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I 

 

Abstract 

Zeolites are microporous crystalline materials with channels and pore openings of 

molecular dimensions. The structure and composition of zeolites confers them interesting 

properties that allow their application in a wide range of industrial applications as adsorption, 

separation or catalysis. The synthesis of zeolites is the most important stage to control the 

structure and composition of zeolites, and thus, critical to optimize their properties. 

This thesis has been focused on the synthesis of zeolites using phosphorous containing 

compounds (phosphonium and aminophosphonium cations) as Organic Structure Directing 

Agents (P-OSDA). The use of these phosphorous compounds influence the crystallization 

and properties of the obtained zeolites compared to zeolites obtained with classical ammo-

nium cations. 

Phosphorous compounds were chosen because of their different chemistry and stabil-

ity properties respect to classical ammonium cations commonly used in the synthesis of zeo-

lites. These aspects were studied in a comparative study with different ammonium and phos-

phorous cations. 

The phosphorous compounds used in this work have yielded new crystalline structures 

(ITQ-58 and ITQ-66) and opened new routes for the synthesis of already known zeolites 

(RTH, IWV and DON), widening their chemical composition range. 

The thermal decomposition of the P-OSDA´s entrapped inside the zeolites yields to 

the formation of extra-framework phosphorus species that remain inside the channels and 

voids of the zeolites. These species modulate the adsorption and acid properties of the final 

materials depending on the post-synthesis treatments. In this work, a route for the incorpora-

tion of controlled amounts of phosphorus during the synthesis stage has been studied. This 

has allowed to control the adsorption and acid properties in small pores zeolites, which cannot 

be achieved by post-synthesis methodologies. 
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Resumen 

Las zeolitas son materiales cristalinos microporosos con canales y tamaños de poro 

de dimensiones moleculares. La estructura y composición de las zeolitas les confiere in-

teresantes propiedades que permiten su aplicación en una amplia gama de aplicaciones in-

dustriales como adsorción, separación o catálisis. La síntesis de zeolitas es la etapa más im-

portante para el control de la estructura y composición de las zeolitas y, por tanto, crítica para 

la optimización de sus propiedades.  

Esta tesis se ha centrado en la síntesis de zeolitas utilizando compuestos que contienen 

fósforo (cationes fosfonio y aminofosfonio) como Agentes Directores de Estructura (P-

ADE). El uso de compuestos fosforados influye en la cristalización y propiedades de las ze-

olitas obtenidas en comparación con las zeolitas obtenidas con cationes de amonio clásicos.  

Los compuestos fosforados se eligieron debido a su diferente química y estabilidad 

con respecto a los cationes de amonio clásicos comúnmente usados en la síntesis de zeolitas. 

Estos aspectos se estudiaron con un estudio comparativo de diferentes cationes de amonio y 

fosforados.  

Los compuestos de fósforo utilizados en este trabajo han dado lugar a nuevas estruc-

turas cristalinas (ITQ-58 e ITQ-66) y han abierto nuevas vías de síntesis de zeolitas ya cono-

cidas (RTH, IWV y DON), ampliando su gama de composiciones químicas.  

La descomposición térmica de los P-ADE confinados dentro de las zeolitas da lugar 

a la formación de especies de fósforo extra-red que permanecen dentro de los canales y cav-

idades de las zeolitas. Estas especies modulan las propiedades ácidas y de adsorción de los 

materiales finales dependiendo de los tratamientos post-síntesis. En este trabajo se ha estudi-

ado una ruta para la incorporación de cantidades controladas de fósforo durante la etapa de 

síntesis. Esto ha permitido controlar la adsorción y las propiedades ácidas en las zeolitas de 

poro pequeño, lo que no se puede lograr mediante metodologías de post-síntesis. 
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Resum 

Les zeolites són materials cristal·lins microporosos amb canals i mides de porus de 

dimensions moleculars. L'estructura i composició de les zeolites els confereix interessants 

propietats que permeten la seua aplicació en una àmplia gamma d'aplicacions industrials com 

adsorció, separació o catàlisi. La síntesi de zeolites és l'etapa més important per al control de 

l'estructura i composició de les zeolites i, per tant, crítica per a l'optimització de les seues 

propietats.  

Aquesta tesi s´ha centrat en la síntesi de zeolites utilitzant compostos que contenen 

fòsfor (cations fosfoni i aminofosfoni) com a agents directors d'estructura (P-ADE). L'ús de 

compostos fosforats influeix en la cristal·lització i propietats de les zeolites obtingudes en 

comparació amb les zeolites obtingudes amb cations d'amoni clàssics.  

Els compostos fosforats es van triar a causa de la seua diferent química i estabilitat 

pel que fa als cations d'amoni clàssics utilitzats en la síntesi de zeolites. Aquests aspectes 

s´estudiaren amb un estudi comparatiu de diferents cations d'amoni i fosforats.  

Els compostos de fòsfor utilitzats en aquest treball han donat lloc a noves estructures 

cristal·lines (ITQ-58 i ITQ-66) i han obert noves vies de síntesi de zeolites ja conegudes 

(RTH, IWV i DO), ampliant la seua gamma de composicions químiques.  

La descomposició tèrmica dels P-ADE atrapats dins de les zeolites dona lloc a la for-

mació d'espècies de fòsfor extra-xarxa que romanen dins dels canals i cavitats de les zeolites. 

Aquestes espècies modulen les propietats àcides i d'adsorció dels materials finals depenent 

dels tractaments post-síntesi. En aquest treball s'ha estudiat una ruta per la incorporació de 

quantitats controlades de fòsfor durant l'etapa de síntesi. Això ha permés controlar l'adsorció 

i les propietats àcides en les zeolites de porus petit, el que no es pot aconseguir mitjançant 

metodologies de post-síntesi. 
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1 

Chapter 1 

Introduction 

 

1.1 Zeolites 

Zeolite and zeolite-like materials (zeotypes) are defined by IUPAC as microporous 

materials with inorganic 3D host frameworks composed of tetrahedral [TX4] units.[1] Zeolites 

constitute the largest group of the ordered microporous materials family. Microporous  

materials present an ordered array of accessible pores with pore openings below 2 nm.[2] 

The term zeolite was coined by A. F. Cronstedt in 1756 to name a mineral which 

expelled boiling water when heated, which resulted to be the stilbite zeolite.[3] Since then, 

several natural zeolites, like chabazite, faujasite or analcime zeolites, among others, had been 

discovered and studied.[4] 

1.1.1 Zeolites structure and classification 

Zeolites are commonly defined as crystalline microporous materials with a framework 

built of corner sharing SiO4
- and AlO4

- tetrahedral units that form channels and cages,[5] filled 

with water and exchangeable cations.[6] 
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1.1.1.1 Zeolite structure 

Zeolites present a tridimensional structure made up by T atoms tetrahedrally bonded 

to bi-coordinated X atoms. Typically, T atoms comprise silicon and aluminium atoms, while 

X typically comprise oxygen atoms. These tetrahedral units are linked between them by  

corner sharing. The build-up of these tridimensional structures leads to the formation of voids 

and regular channels of molecular dimensions (3 - 12 Å). Zeolites present low framework 

densities, usually less than 21 T/ 1000 Å3, being T the number of tetrahedral units per unit 

cell.[7] 

The different spatial arrangement of these tetrahedral units leads to different zeolite 

structures or framework types. Up to date (March 2021), the International Zeolite Association 

(IZA) has accepted 253 different framework types,[8] although there are many other zeolites 

whose structures are yet unknown. Furthermore, there is a high number of theorized  

structures that have not yet been synthesized.[9, 10] 

Zeolitic structures can be described from units built by a relatively small number of 

tetrahedra, known as Secondary Building Units (SBU´s),[7] depicted in Figure 1.1. 

 
Figure 1.1. Zeolitic Secondary Building Units (SBU´s). Frequency of occurrence is given in 

brackets.[8] 

 

6*1 (4)2-6-2 (16)6-2 (16)

Spiro-5 (2)3 (5) 4 (71) 6 (51) 8 (24) 12 (5)

4-4 (4) 6-6 (10) 8-8 (3) 4-1 (13) 4-[1.1] (5) 1-4-1 (7)

4-2 (23) 4=1 (3) 4-4- (4) 4-4=1 (3) 5-1 (25) 5-[1.1] (2)

1-5-1 (4) 5-3 (10)
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Additionally, zeolitic structures could be also described by more complex  

construction units named Composite Building Units (CBU´s), shown in Figure 1.2.[7] Each 

CBU is assigned a three letter code corresponding to the zeolitic structure where it was first 

described. 

 
Figure 1.2. Zeolitic Composite Building Units (CBU´s).[8] 

  

lov 5T d3r 6T nat 6T vsv 6T mei 7T d4r 8T mor 8T sti 8T bea 10T bre 10T jbw 10T

mtt 11T afi 12T afs 12T ats 12T bog 12T cas 12T d6r 12T lau 12T rth 12T stf 12T

bik 13T fer 13T abw 14T bph 14T mel 14T mfi 14T mtw 14T non 15T ton 15T

aww 16T d8r 16T ddr 16T imf 16T rte 16T can 18T mso 18T gis 20T mtn 20T

atn 24T gme 24T obw 24T phi 24T sod 24T rut 28T lev 30T

mwf 30T los 30T clo 32T pau 32T ast 32T cha 36T doh 36T

pcr 36T lio 42T aft 48T afy 48T lta 48T ltl 48T
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1.1.1.2 Zeolites chemical composition 

The empirical formulation of zeolites is generally described as: 

SiO2 : M2/nO : x X2O3 : y YO2 : z H2O 

where Mn+ corresponds to a cation, most commonly alkaline cations like Na+, Ca2+, 

K+ and Ba2+. These cations neutralize the negative charge introduced in the structure by the 

isomorphic substitution of silicon atoms by trivalent elements (X), being Al3+ or B3+ the most 

common. The silicon atoms may also be isomorphically substituted by other tetravalent  

atoms (Y) such as Ti4+,[11] Ge4+[12] and Sn4+,[13] among others.[14] 

1.1.1.3 Classification of zeolites 

Zeolites could be classified by their pore size, pore topology or chemical composition. 

The most typical classification attends to the size of their pore openings, which is usually 

related to the number of tetrahedra building the pore, named as member rings (MR or simply 

R), as detailed in Table 1.1. 

Table 1.1. Classification of zeolites attending their pore size. 

Zeolite pore size MR Pore diameter / Å Examples 

Extra-large > 14 > 7.5 CFI, DON, CLO 

Large 12 5.5 - 7.5 FAU, BEA, IWV 

Medium 10 4 - 6 MFI, FER, MTT 

Small 8 3.5 - 5 LTA, ITE, RTH 

Zeolites are also classified attending their pore channel dimensionality depending on 

whether the pore channels run along one, two or three directions in the space as:[8]  

i) mono-dimensional, like RTE, STF and TON zeolites, for example; ii) bi-dimensional, like 

FER, MOR and RTH zeolites for example; iii) or tri-dimensional, like FAU, LTA and MFI 

zeolites for example. Also, there are microporous materials with cage structures that are  

classified as zero-dimensional, such as AST, MTN and SOD zeolites for example, with  

channels equal or below 6 MR, and thus, inaccessible to molecules of industrial interest.[1] 

Zeolites are also classified by their composition. Thus, depending on the Si/X molar 

ratio, the materials are classified as zeolites when the Si/X < 500 and as zeosils when the 

Si/X > 500.[15, 16] Also, silicon atoms could be completely replaced by other elements as  
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germanium or aluminium and phosphorus, giving rise to germanate[17, 18] and  

aluminophosphate zeotypes,[19, 20] respectively, keeping the structure of typical zeolites.[1] 

Each framework type comprises all materials that fulfils the same structure connectivity  

regardless of their composition. 

1.1.2 Properties of zeolites 

Zeolites present interesting properties due to their crystalline structure and their  

molecular-size pore openings. Also, the feasibility of zeolites to isomorphically substitute 

silicon atoms by trivalent elements provides the material structure of an excess of negative 

charge. This charge must be compensated by extra-framework cations, would it be alkali 

cations, alkali-earth cations, organic cations or protons.[21] In the case of alkali, alkali-earth 

and organic cations, zeolites mostly present neutral, or even basic properties,[22, 23] while in 

the case of protons, zeolites present acidic properties.[24] Some of the most relevant properties 

of zeolites are described next: 

1.1.2.1 Adsorption capacity of zeolites 

Zeolites, due to their microporous structure, present a large surface area with a discrete 

range of pore openings. These properties allow the selective adsorption of molecules of  

different sizes depending on the size of the zeolite channels, allowing to discriminate between 

molecules with kinetic diameters barely differentiated by 0.1 Å. Two different adsorption 

mechanisms exist:[25] 

 Physisorption: the adsorbed chemical species (adsorbate) weakly interacts with 

the solid surface. This weak interaction corresponds with an adsorption enthalpy  

below 50 kJ/mol. The microporous nature of zeolites produces capillary condensation 

of the adsorbate at very low partial pressures. Thus, liquid phase-like reactions could 

take place at temperatures much higher than the boiling point or at very low partial 

pressure of the adsorbate. 

 Chemisorption: the adsorbate strongly interacts with the solid surface. This strong 

interaction can achieve an adsorption enthalpy of up to 800 kJ/mol. The adsorbate 

undergoes a chemical transformation that leads to a different chemical species.  

Chemisorption is a selective process and occurs on isolated centres corresponding to 

the active sites in the zeolite. 
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1.1.2.2 Ionic exchange in zeolites 

The presence of trivalent elements, mainly Al3+, in the zeolite structure generate  

negative charges that must be compensated by extra-framework cations located in the  

channels and voids of the zeolite. These cations are usually highly mobile and easily  

exchangeable with other cations present in the surrounding media. This cationic exchange 

does not modify the zeolite structure, differing from other ionic exchangers. The ionic  

exchange capacity increases as the cationic load does, and thus, with the decrease of the Si/Al 

ratio of the zeolite.[26, 27] 

1.1.2.3 Acid and basic properties of zeolites 

The isomorphic substitution of Si4+ by Al3+ atoms leads to a negatively charged  

structure, which is balanced by extra-framework cations located inside the solid. These  

cations could be inorganic, mainly alkaline and alkaline-earth cations, NH4
+ cation or organic 

cations. Depending on the nature and chemical properties of this balancing cation, zeolites 

could display basic or acidic properties.[21] The thermal treatment of zeolites with NH4
+ or 

organic cations occluded inside the material leads to the decomposition of these species,  

being replaced by protons (H+) which counter-balance the negative charge of the zeolitic 

framework.[28] 

When an alkaline or an alkaline-earth cation balances the negative charge of the  

zeolite framework, the zeolite present neutral or basic properties.[22, 23] In the latter case, the 

oxygen atoms of the crystalline lattice form Lewis type basic sites, and the balancing cations 

and framework composition modulate that basicity.[29] Small charge/mass ratio cations, like 

Cs+, have a low interaction with the structure, increasing the negative charge density over the 

oxygen atoms, and thus, increasing the basicity of the zeolite.[30, 31] Low Si/Al ratios also 

provide higher electronic densities over oxygen atoms than high Si/Al ratios, resulting in 

stronger bases.[32] 

On the other hand, the acidic properties of zeolites are characterized by the presence 

of Al3+ species. Depending on the specific Al chemical species, two different acidic centres 

could be discerned:[24, 33] 

 Brönsted acid centres: they are generated by the protons created after the thermal 

decomposition of NH4
+ or organic cations. The number of acid centres is proportional 
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to the aluminium content of the material. The increase of acidic centres increases the 

total acidity of the zeolite, but the acid strength of each centre decreases.[22, 32] 

 Lewis acid centres: they are usually associated to aluminium oxyhydroxide  

species in extra-framework positions, typically formed by the dealumination of the  

zeolite during thermal treatments. These centres are not associated to protons as  

balancing cations of the zeolite, but their presence is the result of the hydrolysis of  

Si-O-Al bonds.[34] Also, the isomorphical substitution of T atoms by d-elements, like 

Ti4+ or Sn4+, provides of Lewis acidity to the resulting solids.[35-37] 

1.1.3 Applications of zeolites 

Zeolites, because of their properties, are very interesting materials for several  

industrial applications. Some of the applications described here have been applied for  

decades, while others represent a promising hope for the successful implementation of green 

chemistry.[38-42] 

1.1.3.1 Catalysis 

Zeolites are widely used in a large number of reactions as heterogeneous catalysts due 

to their high activity, and especially, due to their shape selectivity. Catalysts decrease the 

activation energy of a given reaction to occur, and the microporous structure of the zeolite 

allow improving the reaction selectivity towards the desired products. The shape selectivity 

of zeolites could be due to: i) the favoured adsorption of one reagent because of its size and 

shape; ii) the favoured formation of a given transitional state along the reaction pathway;  

iii) the preferential diffusion of one of the possible reaction products throughout their chan-

nels.[43, 44] 

Zeolites have been mostly used as acid catalysts in oil refining processes for  

decades.[45-47] However, in recent years the application of zeolites has spread to the synthesis 

of fine chemicals;[48, 49] the processing of renewable raw materials, such as obtaining  

biofuels;[50, 51] the catalytic transformation of synthesis gas into hydrocarbons;[52, 53] or the 

conversion of methanol to hydrocarbons.[54, 55] 
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1.1.3.2 Adsorption and separation 

Zeolites present adsorption properties that allow their use in separation processes, like 

the enrichment of gas streams in one of its components. This enrichment may be due to one 

of the gas stream components being bulkier than other component, and thus, being not able 

to diffuse through the channel of the zeolite, or may be due to a selective adsorption of one 

of the stream components over the active sites of the material. 

The separation of the components could be performed using zeolite membranes or 

zeolites with different adsorption affinities for each gas stream component.[56-58] High  

aluminium content zeolites lead to the adsorption of polar molecules, allowing the removal 

of H2O, CO2 and sulphur species in hydrocarbon streams.[59-61] Also, the different size of the 

channels of zeolites allow the separation of linear and branched hydrocarbons,[62, 63] and even 

paraffins and olefins.[64, 65] 

1.1.3.3 Ionic exchange 

The main application of zeolites in terms of total production is as ionic exchangers, 

mainly for the removal of cations in water effluents. For example, zeolites are widely  

employed as detergent additives, like the NaA zeolite, used to soften water instead of  

pollutant polyphosphates.[66] 

Also, the clinoptilolite zeolite, due to its high affinity towards ammonia, is used for 

ammonia removal from municipal, agricultural and industrial waste water.[67, 68] Finally, ze-

olites may also be used for radioactive cation removal of 137Cs+ by mordenite, NaA, clinop-

tilolite or Rho zeolites.[69, 70] 

1.1.3.4 Environmental applications 

Zeolites are used in environmental applications like the removal of NOx and VOC´s 

from air by reduction and oxidation processes, respectively.[71-74] It is also important the use 

of copper substituted zeolites in DeNOx process in gasoline and diesel engines using NH3 as 

reductor agent.[75-77] 
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1.1.3.5 Other applications 

Beyond the previously applications, zeolites are also used in further  

applications. For example, the incorporation of silver to zeolites provides biocide activity to 

the materials, allowing their use in medical and environmental application, likewise their use 

in consumer goods.[78-82] 

Finally, zeolite membranes present properties, like high temperature stability or  

endurance to extreme conditions, that have promoted their use as a support for active phases 

or as membrane reactors,[83] as well as their use for gas sensors.[84, 85] 

1.2 Synthesis of zeolites 

Zeolite synthesis began in 1862 when H. Saint-Claire-Deville reported the first  

hydrothermal synthesis of levynite zeolite.[86] In 1930, W. H. Taylor reported the first  

resolution of the crystal structure of a zeolite, the analcime zeolite.[87] The modern era of the 

zeolite synthesis started in 1940´s, when R. M. Barrer reported the synthesis of zeolites P 

(GIS) and Q (KFI), without any natural counterpart at that time,[88] while R. Milton developed 

a synthesis methodology based on freshly prepared aluminosilicate gels that it is still in use, 

with slight modifications, to this day.[89] 

Within the materials science field, the research into the synthesis of microporous  

zeolitic materials has been and keeps on being, a field in steady expansion since the first 

synthesis of zeolite was reported. However, the synthesis of zeolites mostly remains as a  

trial-and-error science, and the prediction and rational design of a given microporous material 

still heavily relies on previous experience in the synthesis of the chosen material.  

Nonetheless, progress in the area is still considerable and thousands of publications dealing 

about zeolitic materials are yearly published, and among them, the number of papers  

discussing the synthesis of these materials is increasing every year, as shown in Figure 1.3. 
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Figure 1.3. Number of material science (red), zeolite materials (green) and zeolite synthesis 

(blue) publications per year (left), number of publications per year in logarithmic scale (middle) 

and share of publications for each field (right). Font: Web of Science. 

1.2.1 Synthesis mechanism of zeolites 

The crystallization of zeolites is a complex process not fully understood yet, due to 

the large number of different physical and chemical parameters affecting to the synthesis in 

order to yield a specific material.[90-97] However, it is widely acknowledged the presence of 

three different consecutive and overlapping stages, schematized in Figure 1.4. 

 
Figure 1.4. Synthesis mechanism scheme of zeolites from zeolite precursors into crystalline  

zeolite during the synthesis of zeolites. 
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 Induction time: it is the time that elapses from obtaining a supersaturated solution 

to the formation of the first nuclei. A series of chemical equilibria occur in the medium 

between the silica and alumina precursors, being rearranged until giving rise to the 

formation of varying complexity silicate and/or aluminosilicate oligomer species,  

balanced by cations that will be subsequently incorporated into the crystalline solid. 

 Nucleation stage: the formation of stable nanometric crystallites or crystalline  

precursors takes place along this stage. These nanocrystals or crystalline precursors 

are indistinguishable by diffraction techniques due to the lack of long range order. 

Due to the abundance of foreign surface in the synthesis media, like container walls,  

heterogeneous nucleation is the main nucleation process. The addition of zeolite seeds 

in the synthesis gel improve the nucleation stage as secondary nucleation occurs over 

the seeds, easing the formation of stable nuclei within the media. Zeolite nucleation 

and crystal growth may occur both in dense gel and colloidal suspension. 

 Crystal growth: the growth of previously formed nuclei takes place in this stage, 

giving rise to the formation of submicrometric and micrometric zeolite crystallites, 

easily identifiable by diffraction techniques. The crystal growth process of zeolites is 

typically described with S-shaped crystallization curves, depicted in Figure 1.5. The 

development of the zeolite structure comprises weak and strong interactions between 

building units, forming a covalently bonded framework stabilized by  

extra-framework species. During this development, nanoparticles play an important 

role regardless of whether the precursors appear as gels or colloidal suspensions. The 

size of these nanoparticles is determined by the presence of alkaline or organic  

cations. The composition of the gel particles approaches the stoichiometric zeolite  

composition once a chemical equilibrium between the solid and the liquid in the  

reacting system is reached. Finally, the crystal growth rate decrease, and eventually 

stops, when any of the zeolite precursors is depleted. 
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Figure 1.5. Schematic representation of the nucleation rate (blue) and crystal growth rate (red) 

of zeolites along synthesis time. 

1.2.2 Parameters in the synthesis of zeolites 

There are several parameters to take in account for the successful synthesis of zeolites: 

 Composition of the synthesis gel and nature of the reagents used: changes in the 

gel composition modify the nucleation and crystal growth kinetics, the nature and 

structure of the material obtained, or the size distribution and morphology of the  

crystals. The nucleation and crystallization kinetics are also affected by the chemical 

nature of the used precursors. 

 Synthesis time: the crystallinity of the solid generally increases with time,  

although it must be taken into account that zeolites are metastable phases and,  

therefore, tend to transform into more stable and denser phases with time. This makes 

that each zeolite has an optimal synthesis time screen. 

 Temperature: the increase of the temperature speeds up the crystallization process, 

reducing the time required for the crystal growth. However, it can adversely affect the 

crystallization process of a particular structure if the temperature is high enough to 

favour the nucleation of another zeolite structure or even decompose the used  

structure directing agent. 

 Mineralizing agent: the mineralizing agent is a chemical species that increases the 

solubility of the silicate and/or aluminosilicate species, which leads to a decrease in 

Time

Nucleation rate

Crystal growthNucleationInduction time

Crystal growth rate



Chapter 1: Introduction 

 

 

13 

the induction period and an acceleration of crystal growth. The main mineralizing 

agents used are hydroxyl and fluoride anions. Fluoride anions allow the synthesis of 

zeolites in neutral medium, favours the formation of small cages in the structure and 

usually leads to the growth of larger crystallites with fewer structural defects than 

those obtained in basic medium. Some studies also show the influence of gel concen-

tration on phase selectivity, favouring more open structures at a higher concentration 

of the structure directing agent and fluoride.[98] 

 Presence of heteroatoms: the isomorphical substitution of Si atoms by heteroatoms 

as Al, Ga, Ge or B, can significantly affect the relative stability of the secondary  

building units because these heteroatoms bond with Si atoms at slightly different  

angles and distances than those formed by the Si atoms between them. 

 Nature of the structure directing agent: the structure of the zeolite obtained is 

highly influenced by the use of inorganic cations (Na+, Li+, K+, NH4
+) and, especially, 

by the use of organic cations. A large number of research on obtaining zeolitic  

materials focuses on the role played by organic cations, due to the possibility for easily 

modifying their structure, size or charge, which may affect selectivity towards one or 

another crystalline phase during the synthesis process. 

 Ageing of the synthesis gel: the treatment of the synthesis gel at a lower or higher 

temperature than the crystallization temperature for a given time could favour the  

nucleation step of a given zeolite structure. 

 Seeding: the introduction of crystals in the reaction media generally produces a 

decrease in the induction time. This reduction results in the easier formation of stable 

nuclei within the media, reducing the overall crystallization time and increasing the 

selectivity towards the desired zeolite. 

 Other: 

 Design of the reactor, it can affect the mass and energy transfer processes 

in the synthesis gel, and thus, affecting the induction time for the formation of 

stable nuclei. 

 Stirring, it influences the process of mass transfer in the synthesis gel. In 

highly diluted homogeneous synthesis gels this parameter is usually disregarded, 

but it is usually critical in highly concentrated or heterogeneous synthesis gels. 
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 Reagent purity, impurities can also have a structure directing effect. For 

example, some silica sources could contain ammonia as stabilizer, like colloidal 

silica. 

 Preparation method, the addition order of the reagents can affect the  

synthesis process. For example, the addition of methanol, sometimes used as 

OSDA co-solvent, extremely accelerates the hydrolysis of orthosilicate silica 

sources, which could be avoided if methanol is first evaporated. 

1.2.3 Hydrothermal synthesis of zeolites 

The synthesis of zeolites is usually carried out under hydrothermal conditions, i.e., in 

closed vessels at temperatures ranging between 60ºC and 200ºC under presence of water at 

its autogenous pressure. Also, the presence of cations and a mineralizing agent are required. 

The cations compensate for the charges generated during the synthesis process, while the 

mineralizing agent mobilizes the different silica species present in the synthesis media. 

The synthesis process is carried out in three steps, schematized in Figure 1.6:[92] 

1. Mixture of the silica and alumina (and/or boron, titanium, germanium, etc.) 

sources with cations that act as structure directing agents, compensating for the 

charges generated by the mineralizing agent, which is added to the mixture in a  

crystallization medium, generally water. The mineralizing agent could be: hydroxyl 

anions, in which case the synthesis is carried out in alkaline media; or fluoride anions, 

in which case the synthesis is carried out at a pH close to neutrality.  

2. Heating of the aqueous mixture, normally at temperatures between 100ºC and 

200ºC in closed steel autoclaves. 

3. After a certain time, which will depend on the specific conditions of synthesis and 

the structure directing agent, the zeolite crystals are obtained, and then recovered by 

filtering, washing and drying the formed solid. 
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Figure 1.6. Hydrothermal synthesis scheme of a zeolite. 

1.2.4 Ionothermal synthesis of zeolites 

The ionothermal synthesis of zeolites is an alternative zeolite synthesis route,  

introduced by Morris et al.[99] It consists in the use of ionic liquids that work as both structure 

directing agent and solvent, instead of water molecules. This features removes the  

competition between the solvent, the structure directing agent and the growing zeolite  

frameworks that are present during the hydrothermal synthesis process. Furthermore, this 

method almost completely removes safety concerns about the high autogenous pressures  

produced by the reaction process due to the very low vapour pressure of ionic liquids.[100] 

However, ionothermal synthesis is limited to ionic liquid availability and stability. 

1.2.5 Dry gel synthesis of zeolites 

The first dry gel synthesis of zeolites was performed on 1990 by Xu et al.[101] The dry 

gel synthesis method consists in the conversion of a dry aluminosilicate gel in contact with 

steam and vapours of volatile amines into zeolites, also referred as “vapour-phase transport” 

method (VPT). If non-volatile quaternary ammonium cations are used as templates, they must 

be incorporated into the dry gel, and only water vapour is then supplied via the gas phase 

(“steam assisted conversion”, or SAC).[102] The dry-gel samples are placed on a porous  

support so it is never in contact with the liquid, but reacts under the assistance of its vapour 

at autogenous pressure. This method allowed to successfully synthesize SOD, MFI, FAU, 
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MOR, CHA, MTN, BEA, EUO and TON zeolites.[103-110] However, dry gel synthesis is  

limited by its highly heterogeneous nature, hindering obtaining pure phases. 

1.2.6 Post-synthesis treatments of zeolites 

After the synthesis of the zeolite and the removal of the structure directing agent,  

zeolites may be submitted to post-synthesis treatments to further improve some of their  

properties. In this section, it is briefly discussed some of the most common post-synthesis 

treatments such as dealumination, desilication and phosphorus incorporation. This could be 

done by a partial and controlled removal of some of the framework atoms (dealumination 

and desilication), or by introducing extra-framework species inside the channels and voids 

of the zeolite (phosphorus incorporation). Also, aluminosilicate zeolites under catalyst  

regeneration conditions (high temperature and moist) are usually unstable, suffering a  

dealumination of the structure that could ultimately lead to a lowering of the catalytic  

activity.[111] 

1.2.6.1 Dealumination of zeolites 

Dealumination is a post-synthesis treatment for removing aluminium from zeolite 

structure by steam calcination or using chemical agents.[112-114] The extraction of aluminium 

atoms is accompanied by a partial breakdown of the local zeolite structure and the formation 

of vacancies, which lead to the formation of an additional porosity, mainly in the range of 

mesopores. Dealumination constituted the first method to introduce mesoporosity in  

zeolites.[115] 

The most frequent dealumination methods are the post-synthesis high temperature 

treatment in the presence of water vapour, or steaming,[116, 117] and the elution of aluminium 

with acid, mostly HCl, at relatively high temperatures.[118] Dealumination could also be  

performed in solid state by thermal treatment of ground mixtures of a zeolite and crystalline 

(NH4)(SiF6).[118] However, the extraction of aluminium atoms may severely change the acidic 

properties of the zeolite, depending on the applied method of dealumination.[119, 120] Some 

treatment parameters may be tuned to limit the drawbacks from aluminium removal, like the 

use of complexing agents like acid EDTA instead of HCl;[121] the control of the acid  

concentration, time and temperature of the acidic treatment;[122] or the synthesis of the zeolite 

with higher crystallinity prior to acid treatment.[123] Interestingly, delaminated zeolites may 
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be realuminated, although aluminium is preferentially inserted in previously dealuminated  

crystallographic positions.[124] After dealumination, silicon atoms could be introduced in 

dealuminated positions using gaseous SiCl4.[125, 126] 

1.2.6.2 Desilication of zeolites 

Desilication is one of the most universal methods used for generating secondary  

porosity in zeolites. This method is based on the preferential removal of silicon atoms from 

the zeolite structure in an alkaline solution. The obtained hierarchical material is  

characterized by the presence of a secondary system of mesopores within the crystallites, 

while simultaneously maintaining its microporous character and general acidic properties. 

The introduction of an additional system of pores by desilication also affects the structural 

and acidic properties of the final materials. These new properties could affect the activity,  

selectivity, and life-span of zeolites used in catalysis.[113, 127-129] 

The most typical method for the removal of silicon atoms is by treating the zeolite 

under aqueous alkaline media, mostly NaOH, at varying temperatures.[130] Desilication 

method allows to introduce mesoporosity in zeolites, however, it also frequently causes a loss 

of microporosity and/or affect the acidic properties of the final material. The reduction of 

microporosity is linked with a lower crystallinity of the zeolite, which could also affect to the 

shape selectivity of the zeolite. The acidic properties could be affected by the removal of 

silicon atoms close to or directly bonded to aluminium oxide tetrahedra, which could also 

provoke the dealumination of the zeolite. In order to avoid these drawbacks, the conditions 

of the alkaline treatments, like the NaOH concentration or the treatment temperature and 

time, should be optimized.[131, 132] Additionally, other alkali sources may be used, like organic 

alkali TPAOH or TBAOH, both separately or jointly with NaOH, which decrease the removal 

of silicon atoms close to aluminium centres.[133-135] 

1.2.6.3 Phosphorus incorporation in zeolites 

Zeolite acid centres may be stabilized by the incorporation of phosphorus in the  

zeolite. These extra-framework phosphorous species interact with the aluminium centres of 

the framework, modulating their acidity.[136-140] This interaction decrease the acidity of the 

material,[141] while increasing the stability of the zeolite during steaming[142] and under  

reaction conditions.[143] 
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The incorporation of phosphorus has been carried out by several methods like wet 

impregnation with H3PO4
[144] and NH4H2PO4,

[138] or by gas deposition of PCl3
[145] 

P(OCH3)3
[146] or P(CH3)3,[136] among others. The most studied materials include zeolites 

ZSM-5,[136, 147, 148] USY,[149, 150] Beta,[151] ZSM-8,[152] MCM-22,[153] and mesoporous  

MCM-41 zeolite.[154] Despite the large number of studies on phosphorus incorporation, the  

phosphorus-zeolite interaction is still unclear, and several interaction theories have been  

proposed to explain the observed properties of the final catalysts.[138, 144, 155-160] 

The incorporation of phosphorus could present some drawbacks, like a catalytic  

activity decrease. This decrease could be due to: i) partial blocking of the zeolite channel 

system by the extra-framework phosphorous species; ii) blocking of the aluminium acid  

centres due to their interaction with the extra-framework phosphorous species; iii) and  

dealumination of the zeolite by extraction of the aluminium from the zeolite lattice due to the 

use of acid solutions, mainly H3PO4. Furthermore, the incorporation of phosphorus is only 

possible in zeolites with medium or larger pore size openings, since phosphorous species 

must diffuse along the channel system to dock at the active centres. Therefore, it is almost 

impossible to incorporate phosphorus in small pore size zeolites, as these phosphorous  

species are larger than their pore openings and their diffusion through the zeolite channels is 

severely limited. Similarly, the incorporation of phosphorous into uni-directional zeolites is 

also limited by the diffusion constraints that can arise from the introduction of phosphorous 

species. 

1.3 Structure Directing Agents (SDA´s) of zeolites 

Structure Directing Agents, or SDA´s, are cations that are introduced in the zeolite 

synthesis media to favour the crystallization of a given zeolitic structure against other  

structures. SDA´s could be classified by its nature as inorganic and organic cations 

(OSDA´s). 

The successful synthesis of new zeolitic structures and compositions still remains 

heavily dependent on the use of SDA´s. In this way, ammonium OSDA´s have been  

extensively used because of the large existing knowledge about the synthesis and  

modification of this family of compounds. The use of ammonium OSDA´s, either to  

substitute or to complement the use of alkaline inorganic SDA´s, has led to the synthesis of 

at least 186 zeolitic structures of the 253 known structures up to date, and the widening of 
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the chemical composition of most zeolites to improve their industrial applicability (March 

2021).[8] 

While the use of ammonium OSDA´s has led to the synthesis of most of the known 

zeolitic structures, several different families of compounds have also been successfully used 

in the synthesis of zeolites. These compounds comprise phosphorous compounds (quaternary 

and di-quaternary alkylphosphonium cations, quaternary and di-quaternary alkyl-aminophos-

phonium cations and phosphazene bases), which have led to at least 18 zeolitic structures; 

sulfonium cations, which have led to at least 8 zeolitic structures; aza- and oxo-crown  

macrocycles, which have led to at least 12 zeolitic structures; organometallic complexes, 

which have led to at least 14 zeolitic structures; self-assembled compounds, which have led 

to at least 10 zeolitic structures; ionic liquids and deep eutectic solvents, which have led to at 

least 21 zeolitic structures; and arsonium cations, which have led to 1 zeolitic structure. The 

share of zeolitic structures synthesized by the different SDA´s families is shown in Figure 

1.7. 

 
Figure 1.7. Number of zeolite structures synthesized and share of each type of SDA described 

for the synthesis of zeolitic structures per year. 

The influence of OSDA´s in the synthesis of zeolites has been recently fully reviewed 

in Structure and Bonding.[161] 
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1.3.1 Inorganic SDA´s 

The synthesis of zeolites begun using alkaline and alkaline-earth hydroxides as 

SDA´s.[88, 89] Alkaline hydroxide fulfilled two functions in the synthesis. Firstly, the cations 

neutralize the negative charges introduced by the substitution of silicon by aluminium atoms 

in the zeolite framework. And secondly, they provide the synthesis media with a large amount 

of hydroxyl anions as mineralizing agent. These conditions favour the synthesis of low  

silicon to aluminium ratio, like LTA and FAU zeolites with Si/Al ratios below 2.5, for  

example.[162-164] However, these materials usually present a low (hydro)thermal stability due 

to their high aluminium content. 

Hydrated cations present a lower energy in water solution, with water molecules  

enveloping the cation. Under zeolite synthesis conditions, some of these water molecules are 

exchanged by silicate and/or aluminosilicate species, which start to interact between them 

leading to the formation of SBU´s, previously detailed in section 1.1.1.1. 

1.3.2 Organic SDA´s 

The introduction of organic cations by Barrer and Denny in 1961 broadened the  

possibilities in the synthesis of zeolites.[165] Organic Structure Directing Agents (OSDA´s)  

allowed for higher silicon to aluminium ratios, the synthesis of new structures without natural 

analogous, a speed up of the crystallization rate and the preferential crystallization of specific 

phases. 

The synthesis mechanism when organic cations are used as OSDA´s was proposed by 

Burkett and Davis.[166] According to this mechanism, the organic cation is found in the  

solution solvated by water molecules that are gradually replaced by silicate species present 

in the synthesis media. The successive addition of silicate species allows for the formation 

of synthesis nuclei from which the zeolite will start growing. 

The efficient use of OSDA´s require some properties of the organic cation:[167, 168] 

 Stability in the reaction media: hydrothermal synthesis conditions are quite harsh 

for organic compounds, as temperatures are moderately high (100ºC - 200ºC) and 

several nucleophilic species, like water molecules, hydroxyl or fluoride anions are 

present in the synthesis media, which could react with the organic cation. 
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 Solubility in the reaction media: the organic cations must be soluble in water, 

which therefore limits the size of the organic cation to a carbon to nitrogen ratio lower 

than 15. 

 Stiffness: conformational stiffness favours the crystallization of single phases. 

 Bulkiness: bulky OSDA´s favour the formation of low framework density  

structures. 

 Branched molecules: large hydrocarbon chains favour the formation of channels 

and their cross-linking in bi- and tri-directional pore channel systems. 

The effect of the OSDA in the synthesis of zeolites is dependent on the interaction 

between the OSDA cation and the inorganic matrix. OSDA´s could be classified by this  

interaction into three different types: 

 True template: the organic cation directs the synthesis towards a single zeolite 

structure which adopts the geometric and electronic configuration of the cation. Up to 

date, the only cations with true template effect are the OSDA´s used in the synthesis 

of ZSM-18 zeolite[169, 170] and MCM-61 zeolite,[171] although this “template”  

interaction is controversial.[172] 

 Structure directing agents: the cation presents an interaction with the inorganic 

matrix, favouring the formation of some phases or others depending on the synthesis 

conditions.[173] 

 Void filler: the cation does not favour the preferential crystallization of some 

phases against others, but increases the framework stability respect to the absence of 

the cation.[174] 

Besides ammonium cations, organic cations with different chemical natures had also 

been used, which have resulted in the synthesis of very interesting zeolite materials. These 

cations include phosphorous, sulfonium and arsonium cations, crown macrocycles, organo-

metallic complexes, proton sponges, self-assembled compounds and ionic liquids.[175] 

1.3.2.1 Alkylammonium cations as OSDA´s 

Quaternary ammonium cations were the first OSDA´s used in the synthesis of zeolites. 

Alkylammonium cations are positively charged compounds that have been widely used due 

to their low price and their well-known chemistry. Beginning with the most simple  
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tetramethyl ammonium used by Barrer and Denny,[165] the family of ammonium cations used 

as OSDA´s has grown into a wide variety of ammonium compounds.[176, 177] 

However, there are some limitations in the application of ammonium cations as 

OSDA´s due to their hydrothermal stability. The main degradation pathways of ammonium 

cations are the Hofmann elimination of alkyl chains under alkaline media, the thermal deg-

radation and the carbon rearrangement by internal displacement of alkyl chains, as schema-

tized in Figure 1.8.[178] 

 
Figure 1.8. Main degradation pathways of ammonium cations under hydrothermal treatment. 

It is important to note that some of the formed degradation products could also act as 

structure directing agents, and due to their smaller size, direct the synthesis towards the  

formation of dense zeolites such as clathrates. 

1.3.2.2 Phosphorous cations as OSDA´s 

Alkylphosphonium cations are compounds known for a long time and are used in  

numerous fields of applications as a source of ylides in organic chemistry, the production of 

organic polymers, insecticides and fungicides, flame retardants for textiles and paper,  

anti-static and softening agents in textile and resins, and corrosion inhibitors of photographic 

chemicals.[179] Recently, these compounds have received additional interest because of their 

N

R1

R2

R3

C

C
-OH

R4 R '
4

R '
5

R5

N

R1

R2

R3

C

C

R4 R '
4

R '
5

R5

Hofmann 

elimination

N

R1

R2

R3

C

CH

R4 R '
4

R '
5

R5

N

R1

R2

R3

C

CH

R4 R '
4

R '
5

R5

D

D N

R1

R2

R3

C

CH

R4 R '
4

R '
5

R5-OH

H

N

R1

R2

R3

R5

C
H

HC

R'
5

R4

R '
4

Carbon 

rearrangement

Thermal 

decomposition



Chapter 1: Introduction 

 

 

23 

ability to form ionic liquids with superior properties compared to their nitrogen-based  

analogues.[180-183] 

The typical synthesis procedure to obtain alkylphosphonium cations relies on the use 

of phosphine derivatives, as schematized in Figure 1.9.[179, 184-187] 

 
Figure 1.9. General schematic pathway for the synthesis of tetraalkylphosphonium cations. 

First, it should be stated that special safety precautions must be taken when working 

with phosphines because of their very high toxicity. Phosphines are usually less stable than 

their amines counterparts because of their high reactivity and, furthermost, they are unstable 

in contact with water or air, yielding the corresponding oxidized compounds, although these 

properties are heavily linked with the compound volatility (for example, the solid  

triphenylphosphine is almost inert in contact with water and air, but keeps the general  

reactivity of phosphines).[185, 188] Because of that, the working up to synthesize complex  

phosphonium derivatives turns into a demanding task to comply. However, when properly 

handled, the synthesis of phosphonium compounds is achieved with nearly quantitative 

yields and few undesired products, opposed to the medium yields obtained in the synthesis 

of ammonium OSDA´s.[179, 181, 184, 189] 

Phosphonium cations exhibit a higher stability than ammonium cations, lessening the 

occurrence of the β-Hofmann elimination, as schematized in Figure 1.10.[186, 190-193] This is 

extremely important because most zeolite syntheses are carried out under hydrothermal  

conditions. Therefore, the use of phosphonium cations would allow to widen the range of 

physical synthesis conditions, like increasing the synthesis temperature, the alkalinity of the 

media, or synthesis/crystallization time without any significant decrease in the concentration 

of the cationic species active as OSDA´s. 
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Figure 1.10. Main degradation pathways of tetraalkylphosphonium cations under hydrothermal 

treatment. 

Additionally, phosphorous compounds exhibit a more versatile chemistry than  

nitrogen compounds, and thus we can also find the phosphorus atom directly bonded to an 

uncharged nitrogen atom. These molecules are interesting because they allow tuning the 

charge distribution around the quaternized phosphorus atom by exchanging a carbon atom 

with a nitrogen atom. This property gives rise to two different compound families,  

aminophosphines,[187, 194] that can be turned into alkyl-aminophosphonium cations; and  

phosphazenium cations.[195, 196] Both are readily available to be used as OSDA´s, as  

phosphazenium cations are commercially available as phosphazene proton sponges,[196] and 

aminophosphines are common complexing agents that are less hazardous and volatile than 

their alkylphosphines counterparts.[197, 198] The three types of P-OSDA´s are schemed in  

Figure 1.11. 

 
Figure 1.11. Types of phosphorous cations used as OSDA´s. 
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zeolite Theta-3 (MTW), related with the Theta-1 and MFI zeolites and possessing a ZSM-12 

structure;[199] the zeolite ZSM-5 (MFI);[200] and the zeolite EU-13 (MTT).[201] Next, patents 

and academic articles addressed the use of these phosphorous OSDA´s, yielding several 

known zeolites: ZSM-5 (MFI);[202] TS-2 (MEL);[203] TS-1 (MFI);[204] ZSM-5 (MFI) and 

ZSM-11 (MEL);[205] and RUB-35 (a disordered EUO-NES-NON family material).[206] 

However, this first series of syntheses provided the same phase selectivity than the 

chemically equivalent ammonium cations and no new zeolite was obtained. It was not until 

2006 that a new zeolite structure was described using a phosphorous OSDA, the large pore 

zeolite ITQ-27 (IWV),[207] using a more complex and asymmetrical tetraalkylphosphonium 

cation. From then on, several novel zeolite structures have been obtained with phosphonium 

cations, all of them included within the ITQ series of zeolites: the large pore germanosilicate 

ITQ-26 (IWS);[208] the medium pore germanosilicate ITQ-34 (ITR);[209] the extra-large pore 

germanosilicate ITQ-40 (-IRY);[210] the medium pore zeolite ITQ-45;[211] the small pore  

germanosilicate ITQ-49 (ITN);[212] the small and medium multi-pore borosilicate ITQ-52 

(IFW);[213] the extra-large pore germanosilicate ITQ-53 (-IFT);[214] and the small pore  

borosilicate ITQ-58.[215] (Table 1.2) 

Also, known zeolites have been obtained with phosphorous-OSDA´s over last years. 

For example, zeolite Beta (BEA) with extra-framework phosphorous species can be obtained 

after direct calcination avoiding post-synthesis treatments;[216] the use of a phosphorous  

proton sponge allowed obtaining the zeolite ITQ-47, the first synthetic analogue of the large 

and medium multi-pore natural boggsite zeolite (BOG);[217, 218] the extra-large pore  

germanosilicate ITQ-33 (ITT), allowing to introduce P without any post-synthesis treatment 

in this sensitive structure;[219] the use of phosphonium and ammonium cations allowed  

obtaining the one-pot self-pillaring of the medium pore ZSM-11 (MEL);[220] the zeolite  

ZSM-5 (MFI), to introduce phosphorus without any post-synthesis treatment;[221] the  

synthesis of high silica AEI zeolite by topotactic transformation of FAU zeolite using a dual 

template synthesis with ammonium and phosphonium cations;[222] the synthesis of  

self-pillared zeolites ZSM-5 (MFI) and Beta (BEA), and titanosilicates ETS-4 and  

ETS-10;[223] the synthesis of high silica CHA zeolite by topotactic transformation of FAU 

zeolite using a dual template synthesis with ammonium and phosphonium cations;[224] the 

synthesis of small pore all-silica zeolite RUB-13 (RTH), to introduce P as probe atom for 

NMR and INS techniques;[225] and the synthesis of nanocrystalline zeolite SSZ-39 (AEI) by 

topotactic transformation of FAU zeolite using a single phosphonium OSDA.[226] (Table 1.3) 
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The use of phosphorus containing cations as OSDA´s is interesting because,  

commonly, their ammonium equivalents yield different phase selectivity as observed in  

Table 1.2 and Table 1.3. Also, phosphorus is a valuable element to incorporate into zeolites, 

as it has been used for many years to improve the hydrothermal stability of the aluminium 

catalytic centres to further extent the catalytic lifetime of these materials. However, the  

interaction between the phosphorous and aluminium species is not yet fully understood, but 

some proposals for the aluminium stabilization are shown in Figure 1.12.[138, 140, 142, 160, 275, 276]  

 
Figure 1.12. Proposed models for phosphorus-zeolite interaction. (a) Vedrine et al.,[158]  

(b) Lercher et al.,[144] (c) and (d) Corma et al.,[138] (e) Xue et al.[159] 

Phosphorus can be introduced in the zeolite by direct impregnation with several  

compounds, as H3PO4, NH4H2PO4, PCl3, P(OCH3)3, P(C6H5)3, etc., followed by  

calcination.[138, 140, 142, 143, 276-280] However, most of these treatments present the disadvantage 

of being only available in medium or large pore zeolites, as these molecules are larger than 

the pore openings of small pore zeolites. The use of phosphonium cations as OSDA´s proves 

to be a convenient way to introduce phosphorus in small pore zeolites.[224, 226] 

After the synthesis of zeolites aided by OSDA´s, it is required to remove the OSDA 

to empty the pores of the material. This is usually made by calcination under air, yielding  

gaseous molecules (mostly, H2O, CO2, NOx and small amines), except in some modular and 

self-assembled OSDA´s.[281, 282] In contrast, the calcination of P-OSDA containing zeolites 

also gives rise to gaseous molecules (H2O and CO2), but most of the phosphorus remains 

inside the zeolite as extra-framework phosphorous oxide-like species, as depicted in  

Figure 1.13.[138, 144, 158, 159, 278] 
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Figure 1.13. Schematic view of the calcination process of N-OSDA and P-OSDA inside a zeolite 

structure. 

