 0.4 m -0.2 m -2.05 m 2.59 m

Table 4.4: Data from the distribution of the error on the distance regression model.

4.3 Energy Regression Model

Although the energy regression model was fed with good estimated input variables from
the distance and zenith regression model, it performed very poorly, in some cases even
missing by several orders of magnitude. Having a mean relative error higher than one (in
the case of the model it was 2.41) means that the difference between the predicted and
the real values is higher than the real one (4.1). Even if only the 50% lowest values for the
σe are taken into consideration, the distribution in Table 4.5 demonstrates that although
the majority of the events have a MRE close to ±1, some other events have a MRE so
high that take the mean out of the quartiles, the density plot of the distribution in Figure
4.8 even shows some events with MRE higher than 10, meaning Ep − Et > 10 · Et. As
for the σe output of the model, Figure 4.9 shows that it follows the same distribution of
the Table 4.5, with some low values of σ having a high error component, so this output
variable can not be used to savely state if the µe output is good or not.

MRE =
Ep − Et

Et
> 1→ Ep − Et > Et (4.1)

Magnitude Mean Median Q1 Q2
MRE 1.466 0.046 -0.58 1.33

Table 4.5: Data from the distribution of the relative error on the energy regression model.
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(a) Zenith regression model (b) BBfit

Figure 4.4: Histogram of the predicted vs. real Zenith components. Each cut takes
100/50/25 percent of the lower values of the reconstruction quality variables, which can
be σ or χ2.
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Figure 4.5: Density plot of the distance values in the test dataset.

Figure 4.6: Density plot of the distance regression model error (dpredicted − dtrue).
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Figure 4.7: Absolute error vs. σd output of the distance regression model.

Figure 4.8: Density plot of the relative error distribution from the energy regression
model.
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Figure 4.9: Absolute error vs. σe output of the energy regression model.

Figure 4.10: Density plot of the predicted vs. real energy values. Each cut takes
100/50/25 percent of the lower values of the reconstruction quality variable, σe.
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Chapter 5

Conclusions and future work

5.1 Conclusions

As the results in section 4.1 show, the application of machine learning algorithms lead
to better results in the estimation of the Zenith component in single-line events when
compared with BBFit algorithm which was designed from a particle physics standpoint,
even lowering the error metrics by more than 50%. This should serve as a demonstration
that the usage of multi-purpose machine learning techniques can be as useful as the
development of specifically designed algorithms. But an inherent problem with this type
of algorithms should be taken into consideration, which is the fact that they work like a
black box, as such their results should not be taken for granted in every case.

Although both the Zenith and distance regression models where capable of estimating
their variables with a reasonable error, the energy regression model produced results which
are not acceptable even when only selecting the values with the lowest σe, as most of the
estimated values have a deviation in several orders of magnitude as Figure 4.10 shows.
This is probably due to the lack of information that the model receives about the distance
between the event and the line, as the model can not differentiate in the majority of the
cases between low and high-energy events.

5.2 Future work

As it has been proven that the use of convolutional neural networks could estimate the
Zenith component of the neutrino trajectory, a new architecture could be defined with
two pairs of outputs for estimating both the Azimuth and Zenith components in single-
line events, which none the AAFit and BBFit algorithms can do. In this case, it would be
highly recommended to use more convolutional layers in the models as Table 3.7 implies
that the model can benefit from more convoluted channels. This new model would allow
for the accurate estimation of both components in the majority of events registered at the
ANTARES telescope, which is currently being developed by the research group using the
optimized preprocessing script described in this thesis. But the scope of the investigation
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should not be confined to single-line events, new models shall be trained for multi-line
events and be compared with both the AAFit and BBFit algorithms to really know
the potential of machine learning algorithms in comparison with their particle physics
counterparts in their full potential.

With respect to the energy regression, a more in-depth study should be carried out on
the impact that the lack of distance information is generating on the model’s accuracy.
Adding more variables containing the event position (such as the zc in Figure 1.12) may
help the model to estimate the energy of the event at the source with the information
received at the photomultipliers.
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Part II

Requirements
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Chapter 6

Requirements

6.1 Motivation

The objective behind this part is the description of the minimum requirements and meth-
ods to run the scripts and implement the models for the correct estimation of the com-
ponents of the neutrino’s trajectory described in the report of this thesis.

6.2 Material Requirements

To run the preprocessing scripts and train the described models, a computer or a server
with the following requirements shall be used:

Hardware

• The graphical processing unit (GPU) shall be a NVIDIA Tesla K80 or a superior
model. It is important that the GPU comes with the proprietary CUDA cores from
NVIDIA as the framework that is being used to train the models only works with
these type of cores. The GPU RAM or VRAM shall not be less than 12Gb.

• The central processing unit (CPU) shall be an AMD Ryzen 3600X or a superior
model. The CPU shall run at its base clock frequency and it shall contain at least
6 cores and 12 threads to take advantage of the multithreadding optimizations
described in subsection 3.1.3. A cooling fan or any other refrigeration solution
shall be correctly installed over the CPU to maintain the temperature inside the
recommended range given by the manufacturer.

• The random access memory (RAM) shall not be less than 64Gb if the training
process is expected to run in the minimum time possible. However the models can
still be trained with a minimum of 16Gb, but the training process will be slowed
down significantly.
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• The minimum required space for installing the software is 250Gb, although the
storage device shall be connected through an PCI Express connection for the models
to access the information as fast as possible.