On the other hand, P-OSDA containing materials could be subjected to a  

hydrogenation process at high temperature, avoiding the oxidation of the phosphorous  

cations, and thus, most of the phosphorus is removed as light-weight phosphinesa.[211, 213, 215, 

217, 218] However, in both processes, it is difficult to control the removal of the phosphorous 

species, as it depends on the temperature, heating rate and time of the thermal treatment, the 

composition of the zeolite and, especially, the structure, pore openings and channel dimen-

sionality and crystal size of each zeolite. A smarter way for controlling the remaining amount 

of phosphorus inside the zeolite would be the employ of the dual-template synthesis  

methodology,[112, 257, 283-285] employing a combination of N-OSDA´s and P-OSDA´s, and  

optimizing the final aluminium/phosphorus ratio just by changing the ratio between the  

N-OSDA and P-OSDA in the synthesis stage, as most of the P will remain inside the zeolite 

upon calcination.[224, 286] 

  

 

 

 

 

 
a Warning: these compounds are extremely hazardous, even in small quantities, and appropriated facilities for their 
use and disposal must be used. 
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1.3.2.3 Sulfonium cations as OSDA´s 

The use of trialkylsulfonium cations as OSDA´s is relatively new, and despite the low 

number of studies that have addressed these compounds, many aluminophosphate zeotypes 

as AlPO-5, SAPO-5 and MAPO-5 (AFI), AlPO-31 (ATO), AlPO-41 and SAPO-41 (AFO), 

SAPO-11 and MAPO-11 (AEL), MAPO-l4 and CoAPO-14 (AFN), and MAPO-34 (CHA) 

have been obtained.[287] Also, the crystallization of several zeolites has been reported, such 

as ITQ-33 (ITT), ITQ-7 (ISV), ZSM-11 (MEL) zeolites and silicogermanate GeZA have been 

obtained.[288] 

1.3.2.4 Arsonium cations as OSDA´s 

Up to date, only the MFI zeolite has been successfully synthesized using arsonium  

cations.[289] The use of arsonium OSDA´s allows the introduction of Ar as Trojan Horse  

element for the characterization and evolution of the OSDA entrapped in the zeolitic void. 

However, there are few commercially available arsines and they are even more hazardous 

than phosphines, which limits their test as OSDA´s for the time being.   

1.3.2.5 Oxo crown macrocycles (crown ethers) OSDA´s 

Since their discovery by Pedersen,[290] crown ethers have found several applications 

because of their high affinity for cations in solution.[291-294] The first report of these  

compounds being used as OSDA´s in the synthesis of zeolites came several years later, when 

high silica faujasite (FAU) with a Si/Al~5 (SAR~5) and pure hexagonal faujasite (EMT) 

were synthesized.[295-297] Since then, high silica zeolite Rho (RHO);[298, 299] high silica zeolite 

KFI;[300] aluminosilicate clathrate MCM-61 (MSO);[171] and all-silica zeolite sodalite 

(SOD)[301, 302] have been synthesized using crown ethers as OSDA´s. 

1.3.2.6 Metal complexes and organometallic OSDA´s 

Metal complexes and organometallic compounds have been used for years in the  

synthesis of zeolites to incorporate metal complexes into zeolites. This strategy has allowed 

to keep properties of the original organometallic compounds (or the metal clusters that could 

be created after the decomposition of the organic compounds) in a stable zeolitic support. 

The most studied system for the incorporation of several organometallic compounds has been 

the large-pore zeolite Y (FAU).[303-308]  
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However, the synthesis of all-silica clathrasils nonasil (NON), octadecasil (AST) and 

dodecasil 1H (DOH) using Co(Cp)2 as OSDA,[309] and shortly after, the synthesis of the  

extra-large pore zeolite UTD-1 (DON) with the Co(Me5Cp)2 compound, opened a new  

frontier in the synthesis of zeolites.[310-312] Since then, several zeolites and zeotypes have been 

synthesized with organometallic compounds, like the synthesis of the aluminophosphate 

ALPO-16 (AST);[313] the synthesis of aluminophosphates STA-6 (SAS) and STA-7 

(SAV);[314] the synthesis of the gallogermanates GaGeO-CJ63 (JST)[315] and JU-64 (JSR);[316] 

the synthetic equivalent of Phillipsite DAF-8 (PHI);[317] the synthesis of aluminophosphates 

UCSB-6 (SBS), UCSB-8 (SBE) and UCSB-10 (SBT),[318] and the synthesis of Rho-like  

aluminophosphates (RHO).[319] 

Also, organometallic compounds have also been applied in the dual-template synthe-

sis approach using metal complexes jointly with alkylammonium cations. Using this  

methodology, the metal complexes would work as pore space fillers instead of proper 

OSDA´s. This approach has yielded the synthesis of the zeolite Cu-SSZ-13 (CHA);[320, 321] 

and the silicoaluminophosphates Cu-SAPO-34 (CHA)[322, 323] and Cu-STA-7 (SAV).[324] This 

methodology has made it possible to homogeneously disperse metal functionalities inside the 

channels and voids of small pore zeotypes that would be difficult, if not impossible, by  

post-synthesis treatments.[325, 326] Additionally, the number of intermediate stages is reduced 

by several steps that decrease the energy consumption and the waste disposal of  

metal-containing water streams when compared to traditional cation exchange methods.[327] 

1.3.2.7 Self-assembled OSDA´s 

Self-assembled OSDA´s consist in organic compounds with aromatic rings that are 

able to self-assemble to form macromolecular moieties. This is usually achieved by parallel 

π - π interactions between aromatic rings. Thus, self-assembled OSDA´s are relatively simple 

molecules that, when assembled, constitute OSDA´s with a suitable size, rigidity, thermal 

stability and hydrophilicity properties. Under appropriate conditions, these compounds have 

been able to create zeolitic topologies with low framework densities or large pore openings 

due to their supramolecular aggregation.[62, 328] 

The first examples of the use of this kind of OSDA´s yielded already known zeolitic 

structures with interesting novel features. Thus, all-silica ITQ-29 (LTA);[62] MTN-type  

zeolite;[329] all-silica zeolite ZSM-12 (MTW);[330] nanosheet ZSM-5 (MFI);[331] MWW-like 

zeolite;[332] and the extra-large pore zeolite ITQ-37 (-ITV)[333] were reported. Novel zeolite 
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structures have also been obtained, like the zeolite extra-large pore zeolite ITQ-51 (IFO)[334] 

and extra-large pore germanosilicate NUD-1 and NUD-2 zeolites.[335, 336] 

Also, the syntheses of several zeotypes aided by self-assembled OSDA´s have also 

been described. For example, the synthesis of aluminophosphates AlPO-5 and SAPO-5 

(AFI);[337-339] the synthesis of aluminophosphate STA-1 (SAO);[340, 341] the synthesis of AFI-

like aluminophosphate;[342-344] the synthesis of the aluminophosphate ICP-1;[345] and the syn-

thesis of the small pore silicoaluminophosphates STA-6 (SAS)[346] and SAPO-42 (LTA).[347] 

1.3.2.8 Ionic liquids OSDA´s 

Ionic liquids (IL´s) are organic solvents with high polarity, excellent solvating  

properties and, usually, high thermal stability. They consist in molten salts with melting 

points below 100ºC with an almost negligible vapour pressure. As molten salts, they consist 

in a variety of fused anions and cations that could be combined between them, giving rise to 

an almost unlimited number of salts (as long as their melting point is below 100ºC) with 

tuneable properties depending on the ions forming them. Typical cations include choline, 

alkylammonium, alkylphosphonium, N-alkylpyridinium, and especially, N,N′-dialkylimid-

azolium cations, among others, and the anions are also quite varied.[348-350] The use of IL´s as 

both OSDA´s and solvents (known as ionothermal synthesis) arose from the fact that many 

of the cations forming IL´s are chemically very similar to known OSDA´s in zeolite  

syntheses, as well as their polarity also allows using them as solvents, which, together with 

their low vapour pressure, remove most of the safety issues regarding hydrothermal  

synthesis.[351-353] 

The first ionothermal synthesis made use of 1-Methyl 3-ethyl imidazolium bromide 

as IL, which yielded the new aluminophosphate SIZ-1, and other aluminophosphates with 

already known structures: SIZ-3 (AEL), SIZ-4 (CHA) and SIZ-5 (AFO).[99] Since then, a 

number of ionothermal syntheses have been reported, like the aluminophosphate SIZ-6;[354] 

the aluminophosphates SIZ-7 (SIV), SIZ-8 (AEI) and SIZ-9 (SOD);[355] the Fe and  

Co-substituted aluminophosphates with SOD structure;[356] the gallophosphates GaPO-4, 

CLO and LTA;[357] the aluminophosphate MnAlPO-5 (AFI);[358] the aluminophosphate 

AlPO-5 (AFI);[359] the aluminophosphates AlPO-5 (AFI) and AlPO-11 (AEL);[360] the  

zincaluminophosphate DAF-1 (DFO);[361] and the aluminophosphate SAPO-34 (CHA).[362] 
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Ionic liquids have also been intensively used in cooperation with amines, as the  

presence of the IL changes the phase selectivity of the amines with respect to conventional 

syntheses. Thus, aluminophosphates AlPO-5 (AFI) and AlPO-25 (ATV);[363] the  

aluminophosphate AlPO-5 (AFI);[364] the aluminophosphates AlPO-42 (LTA), AlPO-5 (AFI) 

and AlPO-11 (AEL);[365] the aluminophosphate LTA;[366] and the aluminophosphate  

CoAPO-34 (CHA),[367] the aluminophosphate JIS-1;[368] and the extra-large  

aluminophosphate DNL-1[369] have been obtained. Also, some silica based-zeolites have been 

successfully obtained with IL´s, as the all-silica Silicalite-1 (MFI) and Theta-1 (TON) zeo-

lites,[370] and MTT, TON, ITW and MFI zeolites.[100] 

1.3.2.9 Deep eutectic solvents (DES) OSDA´s 

Deep-Eutectic Solvents (DES´s) consist in binary or ternary mixtures of compounds 

with an extremely low freezing point compared to that of the separate components. The most 

used DES´s comprise mixtures of organic halide salts, such as choline chloride, with  

hydrogen-bond donors, such as amides, amines, alcohols, and carboxylic acids.[371-373] 

The first synthesis using DES´s dates back to the first ionothermal synthesis, when 

choline chloride/urea eutectic mixture IL yielded the aluminophosphate SIZ-2.[99] From then 

on, several materials have been obtained, as the aluminophosphates SIZ-13 and SIZ-14 

(LEV);[374] the zincphosphate ZnPO 4-EU1 (DFT);[375] the aluminophosphates UiO-7 (ZON), 

AlPO-17 (ERI), AlPO-22 (AWW), AlPO-5 (AFI) and SIZ-10 (CHA);[376] the  

aluminophosphate FeAlPO-16 (AST);[377] the aluminophosphate FeAlPO-5 (AFI);[378] and 

the silicoaluminophosphate SAPO-5 (AFI).[379] Like in the IL´s case, the number of zeolites 

synthesized using DES´s is very scarce, with only the all-silica SOD[380] and the all-silica 

ZSM-5 (MFI), ZSM-11 (MEL), Beta (BEA) and ZSM-39 (MTN) zeolites.[381] 
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Chapter 2 

Objectives 

 

The main objective in this thesis has been the use of phosphorous OSDA´s for  

obtaining new zeolite structures or known zeolites by alternative synthesis pathways. 

New phosphorous cations, both phosphonium and aminophosphonium cations, have 

been synthesized and tested as OSDA´s in the synthesis of zeolites. The synthesis of zeolites 

with some of these phosphorous OSDA´s constitute a continuation of the work reported in 

previous closely related theses (Simancas, R., 2015 and M. Hernández-Rodríguez, M., 2014). 

The synthesis of these cations, as well as the materials obtained thereof, have been  

characterized by several techniques detailed in Chapter 3. 

As previously stated, the stability of the OSDA´s is very important during the  

synthesis of zeolites. Therefore, the relative stability between different phosphorous and  

ammonium cations was studied. The objective in this study was to clearly stablish the  

differences between ammonium, phosphonium and aminophosphonium cations under  

hydrothermal conditions. This topic is developed in Chapter 4. 

The use of phosphorous OSDA´s allows introducing phosphorus into zeolites.  

Therefore, the possibility of modulating the amount of the incorporated phosphorous OSDA 

when jointly used with ammonium OSDA´s in dual template synthesis conditions was  

studied in Chapter 5. The objective here was to select the amount of incorporated  

phosphorus in the material in the synthesis stage. This would allow controlling the textural 



 Synthesis and characterization of zeolitic materials using P-OSDA 

 

 

68 

and acidic properties of the final material while avoiding post-synthesis processes over the 

zeolite material. 

Finally, newly synthesized phosphorous cations were tested as OSDA´s. The  

objectives here were: 

 Synthesis of new zeolite materials with new structures. The synthesis of new  

structures is linked with an in-depth characterization of the material, especially  

regarding their structure. The syntheses of the new zeolites obtained during this thesis 

are developed in Chapter 7. 

 Synthesis of known zeolite materials with novel compositions. The synthesis of 

zeolites with novel compositions is usually based on trying to incorporate heteroatoms 

that provide the final material with new textural, acidic or oxidative properties, or the 

synthesis of all-silica materials. The most relevant results of this topic are addressed 

in Chapter 6 for the synthesis of zeolites ITQ-27 (IWV) and UTD-1 (DON). 

 Synthesis of known zeolite materials by alternative synthesis pathways, allowing 

for an easier synthesis of the material, different properties of the material, or the in-

corporation of phosphorus as probe atom for characterization techniques as  

MAS-NMR. This topic has been thoroughly studied in Chapter 5, Chapter 6 and 

Chapter 7 in the materials presented in each chapter. 
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Chapter 3 

Experimental section 

 

3.1 Characterization techniques 

3.1.1 X-Ray Diffraction 

The X-Ray Diffraction (XRD) technique is a powerful tool for the identification and 

characterization of zeolites, as it gives information about the structure of crystalline  

materials, presenting a X-Ray diffraction pattern characteristic for each material. This  

technique is based on the elastic scattering of X-Ray photon beams incident to the atomic 

array of a crystal. Only the constructive scattering reflections will be observed, following the 

Bragg´s law:  

nλ = 2dhklsinθ 

being n any integer, λ the X-Ray wavelength, d the spacing between diffracting planes 

and θ the X-Ray beam incident angle (Figure 3.1).[1-3] 
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Figure 3.1. Schematic view of the interaction between X-Rays and a crystalline material,  

following the Bragg´s law. 

3.1.1.1 Phase identification 

The crystallinity and purity of the obtained materials was measured by the powder  

X-Ray diffraction technique (XRPD) in a Bragg-Bretano geometry, employing a PANalytical 

Cubix PRO diffractometer. Cu Kα X-Ray radiation (λ1 = 1.5406 Å, λ2 = 1.5444 Å, I2/I1 = 0.5) 

was used, with a tube voltage and intensity of 45 kV and 40 mA, respectively. The goniom-

eter arm length was 200 mm, using an automatic divergence slit with a sample irradiated area 

of 5 mm2. The detector was a Panalytical X’Celerator, using a scan range from 2.0º to 40.0º  

(2θ º), with a scan step size of 0.020 (2θ º) and a counting time of 35 s/step. Measurements 

were registered at room temperature (298 K) and samples were kept rotating at 30 rpm during 

the data acquisition. 

3.1.1.2 Structural elucidation 

The X-Ray data used for the structural elucidation, i.e., Rietveld refinements, were 

collected using a Panalytical X’Pert PRO diffractometer with Bragg-Brentano geometry.  

Cu Kα X-Ray radiation (λ1=1.5406 Å, λ2=1.5441 Å, I2/I1=0.5) was used, with a tube voltage 

and intensity of 45 kV and 40 mA, respectively. The goniometer arm length was 240 mm, 

using a divergence slit fixed at 1/16º. The detector was a Panalytical X’Celerator, using a 

scan range from 3.0º to 75.0º (2θ º), with a scan step size of 0.017º (2θ º) and a counting time 

of 12414 s/step. Measurements were registered at room temperature (298 K) and samples 

were kept rotating at 30 rpm during the data acquisition. 
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3.1.2 Chemical analyses 

The chemical analyses of the obtained materials could be obtained by several  

methodologies, but in this thesis only Inductively Coupled Plasma (ICP) and Elemental  

Analysis (EA) were routinely used, depending on the studied elements. 

3.1.2.1 Inductively Coupled Plasma (ICP) 

The Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) allows 

the analysis of most of the chemical elements. By this technique, individual atoms present in 

a solution are nebulized and then excited by a high temperature plasma. Excited atoms relax 

to their fundamental state by photon emission, with an associated energy characteristic of 

each element. Intensity of this emission is proportional to the concentration of the element in 

the solution, and therefore, it is possible to get qualitative and quantitative information when 

the measure is compared with a calibration curve made by standards for each measured  

element.[4, 5] 

Samples were analysed in a Varian 710-ES device. Solid samples were grinded and 

then dissolved in a 1/1/3 (volumetric ratios) solution of HNO3 (65 v/v.%)/ HF (40 v/v.%)/ 

HCl (30 v/v.%), filling with Milli-Q water up to 60 mL. Calibration curves were built with 

commercial standard solutions. 

3.1.2.2 Elemental Analysis (EA) 

Elemental Analysis (EA) consists in the combustion of samples at high temperature 

(1100ºC) under a pure oxygen atmosphere allowing the formation of CO2, N2 and H2O from 

the C, N and H contained in the sample, respectively. When formed, these compounds  

are separated by a chromatographic column and measured with a thermal conductivity  

detector (TCD). 

Elemental analyses were measured using a Fisons EA1108 elemental analyser,  

employing sulphanilamide as standard. 
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3.1.3 Thermogravimetric analyses 

Thermogravimetry analysis (TG) monitors the mass change of a sample when contin-

uously heated at a given heating rate under controlled atmosphere, typically dry air or N2. 

Differential Thermal Analysis (DTA) gives information about the process nature 

measuring the difference of the TG measures against a standard, which allows distinguishing 

between endothermic and exothermic processes.[4] 

TG analyses were performed on a Mettler Toledo TGA/SDTA851e device. Measured 

samples (ca. 5 mg) were heated up to 800ºC, at 10ºC/min heating speed and under a  

20 mL/min dry air stream. 

3.1.4 Textural properties 

The surface area and the pore volume and size of a catalyst are key properties in  

catalysis and separation processes. The surface area and the pore volume set the reagent  

accessibility to the active centres, while the pore size and morphology determine the process 

selectivity. Surface area and pore volume are calculated from the N2 adsorption-desorption 

isotherms at liquid nitrogen temperature (77 K). The pore size distribution is calculated from 

the high-resolution Ar adsorption isotherm at liquid Ar temperature (87 K). Porous materials 

could be classified by the curve shape of the adsorption-desorption isotherm as shown in 

Figure 3.2.[6, 7] 

 
Figure 3.2. Classification of adsorption-desorption isotherms. 
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Type I isotherm corresponds to microporous solids with a relatively small external 

surface, having mostly narrow pores (a), wider pores or, partially, even mesopores (b);  

type II corresponds to the monolayer adsorption over non-porous or macroporous materials; 

type III corresponds to the multilayer adsorption over non-porous or macroporous materials; 

type IV corresponds to mesoporous materials with mesopores wider than (a) or narrower  

than 4 nm (b); type V corresponds to the multilayer adsorption in materials with a weak 

adsorbent-adsorbate interaction; and type VI corresponds to the layer-by-layer adsorption 

over highly uniform non-porous surfaces. 

Samples were calcined and sieved between 0.2 - 0.4 mm and then measured in a  

Micromeritics ASAP 2020 device, with a 400ºC pre-treatment under vacuum (10-3 Pa) for 12 

hours. 

3.1.4.1 Surface area and micropore volume determination 

The surface area was calculated by the BET method, proposed by Brunauer, Emmett 

and Teller.[8] This method is based on the hypothesis that the adsorbent surface is uniform 

and porous-less, and the gas molecules are adsorbed layer by layer, without taking in account 

the adsorbate molecular lateral interactions. This method is therefore only applicable at low 

pressures or to non-porous solids. As zeolites are microporous materials and no multilayer of 

adsorbate is formed, the surface area values obtained from the BET method are just for  

guidance, but the values allow to compare related materials. 

The BET equation can be described as: 

𝑃

𝑉(𝑃0 − 𝑃)
=

1

𝑉𝑚𝑐
+
𝑐 − 1

𝑉𝑚𝑐

𝑃

𝑃0
 

where V is the amount of adsorbed gas at P pressure, Vm is the adsorbed gas volume 

when the entire surface is covered with a monolayer, c is a constant value related with the 

adsorption heat and the adsorbate affinity for the adsorbent, P is the equilibrium pressure and 

P0 is the saturation pressure. The 𝑃/(𝑉(𝑃 − 𝑃0) versus 𝑃/𝑃0 graph gives the required gas 

volume to cover a monolayer, Vm, as well as the c constant.  

In order to calculate the surface area, the adsorbate molecular area (Am) is required to 

be known (Am), being this value 16.2 Å2 for the N2. The BET surface area is calculated by: 
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𝑆𝐵𝐸𝑇 =
𝑉𝑚 · 𝑁𝐴 · 𝐴𝑚

𝑀
 

With NA being the Avogadro number and M the volume occupied by a mole of  

adsorbate gas at ideal conditions. 

The micropore volume was determined by the t-plot method developed by Boer et 

al.[9, 10] This method consists in the graph of the adsorbed N2 volume versus the average width 

of the adsorbed layer, t. When employing N2 as adsorbate, the t value is calculated from the 

relative pressure employing the Harkins-Jura equation for the non-porous titanium oxide  

(anatase).[11] 

𝑡 = (
13.99

0.034
− 𝑙𝑜𝑔[𝑃/𝑃0])

1/2

 

With the equation proposed by Boer et al.,[9] where a N2 monolayer width equals to 

3.54 Å,  

𝑡 = 3.54 (
𝑉

𝑉𝑚
)Å 

the adsorbed N2 volume versus t graph generates a linear equation, whose y-intercept 

value i equals to the micropore volume, Vmic. 

𝑉𝑚𝑖𝑐(𝑐𝑚
3/𝑔) = 0.00157 · 𝑡 + 𝑖 

3.1.4.2 Micropore size distribution determination 

The micropore size distribution was calculated from the argon adsorption isotherm 

applying the Horvath-Kawazoe method.[12] This method is based on the assumption that only 

appropriately sized pores will be filled given an adsorbate relative pressure. 

𝑙𝑛 (
𝑃

𝑃0
) =

𝑁𝐴
𝑅𝑇

𝑁𝑆𝐴𝑆 +𝑁𝐴𝐴𝑎
𝜎4(𝐿 − 2𝑑0)

[
𝜎4

3(𝐿 − 𝑑0)
3
−

𝜎10

9(𝐿 − 𝑑0)
9
−

𝜎4

3(𝑑0)
3
+

𝜎10

9(𝑑0)
9
] 
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being: 

 L: solid pore diameter in Å. 

 P/P0: relative pressure. 

 NA: Avogadro constant. 

 NS: atoms amount per adsorbent area. 

 AS: adsorbent Kirkwood-Mueller constant. 

 AA: adsorbate Kirkwood-Mueller constant. 

 Σ: intermolecular distance with zero energy interaction. 

 d0 = (ds + da)/2: distance between adsorbent and adsorbate molecules. 

 ds: adsorbent molecular diameter. 

 da: adsorbate molecular diameter. 

Then, the micropore size radial distribution is calculated from the derivative of the 

adsorbed volume versus the pore diameter. 

3.1.5 Nuclear magnetic resonance 

The nuclear magnetic resonance (NMR) spectroscopy studies the behaviour of atomic 

nuclei when exposed to an external magnetic field. This technique allows the study of the 

chemical environment of selected atomic nuclei. The interaction of atomic nuclei with  

non-zero spin atomic number (I≠0) and the angular spin momentum when exposed to  

an external magnetic field (B0) leads to a splitting of the energy levels of the nuclei.[13]  

In the absence of the magnetic field the nuclear spins are randomly oriented, but when  

exposed to a magnetic field, positive spins are aligned towards the magnetic field direction, 

while negative spins are aligned against, resulting in a minimum energy states α and β, re-

spectively. These levels present very small energy and population differences, being the low 

energy level α the most populated (Figure 3.3). 
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Figure 3.3. Energy levels of a ½ spin nuclei exposed to a magnetic field. 

 

The energy difference between the two levels is proportional to the applied magnetic 

field. Resonant absorption by nuclear spins occurs when a pulse of electromagnetic radiation 

B1 (B1>>>B0) of the correct frequency (i. e., a frequency nearby to the Larmor precession 

frequency of the nuclei) is applied to the sample. This provokes an energy transition from the 

α spin to the β spin energy levels, and the following relaxation to the low α energy level 

provokes an electromagnetic emission that is recorded as a free induction decay (FID, also 

called Bloch-Decay). The FID is a time dependent spectrum that is converted to a frequency 

dependent spectrum when Fourier transform is applied. 

Molecules nuclei are surrounded by mobile electrons that induce a small magnetic 

field opposing the external field. Therefore, the effective magnetic field applied over the  

nuclei is less intense than the nominal magnetic field. This shielding effect depends on the 

electronic density and its distribution around the nuclei, which allows the identification of 

the chemical environment of individual atoms in a molecule. The chemical shift (δ) represent 

the frequency variation due to the different electronic shielding in each nucleus. 

Liquid NMR spectra present very sharp and defined resonances as molecules quickly 

refocus in homogeneous liquid media. On the other hand, solid NMR spectra generally  

present broad resonances, which provokes a great loss of resolution. This is due to several 

interactions, being the most important:[14] 

 Dipolar interactions: these interactions are due to the dipole-dipole interaction  

between the magnetic moments of nearby nuclei. When the sample is submitted to an 

external magnetic field, the nuclear spins align towards or against the external field, 

which generates a small magnetic field that interact with the nearby nuclei. 

B0 = 0

B0 ≠ 0

m1 = +1/2

m1 = -1/2

  = 
  

2 
 0



Chapter 3: Experimental section 

 

 

77 

 Quadrupolar interactions: these interactions occur in nuclei with I > 1/2. These 

nuclei present a non-spherical nuclear spin gradient, which interacts with electronic 

fields generated by the asymmetric electric charge distribution. 

 Chemical shift anisotropy: these interactions are due to the interaction between the 

external magnetic field and the magnetic field induced by the electrons close to the 

nuclei. The electron distribution is usually non-spherical, and therefore, the frequency 

modification depends on the relative orientation between the electron cloud and the 

external magnetic field. 

The fast spinning of the sample at the magic angle (54º74’) relative to the external 

magnetic field allows lowering the dipolar interactions, the chemical shift anisotropy and the 

quadrupolar interactions.[15] Additionally, when measuring low abundance nuclei, cross  

polarization (CP) technique allows increasing the signal to noise ratio. This technique is 

based on the dipolar coupling of low abundance nuclei (e.g., 13C or 15N) and a high abundance 

and gyromagnetic ratio nuclei (e.g., 1H). 

Finally, nuclei could interact with the electron cloud of other nuclei though chemical 

bonds. This heteronuclear interaction is named J-coupling or spin-spin coupling, and leads to 

the unfolding of the resonance signal from the measured nuclei, giving rise to a signal  

multiplicity. The multiplicity provides information on the number of centres coupled with 

the measured nuclei, producing multiplet patterns which are denoted by the number of  

resonance signals produced as singlet (s), doublets (d), triplets (t), quartets (q), quintets 

(quint), etc, and combinations between them like doublet of triplets (dt) and so on. Complex 

patterns are simply denoted as multiplet (m). 

3.1.5.1 Phosphorus NMR 

The 31P is a medium sensitive nucleus with a spherical nuclear charge distribution  

(I = 1/2). It presents a 100 wt.% natural abundance, a relatively high magnetogyric ratio 

(10.84·107 rad·T-1·s-1), a wide chemical shifts range and yields sharp resonances, which 

makes its spectra easily interpretable. Liquid and MAS-NMR 13C and 31P were employed to 

study the OSDA along the synthesis, crystallization, and post-synthesis treatments of the  

obtained materials.[16-19] 
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3.1.5.2 Silicon NMR 

The 29Si is a low sensitive nucleus with a spherical nuclear charge distribution  

(I = 1/2). It presents a 4.68 wt.% natural abundance, a medium magnetogyric ratio (-5.32·107 

rad·T-1·s-1), a wide chemical shifts range and yields sharp resonances, which makes its  

spectra easily interpretable for determining the chemical environment in silicon compounds. 

Silicon atoms in the zeolite framework tetrahedrally coordinated to other T atoms are 

denoted as Q4, resulting in five different silicon environments denoted as Si(nAl) units, where 

n corresponds to the number of aluminium atoms in the second coordination sphere. Each 

type of Si(nAl) unit (n = 0, 1, 2, 3 or 4) yields 29Si MAS-NMR resonances in a well-defined 

range of chemical shifts. These ranges are summarized for the various aluminosilicate units 

in Figure 3.4. 

 
Figure 3.4. 29Si MAS-NMR chemical shifts of Si(nAl) units in zeolite frameworks. The dotted 

lines for Si(4Al) designate the chemical shift range observed for 1:1 aluminosilicate sodalites 

with different cage fillings. 

 

The 29Si MAS-NMR spectra of zeolites consisting in silicon atoms on  

crystallographically equivalent T-sites are a function of the framework composition.  

Therefore, the framework nSi/nAl ratio of these materials may be calculated directly from 

the different 29Si resonance intensities using the formula: 
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where the terms ISi(nAl) are the intensities of the different Si(nAl) resonances. The  

comparison of the framework nSi/nAl ratio calculated by 29Si MAS-NMR with the bulk  

composition determined by chemical analysis allows to calculate the amount of  

non-framework aluminium atoms. Also, in each zeolite there are connectivity defects like 

hydroxyl groups bounded to silicon atoms (Q3, Q2), located at the outer surface of the zeolite 

particles or at framework defects.[14] 

3.1.5.3 Fluorine NMR 

The 19F is a high sensitive nucleus with a spherical nuclear charge distribution  

(I = 1/2). It presents a 100 wt.% natural abundance, a high magnetogyric ratio (25.18·107 

rad·T-1·s-1), a wide chemical shifts range and yields sharp resonances, which makes its  

spectra easily interpretable, similar to 1H NMR spectra. 

The multiplet structure of the 19F resonances yields information about the  

neighbourhood of fluorine atoms. Spin-spin couplings are transmitted through chemical 

bonds and yield information about the immediate molecular environment. The interaction of 

19F with 31P and 29 Si nuclei can unfold the multiplet structure in the 19F NMR spectra. 

3.1.5.4 Aluminium NMR 

The 27Al is a sensitive nucleus with a quadrupolar nuclear charge distribution (I = 5/2). 

It presents a 100 wt.% natural abundance, a medium magnetogyric ratio (6.98·107 rad·T-1· 

s-1) and a wide chemical shifts range. The resonance shape depends on the environment  

symmetry, being broader as asymmetry increases. 

The 27Al MAS-NMR spectra are very useful to identify the Al coordination in a given 

material. Tetrahedral coordination is usually identified as aluminium incorporated in  

framework positions replacing Si atoms, with a resonance centred around 55 ppm. On the 

other hand, octahedral coordination is usually identified as extra-framework Al, with  

resonances centred at 0 ppm.[20] However, it is possible to have octahedrally coordinated 

framework Al atoms when Al also interacts with some species, like water of phosphorous 

oxides. Then, after post-synthesis treatments, it is possible to reassess the Al atoms as  

tetrahedrally coordinated framework Al atoms.[21, 22] There is also the possibility of Al atoms 

presenting a distorted-tetrahedrally coordination or even pentacoordinated. These  

configurations result in broad resonances typically centred around 30 ppm.[23] Finally, it is 
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also possible to measure no Al at all because of the so-called “invisible aluminium” effect. 

The effect consist in the extreme broadening of low intensity Al signals because of the high 

nuclear spin moment (I = 5/2) and the environment asymmetry, especially in dehydrated  

zeolites.[24] 

3.1.5.5 NMR spectrometers and data collection 

Liquid NMR measures were performed to solutions of the OSDA´s in a deuterated 

solvent (mainly D2O) in a Bruker AV-300-SB NMR device at room temperature. Unless 

otherwise stated, 1H NMR spectra were acquired as direct Bloch decay, 13C NMR spectra 

were acquired after 1H cross polarization to 13C nuclei to enhance the 13C spectra  

resolution and signal to noise ratio, and 31P NMR spectra were acquired in proton decoupled 

conditions to avoid the coupling of 1H and 31P nuclei. 

MAS-NMR measures were performed to zeolite samples in a Bruker-400-WB device 

at room temperature. Single pulse acquisition parameters are shown in Table 3.1. 

Table 3.1. Single pulse MAS-NMR acquisition parameters for each nucleus. 

Nuclei I 

Natural 

abundance 

(wt.%) 

Frequency 

at B0=9.4 T 

(MHz) 

Pulse 

angle 

(rad) 

Pulse 

length 

(μs) 

Time be-

tween 

pulses (s) 

Reference 

Spinning 

speed 

(kHz) 
29Si 1/2 4.7 79.5 π/3 6 40a, 240b TMS 5 
11B 3/2 80.1 128.4 π/12 1 1 BF3.OEt2 10 

27Al 5/2 100 103.8 π/18 1 1 AlNO3 15 
31P 1/2 100 165.8 π/2 5 20 H3PO4 10 
19F 1/2 100 376.3 π/2 4.5 100 CFCl3 25, 15 
13C 1/2 1.108 100.6 π/4 6 30 Ad.c 5 

71Ga 3/2 30.83 122 π/12 25 0.5 Ga2O3 30 
a: calcined samples; b: as-made samples; c: adamantane. 

3.1.6 Acidity of zeolites 

The acidity is a key property for the characterization of zeolites because of their  

potential application in catalytic processes. The acidity could be measured by several  

techniques,[25] but in this thesis only Fourier Transform-Infrared (FT-IR) spectroscopy using 

pyridine as probe molecule and Ammonia Thermoprogrammed Desorption Mass  

Spectrometry (TPD-MS) were used. 



Chapter 3: Experimental section 

 

 

81 

3.1.6.1 Fourier Transform-Infrared spectroscopy using pyridine as 

probe molecule 

The Fourier Transform-Infrared (FT-IR) spectroscopy using pyridine as probe mole-

cule is a useful technique to elucidate the catalyst acidity. This technique is based on the 

adsorption of pyridine over the studied material. The pyridine is retained by the different 

types of acid centres, Lewis or Brönsted, of the zeolite. Then, the material is increasingly 

heated to desorb the pyridine, being stepwise desorbed at different temperatures. The material 

is then studied by infrared (IR) spectroscopy, as the IR radiation corresponds to the vibration 

frequencies of the functional groups being present in the molecules adsorbed over the sample. 

The information obtained by the FT-IR depends on the spectra region. Thus, it can be 

distinguished the following regions: 

 4000-3000 cm-1 region: This region, called hydroxyl (OH) stretching in the case 

of zeolites, gives information about the nature of OH species in the zeolite due to the 

occurrence of trivalent cations, like B or Al, or due to structural defects.[25] The  

following bands are often observed within this region:  

 3745 - 3700 cm-1: assigned to surface OH groups or due to structural defects 

inside the voids of the zeolite. These centres are weakly acidic. 

 3680 - 3660 cm-1: assigned to OH groups in extra-framework Al species, or to 

OH bonded to the P incorporated in the solids, both of them weakly acidic.[26, 27] 

 3650 - 3500 cm-1: assigned to bridge OH groups Si-OH-Al units. This band is 

associated with framework Al species that present a strong acidity. 

 3500 cm-1: it is a wide band associated to species related to hydrogen bonds 

and other framework silanol groups or oxygen species. These centres are weakly 

acidic. 

 1300-1700 cm-1 region: This spectra region allows studying the organic molecules 

adsorbed over the material surface. When pyridine is employed as probe molecule, 

this molecule interacts differently with the Brönsted and Lewis acid centres of the 

material. Therefore, this technique allows distinguishing the nature of the acid centre. 

When the adsorbed pyridine molecule (Py) interacts with a Brönsted acid centre, the 

base is protonated, yielding a pyridinium cation (PyH+), which possesses a  

characteristic band at 1545 cm-1 in the FTIR spectra. On the other hand, when the 
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pyridine molecule interacts with a Lewis acid centre (PyL), the pyridine is coordinated 

to the acid centre by the donation of a pair of electrons to the metallic atom, being 

observed a characteristic band at 1455 cm-1 in the FTIR spectra.[28] 

The concentrations of pyridine molecules adsorbed on the Lewis or Brönsted acid 

centres are calculated using the extinction coefficients proposed by Emeis.[29] 

𝐶( ) = 1.88𝐴( )𝑅2 𝑊⁄  

𝐶(𝐿) = 1.42𝐴(𝐿)𝑅2 𝑊⁄  

being:  

 C(B): pyridine concentration adsorbed over Brönsted acid centres (mmol/g. catal.). 

 C(L): pyridine concentration adsorbed over Lewis acid centres (mmol/g. catal.). 

 A(B,L): absorbance band area for Brönsted (B) or Lewis (L) acid centres (cm-1). 

 R: catalyst pellet radius (cm). 

 W: catalyst pellet weight (mg). 

Measures were performed in self-supporting pellets of ca. 10 mg sample weight and 

13 mm diameter. The samples were pre-treated at 400ºC under 10-3 Pa vacuum for 12 hours 

to remove water and any organic matter remaining in the solid. In order to adsorb the  

pyridine, the pellet was exposed to gaseous pyridine at 650 Pa and room temperature until 

equilibrium is reached. Then, the desorption of the pyridine was done at room temperature 

and vacuum, followed by a treatment under vacuum and temperature for an hour. Essayed  

temperatures were 150ºC, 250ºC and 350ºC. After desorption, the infrared spectra were  

recorded at room temperature in a Thermo Scientific Nicolet 710 FTIR infrared spectrometer 

for each one of the applied desorption temperatures. 
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3.1.6.2 Ammonia Thermoprogrammed Desorption Mass Spectrometry 

(TPD-MS) 

The adsorption of ammonia over a solid is a technique employed to study the catalyst 

acidity. This technique is based on the adsorption of a probe molecule over the catalyst  

followed by the desorption of the probe molecule after the stepwise heating of the samples. 

The probe molecule, ammonia in this case, is analysed at the gas outlet by mass spectrometry 

using a TCD detector. The amount of adsorbed ammonia is related to the number of acid 

centres in the solid, while the temperature at which the desorption takes places is dependent 

on the acid strength of those centres. Ammonia is usually used as probe molecule because of 

its small size, allowing the analysis of most of the catalyst acid centres.[30, 31] 

However, the use of the Ammonia Thermoprogrammed Desorption (TPD) present 

some disadvantages versus the FTIR pyridine adsorption. First, it is impossible to distinguish 

between Brönsted and Lewis acid centres. Also, experimental curves of the ammonia mass 

spectrum with m/e = 17 and m/e = 16 are usually strongly influenced by the presence of 

water, so the acidity is studied using the signal corresponding to m/e=15.[6] 

The ammonia TPD experiments were performed in a Micromeritics Autochem 2910 

TPD-TPR device, using ca. 200 mg of the samples sieved between 0.4-0.8 mm, and  

pre-treated with a heating rate of 10ºC/min up to 450ºC. When this temperature was achieved, 

samples were kept for an hour under an oxygen stream. Next, the samples were treated for 

30 minutes under an argon stream, and then, under a helium stream. When stabilized, the  

samples were cooled down to 100ºC under a helium stream and were submitted to a set of  

ammonia pulses of 10 min at 176ºC until saturation was reached. Finally, the samples were 

heated with a heating rate of 10ºC/min up to 800ºC under an argon stream and the desorbed 

ammonia was analysed by mass spectroscopy with a thermal conductivity detector (TCD). 

3.1.7 Electron microscopy techniques 

Crystalline materials crystallize in a wide variety of shapes and sizes. The  

characterization of those parameters could be done by a number of techniques,[32] but in this 

thesis only scanning electron microscopy was used. Additionally, a modification of  

transmission electron microscopy was also used to study the crystallography of selected  

materials. 
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3.1.7.1 Scanning Electron Microscopy (SEM) 

The Scanning Electron Microscopy (SEM) technique allows determining the size and 

morphology of the crystallites of materials. With this technique, the size distribution of  

crystallites could be calculated, and it is sometimes possible to detect the presence of  

impurities or amorphous material inside the sample. 

The SEM technique involves illuminating a sample with a focused electron beam 

through a system of magnetic lenses. When the beam interacts with the sample, a series of 

phenomena takes place and secondary electrons, Auger electrons, backscattered electrons, 

X-Rays, etc. are generated. The signal obtained from the secondary electrons is used to obtain 

images of high resolution SEM to study the shape and size of the crystals of zeolites.[33] 

Two SEM devices were used: 

 SEM microscope: The samples were submitted to a pre-treatment. First, the sam-

ple is dispersed over a double adhesive carbon tape attached to the sample-holder. 

Then, due to the low electric conductivity of zeolites, the samples were metallized 

with a gold coating, using a BAL-TEC SCD005 sputter coater along 90 s with a 40 

mA current and a 5·10-2 mbar pressure, obtaining a ca. 10 nm gold layer. SEM images 

were measured in a JEOL JSM6300 microscope. 

 FESEM microscope: A Field Emission SEM (FESEM) microscope is a variation 

of a SEM microscope where the source of electrons comes from a field emission  

cannon that provides highly focused high and low energy beams, which significantly 

improves spatial resolution and allows working at very low potentials. In this case no 

pre-treatment of the samples is usually needed and samples are dispersed over a  

double adhesive carbon tape attached to the sample-holder. FESEM images were 

measured in a ZEISS ULTRA55 microscope. 

3.1.7.2 Energy Dispersive X-Ray spectroscopy (EDX) 

The Energy Dispersive X-Ray spectroscopy (EDX) technique measures the chemical 

analysis of the irradiated samples. The sample receives X-Ray radiation when the electron 

beam strikes over the surface. The X-Rays are then scattered with an X-Ray energy charac-

teristic of each chemical element, providing qualitative and quantitative analytical infor-

mation of selected points, lines or areas over the surface of the sample. 
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EDX analyses were registered both in JEOL JSM6300 SEM microscope and ZEISS 

ULTRA55 FESEM microscope. EDX technique was used as a complementary tool of  

chemical analyses described in section 3.1.2. 

3.1.7.3 Transmission Electron Microscopy (TEM) 

The Transmission Electron Microscopy (TEM) technique generates a contrast image 

from the emitted electrons that pass through the sample, located in the path of an accelerated 

electron beam. This technique was no directly used in this thesis, but it was the starting point 

for the application of Electron Diffraction Tomography (EDT), described next. 

3.1.7.4 Electron Diffraction Tomography (EDT) 

The Electron Diffraction Tomography (EDT) is a technique that combines the features 

of the TEM technique and the X-Ray diffraction. This is done using electrons instead of  

X-Rays to induce diffraction. The electrons interact stronger with the matter than the X-Rays, 

and thus, nano-sized crystals could be studied as single-crystals in X-Ray diffraction.[34-36] 

The EDT technique used in this thesis was modified to allow the study of small  

crystallites recording the data as fast as possible to avoid the sample degradation during the 

measure, naming the technique as Ultrafast Electron Diffraction Tomography. A sample 

holder consisting in an automatic goniometer was used, allowing the data collection at  

different electron beam incidence angles in the sample specimen. In order to minimize the 

amorphization of the samples, a novel fast data collection methodology was developed in 

which the crystal is rapidly and continuously tilted during sequential pattern acquisition 

avoiding the relocation of the crystal during intermediate steps.[37, 38] 

The samples were prepared by grinding them on an agate mortar and then dispersed 

in dichloroethane. A drop of this solution was deposited on a carbon-coated copper grid. The 

grid was kept at room temperature in a fume hood until the solvent was fully evaporated. 

EDT measures were taken on a JEOL JEM-2100F microscope operating at 200 kV, in parallel 

microdiffraction mode, and equipped with a NanoMEGAS-Digistar P1000 for beam  

precession and a GATAN Orius SC600A CCD camera.  



 Synthesis and characterization of zeolitic materials using P-OSDA 

 

 

86 

3.2 Methods and materials 

3.2.1 OSDA synthesis 

Most of the cations used in this thesis are not commercial, and thus were synthesized 

by the Menshutkin reaction or oxidative addition.[39] In this reaction, a tertiary amine,  

phosphine or aminophosphine is alkylated with an alkyl halide, which yields the desired 

quaternized cation. Most of the OSDA´s used in this thesis are phosphorous containing  

cations, both tetraalkylphosphonium and alkyltriaminophosphonium cations, but some 

tetraalkylammonium cations were also used. 

One critical issue with the use of phosphines and aminophosphines as reagents is their 

hazardousness. In addition to their high toxicity, these reagents are also pyrophoric and thus, 

react with oxygen and water. This property has limited the development of these kinds of 

OSDA´s, as most of the laboratory working up should be done under controlled atmosphere. 

This is especially important for phosphines, which generally react violently with water and 

oxygen (and the more violent the smaller and lighter the phosphine is). Because of that,  

ampouled reagents were preferred when available, and then transferred to reaction flasks  

inside a gloves box. Also, the use of anhydrous solvents is a must. Prior to their use, the 

solvents are dried and deoxygenated by passing them through commercial CuO and alumina 

columns under nitrogen atmosphere. 

After the quaternization of phosphines and aminophosphines, the alkylphosphonium 

and alkylaminophosphonium cations are completely stable and do not react with oxygen or 

water, and thus, could be safely stored for a long time. When commercially available, the 

quaternized compounds are preferred, taking care of the presence of phosphine traces. 

The cations tested as OSDA´s were always used as hydroxides. Thus, the cation halide 

salts were dissolved in water or methanol in a beaker. After that, an anionic exchange  

Amberlite IRN-78 resin was added to the solution. The amount of added resin corresponded 

to 1 gram of resin per milliequivalent of halide salt. 

The detailed synthesis protocols and properties of the OSDA´s employed along this 

thesis are given in the next sub-sections. 
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3.2.1.1 OSDA-1: tetraethylammonium cation (TEA) 

Commercial tetraethylammonium hydroxide (35 wt.% in H2O, Aldrich) was used as 

received. 

The purity of the solution was checked by liquid NMR (Figure 3.5). 

1H NMR (D2O): a: 1.09 ppm (tt, 12xH, N(CH2CH3)4); b: 3.08 ppm (c, 8xH, 

N(CH2CH3)4). 

13C NMR (D2O): A: 51.82 ppm (t, N(CH2CH3)4); B: 6.50 ppm (s, N(CH2CH3)4). 

 
Figure 3.5. 1H-NMR (above) and 13C-NMR (below) spectra of tetraethylammonium hydroxide 

in deuterated water solution (D2O). Asterisk in 1H-NMR spectrum marks proton resonance  

of water. 

3.2.1.2 OSDA-2: tetraethylphosphonium cation (TEP) 

Tetraethylphosphonium hydroxide was obtained from commercial tetraethylphospho-

nium bromide (99 wt.%, Aldrich). The commercial salt was dissolved in Milli-Q water  

solution and anionic exchanged with Amberlite IRN-78 resin in batch overnight, resulting in 

a 0.46 M solution of tetraethylphosphonium hydroxide. 

  

0123456

* ab

1H-NMR d / ppm A

B

13C-NMR d / ppm
010203040506070



 Synthesis and characterization of zeolitic materials using P-OSDA 

 

 

88 

The purity of the halide salt was checked by liquid NMR (Figure 3.6). 

1H NMR (D2O): a: 1.08 ppm (dt, 12xH, P(CH2CH3)4); b: 2.26 ppm (dq, 8xH, 

P(CH2CH3)4). 

13C NMR (D2O): A: 4.50 ppm (d, P(CH2CH3)4); B: 10.42 ppm (d, P(CH2CH3)4). 

31P NMR (D2O): 40.22 ppm (s, H decoup.). 

 
Figure 3.6. 1H-NMR (above), 13C-NMR (middle) and 31P-NMR (below) spectra of  

tetraethylphosphonium bromide in deuterated water solution (D2O). Asterisk in 1H-NMR  

spectrum marks proton resonance of water. 

3.2.1.3 OSDA-3: methyl-tris-(dimethylamino)-phosphonium cation 

(MNP) 

In a typical synthesis (Figure 3.7), a solution of 24.0 g (179.8 169.5 mmol, 99 wt.%, 

Aldrich) of iodomethane (b) in 50 ml of anhydrous acetonitrile (99 wt.%, Alfa-Aesar) was 

added dropwise under stirring to a solution of 18.5 g (113.0 mmol, 97 wt.%, Alfa-Aesar) of 

tris(dimethylamino)phosphine (a) in 200 ml of anhydrous acetonitrile (99 wt.%, Alfa-Aesar) 

under nitrogen atmosphere. The mixture was stirred at room temperature for two days until 

the reaction takes place. The resulting solution was rotary evaporated until a white precipitate 

appeared and then, diethyl ether was added to completely precipitate the desired product. The 
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precipitate was recovered by filtration, washed with a mixture of acetonitrile and diethyl ether 

and dried under vacuum. The product methyl-tris-(dimethylamino)-phosphonium iodide (c) 

was obtained as a white powder with a yield over 98%. 

Then, the product was dissolved in Milli-Q water and exchanged to the hydroxide 

form using an anionic exchange Amberlite IRN-78 resin in batch overnight, resulting in a 

0.25 M solution of the methyl-tris-(dimethylamino)-phosphonium hydroxide (d). 

 
Figure 3.7. Synthesis scheme of the methyl-tris-(dimethylamino)-phosphonium cation (MNP). 

 

Chemical purity of the iodide salt was checked by chemical analyses (Table 3.2) and 

liquid NMR (Figure 3.8). 

Table 3.2. Theoretical and experimental chemical composition of methyl-tris-(dimethylamino)-

phosphonium iodide. Ratios are given as molar ratios. 

C7H21N3PI wt.% C wt.% P wt.% N wt.% H C/P N/P 

Theoretical 27.5 10.1 13.8 6.9 7 3 

Experimental 25.1 9.3 12.6 7.2 7 3 

1H NMR (D2O): a: 1.85 ppm (d, 3xH, PCH3); b: 2.63 ppm (d, 18xH, P(N(CH3)2)3). 

13C NMR (D2O): A: 6.74 ppm (d, PCH3); B: 35.53 ppm (d, P(N(CH3)2)3). 

31P NMR (D2O): 58.80 ppm (s, H decoup., PN3C). 

(a) (b) (c) (d)
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Figure 3.8. 1H-NMR (above) 13C-NMR (middle) and 31P-NMR (below) spectra of methyl-tris-

(dimethylamino)-phosphonium iodide in deuterated water solution (D2O). Asterisk in 1H-NMR 

spectrum marks proton resonance of water. 

 

3.2.1.4 OSDA-4: methyl-tri-isopropylphosphonium cation (MIP) 

In a typical synthesis (Figure 3.9), a solution of 25.5 g (179.8 mmol, 99 wt.%, Aldrich) 

of iodomethane (b) in 50 ml of anhydrous acetonitrile (99 wt.%, Alfa-Aesar) was added  

dropwise under stirring to a solution of 17.6 g (119.9 mmol, 98 wt.%, ABCR) of  

triisopropylphosphine (a) in 200 ml of anhydrous acetonitrile (99 wt.%, Alfa-Aesar) under 

nitrogen atmosphere at the ice bath temperature. The mixture was stirred at room temperature 

for three days until the reaction takes place. The resulting solution was rotary evaporated 

until a white precipitate appeared and then, diethyl ether was added to completely precipitate 

the desired product. The precipitate was recovered by filtration, washed with a mixture of 

acetonitrile and diethyl ether and dried under vacuum.The product methyl-tri-iso-

propylphosphonium iodide (c) was obtained as a white powder with a yield over 98%.  

Then, the product was dissolved in Milli-Q water and exchanged to the hydroxide 

form using an anionic exchange Amberlite IRN-78 resin in batch overnight, resulting in a 

0.22 M solution of the methyl-tri-isopropylphosphonium hydroxide (d). 
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Figure 3.9. Synthesis scheme of the methyl-tri-isopropylphosphonium cation (MIP). 

Chemical purity of the iodide salt was checked by chemical analyses (Table 3.3) and 

liquid NMR (Figure 3.10). 

Table 3.3. Theoretical and experimental chemical composition of methyl-tri-isopropylphospho-

nium iodide. Ratios are given as molar ratios. 

C10H24PI wt.% C wt.% P wt.% H C/P 

Theoretical 39.7 10.2 8.0 10 

Experimental 40.1 9.1 8.5 11.3 

1H NMR (D2O): a: 1.26 ppm (dd, 18xH, P(CH(CH3)2)3); b: 1.64 ppm (d, 3xH, PCH3), 

c: 2.63 ppm (dquint, 3xH, P(CH(CH3)2)3). 

13C NMR (D2O): A: 0.34 ppm (d, P(CH(CH3)2)3); B: 17.96 ppm (d, P(CH(CH3)2)3); 

C: 22.40 ppm (d, PCH3). 

31P NMR (D2O): 44.55 ppm (s, H decoup., PN3C). 

(a) (b) (c) (d)
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Figure 3.10. 1H-NMR (above), 13C-NMR (middle) and 31P-NMR (below) spectra of methyl-tri-

isopropylphosphonium iodide in deuterated water solution (D2O). Asterisk in 1H-NMR  

spectrum marks proton resonance of water. 

3.2.1.5 OSDA-5: di-isopropyl-diethylammonium cation (IEN) 

In a typical synthesis (Figure 3.11), a solution of 46.8 g (300 mmol, 99 wt.% Aldrich) 

of ethyl iodide (b) in 50 ml of acetonitrile (99 wt.%, Alfa-Aesar) was added dropwise under 

stirring to a solution of 25.8 g (200 mmol, 97 wt.%, Alfa Aesar) of ethyldiisopropylamine (a) 

in 300 ml of acetonitrile (99 wt.%, Alfa-Aesar). The mixture was stirred at 80ºC for ten days 

until the reaction takes place. The resulting solution was rotary evaporated until a white  

precipitate appeared and then, diethyl ether was added to completely precipitate the desired 

product. The precipitate was recovered by filtration, washed with a mixture of acetonitrile 

and diethyl ether and dried under vacuum. The product di-isopropyl-diethylammonium  

iodide (c) was obtained as a white powder with a yield over 78%. 

Then, the product was dissolved in Milli-Q water and exchanged to the hydroxide 

form using an anionic exchange Amberlite IRN-78 resin in batch overnight, resulting in a 

0.37 M solution of the di-isopropyl-diethylammonium hydroxide (d). 
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Figure 3.11. Synthesis scheme of the di-isopropyl-diethylammonium cation (IEN). 

Chemical purity of the iodide salt was checked by chemical analyses (Table 3.4) and 

liquid NMR (Figure 3.12). 

Table 3.4. Theoretical and experimental chemical composition of di-isopropyl-diethylammo-

nium cation iodide. Ratios are given as molar ratios. 

C10H24NI wt.% C wt.% N wt.% H C/N 

Theoretical 42.1 4.9 8.5 10 

Experimental 41.8 5.0 8.9 9.8 

1H NMR (D2O): a: 1.27 ppm (tt, 6xH, N(CH2CH3)2); b: 1.38 ppm (dd, 12xH, 

N(CH(CH3)2)2); c: 3.32 ppm (q, 4xH, N(CH2CH3)2); d: 3.84 ppm (v, 2xH, N(CH(CH3)2)2). 

13C NMR (D2O): A: 9.59 ppm (s, N(CH(CH3)2)2); B: 17.95 ppm (s, N(CH2CH3)2); C: 

52.08 ppm (t, N(CH2CH3)2); D: 62.20 ppm (t, N(CH(CH3)2)2). 

 
Figure 3.12. 1H-NMR (above) and 13C-NMR (below) spectra of di-isopropyl-diethylammonium 

iodide in deuterated water solution (D2O). Asterisk in 1H-NMR spectrum marks proton  

resonance of water. 
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3.2.1.6 OSDA-6: phosphazene base P1-t-Bu (PB1) 

Commercial phosphazene base P1-t-Bu (97 wt.%, Aldrich) is lightly soluble in water 

but, once protonated into the cationic phosphazenium form, it is highly soluble. 

Chemical purity of the reagent was checked by liquid NMR (Figure 3.13). 

1H NMR (MeOD): a: 1.34 ppm (s, 9xH, PNC(CH3)3); b: 2.78 ppm (d, 12xH, 

P(N(CH3)2)3). 

13C NMR (MeOD): A: 32.10 ppm (d, PNC(CH3)3); B: 38.04 ppm (d, P(N(CH3)2)3); 

C: 53.08 ppm (s, PNC(CH3)3). 

31P NMR (MeOD): 33.73 ppm (s, H decoup.). 

 
Figure 3.13. 1H-NMR (above), 13C-NMR (middle) and 31P-NMR (below) spectra of phosphazene 

base P1-t-Bu in deuterated methanol solution (MeOD). Asterisk in 1H-NMR and 13C-NMR 

spectra marks proton and carbon resonances of MeOD. 
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3.2.1.7 OSDA-7: tris(diethylamino)(methyl)phosphonium cation 

In a typical synthesis (Figure 3.14), a solution of 50 g (196.08 mmol, 97 wt.%,  

Aldrich) of tris(diethylamino)phosphine (a) in 200 ml of ethyl acetate (99 wt.%, Alfa-Aesar) 

was added dropwise under stirring to a solution of 41.8 g (294.12 mmol, 99 wt.%, Aldrich) 

of iodomethane (b) in 50 ml of ethyl acetate (99 wt.%, Alfa-Aesar). The mixture was stirred 

at room temperature for five days until the reaction takes place. The mixture separates in two 

phases, an almost colourless top solution, which mainly comprises ethyl acetate and the  

unreacted reagents, and a yellowish bottom solution, which mainly contains the desired  

product and a small amount of ethyl acetate. The product was purified by successive  

extractions with Milli-Q water, and quantified by ICP spectroscopy. The product tris(diethyl-

amino)(methyl)phosphonium iodide (c) was obtained in a water solution with a yield over 

95%. 

Then, the solution of the product was exchanged to the hydroxide form using an  

anionic exchange Amberlite IRN-78 resin in batch overnight, resulting in a 0.38 M solution 

of the tris(diethylamino)(methyl)phosphonium hydroxide. 

 
Figure 3.14. Synthesis scheme of the tris(diethylamino)(methyl)phosphonium cation (PN-PN). 

Purity of the iodide salt was checked by liquid NMR (Figure 3.15). 

1H NMR (MeOD): a: 1.03 ppm (t, 18xH, P(N(CH2CH3)2)3); b: 1.83 ppm (d, 3xH, 

PCH3), c: 2.98 ppm (dq, 6xH, P(N(CH2CH3)2)3). 

13C NMR (MeOD): A: 8.32 ppm (s, PCH3); B: 14.55 ppm (d, P(N(CH2CH3)2)3); C: 

39.68 ppm (d, P(N(CH2CH3)2)3). 

31P NMR (MeOD): 56.92 ppm (s, H decoup.). 

(a) (b) (c) (d)
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Figure 3.15. 1H-NMR (above), 13C-NMR (middle) and 31P-NMR (below) spectra of tris(diethyla-

mino)(methyl)phosphonium iodide in deuterated methanol (MeOD). Asterisk in 1H-NMR and 

13C-NMR marks proton and carbon resonances of MeOD, † in 13C-NMR marks residual  

ethyl acetate resonances. 

3.2.1.8 OSDA-8: butane - 1,4-diylbis [tris(dimethylamino) phospho-

nium] cation (PN-PN) 

In a typical synthesis (Figure 3.16), a solution of 31.1 g (100 mmol, 99 wt.%, Aldrich) 

of 1,4-diiodobutane (b) in 75 ml of acetonitrile (99 w.%, Alfa-Aesar) was added dropwise 

under stirring to a solution of 40.8 g (250 mmol, 97 wt.%, Aldrich) of tris(dimethyla-

mino)phosphine (a) in 75 ml of acetonitrile (99 wt.%, Alfa-Aesar). The mixture was stirred 

at room temperature for two days until the reaction takes place. The precipitate was  

recovered by filtration, washed with acetonitrile and diethyl ether and dried under vacuum. 

The product butane - 1,4-diylbis[tris(dimethylamino)phosphonium] iodide (c) was obtained 

as a white powder with a yield over 95%. 
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Then, the product was dissolved in Milli-Q water and exchanged to the hydroxide 

form using an anionic exchange Amberlite IRN-78 resin in batch overnight, resulting in a 

0.25 M solution of the butane - 1,4-diylbis[tris(dimethylamino)phosphonium] hydroxide (d). 

 
Figure 3.16. Synthesis scheme of the butane-1,4-diylbis[tris(dimethylamino)phosphonium]  

cation (PN-PN). 

Chemical purity of the iodide salt was checked by chemical analyses (Table 3.5) and 

liquid NMR (Figure 3.17). 

Table 3.5. Theoretical and experimental chemical composition of butane - 1,4-diylbis [tris(dime-

thylamino) phosphonium] iodide. Ratios are given as molar ratios. 

C16H44I2N6P2 wt.%C wt.%P wt.%N wt.% H C/P N/P 

Theoretical 37.7 12.2 16.5 8.7 8 3 

Experimental 38.1 11.9 15.8 9.1 8.3 2.9 

1H NMR (D2O): a: 1.71 ppm (m, 4xH, P(CH2CH2CH2CH2)P); b: 2.47 ppm (m, 4xH, 

P(CH2CH2CH2CH2)P), c: 2.68 ppm (d, 36H, P(NCH2)3). 

13C NMR (D2O): A: 22.17 ppm (d, P(CH2CH2CH2CH2)P); B: 23.02 ppm (d, 

P(CH2CH2CH2CH2)P); C: 36.22 ppm (d, P(NCH2)3). 

31P NMR (D2O): 58.57 ppm (s, H decoup., PN3C). 

(a) (b) (c) (d)

(a) (b) (c) (d)

(a) (b) (c) (d) (e)

(e) (f)



 Synthesis and characterization of zeolitic materials using P-OSDA 

 

 

98 

 
Figure 3.17. 1H-NMR (above), 13C-NMR (middle) and 31P-NMR (below) spectra of butane - 1,4-

diylbis[tris(dimethylamino)phosphonium] iodide in deuterated water solution (D2O). Asterisk in 

1H-NMR marks proton resonance of water. 

3.2.1.9 OSDA-9: butane-1,4-diylbis(triisopropylphosphonium) cation 

In a typical synthesis (Figure 3.18), a solution of 14.1 g (45 mmol, 99 wt.%, Aldrich) 

of 1,4-diiodobutane (b) in 100 ml of anhydrous acetonitrile (99 wt.%, Alfa-Aesar) was added 

dropwise under stirring to a solution of 16.2 g (100 mmol, 98 wt.%, Acros) of triiso-

propylphosphine (a) in 50 ml of anhydrous acetonitrile (99 wt.%, Alfa-Aesar). The resulting 

mixture was stirred at room temperature for two days until the reaction takes place. The pre-

cipitate was recovered by filtration, washed with acetonitrile and diethyl ether and dried un-

der vacuum. The product butane-1,4-diylbis(triisopropylphosphonium) iodide (c) was  

obtained as a white powder with a yield over 95%. 
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Then, the product was dissolved in Milli-Q water and exchanged to the hydroxide 

form using an anionic exchange Amberlite IRN-78 resin in batch overnight, resulting in a 

0.3 M solution of the butane-1,4-diylbis(triisopropylphosphonium) hydroxide (d). 

 
Figure 3.18. Synthesis scheme of the butane-1,4-diylbis(triisopropylphosphonium) cation  

(PC-PC). 

Chemical purity of the iodide salt was checked by chemical analyses (Table 3.6) and 

liquid NMR (Figure 3.19). 

Table 3.6. Theoretical and experimental chemical composition of butane-1,4-diylbis(triiso-

propylphosphonium) iodide. Ratios are given as molar ratios. 

C22H44P2I2 wt.% C wt.% P wt.% H C/P 

Theoretical 42.3 9.9 7.1 11 

Experimental 42.9 10.3 7.3 10.7 

1H NMR (D2O): a: 1.21 ppm (dd, 36xH, P(CH(CH3)2)3); b: 1.67 ppm (m, 8xH, 

P(CH2CH2CH2CH2)P), c: 2.17 ppm (m, 8xH, P(CH2CH2CH2CH2)P); d: 2.63 ppm (dv, 6xH, 

P(CH(CH3)2)3). 

13C NMR (D2O): A: 14.69 ppm (d, P(CH2CH2CH2CH2)P); B: 15.99 ppm (d, 

P(CH(CH3)2)3); C: 19.71 ppm (d, P(CH2CH2CH2CH2)P); D: 23.37 ppm (dd, P(CH(CH3)2)3). 

31P NMR (D2O): 42.64 ppm (s, H decoup., PR4). 

(a) (b) (c) (d)

(a) (b) (c) (d)

(a) (b) (c) (d) (e)

(e) (f)
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Figure 3.19. 1H-NMR (above), 13C-NMR (middle) and 31P-NMR (below) spectra of butane-1,4-

diylbis(triisopropylphosphonium) iodide in deuterated water solution (D2O). Asterisk in  

1H-NMR marks proton resonance of water. 

3.2.1.10 OSDA-10: tris(dimethylamino) [4-(tri-tert-butylphosphonio) 

butyl] phosphonium cation 

In this case, measures have to be taken to avoid undesirable products like the PN-PN 

cation, or unreacted monoquaternary aminophosphonium cation. Specific synthesis  

conditions are given next: In a typical synthesis (Figure 3.20), a solution of 4.896 g (30 mmol, 

97 wt.%, Aldrich) of tris(dimethylamino)phosphine (a) in 50 ml of acetonitrile (99 wt.%, 

Alfa-Aesar) was slowly added dropwise under stirring to a solution of 55.782 g (180 mmol, 

99 wt.%, Aldrich) of 1,4-diiodobutane (b) in 200 ml of acetonitrile (99 wt.%, Alfa-Aesar). 

The resulting mixture was stirred at room temperature for three days. The precipitate was 

recovered by filtration, washed with acetonitrile and diethyl ether and dried under vacuum. 

The product tris(dimethylamino)(4-iodobutyl)phosphonium iodide (c) was obtained as a 

white powder with a yield over 87%. 
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Then, 8.815 g (18.63 mmol) of the previously obtained tris(dimethylamino)(4-iodo-

butyl)phosphonium iodide (c) were dissolved in 75 ml of anhydrous acetonitrile (99 wt.%, 

Alfa-Aesar) and added dropwise under stirring to a solution of 5 g (24.22 mmol, 98 wt.%, 

Acros) of tri-tert-butylphosphine (d) in 25 ml of anhydrous acetonitrile (99 wt.%,  

Alfa-Aesar). The mixture was stirred at room temperature for five days until the reaction 

takes place. The precipitate was recovered by filtration, washed with acetonitrile and diethyl 

ether and dried under vacuum. The product tris(dimethylamino)[4-(tri-tert-bu-

tylphosphonio)butyl]phosphonium iodide (e) was obtained as a white powder with a yield 

over 75%. Small impurities were seen in the final product, probably due to some oxidized 

aminophosphine. 

The final product was dissolved in Milli-Q water and exchanged to the hydroxide 

form using an anionic exchange Amberlite IRN-78 resin in batch overnight, resulting in a 

0.2 M solution tris(dimethylamino)[4-(tri-tert-butylphosphonio)butyl]phosphonium  

hydroxide (f). After this step, the oxidized aminophoshine was removed (probably adsorbed 

over the exchange resin). 

 
Figure 3.20. Synthesis scheme of the tris(dimethylamino)[4-(tri-tert-butylphosphonio) 

butyl]phosphonium cation (PN-PC). 

Chemical purity of the iodide salt was checked by chemical analyses (Table 3.7) and 

liquid NMR (Figure 3.21). 

  

(a) (b) (c) (d)

(a) (b) (c) (d)

(a) (b) (c) (d) (e)

(e) (f)
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Table 3.7. Theoretical and experimental chemical composition of tris(dimethylamino)[4-(tri-

tert-butylphosphonio)butyl]phosphonium iodide. Ratios are given as molar ratios. 

C22H53N3P2I2 wt.% C wt.% P wt.% N wt.% H C/P N/P 

Theoretical 39.1 9.2 6.2 7.9 11 1.5 

Experimental 37.1 9.4 6.7 8.5 10.2 1.6 

1H NMR (MeOD): a: 1.67 ppm (d, 27H, P(C(CH3)3); b: 1.95 ppm (m, 8H, 

P(CH2CH2CH2CH2)P), c: 2.17 ppm (m, 8H, P(CH2CH2CH2CH2)P); d: 2.83 ppm (d, 18H, 

P(N(CH3)2)3). 

13C NMR (MeOD): A: 24.96 ppm (s, P(CH2CH2CH2CH2)P); B: 27.13 ppm (s, 

P(CH2CH2CH2CH2)P); C: 30.28 ppm (s, P(C(CH3)3); D: 37.46 ppm (d, P(N(CH3)2)3) ; E: 

40.35 ppm (d, P()(C(CH3)3)3). 

31P NMR (MeOD): 51.30 ppm (s, H decoup., PN3); 49.90 ppm (s, H decoup., PR4). 
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Figure 3.21. 1H-NMR (above), 13C-NMR (middle) and 31P-NMR (below) spectra of tris(dime-

thylamino)[4-(tri-tert-butylphosphonio)butyl]phosphonium iodide in deuterated methanol  

solution (MeOD). Asterisk in 1H-NMR spectrum marks proton resonance of water, † in  

1H-NMR spectrum marks proton resonance of MeOH, ‡ in 1H-NMR spectrum marks small  

impurities in the product; Asterisk in 13C-NMR marks carbon resonance of MeOH. 

3.2.1.11 OSDA-11: Butane-1,4-diylbis(triethylphosphonium) cation 

In a typical synthesis (Figure 3.22), a solution of 58.02 g (187.28 mmol, 99 wt.%, 

Aldrich) of 1,4-diiodobutane (b) in 50 ml of anhydrous acetonitrile (99.9 wt.%, Alfa-Aesar) 

was added dropwise under stirring to a solution 55.3 g (468.01 mmol, 70 wt.% in isopropanol, 

Aldrich) of triethylphosphine. The mixture was stirred under nitrogen atmosphere at the ice 

bath temperature for one day, and then at room temperature for four days until the reaction 
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takes place. The resulting solution was then rotary evaporated until a white precipitate  

appeared. Then, diethyl ether was added to completely precipitate the desired product.  

Finally, the white precipitate was recovered by filtration, washed with a mixture of acetoni-

trile and diethyl ether and dried under vacuum. The product butane-1,4-diylbis(tri-

ethylphosphonium) iodide (c) was obtained as a white powder with a typical yield over 95%. 

Next, the iodide salt was dissolved in Milli-Q water and exchanged to its hydroxide 

form using an anionic exchange Amberlite IRN-78 resin in batch overnight with a typical 

yield of 92%, resulting in a 0.29 M solution of the butane-1,4-diylbis(triethylphosphonium) 

hydroxide (d). 

 
Figure 3.22. Synthesis scheme of the butane-1,4-diylbis(triethylphosphonium) cation. 

The chemical purity of the iodide salt was checked by chemical analyses (Table 3.8) 

and liquid NMR (Figure 3.23). 

Table 3.8. Theoretical and experimental chemical composition of butane-1,4-diylbis(tri-

ethylphosphonium) iodide. Ratios are given as molar ratios. 

C16H38P2I2 wt.% C wt.% P wt.% H C/P 

Theoretical 35.2 11.3 7.0 8 

Experimental 35.4 12.4 7.9 7.4 

1H NMR (D2O): a: 1.13 ppm (dt, 36H, P(CH2CH3)3); b: 1.67 ppm (m, 8H, 

P(CH2CH2CH2CH2)P), c: 2.14 ppm (dc, 24H, P(CH2CH3)3). 

13C NMR (D2O): A: 4.68 ppm (d, P(CH2CH3)3); B: 10.91 ppm (d, P(CH2CH3)3); C: 

16.41 ppm (d, P(CH2CH2CH2CH2)P); D: 21.89 ppm (d, P(CH2CH2CH2CH2)P). 

31P NMR (D2O): 38.74 ppm (s, H decoup., PR4). 

(a) (b) (c) (d)
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Figure 3.23. 1H-NMR (above), 13C-NMR (middle) and 31P-NMR (below) spectra of butane-1,4-

diylbis(triethylphosphonium) iodide in deuterated water solution (D2O). Asterisk in 1H-NMR 

marks proton resonance of water.  

3.2.2 Synthesis gel preparation 

The synthesis of zeolites was performed using the sol-gel methodology.[40] The  

general methodology consists in the preparation of a suspension by mixing the different  

reactants that constitute the synthesis gel.[41] For the synthesis of zeolites a silica source,  

water, a cation and a mineralizing agent are needed. The addition of OSDA´s as cations  

instead of inorganic cations generally favours different phase selectivity. Also, heteroatoms 

are added when needed for obtaining aluminosilicates, germanosilicates, borosilicates or  

gallosilicates (Figure 3.24). 
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Figure 3.24. Schematic view of the synthesis of zeolite materials. 

Typical silica sources comprise tetramethyl or tetraethyl orthosilicate, fumed silica, 

aqueous sodium silicate solution, colloidal silica solutions or hydrolysed zeolites. Typical 

aluminium sources comprise aluminium alkoxides, aluminium hydroxides, sodium aluminate 

or aluminium phosphate. Titanium sources comprise powdered titanium oxide or titanium 

alkoxides. Germanium is commonly added as powdered germanium oxide. Gallium is  

usually added as powdered gallium oxide. Boron is usually added as powdered boric acid. 

The mineralizing agent could be hydroxyl or fluoride anions. In the case of alkaline media, 

the addition of hydroxyl anions could be fulfilled by adding inorganic hydroxides or using 

the OSDA´s in their hydroxide form. For the synthesis in fluoride media, the addition of 

fluoride anions could be done by adding hydrofluoric acid or ammonium fluoride. 

Unless otherwise stated, the general preparation of syntheses gels in this thesis is  

performed in polypropylene beakers, mixing the OSDA hydroxide solution, tetraethyl  

orthosilicate as silica source and the heteroatom source following this order. The solution is 

then stirred for 6-8 hours. The stirring rate is dependent on the necessary amount of water to 

be evaporated, trying to keep the ageing time as constant as possible. For fluoride media 

syntheses, hydrofluoric acid (48 wt.% in water) is added one hour prior to ageing completion. 

When the necessary amount of water is evaporated, the pH of the gel is measured, and then, 

the gel is poured inside 35 mL Teflon liners. The Teflon liners are then mounted into steel 

autoclaves and heated up in an oven under tumbling conditions at 60 rpm. The autoclaves are 
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heated between 125ºC and 175ºC at the autogenous pressure of the synthesis gel for a time 

ranging from few hours to several months. 

When the necessary time for the crystallization of the zeolite has passed, the pH of 

the resulting mixture is measured and the solid is recovered by filtration. The mother liquor 

is stored and the solid is suspended in 100 mL of boiling distilled water, re-filtered and 

washed with an additional 1-2 L of boiling distilled water. Next, the solid is dried overnight 

in an oven at 100ºC. 

After use, the Teflon liners are cleaned with 20 wt.% hydrofluoric acid in water. The 

solution is left inside Teflon liners for 1 hour and then, thoroughly washed with soap and 

distilled water. By doing this, all inorganic residues are removed, which avoids the cross 

contamination between syntheses. Next, Milli-Q water is put inside the Teflon liners and 

mounted into steel autoclaves. The autoclave is then heated up for one hour to the same  

temperature at which it was used along the synthesis, and then it is retrieved. This step allows 

for a better cleaning of organic and inorganic compounds, as Teflon liners, as polymeric 

materials, swell when heated. When this happens, some components of the synthesis gel, 

both organic and inorganic, could be absorbed inside the polymer matrix, which could trigger 

a cross contamination for future syntheses. 

3.2.2.1 OSDA stability studies  

The stability studies were carried out using similar synthesis conditions using different 

OSDA´s. Three different synthesis could be summarized as blank experiments, all-silica  

syntheses and borosilicate syntheses: 

 Synthesis procedure of blank experiments 

In a typical blank experiment, 30 mmol of the corresponding OSDA hydroxide  

(details of the OSDA solutions are given in Table 3.9) were added over Milli-Q water, when 

needed, and followed by the addition of 1.25 g (30 mmol) of a 48 wt.% solution of HF in 

water (Aldrich), when needed, in order to obtain a blank synthesis gel with the following 

molar composition: 

0.4 OSDA(OH) : 7 H2O: x HF 

With x being 0 or 0.4 for syntheses in hydroxide or fluoride media, respectively. 
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Table 3.9. Summary of the amounts of OSDA hydroxide solutions used in blank experiments. 

OSDA [OSDAsolution] OSDAsolution / g (mmol) 

TEA (OSDA-1) 35 wt.% 12.622 (30) 

TEP (OSDA-2) 0.46 M 65.217 (30) 

The solution was transferred to Teflon lined stainless-steel autoclaves and heated at 

temperatures ranging from 135ºC to 175ºC at its autogenous pressure under tumbling  

conditions at 60 rpm for a time ranging from 1 to 20 days. Then, the solution was filtered, 

and the mother liquor was recovered and weighted for further analyses. 

 Synthesis procedure of all-silica materials 

In a typical all-silica synthesis, 15.600 g (75 mmol) of tetraethylorthosilicate (TEOS, 

99 wt.%, Aldrich) were added over 30 mmol of the corresponding OSDA hydroxide (details 

of the OSDA solutions are given in Table 3.10). Then, the solution was stirred until the  

complete hydrolysis of TEOS and the evaporation of the necessary amount of water and  

ethanol, followed by the addition of 1.25 g (30 mmol) of a 48 wt.% solution of HF in water 

(Aldrich), when needed, in order to obtain a synthesis gel with the following molar  

composition: 

1 SiO2 : 0.4 OSDA(OH)P+N : 7 H2O: x HF 

With x being 0 or 0.4 for syntheses in hydroxide or fluoride media, respectively. 

Table 3.10. Summary of the amounts of OSDA hydroxide solutions used in all-silica syntheses. 

OSDA [OSDAsolution] OSDAsolution / g (mmol) 

TEA (OSDA-1) 35 wt.% 12.622 (30) 

TEP (OSDA-2) 0.46 M 65.217 (30) 

MNP (OSDA-3) 0.25 M 120.012 (30) 

MIP (OSDA-4) 0.22 M 136.364 (30) 

IEN (OSDA-5) 0.37 M 81.081 (30) 

P1-t-Bu (OSDA-6) 97 wt.% 7.247 (30) 

The resulting gel was transferred to Teflon lined stainless-steel autoclaves and heated 

at temperatures, ranging from 135ºC to 175ºC for TEA and TEP OSDA´s, and at 150ºC for 
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MNP, MIP, IEN and P1 OSDA´s, at its autogenous pressure under tumbling conditions at 60 

rpm for a time ranging from 1 to 20 days. Then, the mixture was filtered, the mother liquors 

were recovered and weighted for further analyses, and the solid was dried at 100ºC overnight. 

 Synthesis procedure of borosilicate materials 

In a typical borisilicate synthesis, 14.851 g (71.4 mmol) of tetraethylorthosilicate 

(TEOS, 99 wt.%, Aldrich) and 0.225 g (3.6 mmol) of H3BO3 (99 wt.%, Aldrich) were added 

over 30 mmol of the corresponding OSDA hydroxide (details of the OSDA solutions are 

given in Table 3.11). Then, the solution was stirred until the complete hydrolysis of TEOS 

and the evaporation of the necessary amount of water and ethanol, followed by the addition 

of 1.25 g (30 mmol) of a 48 wt.% solution of HF in water (Aldrich), when needed, in order 

to obtain a synthesis gel with the following molar composition: 

0.952 SiO2 : 0.024 B2O3 : 0.4 OSDA(OH) : 7 H2O: x HF  (Si/B = 20) 

With x being 0 or 0.4 for syntheses in hydroxide or fluoride media, respectively. 

Table 3.11. Summary of the amounts of OSDA hydroxide solutions used in borosilicate  

syntheses. 

OSDA [OSDAsolution] OSDAsolution / g (mmol) 

MNP (OSDA-3) 0.25 M 120.012 (30) 

MIP (OSDA-4) 0.22 M 136.364 (30) 

IEN (OSDA-5) 0.37 M 81.081 (30) 

P1-t-Bu (OSDA-6) 97 wt.% 7.247 (30) 

The resulting gel was transferred to Teflon lined stainless-steel autoclaves and heated 

at 150ºC at its autogenous pressure under tumbling conditions at 60 rpm for a time ranging 

from 1 to 20 days. Then, the mixture was filtered, the mother liquor was recovered and 

weighted for further analyses and the solid was dried at 100ºC overnight. 

3.2.2.2 Dual template synthesis of MFI (ZSM-5, TS-1) zeolite 

The dual template MFI zeolite was synthesized using tetraethylammonium (OSDA-1 

or N-OSDA) and tetraethylphosphonium (OSDA-2 or P-OSDA). This zeolite was  

synthesized as all-silica and aluminosilicate materials. The detailed synthesis conditions for 

these materials are given next: 
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 Synthesis procedure of all-silica dual template MFI 

In a typical all-silica synthesis, 6.313 g (30 mmol) of tetraethylorthosilicate (TEOS, 

99 wt.%, Aldrich) were added over a solution containing a mix of the P-OSDA and N-OSDA. 

The specific amounts of P-OSDA and N-OSDA are given in Table 3.12. Then, the solution 

was stirred until the complete hydrolysis of TEOS and the evaporation of the necessary 

amount of water and ethanol, followed by the addition of 0.250 g (6 mmol) of a 48 wt.% 

solution of HF in water (Aldrich) in order to obtain a synthesis gel with the following molar 

composition: 

1 SiO2 : 0.4 OSDA(OH)P+N : 10 H2O: 0.4 HF 

Table 3.12. Summary of the amounts of P-OSDA and N-OSDA hydroxide solutions used in the 

dual template syntheses of all-silica MFI materials. 

[P/(P+N)]gel P-OSDAsolution / g (mmol) N-OSDAsolution / g (mmol) 

0 0 (0) 2.524 (6) 

0.0625 0.815 (0.375) 2.367 (5.625) 

0.12 1.565 (0.72) 2.222 (5.28) 

0.25 3.261 (1.5) 1.893 (4.5) 

0.36 4.696 (2.16) 1.616 (3.84) 

0.5 6.522 (3) 1.262 (3) 

0.75 9.783 (4.5) 0.631 (1.5) 

1 13.043 (6) 0 (0) 

The resulting gel was transferred to Teflon lined stainless-steel autoclaves and heated 

at 175ºC at its autogenous pressure under tumbling conditions at 60 rpm for at least 1 day up 

to 8 days. The solid was recovered by filtration and washed with boiling distilled water. The 

resulting solid was dried at 100ºC overnight to obtain the as-made dual template all-silica 

MFI zeolite. 

 Synthesis procedure of aluminosilicate dual template MFI 

In a typical aluminosilicate synthesis, 10.265 g (48.78 mmol) of tetraethylorthosilicate 

(TEOS, 99 wt.%, Aldrich) and 0.096 g (1.22 mmol) of Al(OH)3 (99 wt.%, Wako) were added 

over a solution containing a mix of the P-OSDA and N-OSDA. The specific amounts of  

P-OSDA and N-OSDA are given in Table 3.13. Then, the solution was stirred until the  
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complete hydrolysis of TEOS and the evaporation of the necessary amount of water and  

ethanol, followed by the addition of 0.417 g (10 mmol) of a 48 wt.% solution of HF in water 

(Aldrich) in order to obtain a synthesis gel with the following molar composition: 

0.976 SiO2 : 0.012 Al2O3 : 0.4 OSDA(OH)P+N : 15 H2O: 0.4 HF  (Si/Al = 40) 

Table 3.13. Summary of the amounts of P-OSDA and N-OSDA hydroxide solutions used in the 

dual template syntheses of aluminosilicate MFI materials. 

[P/(P+N)]gel P-OSDAsolution / g (mmol) N-OSDAsolution / g (mmol) 

0 0 (0) 4.207 (10) 

0.0625 1.359 (0.625) 3.944 (9.375) 

0.125 2.609 (1.2) 3.702 (8.8) 

0.25 5.435 (2.5) 3.155 (7.5) 

1 21.739 (10) 0 (0) 

The resulting gel was transferred to Teflon lined stainless-steel autoclaves and heated 

at 175ºC at its autogenous pressure under tumbling conditions at 60 rpm for at least 5 days 

and up to 18 days. The solid was recovered by filtration and washed with boiling distilled 

water. The resulting solid was dried at 100ºC overnight to obtain the as-made dual template  

aluminosilicate MFI zeolites. 

3.2.2.3 Dual template synthesis of RTH (RUB-13) zeolite 

The dual template RTH zeolite was synthesized using mixes of methyl-tri-iso-

propylphosphonium (OSDA-4 or P-OSDA) and di-isopropyl-diethylammonium (OSDA-5 or 

N-OSDA) as OSDA´s. This zeolite was only synthesized as aluminosilicate material, with 

different silicon to aluminium ratios were used for each mix of OSDA´s. The detailed  

synthesis conditions for this material are given next: 

In a typical aluminosilicate synthesis, the needed amounts of tetraethylorthosilicate 

(TEOS, 99 wt.%, Aldrich) and Al(OH)3 (99 wt.%, Wako) were added over a solution  

containing a mix of the P-OSDA and N-OSDA. The specific amounts of TEOS, Al(OH)3,  

P-OSDA and N-OSDA are given in Table 3.14. Then, the solution was stirred until the  

complete hydrolysis of TEOS and the evaporation of the necessary amount of water and  

ethanol, followed by the addition of 0.300 g (20 mmol) of a 48wt.% solution of HF in water 

(Aldrich) in order to obtain a synthesis gel with the following molar compositions: 
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0.968 SiO2 : 0.016 Al2O3 : 0.4 OSDA(OH)P+N : 15 H2O: 0.4 HF  (Si/Al = 30) 

0.972 SiO2 : 0.014 Al2O3 : 0.4 OSDA(OH)P+N : 15 H2O: 0.4 HF  (Si/Al = 35) 

0.952 SiO2 : 0.024 Al2O3 : 0.4 OSDA(OH)P+N : 15 H2O: 0.4 HF  (Si/Al = 20) 

Table 3.14. Summary of the amount of TEOS, Al(OH)3, P-OSDA and N-OSDA hydroxide  

solutions used in the dual template syntheses of aluminosilicate RTH materials. 

[P/(P+N)]gel 
P-OSDAsolution 

/ g (mmol) 

N-OSDAsolution  

/ g (mmol) 

m Al(OH)3   

/ g (mmol) 

m TEOS         

/ g (mmol) 
Si/Al 

0 0 (0) 54.054 (20) 0.254 (3.23) 20.365 (96.77) 30 

0.125 10.909 (2.4) 47.567 (17.6) 0.254 (3.23) 20.365 (96.77) 30 

0.25 22.727 (5) 40.540 (15) 0.173 (2.78) 20.459 (97.22) 35 

0.5 45.454 (10) 27.027 (10) 0.173 (2.78) 20.459 (97.22) 35 

1 90.909 (20) 0 (0) 0.297 (4.76) 20.041 (95.24) 20 

The resulting gel was transferred to Teflon lined stainless-steel autoclaves and heated 

at 175ºC at its autogenous pressure under tumbling conditions at 60 rpm for at least 5 days 

and up to 18 days. The solid was recovered by filtration and washed with boiling distilled 

water. The resulting solid was dried at 100ºC overnight to obtain the as-made dual template  

aluminosilicate RTH zeolite. 

3.2.2.4 Synthesis of IWV (ITQ-27) zeolite 

The IWV zeolite was synthesized using the OSDA-7. This zeolite was obtained as  

all-silica, borosilicate, aluminosilicate and germanosilicate materials. The detailed synthesis 

conditions for some of these materials are given next: 

 Synthesis procedure of all-silica IWV zeolite 

In a typical all-silica synthesis, 10.704 g (50 mmol) of tetraethylorthosilicate (TEOS, 

99 wt.%, Aldrich) were added over 39.473 g of a 0.380 M (15 mmol) solution of the  

OSDA-7. Then, the mixture was stirred until the complete hydrolysis of TEOS and the  

evaporation of the necessary amount of water and ethanol, followed by the addition of 0.150 

g of ITQ-27 seeds, stirring for one hour. Then, 0.625 g (15 mmol) of a 48 wt.% solution of 

HF in water (Aldrich) were added in order to obtain a synthesis gel with the following molar 

composition: 
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1.0 SiO2 : 0.3 OSDA(OH) : 3.5 H2O: 0.3 HF 

 The resulting gel was transferred to Teflon lined stainless-steel autoclaves and heated 

at 175ºC at its autogenous pressure under stirring (60 rpm) for 10 days. The solid was  

recovered by filtration and washed with boiling distilled water. The resulting solid was dried 

at 100ºC overnight to obtain the as-made all-silica IWV zeolite. 

 Synthesis procedure of borosilicate IWV zeolite 

In a typical borosilicate synthesis, 10.187 g (48.40 mmol) of tetraethylorthosilicate 

(TEOS, 99 wt.%, Aldrich) and 0.102 g (1.62 mmol) of H3BO3 (99 wt.%, Aldrich) were added 

over 39.473 g of a 0.380 M (15 mmol) solution of the OSDA-7. Then, the mixture was stirred 

until the complete hydrolysis of TEOS and the evaporation of the necessary amount of water 

and ethanol, followed by the addition of 0.625 g (15 mmol) of a 48 wt.% solution of HF in 

water (Aldrich) in order to obtain a synthesis gel with the following molar composition: 

0.968 SiO2 : 0.016 B2O3 : 0.3 OSDA(OH) : 4.5 H2O: 0.3 HF   (Si/B = 30) 

The resulting gel was transferred to Teflon lined stainless-steel autoclaves and heated 

at 175ºC at its autogenous pressure under tumbling conditions at 60 rpm for 30 days. The 

solid was recovered by filtration and washed with boiling distilled water. The resulting solid 

was dried at 100ºC overnight to obtain the as-made borosilicate IWV zeolite. 

 Synthesis procedure of aluminosilicate IWV zeolite 

In a typical aluminosilicate synthesis, 10.177 g (48.35 mmol) of tetraethylorthosilicate 

(TEOS, 99 wt.%, Aldrich) and, either 0.397 g (1.61 mmol) of Al(secbutO)3 (97 wt.%,  

Aldrich), or 0.127 g (1.61 mmol) of aluminium hydroxide (99.5 wt.%, Wako) were added 

over 39.473 g of a 0.380 M (15 mmol) solution of the OSDA-7. Then, the mixture was stirred 

until the complete hydrolysis of TEOS and the evaporation of the necessary amount of water 

and ethanol, followed by the addition of 0.625 g (15 mmol) of a 48 wt.% solution of HF in 

water (Aldrich) in order to obtain a synthesis gel with the following molar composition: 

0.968 SiO2 : 0.016 Al2O3 : 0.3 OSDA(OH) : 4.5 H2O: 0.3 HF  (Si/Al = 30) 

The resulting gel was transferred to Teflon lined stainless-steel autoclaves and heated 

at 175ºC at its autogenous pressure under tumbling conditions at 60 rpm for 20 days. The 

solid was recovered by filtration and washed with boiling distilled water. The resulting solid 

was dried at 100ºC overnight to obtain the as-made aluminosilicate IWV zeolite. 
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 Synthesis procedure of germanosilicate IWV zeolite 

In a typical germanosilicate synthesis, 8.784 g (41.72 mmol) of tetraethylorthosilicate 

(TEOS, 99 wt.%, Aldrich) and 0.878 g (8.5 mmol) of GeO2 (99.5 wt.% Aldrich) were added 

over 39.473 g of a 0.380 M (15 mmol) solution of the OSDA-7. Then, the mixture was stirred 

until the complete hydrolysis of TEOS and the evaporation of the necessary amount of water 

and ethanol, followed by the addition of 0.625 g (15 mmol) of a 48 wt.% solution of HF in 

water (Aldrich) in order to obtain a synthesis gel with the following molar composition: 

0.834 SiO2 : 0.167 GeO2 : 0.3 OSDA(OH) : 4.5 H2O: 0.3 HF  (Si/Ge = 5) 

The resulting gel was transferred to Teflon lined stainless-steel autoclaves and heated 

at 175ºC at its autogenous pressure under tumbling conditions at 60 rpm for 5 days. The solid 

was recovered by filtration and washed with boiling distilled water. The resulting solid was 

dried at 100ºC overnight to obtain the as-made germanosilicate IWV zeolite. 

3.2.2.5 Synthesis of DON (UTD-1) zeolite 

The DON zeolite was synthesized using the OSDA-7. This zeolite was obtained as 

all-silica, borosilicate and aluminosilicate materials. The detailed synthesis conditions for 

some of these materials are given next: 

 Synthesis procedure of all-silica DON zeolite 

In a typical all-silica synthesis, 10.704 g (50 mmol) of tetraethylorthosilicate (TEOS, 

99 wt.%, Aldrich) were added over 39.473 g of a 0.380 M (15 mmol) solution of the  

OSDA-7. Then, the mixture was stirred until the complete hydrolysis of TEOS and the  

evaporation of the necessary amount of water and ethanol in order to obtain a synthesis gel 

with the following molar composition: 

1.0 SiO2 : 0.3 OSDA(OH) : 15 H2O 

 The resulting gel was transferred to Teflon lined stainless-steel autoclaves and heated 

at 175ºC at its autogenous pressure under tumbling conditions at 60 rpm for 10 days. The 

solid was recovered by filtration and washed with boiling distilled water. The resulting solid 

was dried at 100ºC overnight to obtain the as-made all-silica DON zeolite. 
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 Synthesis procedure of borosilicate DON zeolite 

In a typical borosilicate synthesis, 10.187 g (48.40 mmol) of tetraethylorthosilicate 

(TEOS, 99 wt.%, Aldrich) and 0.102 g (1.62 mmol) of H3BO3 (99 wt.% Aldrich) were added 

over 39.473 g of a 0.380 M (15 mmol) solution of the OSDA-7. Then, the mixture was stirred 

until the complete hydrolysis of TEOS and the evaporation of the necessary amount of water 

and ethanol in order to obtain a synthesis gel with the following molar composition: 

0.968 SiO2 : 0.016 B2O3 : 0.3 OSDA(OH) : 15 H2O  (Si/B = 30) 

The resulting gel was transferred to Teflon lined stainless-steel autoclaves and heated 

at 175ºC at its autogenous pressure under tumbling conditions at 60 rpm for 30 days. The 

solid was recovered by filtration and washed with boiling distilled water. The resulting solid 

was dried at 100ºC overnight to obtain the as-made borosilicate DON zeolite. 

 Synthesis procedure of aluminosilicate DON zeolite 

In a typical aluminosilicate synthesis (Si/Al = 30), 10.177 g (48.35 mmol) of  

tetraethylorthosilicate (TEOS, 99 wt.%, Aldrich) and, either 0.397 g (1.61 mmol) of  

Al(secbutO)3 (97%, Aldrich), or 0.127 g (1.61 mmol) of aluminium hydroxide (99.5 wt.%, 

Wako) were added over 39.473 g of a 0.380 M (15 mmol) solution of the OSDA-7. Then, the 

mixture was stirred until the complete hydrolysis of TEOS and the evaporation of the  

necessary amount of water and ethanol in order to obtain a synthesis gel with the following 

molar composition: 

0.968 SiO2 : 0.016 Al2O3 : 0.3 OSDA(OH) : 15 H2O   (Si/Al = 30) 

The resulting gel was transferred to Teflon lined stainless-steel autoclaves and heated 

at 175ºC at its autogenous pressure under tumbling conditions at 60 rpm for 20 days. The 

solid was recovered by filtration and washed with boiling distilled water. The resulting solid 

was dried at 100ºC overnight to obtain the as-made aluminosilicate DON zeolite. 

3.2.2.6 Synthesis of ITQ-58 zeolite 

The ITQ-58 was synthesized using three different OSDA´s, the OSDA-8 (PN-PN 

OSDA), the OSDA-9 (PC-PC OSDA) and the OSDA-10 (PN-PC OSDA. This zeolite has 

been obtained as borosilicate and as aluminium and borosilicate. In this thesis, only the  

borosilicate material obtained with the different OSDA´s will be described, although the  
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aluminium and borosilicate materials were previously described.[42] The detailed synthesis 

conditions for this material are given next: 

 Synthesis procedure of PN-PN ITQ-58 

In a typical synthesis, 4.919 g (23.6 mmol) of tetraethylorthosilicate (TEOS, 99 wt. 

%, Aldrich) and 0.293 g (4.7 mmol) of H3BO3 (99 wt.%, Aldrich) were added over 22.531 g 

of a 0.25 M (5.6 mmol) solution of the OSDA-8 (PN-PN). Then, the mixture was stirred until 

the complete hydrolysis of TEOS and the evaporation of the necessary amount of water and 

ethanol to obtain a synthesis gel with the following molar composition: 

0.834 SiO2 : 0.083 B2O3 : 0.2 OSDA(OH)2 : 2.0 H2O  (Si/B = 5) 

The resulting gel was transferred to Teflon lined stainless-steel autoclaves and heated 

at 150ºC at its autogenous pressure under tumbling conditions at 60 rpm for 7 days. The solid 

was recovered by filtration and washed with boiling distilled water. The resulting solid was 

dried at 100ºC overnight to obtain the as-made zeolite PN-PN ITQ-58. 

 Synthesis procedure of PC-PC ITQ-58 

The purest zeolite ITQ-58 was obtained with a small amount of STF. In order to get 

this material, 7.174 g (29.0 mmol) of tetraethylorthosilicate (TEOS, 99 wt.%, Aldrich) and 

0.213 g (3.41 mmol) of H3BO3 (99 wt.%, Aldrich) were added over 25.000 g of a 0.3 M (7.5 

mmol) solution of the OSDA-9 (PC-PC). Then, the mixture was stirred until the complete 

hydrolysis of TEOS and the evaporation of the necessary amount of water and ethanol,  

followed by the addition of 0.625 g (15 mmol) of a 48 wt.% solution of HF in water (Aldrich), 

in order to obtain a synthesis gel with the following molar composition: 

0.91 SiO2 : 0.045 B2O3 : 0.2 OSDA(OH)2 : 10 H2O : 0.4 HF  (Si/B = 10) 

The resulting gel was transferred to Teflon lined stainless-steel autoclaves and heated 

at 150ºC at its autogenous pressure under tumbling conditions at 60 rpm for 7 days. The solid 

was recovered by filtration and washed with boiling distilled water. The resulting solid was 

dried at 100ºC overnight to obtain the as-made zeolite PC-PC ITQ-58. 