• To power the whole PC, the power supply selected for it shall be capable of con-
stantly outputting 650W or more.

• The PC used for development shall be equipped with the minimum peripherals that
enable an efficient interface, such as a mouse, keyboard and screen.

Software

The operating system (OS) installed on the PC shall be Manjaro Linux, although any
other Linux distribution will provide the same results and the installation procedure will
be similar. Once the operating system is properly installed, the following software shall
be installed using the package manager of the distribution.

• python-numpy: Numerical and vectorial calculus python library.

• python-pandas: Data management library.

• python-matplotlib: Graph and plotting python library.

• python-pytorch-cuda: Framework for declaring and training the neural network
models. This package comes with the required optimizations to train the models
using the GPU’s CUDA cores.

• jupyter-notebook: Server-client IDE application to run python code interactively.

The package manager shall install all the software and the dependencies required for
its usage, including the NVIDIA’s drivers. The specific code for the thesis shall be down-
loaded from Github [10]. Once all software has been correctly installed, the developer
shall run the provided software-check.py script to check the correct installation of the
whole environment. The script should not return any errors and the CUDA device shall
be found by it.

6.3 Running Instructions

Processing the dataset

Once all the required software is downloaded and verified, the dataset shall be ex-
tracted and placed inside the preprocessing folder. Both the read-and-process.py
and separe-norm.py shall be run sequentially, the first script will output one folder with
all the processed images while the second script will create three folders containing fixed
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files to train, validate and test the models. Each script comes with header variables that
will determine the properties of the final dataset and whose purpose is commented on the
script. The resulting folder shall contain the files in the original ".npz" format, so the
developer shall run the to-hdf5.py script to change the file type of the dataset to the
more convenient HDF5 format. Move or make a symbolic link of the final dataset folder
to both the Models and Evaluation folders.

Model definition and training

To train a model, the developer shall open one of the notebooks provided in the Models
folder using the Jupyter IDE. After selecting the desired header options and training the
model defined in the Net class, the script would have created an output folder containing
several files. As an example, if the net identifier is set to be Conv1:

• Conv1_architecture.txt shall contain the information about the network’s archi-
tecture.

• Conv1_params.txt contains the information about the options given to train the
model, such as the optimizer, batch size, etc.

• Conv1.pt saves the state of the network when the loss function is at its lowest value,
this file will be used for the evaluation of the network.

• Conv1_loss.jpg shows the evolution of both the training and validation loss through-
out the training process.

6.4 Model Evaluation

After training a model, the user shall copy the resulting folder to the Evaluation folder.
Open the desired evaluation notebook and specify the route of the model that shall be
evaluated. Finally, the developer shall copy the network’s architecture from the Models
folder notebook into the evaluation notebook and run all the cells. Once finished, a figure
folder shall be present in the Evaluation folder.
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Part III

Budget
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Chapter 7

Budget

The objective of this chapter is to give an overview of the required budget to carry out
the development of this thesis.

7.1 Partial Budget

Hardware Cost

For the development of these thesis, a consumer-grade PC was used in conjunction with
a server solution. For the consumer-grade PC, an amortization period of 6 years will be
considered. The total hardware cost are shown in Table 7.1.

Component Uds. Quantity Unit Price (e) Amortization Period
(months)

Amortized Interval
(months) Total (e)

AMD Ryzen 2600X u 1 120,00 72 6 10,00
MSI Mortar Platinum u 1 80,00 72 6 6,67

8 Gb RAM Stick u 2 42,00 72 6 7,00
500 Gb SATA SSD u 2 45,00 72 6 7,50

NOX Urano Power Supply u 1 47,00 72 6 3,91
NVIDIA Geforce 1060 u 1 280,00 72 6 23,33

Server Solution month 6 20,00 —— —— 120,00
Total 178,41

Table 7.1: Hardware Cost.

Software Cost

As all the required software to carry out this thesis is open-source, no software source will
be considered. A detailed description of the required software can be found in section
6.2.

44



Labour Cost

Labour costs are considered to be the human resources necessary to carry out this project.
In the case of this thesis, the labour force is composed of Alicia Herrero Debón and Joan
Salvador Ardid Ramírez as tutors and Antonio Alejandro Aslan Suarez as student of
the Degree in Automatic and Industrial Electronic Engineering and author of the thesis.
These are shown in Table 7.2.

Name Ud. Quantity Unit Price (e) Total (e)
Ms. Herrero h 15 25 375,00
Mr. Ardid h 25 25 625,00
Mr. Aslan h 450 12 5400,00

Total 6400,00

Table 7.2: Labour Cost.

7.2 Total Budget

For the calculation of the total cost of the project, the partial budgets set out above will
be taken into account. In addition, 13 % will be added for overheads costs and 6 % for
industrial profit. Finally, 21% VAT will be added to the gross price. The total budget is
shown in Table 7.3.

Partial Budget Total (e)
1. Labour Cost 6400,00

2. Hardware Cost 178,41
Execution Cost 6578,40
13% Overhead Cost 855,19
6% Industrial Benefit 394,70
Cost before taxes 7828,30

21% VAT 1643,90
Total Cost 9472,20

Table 7.3: Total Cost.
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