 Synthesis procedure of PN-PC ITQ-58 

In a typical synthesis, 14.35 g (68.2 mmol) of tetraethylorthosilicate (TEOS, 99 wt.%, 

Aldrich) and 0.43 g (6.8 mmol) of H3BO3 (99 wt.%, Aldrich) were added over 75.00 g of a 

0.2 M (15 mmol) solution of the OSDA-10 (PN-PC). Then, the mixture was stirred until the 
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complete hydrolysis of TEOS and the evaporation of the necessary amount of water and  

ethanol to obtain a synthesis gel with the following molar composition: 

0.91 SiO2 : 0.045 B2O3 : 0.2 OSDA(OH)2 : 7.5 H2O  (Si/B = 10) 

The resulting gel was transferred to Teflon lined stainless-steel autoclaves and heated 

at 150ºC at its autogenous pressure under tumbling conditions at 60 rpm for 12 days. The 

solid was recovered by filtration and washed with boiling distilled water. The resulting solid 

was dried at 100ºC overnight to obtain the as-made zeolite PN-PC ITQ-58. 

3.2.2.7 Synthesis of ITQ-66 zeolite 

The ITQ-66 was only synthesized using the OSDA-11. This zeolite was obtained as 

borosilicate and gallosillicate materials. The detailed synthesis conditions for this material 

are given next: 

 Synthesis procedure of gallium ITQ-66 

In a typical gallosilicate synthesis, 6.189 g (29.412 mmol) of tetraethylorthosilicate 

(TEOS, 99 wt.%, Aldrich) and 0.151 g (0.588 mmol) of Ga(NO3)3 (99.5 wt.%, Aldrich) were 

added over 20.548 g of a 0.292 M (6 mmol) solution of the OSDA-11. Then, the mixture was 

stirred until the complete hydrolysis of TEOS and the evaporation of the necessary amount 

of water and ethanol, followed by the addition of 0.500 g (12 mmol) of a 48 wt.% solution 

of HF in water (Aldrich) in order to obtain a synthesis gel with the following molar  

composition: 

0.980 SiO2 : 0.010 Ga2O3 : 0.2 OSDA(OH)2 : 10 H2O: 0.4 HF  (Si/Ga = 49) 

The resulting gel was transferred to Teflon lined stainless-steel autoclaves and heated 

at 175ºC at its autogenous pressure under tumbling conditions at 60 rpm for at least 14 days 

up to 46 days. The solid was recovered by filtration and washed with boiling distilled water. 

The resulting solid was dried at 100ºC overnight to obtain the as-made gallosilicate ITQ-66  

zeolite. 

 Synthesis procedure of boron ITQ-66 

In a typical borosilicate synthesis, 10.021 g (47.62 mmol) of tetraethylorthosilicate 

(TEOS, 99 wt.%, Aldrich) and 0.149 g (2.38 mmol) of H3BO3 (99 wt.%, Aldrich) were added 

over 34.247 g of a 0.292 M (10 mmol) solution of the OSDA-11 Then, the mixture was stirred 
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until the complete hydrolysis of TEOS and the evaporation of the necessary amount of water 

and ethanol, followed by the addition of 0.833 g (20 mmol) of a 48 wt.% solution of HF in 

water (Aldrich) in order to obtain a synthesis gel with the following molar composition: 

0.952 SiO2 : 0.024 B2O3 : 0.2 OSDA(OH)2 : 10 H2O: 0.4 HF  (Si/B = 20) 

The resulting gel was transferred to Teflon lined stainless-steel autoclaves and heated 

at 175ºC at its autogenous pressure under tumbling conditions at 60 rpm for at least 5 days 

and up to 18 days. The solid was recovered by filtration and washed with boiling distilled 

water. The resulting solid was dried at 100ºC overnight to obtain the as-made borosilicate 

ITQ-66 zeolite. 

3.2.3 Removal of OSDA´s 

After the synthesis of the zeolitic materials, the OSDA is occluded inside the material. 

In order to free the porous network of the zeolite, the OSDA must be removed or  

decomposed. 

The most commonly used method consist in the decomposition of the organic moiety 

by calcination of the material in air. Classical alkylammonium OSDA´s yields volatile  

compounds as CO2, H2O and NOx upon calcination. These small molecules easily diffuse 

through the porous network of the zeolite, and are thus removed from the material (Figure 

3.25). 
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Figure 3.25. Schematic view of the calcination of as-made zeolites synthesized using  

alkylammonium cations as OSDA´s (tetraethylammonium cation shown here). 

However, the calcination of zeolites synthesized with P- OSDA´s yield CO2, H2O and 

POy upon calcination. This phosphorous oxide-like species are mostly non-volatile and do 

not easily diffuse though the porous network of the zeolite, remaining most of them entrapped 

inside the material (Figure 3.26). The presence of these phosphorous species affects the  

textural properties of the final material, as well as the acid properties of aluminium- 

containing zeolites. 

 
Figure 3.26. Schematic view of the calcination of as-made zeolites synthesized using  

phosphorous cations as OSDA´s (methyl-tri-isopropyl-phosphonium cation shown here).  
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Alternatively, the as-made zeolites could be treated at high temperature under a 60/40 

vol.% flow of hydrogen/nitrogen stream to reduce the occluded OSDA avoiding POy  

formation. By doing this, most of the phosphorous organic species located inside the zeolite 

could be removed as PH3 and small PR3 species. 

3.2.3.1 Calcination under air 

The as-made materials were placed inside an alumina crucible and heated inside an 

oven until reaching the necessary temperature to fully decompose the OSDA. The heating 

ramp consisted in multiple steps, whose temperatures were defined by the TG profile of the 

specific material, while heating rates were kept the same for all materials (Figure 3.27). 

 
Figure 3.27. Heating ramp used for the calcination of zeolites in air. 

T1 is the temperature at which water or other species are desorbed and before the 

decomposition of the OSDA starts, usually 300ºC. T2 corresponds to the temperature at 

which the OSDA starts to decompose, and could vary between 450ºC and 650ºC depending 

on the specific zeolites and OSDA´s. T3 corresponds to the temperature at which the OSDA 

is fully decomposed, usually 700ºC. 

3.2.3.2 High temperature treatment under H2 stream 

Firstly, the as-made materials are sieved between 0.1 and 0.8 mm. The sieving of the 

materials prevents the compaction of the material, which in turn avoids the creation of  

preferred gas pathways through the zeolite bed during thermal treatment. Next, the material 

is placed inside a quartz tubular reactor, which is put inside a tubular oven. The N2 and H2 

inlets are then connected and the system is purged with a 100 mL/min flow of N2 for 5 
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minutes. After purge, a 120 mL/min flow of 60/40 v/v.% H2/N2 stream is set and the thermal 

treatment begins. Like in calcination treatment, the heating ramp consists in multiple steps, 

whose temperatures are guided by the TG profile of the specific material, while heating rates 

are kept the same for all materials (Figure 3.28). TG profiles are used just as a reference, as 

temperature programmed reduction (TPR) analyses were unavailable because of released 

hazardous phosphines during TPR analysis. 

As previously stated, the hydrogenation of the phosphorous OSDA´s allows for the 

removal of the phosphorus as PH3 and small PR3 species. These species are trapped by  

bubbling the outlet stream through an aqueous solution of 1 M copper (II) nitrate. The colour 

of the solution is a clear indicative of the removal of the phosphorus, as prior to the thermal 

treatment the solution presents an intense blue colour. After some phosphine pass through 

the solution, the solution colour turns into black. After stopping the gas stream, a black solid 

precipitates, while the solution remains blue, although less intense, which is indicative that 

phosphine is reacting and consuming the Cu from the solution. After the thermal treatment, 

the suspension is filtered and the copper nitrate solution is reused, while the black precipitate 

is conveniently disposed. 

 
Figure 3.28. Heating ramp used for the thermal treatment of zeolites under H2 stream. 

The heating ramp scheme for the thermal treatment under H2 resembles to the  

calcination ramp scheme, but temperatures are higher in all cases. T1 is the temperature at 

which water or other species are desorbed and before the decomposition of the OSDA starts, 

usually 350ºC. T2 corresponds to the temperature at which the OSDA starts to  

decompose, which is tracked as the temperature at which the trap solution changes its colour 

from blue to black. This temperature could vary between 500ºC and 600ºC depending on the 

specific zeolites and OSDA´s. T3 would correspond to the maximum temperature at which 
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the zeolite is stable, but it was usually limited to 850ºC, unless stated. This temperature was 

set so high because the removal of phosphine seems to be slightly dependent on the  

temperature, and the higher the temperature, the higher the removal. However, after several 

trial and error, no significant additional phosphorus removal occurs above 850ºC.  

Additionally, the removal of phosphorus appears to be independent of the thermal treatment 

time, as increasing the time at T3 step does not allow for higher removal of phosphorus. 

After the thermal treatment under hydrogen, samples are calcined in air to ensure the 

total removal of any organic residues. 

3.2.3.3 Washing of residual phosphorous species 

After thermal treatment of the zeolitic materials, some phosphorus usually remains 

inside the material as extra-framework phosphorous oxide-like species. These species could 

be usually removed from medium (10 MR) and large (12 MR) pore zeolites by washing the 

thermally treated material with either an ammonium acetate solution or ethanol. However, as 

the phosphate species formed during the washing cannot diffuse through 8 MR pores, the 

washing of small pore zeolites is not possible or quite limited. 

The washing procedures used in this thesis are given next: 

 Washing with ammonium acetate 

The thermally treated zeolite is suspended into an aqueous 3 M solution of ammonium 

acetate (98wt.%, Aldrich), using a ratio of 40 mL of solution per gram of zeolite. Then, the 

mixture is heated up to 80ºC for four hours. Next, the solid is recovered by filtration and 

washed with distilled boiling water. After this, the solid is dried overnight in an oven at 

100ºC, followed by calcination under air using the same procedure as described in  

section 3.2.3.1. 

 Washing with ethanol 

Alternatively, phosphorous residues could be removed using absolute ethanol when 

the amount of remaining phosphorus is low, as well as when the material possess large pore 

openings. The procedure used is the same than the described for ammonium acetate, but using 

absolute ethanol instead of ammonium acetate. 
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Chapter 4 

Study on Stability 

of OSDA´s 

 

4.1 Introduction 

The hydrothermal conditions used during the synthesis of zeolites are usually quite 

harsh for organic compounds, and therefore, OSDA´s could be decomposed through different 

degradation pathways. The most typical decomposition mechanism is the β-Hofmann  

elimination because of the alkaline media usually employed, but thermal decomposition or 

carbon-chain rearrangement reactions are also possible, as schematized in Figure 4.1 for  

typical alkylammonium OSDA´s.[1] 
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Figure 4.1. Main degradation pathways of ammonium cations under hydrothermal treatment. 

Also, the Hofmann decomposition decreases the OH- concentration, affecting the 

equilibria between the different silica species present in the synthesis gel. This parameter is 

out of full control in the typical synthesis of zeolites, but heavily influences the phase  

selectivity of the crystallization process. 

The stability of OSDA´s of different chemical nature was tested under different  

experimental conditions. In all cases, the syntheses were carried out for a similar range of 

time, between 1 and 20 days. Two different experiments were designed: 

  In experiment 1, two simple commercially available OSDA´s, the  

tetraethylammonium cation (OSDA-1), named here as TEA cation, and the  

tetraethylphosphonium cation (OSDA-2), named here as TEP cation, were studied. 

Three different temperatures, 135ºC, 150ºC and 175ºC, were used to study the thermal 

stability of the OSDA´s. Also, the influence of the media was studied by comparing 

hydroxide and fluoride media syntheses. Finally, blank experiments, where silica  

precursors were excluded from the synthesis gel, were also carried out to study the 

influence of the presence of silica species on the stability of the OSDA´s (Figure 4.2. 

Upper left). 

  In experiment 2, the stabilities of some more complex yet well-known OSDA´s 

were studied. The selected OSDA´s were the methyl-tris-(dimethylamino)-phospho-
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nium cation (OSDA-3), named here as MNP cation; the methyl-tri-isopropylphospho-

nium cation (OSDA-4), named here as MIP cation; the di-isopropyl-diethylammo-

nium cation (OSDA-5), named here as IEN cation; and the commercial phosphazene 

base P1-t-Bu (OSDA-6), named here as PB1, in its cationic phosphazenium form. In 

this case blank experiments were omitted, and instead, borosilicate synthesis gels were 

prepared. Under these synthesis conditions, crystalline materials were obtained using 

these synthesis gels. Also, only one temperature was used, 150ºC (Figure 4.2. Upper 

right). 

 
Figure 4.2. Upper left: experiment 1 design of synthesis conditions. For each experimental  

condition, syntheses were also carried out at three different temperatures: 135ºC, 150ºC and 

175ºC. Upper right: experiment 2 design of synthesis conditions. Below: employed cations in 

each experiment, tetraethylammonium cation (TEA) and tetraethylphosphonium cation (TEP) 

in experiment 1, and di-isopropyl-diethylammonium cation (IEN), methyl-tris-(dimethylamino)-

phosphonium cation (MNP), methyl-tri-isopropylphosphonium cation (MIP) and phosphazene 

base P1-t-Bu (PB1) in experiment 2. 
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Syntheses gels were prepared with the following compositions: 

0.4 OSDA : x SiO2 : y B2O3 : 10 H2O : z HF 

where x takes values of 0 (blank), 1 (all-silica, Si) or 0.9 (borosilicate, B); y takes 

values of 0 (blank or all-silica, Si) or 0.1 (borosilicate, B); and z takes values of 0 (hydroxide 

media, OH) or 0.4 (fluoride media, F). After synthesis, the products were filtered, keeping 

the weighted mother liquors for analysis by NMR and ICP spectroscopies, as detailed in 

section 3.2.2. 

4.2 Experiment 1: effect of the hydrothermal param-

eters on OSDA´s in MFI synthesis 

Experiment 1 was first performed to quickly and easily check for differences in the 

stability of OSDA´s of two isochemical molecules of different nature, an ammonium OSDA, 

the tetraethylammonium cation (TEA, OSDA-1), and a phosphonium OSDA, the  

tetraethylphosphonium cation (TEP, OSDA-2), schemed in Figure 4.3. 

 
Figure 4.3. Tetraethylammonium cation (TEA) and tetraethylphosphonium cation (TEP) used 

as OSDA´s in experiment 1. 

The detailed characterization of the TEA (OSDA-1) and TEP (OSDA-2) are described 

in sections 3.2.1.1 and 3.2.1.2, respectively. Some examples of synthesis gels are described 

in section 3.2.2.1. 

4.2.1 Solid products 

In all cases, ZSM-5 zeolite (IZA structure code: MFI) was the final material when 

silicon precursors were present in the synthesis gel. It is important to note that the target of 

this study was put on the evolution of the OSDA´s along the zeolite formation process, while 

the optimization of the crystallization kinetics plays a merely secondary role. Actually, the 
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synthesis conditions were chosen to lengthen the synthesis time of the MFI zeolite by  

choosing a sub-optimal MFI OSDA,[2] which should highlight the differences between the 

effect that the TEA and the TEP cations play on the zeolite formation. 

4.2.1.1 Crystallinity of solid products 

The crystallinity of the obtained solids after synthesis was assessed by powder X-Ray 

diffraction, whose patterns are shown in Figure 4.4. 

 
Figure 4.4. Powder X-Ray diffraction patterns of some of the materials obtained using  

TEP (left) and TEA (right) as OSDA´s in fluoride media.  

As expected, the temperature and the mineralizing agent used in the syntheses were 

critical factors regarding the crystallization rates. Actually, for lower temperatures, no  

crystalline products were collected when TEA was used as OSDA. Additional experiments 

for longer synthesis times (longer than 30 days at 135ºC) confirmed that MFI zeolite was 

obtained as the final product in fluoride media synthesis. However, TEA syntheses in  

hydroxide media yielded mostly amorphous phase, with tiny amounts of MFI zeolite at most, 

in the tested hydrothermal conditions tested during this study. This could be explained by the 

high concentration of hydroxide mobilizing agent in the hydroxide syntheses, which prevents 

the formation of stable zeolite nuclei. 
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Similar synthesis gel compositions using TEA yields zeolite β (BEA/BEB  

intergrowth), although with a higher OSDA to silicon and water to silicon ratios than those 

used here.[3] Thus, the pH of the synthesis gel is a critical factor, as side experiments yielded 

mixed MFI and BEA phases when the synthesis gel pH was slightly over 12 before pouring 

the synthesis gel inside the Teflon liner (hydroxide media syntheses) or before adding HF to 

the synthesis gel (fluoride media syntheses). This was the case when water to silicon ratio 

was lower than 7 while keeping the OSDA to silicon ratio of 0.4, conditions which were 

preliminary tested. However, when the water to silica ratio was raised to 10, the pH of the 

syntheses gel was lower than 12 and therefore the obtained product was only MFI zeolite 

without BEA zeolite impurities. 

Conversely, syntheses using TEP only yielded the MFI zeolite regardless of the  

synthesis conditions and pH´s. Actually, the use of TEP allowed obtaining MFI in hydroxide 

media in the crystallization time range of the study, although in low yields and with a  

considerable amount of amorphous phase, especially at lower temperatures and synthesis 

times. Side experiments increasing the synthesis time over 28 days allowed for the complete  

crystallization of MFI zeolite even at 135ºC. The zeolite β was not obtained under any  

condition, even when lowering the water to silicon ratio to 5, when the synthesis gel pH was 

higher than 12. Actually, the pH of the synthesis gel when using TEP was always slightly 

higher than using TEA under the same synthesis gel compositions. 

In fluoride media syntheses, the fully crystallized MFI zeolite was obtained in the 

crystallization time range used in the experimental setup with both OSDA´s. Crystallization 

rates of MFI zeolite in the obtained solids are shown in Figure 4.5. Sample crystallinity was 

calculated as a ratio between the intensity of the diffraction peaks of each sample and the 

most crystalline product for each synthesis media (OSDA and mineralizing agent). The  

diffraction peaks used in the calculus were the high intensity 2θ 23.2º peak, also calculating 

the crystallinity with the diffraction peaks at 2θ 23.8º, 24º and 24.4º as control test. 
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Figure 4.5. Crystallization kinetics of MFI obtained using TEP (solid dots and lines) and  

TEA (hollow dots and dotted lines) as OSDA´s in fluoride media. Lines are just for guidance. 

 

As Figure 4.5 shows, the crystallization rates strongly differ for each OSDA. Thus, 

MFI zeolite quickly crystallizes using TEP at almost any temperature, whereas when using 

TEA, crystallization time is considerably longer and more dependent on the synthesis  

temperature. 

4.2.1.2 Chemical analyses of solid products 

The collected materials were analysed in order to assess their OSDA content,  

regardless of the crystallinity of the zeolite or the presence of amorphous phase. The OSDA 

content and solid yield of the obtained are shown in Figure 4.6. 
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Figure 4.6. OSDA content (left) and yield (right) of solid products obtained after using  

TEP (solid dots) and TEA (hollow dots) as OSDA´s in fluoride media. 

As shown in Figure 4.6, all of the collected materials present a constant OSDA content 

around 0.6 mmol·g-1, regardless of the used OSDA and crystallinity of the obtained materials. 

This content corresponds to a silicon to OSDA ratio of 24, which fits with 4 OSDA molecules 

per unit cell of MFI structure (96 T units per unit cell). The yield of the obtained solids was 

high when using the TEP as OSDA, while the yield decreases as temperature increases when 

TEA is used as OSDA. This could indicate that the strong interaction between the OSDA and 

the silica is taking place regardless of the long range order of the solid, and probably, the 

“amorphous” phase could consist in MFI zeolite building units interacting with the OSDA, 

but without having a full connectivity between them or in a very short spatial range. This 

short range interaction would yield nanocrystals too small to produce coherent X-Ray  

diffraction, and therefore, resulting in amorphous-like solids.[4, 5] 

The OSDA´s incorporated in the solids are completely stable in all cases, as concluded 

from the chemical analyses and MAS-NMR spectroscopies, shown in Table 4.1 and  

Figure 4.7, respectively. 
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Table 4.1. Typical chemical analyses of the obtained solids. Sample are named after the used 

OSDA, the synthesis media, the temperature (ºC) and synthesis time (days). 

Sample Phase OSDA / mmol·g-1 C/(P+N)exp C/(P+N)th 

TEP-HF-135-1 Am. 0.66 7.8 

8 

TEP-HF-135-20 MFI 0.62 8.0 

TEP-HF-150-1 MFI + Am. 0.66 7.9 

TEP-HF-150-12 MFI 0.63 8.2 

TEP-HF-175-20 MFI 0.61 8.1 

TEA-HF-150-3 Am. 0.73 7.6 

TEA-HF-150-12 MFI 0.71 7.7 

TEA-HF-175-3 MFI + Am. 0.75 7.5 

TEA-HF-175-12 MFI 0.72 7.6 

 
Figure 4.7. Typical 31P-NMR (left) and 13C-NMR (middle) spectra of the solids obtained using 

TEP as OSDA, and 13C-NMR spectra of solids obtained using TEA as OSDA (right). The upper 

liquid NMR spectra belong to the pure TEP and TEA OSDA´s in deuterium oxide solution, and 

the middle and below spectra belong to MAS-NMR spectra of some the solid samples. 
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Since the OSDA in the synthesis gel was used in a large excess, and most of the OSDA 

is not incorporated in the solid after the hydrothermal synthesis, the mother liquors were 

separated and recovered after synthesis for further studies. 

4.2.2 Mother liquor analyses 

The mother liquors were analysed to study the stability of the OSDA excess after 

undergoing the hydrothermal treatment. The mother liquor was analysed by liquid NMR 

spectroscopy, to check the stability of the OSDA in the hydrothermal media along the  

synthesis, and by ICP spectroscopy (in phosphorous containing solids), to check for possible 

losses of the OSDA during the crystallization, filtration and/or washing of the solid products. 

4.2.2.1 Quantification 

In the case of the phosphorous OSDA´s, it is possible to easily quantify the amount of 

phosphorus in the solid and the solution by ICP spectroscopy, and therefore, a mass balance 

was calculated to check for any TEP loss. The mass balance results are shown in Figure 4.8. 

 
Figure 4.8. Mass balance of phosphorus in syntheses (■ : fluoride media;● : hydroxide media) 

and blank (□ : fluoride media; ○ : hydroxide media) experiments carried out with TEP as 

OSDA. 
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These data show that it is possible to track the evolution of the TEP cation during 

synthesis as most of the phosphorus, between 90% and 100%, was quantified when taking in 

account the solids and the liquids collected for each synthesis. Despite this, some mass  

balance values present deviations, especially for values well over 100%. This could be due 

to random errors in analyses, especially in the mother liquors, where a huge scaling factor 

because of the highly diluted media after the recovery of the mother liquor could lead to 

considerable quantification errors. However, it is clear that even a slight washing of the  

obtained solids results in an almost total recovery of the OSDA. 

On the other hand, in the case of the TEA cation, it was not possible to quantify the 

amount of nitrogen in solution, and therefore, no mass balance was calculated. Because of 

that, the amount of stable TEA after syntheses reported here is actually the maximum stability 

of this compound, as it is possible that small quantities of some compounds may be lost, 

especially degradation compounds formed by the Hofmann decomposition, which could be 

evaporated from the solution. 

4.2.2.2 OSDA stability 

The stability of the OSDA´s was tracked by analysis of liquid 31P and 13C-NMR  

spectra. Due to the low concentration of species, the measure times were quite long to obtain 

resonances with enough signal to noise ratios for quantitative analyses. Some of the NMR 

spectra are shown in Figure 4.9, where the OSDA and the resonances of their decomposition 

products could be seen. 
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Figure 4.9. Liquid 31P-NMR (left) and 13C-NMR (middle) spectra of TEP mother liquors, and 

13C-NMR spectra of TEA mother liquors (right). The upper spectra belong to the pure TEP and 

TEA OSDA´s. Signals marked with circles correspond to OSDA´s and signals marked with  

asterisks are assigned to decomposition products. All samples were diluted in deuterium oxide 

solution. 

For TEP OSDA, the 31P-NMR spectra were used to calculate the degradation of the 

OSDA taking in account the relative intensity of the different resonances. This could be done 

because the nuclear spin of 31P is ½, and thus, the area under each resonance is proportional 

to the concentration of each P-containing species. In this case, the TEP present a single  

resonance at 40 ppm, so any additional signal would correspond to a degradation product. 

The degradation of TEP was calculated by Equation 4.1. 

𝑇𝑜𝑡𝑎𝑙 %𝑇 𝑃 =  

𝑣𝑎.𝑙. · [𝑃]𝑙𝑖𝑞 ·
𝑇 𝑃 𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 𝑎𝑟𝑒𝑎
∑ 𝑃 𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 𝑎𝑟𝑒𝑎31

𝑚𝑠𝑜𝑙 · [𝑃]𝑠𝑜𝑙 + 𝑣𝑚.𝑙. · [𝑃]𝑙𝑖𝑞
· 100 

Equation 4.1. 

Where [P]sol and [P]liq are the concentrations of phosphorus obtained by ICP  

spectroscopy in the solids and in the mother liquors, respectively; msol is the amount of  

obtained solids; vm.l. is the volume of mother liquor; 
𝑇𝐸𝑃 𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 𝑎𝑟𝑒𝑎

∑ 𝑃 𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 𝑎𝑟𝑒𝑎31  is the ratio between 

the area of the 31P NMR TEP resonance and the sum of all the 31P NMR resonances in the 

mother liquor. 
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However, in the case of the TEA OSDA, a proper quantitative analysis is not possible 

because the absolute intensity of the different 13C resonances in NMR spectra is not always 

proportional to the concentration of species. This is due to the use of cross polarization from 

1H to 13C nuclei during measurements to improve the signal to noise ratio of the 13C spectra. 

However, the relative resonance intensity between closely related carbon groups could be 

used as a semi-quantitative analysis.[6] To minimize errors, the degradation was calculated 

by the arithmetic mean of different resonances, in this case, the CH3 and CH2 resonances of 

the OSDA and the degradation products, mainly triethylamine cation. Therefore, the  

minimum degradation of TEA OSDA was calculated by Equation 4.2. 

𝑇𝑜𝑡𝑎𝑙 %𝑇 𝐴 =

(
𝐼𝑛𝑡𝐸𝑡4𝑁 (𝐶𝐻3)

∑ 𝐼𝑛𝑡𝑑𝑒𝑔.𝑝𝑟𝑜𝑑.(𝐶𝐻3)
+

𝐼𝑛𝑡𝐸𝑡4𝑁 (𝐶𝐻2)
∑ 𝐼𝑛𝑡𝑑𝑒𝑔.𝑝𝑟𝑜𝑑.(𝐶𝐻2)

)

2
· 100 

Equation 4.2.  

Where 
𝐼𝑛𝑡𝐸𝑡4𝑁 (𝐶𝐻3)

∑ 𝐼𝑛𝑡𝑑𝑒𝑔.𝑝𝑟𝑜𝑑.(𝐶𝐻3)
 is the ratio between the area of the 13C NMR of CH3 resonance 

in TEA and the sum of all the 13C NMR of CH3 resonances in the mother liquor; 

𝐼𝑛𝑡𝐸𝑡4𝑁 (𝐶𝐻2)

∑ 𝐼𝑛𝑡𝑑𝑒𝑔.𝑝𝑟𝑜𝑑.(𝐶𝐻2)
 is the ratio between the area of the 13C NMR of CH2 resonance in TEA and 

the sum of all the 13C NMR of CH2 resonances in the mother liquor. 

The stabilities of TEP and TEA cations in all syntheses were calculated with Equation 

4.1 and Equation 4.2, respectively, and the calculated stability results of TEP and TEA  

cations are shown in Figure 4.10. 
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Figure 4.10. Stability curves of TEA (left, green background) and TEP (right, purple back-

ground) cations at different temperatures and synthesis conditions (■ : fluoride synthesis; 

▼ : fluoride blank; ● : hydroxide synthesis; ♦ : hydroxide blank). Curves are just for guidance. 

These results clearly show that the OSDA stability strongly depends on the pH of the 

synthesis media. Indeed, in fluoride media, the TEP cation shows no decomposition at all, 

while TEA cation begins to decompose after a long synthesis time. On the other hand, in 

hydroxide media, the TEA quickly decomposes until reaching a limit value defined by the 

synthesis temperature, while TEP only starts to slightly decompose at the longest synthesis 

times and temperatures. This means that the TEP cation is more stable than the TEA under 

any synthesis condition, especially in hydroxide media. 
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These data are in agreement with a decomposition mainly guided by Hofmann  

degradation mechanism, where hydroxide anions are needed to decompose these cations. 

However, the TEP cation is less sensitive to this degradation mechanism, making it a more 

stable OSDA. Additionally, blank experiments show that the TEA and TEP cations are 

slightly less stable in hydroxide and fluoride media compared to experiments where silica is 

present in the media. This could be explained by a stabilizing effect of the different polymeric 

silica species in solution that should be interacting with the cations, even when no solids were 

collected. 

Besides the compared stability results, two additional conclusions could be inferred: 

there is an inherent stability “limit” for each OSDA depending on the synthesis conditions, 

mainly the temperature, after which the OSDA does not decompose any further, with little 

influence of the synthesis time after reaching this value; and this stability “limit” could be 

quickly and easily established by blank synthesis experiment. These two conclusions would 

allow to easily identifying the feasibility for any given cation to properly work as OSDA 

instead of performing the typical screening at different synthesis conditions, as any cation 

that completely and quickly decompose would hardly yield any solid product because of 

lacking the cationic “active species”. Therefore, the use of blank experiments would be useful 

to save resources and research time during screening under different synthesis conditions 

when testing cations as OSDA´s, allowing a fast discard of cations that quickly decompose. 

4.3 Experiment 2: generalized study of the OSDA  

stability 

Experiment 2 was performed next to expand the results of experiment 1 with more  

complex OSDA´s, which could yield different crystalline phases. In this case, two additional 

phosphorous OSDA´s were studied, an aminophosphonium cation and a phosphazene base. 

Therefore, the used OSDA´s were the methyl-tris-(dimethylamino)-phosphonium cation 

(MNP, OSDA-3); the methyl-tri-isopropylphosphonium cation (MIP, OSDA-4); the di-iso-

propyl-diethylammonium cation (IEN, OSDA-5); and the commercial phosphazene base  

P1-t-Bu (PB1, OSDA-6) in its cationic phosphazenium form, schemed in Figure 4.11. 
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Figure 4.11. Methyl-tris-(dimethylamino)-phosphonium cation (MNP), methyl-tri-iso-

propylphosphonium cation (MIP), di-isopropyl-diethylammonium cation (IEN) and 

 phosphazene base P1-t-Bu (PB1) used as OSDA´s in experiment 2. 

The detailed syntheses and analyses of the MNP (OSDA-3), MIP (OSDA-4), IEN 

(OSDA-5) and PB1 are described in sections 3.2.1.3, 3.2.1.4, 3.2.1.5 and 3.2.1.6,  

respectively. Some examples of synthesis gels are detailed in section 3.2.2.1. 

4.3.1 Solid products 

In this experiment, only one temperature, 150ºC, was studied to simplify the results 

of this experiment, as the previous experiment showed that, although the temperature is a 

critical parameter regarding stability, it could be however ruled out when comparing the  

relative stability of different OSDA´s. Furthermore, a borosilicate composition was essayed 

instead of blank experiments to study the influence of the presence of heteroatoms for the 

stability of the OSDA´s. 

4.3.1.1 Crystallinity of solid products 

In this experiment, different crystalline phases, which comprise STF, RTH, ITE and 

ITQ-45 zeolites, were obtained depending on the OSDA and the synthesis conditions as 

shown in Table 4.2. 
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Table 4.2. Tested synthesis conditions and phase selectivity obtained using the methyl-tris-(di-

methylamino)-phosphonium cation (MNP), the methyl-tri-isopropylphosphonium cation (MIP), 

the di-isopropyl-diethylammonium cation (IEN), and the phosphazene base P1-t-Bu (PB1) as 

OSDA´s. 

  OSDA 

Composition IEN MIP MNP PB1 

Si 
HF 

    

B-Si     

Si 
OH 

    

B-Si     

      

STF RTH ITE ITQ-45 MTN Am. 

Further discussion on the phase selectivity and sample characterization of the  

materials obtained with these OSDA´s could be found in previous works,[7, 8] while in this 

thesis, the discussion is focussed on the stability of the OSDA´s. Because of that, little  

characterization of the solid materials is included in this chapter, besides identifying the phase 

crystallinity by powder X-Ray diffraction, whose patterns are shown in Figure 4.12. 
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Figure 4.12. Powder X-Ray powder diffraction patterns of some of the obtained materials.  

Samples are identified by used OSDA, synthesis time, composition and synthesis media. 

As expected, the crystallinity of the different materials is linked with the synthesis 

times and thus, crystallization kinetics curves were calculated and shown in Figure 4.13. The 

crystallinity of the samples was calculated by the same methodology previously explained in 

section 4.2.1.1, but using the diffraction peaks between 2θ 18º and 21º. However, only phases 

obtained with two or more OSDA´s using the same synthesis gel compositions are compared. 
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Figure 4.13. Crystallization kinetics of borosilicate RTH (circles), all-silica RTH (asterisks) and 

all-silica STF (squares) obtained with IEN (blue dots), MIP (red dots) and MNP (green dots) as 

OSDA´s. Lines are just for guidance. 

First, it could be seen that RTH and STF zeolites obtained using MIP as OSDA (red 

dots) crystallize very fast and can be obtained fully crystalline in less than 5 days. However, 

the corresponding materials obtained using IEN as OSDA (blue dots) present lower crystal-

lization rates than the corresponding MIP materials, which is in good agreement with the 

results from experiment 1 in section 4.3.1.1. 

On the other side, the crystallization rates between the RTH and STF zeolites obtained 

using IEN as OSDA strongly differ, as the crystallization rate of RTH zeolite (blue circles 

and asterisks) closely resembles to that obtained with MIP as OSDA (red circles and aster-

isks), although slightly slower. Conversely, the crystallization rate of STF zeolite obtained 

using IEN as OSDA (blue squares) is considerably lower than the corresponding material 

obtained using MIP as OSDA (red squares). 

Finally, the crystallization rate of the RTH zeolite obtained using MNP as OSDA 

(green circles) is considerably lower than the corresponding RTH materials obtained using 

MIP (red circles) and IEN (blue circles) as OSDA´s. 
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From these data it could be hypothesized that the MIP cation fits well as OSDA for 

the synthesis of both RTH and STF zeolites, while the IEN cation fits better as OSDA for 

RTH zeolite than for STF zeolite. 

About the other materials, the ITE zeolite fully crystallized after 3 days, while  

ITQ-45 started crystallizing between 8 and 12 days, being almost totally crystalline after 12 

days, as reported in previous works.[7, 8] It is also noteworthy the crystallization of the dense 

phase dodecasil 3C (MTN). 

4.3.1.2 Chemical analyses of solid products 

The chemical composition of the most crystalline solid products are shown in Table 

4.3. 

Table 4.3. Typical chemical compositions of some of the obtained materials. Ratios are given as 

molar ratios. Samples are named after the used OSDA and the obtained phase. 

Phase Si/B Si/OSDA 
OSDA content 

/ mmol·g-1 

C/Pexp; 

(C/Nexp) 

C/Pth; 

(C/Nth) 

IEN-STF - 15.4 0.88 (10.3) (10) 

MIP-STF - 15.8 0.86 10.5 10 

IEN-RTH 24.1 14.9 0.88 (10.0) (10) 

MIP-RTH 20.2 14.3 0.92 11.0 10 

MNP-RTH 22.0 15.3 0.86 7.3 (3.4) 7 (3.5) 

MNP-ITE - 14.9 0.92 7.4 (3.4) 7 (3.5) 

PB1-MTN - - - - (2.5) 10 (2.5) 

PB1-ITQ-45 24.6 22.8 0.58 10.4 (2.7) 10 (2.5) 

In this case, the OSDA content in the solid products differs for each phase, while the 

OSDA content for the same phase and different OSDA´s remains constant, as previously seen 

in experiment 1 in section 4.2.1.2. It could be seen that in all borosilicate materials, the silicon 

to boron ratio is similar to the used in the synthesis gel, while the silicon to OSDA ratios are 

similar between the same phase regardless of the used OSDA. The kinetics of incorporation 

of the OSDA´s were not calculated, as results from experiment 1 have shown that the OSDA 

content is constant from the beginning of the zeolite formation process. It is remarkable the 

analysis of the MTN phase, as no phosphorus was incorporated, suggesting that the PB1 

OSDA is decomposed and their decomposition products leads to the MTN phase.  
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4.3.2 Mother liquor analyses 

Analogously to experiment 1, the mother liquors were analysed to study the stability 

of the OSDA excess after undergoing the hydrothermal synthesis. The mother liquors were 

analysed by liquid NMR spectroscopy, but in this case, after taking in account the  

quantification results in experiment 1, the quantification and mass balance were not  

calculated. 

4.3.2.1 OSDA stability 

Like in experiment 1, the stability of the OSDA´s was tracked by liquid 31P and 13C-

NMR spectroscopies. Some of the NMR spectra are shown in Figure 4.14, where the OSDA 

and decomposition resonances could be seen for all OSDA´s. 

 
Figure 4.14. Liquid 31P-NMR spectra of PB1 cation (left), MIP cation (middle left), MNP cation 

(middle right) and 13C-NMR spectra (right) of IEN cation mother liquors. The upper spectra 

belong to the pure OSDA´s. Resonances marked with asterisk are assigned to decomposition 

products. All samples were diluted in deuterium oxide solution. 

The NMR spectra show resonances belonging to the intact OSDA´s and several  

decomposition products, although in this case the higher complexity of the decomposition 

resonances makes it difficult to identify most of the decomposition compounds. 
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In the case of the IEN OSDA, the methodology used in experiment 1 was adapted for 

this OSDA. In this case, there are more resonances in these spectra due to its more complex 

structure respect to TEA cation, and thus, decomposition products were not fully identified. 

Nevertheless, there is a clear correlation between closely related carbon resonances, which 

means that any decrease in the IEN cation carbon resonances belonging to the methyl or the 

methylene groups leads to an increase of a closely related carbon resonance. 

𝑇𝑜𝑡𝑎𝑙 %𝐼 𝑁 =

(
𝐼𝑛𝑡𝐼𝐸𝑁(𝐶𝐻3)

∑ 𝐼𝑛𝑡𝑑𝑒𝑔.𝑝𝑟𝑜𝑑.(𝐶𝐻3)
+

𝐼𝑛𝑡𝐼𝐸𝑁(𝐶𝐻2)
∑ 𝐼𝑛𝑡𝑑𝑒𝑔.𝑝𝑟𝑜𝑑.(𝐶𝐻2)

)

2
· 100 

Equation 4.3. 

Where 
𝐼𝑛𝑡𝐼𝐸𝑁(𝐶𝐻3)

∑ 𝐼𝑛𝑡𝑑𝑒𝑔.𝑝𝑟𝑜𝑑.(𝐶𝐻3)
 is the ratio between the area of the 13C NMR spectra of CH3 

resonance in IEN and the sum of all the 13C NMR spectra of CH3 resonances in the mother 

liquor; 
𝐼𝑛𝑡𝐼𝐸𝑁(𝐶𝐻2)

∑ 𝐼𝑛𝑡𝑑𝑒𝑔.𝑝𝑟𝑜𝑑.(𝐶𝐻2)
 is the ratio between the area of the 13C NMR spectra of CH2  

resonance in IEN and the sum of all the 13C NMR spectra of CH2 resonances in the mother 

liquor. 

The degradation of the phosphorous OSDA´s was studied only by liquid 31P-NMR 

spectroscopy, which simplifies the calculus and minimize any potential error introduced by 

additional analyses as ICP spectroscopy or sample weighting. Therefore, the degradation of 

phosphorous OSDA´s was calculated by Equation 4.4. 

𝑇𝑜𝑡𝑎𝑙 %𝑃𝑂𝑆𝐷𝐴 = 
𝑃𝑂𝑆𝐷𝐴 𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 𝑎𝑟𝑒𝑎

∑ 𝑃 𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 𝑎𝑟𝑒𝑎31 · 100 

Equation 4.4.  

Where 
𝑃𝑂𝑆𝐷𝐴 𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 𝑎𝑟𝑒𝑎

∑ 𝑃 𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 𝑎𝑟𝑒𝑎31  is the ratio between the area of the 31P NMR POSDA  

resonance and the sum of all the 31P NMR resonances in the mother liquor. 

Similarly to experiment 1, the stabilities of IEN, MIP, MNP and PB1 cations in all 

syntheses were calculated by Equation 4.3 and Equation 4.4, respectively, and the  

corresponding stability results of IEN, MIP, MNP and PB1 cations are shown in Figure 4.15. 
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Figure 4.15. Stability curves of IEN (top left, green background), MIP (top right, purple  

background), MNP (bottom left, red background) and PB1 (bottom right, orange background) 

cations at different synthesis conditions (■ : all-silica fluoride synthesis; ▼ : borosilicate  

fluoride synthesis; ● : all-silica hydroxide synthesis; ♦ : borosilicate hydroxide synthesis). 

Curves are just for guidance. 

The comparison between the IEN and MIP cations yields similar results to those  

obtained in experiment 1, confirming that the phosphonium cations are more stable under 

hydrothermal conditions when compared with closely related ammonium cations. However, 

in this case the IEN cation is significantly less stable than the TEA cation at 150ºC, especially 

under fluoride media. This could be ascribed to the more complex carbon chain of the IEN 

cation compared with the TEA cation. 

In the case of the MNP cation, a lower stability than its isostructural phosphonium 

counterpart, the MIP cation, was obtained. Actually, the stability exhibited by this cation 

closely resembles to the IEN cation. However, when comparing the MNP and IEN cations, 

it could be seen that the MNP cation is more stable under hydroxide media than the IEN 
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cation, while under fluoride media, the MNP cation is less stable than the IEN cation, espe-

cially for longer synthesis times. 

Finally, the PB1 cation present a completely different behaviour, as this cation is very 

stable under hydroxide media, but quickly decomposes under fluoride media. These stability 

results are in full agreement with the crystallization of the dense phase MTN, as this phase is 

known to be synthesized by small amines, obtained after the decomposition of the PB1  

cation. 

The PB1 cation is a special case because it is not closely related to the previously 

cations, as it presents a more complex molecular structure, but it was added in this study as 

the simplest model of the series of phosphazene bases. 

The stability curves of the studied cations show that, generally, the cations are slightly 

more stable in borosilicate synthesis gels than in all-silica synthesis gels, following a similar 

trend than that observed in experiment 1, where all-silica and blank experiments were  

compared. This is assigned to the boron oxide species interacting, and eventually bonding, 

with the silicon oxide species, which generates an excess of negative charge in the  

borosilicate species. The interaction between the cationic OSDA´s and these borosilicate  

species would lead to a higher stabilization of the OSDA cationic species than the interaction 

between the OSDA´s and the silicate species. 

4.4 Conclusions 

The stability studies discussed in this chapter have proven that phosphorous cations 

generally present improved crystallization rates and stabilities respect to traditional  

alkylammonium cations when used as OSDA in the synthesis of zeolites. 

 The use of phosphorous OSDA´s increase the crystallization rate for a given phase 

compared with related ammonium OSDA´s. This result suggests that there is a higher 

affinity between the phosphorous OSDA´s and the zeolitic matrix than the  

corresponding ammonium OSDA´s. 

 The phosphorous OSDA stability is heavily influenced by the chemical nature of 

the phosphorous cations. Thus, phosphonium cations are more stable under any  

condition than closely related ammonium cations. Phosphazenium cations present a 

great stability in hydroxide media, but are highly unstable in fluoride media, while 
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aminophosphonium cations present a middle stability under hydroxide and  

fluoride media. 

 These results must be highlighted only while comparing closely related cations, as 

not every phosphorous OSDA is always more stable than any ammonium OSDA. 

However, these studies have led us to carry on more sensible screening syntheses for 

OSDA´s in its more stable media depending on the chemical nature of the OSDA. For 

example, hydroxide media is prioritized over fluoride media when using phosphazene 

bases, while fluoride media is prioritized when using alkylphosphonium or  

alkylammonium cations as OSDA´s in the synthesis of zeolites. 

 The stability of OSDA´s is influenced by the synthesis gel composition. Silicate 

species increase the stability of the cations, while the introduction of boron further 

increases the stability of the cation, even when no crystalline product is obtained. This 

leads to suggest the use of negatively charged additives which could enhance the  

stability of the cation in the synthesis media. 

 The study of the stability of OSDA´s is a useful complementary tool when testing 

cations as OSDA´s. A quick decomposition could lead to the formation of species 

yielding different phase selectivity than the desired, while stable cations could be 

tested at higher temperatures and/or synthesis times. A stable OSDA could also be 

reused leading to an effective increase of the incorporation yield of the OSDA. 
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Chapter 5 

Phosphorus Modified 

Zeolites 

 

5.1 Introduction 

The optimization of the catalytic performance is a critical issue in zeolitic materials. 

This could be done by post-synthesis treatments, as cation exchange,[1, 2] desilication,[3, 4] 

dealumination[5, 6] or by the introduction of extra-framework phosphorous species,[7] among 

others.[8, 9] The final properties of the catalyst will depend on the zeolite structure and pore 

topology, the textural and adsorption properties, the acid strength, concentration and type of 

acid sites (Brönsted and/or Lewis) of active sites, etc. These properties should be tuned in 

order to match with those required for the desired catalytic process. 

The use of phosphorous OSDA´s allows introducing phosphorous species by direct 

synthesis, and thus, after the thermal treatment of the material, extra-framework phosphorous 

species are formed avoiding further post-synthesis treatments. Because of that, zeolites  

synthesized using phosphorous OSDA´s have the potential to selectively incorporate specific 

amounts of phosphorus as extra-framework phosphorous species. Moreover, this would  
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allow for introducing phosphorus in small pore zeolites, where post-synthesis treatments are 

not available because of diffusion constraints.[7, 10] 

In this chapter, phosphorous-modified zeolites were synthesized using phosphorous 

OSDA´s in order to get specific amounts of phosphorus into the final materials. 

Two different materials were studied, the MFI and RTH zeolites. The MFI zeolite was 

selected for two main reasons: it is a well-known material with a large number of documented 

post-synthesis phosphorous treatments;[11-13] and the phosphorous OSDA used for its  

synthesis, the TEP cation, is simple and commercially available, which allows to carry on a 

large number of experiments using different synthesis strategies until developing a successful 

methodology. 

However, the synthesis of phosphorous-modified MFI zeolite is the starting point, 

because the final objective is the synthesis of phosphorous-modified small pore zeolites, 

where post-synthesis treatments with phosphoric acid are useless because of diffusion  

constraints. After developing the methodology to synthesize phosphorous-modified zeolites, 

this methodology was extended to the synthesis of RTH zeolite, as it is a small pore zeolite 

whose synthesis could be done with ammonium and phosphonium OSDA´s.[14-18] 

5.2 MFI zeolite 

The ZSM-5 (IZA structure code: MFI) zeolite is a tri-directional medium pore channel 

system zeolite with 10 MR pore openings. It presents two sets of perpendicular and  

intersecting channels, one straight and the other sinusoidal. This zeolite has achieved a large 

number of applications, especially in catalytic processes.[19-23] Thus, the MFI zeolite has been 

deeply studied, and a broad range of several compositions[24-29] and the use of several 

OSDA´s[30-32] have been reported for its synthesis. 

The post-synthesis treatments in ZSM-5 zeolite play a key role in achieving the  

required properties for its industrial application. Among others, the post-synthesis treatment 

with phosphorus, especially with phosphoric acid, have been extensively applied and studied 

to increase the thermal stability under steam conditions of the aluminium-containing MFI 

zeolite.[10, 33-36] The phosphorus-treated ZSM-5 zeolite has shown improved catalytic  

performance over untreated counterparts in cracking of vacuum gasoil, which is one of the 

major commercial applications of MFI zeolites.[21-23] 
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5.2.1 Dual template P-modified all-silica MFI zeolite  

In this section, the incorporation of phosphorus in the MFI zeolite was performed 

using a dual-template synthesis methodology.[37, 38] Two OSDA´s, an ammonium OSDA,  

tetraethylammonium cation (TEA, OSDA-1), and a phosphonium OSDA, tetraethylphospho-

nium cation (TEP, OSDA-2), were jointly used in the same synthesis gel (Figure 5.1). The 

detailed characterization of the TEA and TEP cations are described in sections 3.2.1.1 and 

3.2.1.2, respectively. 

 
Figure 5.1. a) Tetraethylphosphonium cation (TEP) and b) tetraethylammonium cation (TEA). 

Synthesis gels with the following molar composition were prepared: 

1.0 SiO2 : 0.4 OSDAP+N : 10 H2O : 0.4 HF 

Where OSDAP+N is TEA, TEP or a mixture of both cations with TEP/(TEA+TEP) 

ratios ranging from 0 to 1. Zeolites synthesized only with TEP or TEA are denoted as P-MFI 

or N-MFI, respectively, and those obtained with a mixture of OSDA´s are named as xP-MFI 

were x refer to the TEP/(TEA+TEP), or P/(P+N), molar ratio used in the synthesis gel or 

obtained in the solid, as specified. The details of the synthesis gel preparation are described 

in section 3.2.2.2. 
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The obtained solids were identified by powder X-Ray diffraction, whose diffraction 

patterns are shown in Figure 5.2. 

 
Figure 5.2. Powder X-Ray diffraction of some of the obtained materials. Diffractograms belong 

to the most crystalline material for each composition. Samples are identified by synthesis gel 

P/(P+N) composition. 

In all cases, highly crystalline MFI zeolite was the only product. The pH of the  

synthesis gels using a mix of TEA ad TEP as OSDA´s was slightly higher than the synthesis 

gels using only TEA or TEP as OSDA. This fact drives these mixed OSDA synthesis gels 

towards the crystallization of zeolite β when water to silica ratio is lower than 8, leading to 

MFI samples with a little amount of zeolite β impurities. However, when water to silica ratio 

is over 10, no zeolite β was obtained. 
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The crystallization rates differ depending on the OSDA composition, as crystallization 

curves shown in Figure 5.3. Crystallinity was calculated as described in section 4.2.1.1. 

 
Figure 5.3. Crystallization kinetics of some of the obtained Si-MFI materials. Samples are  

identified by synthesis gel P/(P+N) composition. Lines are just for guidance. 

The crystallization rate using the P-OSDA is higher than the observed using the  

N-OSDA, although this increase in the crystallization rate does not proportionally  

increases as the P-OSDA content does. Actually, the crystallization rate of MFI with a  

majority of TEA or TEP closely resembles the crystallization rate when only using TEA or 

TEP as OSDA, respectively. These results are in agreement with previously observed from 

the stability study in section 4.2.2.2, which suggests that there is a higher affinity between 

the phosphonium OSDA´s and the zeolitic matrix than the corresponding ammonium 

OSDA´s. 
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5.2.1.1 Chemical analyses of as-made P-modified all-silica MFI zeolite  

The typical chemical compositions of the obtained all-silica MFI materials are shown 

in Table 5.1. 

Table 5.1. Chemical compositions of some of the obtained Si-MFI materials. All ratios are  

given as molar ratios. 

MFI Sample [P/(P+N)]gel [P/(P+N)]solid wt.%P (P+N) / mmol·g-1 Si/OSDA 

N-MFI 0 0.00 0.00 0.66 22.0 

0.1P-MFI 0.0625 0.11 0.24 0.73 20.1 

0.2P-MFI 0.12 0.26 0.54 0.67 22.8 

0.4P-MFI 0.25 0.42 0.86 0.66 24.2 

0.5P-MFI 0.36 0.53 1.07 0.65 23.3 

0.75P-MFI 0.5 0.75 1.52 0.66 24.6 

0.9P-MFI 0.75 0.89 1.74 0.63 24.1 

P-MFI 1 1.00 1.99 0.64 23.5 

First, it could be observed that the amount of total OSDA, (P+N), and the silicon to 

OSDA ratios are similar in most of the materials regardless the synthesis gel composition, 

with a Si/OSDA ratio around 24, which fits with 4 OSDA molecules per unit cell of MFI 

structure (96 T units per unit cell). This result means that the incorporation of the OSDA is 

reliable and could be predicted beforehand. 

Secondly, the ratio of P-OSDA respect to the amount of total OSDA, P/(P+N),  

between the values added in the synthesis gel and the obtained in the synthesized material 

differ. The comparison between these values is plotted in Figure 5.4. 
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Figure 5.4. Comparison of P/(P+N) compositions used in the synthesis gel, P/(P + N)]gel, against 

the P/(P+N) compositions obtained in Si-MFI zeolites, [P/(P + N)]solid. P/(P+N)th refers to the 

theoretical compositions, while P/(P+N)th refers to the experimental compositions. 

The comparison of expected and experimental P/(P+N) values reveals a clear  

preferential incorporation trend of the TEP cation over the TEA cation. This preferential  

incorporation could be indicative of a more powerful affinity and structure directing effect of 

the P-OSDA over the N-OSDA, which would agree with the increase of the crystallization 

rate previously described. This feature would help incorporating specific amounts of  

phosphorus in the final materials by direct synthesis. 
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5.2.1.2 Morphology of as-made P-modified all-silica MFI zeolite 

The crystallite shape and size of the as-made Si-MFI samples were assessed by 

FESEM microscopy analyses, depicted in Figure 5.5. 

 
Figure 5.5. FESEM microimages of Si-MFI samples: P-MFI-OH, P-MFI, 0.4P-MFI (blue inset: 

Si mapping; purple inset: P mapping) and N-MFI. Samples are identified by synthesized 

P/(P+N) material composition. Hydroxide media P-MFI was included for comparison. 

The crystallites of the obtained MFI zeolite exhibit a typical coffin shape.[39] However, 

the crystal size and aspect ratio depends on the OSDA composition used during their  

syntheses. Thus, the N-MFI material present crystal sizes of about 60x10 µm, decreasing to 

20x5 µm for the 0.2P-MFI and the 0.4P-MFI materials, and even smaller in the P-MFI  

material. However, crystal size heterogeneity in this sample makes it difficult to give an  

average crystal size. 

The phosphorus and silicon mapping EDX composition analyses of the materials 

(only 0.4P-MFI material shown in Figure 5.5 for simplicity), as well as dot EDX composition 

analyses (not shown here), reveal that the TEP OSDA is evenly distributed throughout the 

whole MFI crystals. Although the N-OSDA distribution could not be analysed by this  

technique, the evenly distribution of the P-OSDA leads to hypothesize that the N-OSDA is 

also evenly distributed, based on the nearly constant P/(P+N) ratio obtained in each analysed 
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dot. Thus, it could be concluded that there is no inter- or intracrystalline gradients between 

the different OSDA´s and the MFI zeolite matrix. 

5.2.1.3 Thermogravimetric analysis of as-made P-modified all-silica 

MFI zeolite 

The thermal stability and decomposition of the OSDA were studied by the  

thermogravimetry (TG) and differential thermogravimetry (DTG) analyses of the Si-MFI 

samples obtained with different OSDA compositions. Some thermogravimetric plots are 

shown in Figure 5.6. 

 
Figure 5.6. TG (dotted lines) and DTG (solid lines) analyses curves of the Si-MFI zeolites  

obtained with different P/(P+N) ratios. Samples are identified by synthesized P/(P+N)  

material composition. DTG curves are scaled up for a better view. 

There is a clear difference between the thermal decomposition of the occluded TEP 

and TEA cations in MFI zeolite. The main weight losses occur at ~380ºC and at ~520ºC from 

the decomposition of TEA and TEP, respectively, indicating that the phosphonium cation is 

more thermally stable than the ammonium counterpart. As expected, the TG profile of the 
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sample containing a mixture of OSDA´s show two peaks due to the decompositions of TEA, 

slightly shifted towards higher temperature, and of TEP, shifted towards a lower temperature, 

at ~500ºC. 

The shift of the decomposition peaks towards a higher temperature for the TEA cation, 

and towards lower temperatures for the TEP cation, suggests that the two OSDA´s are  

intimately mixed inside the MFI crystals and possibly interact between them. 

The results obtained in this section constitute a benchmark for the synthesis of  

phosphorous-modified zeolites with a homogeneous distribution of the phosphorous species, 

so this methodology was applied for further studies on aluminosilicate materials, where the 

introduction of phosphorus becomes truly relevant. Further discussion and more detailed 

analyses, especially MAS-NMR spectra, of the samples obtained in this section are given in 

Martinez-Ortigosa et al.[40, 41] 

5.2.2 Dual template P-modified aluminosilicate MFI zeolite  

After the results obtained in the previous section, the synthesis of MFI in its  

aluminosilicate form was performed. This was done preparing synthesis gels with the  

following molar composition: 

0.976 SiO2 : 0.012 Al2O3 : 0.4 OSDAP+N : 15 H2O : 0.4 HF 

Where OSDAP+N is TEA, TEP or a mixture of both with TEP/(TEA+TEP) ratios  

ranging from 0 to 1. Zeolites synthesized only with TEP or TEA are denoted as P-MFI or  

N-MFI, respectively, and those obtained with a mixture of OSDA´s are named as  

xP-Al(y)-MFI were x refer to the TEP/(TEA+TEP), or P/(P+N) alternatively, molar ratio in 

the solid, and y refers to the silicon to aluminium ratio, when used. 

As previously, the obtained solids were identified by powder X-Ray diffraction, 

whose diffraction patterns are shown in Figure 5.7. 
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Figure 5.7. Powder X-Ray diffraction of some of the obtained materials. Diffractograms  

belong to the most crystalline material for each composition. Samples are identified by  

synthesis gel P/(P+N) composition. 

As previously observed, highly crystalline MFI zeolite was obtained in all cases. 

However, the water to silica ratio was increased to 15 in order to avoid zeolite β impurities 

that were found at the first trials when using a water to silica ratio of 10, as the pH in the 

synthesis gel further increases when aluminium hydroxide is added to the synthesis gel. 

5.2.2.1 Chemical analyses of as-made P-modified aluminosilicate MFI 

zeolite 

In this section only chemical analyses, thermogravimetry analyses and scanning  

electron microscopies of the obtained Al-MFI materials are compared, while MAS-NMR 

spectra is further discussed in sections 5.2.4. 

The typical chemical compositions of the obtained Al-MFI materials are shown in 

Figure 5.2. 
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Table 5.2. Chemical compositions of some of the obtained Al-MFI materials. Ratios are given as 

molar ratios. 

MFI Sample [P/(P+N)]gel [P/(P+N)]sol wt.%Psol (P+N) (mmol/g) (Si+Al)/OSDA 

N-Al-MFI 0 0 0 0.63 23.1 

0.1P-Al-MFI 0.0625 0.12 0.23 0.60 24.4 

0.2P-Al-MFI 0.125 0.23 0.45 0.64 22.8 

0.4P-Al-MFI 0.25 0.40 0.78 0.62 22.2 

P-Al-MFI 1 1 1.84 0.59 23.1 

As observed in the section 5.2.1, the amount of total OSDA, (P+N), and the silicon to 

OSDA ratio are similar in materials with different P-OSDA and N-OSDA ratios. The 

Si/OSDA ratio present a value around 24, which fits with 4 OSDA molecules per unit cell of 

MFI structure, as previously described in all-silica MFI materials. The ratio of phosphorous 

OSDA to the amount of total OSDA, P/(P+N), between the values added in the synthesis gel 

and the obtained in the aluminosilicate materials are plotted Figure 5.8. 

 
Figure 5.8. Comparison of P/(P+N) values used in the synthesis gel, P/(P + N)]gel, against the 

P/(P+N) values obtained in Al-MFI materials, [P/(P + N)]solid. P/(P+N)th refers to the theoretical 

compositions, while P/(P+N)th refers to the experimental compositions. Values obtained for  

Si-MFI materials are also shown for comparison. 
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As previously seen in all-silica materials, there is a preferential incorporation of TEP 

over TEA that also follows the same trend as in all-silica MFI materials. This data confirms 

that this synthesis methodology is reliable to selectively incorporate specific amounts of 

phosphorus in the materials in the synthesis stage by tuning the P-OSDA and N-OSDA  

composition. 

The aluminium and silicon incorporations to the materials are summarized in Table 

5.3. 

Table 5.3. Heteroatom chemical compositions of some of the obtained Al-MFI materials. All  

ratios are given as molar ratios and pHgel was measured after adding HF. 

MFI Sample [Si/Al]gel pHgel ηAl (%) ηSi (%) [Si/Al]sol OSDAP+N/Al wt.%Psol 

N-Al-MFI 40 8.2 100 85 35.9 1.5 0 

0.1P-Al-MFI 40 8.4 100 84 33.5 1.4 0.23 

0.2P-Al-MFI 40 8.4 100 86 36.4 1.6 0.45 

0.4P-Al-MFI 40 8.5 100 82 31.2 1.4 0.78 

P-Al-MFI 40 8.3 100 68 23.7 1.0 1.84 

The silicon to aluminium ratios of the materials decrease as the phosphorus content 

increases in the synthesis gel, giving rise to a high disparity between the silicon to aluminium 

ratios used in the synthesis gel and those obtained in the synthesized material in the all TEP 

material, P-Al-MFI. This could be explained by a stronger interaction between the  

phosphorous OSDA cation and the negatively charged tetrahedral aluminium centres over 

the corresponding ammonium OSDA cation interaction. Because of that, the aluminium to 

OSDA ratio falls from 1.5 in the N-Al-MFI to 1 in the P-Al-MFI, which would lead to a total 

compensation of charges. This stronger phosphorous OSDA-aluminium centres interaction 

would lead to a lower silica yield, as the aluminosilicate with a higher silicon to aluminium 

ratio would be less favoured during synthesis. 
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5.2.2.2 Morphology of P-modified aluminosilicate MFI zeolite 

The crystallite shape and size of the as-made Al-MFI samples were assessed by 

FESEM microscopy analyses, depicted in Figure 5.9. 

 
Figure 5.9. SEM microimages of N-OSDA (above) and P-OSDA (middle) comparing some  

Si-MFI (left) versus Al-MFI (right) samples. Below, Si (white), P (purple) and Al (green)  

compositional mapping of sample 0.4P-Al-MFI are shown. Samples are identified by  

synthesized P/(P+N) material composition. 

As previously observed in all-silica MFI samples, the crystallites of the obtained  

aluminosilicate MFI materials exhibit a typical coffin shape. However, the introduction of 

aluminium in the synthesis gels yields about ten-fold smaller MFI crystallites compared to 

the all silica MFI materials. Thus, N-Al-MFI presents crystal sizes of about 5x0.5 µm,  

decreasing to 1x0.2 µm for P-Al-MFI, with mixed crystal sizes of intermediate samples  
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ranging in-between (not shown here), although crystal size heterogeneity remains as high as 

in all-silica MFI samples. 

Conversely to all-silica materials, P-Al-MFI crystallites are significantly smaller than 

N-Al-MFI crystallites, which could be derived from the lower silica incorporation in the  

P-Al-MFI due to the alumina source depletion. As previously, the chemical composition 

mapping of phosphorus, aluminium and silicon in the 0.4P-Al-MFI sample was assessed, 

revealing that the TEP OSDA is homogeneously distributed throughout the whole MFI  

crystals, which leads to hypothesize that the N-OSDA is also homogeneously distributed. 

5.2.2.3 Thermogravimetric analysis of as-made P-modified alumino- 

silicate MFI zeolite 

The thermal stability and decomposition of the OSDA were studied by the  

thermogravimetry (TG) and differential thermogravimetry analyses (DTG) of the Al-MFI 

samples obtained with different OSDA compositions. Some thermogravimetric plots are 

shown in Figure 5.10. 

 
Figure 5.10. TG (dotted lines) and DTG (solid lines) analyses curves of the Al-MFI materials  

obtained with different P/(P+N) ratios. Samples are identified by synthesized P/(P+N) material 

composition. DTG curves are scaled up for a better view. 
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As previously seen in 5.2.1.3 section, the decomposition of TEA still happens at 

~380ºC, but the main weight loss of the TEP shifts from ~520ºC to ~600ºC, indicating that 

the TEP is further stabilized by the presence of aluminium, while the TEA cation  

decomposition temperature does not change due to the presence of aluminium. This is  

indicative of a stronger interaction between the P-OSDA and aluminium than between the  

N-OSDA and aluminium. 

Also, the TG patterns of samples containing a mixture of OSDA´s show two peaks 

due to the decomposition of TEA, slightly shifted towards a higher temperature, and of TEP, 

that shifted towards a lower temperature, ~550ºC. Like in all-silica materials, the shift of the 

OSDA decomposition temperatures suggests that the two OSDA´s are intimately mixed  

inside the MFI crystals. 

5.2.3 Thermal treatments of P-modified aluminosilicate MFI 

zeolite 

The as-made aluminosilicate MFI materials were calcined under air and hydrogenated 

at high temperature following the general methodologies described in section 3.2.3, taking in 

account the presence of ammonium compounds in the as-made material. Powder X-Ray  

diffraction, chemical analyses, adsorption isotherms, and MAS-NMR spectroscopies were 

performed for the thermally treated Al-MFI materials. In this section only powder X-Ray 

diffraction, chemical analyses and adsorption isotherms are discussed, while MAS-NMR 

spectra are further discussed in section 5.2.4. 

5.2.3.1 Crystallinity of thermally treated P-modified aluminosilicate 

MFI zeolite 

The crystallinity of the aluminosilicate MFI samples after calcination was assessed by 

powder X-Ray diffraction, whose diffraction patterns are shown in Figure 5.11. 
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Figure 5.11. Powder X-Ray diffraction of some of the thermally treated Al-MFI materials.  

Solid lines correspond to as-made samples, while dotted lines correspond to calcined samples.  

Samples are identified by synthesized P/(P+N) material composition. 

The materials remain highly crystalline after the thermal treatments, and the X-Ray 

diffraction peaks are found at approximately the same 2θ degrees in all samples regardless 

of the thermal treatment. The main difference between the as-made and the thermally-treated 

samples is the intensity of the peaks at 2θ below 18º, as the intensity of these diffraction peaks 

are typically affected by the presence of the OSDA filling the pores of the zeolite. 

 

5.2.3.2 Chemical analyses of thermally treated P-modified alumino- 

silicate MFI zeolite 

The chemical compositions of the thermally treated aluminosilicate MFI materials are 

shown in Table 5.4. 
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Table 5.4. Chemical compositions of some of the thermally treated Al-MFI materials. Samples 

are identified by synthesized P/(P+N) material composition. Ratios are given as molar ratios. 

Sample Treatment Si/Alorig Si/Altreated wt.%Porig wt.%Ptreated P/Al 

N-Al-MFI Calcination 35.9 32.5 0 0 0 

0.1P-Al-MFI Calcination 33.5 31.0 0.23 0.26 0.2 

0.1P-Al-MFI Hydrogenation 33.5 32.0 0.23 0.09 0.1 

0.2P-Al-MFI Calcination 36.4 33.0 0.45 0.46 0.3 

0.2P-Al-MFI Hydrogenation 36.4 33.1 0.45 0.15 0.1 

0.4P-Al-MFI Calcination 31.2 29.8 0.78 0.84 0.5 

0.4P-Al-MFI Hydrogenation 31.2 29.9 0.78 0.12 0.1 

P-Al-MFI Calcination 23.7 23.5 1.84 1.78 1.0 

P-Al-MFIwas
* Washing 23.5 23.3 1.78 0.45 0.2 

P-Al-MFI Hydrogenation 23.7 22.6 1.84 0.26 0.2 

*: parent sample correspond to calcined P-Al-MFI. 

These data show that most of the phosphorus remains inside the solid after the  

calcination of the materials, while the hydrogenation at high temperature leads to the nearly 

total removal of the phosphorus from the material, up to 85 wt.%. 

The calcined P-MFI material was also washed with ammonium acetate (NH4Ac),  

resulting in a phosphorus removal of 75 wt.% respect to the parent material, yielding a final 

material with a slightly higher phosphorus content than the P-MFI material hydrogenated at 

high temperature. The details about the washing procedure with aqueous NH4Ac are given in 

section 3.2.3.3. 

5.2.3.3 Textural properties of P-modified aluminosilicate MFI zeolite 

The textural properties of the Al-MFI samples were calculated from the N2 adsorption 

isotherms at 77 K on the thermally treated samples, shown in Figure 5.12. 
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Figure 5.12. N2 adsorption isotherms of hydrogenated P-Al(25)-MFI (red), calcined P-Al(25)-

MFI (green), calcined 0.2P-Al(32)-MFI (orange) and calcined N-Al(36)-MFI (blue). 

The N2 adsorption isotherms of the thermally treated Al-MFI samples show the type 

Ia physisorption profile typical of microporous materials.[42] 

The BET and micropore surface areas and the total micropore volume, calculated from 

the N2 adsorption isotherm at 77 K by applying the BET and t-plot method, are shown in 

Table 5.5. 
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Table 5.5. Textural properties of some thermally treated Al-MFI samples. Samples are  

identified by synthesized P/(P+N) material composition, with aluminium contents included in 

brackets. Ratios are given as molar ratios. 

Sample 

BET  

surface / 

m2·g-1 

Micropore  

surface / 

m2·g-1 

Micropore  

volume / 

cm3·g-1 

P/Al wt.%P 

N-Al(36)-cal 376.8 362.2 0.17 0 0 

0.1P-Al(32)-cal 371.2 355.4 0.17 0.2 0.26 

0.2P-Al(33)-cal 365.4 360.2 0.17 0.3 0.46 

0.4P-Al(30)-cal 351.7 344.8 0.16 0.5 0.84 

P-Al(25)-cal 336.3 304.7 0.15 1.0 1.78 

P-Al(25)-was 364.7 330.9 0.16 0.2 0.45 

P-Al(25)-hyd 377.3 349.3 0.17 0.1 0.26 

The obtained BET surface area and micropore volume values show differences  

depending on the P content, both increasing as the phosphorus content decreases. These  

results are in agreement with the presence of extra-framework phosphorous species that  

hinder the diffusion throughout the pores of the zeolite. 

5.2.3.4 Acidic properties of thermally treated aluminosilicate MFI  

zeolite 

The acidic properties of the thermally treated aluminosilicate MFI samples were  

studied by ammonia thermoprogrammed desorption (TPD), obtaining the desorption mass 

spectrometry with m/e=15. The corresponding TPD curves are shown in Figure 5.13. 
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Figure 5.13. Ammonia TPD curves of some thermally treated Al-MFI samples. Samples are 

identified by synthesized P/(P+N) material composition, with P/Al ratio in brackets. 

In all cases a single ammonia desorption peak was observed. This peak is due to  

ammonia strongly bounded to the material.[43, 44] The maximum temperature of ammonia  

desorption of the Al-MFI samples increases as the phosphorus content decreases, shifting 

from 325ºC for P-Al-MFI sample, to 370ºC for N-Al-MFI sample. This temperature shift 

means a clear decrease of the acidity strength of the Al-MFI materials as phosphorus content 

increases, due to the interaction of the phosphorous species with the aluminium species. This 

interaction decreases the acid strength of these aluminium centres, and thus, the acidity of 

the final materials could be modulated by adjusting the P/(P+N) ratio of the synthesized ma-

terial, as was described in section 5.2.2.1. 

The textural and acidic properties of the Al-MFI materials are summarized in  

Table 5.6. 
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Table 5.6. Chemical analyses, textural properties and ammonia adsorption at 100ºC of some 

thermally treated Al-MFI samples. Samples are identified by synthesized P/(P+N) material 

composition. Ratios are given as molar ratios. 

Sample Si/Al P/Al wt.%P 
Micropore    

volume / cm3·g-1 

VNH3 / 

cm3·g-1 
Tdesorption / ºC 

N-Al-cal 36 0 0 0.17 5.95 370 

0.1P-Al-cal 32 0.2 0.26 0.17 4.20 365 

0.2P-Al-cal 33 0.3 0.46 0.17 4.02 360 

P-Al-cal 25 1.0 1.78 0.15 2.40 325 

P-Al-hyd 25 0.1 0.26 0.17 6.23 390 

It should be noted that the sample hydrogenated at high temperature presents a higher 

maximum ammonia desorption, 390ºC, than the N-Al-MFI sample, even though the  

hydrogenated sample keeps some phosphorous inside. This means that the hydrogenated  

P-Al-MFI sample presents a stronger acidity than the phosphorus-free Al-MFI, and thus, the 

acid strength of these materials is also affected by the OSDA used in the synthesis. 

5.2.4 NMR analyses of P-modified aluminosilicate MFI zeolite 

The incorporation of the phosphorous OSDA and aluminium, as well as the chemical 

species formed after thermal treatments were studied by MAS-NMR spectroscopy. 

5.2.4.1 OSDA incorporation and species 

The stability of the OSDA incorporated to the Al-MFI zeolite was studied by 13C and 

31P MAS-NMR spectroscopies. 

The 13C MAS-NMR spectra of the as-made samples and the liquid 13C NMR spectra 

of P-OSDA and N-OSDA of some of the Al-MFI materials are shown in Figure 5.14. 



Chapter 5: Phosphorous-modified zeolites 

 

 

175 

 
 

Figure 5.14. 13C MAS-NMR spectra of Al-MFI materials. Samples are identified by synthesized 

P/(P+N) material composition. Free OSDA liquid NMR spectra included for comparison. 

The spectra of the as-made samples show resonances similar to the free P-OSDA and 

N-OSDA, which means that these OSDA´s are incorporated to the material and are stable. 

The 31P MAS-NMR spectra of the as-made samples and the liquid 31P NMR of  

P-OSDA spectrum are shown in Figure 5.15. 

 
Figure 5.15. 31P MAS-NMR spectra of Al-MFI materials. Samples are identified by synthesized 

P/(P+N) material composition. All-silica sample MAS-NMR and free OSDA liquid NMR  

included for comparison. 
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The spectra of the as-made samples show a single resonance at 40 ppm which matches 

the chemical shift of the free OSDA. The resonances obtained in aluminosilicate samples are 

wider than the obtained in the all-silica spectrum, which could mean that the OSDA in  

as-made aluminosilicates could present different conformations. 

After the thermal treatment of the materials, most of the phosphorus remains inside 

the material, giving the opportunity to study the chemical nature of the formed species by  

31P MAS-NMR spectroscopy, whose spectra are shown in Figure 5.16. 

 
Figure 5.16. 31P MAS-NMR spectra of calcined Al-MFI materials with different P/Al ratios. 

Samples are identified by synthesized P/(P+N) material composition, with thermal treatment 

below (cal: calcined; hyd: hydrogenated at high temperature). Solid lines correspond to  

experimental spectra; dotted lines correspond to the sum of deconvoluted signals. Spectra were 

deconvoluted as Gaussian/Lorentz curves. Washed sample with P/Al=0.2 was obtained after 

washing the P/Al=1 sample with NH4Ac. 
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It could be seen that after the thermal treatments, the organic compound is  

decomposed and the remaining phosphorous species display several resonances with  

chemical shifts ranging from 0 ppm to -45 ppm, characteristic of extra-framework P2O5-like 

species. The resulting spectra are quite complex, especially due to the low signal to noise 

ratio. The mathematical deconvolution of the spectra yields at least five main resonances, 

centred at 0, -28, -32 and -41 ppm, and a very broad resonance, centred at -12 ppm. The 

intensities of these resonances vary depending on the P/Al ratio, displacing the barycentre of 

the spectra towards lower chemical shifts as the P/Al ratio decreases. The resonances between 

-25 ppm and -45 ppm are typically assigned to different (bi)phosphates interacting with to 

monodentate or bidentate aluminium in octahedral coordination, while the resonance at 0 

ppm is usually assigned to phosphorus atoms in pyrophosphoric acid or to terminal [P4O3]- 

groups in polyphosphoric species.[45-48] 

It is interesting to remark the differences between the two samples with P/Al ratio of 

0.2, the calcined material and the washed material. In the spectra of these materials, the  

resonances profiles are slightly different, which could be attributed to the removal of  

phosphorous species during the washing of the sample. These phosphorous species are  

probably weakly interacting, or not interacting at all, with the aluminium species, like the 

species related to the resonances over -40 ppm, whose intensities decrease after the washing 

of the material. The intensity decrease in this resonance is accompanied with an intensity 

increase in the resonance at -32 ppm, which indicates that after washing, the phosphorous 

species associated with the resonance at -40 ppm are turning into species associated with the 

-32 ppm resonance. This effect is more clearly visible when these spectra are compared with 

the spectra of the hydrogenated sample. In this case, the resonance at -40 ppm is very weak, 

while the intensities of the resonances at 0 ppm and -6 ppm increase. The 0 ppm resonance 

is associated with extra-framework P2O5 that is not interacting with the zeolitic matrix and is 

just filling the voids of the zeolite, while the -6 ppm resonance could be tentatively associated 

with similar species interacting with the silicon framework. 

It should be noted the low intensity of the resonance at 0 ppm in the calcined Al-MFI 

materials, corresponding to extra-framework P2O5 that are not interacting with the framework 

aluminium, compared with the phosphorous modified MFI samples obtained by post- 

synthesis treatments.[10, 49] This is mainly due to the amount of phosphorus incorporated in 

the zeolite by the post-synthesis treatment, as the treatment conditions should be tightly  

controlled to incorporate low amounts of phosphorous, being extremely difficult to  

incorporate phosphorus in P/Al ratios below 0.5. 
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5.2.4.2 Aluminium incorporation and species 

The aluminium incorporation was studied by 27Al MAS-NMR spectroscopy of the  

as-made Al-MFI samples, whose spectra are shown in Figure 5.17. 

 
Figure 5.17. 27Al MAS-NMR spectra of some samples of as-made Al-MFI with different P/Al  

ratios. Solid lines correspond to experimental spectra; dotted lines correspond to the sum of  

deconvoluted signals. Peaks were deconvoluted as Gaussian/Lorentz curves for an easier view. 

All the as-made materials shows two 27Al resonances centred at 54 ppm and 51 ppm, 

regardless of the OSDA composition used in their syntheses. However, their intensities vary 

depending on the phosphorus content, increasing the contribution of the 51 ppm resonance 

as the phosphorus content increases. These signals could be attributed to Al in tetrahedral 

coordination in two different crystallographic positions, as reported elsewhere.[50-55] 

When materials are thermally treated, the aluminium atoms present up to three  

different chemical environments, depending on the samples, as shown in the 27Al MAS-NMR 

spectra depicted in Figure 5.18. 
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Figure 5.18. 27Al MAS-NMR spectra of calcined Al-MFI materials with different P/Al ratios. 

Solid lines correspond to experimental spectra; dotted lines correspond to the sum of  

deconvoluted signals. The peak at ca. 55 ppm was deconvoluted as a Gaussian/Lorentz curve 

(for an easier view), and the other peaks were deconvoluted using the CzSimple method.[56]  

Asterisk marks NMR spinning bands. 

There are three main resonances appearing at ca. 55 ppm (narrow), at ca. 40 ppm 

(very wide) and at ca. -15 ppm (wide). The intensity of these resonances vary depending on 

the P/Al and Si/Al ratios. Unlike as-made 27Al MAS-NMR spectra, the resonance at 55 ppm 

can be mathematically fitted as a single peak, although its width could be due to an unfolding 

into two close different resonances, corresponding to tetrahedral aluminium located in two 

different crystallographic position. The resonances at 40 ppm and -15 ppm are typically  

attributed to pentacoordinated and octahedrally coordinated aluminium species.[57-59] The  

resonance intensity at 55 ppm decrease as the phosphorus content increases, contrary to the 
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intensities of the 40 ppm and -15 ppm resonances, which slowly decrease as phosphorus 

content decreases, even disappearing in the sample synthesized without P-OSDA. This is an 

evidence that these pentacoordinated and octahedral aluminium species are related to the 

presence of phosphorus inside the voids of the zeolite. 

The washing of the calcined material with NH4Ac not only decrease the phosphorus 

content, but also has a great influence in the 27Al MAS-NMR spectra decreasing, up to 35%, 

the intensities of the 27Al resonances at 40 ppm and -15 ppm, although the relative intensities 

between both signals is kept. This is in agreement with 31P MAS-NMR results, as the washing 

of the calcined sample decreases the phosphorus content, but the ratio of the 31P resonances 

at -32 ppm and -40 ppm is kept. Moreover, the 27Al resonance at -15 ppm shift displaces 

downfield, to -9 ppm. The resonances chemical shift fits with the calcined sample with a 

similar P/Al ratio of 0.2, although this latter sample is prepared using a dual template OSDA 

with a P/(P+N) ratio of 0.0625 in the synthesis gel (0.1P-Al-MFI sample). The main  

difference between the washed and the calcined sample with similar P/Al ratio is the lower 

intensity of the 27Al 40 ppm resonance. This could be attributed to the different interaction 

between the phosphorous and aluminium species. As previously seen in the 31P MAS-NMR, 

the spectra of the calcined sample present a higher intensity of the 31P resonance at -40 ppm, 

while the washed sample present a higher intensity of the 31P resonance at -32 ppm (see 

Figure 5.19). This would mean that the phosphorous species corresponding to the 31P  

resonance at -40 ppm would be interacting with pentacoordinated aluminium species. 

The hydrogenation at high temperature of the sample with P/Al ratio of 1 also yields 

a sample with a low P/Al ratio, similar to the sample washed after calcination. The 27Al MAS-

NMR spectrum profile of the hydrogenated sample is similar to the washed sample with a 

similar P/Al ratio, but the 27Al resonance at 40 ppm presents a lower intensity, conversely to 

the 27Al resonance at -15 ppm. In this case, this latter resonance presents the same chemical 

shift than the observed in the spectra of the calcined sample, while in the washed sample this 

27Al resonance shifts to -9 ppm. When comparing the 31P MAS-NMR of these samples, it 

could be seen that the intensity of the 31P resonance at -40 ppm is lower in the hydrogenated 

sample than in the calcined or the washed samples, which fits with the lowest intensity of the 

27Al resonance at 40 ppm that the hydrogenated sample shows. 
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Figure 5.19. Comparison of 27Al MAS-NMR spectra (left) and 31P MAS-NMR spectra (right). 

Spectra shown here are the same than previously depicted, but aluminium spectra are linked 

with its corresponding phosphorus spectra for better comparison. 

The comparison of the 27Al and 31P MAS-NMR spectra indicates that the phosphorous 

and aluminium species formed after post-synthesis treatments are not only dependent on the 

amount of phosphorus remaining in the material, but it is also dependent on the specific post-

synthesis treatment. Thus, calcined, hydrogenated and washed samples exhibit different 27Al 

and 31P MAS-NMR spectra profiles despite having similar phosphorus contents and/or P/Al 

ratios, which correspond to different interactions between the phosphorous  

and the aluminium species. These different interactions translate into different  

textural and acidic properties between these materials, as previously discussed in sections 

5.2.3.3 and 5.2.3.4, respectively. 
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The results obtained in this section show that the incorporation of phosphorus during 

synthesis allows a close interaction between the extra-framework phosphorous species 

formed after thermal treatments and the aluminium species. Also, the introduction of  

phosphorus modifies the textural and adsorption properties. These two features were also 

found during the introduction of phosphorus by post-synthesis treatments, but the use of  

P-OSDA´s allows to introduce these extra-framework phosphorous species during synthesis, 

which enables a more intimate interaction between the phosphorous and aluminium species. 

Thus, this methodology would be interesting to apply in the synthesis of small pore zeolite 

materials, where post-synthesis treatments to incorporate phosphorus cannot be applied. 

5.3 RTH zeolite 

The RUB-13 (IZA code: RTH) zeolite is a bi-directional small pore channel system 

zeolite with 8 MR pore openings, whose perpendicular channels create larges cages in their  

intersections. These properties make this material suitable for its application in catalysis like 

the MTO reaction.[60, 61] 

The RTH zeolite was first obtained as a borosilicate material employing a mix of 

amines (ethilendiamine and 1,2,2,6,6-pentamethylpiperidine) as OSDA.[62] Later  

developments allowed it to be obtained in its aluminosilicate form, using a bicyclic  

ammonium as OSDA;[63] as all-silica material in fluoride media;[64, 65] and as borosilicate 

material without using any OSDA.[60] 

Although there have been tremendous advances, the zeolite RTH is still mostly  

synthesized using laborious-synthesis OSDA´s and/or several post-treatments are required to 

get the catalytically active aluminosilicate composition. On the other hand, the  

aluminosilicate RTH just crystallizes in a narrow range of compositions, being only possible 

to obtain materials with silicon to aluminium ratios above 37 even with the use of seeds.[60] 

This silicon to aluminium ratio means that few and strong acidic active sites are distributed 

along the zeolitic structure, which easily lead to the formation of coke and the poisoning of 

the material when applied in the MTO reaction. 

Recently, the zeolite RTH has been obtained employing phosphorous OSDA´s.[16-18] 

There are two great advances in the employ of this kind of OSDA´s. First, they allowed ob-

taining the RTH zeolite in a wider range of compositions, with silicon to  

aluminium ratios ranging from 14 to all-silica materials, and in both fluoride and hydroxide 
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media. And secondly, they allow the one-step incorporation of phosphorus into the zeolite. 

This is an important feature because the incorporation of phosphorus as extra-framework 

phosphorous species in aluminosilicate zeolites allows modifying the acid strength, the  

textural properties, and the increase of the hydrothermal framework stability of the  

aluminium centres, as previously seen in MFI materials (see section 5.2.3). Typically, this is 

done via post-synthesis treatment with phosphoric acid, but this methodology is useless in 

small pore zeolites, like the RTH zeolite, because of diffusion restraints.[7, 10] After the results 

obtained in the dual-template synthesis of all-silica and aluminosilicate MFI, this  

methodology was used for the synthesis of aluminosilicate RTH materials. 

5.3.1 Dual template synthesis of RTH zeolite 

The synthesis of RTH zeolite was carried out employing two cations with different 

nature as OSDA´s, a tetraalkylphosphonium cation, methyl-tri-isopropylphosphonium cation 

(MIP, OSDA-4), and a tetraalkylammonium cation, di-isopropyl-diethylammonium cation 

(IEN, OSDA-5). The detailed synthesis of the MIP (OSDA-4) and IEN (OSDA-5) are  

described in sections 3.2.1.4 and 3.2.1.5, respectively. 

 
Figure 5.20. a) Methyl-tris-(dimethylamino)-phosphonium cation (OSDA-4) and b) di-isopro-

pyl-diethylammonium cation (OSDA-5). 

5.3.1.1 Synthesis conditions 

Aluminosilicate RTH zeolites were synthesized using the dual template synthesis 

methodology. The OSDA solutions were mixed in different ratios and the silica and alumina 

sources were added after, obtaining synthesis gels with the following compositions: 

1.0 SiO2 : 0.4 OSDAP+N(OH) : x Al2O3 : 10 H2O : 0.4 HF 

Where x varies from 0.012 to 0.016 as the phosphorus content decreases, to try to 

maintain the same or similar Si/Al ratio. The OSDAP+N is MIP, IEN or a mixture of both 

cations with MIP/(IEN+MIP) ratios ranging from 0 to 1. RTH zeolites synthesized only with 
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MIP or IEN are denoted as P-RTH or N-RTH, respectively, and those obtained with a mixture 

of OSDA´s are named as xP-RTH were x refer to the MIP/(IEN+MIP), or P/(P+N), molar 

ratio used in the synthesis gel or obtained in the solid, as specified. The detailed synthesis of 

the Al-RTH material is described in section 3.2.2.3. 

5.3.1.2 Phase crystallinity 

The crystallinity of the samples after synthesis was studied by powder X-Ray  

diffraction, whose diffraction patterns are shown in Figure 5.21. 

 
Figure 5.21. Powder X-Ray diffraction patterns of Al-RTH materials with different P-OSDA 

ratios. Samples are identified by synthesis gel OSDA composition. 

All the Al-RTH materials show a high crystallinity regardless of the mix of OSDA´s 

used. As noted in the previous sections, the lower the phosphorous OSDA amount, the longer 

the synthesis takes to completely crystallize. Actually, synthesis times nearly double from 6 

days in all-phosphorous Al-RTH to 14 days in all-nitrogen Al-RTH. However, crystallization 

kinetics were not calculated due to the lack of samples with low or medium crystallinity. 
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5.3.2 Sample analyses of as-made P-modified RTH zeolite 

The obtained as-made Al-RTH materials were submitted to chemical analyses,  

thermogravimetry analyses, scanning electron microscopy and MAS-NMR spectroscopies. 

In this section only chemical analyses, thermogravimetry analyses and scanning electron  

microscopies of the as-made samples are compared, while MAS-NMR spectra are further 

discussed in section 5.2.4. 

5.3.2.1 Chemical analyses of as-made P-modified RTH zeolite 

The OSDA chemical composition of the as-made Al-RTH materials are shown in  

Table 5.7. 

Table 5.7. OSDA chemical composition of as-made Al-RTH materials. All ratios are given as 

molar ratios. Samples are identified by OSDA ratio synthesis gel composition. 

Sample [P/(P+N)]gel [P/(P+N)]sol wt.%Psol (P+N) (mmol/g) Si/OSDA 

N-Al-RTH 0 0 0 0.83 16.0 

0.2P-Al-RTH 0.125 0.2 0.6 0.90 15.5 

0.3P-Al-RTH 0.2 0.3 1.0 0.90 15.5 

0.5P-Al-RTH 0.25 0.5 1.6 0.96 14.4 

0.8P-Al-RTH 0.5 0.8 2.3 0.92 14.4 

P-Al-RTH 1 1 2.8 0.89 14.8 

The incorporation of the OSDA´s in the Al-RTH materials synthesized in presence of 

different P/(P+N) ratios was studied, being observed that the contents of the OSDA in all 

materials are very similar, around 16, and close to 2 OSDA molecules per unit cell of RTH 

zeolite (32 T units per unit cell). 

Also, as previously reported in Si-MFI and Al-MFI syntheses, there is a preferential 

incorporation of the P-OSDA over the N-OSDA in the Al-RTH material, which follows the 

same trend as in the MFI materials, as shown in Figure 5.22. 
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Figure 5.22. Comparison of P/(P+N) values used in the synthesis gel, P/(P + N)]gel, against the 

P/(P+N) values obtained in Al-RTH zeolites, [P/(P + N)]solid. P/(P+N)th refers to the theoretical 

compositions, while P/(P+N)th refers to the experimental compositions. Values obtained for Si-

MFI and Al-MFI materials are also shown for comparison. 

The preferential incorporation is indicative that the P-OSDA presents a stronger  

“templating” effect than the N-OSDA, as Al-RTH crystallization times decrease also  

indicates. However, as previously stated, crystallization curves were not calculated due to the 

lack of samples with low crystallinity. 

These results contrast with previously reported results, where CHA zeolite was  

synthesized using a similar methodology, but using two OSDA´s whose structure is  

significantly different.[66] In that case, the N-OSDA displayed the preferential incorporation 

over the P-OSDA, and the latter was unable to “template” the CHA structure by itself, so the  

P-OSDA was just working as a pore filling agent, being required to use a large amount of the 

P-OSDA to incorporate significant amounts of phosphorus in the material. In this thesis, the 

RTH zeolite was synthesized using two similar OSDA´s, being both able to synthesize the 

RTH structure by themselves, and with the main difference between them on the atom  

holding the charge. Because of these reasons, we could argue that the P atom possess a 

stronger “templating” effect. 
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The typical chemical compositions of the as-made Al-RTH materials are shown in 

Table 5.8. 

Table 5.8. Heteroatom chemical composition of as-made Al-RTH materials. All ratios are given 

as molar ratios. Samples are identified by OSDA ratio synthesis gel composition and pHgel was 

measured after adding HF. 

Sample [Si/Al]gel pHgel ηAl (%) ηSi (%) [Si/Al]sol OSDAP+N/Al wt.%Psol 

N-Al-RTH 30 7.79 100 45 14.9 0.9 0 

0.2P-Al-RTH 30 8.12 100 90 23.4 1.5 0.6 

0.3P-Al-RTH 30 8.02 100 88 22.8 1.5 1.0 

0.5P-Al-RTH 35 7.84 100 46 13.7 0.9 1.6 

0.8P-Al-RTH 35 7.94 100 38 13.4 0.9 2.3 

P-Al-RTH 20 8.98 100 88 14.8 1.0 2.8 

It could be seen that the incorporation yields of silicon heavily relies on the pH media, 

and thus, on the different OSDA solutions employed, affecting to the final Si/Al ratio. This 

difference in the pH media could be mainly due to the synthesis gel ageing before the  

hydrothermal synthesis, although it has been difficult to completely control the pH without 

changing the ageing time and/or water to silica ratio in the synthesis gel. 

5.3.2.2 Morphology of as-made P-modified RTH zeolite 

The crystallite shape and size of the as-made Al-RTH samples were assessed by 

FESEM microscopy analyses, depicted in Figure 5.23. 

The Al-RTH zeolite crystallized with a homogeneous crystal shape, while the  

crystallite size distribution seems to rely on the OSDA composition, as the crystallites are 

smaller as the phosphorus content increases. Indeed, rectangular prism crystals ranging from 

4x1 µm (all P-OSDA) up to 10x3 µm (all N-OSDA) were obtained (Figure 5.23. Above). 
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Figure 5.23. SEM microimages of RTH samples obtained with different OSDA compositions. 

All P RTH (P-Al-RTH, upper left), all N RTH (N-Al-RTH, upper right) and P/(P+N) = 0.5 RTH 

(P/N-Al-RTH, upper middle). Below, EDX mapping (white: Si; purple: P; green: Al) of the 

P/(P+N) = 0.8 RTH sample is shown. 

Because of the different incorporation yields of the two OSDA´s, EDX mapping was 

measured to determine the existence of different compositional dominions made up from one 

OSDA or another, but no inter- or intra-crystalline chemical domains were found in any  

Al-RTH sample (Figure 5.23.Below, only P/(P+N) = 0.8 RTH sample is shown for  

simplicity). 

5.3.2.3 Thermogravimetric analysis of as-made P-modified RTH zeolite 

The thermal stability and decomposition of the OSDA were studied by the  

thermogravimetry (TG) and differential thermogravimetry analyses (DTG) of the Al-RTH 

samples obtained with different OSDA compositions. Some thermogravimetric plots are 

shown in Figure 5.24. 
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Figure 5.24. TG (dotted lines) and DTG (solid lines) analyses curves of the Al-RTH materials 

obtained with different P/(P+N) ratios. Samples are identified by synthesized material  

composition. DTG curves are scaled up for a better view. 

The figure shows two sets of weight loses, a low temperature profile corresponding to 

the N-OSDA that shows three main weight losses, a large one (ca. 8 wt.%) centred at ~420ºC, 

and two smaller ones centred at ~510ºC and ~680ºC (ca. 2 wt.% for each one), and a high 

temperature profile corresponding to the P-OSDA, with two main weight losses, one centred 

at ~510ºC (ca. 5 wt.%), and another one centred at ~610ºC (ca. 5 wt.%). 

The magnitude of the weight loss correlates with the amount of each OSDA in the  

as-made material, considering the weight of the P2O5 that remains inside the zeolite after the 

thermal treatment for each RTH material. 
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5.3.3 Thermal treatments of P-modified RTH zeolite 

The as-made Al-RTH materials were calcined under air as described in the section 

3.2.3. Chemical analyses, scanning electron microscopy, adsorption isotherms, ammonia 

thermoprogrammed desorption and MAS-NMR spectroscopies were performed for the  

thermally treated Al-RTH materials. In this section only powder X-Ray diffraction, chemical 

analyses, adsorption isotherms and ammonia thermoprogrammed desorption analyses of the 

thermally treated samples are discussed, while MAS-NMR spectra are further discussed in 

section 5.3.4. 

5.3.3.1 Crystallinity of thermally treated P-modified RTH zeolite 

The stability and crystallinity of the Al-RTH samples after calcination was studied by 

powder X-Ray diffraction, whose diffraction patterns are shown in Figure 5.25. 

 
Figure 5.25. Powder X-Ray diffraction of some of the thermally treated Al-RTH materials. 

Solid lines correspond to as-made samples, while dotted lines correspond to calcined samples. 

Samples are identified by synthesized material composition. 

The Al-RTH materials remained highly crystalline after the thermal treatments, with 

the X-Ray diffraction peaks being found at roughly the same 2θ degrees in all samples  

regardless of the thermal treatment. The main difference between the as-made and the ther-

mally-treated samples was the intensity of the signals at 2θ below 18º, as the intensities  

of these peaks are typically affected by the presence of the OSDA filling the pores. 
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5.3.3.2 Chemical analyses of thermally treated P-modified RTH zeolite 

The chemical compositions of the thermally treated Al-RTH materials are shown in 

Table 5.9. 

Table 5.9. Chemical composition of some of the thermally treated Al-RTH materials. All ratios 

are given as molar ratios. 

Sample Treatment Si/Alas-made Si/Altreated wt.%Pas-made wt.%Ptreated P/Altreated 

N-Al-RTH Calcination 14.9 14.9 0 0 0 

0.2P-Al-RTH Calcination 23.4 23.1 0.6 0.7 0.3 

0.3P-Al-RTH Calcination 22.8 22.5 1.0 1.1 0.5 

0.5P-Al-RTH Calcination 13.7 13.7 1.6 1.6 0.5 

0.8P-Al-RTH Calcination 13.4 13.4 2.3 2.3 0.7 

P-Al-RTH Calcination 14.8 14.5 2.8 2.7 1.0 

P-Al-RTH Hydrogenation 14.8 13.8 2.8 0.7 0.2 

As expected, most of the phosphorus remains inside the Al-RTH zeolite after the  

calcination of the materials, while the hydrogenation at high temperature leads to the removal 

of most of the phosphorus from the material, up to 75 wt.%. However, the observed content 

of phosphorus in Al-RTH zeolite is higher than the observed in the case of Al-MFI (85 wt.% 

phosphorus removal). This could be either explained by the smaller pores of the RTH zeolite  

structure, hindering the diffusion of the phosphorous species generated during hydrogena-

tion, or by a stronger interaction between the phosphorus and aluminium species formed upon 

calcination. 

5.3.3.3 Textural properties of thermally treated P-modified RTH zeolite 

The textural properties of the Al-RTH materials were calculated from the N2  

adsorption isotherms on the thermally treated samples, shown in Figure 5.26. The N2  

adsorption isotherms of the thermally treated Al-RTH samples show the type Ia physisorption 

profile typical of microporous materials.[42] At first, the N2 adsorption isotherms were carried 

out at 77 K (Figure 5.26. Left), observing that only the samples with low phosphorus loadings 

were accessible to N2. Thus, the adsorption temperature was increased to 87 K (liquid Ar 

temperature), allowing the adsorption of N2 in all the Al-RTH materials (Figure 5.26. Right). 
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Figure 5.26. N2 adsorption isotherms of calcined Al-RTH materials with different P/Al ratios at 

77 K (left) and 87 K (right). 

Next, the adsorption capacity between the different materials was assessed by  

comparing the amount of adsorbed N2 for a given relative pressure (P/P0 = 0.15) at the 77 K 

and 87 K, as shown in Figure 5.27. 

 
Figure 5.27. Quantity of adsorbed N2 measured at P/P0=0.15 of N2 adsorption isotherms at  

liquid N2 temperature (77 K) and liquid Ar temperature (87 K) of Al-RTH materials with  

different P/Al compositions. 
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It could be seen that the amount of adsorbed N2 is very similar at 77 K and 87 K in 

the Al-RTH samples of lower P/Al ratios. This leads to suppose that these results could be 

extrapolated to the RTH samples with higher phosphorus contents. 

Micropore volumes were only calculated from the isotherms measured at 77 K,  

showing values close to 0.24 cm3·g-1 in both materials, similar to the previously reported 0.25 

cm3·g-1.[64] As the amount of adsorbed N2 of the sample decreases as the phosphorus content 

increases, it could be supposed that the micropore volume will also decrease, and therefore, 

the adsorption capacity of the Al-RTH materials decreases as P/Al content increases,  

similarly to previously discussed results in MFI materials in section 5.2.3.3. 

These results are in agreement with the presence of extra-framework phosphorous 

species that hinder the diffusion throughout the pores of the zeolite. Additionally, the  

presence of P2O5-like species formed along the calcination step leads to diffusional  

constraints of N2 at 77 K when the phosphorus content reaches a critical amount (between 

0.6 and 1.2 wt.%). 

5.3.3.4 Acidic properties of thermally treated RTH zeolite 

The acidic properties of the thermally treated Al-RTH samples were studied by  

ammonia thermoprogrammed desorption (TPD), tracking the desorption mass spectrometry 

with m/e=15. The corresponding desorption curves are shown in Figure 5.28. 

 
Figure 5.28. Ammonia TPD curves of calcined Al-RTH materials. Samples are identified by 

synthesized P/(P+N) material composition, with P/Al ratio below. 
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The Al-RTH samples show two maximum ammonia desorption temperatures, the low 

temperature peak centred at ~175ºC, and the high temperature peak centred at ~400ºC. The 

low temperature peak is associated to weak acidic centres and physisorption, while the high 

temperature h-peak is associated to strong acidic centres. The h-peak decreases as the phos-

phorus content and the P/Al ratio increases, to the point of vanishing for the P-Al-RTH sam-

ple, which presents a P/Al ratio of 1. This indicates that the phosphorus is interacting with 

the strong acidic aluminium centres, but the amount of weak acidic centres remain roughly 

constant in all samples despite its phosphorus content, as summarized in Table 5.10. 

Table 5.10. Summary of chemical analyses, textural properties and ammonia adsorption at 

100ºC of some thermally treated Al-RTH samples. Samples are identified by synthesized 

P/(P+N) material composition. Ratios are given as molar ratios. 

Sample Si/Al P/Al wt.%P VNH3 / cm3·g-1 

N-Al-RTH 14.9 0 0 8.67 

0.5P-Al-RTH 13.7 0.5 1.6 5.27 

P-Al-RTH 14.8 1 2.7 4.08 

These results show that the total amount of acid centres in the Al-RTH materials and 

their relative strength could be easily modulated by simply tuning the P/(P+N) ratio used in 

the synthesis gel. 

5.3.4 NMR study of P-modified RTH zeolite 

The incorporation of the phosphorous OSDA and aluminium, as well as the chemical 

species formed after thermal treatments were studied by MAS-NMR spectroscopy.  

5.3.4.1 OSDA incorporation and species 

The stability of the OSDA incorporated in the Al-RTH zeolite was studied by 13C and 

31P MAS-NMR spectroscopies. 

The 13C MAS-NMR spectra of the as-made samples compared with the liquid 13C 

NMR spectrum of the free P-OSDA and N-OSDA are depicted in Figure 5.29. 
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Figure 5.29. 13C MAS-NMR spectra of some Al-RTH materials. Samples are named after their 

OSDA composition. Dots belong to P-OSDA 13C resonances and asterisks belong to N-OSDA 

13C resonances. Free OSDA liquid NMR spectra are included for comparison. 

The spectra of the as-made samples show the same resonance profile than the free  

P-OSDA and N-OSDA, which means that these OSDA´s are incorporated into the material 

and are stable. However, the P-OSDA resonance at 18 ppm, which belong to the isopropyl 

carbon bonded to the phosphorus, is unfolded into two resonances, a minor one keeping the 

same chemical shift, and a major one which is shifted to 16 ppm. The unfolding of this  

resonance suggests that the P-OSDA presents two different chemical environments, probably 

due to the cation adopting two different positions and/or conformations inside the zeolite. 

The 31P MAS-NMR spectra of the as-made Al-RTH samples compared with the liquid 

31P NMR spectrum of the free P-OSDA are depicted in Figure 5.30. 
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Figure 5.30. 31P MAS-NMR spectra of some Al-RTH materials. Samples are named after their 

OSDA composition. All-silica sample and free OSDA liquid NMR spectra included for compa- 

rison. Solid lines correspond to experimental spectra; dotted lines correspond to the sum of de-

convoluted signals. Spectra were deconvoluted as Gaussian/Lorentz curves. Spectra are not 

scaled up on phosphorus content. Inset figures include the chemical shift of the resonances. 

The 31P MAS-NMR spectra of the as-made samples show two resonances, a main 

resonance around 42.5-43 ppm and a smaller resonance around 43.5-44 ppm, depending on 

the sample. The mathematical integration of these resonances roughly yields a 1 to 8 ratio 

between the main and the secondary resonances in all samples, regardless of the P-OSDA 

content. These two resonances closely resemble to the liquid NMR of the P-OSDA in water 

solution (44.55 ppm), and thus, the two resonances could be attributed to two slightly  

different chemical environments of the intact OSDA. These two different environments must 

be due to two different positions and/or conformations that the P-OSDA would adopt inside 

the zeolite, as all-silica samples also exhibit a similar trend, although in this case only a 

shoulder signal could be observed due to the broadening of the resonances.[16] This fact is in 

agreement with the previous results obtained from the 13C NMR spectroscopy of these sam-

ples, as the 13C resonance of the methylene group of the P-OSDA was unfolded in two  

resonances. 

After the thermal treatment of the Al-RTH materials, most of the phosphorus remains 

inside the material, giving the opportunity to study the chemical nature of the generated  

species by 31P MAS-NMR spectroscopy, whose spectra are shown in Figure 5.31. 
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Figure 5.31. 31P MAS-NMR spectra of some thermally treated (Cal: calcined;  

Hyd: hydro-genated) Al-RTH materials with different P/Al ratios. Solid lines correspond  

to experimental spectra; dotted lines correspond to the sum of deconvoluted signals.  

Peaks were deconvoluted as Gaussian/Lorentz curves. 

It could be seen that upon thermal treatment, the organic compound is decomposed 

and the remaining phosphorous species gives rise to several resonances with chemical shifts 

ranging from 0 ppm to -45 ppm, which are characteristic of extra-framework P2O5-like  

species. The resulting spectra are complex, but the mathematical deconvolution of the spectra 

yields at least five thin resonances and a very broad resonance. Compared with the Al-MFI 

samples in section 5.2.4.1, it could be seen that Al-RTH spectra present a higher signal to 

noise ratio, which allows to identify more resonances which could be almost hidden due to 

the overlapping of these discrete resonances and the very broad resonance. 
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The first sharp resonance at 0 ppm, corresponding to extra-framework P2O5 that is not 

interacting with the framework aluminium, increases its intensity as the phosphorus content  

increases. The same trend was observed for the resonance at -8 ppm, that is usually assigned 

to phosphorus atoms in pyrophosphoric acid or to terminal [P4O3]- groups of polyphosphoric 

species.[45-48] The small resonance at ca. -10 ppm is assigned to the chemical shift usually 

obtained for middle groups in pyrophosphates or other short-chain polyphosphates.[47, 48] The 

broad resonance centred at -18 ppm normally contains signals of longer polymeric phosphate 

chains, as well as highly condensed polyphosphate species, and its intensity appears to be 

proportional with the phosphorus content.[67-69] Finally, the last three resonances at -28 ppm, 

-35 ppm and -43 ppm, appear to keep their intensities, but are almost completely hidden 

under the broad resonance centred at -18 ppm at high P-loadings. These resonances have 

been usually assigned to different (bi)phosphates bounded to monodentate or bidentate  

aluminium octahedral atoms.[45-48] This aluminium is expected to remain as framework  

aluminium, although the formation of some extra-framework aluminium could not be  

disclosed.[49] This fact would be easily confirmed by washing the phosphorus-containing  

zeolite with ammonium acetate to remove the phosphorous residues. However, this  

methodology cannot be applied in small pore zeolites where PxOy species are larger than the 

pore openings. 

5.3.4.2 Aluminium incorporation and species 

The aluminium incorporation was studied by 27Al MAS-NMR spectroscopy on the  

as-made Al-RTH samples, whose spectra are shown in Figure 5.32. 
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Figure 5.32. 27Al MAS-NMR spectra of some as-made Al-RTH materials with different P/Al  

ratios. 

All the as-made Al-RTH materials show a single resonance centred at 53 ppm,  

regardless of the OSDA composition used in their syntheses. This resonance is typically  

attributed to Al in tetrahedral coordination.[60] 

When materials are thermally treated, the aluminium is distributed in three different 

chemical environments, as 27Al MAS-NMR spectra show in Figure 5.33. 
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Figure 5.33. 27Al MAS-NMR spectra of some thermally treated (Cal: calcined; Hyd: hydro-

genated) Al-RTH materials with different P/Al ratios. Solid lines correspond to experimental  

spectra; dotted lines correspond to the sum of deconvoluted signals. The resonance at ca. 55 

ppm was deconvoluted as a Gaussian/Lorentz curve (for an easier view), and the other  

resonances were deconvoluted using the CzSimple method.[56]. 

The main 27Al resonances appear at ca. 55 ppm (narrow), at ca. 38 ppm (very wide) 

and at ca. -15 ppm (wide). These resonances greatly vary their intensities depending on the 

P/Al and Si/Al ratios. Indeed, the intensity of the resonance at 55 ppm, corresponding to 

tetrahedral Al atoms in framework positions decreases as the P/Al ratio increases, while the 

resonances at 38 ppm and -15 ppm increases.[57-59]  

x4

x2

27Al d / ppm

27Al d / ppm

-80-60-40-20020406080100

P/Al = 1

Cal

P/Al = 0.8

Cal

P/Al = 0.5

Cal

P/Al = 0

Cal

P/Al = 0.2

Hyd

P/Al = 0.2

Cal

-80-60-40-20020406080100

x4

x3



Chapter 5: Phosphorous-modified zeolites 

 

 

201 

It should be noted that the chemical shift of the wide resonance at 38 ppm, and  

especially the resonance at -15 ppm, are influenced by the phosphorus content in the Al-RTH 

material, shifting up-field as phosphorus content increases. The chemical shift  

displacement and the increase in the intensity of the resonances at 38 ppm and -15 ppm  

evidence the interaction between phosphorous and aluminium species, as previously  

described.[49]  

Finally, the hydrogenation treatment at high temperature yields an Al-RTH material 

with a higher proportion of tetrahedrally coordinated aluminium species compared with its 

P/Al ratio equivalent calcined counterpart. As previously observed in Al-MFI in section 

5.2.4.2, the increased intensity of 27Al resonance at 55 ppm is accompanied by a decreased 

intensity in the 31P resonance at -40 ppm, although the difference is less evident in the  

Al-RTH zeolite. Therefore, the nature of the phosphorous and aluminium species inside the 

zeolites also depends on the post-synthesis treatment. However, in this case the washing of 

the Al-RTH samples was not performed as phosphorus is barely removed from RTH zeolite 

because of its small pore opening.[16] 

Comparing the Al-RTH spectra with the obtained for the Al-MFI synthesized by the 

same methodology, it could be seen that the amount of pentacoordinated and octahedrally 

coordinated aluminium species is considerably larger in the Al-RTH samples, where even 

the RTH synthesized only with the N-OSDA presents these two resonances, although in a 

smaller proportion than the phosphorus-containing samples. This indicates that the presence 

of these species is inherent to this zeolite, although magnified by the presence of phosphorus. 

The 27Al 38 ppm resonance could correspond either to pentacoordinated Al atoms that 

are obtained as Al atoms in framework positions and coordinated to H2O molecules, or to 

highly distorted tetrahedral coordination aluminium. Indeed, the intensity and widening of 

this resonance heavily depends on the time exposed to air in a given sample, as dehydrated 

samples results in signals so wide that are almost invisible.[70, 71] The use of multiquantum 

27Al-3Q-MAS experiments, whose bi-dimensional spectra are depicted in Figure 5.34, allows 

ensuring the chemical nature of the different Al resonances as this NMR technique allows 

lessening the large quadrupolar effects of the Al nuclei.[16, 71, 72] 



 Synthesis and characterization of zeolitic materials using P-OSDA 

 

 

202 

 
Figure 5.34. 3Q-27Al MAS-NMR spectrum of a P/Al = 0.5 RTH sample. 

Using this technique, the chemical shift in the two dimensions of the spectra, δF1 and 

δF2, are obtained and then, the isotropic chemical shift (δiso) and the quadrupolar parameters 

(PQ) are calculated from the barycentre of the crossed signals.[59, 73] The observed δF1 and δF2 

shifts and the calculated δiso shift and PQ parameter of the calcined 0.5P-Al-RTH sample are 

summarized in Table 5.11. 

Table 5.11. Calculated values of the isotropic chemical shift (δiso) and the quadrupolar  

parameter (PQ) of the calcined P/Al = 0.5 RTH sample. 

Signal δF1 / ppm δF2 / ppm δiso / ppm PQ / MHz 

Al (IV)a 56.6 54.9 56.0 1.41 

Al (IV)b 62.6 38.8 53.8 5.19 

Al (VI)a -7.2 -11.2 -8.7 2.14 

In this case, only three barycentres were identified, and the obtained δiso and PQ values 

clearly show that the resonance at 38 ppm correspond to highly distorted tetrahedral Al  

species and not to pentacoordinated Al species. 
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5.4 NMR study of phosphorus species in P-modified 

MFI and RTH 

There have been many attempts at modelling and explaining the interaction between 

phosphorus and aluminium species.[10, 49, 74-78] In this section, the interaction between  

phosphorus and aluminium has been studied by MAS-NMR following a similar approach to 

the previously reported by Pruski et al.[49, 74] Because of that, Al-MFI samples were compared 

with the results of this paper looking for the differences, if any, between the commonly used 

impregnation methodology and the dual template methodology described in this thesis. After 

that, Al-MFI results were compared with the Al-RTH results. A similar and complementary 

study of these materials has been recently published by Martínez-Ortigosa.[79] 

It is important to note that, unlike samples prepared by post-synthesis methods,  

samples prepared by dual-template method present a lower phosphorus content, which 

lengthens the times required for the acquisition of the spectra, as well as limit their resolution 

due to a lower signal to noise ratio. Because of that, these experiment were performed during 

a short stay at the Institut Lavoisier de Versailles under the direction of Prof. C. Martineau, 

using a more powerful NMR spectrometer (800 MHz) and taking advantage of the expertise 

of Prof. C. Martineau´s group in the analysis of phosphorous and aluminium species  

interaction in aluminophosphate materials.[80-85] 

5.4.1 Proton-phosphorus interaction 

First of all, proton to phosphorus cross polarization experiments (H>P CP 31P MAS-

NMR) were registered and compared against the Bloch decay experiments in Al-MFI and 

Al-RTH samples, shown in Figure 5.35. Cross polarization spectra excite one nuclei, proton 

in this case, to transfer the magnetization from this nuclei to another, phosphorus in this 

case.[86] This transfer would only take place if there is any interaction between both nuclei, 

either by connectivity (J coupling) or by close proximity (dipolar coupling). 
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Figure 5.35. Bloch decay (black line) and H>P CP (red line) 31P MAS-NMR spectra of some  

Al-MFI and Al-RTH materials. 

In all cases, most of the phosphorus resonances disappear, which means that several 

phosphorous species do not interact with protons. However, a very broad resonance remains 

in all cases, whose mathematical integration yields about 50% in the Bloch decay experi-

ments. This broad resonance is probably an envelopment signal formed by several  

discrete resonances belonging to discrete phosphorous species oriented towards multiple  

directions that, because of low T1 relaxation times, overlap between them. These  

phosphorous species would probably belong to P-OH species formed after the calcination 

and the hydration of the materials. On the other side, the narrow resonances would belong to 

phosphorous species interacting with aluminium atoms, forming aluminophosphate species, 

or between themselves, forming pyrophosphates and polyphosphates. 

Bi-dimensional heteronuclear correlation (HETCOR) experiments[87] between proton 

and phosphorus nuclei were performed to check if any correlation between them could be 

stablished. The bi-dimensional spectra is shown in Figure 5.36. 
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Figure 5.36. HETCOR H-P MAS-NMR experiment on the Al-RTH P/Al=1 sample. 

The results were inconclusive in all cases, as a single broad resonance was found in 

both 31P and 1H spectra, and both resonances fully interact between them. 

5.4.2 Aluminium-phosphorus interaction 

The next step was to study the interaction between the phosphorous and the aluminium 

species. First, phosphorus to aluminium heteronuclear multiple-quantum coherence (HMQC) 

spectra[82] of Al-MFI and Al-RTH samples were measured. The corresponding bi-dimen-

sional spectra are shown in Figure 5.37. 
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Figure 5.37. 31P {27Al} HMQC MAS-NMR experiments of Al-RTH (above) and Al-MFI (below) 

samples with P/Al = 1. 

In these spectra, it could be seen up to three different interactions signals. First of all, 

the 27Al resonance at ca. -10 ppm only interacts with the 31P resonances between -15 and -35 

ppm. These resonances also interact with the other 27Al resonance at ca. 38 ppm, which also 

interacts with the 31P resonance at -8 ppm. This would mean that this latter resonance does 

not correspond to phosphorus atoms in pyrophosphoric acid or to terminal [P4O3]- groups in 

polyphosphoric species as previously stated, and instead, these atoms should be linked to 

aluminium atoms via oxygen bonding. As expected, the 27Al resonance at 55 ppm, assigned 

to tetrahedral aluminium species, does not interact with any phosphorus resonance. 
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Finally, rotational-echo double-resonance (REDOR) experiments[88] were performed 

on Al-MFI and Al-RTH samples. In these experiments, the phosphorus nuclei are excited 

and the magnetization is then transferred after a dephasing time to the aluminium nuclei, 

acquiring then the 27Al NMR spectra. The transfer of the magnetization depends on the  

distance between the phosphorus and aluminium nuclei and the dephasing time to transfer 

this magnetization. The obtained aluminium spectra show scaled intensities in each  

resonance depending on the mean distance between the different aluminium species and the 

phosphorus nuclei. The scaling of the spectra between a reference spectra and the dephased 

spectra (signal saturation) was quantified and these values were plot against the dephasing 

time in Figure 5.38. 

 
Figure 5.38. REDOR curves obtained from REDOR experiments of some Al-MFI and Al-RTH 

materials. In all samples spectra, three different resonances were identified: tetrahedral  

(circles), ca. 55 ppm; distorted tetrahedral (squares), ca. 35 ppm; and octahedral (triangles), ca. 

-15 ppm. Curves are just for guidance. 

As expected, the 27Al resonance at 55 ppm assigned as tetrahedral aluminium is not 

visible in the dephased spectra, so no interaction between this aluminium species and the 

phosphorous species occurs. On the other hand, the 27Al resonances at ca. 38 ppm (distorted 

tetrahedral) and ca. -15 ppm (octahedral) are affected by the magnetization transfer from the 
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phosphorus nuclei. The slope of the REDOR curves is related to the mean distance  

between phosphorus and aluminium nuclei, being closer the distance as the slope increases. 

This indicates that the octahedral aluminium species are closer to the phosphorous species 

than the distorted tetrahedral aluminium species are. However, the REDOR curves of the 

octahedral species present minor differences between the Al-MFI and Al-RTH samples with 

different P/Al ratios, while the distorted tetrahedral resonance is more affected by the phos-

phorus content and/or zeolite structure, as the Al-MFI and Al-RTH samples with higher phos-

phorus loadings present strongly differing REDOR curves, with a lower phosphorus content 

Al-RTH sample presenting middle ground values. 

5.5 Conclusions 

The use of phosphorous cations as OSDA´s has allowed the synthesis of two  

phosphorous modified zeolites, the MFI and the RTH zeolites, using a dual template  

synthesis methodology jointly using closely related nitrogen and phosphorous OSDA´s. This 

synthesis methodology provides the materials with the following features: 

 The use of P-OSDA and N-OSDA yields zeolites with controlled phosphorus  

contents. The preferential incorporation of phosphorus allows to selectively and  

accurately incorporate the needed amount of phosphorus. 

 The calcination of the aluminosilicate materials obtained by this methodology  

allows keeping most of the phosphorus incorporated, and thus, the P/Al ratio could be 

tuned just by using the required P/(P+N) OSDA ratio in the synthesis gel. 

 The introduction of phosphorus by this methodology allows modifying the textural 

and acidic properties of the final materials avoiding further post-synthesis treatments. 

 The application of post-synthesis treatments, as calcination, hydrogenation at high 

temperature, or washing with NH4Ac, allows the removal of different amounts of 

phosphorus. However, the use of the dual template synthesis methodology is more 

flexible than the hydrogenation at high temperature and the washing with NH4Ac, 

since phosphorus removal by these latter methods is difficult to control. 

 The use of the dual template methodology allows the incorporation of different 

amounts of phosphorus in a small pore zeolite, the RTH zeolite, that is impossible by 

post-synthesis treatments. 
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 The introduction of phosphorus in the RTH small pore zeolite leads to diffusional 

constraints when the phosphorus content reaches a critical amount, between 0.6 and 

1.2 wt.%P, but pore blockage does not occur. 

 The introduction of phosphorus in the synthesis stage avoids the formation of  

significant amounts of P2O5 phosphorous species that are not interacting with the  

aluminium species of the materials. These species negatively affect to the textural 

properties of the material without providing a positive effect due to its lack of  

interaction with framework aluminium species. 

 The introduction of lower amounts of phosphorus by the dual template  

methodology than by post-synthesis treatment allows to identify discrete phosphorus 

resonances by 31P MAS-NMR spectroscopy. These discrete resonances appear in alu-

minosilicate material´s spectra of both MFI and RTH zeolites, but their intensities 

vary depending on the thermal treatment and the phosphorus content of each material. 

 The intensity of some of the 31P resonances could be linked with the relative  

intensity of the different 27Al resonances. Likewise, these 27Al resonances could be 

linked with the acidic properties of the materials. Although the specific phosphorous 

species have not yet been identified, additional NMR experiments could reveal more 

details about the chemical nature of these phosphorous species interacting with the 

framework aluminium species in zeolites. 
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Chapter 6 

Synthesis of ITQ-27 (IWV) 

and UTD-1 (DON) Zeolites 

 

6.1 Introduction 

The synthesis of zeolites using novel OSDA´s most usually lead to the synthesis of 

known materials. Despite obtaining known materials, these syntheses are potentially  

interesting since they open up new synthesis pathways and allow materials with novel  

compositions and/or properties to be obtained. 

This chapter is a continuation of previous works which have given rise to several new 

zeolites using novel phosphorus containing OSDA´s, like ITQ-26,[1] ITQ-27,[2] ITQ-34,[3] 

ITQ-40,[4] ITQ-45,[5] ITQ-49,[6] ITQ-52[7] and ITQ-53[8] zeolites. Also, several known  

zeolites had been obtained with new chemical compositions, like ITQ-47[9] or RTH  

zeolites.[10] The success of these OSDA´s could be attributed to the still not well understood 

beneficial effect of the presence of phosphorus in the OSDA during the crystallization stage. 

Special interest leans towards obtaining large and extra-large pore zeolites because of 

its potential applications.[11-14] Also, the introduction of phosphorus in the synthesis stage 
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allows for its use as probe atom for an in-depth characterization of the OSDA guest-host 

zeolite interaction.[10, 15] 

In this chapter, the syntheses of ITQ-27 (IZA code: IWV) and UTD-1 (IZA code: 

DON) zeolites are described using a phosphorous OSDA. 

6.2 Synthesis 

The tris(diethylamino)(methyl)phosphonium cation, or OSDA-7 (Figure 6.1), was 

tested as OSDA in a wide range of synthesis conditions. The detailed synthesis of the  

OSDA-7 is described in section 3.2.1.7. 

 
Figure 6.1. Tris(diethylamino)(methyl)phosphonium cation or OSDA-7. 

6.2.1.1 Synthesis conditions 

Synthesis gels with the following molar composition were prepared:  

0.3 OSDA(OH) : (1-x) SiO2 : x AmOn : w H2O: 0.3 HF 

with x ranging from 0.025 to 0, w ranging from 3.5 to 15, A being Al, B or Ge, and 

HF being added when needed. Tested conditions are summarized in Table 6.1. 

  

(a) (b) (c) (d)
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Table 6.1. Tested synthesis conditions and phase selectivity obtained using tris(diethyla-

mino)(methyl)phosphonium hydroxide as OSDA. 

  H2O/Si (-OH)  H2O/Si (F-) 

x x/Si <7 >7  <7 >7 

All Si    *  

B 20-30      

Al 20-50      

Ge 5-50      

       

ITQ-27 (IWV) UTD-1 (DON) No data 

*: Only obtained with seeds. 

The synthesis gels yielded the zeolite ITQ-27 (IWV) and the zeolite UTD-1 (DON) 

upon zeolite crystallization depending on the synthesis conditions. The main factor affecting 

phase selectivity is the synthesis gel concentration. Thus, highly concentrated synthesis gels 

with water to silica ratios below 7, preferably below 5, favour the IWV phase, while more 

diluted synthesis media favour the DON phase, preferably with water to silica ratios over 12. 

The mineralizing agent is also an important parameter towards phase selectivity. Thus,  

syntheses in hydroxide media favour the DON phase, while syntheses in fluoride media  

favour the IWV phase. 

The IWV zeolite crystallizes in a wide range of compositions as aluminosilicate,  

borosilicate, germanosilicate, and even as all-silica material when IWV seeds are used. This 

is the first time that all-silica IWV zeolite has been obtained. These IWV compositions were 

obtained both in fluoride and hydroxide media, except the all-silica material which was only 

obtained in fluoride media. 

On the other hand, the DON zeolite was obtained as aluminosilicate, borosilicate and 

all-silica material. However, the DON zeolite only crystallizes when the content of boron or 

aluminium is moderately low (Si/B or Si/Al ratios higher than 30), and hardly crystallized in 

fluoride media. 

The detailed syntheses conditions of IWV and DON zeolites with the OSDA-7 are 

described in sections 3.2.2.4 and 3.2.2.5, respectively. 
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6.2.1.2 Phase crystallinity 

The crystallinity of the as-made materials was assessed by powder X-Ray diffraction, 

whose patterns are shown in Figure 6.2 and Figure 6.3 for IWV and DON materials,  

respectively. 

 
Figure 6.2. Powder X-Ray diffraction patterns of some obtained IWV materials compared  

with theoretical diffraction pattern (IZA DB).[16] Samples are identified by the synthesis gel  

composition: heteroatom type and silica to heteroatom ratio; water to silica ratio (W);  

and synthesis media (OH or F). 

All IWV materials were highly crystalline regardless of the synthesis media or  

heteroatom composition. As expected, small shifts in the 2θ degrees were found depending 

on the heteroatom concentration in the synthesis gel, which is indicative of its incorporation 

in the framework. Additionally, the relative intensities of the diffraction peaks vary,  

especially at 2θ below 12º, which could be due to the presence of the OSDA and/or preferred 

orientation of the crystallites. Also, it should be noted that the germanosilicate sample  

presents wider diffraction peaks compared to other samples, which could be explained by 

considerably smaller crystallites. Finally, the all-silica sample present the sharpest diffraction 

peaks, allowing to identify previously overlapped diffraction peaks. 
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Figure 6.3. Powder X-Ray diffraction patterns of some DON materials compared with  

theoretical diffraction pattern (IZA DB).[16] Samples are identified by the synthesis gel  

composition: heteroatom type and silica to heteroatom ratio; water to silica ratio (W);  

and synthesis media (OH or F). 

On the other hand, DON materials present wide diffraction peaks, yet no amorphous 

phase was detected, as there was no background centred at 22º typical of amorphous  

materials. Most of the diffraction peaks of DON samples are then overshadowed by the wide 

peaks, but the most representative peaks at 6º, 7.6º, 18º and 21º 2θ degrees match with the 

previously reported.[17, 18] 

Most of the syntheses carried out yielded pure IWV or DON phases, but they are 

competing phases during zeolite crystallization under specific synthesis conditions, for  

example, in a borosilicate synthesis gel composition with a water to silica ratio of 7 in  

hydroxide media. The powder X-Ray diffraction patterns of the obtained materials over time 

from that synthesis conditions are shown in Figure 6.4. 

  

5 10 15 20 25 30 35 40

2 θ (º)

Si-15W-OH-DON

Al30-10W-OH-DON

B30-10W-OH-DON

DON (IZA DB)
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Figure 6.4. Powder X-Ray diffraction patterns of borosilicate IWV and DON materials, and  

the synthesis with a mix of both phases. Samples are identified by the synthesis gel composition: 

heteroatom type and silica to heteroatom ratio; water to silica ratio (W); synthesis media  

(OH or F); and crystalline phase or synthesis time when not a single phase is present. 

In this synthesis, the IWV phase was first obtained almost pure below 17 days.  

Increasing the synthesis time yielded an increasing DON phase, which finally becomes the 

main phase. Thus, the IWV phase is the kinetic product and the DON phase is the  

thermodynamic product for the OSDA-7. 

6.3 ITQ-27 (IWV) zeolite 

The ITQ-27 (IZA code: IWV) zeolite was first described by Dorset et al. in 2006 as 

an aluminosilicate material employing a tetraalkylphosphonium cation as OSDA.[2] It was 

one of the first zeolites synthesized with a phosphorous OSDA, besides ITQ-26 (IZA code: 

IWS)[1] and ITQ-34 (IZA code: ITR).[3] 

The IWV zeolite is a bi-directional large pore zeolite, with a straight 12 MR channel 

crossed by a tortuous 14 MR channel. The 14 MR channel is arranged such that a molecule 

must transverse one-half of a unit cell along the 12 MR channel to arrive at the next 14-MR 

5 10 15 20 25 30 35 40

2 θ (º)
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B30-10W-OH-DON
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opening, and therefore, this zeolite is best described as a bi-directional 12 MR zeolite. The 

continuous 12 MR channel presents an elliptical shape with a diameter of the 6.9 Å - 6.2 Å. 

This value is similar to the channel diameter in the 12 MR ISV zeolite,[19] which also present 

an elliptical channel, but is smaller compared to circular 12 MR channel present in LTL and 

FAU zeolites.[20, 21] The diameter of the tortuous 14 MR channel opening measures 8.5 - 7.2 

Å, similar to the 8.7 - 7.9 Å found for the 14 MR pore opening of AET zeotype.[22] 

The zeolite IWV presents an orthorhombic symmetry and belongs to the Fmmm  

(nº 69) spatial group, with the following framework parameters for the idealized all silica 

material:[16] 

a = 27.8621 Å b = 26.0805 Å c = 13.9443 Å Volume = 10119.64 Å3 

Previously reported synthesis times of IWV zeolite were extremely long (>60 days) 

even when seeds were used, and a narrow compositional range.[2] Recently, it has been  

reported the synthesis of IWV in its aluminosilicate and titanogermanosilicate forms, in both 

hydroxide and fluoride media, in a shortened synthesis time, and with a non-phosphorous 

containing OSDA.[23] In this thesis, the synthesis time to yield well-crystallized IWV zeolite 

has been reduced to less than 12 days in most cases. 

In this chapter, the synthesis and characterization of the zeolite IWV using the tris(di-

ethylamino)(methyl)phosphonium cation, or OSDA-7, is described. 

6.3.1 Sample analyses of as-made IWV zeolite  

The obtained as-made IWV materials were submitted to chemical analyses,  

thermogravimetry analyses, scanning electron microscopies and MAS-NMR spectroscopies. 

In this section only chemical analyses, thermogravimetry analyses and scanning electronic 

microscopies are compared, while MAS-NMR spectra are further discussed in section 6.3.3. 

6.3.1.1 Chemical analyses of as-made IWV zeolite 

The typical chemical compositions of the obtained as-made IWV materials are shown 

in Table 6.2. 
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Table 6.2. Chemical composition of some of the obtained IWV materials. All ratios are given  

as molar ratios. Samples are identified by heteroatom (X) synthesis gel composition and  

pHgel was measured after adding HF (when needed). 

Sample [Si/X]gel pHgel ηX (%) ηSi (%) [Si/X]sol wt.%Psol Si/OSDA OSDA/X 

Si-IWV - 10.4 - 70 - 2.0 18.8 - 

Si-IWV - 8.5 - 94 - 2.1 20.5 - 

Al30-IWV 30 8.4 85 100 19.5 1.9 22.5 0.9 

Al35-IWV 35 14.0 100 79 42.7(2) 2.2 17.7 2.4 

B30-IWV 30 11.1 51 61 37.1 2.3 17.6 2.1 

Ge5-IWV 5 8.8 68 71 5.3 2.1 18.5* 0.3 

Ge20-IWV 30 8.2 94 76 32.8 2.0 18.6* 1.8 

*: value corresponds to (Si+Ge)/OSDA ratio. 

First, it could be seen that the silicon to OSDA ratio fluctuate around 19, which yields 

8 OSDA molecules per unit cell (152 T positions per unit cell). The incorporation yields of 

aluminium are different depending on the synthesis media, with fluoride media samples  

giving roughly the same Si/Al ratios than the added in the syntheses gels, while the  

incorporation yields in hydroxide media syntheses are lower, leading to materials with higher 

Si/Al ratios than the added in the syntheses gels. Borosilicate and germanosilicates materials 

present more consistent yields, leading to materials with similar silicon to boron or  

germanium ratios than the added in syntheses gels. Overall, the incorporation yield increases 

as pH of the synthesis gel decreases. 

6.3.1.2 Morphology of as-made IWV zeolite 

The crystallite shape and size of the as-made IWV samples were assessed by FESEM 

microscopy analyses, depicted in Figure 6.5. 
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Figure 6.5. FESEM microimages of some as-made IWV materials. Samples are named after the 

containing heteroatom followed by the as-made heteroatom to silica ratio content, with the  

synthesis media below when needed. 

The IWV zeolite crystallized with a non-homogeneous shape crystallite distribution 

strongly depending on the solid composition and synthesis media. Indeed, it is possible to 

find plate-like, stick-like, rectangular and oval prism crystals, with crystallite sizes ranging 

from 0.2x0.2 µm to 3x8 µm. 

The all-silica and germanosilicate materials favour the formation of large aggregates, 

while in borosilicate and aluminosilicate materials, mostly discrete crystals were observed. 

As previously guessed from the widening of X-Ray peaks in section 6.2.1.2, the  

germanosilicate sample presents smaller crystallites compared to other IWV materials. 

The crystallization media strongly affects the crystal shape in aluminosilicate  

materials, but crystal size remains roughly the same. Thus, fluoride media syntheses show 
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plate-like crystals, while hydroxide media synthesis shows oval crystals, with a crystal  

thickness between 50 and 100 nm in both cases. 

6.3.1.3 Thermogravimetric analysis of the as-made IWV zeolite 

The thermal stability and decomposition of the OSDA were studied by the  

thermogravimetry (TG) and differential thermogravimetry (DTG) analyses of some of the 

obtained IWV samples. Some thermogravimetric plots are shown in Figure 6.6. 

 
Figure 6.6. TG (solid lines) and DTG (dotted lines) analyses curves of some IWV samples.  

Samples are named after the containing heteroatom followed by the as-made heteroatom to  

silica ratio content, with the synthesis media below. DTG curves are scaled up for a better view. 

 

The thermogravimetric analyses of the IWV samples show a main weight loss of  

ca. 16 wt.% in all cases. The temperature and its range for the decomposition of the OSDA 

is highly dependent on the heteroatom content and type. For example, in the all-silica  

material, the weight loss happens between 350ºC and 500ºC, similar to the germanosilicates 

material. On the other hand, the weight loss in the borosilicate material occurs at higher  

temperatures, in a temperature range between 475ºC and 600ºC. 

On the other side, the aluminosilicate materials, both the sample synthesized in  

fluoride media and in hydroxide media, present their weight losses in a wide temperature 
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range, from 350ºC up to 700ºC. However, the main weight loss of both samples takes place 

at temperatures similar (fluoride synthesis), or even lower (hydroxide synthesis), than the 

observed in the all-silica material. This fact suggests that most of the OSDA is weakly  

interacting with the aluminium atoms, or even that aluminium is not being fully incorporated 

to the zeolite framework, especially in the case of the aluminosilicate synthesized in  

hydroxide media. 

The relatively low temperature required for the decomposition of the OSDA is in good 

agreement with a large pore zeolite. However, the high temperature required for the removal 

of the organic species formed during OSDA decomposition in borosilicate material indicates 

a stabilizing effect on the OSDA when interacting with the boron species inside the material. 

However, this stabilizing effect is not so relevant in other IWV zeolite compositions. 

6.3.2 Thermal treatments of IWV zeolite 

The as-made IWV materials were thermally treated by the general methodologies  

described in the section 3.2.3. Additionally, some materials were further treated to completely 

remove the remaining phosphorous species washing them with ethanol after thermal  

treatments, as described in section 3.2.3.3. For the treated IWV materials, powder X-Ray 

diffraction, chemical analyses, scanning electron microscopy, adsorption isotherms, FTIR 

using pyridine as probe molecule and MAS-NMR spectroscopies were performed. In this 

section only powder X-Ray diffraction, chemical analyses, adsorption isotherms and FTIR 

using pyridine as probe molecule analyses of the thermally treated samples are compared, 

while MAS-NMR spectra are further discussed in section 6.3.3. 

6.3.2.1 Crystallinity of thermally treated IWV zeolite 

The stability and crystallinity of the IWV samples after the different thermal and 

washing treatments were assessed by powder X-Ray diffraction, whose patterns are shown 

in Figure 6.7. 
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Figure 6.7. Powder X-Ray diffraction of some of the thermally treated IWV materials. Black 

lines correspond to as-made samples; red lines to calcined samples; green lines to samples  

hydrogenated at high temperature; blue lines to samples hydrogenated at high temperature  

and washed with ethanol. Samples are identified by synthesized material composition. 

The materials remained highly crystalline after the thermal and washing treatments, 

with the X-Ray diffraction peaks being found at roughly the same 2θ degrees in all samples 

regardless of the post-synthesis treatment. The main difference between the as-made and the 

thermally-treated samples was the higher intensity of the diffraction peaks at 2θ below 10º, 

as the intensity of these signals is typically affected by the presence of the OSDA filling the 

voids of the zeolite. 

6.3.2.2 Chemical analyses of thermally treated IWV zeolite 

The typical chemical compositions of the thermally treated IWV materials, as well as 

the samples washed with ethanol, are shown in Table 6.3. 
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Table 6.3. Chemical composition of some of the thermally treated IWV materials. All ratios are 

given as molar ratios. Samples are identified by heteroatom (X) synthesis gel composition. 

Sample Treatment Si/Xas-made Si/Xtreated wt.%Pas-made wt.%Ptreated P/Xtreated 

Si-IWV Calcination - - 2.4 1.6 - 

Si-IWV Hydrogenation - - 2.4 0.8 - 

Si-IWVwas* Washed - - 0.8 <0.1 - 

Al25-IWV Calcination 25.5 23.3  2.1 2.1 1.0 

Al25-IWV Hydrogenation 25.5 25.3 2.1  1.6 0.8 

Al25-IWVwas* Washed 25.3  27.9 1.6 0.3 0.2 

B30-IWV Calcination 37.1 53.4 2.3 1.0 1.2 

Ge5-IWV Calcination 5.3 4.9 2.1 1.0 0.2 

*: parent sample correspond to hydrogenated IWV samples. 

After calcination, most of the phosphorus remains inside the materials. In the case of 

all-silica materials, up to 35 wt.% was removed by calcination, while in borosilicate and  

germanosilicates materials up to 50 wt.% was removed. On the other hand, aluminosilicate 

samples keep almost all the phosphorus incorporated by the OSDA. This is indicating a 

stronger interaction of the phosphorous oxide-like species with the aluminium species than 

with the boron sites inside the IWV materials. 

The treatment with hydrogen at high temperature allows for the removal of  

ca. 65 wt.% of the phosphorus in all-silica IWV, while aluminosilicate samples keep ca. 75 

wt.% of the phosphorus. This indicates that the phosphorous species, formed during this  

thermal treatment, are strongly interacting with aluminium and thus, are better retained than 

in all-silica IWV. 

Finally, a further phosphorus removal treatment was performed by washing the  

hydrogenated samples with ethanol. In this case, phosphorus is fully removed from all-silica 

IWV, while aluminosilicate materials still keep some phosphorous, up to 15 wt.% respect to 

the phosphorus incorporated in the as-made material. The same results (not shown here) were 

obtained when an ammonium acetate aqueous solution was used, so ethanol was kept for 
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removing phosphorous species on the thermally treated samples because of its softer effect 

over the material. 

6.3.2.3 Morphology of thermally treated IWV zeolite 

As previously, the morphology of the thermally treated IWV zeolite was studied by 

FESEM, and their comparison with as-made materials is depicted in Figure 6.8. 

 
Figure 6.8. FESEM microimages of some thermally treated IWV materials. Samples are named 

after the containing heteroatom followed by the as-made heteroatom to silica ratio content, with 

the thermal treatment below (Cal: calcined; Hyd: hydrogenated at high temperature). 

 

After the harsh thermal treatments, some crystallites break, especially in the samples 

hydrogenated at high temperature. Also, the decrease of the phosphorus content in  
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hydrogenated samples leads to more hydrophobic samples, favouring the formation of larger 

aggregates. These effects are more clearly seen in the aluminosilicate material, probably due 

to the smaller size of its crystallites. 

6.3.2.4 Textural properties of thermally treated IWV zeolite 

The textural properties of the IWV samples were calculated from the N2 adsorption 

isotherms at 77 K on the thermally treated samples, shown in Figure 6.9. 

 
Figure 6.9. N2 adsorption isotherms of some of the thermally treated IWV samples (left: all- 

silica and germanosilicate; right: aluminosilicate and borosilicate). Samples are named after the 

thermal treatment (cal: calcined under air; hyd: hydrogenated at high temperature; was: hy-

drogenated at high temperature and washed with ethanol), followed by the containing  

heteroatom and by the as-made heteroatom to silica ratio content. 

The N2 adsorption isotherms of IWV zeolite show the type Ia physisorption profile 

typical of microporous materials.[24] 

The BET and micropore surface areas and the total micropore volume of the IWV 

zeolite, calculated from the N2 adsorption isotherm at 77 K by applying the BET and t-plot 

method, are shown in Table 6.4. 
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Table 6.4. Textural properties of thermally treated IWV samples. Samples are identified after 

its heteroatom content and post-synthesis treatments (cal: calcined; hyd: hydrogenated at high 

temperature; was: washed with ethanol after hydrogenation at high temperature). 

Sample 

BET 

surface / 

m2·g-1 

Micropore 

surface / 

m2·g-1 

Micropore 

volume / 

cm3·g-1 

P/Al wt.%P 

Si-IWV-cal 425.5 412.4 0.20 - 1.6 

Si-IWV-hyd 463.7 441.2 0.22 - 0.8 

Si-IWV-was 443.4 429.1 0.21 - <0.1 

Al25-IWV-cal 386.4 377.0 0.19 1.0 2.1 

Al25-IWV-hyd 496.8 480.0 0.23 0.9 1.6 

Al25-IWV-was 484.0 445.7 0.23 0.2 0.3 

B37-IWV-cal 442.0 430.5 0.21 1.2 1.0 

Ge33-IWV-cal 494.5 476.6 0.23 1.0 0.2 

The obtained BET surface area and micropore volume values show differences  

depending on the phosphorus and heteroatom content. Calcined samples, due to their higher 

phosphorus content, always yield lower BET surface and micropore volumes than  

hydrogenated samples. These results indicate that there is a hindrance of the channels by the 

phosphorous species. However, washed materials, despite presenting lower phosphorus  

loadings, present slightly lower BET surface and micropore volumes than hydrogenated  

materials, but higher than calcined materials. 

When aluminosilicates of similar compositions are compared, the BET surface value 

of 386 m2·g-1 obtained in this thesis is lower than the equivalent material 450 m2·g-1 reported 

in the literature,[2] as well as the 0.18 cm3·g-1 micropore volume against 0.21 cm3·g-1[2] and 

0.193 cm3·g-1.[23] However, the partial removal of phosphorus by hydrogenation at high  

temperature increases these values to 496 m2·g-1 and 0.23 cm3·g-1 BET surface and micropore 

volume, respectively, slightly higher than previously reported values. This fact evidences 

that, despite the large pore openings of the IWV zeolite, the phosphorous species formed 

after thermal treatment significantly decrease the adsorption capacity and accessibility of the 

materials. 
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The micropore distribution was calculated by applying the Horvath-Kawazoe  

formalism[25] to the Ar adsorption isotherm at 87 K of the calcined and hydrogenated at high 

temperature Si-IWV samples. The corresponding calculated pore size distribution is shown 

in Figure 6.10. 

 
Figure 6.10. Pore size distribution of calcined all-silica (green) and hydrogenated (red) IWV 

materials. 

The micropore distribution shows a single maximum at 6.6 Å for the calcined sample 

and 6.7 Å for the hydrogenated at high temperature sample. These results are in good  

agreement with the 6.7 Å for the aluminosilicate material reported in the original work.[2] 

6.3.2.5 Acidic properties of thermally treated IWV zeolite 

The acidic properties of the thermally treated aluminosilicate IWV samples were  

studied by FTIR spectroscopy using the adsorption and step-wise thermal desorption of  

pyridine as probe molecule, whose spectra are shown in Figure 6.11. 
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Figure 6.11. FTIR spectra (solid black line: prior pyridine adsorption; coloured lines: after  

pyridine adsorption and desorption at different temperatures) of the Al-IWV materials  

with Si/Al ratio of 25 after different post-synthesis treatments. 

The type and strength of the acidic centres were calculated from the FTIR spectra 

obtained after the desorption of the pyridine molecule at 150ºC and 350ºC, as detailed in 

Table 6.5. 

Table 6.5. Acidic properties of some Al-IWV samples after different post-synthesis treatments. 

Washed refers to the sample washed after hydrogenation at high temperature. Acidic centres 

correspond to the sum of Brönsted and Lewis acid centres at 150ºC; B350/B150 corresponds to the 

ratio between Brönsted acid centres at 350ºC and 150ºC. 

Sample Si/Al P/Al 

Acidity (µmol py·g-1 zeolite) 

B150 B350 L150 L350 
Acidic 

centres 

B350/ 

B150 

Al-IWV 25.5 1.1 - - - - - - 

Calcined 23.3 1.0 52.3 8.4 35.3 10.4 87.5 0.16 

Hydrogenated 28.7 0.8 19.7 11.5 26.5 27.2 46.2 0.59 

Washed 27.9 0.2 29.7 9.0 52.4 31.1 82.2 0.30 

From these data, the total number of acidic centres and the concentration of Brönsted 

acid centres decrease as the phosphorus content increases, especially after the hydrogenation 

treatment at high temperature. However, the relative strength (B350/B150) of the Brönsted acid 

sites increase as the phosphorus content decreases. These facts would mean that the  
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phosphorous species interact with the aluminium species lowering their acidity, instead of 

just blocking their accessibility. 

It should be noted that the calcined sample presents a larger concentration of Brönsted 

acid centres than the hydrogenated and washed samples, while in the latter samples the  

concentration of Lewis acid centres increases compared to calcined sample. This could be 

indicative of a partial dealumination of the material after the hydrogenation treatment of the 

IWV zeolite. This dealumination could be explained by the extraction of aluminium from the 

zeolite framework and the subsequent precipitation of aluminium oxide, which present Lewis 

acidic properties. 

6.3.3 NMR study of the IWV zeolite 

The incorporation of the phosphorous OSDA and the aluminium and boron  

heteroatoms, as well as the lattice framework were studied by MAS-NMR spectroscopy on 

the as-made and the thermally treated IWV materials. 

6.3.3.1 Incorporation and stability of the OSDA into the IWV zeolite 

The stability of the OSDA incorporated to the IWV materials was studied by 13C and 

31P MAS-NMR spectroscopies. 

The 13C MAS-NMR spectra of the as-made samples compared with the liquid 13C 

NMR spectrum of the free P-OSDA are shown in Figure 6.12. 

 
Figure 6.12. 13C MAS-NMR spectra of some samples of IWV. Free OSDA liquid NMR  

spectrum included for comparison (•). Asterisks in OSDA NMR marks solvent resonances. 
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The 13C spectra of the as-made samples show similar resonance profiles than the free 

OSDA, with small displacement in the chemical shift of the resonances at ca. 39 ppm and 14 

ppm. A larger displacement was observed for the resonance at 8 ppm in the free OSDA that 

corresponds to the methyl group directly bonded to the phosphorus atom. This resonance 

shifts downfield to 10 ppm in the all-silica sample, and up to 12 ppm in the aluminosilicate, 

which could be indicative of a different interaction between the OSDA and the zeolitic matrix 

depending on the material composition. However, the non-existence of additional resonances 

means that the OSDA is incorporated to the material and is stable. 

The 31P MAS-NMR spectra of the as-made samples compared with the liquid 31P 

NMR spectrum of the free P-OSDA are shown in Figure 6.13. 

 
Figure 6.13. 31P MAS-NMR spectra of some of the obtained IWV samples. Samples are named 

after the containing heteroatom followed by the as-made heteroatom to silica ratio content, with 

the synthesis media below. Free OSDA and mother liquor (obtained from Al25-IWV-Fluoride 

synthesis) liquid NMR spectra are included for comparison. 
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The 31P MAS-NMR spectra of the as-made samples show a single resonance at 55 

ppm in all cases, which closely resembles to the liquid NMR of the OSDA in water solution 

(56.9 ppm), concluding that the OSDA remains intact inside of the pores of the zeolite. 

Additionally, the 31P NMR of the mother liquor evidences that the OSDA remains 

completely stable after the hydrothermal treatment. Actually, this OSDA show no degrada-

tion at all under the tested hydrothermal synthesis conditions. This result allows the reuse of 

the excess of OSDA used in synthesis gels, and actually, this was successfully tested once to 

synthesize an aluminosilicate material in hydroxide media. 

After the thermal treatment of the materials, some of the phosphorus remains inside 

the material, giving the opportunity to study the chemical nature of the generated species by 

31P MAS-NMR spectroscopy, whose spectra are shown in Figure 6.14. 

 
Figure 6.14. 31P MAS-NMR spectra of thermally treated Al-IWV. Samples are named after the 

thermal treatment (cal: calcined under air; hyd: hydrogenated at high temperature;  

was: hydrogenated at high temperature and washed with ethanol), followed by the containing  

heteroatom and by the as-made heteroatom to silica ratio content. Solid lines correspond to  

experimental spectra; dotted lines correspond to the sum of deconvoluted signals. Spectra  

were deconvoluted as Gaussian/Lorentz curves. 
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After the thermal treatments, the organic compound is decomposed and the remaining 

phosphorous species gives rise to several 31P resonances with chemical shifts ranging  

between -5 ppm and -42 ppm, which are characteristic of extra-framework P2O5-like species. 

The calcined sample gives three discrete resonances: i) at -7 ppm, assigned to  

phosphorus atoms in pyrophosphoric acid or to terminal [P4O3]- groups in polyphosphoric 

species;[26-29] ii) at -13 ppm, assigned to middle groups in pyrophosphates or other short-chain 

polyphosphates;[28, 29] iii) and at -31 ppm, assigned to different (bi)phosphates bounded to 

monodentate or bidentate aluminium octahedral atoms. However, the most prominent  

resonance is a very broad resonance centred at -25 ppm. This resonance is difficult to assign, 

but it is probably overshadowing many overlapped resonances, which could correspond  

either to polymeric phosphate chains and highly condensed polyphosphate species,[30-32] or to 

a large number of phosphorous species, probably different (bi)phosphates bounded to  

monodentate or bidentate aluminium octahedral atoms,[26-29, 33] or both given the asymmetry 

and wide chemical shift span of this wide resonance. 

The hydrogenation at high temperature decreases the P/Al ratio below 1, which  

translates into a large decrease of the -26 ppm broad resonance. This decrease allows to  

identify that the resonance at -31 ppm is actually an overlapping of two narrower resonances 

at -30 ppm and -33 ppm. Also, two additional resonances at -37 ppm and -42 ppm are now 

visible, which are assigned to different (bi)phosphates bounded to monodentate or bidentate 

aluminium octahedral atoms. On the other hand, the resonance at -7 ppm vanishes, while the 

resonance at -13 ppm turns into a weak intensity very broad resonance, probably built by 

smaller overlapping resonances. Finally, the washed sample shows no discrete resonances at 

all, presenting a single very broad resonance centred at -25 ppm and built by many overlapped 

resonances belonging to P2O5-like species in multiple conformations and/or orientations. 

The disappearance of the resonances below -15 ppm and the increase of the  

resonances at ca. -30 ppm in the hydrogenated sample could suggest the formation of discrete 

AlPO4 species inside the zeolite. 
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6.3.3.2 Aluminium incorporation in the IWV zeolite 

The aluminium incorporation in the IWV materials was studied by 27Al MAS-NMR 

spectroscopy on the as-made aluminosilicate samples, whose spectra are shown in  

Figure 6.15. 

 
Figure 6.15. 27Al MAS-NMR spectra of some samples of as-made IWV materials with different 

Si/Al ratios. Samples are named as the containing heteroatom followed by the as-made  

heteroatom to silica ratio content and synthesis media below. 

The as-made materials synthesized in fluoride media show a single wide resonance 

centred at 56 ppm, regardless of the aluminium content. This resonance is typically attributed 

to Al in tetrahedral coordination and occupying framework positions.[34-38] On the other hand, 

the materials synthesized in hydroxide media show two resonances, one at 56 ppm like those 

synthesized in fluoride media, an another wider signal centred around 8 ppm. This latter  

resonance is typically attributed to aluminium species in octahedral coordination, in this case, 

to extra-framework gibbsite aluminium hydroxide,[39] probably due to unreacted alumina 

source. These results are in agreement with the results of the TG analyses of these samples 

in section 6.3.1.3, which suggested that not all aluminium was incorporated in the framework. 
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Unfortunately, experiments with different alumina sources were not performed. Because of 

that, minor characterization was performed on aluminosilicate materials synthesized in  

hydroxide media. 

The 27Al MAS-NMR spectra of the thermally treated materials synthesized in fluoride 

are shown in Figure 6.16. 

 
Figure 6.16. 27Al MAS-NMR spectra of some samples of the thermally treated IWV sample with 

Si/Al=25. Solid lines correspond to experimental spectra; dotted lines correspond to the sum of 

deconvoluted signals. The peak at ca. 56 ppm was deconvoluted as a Gaussian/Lorentz curve 

(for an easier view), and the other peaks were deconvoluted using the CzSimple method.[40] 

The 27Al MAS-NMR spectra shows up to three different resonances, indicating that 

aluminium atoms are located in three different chemical environments. The main resonances 

appear at ca. 56 ppm (narrow), at ca. 40 ppm (very wide) and at ca. -12 ppm (wide). These 

resonances greatly vary their intensities depending on the P/Al and Si/Al ratios, and, in the 

case of the 40 ppm and the -12 ppm resonances, their chemical shift also vary. 

The relative intensity of the resonance at 55 ppm, corresponding to tetrahedral Al in 

framework positions, increases as the P/Al ratio decreases, following a similar trend to the 
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described in the MFI and RTH materials in sections 5.2.4 and 5.3.4, respectively. On the 

other hand, the relative intensities of the resonances at 40 ppm, assigned to pentacoordinated 

aluminium species, and -12 ppm, assigned to octahedral aluminium species, decrease after 

the hydrogenation of the IWV zeolite.[36-38] Also, the chemical shift of these resonances  

displace up-field, to 30 ppm and -5 ppm, respectively. The chemical shifts and relative  

intensities of these resonances are approximately the same after washing, despite the decrease 

in the phosphorus content of the washed material. 

The relative increase of the tetrahedral aluminium species agrees with the acidic  

properties, as the removal of phosphorus increases the concentration of strong acid centres, 

similar to RTH results in section 5.3.3.4. However, in the case of IWV zeolite, the resonances 

at 30 ppm and -5 ppm of the hydrogenated material are greatly affected after the hydrogena-

tion treatment despite presenting a high P/Al ratio, and after this treatment, these resonances 

are not affected at all. These results are indicating that the aluminium is being extracted from 

the framework, which fit with the decrease of Brönsted acid sites and the increase of Lewis 

acid sites observed in section 6.3.2.5.  

The results obtained from 27Al MAS-NMR and 31P MAS-NMR spectra suggests that 

the aluminium tetrahedrally coordinated in the as-made IWV material is being extracted from 

the IWV framework after the hydrogenation of the material. These aluminium species, both 

pentacoordinated and octahedral, would interact with some of the remaining phosphorus in 

the material, giving rise to discrete AlPO4 species inside the voids of the zeolite. The  

formation of these AlPO4 species decreases the number of Brönsted acid sites while  

maintaining the number of Lewis sites, although the additional removal of phosphorus by 

washing with ethanol would lead to the formation of aluminium hydroxide species which 

increase the number of Lewis acid sites of the washed IWV material. 
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6.3.3.3 Boron incorporation in the IWV zeolite 

The boron incorporation was studied by 11B MAS-NMR spectroscopy on the as-made 

borosilicate samples, whose spectrum is shown in Figure 6.17. 

 

 
Figure 6.17. 11B MAS-NMR spectra of the as-made and calcined borosilicate sample with 

Si/B=37. 

The as-made 37B-IWV spectrum shows a 11B resonance centred at -3.65 ppm with 

shoulder resonances up- and downfield spanning between -2 ppm and -4.5 ppm. The  

chemical shifts of these signals fit with boron in tetrahedral coordination,[41-43] but the  

shoulder evidence the existence of different environment, probably due to boron atoms  

located in different framework positions. Therefore, it is concluded the boron is getting  

incorporated in IWV zeolite during synthesis in different environments. 

After calcination, a single resonance at -3.6 ppm is observed, which confirms that 

boron remains in tetrahedral positions. However, a wide resonance appears down-field,  

spanning from 1 ppm to -4 ppm, which is usually attributed to boron species in trigonal  

coordination and are typical of dehydrated borosilicate zeolites.[43] 
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6.3.3.4 Fluorine incorporation in the IWV zeolite framework 

The incorporation of fluorine to the IWV materials and its interaction with the  

siliceous framework was studied by 19F MAS-NMR spectroscopy, whose spectra are shown 

in Figure 6.18. 

 
Figure 6.18. 19F MAS-NMR spectra of some as-made IWV materials. Samples are named after 

the containing heteroatom followed by the as-made heteroatom to silica ratio content. Spectra 

are not scaled up on fluorine content. 

In all cases two resonances were observed, a main resonance at ca. -37 ppm, and a 

minor signal at -122 ppm. The peak at -37 ppm is typically assigned to fluorine located in 

silica rich D4R cages,[44, 45] although chemical shift differs from the -31.6 ppm originally 

reported for this zeolite.[2] This difference could be attributed to a lower long range dipolar 

interaction of the OSDA with the fluorine anions, as aminophosphonium cations are more 

nucleophilic than the original phosphonium cation. On the other hand, the resonance  

at -122 ppm is attributed to mobile fluoride ions in the channels, which act as charge‐ 

balancing for the OSDA cations.[46] The intensity of the resonance at -122 ppm is independent 

of the content of trivalent atoms (boron or aluminium), as clearly seen in the samples with  

phosphorus to aluminium ratio below 1. Anyway, most of fluoride anions charge-balance the 

OSDA cations locating in the D4R cages. 
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6.3.3.5 Silicon framework of the IWV zeolite 

The zeolite framework was studied by analysing the silicon species of the as-made 

and the thermally treated IWV samples in all-silica and aluminosilicate materials. 

 All-silica materials 

The 29Si MAS-NMR spectra of the as-made and thermally treated all-silica IWV  

materials are shown in Figure 6.19. 

 
Figure 6.19. 29Si MAS-NMR spectra of some as-made and thermally treated all-silica IWV  

samples (cal: calcined under air; hyd: hydrogenated at high temperature; was: hydrogenated at 

high temperature and washed with ethanol). Solid lines correspond to experimental spectra; 

dotted lines correspond to the sum of deconvoluted signals. 

The as-made all-silica IWV 29Si MAS-NMR spectra present four main resonances 

centred at -105 ppm, -108 ppm, -112 pm and -118 ppm, which correspond to Q4 silicon atoms. 
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Also, two wide resonances centred at -96 ppm and -99 ppm could be observed, corresponding 

to Q3 silicon atoms. These latter resonances could be explained by silanol framework defects 

formed during synthesis, which suggests that fluoride anions are not completely charge  

balancing the OSDA cation. However, fluoride was not quantified to probe that hypothesis. 

The thermal treatment of the samples yields a drastic change in the resonance signal 

pattern. Firstly, in all cases the resonances belonging to silanol defects completely disappear, 

due to the condensation of silanol groups during thermal treatments. Also, the spectra  

barycentres shifts up-field, disappearing the resonance at -105 ppm, assigned to silicon atoms 

in D4R cages interacting with fluoride anions trapped inside. Upon thermal treatment,  

fluoride anions are removed provoking the shift of the 29Si -105 ppm resonance up-field. The 

calcined sample and the sample washed with ethanol after hydrogenation yield well resolved 

spectra, being the washed spectra slightly better resolved. 

The mathematical deconvolution of the spectra of the sample washed with ethanol 

after hydrogenation at high temperature presents at least six different resonances at -108 ppm, 

-109 ppm, -111 ppm, -114 ppm, -117 ppm and -118 ppm, with roughly relative intensities 

4:2:4:3:2:1, which sums a total of 16 different T atoms in six different silicon environments. 

The peak at -111 ppm is wide enough to be considered as two roughly symmetrical  

overlapping resonances, which would yield seven different environments with relative inten-

sities 4:2:2:2:2:2:1. However, this result disagrees with the idealized cell data already  

elucidated, which should yield a spectrum of seven different silicon environments with 

3:3:3:2:2:2:1 relative intensities.  

The previous deconvolutions were made using boundary conditions to match the  

number of T atoms and the number environments from experimental spectra with the  

crystallographic data. However, if these conditions are removed, a better fitting spectra with 

relative intensities 6:2:7:5:3:1 could be inferred, which sums 24 different T atoms, in at least 

six different silicon environments, probably eight different T atoms due to the wide  

resonances at -111 ppm and -114 ppm, which could be unfolded into more overlapped  

resonances. The mismatch between the experimental spectra and the theoretical spectra  

suggests that the IWV zeolite presents the same T sites connectivity but a lower symmetry 

than previously described.  The spatial group elucidated from an aluminosilicate material was 

the Fmmm (nº 69) group, while the crystallographic data obtained from the all-silica IWV 

here described leans towards the F222 (nº 22) or Fmm2 (nº 42) spatial groups. These groups 

present one less symmetry plane in the different axes (Fmm2, Fm2m, F2mm) or in the three 

axes (F222) However, it has been impossible to fully determine the spatial group up to now. 
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 Aluminosilicate materials 

The 29Si MAS-NMR spectra of the as-made and thermally treated aluminosilicate 

IWV materials are shown in Figure 6.20. 

 
Figure 6.20. 29Si MAS-NMR spectra of some as-made and thermally treated aluminosilicate 

IWV samples (cal: calcined under air; hyd: hydrogenated at high temperature; was: hydro-

genated at high temperature and washed with ethanol). Solid lines correspond to experimental 

spectra; dotted lines correspond to the sum of deconvoluted signals. 

The 29Si MAS-NMR spectra of the as-made Al25-IWV shows several wide  

resonances, similar to previously reported.[2] Four main resonances could be identified  

centred at -101 ppm, -105 ppm, -109 ppm and -117 ppm. The two latter resonances are  

ascribed to Q4 silicon atoms in the zeolite, tetrahedrally coordinated silicon atoms having 

silicon atoms in the second neighbourhood. On the other hand, the resonance centred  
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at -101 ppm is assigned to Q3 silicon atoms due to Si(OAl)(OSi)3 environments. Finally, the 

resonance centred at -105 ppm could either be assigned to Q3, Q4, or an overlap of resonances 

due to Q3 and Q4 silicon atoms. 

The thermal treatment of the Al-IWV materials yields a drastic change in the  

resonance pattern, yielding to a 29Si MAS-NMR spectra of the calcined sample similar to 

previously reported.[23] The hydrogenation treatment at high temperature yields a slightly 

clearer spectra than the obtained after calcination. In all cases, the spectra barycentres shift 

up-field, almost disappearing the resonances at -101 ppm and -105 ppm, which turn into very 

wide low intensity resonances. As previously stated in the all-silica 29Si NMR, the -105 ppm 

could be assigned to silicon atoms in D4R cages interacting with fluoride anions, which are 

removed after thermal treatment, provoking the disappearance of the -105 ppm resonance. 

The spectrum of the calcined sample presents four main overlapping resonances centred  

at -108 ppm, -110 ppm, -113 ppm and -116 ppm, assigned as Q4 silicon atoms. Also, two low 

intensity resonances at -100 and -104 ppm could be observed, which are assigned as 

Si(OAl)(OSi)3 Q3 silicon atoms. 

When the material is hydrogenated at high temperature and the phosphorus content 

decreases, the resonances width decrease, yielding spectra with better resolved signals,  

although keeping the same profile and chemical shifts as the calcined spectrum. Thus, in the 

sample washed with ethanol after hydrogenation, a new resonance centred at -109 ppm,  

previously overshadowed by the resonances centred at -108 ppm and -110 ppm, could be 

identified. Also, the wide resonances at -100 ppm and -104 ppm, corresponding to Q3 silicon 

atoms, almost disappear, which is indicative of the dealumination of the material. This result 

is in good agreement with the acidic properties of these materials discussed in section 6.3.2.5, 

and the results from 31P NMR in section 6.3.3.1 and 27Al NMR in section 6.3.3.2. 
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6.4 UTD-1 (DON) zeolite 

The UTD-1 zeolite was first obtained by Balkus et al. in 1995.[47] The UTD-1 zeolite 

was the first extra-large pore zeolite, with 14 MR pore openings of 1.0 nm diameter. It is a 

mono-directional pore system zeolite with a straight channel running along the c axis. 

The UTD-1 zeolite consists in a family of intergrowth polymorphs. The disorder arises 

from the connection between layers, as silicon tetrahedra could be located in two different 

orientations, resulting in four different polymorphs. Polymorphs A and B have not been  

experimentally obtained yet, while polymorphs C and D are usually obtained as a mix  

enriched in polymorph C.[17, 47] Only polymorph C has been obtained as pure phase using 

fluoride as mineralizing agent.[18] 

The UTD-1F or polymorph C (IZA code: DON) shows an orthorhombic symmetry, 

belonging to the Cmcm (nº 63) spatial group, with the following framework parameters for 

the idealized all silica material:[16] 

a = 18.8900 Å b = 23.3650 Å c = 8.4690 Å Volume = 3737.9 Å3 

This material has been obtained as all-silica and borosilicate,[47] titanosilicate[48] and 

as aluminosilicate by introducing aluminium by post-synthesis treatments.[17] The materials 

were obtained using a cobalt organometallic compound as OSDA, the cation bis(pentame-

thylcyclopentadienyl)cobalt (III) cation, or [Me5Cp]2Co+ (Figure 6.21.a). The use of 

[Me5Cp]2Co+ as OSDA requires several intermediate steps starting from the commercial 

[Me5Cp]2CoPF6 salt. This salt should be cation exchanged to the chloride form and extracted 

with chloroform before being able to exchange it to the hydroxide form. All these steps  

require an intensive use of solvent and the working up is very laborious from the point of 

view of its practical application. 

Recently, two novel synthesis routes have been developed: by using a phosphazene 

base as OSDA, the phosphazene base 1,1,1,3,3,3-Hexakis[tris(dimethylamino)]diphos-

phazenium, or phosphazene base P2 (Figure 6.21.b);[49] and by supramolecular assembly  

templating approach, using N,N-dimethyl-(2-methyl)benzimidazolium (DMBI) hydroxide as 

OSDA (Figure 6.21.c).[50] Both methodologies have allowed obtaining the aluminosilicate 

material from direct synthesis. The use of the phosphazene base P2 get rid of most  

intermediate steps needed when using the [Me5Cp]2Co+ or the DMBI hydroxide as OSDA´s, 

as only an anionic exchange is needed to get the phosphazenium cation from the commercial 
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phosphazenium BF4
- salt. However, this reagent, although being commercial, is expensive 

and its supply is often discontinued. 

The UTD-1 zeolite material is interesting because of its potential catalytic applications 

involving the use of bulky molecules.[48, 51] 

In the following section, the synthesis and characterization of the zeolite DON  

employing the tris(diethylamino)(methyl)phosphonium cation, or OSDA-7 (Figure 6.21.d), 

is described. 

 
Figure 6.21. Synthesis scheme of OSDA´s used in the synthesis of DON zeolite: a) [Me5Cp]2Co+ 

cation; b) phosphazene base P2; c) DMBI hydroxide; d) OSDA-7. 

6.4.1 Sample analyses of as-made DON zeolite 

The obtained as-made DON materials were submitted to chemical analyses,  

thermogravimetry, scanning electron microscopy and MAS-NMR spectroscopy. In this  

section only chemical analyses, thermogravimetry and scanning electronic microscopy  

analyses are compared, while MAS-NMR spectra are further discussed in section 6.4.3. 

c)

d)

b)
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6.4.1.1 Chemical analyses of as-made DON zeolite 

The typical chemical compositions of the obtained as-made DON materials are shown 

in Table 6.6. 

Table 6.6. Chemical composition of some of the obtained DON materials. All ratios are given as 

molar ratios. Samples are identified by heteroatom (X) synthesis gel composition. 

Sample [Si/X]gel pHgel ηX (%) ηSi (%) [Si/X]sol wt.%Psol Si/OSDA OSDA/X 

Si-DON - 11.47 - 61 - 1.6 27.4 - 

Al30-DON 30 11.82 89 65 21.8 2.1 21.5 1.0 

B30-DON 30 11.65 60 68 34.4 1.6 23.3 1.5 

First, it could be seen that the silicon to OSDA ratio fluctuate between 21 and 27, 

which would yield between 2.4 and 3 OSDA molecules per unit cell (64 T positions per unit 

cell). This value differs from previous values of Si/OSDA ratios around 16, corresponding to 

2 OSDA molecules per unit cell,[49] or 1 OSDA molecule per unit cell.[50] The discrepancies 

between the different reported Si/OSDA ratios in different work could be ascribed to the 

large presence of structural -OH defects because of the disordered nature of DON zeolite. 

On the other hand, the incorporation of aluminium and boron was considerably higher 

than previously reported, even reaching a OSDA/X ratio of 1, while in previous works this 

ratio barely reached 2.5. This has allowed to incorporate more heteroatom species than  

previously reported, achieving Si/Al ratios of 22 against higher values as 35 (by post- 

synthesis treatment)[17] or 38 (by direct synthesis).[49] 
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6.4.1.2 Morphology of as-made DON zeolite 

The crystallite shape and size of the as-made DON samples was assessed by FESEM 

microscopy analyses, depicted in Figure 6.22. 

 
Figure 6.22. FESEM microimages of some as-made DON materials. Samples are named after 

the containing heteroatom followed by the as-made heteroatom to silica ratio content. 

The obtained DON materials show a homogeneous crystallization as needle-like  

crystallite with sizes around 0.1x5 µm, similarly to previously reported.[17, 49] In all cases the 

crystallites form aggregates, being these aggregates bigger the lower the heteroatom content, 

up to the point where all-silica material only form large aggregates. 
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6.4.1.3 Thermogravimetric analysis of the as-made DON zeolite 

The thermal stability and decomposition of the OSDA were studied by the  

thermogravimetry (TG) and differential thermogravimetry (DTG) analyses of some DON 

samples. Some thermogravimetric plots are shown in Figure 6.23. 

 
Figure 6.23. TG (solid lines) and DTG (dotted lines) analyses curves of some DON samples. 

Samples are named as the containing heteroatom followed by the as-made heteroatom to  

silica ratio content. DTG curves are scaled up for a better view. 

The thermogravimetric analysis of the DON samples shows a weight loss of ca. 15 

wt.% in all cases. The temperature and its range for the decomposition of the OSDA is  

dependent on the heteroatom content and type. In all cases the weight loss occurs between 

275ºC and 650ºC, but the weight loss could be split in two stages, a low temperature weight 

loss between 275ºC and 425ºC, and a high temperature weight loss between 425ºC and 

650ºC. The relative extent of the weight loss in each stage is clearly differentiated by sample 

composition. 

The all-silica material presents most of the weight loss, up to 12 wt.%, below 450ºC, 

while the remaining 2 wt.% is lost at higher temperatures (14 wt.% final weight loss). On the 
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other hand, aluminosilicate sample presents 8 wt.% weight loss below 425ºC, and an  

additional 7 wt.% weight loss at higher temperatures (15 wt.% final weight loss). The large 

weight loss at low temperature, similar to all-silica material, suggests that the OSDA is 

weakly interacting with the aluminium atoms, like previously observed in the IWV zeolite in 

section 6.3.1.3. However, the minor weight loss at higher temperature, could suggest that at 

least some of the OSDA is strongly interacting with the aluminium atoms. 

The borosilicate material presents a similar TG behaviour than the aluminosilicate 

sample, but the weight loss at lower temperature shifts towards a higher temperature, while 

the high temperature weight loss slightly shifts towards a lower temperature. Thus, 9 wt.% 

weight loss takes place at ~450ºC, and 6 wt.% weight loss at higher temperatures (15 wt.% 

final weight loss). This result could suggest that the OSDA-boron interaction is stronger than 

the OSDA-aluminium interaction. 

The relatively low temperature required for the decomposition of the OSDA is in good 

agreement with an extra-large pore zeolite. However, the high temperature required for the 

full removal of the organic species formed during OSDA decomposition in the case of  

borosilicate and aluminosilicate indicate a stabilizing effect of part of the OSDA when  

interacting with the aluminium and the boron species inside the material. 

6.4.2 Thermal treatments on the DON zeolite 

The as-made DON materials were thermally treated by the general methodologies  

described in the section 3.2.3. For the thermally treated materials, powder X-Ray diffraction, 

chemical analyses, scanning electron microscopy, adsorption isotherms and MAS-NMR 

spectroscopies were performed. In this section only powder X-Ray diffraction, chemical 

analyses, scanning electron microscopy and adsorption isotherms analyses of the thermally 

treated samples are compared, while MAS-NMR spectra are further discussed in  

section 6.4.3. 
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6.4.2.1 Crystallinity of thermally treated DON zeolite 

The stability and crystallinity of the DON samples after calcination were assessed by 

powder X-Ray diffraction, whose patterns are shown in Figure 6.24. 

 
Figure 6.24. Powder X-Ray diffraction of some of the thermally treated DON materials. Black 

lines correspond to as-made samples; red lines to calcined samples; green lines to samples  

hydrogenated at high temperature. Samples are identified by synthesized material composition. 

The materials remained crystalline after calcination, with the X-Ray diffraction peaks 

being found at roughly the same 2θ degrees in all samples regardless of the thermal treatment. 

However, when materials are treated with hydrogen at high temperature, the diffraction peaks 

considerably widen and a very broad diffraction peak at 22º could be discerned. This broad 

peak corresponds to amorphous silica, which could be attributed to a partial amorphization 

of the hydrogenated materials. This amorphization would also explain the widening of the 

diffraction peaks due to a loss of long range order in the crystalline structure. 

These results could be explained by the thermal stability of the DON material, as 

higher temperatures are applied in the hydrogenation treatment, higher than 700ºC, than in 

the calcination treatments, below 700ºC. 

6.4.2.2 Chemical analyses of thermally treated DON zeolite 

The typical chemical compositions of the thermally treated DON materials are shown 

in Table 6.7. 
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Table 6.7. Chemical composition of some of the thermally treated DON materials. All ratios are 

given as molar ratios. Samples are identified by heteroatom (X) synthesis gel composition. 

Sample Treatment Si/Xas-made Si/Xtreated wt.%Pas-made wt.%Ptreated P/Xtreated 

Si-DON Calcination - - 1.6 1.2 - 

Si-DON Hydrogenation - - 1.6 0.4 - 

Al22-DON Calcination 22.4 21.9 1.7 1.5 0.8 

Al22-DON Hydrogenation 22.4 22.3 1.7 0.8 0.4 

After calcination, most of the phosphorus remains inside the material, keeping at least 

80 wt.% of the phosphorus introduced by the incorporation of the OSDA. The hydrogenation 

at high temperature allows for a higher phosphorus removal, up to 70 wt.% for the all-silica 

material and up to 50 wt.% for the aluminosilicate material. As observed in the IWV zeolite, 

this indicates that some of the phosphorous species which are formed during the  

hydrogenation treatment are interacting with the aluminium species and are thus better  

retained than in all-silica material. However, this interaction is lower in the case of the DON 

zeolite as evidenced by the higher phosphorus removal respect to the IWV zeolite as shown 

in Table 6.3. 
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6.4.2.3 Morphology of thermally treated DON zeolite 

As previously, the morphology of the thermally treated DON zeolite was studied by 

FESEM, and their comparison with as-made materials is depicted in Figure 6.25. 

 
Figure 6.25. FESEM microimages of some thermally treated DON materials. Samples are 

named after the containing heteroatom followed by the as-made heteroatom to silica ratio  

content, with the thermal treatment below (Cal: calcined). 

After the thermal treatments, the DON crystallites keep their size and shape. However, 

the decrease of the phosphorus content in the materials favour the formation of larger  

aggregates. 
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6.4.2.4 Textural properties of thermally treated DON zeolite 

The textural properties of the DON samples were calculated from the N2 adsorption 

isotherms at 77 K on the thermally treated samples, shown in Figure 6.26. 

 
Figure 6.26. N2 adsorption isotherm of some of the thermally treated DON samples (black: cal-

cined all-silica; red: hydrogenated at high temperature all-silica; blue: calcined aluminosilicate; 

green: hydrogenated at high temperature aluminosilicate). 

The N2 adsorption isotherms show the type Ia physisorption profile typical of  

microporous materials, but with a considerable multilayer adsorption due to a considerable 

mesoporosity in the DON materials synthesized in this work.[24] 

The BET and micropore surface areas and the total micropore volume (calculated 

from the N2 adsorption isotherm at 77 K by applying the t-plot method) were calculated for 

the DON materials synthesized in this work, as shown in Table 6.8. 
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Table 6.8. Textural properties of thermally treated DON samples. Samples are named after the 

heteroatom content and thermal treatments (cal: calcined; hyd: hydrogenated at high  

temperature). 

Sample 

BET 

surface / 

m2·g-1 

Micropore 

surface / 

m2·g-1 

Micropore 

volume / 

cm3·g-1 

P/Al wt.%P 

Si-DON-cal 343.3 240.7 0.12 - 1.2 

Si-DON-hyd 327.8 306.5 0.15 - 0.4 

Al22-DON-cal 376.1 294.7 0.14 0.8 1.5 

Al22-DON-hyd 322.5 177.7 0.08 0.4 0.8 

The obtained BET surface area and micropore volume values show differences  

depending on the phosphorus and heteroatom content. Thus, in all-silica materials it could be 

seen that the removal of most of the phosphorous by the hydrogen treatment at high  

temperature results in an increase of the micropore volume to 0.15 cm3·g-1, which is lower 

than previously reported 0.17 cm3·g-1[49] and 0.18 cm3·g-1[50] micropore volumes. 

In the case of the aluminosilicate, the decrease of the micropore volume when  

phosphorus is removed could be attributed to the partial collapse of the crystalline  

framework, which is in accordance with the presence of a very broad diffraction peak at 2θ 

22º in the X-Ray diffraction pattern as seen in section 6.4.2.1. 

6.4.3 NMR study of the DON zeolite 

The incorporation of the phosphorous OSDA and the aluminium and boron  

heteroatoms were studied by MAS-NMR on the as-made and thermally treated DON  

materials. 
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6.4.3.1 Incorporation and stability of the OSDA to the DON zeolite 

The stability of the OSDA incorporated in the DON zeolite was studied by 31P MAS-

NMR spectroscopy. 

The 31P MAS-NMR spectra of the as-made samples compared with the liquid 31P 

NMR spectrum of the free P-OSDA are shown in Figure 6.27. 

 
Figure 6.27. 31P MAS-NMR spectra of some as-made DON samples. Samples are named after 

the containing heteroatom followed by the as-made heteroatom to silica ratio content. Free 

OSDA NMR spectrum is included for comparison. 

The 31P MAS-NMR spectra of the as-made samples show several resonances around 

57 ppm, two in the all-silica sample and three in the aluminosilicate samples. These  

resonances appear in the same region than in the liquid NMR spectrum of the OSDA in water 

solution (56.92 ppm, see section 3.2.1.7), suggesting that the OSDA remains intact inside of 

the pores of the zeolite but in different conformations or chemical environments. 

After the thermal treatment of the materials, most of the phosphorus remains inside 

the material, giving the opportunity to study the chemical nature of the generated species by 

31P MAS-NMR spectroscopy, whose spectra are shown in Figure 6.28. 
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Figure 6.28. 31P MAS-NMR spectra of thermally treated Al-DON materials. Samples are named 

after the thermal treatment (cal: calcined under air; hyd: hydrogenated at high temperature), 

followed by the containing heteroatom and by the as-made heteroatom to silica ratio content. 

Solid lines correspond to experimental spectra; dotted lines correspond to the sum of  

deconvoluted signals. Spectra were deconvoluted as Gaussian/Lorentz curves. 

After the thermal treatments it could be observed that the signal at 57 ppm disappears, 

and thus, the OSDA is completely decomposed. 

In the case of the calcined sample, a single wide resonance centred at ca. -16 ppm 

appears. This asymmetric resonance is probably composed by at least two signals, but no 

discrete resonances up-field or down-field could be identified like in previously discussed 

MFI, RTH or IWV zeolites. These wide resonances are assigned to multiple overlapped  

resonances, which would correspond to polymeric phosphate chains, as well as highly  

condensed polyphosphate species.[30-32] 

Similarly, the sample hydrogenated at high temperature also exhibits a similar wide 

signal centred at -16 ppm and a narrow resonance at 0 ppm. This latter resonance is assigned 

to extra-framework P2O5 species. On the other hand, the mathematical deconvolution of the 

-16 ppm resonance leads to smaller and wide signals at -10 ppm, -24 ppm and -37 ppm, 

although it is impossible to notice discrete signals. As previously, the wide resonance at -16 

ppm is assigned to polymeric phosphate chains and highly condensed polyphosphate  
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species,[30-32] while the resonances at -24 ppm and -37 ppm are assigned to different  

(bi)phosphates bounded to monodentate or bidentate aluminium octahedral atoms.[26-29] The 

lack of discrete phosphorus species could be indicative of a weaker interaction of the  

phosphorous species with the DON zeolite framework and aluminium centres than the pre-

viously observed in the cases of IWV, RTH or MFI zeolites. 

6.4.3.2 Aluminium incorporation in the DON zeolite 

The aluminium incorporation was studied by 27Al MAS-NMR spectroscopy on the  

as-made aluminosilicate samples, as well as on the different aluminium species formed after 

thermal treatments, whose spectra are shown in Figure 6.29. 

 
Figure 6.29. 27Al MAS-NMR of samples of the as-made and the thermally treated DON sample 

with Si/Al=22. Solid lines correspond to experimental spectra; dotted lines correspond to the 

sum of deconvoluted signals. The resonances in as-made sample were deconvoluted as a  

Gaussian/Lorentz curve (for an easier view); the resonances of thermally treated were  

deconvoluted as a Gaussian/Lorentz curve (peaks at 56 ppm and 9 ppm, for an easier view) or 

using the CzSimple method (peaks at 45-50 ppm and -10 ppm.[40] 
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The as-made sample presents three resonances, two overlapping resonances centred 

at 52 ppm and 48 ppm, and a minor resonance centred at 9 ppm. The resonances centred at 

52 ppm and 48 ppm could be attributed to Al in tetrahedral coordination,[34, 35] probably in 

two different lattice position inside the zeolite framework. Similarly to the Al-IWV zeolite, 

the resonance centred at 9 ppm is typically attributed to aluminium species in octahedral 

coordination, in this case, to gibbsite aluminium hydroxide,[39] probably due to unreacted 

alumina source. 

When materials are thermally treated, the aluminium atoms present up to four  

different chemical environments. Thus, calcined sample presents a minor resonance centred 

at 56 ppm, attributed to tetrahedral aluminium species; a broad resonance at ca. 40 ppm  

attributed to distorted tetrahedral aluminium species; an increase in the resonance at 9 ppm 

attributed to gibbsite aluminium hydroxide; and a major broad resonance -12 ppm attributed 

to octahedral aluminium species interacting with phosphorous species, similar to the results 

reported for Al-RTH zeolite in section 5.3.4.2. 

The treatment under hydrogen at high temperature leads to a huge increase in the  

resonance at 9 ppm, which could be attributed to aluminium species formed after the partial 

framework collapse as previously observed by X-Ray diffraction and confirmed by the  

lowering of the micropore volume obtained from the N2 adsorption isotherm. It is also  

interesting the wide resonance at 50 ppm, which is probably made up of two signal belonging 

to undistorted and distorted tetrahedral aluminium species. The widening of this signal could 

be attributed to the partial amorphization of the sample after the hydrogenation thermal  

treatment. Finally, the hydrogenated sample also shows the resonance attributed to octahedral 

aluminium species interacting with phosphorous species, although this resonance is shifted 

downfield, from -12 ppm in the calcined sample to -9 ppm in the hydrogenated sample. 
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6.5 Conclusions 

The use of a novel aminophosphonium cation as OSDA, the tris(diethylamino) 

(methyl)phosphonium cation, has allowed the synthesis of two known materials, the ITQ-27 

(IWV) and the UTD-1 (DON). Thus, the use of this OSDA constitute an alternative synthesis 

pathway, presenting the following features: 

 The aminophosphonium OSDA allowed obtaining the IWV zeolite as  

aluminosilicate, borosilicate, germanosilicate and all-silica materials, both in fluoride 

and hydroxide media, and in highly concentrated synthesis gels. However, aluminium 

was not fully incorporated to the zeolite framework in hydroxide media syntheses. A 

deeper study of the synthesis conditions could fix this result. 

 The all-silica IWV zeolite has been synthesized for the first time, which allowed 

a deeper study of the IWV structure by MAS-NMR, suggesting a lower symmetry. 

However, the final spatial group has not been determined yet. 

 The use of a phosphorous OSDA allows the introduction of phosphorus in the 

IWV zeolite during the synthesis stage. The different post-synthesis treatment allows 

modifying the phosphorus content, which translate in a modification and modulation 

of the textural and acidic properties of the final material. 

 The hydrogenation at high temperature of the IWV materials has allowed  

obtaining materials with the highest BET surface and micropore volumes ever  

reported in IWV zeolite. 

 The aminophosphonium OSDA allowed obtaining the DON zeolite as  

aluminosilicate, borosilicate and all-silica materials in hydroxide media. However,  

aluminium was not fully incorporated to the zeolite framework. A deeper study of the 

synthesis conditions could improve this result. 

 The DON materials obtained present similar properties to previously reported, but 

the aminophosphonium OSDA is easier and/or cheaper to synthesize than previous 

described OSDA´s. 

 The aminophosphonium OSDA is easily recoverable after zeolite synthesis and 

remains stable after hydrothermal treatment, which allows its reuse. 
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Chapter 7 

Synthesis of New Zeolite 

Materials 

 

7.1 Introduction 

The synthesis of new zeolites is usually linked with the use of new organic structure 

directing agents (OSDA´s). The chemical nature of these OSDA´s is varied, being the  

ammonium cations the most widely used for this purpose. However, in last years, several 

OSDA´s with different chemical natures have been introduced, like phosphonium or  

sulfonium cations, ionic liquids, metallic complexes, etc.[1-4] 

In recent years, several zeolites had been successfully synthesized using phosphorus 

containing OSDA´s.[5] This approach has been very successful, allowing to obtaining a  

number of new zeolite structures, like ITQ-26,[6] ITQ-27,[7] ITQ-34,[8] ITQ-40,[9] ITQ-45,[10] 

ITQ-49,[11] ITQ-52,[12] ITQ-53[13] and ITQ-58[14] zeolite up to date. Also, several known  

zeolites have been obtained with broader chemical compositions, like UTD-1[15], ITQ-47[16] 

or RTH.[17] 

Also, the employ of P-containing OSDA´s has been found as a suitable technique for 

incorporating extra-framework phosphorous species in small pore zeolites and thus  
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modifying the textural and acid properties of the resulting material, as discussed in section 

5.2.3.[18-20] Furthermore, the incorporation of phosphorous OSDA´s allows to track the  

phosphorus nuclei by MAS-NMR techniques, which makes phosphorus an extremely useful 

probe atom for the characterization of entrapped OSDA´s inside of zeolites, together with 

other characterization techniques.[17] The latter feature is especially interesting as it allows to 

study the host-guest interaction between the OSDA and the zeolite framework.[21-24] 

In this chapter, the synthesis and the structure of two new zeolite structures are  

described. The first zeolite was named ITQ-58, and was obtained using three different novel 

phosphorous OSDA´s. The second zeolite was named ITQ-66, and was obtained using a 

phosphonium-OSDA. 

7.2 ITQ-58 zeolite 

The ITQ-58 zeolite was firstly detected as an impurity during the synthesis of the 

zeolite ITQ-52 (IFW).[12] 

7.2.1 Previous work: aminophosphonium OSDA 

The ITQ-58 zeolite was first obtained using the butane-1,4-diylbis[tris 

(dimethylamino)phosphonium] cation (PN-PN) as OSDA, shown in Figure 7.1. 

 
Figure 7.1. Butane-1,4-diylbis[tris(dimethylamino)phosphonium] cation (PN-PN). 
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After the detection of the ITQ-58 zeolite, the synthesis conditions were refined to 

obtain the pure ITQ-58. The synthesis gels conditions leading to the ITQ-58 were deeply 

discussed in Simancas, R., 2015,[15] while in this thesis only the samples and conditions  

leading to the elucidation of the ITQ-58 structure are included. 

7.2.1.1 Synthesis conditions 

The butane-1,4-diylbis[tris(dimethylamino)phosphonium] hydroxide (PN-PN), or 

OSDA-8, was tested as OSDA in a wide range of synthesis conditions, summarized in Table 

7.1. The detailed synthesis of the OSDA-8 is described in section 3.2.1.8. 

Table 7.1. Tested synthesis conditions and phase selectivity obtained using butane - 1,4-

diylbis[tris(dimethylamino)phosphonium] (PN-PN) hydroxide as OSDA. 

  H2O/(Si+B); (OH-)  H2O/(Si+B) ;(F-) 

 Ratio 2 7.5 10  2 

All Si -      

Si/B 

5      

10      

20      

Si/Al 20      

       

STF ITQ-58 + STF ITQ-58 ITQ-58+ITQ-52 ITQ-52 No data 

The zeolite ITQ-58 crystallizes in a narrow range of compositions and it competes 

with impurities of ITQ-52 and STF zeolites. The ITQ-58 was only obtained with high boron 

contents (Si/B < 12) and in highly concentrated syntheses gels (H2O/Si < 5). The detailed 

synthesis of the PN-PN ITQ-58 is described in section 3.2.2.6. 

The purity of the as-made samples was studied by powder X-Ray diffraction, whose 

patterns are shown in Figure 7.2. 
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Figure 7.2. Powder X-Ray diffraction patterns of the ITQ-58 zeolite obtained with the  

PN-PN OSDA (middle), compared with the powder X-Ray diffraction patterns of zeolite  

ITQ-52 (above) and zeolite STF (below). Asterisk marks the characteristic peaks of  

the STF and ITQ-52 zeolites. 

At first sight, when comparing the powder X-Ray diffraction pattern of the ITQ-58 

zeolite with other zeolites obtained with the same OSDA, like the ITQ-52 and STF zeolites, 

it could be seen that there are several overlapped diffraction peaks. However, taking a closer 

look to some regions in the diffraction pattern, some differences arise, as there are some 

diffraction peaks, as well as the absence of others, that confirms the presence of impurities. 

First, diffraction peaks appear in regions where no ITQ-52 or STF diffraction peaks appear, 

being the most easily identifiable peaks at 10.6º, 18.2º and 20.1º 2θ degrees. The presence of 

these peaks was the first hint about the presence of a new crystalline phase. Also, there are 

some 2θ values at which we should expect peaks if there were impurities of ITQ-52 or STF 

zeolites. The absence of diffraction peaks at 16.1º and 25.8º 2θ suggest that there are  

no STF impurities. In the same line, the absence of the peak at 24.6º and the double peaks  

at 13.3º - 13.5º and 21.6º - 21.7º 2θ values, indicates that there are no ITQ-52 impurities. 

7.2.1.2 PN-PN ITQ-58 chemical analyses 

The typical chemical composition of the as-made ITQ-58 obtained using the PN-PN 

OSDA, as well as the chemical compositions of the thermally treated under air and under 

hydrogen at high temperature ITQ-58 samples, are shown in Table 7.2. 

PN-PN
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ITQ-58
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*

*

*

*

*
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*
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Table 7.2. Chemical analyses of the as-made, calcined and hydrogenated at high temperature 

PN-PN ITQ-58 zeolite. All ratios are given as molar ratios. 

Sample Treatment Si/B wt %P (Si+B)/P P/B 

ITQ-58 As-made 11.8 2.8 14.3 0.8 

ITQ-58-cal Calcination 11.6 2.8 14.3 0.8 

ITQ-58-hyd Hydrogenation 11.1 1.7 25.0 0.4 

Chemical analysis of the as-made ITQ-58 sample gave a Si/B ratio of 11.8, much 

higher than the synthesis gel composition (Si/B = 5), and a (Si+B)/P ratio of 14.3. The  

elemental analyses show a N/P ratio of 3.2 and a C/P ratio of 9.1, which are close to that of 

the pure OSDA (3 and 8, respectively). This indicates that the OSDA incorporated in the 

solid remains intact inside the channels filling the pores. The P/B ratio of the as-made  

ITQ-58 is 0.8, indicating that most of the OSDA is compensating the negatively charged 

borosilicate framework. 

Chemical analyses of the zeolite thermally treated under air and under H2/N2 show a 

Si/B ratio around 11, very close to that obtained in the as-made ITQ-58. On the other hand, 

ITQ-58 treated under air and under H2/N2 gives a (Si+B)/P ratio of 14.3 and 25, respectively, 

and thus, two ITQ-58 samples with different phosphorus content were obtained. 

7.2.1.3 Morphology of PN-PN ITQ-58 zeolite 

The crystallite shape and size of the PN-PN ITQ-58 samples were studied by SEM 

microscopy, depicted in Figure 7.3. 

 
Figure 7.3. SEM microimage of the as-made PN-PN ITQ-58 zeolite. 
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The PN-PN ITQ-58 zeolite was obtained as plate-like crystallites with a non- 

homogeneous crystal size distribution. Average crystal size ranges from 0.1 x 0.2 µm to 0.3 

x 0.5 µm. Crystals show a minor tendency to aggregation, forming aggregates by stacking of 

crystals sharing the planar face, and building aggregates of roughly spherical shape. 

7.2.1.4 Thermogravimetric analysis of the PN-PN ITQ-58 zeolite 

Thermogravimetric analyses revealed a weight loss of 11.1 wt.% centred at ~600ºC, 

and the sample continues losing weight until 750ºC. The high temperature required for the 

total OSDA decomposition is similar to the P-OSDA RTH zeolite as seen in section 5.2.2.3, 

which initially suggested that this zeolite had a small-pore structure. 

The as-made ITQ-58 was thermally treated by the general methodologies described 

in the section 3.2.5.3, but the temperature of the thermal treatments was lowered to 600ºC, to 

avoid the melting and/or amorphization of the material because of the high concentration of 

boron in its composition. 

7.2.1.5 Structural resolution attempts 

The elucidation of the PN-PN ITQ-58 structure was tried using two different  

methodologies. First, the structure solution was attempted using direct methods as  

implemented in the program Sir2014, without success.[25] At that point, the structure of the 

zeolite ITQ-58 was studied through EDT (see section 3.1.7.4). However, the sample was still 

very sensitive to radiation damage and suffered a severe amorphization after less than five 

minutes under the electron beam. Also, because of the rotation of the sample, it was difficult 

at first to keep the electron beam over the sample because of the small size of the PN-PN 

ITQ-58 crystallites. 

Two ways of action were proposed in order to elucidate the structure of the ITQ-58: 

decreasing the time for the data collection to minimize the amorphization of the samples; and 

synthesize ITQ-58 samples of larger crystallite size to increase the stability of the sample 

under the electron beam and facilitate the measure of the sample under continuous tilting. 

The first step was to increase the stability of the samples to facilitate the data collection of 

the EDT technique. One of the typical ways to get crystallites of large sizes is the use of 

fluoride synthesis gels. Although ITQ-58 was successfully obtained with the PN-PN OSDA 

in fluoride media, the crystallite sizes of these samples were still too small for EDT.[15] 
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7.2.2 Phosphonium cation OSDA 

Due to the difficulties that arose trying to elucidate the ITQ-58 structure, another  

phosphorous OSDA was proposed. This new OSDA was selected as the phosphonium  

analogue of the used in the previous section, the butane-1,4-diylbis(triisopropylphospho-

nium) cation (PC-PC), shown in Figure 7.4. 

 
Figure 7.4. Butane-1,4-diylbis(triisopropylphosphonium) cation (PC-PC). 

The election of this OSDA was made taking in account the results obtained in section 

4.3, as for isochemical structural OSDA´s, the phosphonium cations tend to be more stable 

and selective for zeolite crystallization under fluoride media. The synthesis of this OSDA 

and some materials obtained using it were described in a previous thesis, although the full 

study of synthesis conditions for obtaining the pure ITQ-58 zeolite were not attempted  

before.[26] 

7.2.2.1 Synthesis 

The butane-1,4-diylbis(triisopropylphosphonium) hydroxide (PC-PC), or OSDA-9, 

was tested as OSDA in a wide range of synthesis conditions, summarized in Table 7.3. The 

detailed synthesis of the OSDA-9 is described in section 3.2.1.9. 
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Table 7.3. Tested synthesis conditions and phase selectivity obtained using butane-1,4-

diylbis(triisopropylphosphonium) (PC-PC) hydroxide as OSDA. 

  H2O/(Si+B+Al+Ge); (F-) 

 Ratio 5 7.5 10 

All Si     

Si/B 

5    

10    

20    

Si/Al All    

Si/Ge All    

     

STF ITQ-58 + STF ITQ-58* ITQ-58 + ITQ-52 ITQ-52 No data 

*: Almost pure ITQ-58 

The zeolite ITQ-58 was only obtained with minor ITQ-52 and STF impurities in a 

narrow range of compositions. All syntheses were carried out in fluoride media, as it usually 

helps to get large crystals with low defects, especially when employing phosphonium  

cations. Interestingly, ITQ-58 was only obtained in the presence of lower boron contents and 

more diluted syntheses gels than those used by applying the PN-PN OSDA as discussed in 

section 7.2.1.1. 

The purity of the as-made samples was studied by powder X-Ray diffraction, whose 

patterns are shown in Figure 7.5. 
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Figure 7.5. Powder X-Ray diffraction pattern of the ITQ-58* zeolite obtained with the PC-PC 

OSDA (low middle), compared with the powder X-Ray diffraction patterns of PN-PN ITQ-58 

zeolite (up middle), ITQ-52 zeolite (above) and STF zeolite (below). Asterisks mark the  

characteristic peaks belonging to STF zeolite in the PC-PC ITQ-58 sample. 

It could be seen that the PC-PC ITQ-58* presents the same X-Ray diffraction profile 

than the PN-PN ITQ-58, but additional peaks were found at 8.1º (as a shoulder peak of 8.2º) 

and at 25.8º, which indicates that the sample presents impurities of STF zeolite. 

7.2.2.2 PC-PC ITQ-58 chemical analyses 

The chemical composition of the as-made ITQ-58 with small impurities of STF zeolite 

obtained with the PC-PC OSDA (ITQ-58*) is shown in Table 7.4. 

Table 7.4. Chemical analysis of the as-made PC-PC ITQ-58* zeolite. All ratios are given as  

molar ratios. 

Sample Treatment Si/B wt.%P (Si+B)/P P/B 

ITQ-58* As-made 18.3 2.8 15.0 1.3 

Chemical analyses of the ITQ-58* sample gave a Si/B ratio of 18.3, similar to the 

synthesis gel composition (Si/B = 20), and a (Si+B)/P ratio of 15.0. Elemental analyses show 

a C/P ratio of 11.3, which is very close to that of the pure OSDA (11.0). This suggests that 

the OSDA does not decompose during zeolite crystallization and remains inside the channels 

filling the pores. The P/B ratio of the as-made ITQ-58* is 1.3, indicating that the OSDA is 
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over-compensating the negatively charged borosilicate framework. This could be explained 

by the incorporation of fluoride anions into the framework of the zeolite, which would also 

compensate for the positively charged OSDA cation. Further analyses of samples calcined 

and treated under hydrogen at high temperature were not performed because of the small 

impurity detected by XRD. 

The crystallite shape and size of the PN-PN and PC-PC ITQ-58 samples were studied 

by FESEM microscopy analyses, depicted in Figure 7.6. 

 
Figure 7.6. Scanning electron microscopy (SEM) microimages of as-made PN-PN ITQ-58 zeolite 

(left) and as-made PC-PC ITQ-58* zeolite with slight STF impurities (right). 

The PC-PC ITQ-58* zeolite was obtained with a non-homogeneous crystal size  

distribution. The PC-PC ITQ-58* crystals were significantly larger than the ones found in 

PN-PN ITQ-58, and the shape is more elongated. Indeed, average crystal size ranges from 

0.5x1 µm to 1x2 µm. STF zeolite impurities were impossible to identify in this sample, either 

due to the low number of STF crystallites in the sample, or due to the STF zeolite presenting 

a similar morphology than the ITQ-58 zeolite. 

Because of the presence of impurities in the PC-PC ITQ-58* samples, no further  

analyses on this samples were performed at first, and therefore, no thermal treatments,  

textural properties nor MAS-NMR measures were measured. 
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7.2.3 Phosphonium-aminophosphonium OSDA  

After the results obtained with the phosphonium cation, a final conclusion was  

established: it was possible to obtaining the ITQ-58 zeolite in fluoride media with larger 

crystallites sizes, but the phase selectivity affinity was higher for the aminophosphonium 

cation than the phosphonium cation. As OSDA´s leading to ITQ-58 zeolite are diquaternary, 

a mixed phosphonium and aminophosphonium cation was proposed, trying to combine the 

advantages of both OSDA´s. After a first unsuccessfully trial with the isochemical structures 

of the PN-PN and PC-PC cations to obtain the ITQ-58 zeolite (in all cases under any synthesis 

condition the STF zeolite was the only product), a change of the phosphonium “head” was 

tested. Thus, the synthesis of ITQ-58 zeolite using the tris(dimethylamino) [4-(tri-tert- 

butylphosphonio) butyl] phosphonium cation (PN-PC) as OSDA, shown in Figure 7.7, will 

be next described. 

 
Figure 7.7. Tris(dimethylamino) [4-(tri-tert-butylphosphonio) butyl] phosphonium cation  

(PN-PC). 

7.2.3.1 Synthesis 

The tris(dimethylamino)[4-(tri-tert-butylphosphonio)butyl]phosphonium hydroxide 

(PN-PC), or OSDA-10, was tested as OSDA in a sharp range of synthesis conditions,  

summarized in Table 7.5, based on the results shown in sections 7.2.1 and 7.2.2. The detailed 

synthesis of the OSDA-10 is described in section 3.2.2.6. In the synthesis conditions used 

here, the zeolite ITQ-58 strongly competes with the ITQ-52 zeolite, which is often obtained 

as impurity, especially in syntheses gels of the highest boron content (Si/B = 20). 
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Table 7.5. Tested synthesis conditions and phase selectivity obtained using tri-tert-butyl (4- (tris 

(dimethylamino) phosphonio) butyl) phosphonium (PN-PC) hydroxide as OSDA. 

  H2O/(Si+B); (OH-)  H2O/(Si+B); (F-) 

 Ratio 2 7.5 10  2 7.5 10 

Si/B 

5        

10        

20        

         

ITQ-58 ITQ-58+ ITQ-52 Amorphous No data 

The purity of the as-made samples was studied by powder X-Ray diffraction, whose 

patterns are shown in Figure 7.8. 

 
Figure 7.8. Powder X-Ray diffraction pattern of the ITQ-58 zeolite obtained with the  

PN-PC OSDA (middle), compared with the powder X-Ray diffraction patterns of zeolite  

PN-PN ITQ-58 zeolite (up middle), PC-PC ITQ-58* zeolite (low middle), ITQ-52 zeolite (above) 

and STF zeolite (below). Asterisks mark the characteristic peaks belonging to STF zeolite in  

the PC-PC ITQ-58 sample. 

As previously, the diffraction pattern of the as-made PN-PC ITQ-58 is compared with 

its typical impurities, ITQ-52 and STF zeolites, and the as-made PN-PN and PC-PC ITQ-58 

zeolites. Firstly, it could be seen that no STF impurities were found as the lack of the  
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diffraction peak at 16.1º and the shoulder at 8.2º indicates, both of them easily identifiable in 

the PC-PC ITQ-58. Also, ITQ-52 zeolite was also disregarded as impurity due to the lack of 

the diffraction peak at 24.6º and the twin peaks at 13.3º - 13.5º and 21.6º - 21.7º. 

The diffraction pattern of the PN-PC ITQ-58 is better resolved than the previously 

obtained PN-PN ITQ-58, as several overlapped peaks are now resolved into discrete  

diffraction peaks. Because of that, the elucidation of the crystalline structure was expected to 

be achievable using this new ITQ-58 sample. 

7.2.3.2 PN-PC ITQ-58 chemical analyses 

The typical chemical composition of the as-made ITQ-58 obtained using the PN-PC 

OSDA, as well as the chemical compositions of the calcined and hydrogenated at high  

temperature ITQ-58 samples, are shown in Table 7.6. 

Table 7.6. Chemical analyses of the as-made, calcined and hydrogenated at high temperature 

PN-PC ITQ-58 zeolite. All ratios are given as molar ratios. 

Sample Treatment Si/B wt.%P (Si+B)/P P/B 

ITQ-58 As-made 16.4 2.58 15.8 1.1 

ITQ-58-cal Calcination 17.4 2.53 17.1 1.1 

ITQ-58-hyd Hydrogenation 16.2 1.21 37.3 0.5 

Chemical analyses of the ITQ-58 sample gave a Si/B ratio of 16.4, higher than the 

synthesis gel composition (Si/B = 10), and a (Si+B)/P ratio of 15.8, following the same trend 

of heteroatom incorporation than that observed for the PN-PN ITQ-58, but with boron  

contents values in between those found for PN-PN ITQ-58 and PC-PC ITQ-58 samples. 

Elemental analyses show a N/P ratio of 1.9 and a C/P ratio of 11.4, which are close to 

that of the pure OSDA (1.5 and 11, respectively). This suggests that most of the OSDA  

remains intact during zeolite crystallization and remains inside the channels filling the pores. 

As in previous samples, the P/B ratio of the as-made ITQ-58 is 1.1 indicating that the OSDA 

is compensating the negatively charged borosilicate framework. 

The chemical analyses of the calcined and hydrogenated at high temperature ITQ-58 

samples show a Si/B ratio of 17.4 and 16.1, respectively, which are very close to the parent 

as-made ITQ-58 material, which confirms that boron remains in the solid during the thermal 

treatment. On the other hand, the calcined and hydrogenated at high temperature ITQ-58 
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materials give a (Si+B)/P ratio of 17.1 and 36.3, respectively, and thus, two ITQ-58 samples 

with different phosphorus contents were obtained, with P/B ratios of 1.1 and 0.5, respectively. 

7.2.3.3 Morphology of PN-PC ITQ-58 zeolite 

The crystallite shape and size of the PN-PC ITQ-58 samples were studied by SEM 

microscopy analysis, depicted in Figure 7.9. 

 

Figure 7.9. SEM microimages of as-made PN-PN ITQ-58 zeolite (left), as-made PC-PC ITQ-58* 

zeolite with slight STF impurities (middle), and as-made PN-PC ITQ-58 zeolite (right). 

The zeolite PN-PC ITQ-58 was obtained as plate-like crystallites with an almost  

homogeneous crystal size distribution, with an average crystal size ranging from 0.5x0.5 µm 

to 1x2 µm. The PN-PC ITQ-58 crystals shape was more alike to the found in PN-PN ITQ-58 

and, although not so large than the obtained for PC-PC ITQ-58, they are significantly larger 

than the obtained in the PN-PN ITQ-58 material. 

7.2.3.4 Thermogravimetric analysis of the PN-PC ITQ-58 zeolite 

The thermal stability and decomposition of the OSDA were studied by  

thermogravimetry (TG) and differential thermogravimetry (DTG) analyses of the ITQ-58 

samples. Some thermogravimetric plots are shown in Figure 7.10. 
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Figure 7.10. TG (solid lines) and DTG (dotted lines) analyses curves of PN-PN and PN-PC  

ITQ-58 zeolite samples. DTG curves are scaled up for a better view. 

The thermogravimetric analyses reveal a variable weight loss centred at ~550ºC and 

the sample continues losing weight until 750ºC. The PN-PC ITQ-58 present a higher weight 

loss of 14.3 wt.% compared with the 11.1 wt.% weight loss from the PN-PN ITQ-58. This 

difference is explained by the higher molecular weight of the PN-PC OSDA compared with 

the PN-PN OSDA. 

The required temperature for the starting decomposition of the PN-PC OSDA was 

slightly higher, 475ºC, than the found for the PN-PN OSDA, 400ºC. This results could  

indicate that the OSDA guest-host zeolite interaction could be higher for this PN-PC OSDA 

than for the PN-PN OSDA. 

The stability and crystallinity of the PN-PN ITQ-58 sample after thermal treatments 

were assessed by powder X-Ray diffraction, whose patterns are shown in Figure 7.11. 
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Figure 7.11. Powder X-Ray diffraction patterns of the as-made and the thermally treated  

PN-PC ITQ-58 materials. Black lines correspond to as-made samples; red lines to calcined  

samples; green lines to samples hydrogenated at high temperature. 

The temperature of the thermal treatments was lowered down to 650ºC respect to the 

typical temperatures specified in section 3.2.3. This was done to avoid the melting and/or 

amorphization of the material because of its high boron content, remaining the materials 

completely stable after the different thermal treatments. 

7.2.3.5 NMR analyses of the ITQ-58 zeolite 

The incorporation of the phosphorous OSDA and boron heteroatoms, and the lattice 

framework were studied by MAS-NMR spectroscopy. 

 Incorporation and stability of the OSDA into the ITQ-58 

The stability of the OSDA incorporated to the ITQ-58 zeolite was studied by 13C 

MAS-NMR and 31P MAS-NMR spectroscopies, comparing these spectra with the liquid 13C 

NMR and 31P NMR of the free P-OSDA, whose spectra are shown in Figure 7.12. 
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Figure 7.12. Top: schematic view of PN-PC cation. Left: liquid 13C NMR spectrum of the OSDA 

in deuterated water (top) and solid 13C MAS-NMR spectrum of the as-made ITQ-58 (bottom). 

Right: liquid 31P NMR spectrum of the pure OSDA in deuterated water (top) and solid  

31P MAS-NMR spectrum of the as-made ITQ-58 (bottom). 

The 13C MAS-NMR spectrum of the as-made ITQ-58 zeolite present several  

overlapped resonances that difficult their assignation. In general, the as-made ITQ-58 present 

a 13C resonance profile similar to the PN-PC OSDA in solution, although slightly shifted 

down-field. 

The 31P MAS-NMR spectrum of the as-made ITQ-58 zeolite shows two resonances 

at 58.9 ppm and at 46.1 ppm corresponding to the aminophosphonium and phosphonium 

groups, respectively, and analogues to the resonances of the free OSDA. 

The 13C MAS-NMR and 31P MAS-NMR spectra of the as-made ITQ-58 PN-PC,  

together with the chemical analyses results (see section 7.2.3.2), confirm that the OSDA  

remains intact during zeolite formation, occupying the voids of the ITQ-58 zeolite. 
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 Boron incorporation into the ITQ-58 zeolite 

The incorporation of boron in the as-made ITQ-58 and the boron species formed  

during calcination were studied by 11B MAS-NMR spectroscopy, whose spectra are shown 

in Figure 7.13. 

 
Figure 7.13. 11B MAS-NMR spectra of as-made and calcined PN-PN ITQ-58 materials. 

The as-made 11B spectrum of the ITQ-58 zeolite shows a single resonance at -3.6 ppm, 

which is typical of boron in tetrahedral coordination,[27-29] and therefore, it can be concluded 

that boron is incorporated to the framework lattice in the as-made ITQ-58 zeolite. 

After calcination, the resonance at -3.6 ppm remains, but an additional wide resonance 

centred at 11 ppm appears, which is typically assigned to boron species in trigonal  

coordination, typical of dehydrated borosilicate zeolites.[28, 30] These trigonal boron species 

are generally considered as boron in framework positions, but the presence of some  

impurities cannot be completely ruled out. 
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 Silicon framework of the ITQ-58 zeolite 

The different chemical environments of the silicon species in the as-made and calcined 

ITQ-58 samples were studied by 29Si MAS-NMR spectroscopy, whose spectra are shown in 

Figure 7.14. 

 
Figure 7.14. 29Si MAS-NMR spectra of as-made and calcined PN-PC ITQ-58 materials.  

Solid line corresponds to experimental spectra; dotted line corresponds to the sum  

of deconvoluted signals. 

The 29Si MAS-NMR spectrum of the as-made PN-PC ITQ-58 presents a broad and 

asymmetrical overlapped spectrum, which can be deconvoluted into at least four sets of  

resonances. At lower fields, there are three main resonances centred at -109 ppm, -113 ppm 

and -116 ppm, with relative intensities 4:3:2 approximatively. These resonances correspond 

to Q4 Si atoms, tetrahedrally coordinated silicon atoms having four silicon atoms in  

the second neighbourhood. At higher fields, a broader and smaller resonance centred  

on -101 ppm is observed, which is assigned to Q3 Si atoms, tetrahedrally coordinated silicon 

atoms having three silicon atoms and a fourth heteroatom, Si-O-B and/or Si-OH groups, in 

the second neighbourhood. 

The 29Si MAS-NMR spectrum of the calcined PN-PC ITQ-58 present the Q3  

resonance slightly shifted down-field, from -101 ppm in the as-made sample to -103 ppm in 

the calcined sample, but the calcined sample present a similar profile of Q4 resonances than 

the as-made sample nevertheless. 
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7.2.4 Textural properties of the ITQ-58 zeolite 

The textural properties of the PN-PC ITQ-58 samples were calculated from the N2 

adsorption isotherms at 77 K on the thermally treated samples, shown in Figure 7.15. 

 
Figure 7.15. N2 adsorption isotherm of the PN-PC ITQ-58 sample hydrogenated at high  

temperature. 

The N2 adsorption isotherms of the thermally treated ITQ-58 samples show the type 

Ia physisorption profile typical of microporous materials.[31] 

In the case of the samples calcined under air, N2 was not adsorbed on the PN-PN nor 

the PN-PC ITQ-58 samples at 77 K. In both materials, most of the phosphorus remains inside 

the materials after calcination, 2.8 wt.%P (100% remaining) in the PN-PN ITQ-58, and 2.5 

wt.%P (98% remaining) in the PN-PC ITQ-58. This phosphorus remains inside the zeolite as 

extra-framework phosphorous oxide-like species, which are hindering the N2 uptake in the 

pore openings of the materials. These results strongly suggest that the ITQ-58 zeolite is a 

small pore or a monodirectional medium pore zeolite. 

On the other hand, the hydrogenated materials presented a lower phosphorus content, 

1.7 wt.%P (61% remaining) in the PN-PN ITQ-58, and 1.21 wt.%P (47% remaining) in the 

PN-PC ITQ-58, and then, N2 was successfully adsorbed. The N2 adsorption isotherm shows 

the type Ia physisorption profile, typical of microporous materials.[31] The BET surface area, 

the micropore surface and the total micropore volume, calculated from the N2 adsorption 
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isotherm by applying the t-plot method were 443 m2/g, 411 m2/g and 0.202 cm3/g,  

respectively.  

The micropore distribution was calculated by applying the Horvath-Kawazoe  

formalism to the Ar adsorption isotherm at 87 K of the PN-PC ITQ-58 hydrogenated at high 

temperature, as shown in Figure 7.16. 

 
Figure 7.16. Pore size distribution of the PN-PC ITQ-58 sample hydrogenated at high  

temperature. 

The micropore distribution shows a maximum at 5.4 Å, matching the previously  

obtained for the PN-PC ITQ-58.[15] This value fits with a small or medium pore opening 

zeolite as previously hypothesized from TG results in section 7.2.3.4. 

7.2.5 Structural resolution of the ITQ-58 zeolite 

The methodology previously described in section 7.2.1.5 was applied to the PN-PC 

ITQ-58 sample. However, this was unsuccessful at first, due to the still small crystallite size. 

To overcome this problem, the PC-PC ITQ-58* was measured because of its large crystallite 

size. This sample was used for attempting different modifications on the EDT methodology. 

The use of this sample allowed an optimization of the crystal positioning, ensuring that it 

remained inside the diffracting area along the whole rotation of the sample. Other parameters 

were also optimized, like the goniometer angular speed and the CCD configuration, allowing 
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to finally collecting diffraction datasets covering an angular range of 50º in only 30 seconds, 

much faster than previously reported, minimizing the degradation of the sample specimen 

under the electron beam.[32, 33]  

7.2.5.1 Unit cell parameters 

Five different datasets were collected for five different crystals The collected data 

were processed and the unit cell corresponding to each crystal was obtained using the  

program ADT3D.[34] 

One of the crystals corresponded to an impurity, the zeolite STF, already detected by 

powder X-Ray diffraction as described in section 7.2.2. The four remaining datasets were 

indexed with the same triclinic unit cell, the ITQ-58 zeolite, with the following unit cell  

parameters: 

a = 11.2 Å b = 12.9 Å c = 13.7 Å 

α = 77.0º β = 76.0º γ = 74.4º 

Volume: 1620.5 Å3 

Structure solution was performed using direct methods as implemented in the program 

Sir2014. The unit cell projections along the a, b and c axes are shown in Figure 7.17. 

 
Figure 7.17. Projections of the structure of the ITQ-58 zeolite along the main crystallographic 

axes (blue: Si; red: O). 

The validation of the obtained model by EDT analysis was done by applying the 

Rietveld method using the program FullProf on the calcined PN-PC ITQ-58 sample, due to 
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the better X-Ray pattern resolution achieved in this sample compared to other ITQ-58  

samples. The PN-PC ITQ-58 sample Rietveld refinement is shown in Figure 7.18.[35] 

 
Figure 7.18. Rietveld refinement of the X-Ray diffraction pattern of PN-PC ITQ-58 hydro-

genated at high temperature. Red data points show the observed XRPD pattern; the black line 

along these points is the calculated XRPD pattern, with the difference profile at the bottom in 

blue. The green vertical tick marks below the pattern give the positions of the Bragg reflections. 

The ITQ-58 zeolite was indexed as a triclinic P-1 (nº 2) unit cell with the following 

parameters: 

a = 11.385 Å b = 13.040 Å c = 13.660 Å 

α = 77.78º β = 76.21º γ = 74.55º 

Volume: 1874.6 Å3 

More information about the application and methodology of the ultra-fast electron 

diffraction tomography technique discussed here could be found in Simancas, 2016.[14] 
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7.2.5.2 ITQ-58 zeolite building 

The structure of the ITQ-58 zeolite can be described using four basic cages: [4354], 

[435461], [5462] and the large [41251261284] cavity, formed by two twinned [46566682101] cages 

sharing a common 10 MR opening (Figure 7.19). 

 
Figure 7.19. Basic cages of ITQ-58 zeolite. (A) [4354], (B) [435461], (C) [5462] and (D) [41251261284]. 

The openings of the half cavity [46566682101] are highlighted in (E) (large inner 10 MR in purple 

and the two 8 MR opening windows in yellow). Oxygen atoms have been removed for clarity. 

The secondary units are connected giving rise to a more complex building block 

formed by a central [5462] cage (yellow) connected to two [4354] cages (blue) and another 

two [435461] cages (green) by sharing five rings, as shown in Figure 7.20.A. 
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Figure 7.20. Construction of the structure of the ITQ-58 zeolite. (A) Two [4354] (blue), two 

[435461] (green) and one [5462] (yellow) cages connect forming a basic block. (B) The previous 

blocks connect to each other sharing a 4 MR forming chains along c. (C) Each chain connects to 

the adjacent ones in the bc plane forming layers. 4 MR and 6 MR are formed in the process. (D) 

Layers stack along the a direction forming the complete 3D structure. 

 

These building blocks are connected to their neighbours by sharing 4 MR rings faces 

forming chains along the c direction (Figure 7.20.B). Then, the different chains are connected 

to their neighbours forming layers in the bc plane, with formation of series of three 6 MR and 

one 4 MR (Figure 7.20.C). Finally, the layers are interconnected forming 4 MR, giving raise 

to the formation of the tridimensional structure with large cavities (Figure 7.20.D). 

 The access to the large cavities is through 8 MR openings. Each cavity is accessible 

through two 8 MR with a pore aperture of 4.0x3.3 Å and two distorted 8 MR with a pore 

aperture of 5.9x2.5 Å. The large twin cavities are isolated from each other, and thus, the  

ITQ-58 zeolite could be described as a bi-directional small pore zeolite. 

The crystallographic pore apertures and cavity volume are in good agreement with 

those estimated from the Ar and N2 adsorption isotherms in section 7.2.4, as the distorted 

pores are inaccessible for Ar or N2. 

7.3 ITQ-66 zeolite 

The synthesis of the ITQ-66 was achieved after realizing that a relatively simple  

phosphorous cation as the butane-1,4-diylbis(triethylphosphonium) cation was not tested  

before as OSDA for the synthesis of zeolites. Its ammonium counterpart has been previously 

reported yielding zeolite β intergrowth.[36] Actually, the main objectives to study the  

butane-1,4-diylbis(triethylphosphonium) cation were to either obtain zeolite β intergrowth 

with a phosphorous OSDA, or gallosilicate MFI zeolite to compare the corresponding  

gallosilicate MFI obtained with the analogous arsonium OSDA.[37] Instead, a novel zeolite 

structure was obtained. 
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7.3.1 Synthesis 

The ITQ-66 zeolite is a new zeolite material which was obtained using the  

butane-1,4-diylbis(triethylphosphonium) hydroxide cation, or OSDA-11, as OSDA, shown 

in Figure 7.21. The detailed synthesis of the OSDA-11 is described in section 3.2.1.11. 

 
Figure 7.21. Butane-1,4-diylbis(triethylphosphonium) cation. 

7.3.1.1 Synthesis conditions 

This incorporation of the butane-1,4-diylbis(triethylphosphonium) cation to the  

synthesis gels was studied in a wide range of synthesis conditions, detailed in Table 7.7, with 

synthesis gels of the following molar composition: 

0.2 OSDA : (1-x) SiO2 : x AmOn : y H2O : 0.4 HF 

with x ranging from 0 to 0.025, y being 5 or 10, and AmOn being B2O3, Al2O3, Ga2O3 

or GeO2. 

Table 7.7. Tested synthesis conditions and phase selectivity obtained using butane-1,4-

diylbis(triethylphosphonium) hydroxide as OSDA. 

  H2O/Si (F-) 

x Si/x 10 5 

All-silica   

B 25-50   

Al 20   

Ge 5   

Ga 25-50   

    

ITQ-66 STF MEL Am. No data 

The crystallization yielded the pure zeolite ITQ-66 only in gallium and boron- 

containing syntheses gels, while all-silica and germanium-containing synthesis gels yielded 

P
P
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pure STF zeolite. On the other hand, aluminium-containing synthesis gels yielded pure  

ZSM-11 (MEL) zeolite. It was not possible obtaining ITQ-66 when aluminium was  

introduced in the synthesis gel composition, even using ITQ-66 seeds or mixed boron- 

aluminium synthesis gel compositions. The detailed synthesis of the ITQ-66 zeolite is  

described in section 3.2.2.7. 

7.3.1.2 Phase crystallinity 

The crystallinity of the as-made materials was assessed by powder X-Ray diffraction, 

whose patterns are shown in Figure 7.22. 

 
Figure 7.22. Powder X-Ray diffraction patterns of some ITQ-66 materials. Samples are  

identified by the heteroatom type and the silica to heteroatom ratio in synthesis gel composition. 

The powder X-Ray diffraction patterns show that there is no amorphous material in 

any syntheses. Also, there are almost no differences between the X-Ray patterns of the  

samples containing the different gallium or boron heteroatoms, except the Ga25-ITQ-66  

sample, that presents wider diffraction peaks than the other samples, probably due to a small 

crystal size in this sample. Samples are named after the heteroatom used in the synthesis gel 

followed by the Si to heteroatom ratio. 
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7.3.2 Sample analyses of the ITQ-66 zeolite 

The obtained as-made ITQ-66 zeolites were submitted to chemical analyses, thermo-

gravimetry, electron scanning microscopy and MAS-NMR spectroscopies. In this section 

only chemical analyses and electron scanning microscopy analyses are compared, while 

MAS-NMR spectra are further discussed in section 7.3.5. 

7.3.2.1 Chemical analyses of the ITQ-66 zeolite 

The typical chemical compositions of the as-made ITQ-66 materials are shown in  

Table 7.8. 

Table 7.8. Chemical composition of some of the as-made ITQ-66 materials. All ratios are given 

as molar ratios. Samples are identified by heteroatom (X: B or Ga) synthesis gel composition 

and pHgel was measured after adding HF. 

Sample [Si/X]gel pHgel ηX (%) ηSi (%) [Si/X]sol wt.%Psol Si/P P/X 

B25-ITQ-66 25 10.79 97 98 25.3 2.4 18.5 1.4 

B40-ITQ-66 40 10.16 100 84 35.8 2.4 18.4 1.9 

Ga25-ITQ-66 25 10.55 93 96 27.5 2.3 18.5 1.5 

Ga40-ITQ-66 40 9.94 68 81 46.4 2.4 17.5 2.6 

First, it could be seen that the silicon to phosphorus ratio is close to 18 (Si/OSDA=36), 

which hints that the number of T atoms in the structure should probably be a multiple of 36. 

The incorporation yields of boron, gallium and silicon are high and thus, the silicon to  

heteroatom ratios obtained in the materials almost match the added in the synthesis gels. In 

all cases, the P to heteroatom ratio is well over 1, which could be indicative of the presence 

of silanol defects, or a significant fluoride incorporation to compensate the positively  

incorporated cation. 

7.3.2.2 Morphology of the ITQ-66 zeolite 

The crystallite shape and size of the as-made ITQ-66 samples were assessed by 

FESEM microscopy analyses, depicted in Figure 7.23. 
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Figure 7.23. FESEM microimages of as-made ITQ-66 materials. Samples are named after the 

containing heteroatom followed by the as-made heteroatom to silica ratio content. 

The ITQ-66 crystallized with a homogeneous shape and a heterogeneous size  

distribution. The materials present a plate-like shape, almost lamellar-like, with typical sizes 

ranging from 0.2x0.5 µm up to 0.5x3 µm, and with a thickness around 50 nm in all cases. 

The platelets show a tendency to form large spherical aggregates, larger as the content of the 

heteroatom lowers.  

7.3.2.3 Thermogravimetric analysis of the as-made ITQ-66 zeolite 

The thermal stability and decomposition of the OSDA were studied by  

thermogravimetry (TG) and differential thermogravimetry (DTG) analyses of the ITQ-66 

samples. Some thermogravimetric plots are shown in Figure 7.24. 
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Figure 7.24. TG (solid lines) and DTG (dotted lines) analyses curves of some ITQ-66 samples. 

Samples are named as the containing heteroatom followed by the as-made heteroatom to  

silica ratio content. DTG curves are scaled up for a better view. 

The thermogravimetry shows a single weight loss of ca. 8 wt.% between 400ºC and 

750ºC. The starting temperature of the weight loss depends on the heteroatom content,  

increasing as the boron or gallium content increases, but no difference was found when the 

chemical nature of the trivalent atom changed from boron to gallium. From our experience, 

the thermogravimetric profile is usually heavily linked with the pore size and channel  

connectivity, especially when using phosphorous OSDA´s. Thus, because of the high  

temperature required, it is hypothesized that the ITQ-66 could be a bi-directional small pore 

or a mono-directional medium pore zeolite. 

7.3.3 Thermal treatments of the ITQ-66 zeolite 

The as-made ITQ-66 materials were thermally treated following the general  

methodologies described in the section 3.2.3. For the thermally treated materials, powder  

X-Ray diffraction, chemical analyses, scanning electron microscopy, adsorption isotherms 

and MAS-NMR spectroscopy were performed. In this section only powder X-Ray  

diffraction, chemical analyses, scanning electron microscopy and adsorption isotherms are 

discussed, while MAS-NMR spectra are further discussed in section 7.3.5. 
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7.3.3.1 Crystallinity of thermally treated ITQ-66 zeolite 

The stability and crystallinity of the ITQ-66 samples after thermal treatments were 

studied by powder X-Ray diffraction, whose patterns are shown in Figure 7.25. 

 
Figure 7.25. Powder X-Ray diffraction patterns of some of the thermally treated ITQ-66  

materials. Black lines correspond to as-made samples; red lines to calcined samples;  

green lines to samples hydrogenated at high temperature. Samples are identified  

by synthesized material composition. 

The materials remained highly crystalline after the thermal treatments. The X-Ray  

diffraction peaks were found at roughly the same 2θº values in all samples regardless of the 

thermal treatment and chemical composition of the final material. The main difference  

between the as-made and the thermally-treated samples was the intensity of the signals at 2θº 

below 17º, as the intensity of these signals is typically affected by the presence of the OSDA 

occluded within the pores of the material. 

  

5 10 15 20 25 30 35 40

B40-ITQ-66

2 θ (º)

Ga27-ITQ-66

Calcined

Hydrogenated

As-made

Calcined

Hydrogenated

As-made



 Synthesis and characterization of zeolitic materials using P-OSDA 

 

 

300 

7.3.3.2 Chemical analyses of thermally treated ITQ-66 zeolite 

The chemical compositions of the thermally treated ITQ-66 materials are shown in 

Table 7.9. 

Table 7.9. Chemical composition of some of the thermally treated ITQ-66 materials.  

All ratios are given as molar ratios. Samples are identified by heteroatom (X: B or Ga)  

synthesis gel composition. 

Sample Treatment Si/Xas-made Si/Xtreated wt.%Pas-made wt.%Ptreated P/Xtreated 

B25-ITQ-66 Calcination 25.3 28.9 2.4 2.2 1.4 

B25-ITQ-66 Hydrogenation 25.3 27.5 2.4 0.2 0.1 

B36-ITQ-66 Calcination 35.8 35.9 2.4 2.2 1.7 

B36-ITQ-66 Hydrogenation 35.8 35.9 2.4 0.3 0.2 

Ga27-ITQ-66 Calcination 27.5 27.7 2.3 2.1 1.2 

Ga27-ITQ-66 Hydrogenation 27.5 33.2 2.3 0.5 0.3 

Ga46-ITQ-66 Calcination 46.4 43.9 2.4 2.3 2.1 

Ga46-ITQ-66 Hydrogenation 46.4 45.6 2.4 0.3 0.3 

After calcination, most of the phosphorus remains inside the material, which could 

indicate a strong interaction of the phosphorous species with the boron and gallium species 

inside the materials. On the other hand, the hydrogenation treatment at high temperature  

allows for the removal of roughly 85 wt.% of the phosphorus. Thus, the use of different 

thermal treatments allows obtaining materials with different phosphorus contents and  

phosphorus to heteroatom ratios. 
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7.3.3.3 Morphology of thermally treated ITQ-66 zeolite 

As previously, the morphology of the thermally treated ITQ-66 zeolites were studied 

by FESEM, and their comparison with as-made materials is depicted in Figure 7.26. 

 
Figure 7.26. FESEM microimages of some thermally treated ITQ-66 materials. Samples are 

named as the containing heteroatom followed by the as-made heteroatom to silica ratio content, 

with the thermal treatment below (Cal: calcined; Hyd: hydrogenated at high temperature). 

After the thermal treatments, the borosilicate material crystallites keep their size, but 

gallosilicate material crystallites break into smaller crystals, especially after the  

hydrogenation at high temperature. 
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7.3.3.4 Textural properties of the ITQ-66 zeolite 

The textural properties of the ITQ-66 samples were calculated from the N2 adsorption 

isotherms at 77 K on the thermally treated samples, shown in Figure 7.27. 

 
Figure 7.27. N2 adsorption isotherms of some of the thermally treated ITQ-66 samples (black 

and green: borosilicate materials; red and blue: gallosilicate materials). Samples are named  

after the thermal treatment (cal: calcined under air; hyd: hydrogenated at high temperature), 

followed by the containing heteroatom and by the as-made heteroatom to silica ratio content. 

The N2 adsorption isotherms show the type Ia physisorption profile, typical of  

microporous materials.[31] 

The BET and micropore surface areas and the total micropore volume, calculated from 

the N2 adsorption isotherm at 77 K by applying the t-plot method, are summarized in  

Table 7.10. 
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Table 7.10. Textural properties of thermally treated ITQ-66 materials. Samples are identified 

by its heteroatom (X: B or Ga) content and post-synthesis treatments (cal: calcined;  

hyd: hydrogenated at high temperature). 

Sample 

BET  

surface / 

m2·g-1 

Micropore  

surface / 

m2·g-1 

Micropore  

volume / 

cm3·g-1 

P/X wt.%P 

Ga27-cal 278.2 223.2 0.11 1.2 2.1 

Ga27-hyd 314.6 255.0 0.12 0.3 0.5 

Ga46-cal 247.7 188.1 0.10 2.1 2.1 

Ga46-hyd 265.7 226.2 0.11 0.3 0.3 

B25-cal 216.8 210.8 0.10 1.4 2.5 

B25-hyd 283.7 273.2 0.13 0.1 0.20 

B36-cal 255.8 228.6 0.11 1.7 2.2 

B36-hyd 308.5 271.8 0.13 0.2 0.3 

The obtained BET surface area and micropore volume values show differences  

depending on the phosphorus and heteroatom content, increasing the adsorption capacity as 

phosphorus content decreases. The relatively low adsorption capacity of the ITQ-66 suggests 

that the zeolitic structure does not present cavities. Calcined samples, due to their higher 

phosphorus content, always yield lower BET surface and micropore volumes than  

hydrogenated samples due to channel hindrance by the phosphorous species. 

The micropore distribution was calculated by applying the Horvath-Kawazoe  

formalism[38] to the Ar adsorption isotherm at 87 K of the B20-ITQ-66 and Ga46-ITQ-66 

samples hydrogenated at high temperature, as shown in Figure 7.28. 
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Figure 7.28. Pore size distribution of some ITQ-66 samples hydrogenated at high temperature. 

 

The micropore distribution shows a single maximum at 5.45 Å for both borosilicate 

and gallosilicate materials hydrogenated at high temperature, which suggests that the  

ITQ-66 is a medium pore size channel zeolite.[7] 

The micropore volume and the pore diameter distribution results fit well with a  

bi-directional medium-pore zeolite without cavities, as previously suggested from the TG 

analyses in section 7.3.2.3. 

7.3.4 Structural resolution of the ITQ-66 zeolite 

The ITQ-66 zeolite crystalline structure was resolved using the Ultrafast Electron  

Diffraction Tomography technique, and the structure solution was performed using direct 

methods as implemented in the program Sir2014, as previously described in section 

7.2.1.5.[14] The validation of the obtained model by EDT analysis was carried out using the 

Rietveld method using the program FullProf.[35] 

7.3.4.1 Description of the unit cell of the ITQ-66 

The zeolite ITQ-66 presents an orthorhombic symmetry, belonging to the Cmcm  

(nº 63) spatial group. The unit cell parameters assuming an all-silica framework composition 

are given below: 

a = 7.519 Å b = 21.7164 Å c = 24.2826 Å   Volume: 3965.00 Å3 
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The crystallographic number of independent silicon atoms (T positions) and their  

multiplicity are shown in Table 7.11. 

Table 7.11. Multiplicity and atomic coordinates of the Si atoms in the ITQ-66 structure. 

Atom x y z Multiplicity 

Si1 0.00 0.2205(8) 0.3137(3) 8 

Si2 0.2038(10) 0.4028(6) 0.4070(4) 16 

Si3 0.2977(10) 0.3158(7) 0.3129(3) 16 

Si4 0.50 0.3668(8) 0.5885(5) 8 

Si5 0.50 0.5052(8) 0.5643(3) 8 

Si6 0.2043(10) 0.3194(4) 0.5109(4) 16 

The total number of crystallographic positions in the unit cell is 72, which gives two 

OSDA molecules per unit cell (i.e. 4 phosphorus atoms per unit cell) in the as-made materials, 

as previously guessed by elemental analyses. The unit cell projections are shown in Figure 

7.29. 

 

z

x

y
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Figure 7.29. Above: Unit cell projection of the zeolite ITQ-66, with the unit cell marked by 

dashed lines. Below: projections along the main crystallographic axes (grey: Si; red: O). 

7.3.4.2 Channel system description of the ITQ-66 

The channel structure of the zeolite ITQ-66 could be described as a 10 MR and an 8 

MR bi-directional pore system zeolite, as depicted in Figure 7.30. 

 
Figure 7.30. Pore channel topologies in zeolite ITQ-66 (grey: Si; red: O). Left: 10 MR channel 

viewed along [100]. Right: 8 MR channel viewed along [011]. 

The 10 MR channel runs straight along the c direction ([001] direction) and it is  

intersected by the 8 MR channel, connecting two 10 MR channels by a tortuous zig-zag  

channel along the b direction ([110] and [1-10] directions). The pore topology of the 10 MR 
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is nearly circular, while the 8 MR present a highly distorted shape. This distortion of the pore 

opening explains why only the 10 MR channel was observed in the Ar adsorption isotherm 

at 87 K in section 7.3.3.4, as the 8 MR channel would not be accessible for most except the 

smaller molecules, like H2 or water. 

7.3.4.3 Location of heteroatoms in ITQ-66 

After the validation of the model obtained from Ultrafast Electron Diffraction Tomog-

raphy, the Rietveld refinements of the borosilicate and gallosilicate samples showed slight 

differences between them. These differences arose from different values in the tetrahedral 

(TOT) angles between the two materials attached to specific T sites. The isomorphical sub-

stitution of Si atoms by atoms with different ionic radii leads to a slight modification of the 

TOT angles.[39, 40] Therefore, the different TOT angles in some T sites suggest that the B and 

the Ga atoms are being preferentially located in specific T atoms in the ITQ-66 framework. 

The framework positions were located by using the charge flipping method.[41-44] Using this 

method, the X-Ray diffraction data gives the electronic density of each framework position. 

The presence of positions with a defect or an excess of electronic density respect to the silicon 

atoms means that this positions are partially occupied by boron (electronic density defect) or 

gallium (electronic density excess) atoms. The results were again validated using the Rietveld 

method, showing a better fitting between the experimental X-Ray pattern and the proposed 

borosilicate and gallosilicate models, as shown in Figure 7.31. 

 

Figure 7.31. Rietveld refinement of the X-Ray diffraction pattern of B25 (left) and Ga46 (right) 

ITQ-66 materials hydrogenated at high temperature. Red data points show the observed XRPD 

pattern; the black line along these points is the calculated XRPD pattern, with the difference 
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profile at the bottom in blue. The blue vertical tick marks below the pattern give the positions of 

the Bragg reflections. 

The results show that boron atoms are preferentially located in T1, T4 and T6 sites, 

while gallium atoms are preferentially located in T3 and T5 sites, which are shown in the unit 

cell in Figure 7.32. 

 
Figure 7.32. Unit cell [100] projection (yellow: silicon atoms; red: oxygen atoms) of borosilicate 

(left) and gallosilicate (right) ITQ-66 with T sites preferentially occupied by boron atoms  

(light blue) and gallium atoms (dark blue). 

Interestingly, the T positions preferentially occupied by the boron and gallium atoms 

are different for each heteroatom. This suggest that probably aluminium is not preferentially 

located nor stabilised in any framework position, which would justify the impossibility to 

synthesize the ITQ-66 as aluminosilicate material. The post-synthesis treatment  

incorporation of aluminium in this zeolite could potentially allow incorporating Al in  

different framework positions depending on the parent material. However, post-synthesis 

treatments to incorporate aluminium were not performed yet. 
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7.3.5 NMR analyses of the ITQ-66 zeolite 

The incorporation of the phosphorous OSDA and the gallium and boron heteroatoms, 

as well as the lattice framework were studied by MAS-NMR spectroscopies on the as-made 

and thermally treated ITQ-66 materials. 

7.3.5.1 Incorporation and stability of the OSDA into the ITQ-66 zeolite 

The stability of the OSDA incorporated to the ITQ-66 zeolite was studied by 31P 

MAS-NMR spectroscopy. The 31P MAS-NMR spectra of the as-made samples and the liquid 

31P NMR spectrum of the free P-OSDA are shown in Figure 7.33. 

 
Figure 7.33. 31P MAS-NMR spectra of some as-made ITQ-66 samples. Samples are named after 

the heteroatom and the as-made heteroatom to silica ratio content. Free OSDA and mother  

liquor (obtained from B36 synthesis) liquid NMR spectra included for comparison. 

The 31P MAS-NMR spectra of the as-made samples show two close resonances, a 

main resonance around 38.0 ppm and a smaller one around 39.0-38.5 ppm, depending on the  

sample. The relative intensity of these resonances depend on the sample composition,  
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although no trend could be firmly stablished. These two resonances closely resemble to the 

liquid NMR of the P-OSDA in water solution (38.74 ppm), and thus, the two resonances must 

be due to two different chemical environments. These environments could be due to two 

different positions that the OSDA would adopt inside the channel of the zeolite. 

After the thermal treatment of the materials, some of the phosphorus remains inside 

the material, giving the opportunity to study the chemical nature of the generated species by 

31P MAS-NMR spectroscopy, whose spectra are shown in Figure 7.34. 

 
Figure 7.34. 31P MAS-NMR spectra of thermally treated ITQ-66 materials. Samples are named 

after the thermal treatment (cal: calcined; hyd: hydrogenated at high temperature), followed by 

the heteroatom and as-made heteroatom to silica ratio content. Solid lines correspond to  

experimental spectra; dotted lines correspond to the sum of deconvoluted signals. Spectra were 

deconvoluted as Gaussian/Lorentz curves. Spectra not scaled on phosphorus content. 

After the thermal treatments of the ITQ-66 materials, the organic compound is  

decomposed and the remaining phosphorous species gives rise to several 31P resonances with 

chemical shifts ranging between 0 ppm and -42 ppm, which are characteristic of extra- 

framework P2O5-like species. 
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The calcined ITQ-66 samples give several wide 31P resonances, with a different  

resonance profile depending on the composition. The mathematical deconvolution of the  

calcined ITQ-66 gallosilicate spectrum yields five different resonances: i) 0 ppm, assigned 

to assigned to extra-framework P2O5; ii) -5 ppm, assigned to phosphorus atoms in  

pyrophosphoric acid or to terminal [P4O3]- groups short in polyphosphoric species;[45-48]  

iii) -12 ppm, assigned to middle groups in pyrophosphates or other short-chain  

polyphosphates;[47, 48] and iv) -28 ppm and v) -40 ppm, typically assigned to different 

(bi)phosphates bounded to monodentate or bidentate aluminium octahedral atoms, although 

in this case these signals should be attributed to phosphorous species interacting with gallium 

or boron.[45-48] 

The calcined borosilicate ITQ-66 material also presents several resonances, with a 

particularly high intensity 0 ppm resonance. In this sample, the -5 ppm resonance keeps the 

same chemical shift than the gallosilicate sample, while other resonances are shifted. Thus, 

the -12 ppm resonance in the gallosilicate sample is shifted to -10 ppm in the borosilicate 

sample; the -28 ppm resonance in the gallosilicate sample is shifted to -30 ppm in the  

borosilicate sample; and the -40 ppm resonance in the gallosilicate sample is shifted  

to -38 ppm in the borosilicate sample. Also, a resonance at -22 ppm, typically assigned to 

longer polymeric phosphate chains, as well as highly condensed polyphosphate species[49-51], 

is clearly visible in the borosilicate sample, while in the gallosilicate sample this resonance 

could be present but overshadowed by the wide -12 and -28 ppm resonances. 

The hydrogenation at high temperature of the ITQ-66 materials decreases the  

phosphorus content of the gallosilicate sample, while in the borosilicate sample almost all 

phosphorus is removed. In the borosilicate sample, only three discrete resonances could be 

found: at 2 ppm and 0 ppm, assigned to extra-framework P2O5 species; and at -11 ppm,  

typically assigned to middle groups in pyrophosphates or other short-chain  

polyphosphates.[47, 48] This means that after the hydrogenation of the borosilicate ITQ-66  

materials there is little interaction between the remaining phosphorous and boron species.  

On the other hand, in the gallosilicate sample there is a significant amount of  

phosphorus remaining in the sample after the hydrogenation treatment. In this case, the  

mathematical deconvolution yields five wide resonances: i) 0 ppm, assigned to  

extra-framework P2O5; ii) -6 ppm, assigned to middle groups in pyrophosphates or other 

short-chain polyphosphates;[47, 48] iii) -18 ppm, typically assigned to longer polymeric  

phosphate chains, as well as highly condensed polyphosphate species[49-51] ; iv) -32 ppm and 

v) -42 ppm, assigned to different (bi)phosphates bounded to monodentate or bidentate  
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gallium octahedral atoms.[45-48] Conversely with the borosilicate ITQ-66 sample, in the  

gallosilicate ITQ-66 sample most of the remaining phosphorus present chemical shifts typical 

of extra-framework P2O5-like species, suggesting a stronger interaction between the  

phosphorous species and the gallium than with the boron. 

The chemical shifts of the resonances are close to the obtained for the RTH and IWV 

samples in sections 5.3.4 and 6.3.3.1, respectively, although in the case of ITQ-66 samples, 

the barycentres of the spectra are shifted down-field, towards resonances typically attributed 

to low condensed phosphorous species. This could be attributed to a lower interaction  

between the phosphorous species and the gallium or boron species than the interaction  

between the phosphorous and aluminium species from the RTH and IWV materials. 

7.3.5.2 Gallium incorporation into the ITQ-66 zeolite 

The gallium incorporation was studied by 71Ga MAS-NMR spectroscopy on the  

as-made ITQ-66 gallosilicate samples, as well as on the different gallium species formed 

after thermal treatments, whose spectra are shown in Figure 7.35. 

 
Figure 7.35. 71Ga MAS-NMR spectra of the as-made and the thermally treated gallosilicate 

ITQ-66 sample with Si/Ga = 27. 

The as-made Ga-ITQ-66 spectrum shows a wide single 71Ga resonance at 151 ppm, 

which is typical of gallium atoms in tetrahedral coordination, and therefore, it can be  

concluded that the gallium is incorporated to the framework during synthesis.[52] However, 

the 71Ga MAS-NMR of the thermally treated samples shows the presence of up-field  
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resonances, especially in the calcined sample, which closely resembles to previously reported 

gallium phosphate NMR spectra.[53] The chemical shifts of these resonances, between 100 

and -50 ppm, are typical of gallium species in octahedral coordination.[52, 54] However, the 

great width and asymmetry of the resonances in all spectra, especially in the calcined sample, 

make it difficult to guess the number and nature of the different gallium species in the ther-

mally treated ITQ-66 samples. 

7.3.5.3 Boron incorporation into the ITQ-66 zeolite 

The boron incorporation was studied by 11B MAS-NMR spectroscopy in the as-made 

ITQ-66 borosilicate samples, as well as on the different boron species formed after thermal 

treatments, whose spectra are shown in Figure 7.36. 

 
Figure 7.36. 11B MAS-NMR spectra of the as-made and thermally treated borosilicate  

ITQ-66 sample with Si/B = 25. 

The as-made spectrum shows a single 11B resonance at -3.5 ppm, typical of boron in 

tetrahedral coordination,[27-29] and therefore, the boron is getting incorporated to the  

framework during synthesis. After calcination, a new small and broad resonance appears 

around 5 ppm. This signal also appears in the hydrogenated sample, together with another 

resonance centred around 12 ppm. These two resonances are assigned to boron species in 

trigonal coordination and are typical of dehydrated borosilicate zeolites.[28, 30] 
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7.3.5.4 Fluorine incorporation into the ITQ-66 zeolite framework 

The incorporation of fluorine to the ITQ-66 zeolite and its interaction with the  

siliceous framework was studied by 19F MAS-NMR spectroscopy, whose spectra are shown 

in Figure 7.37. 

 
Figure 7.37. 19F MAS-NMR spectra of as-made ITQ-66 samples. Solid lines correspond to  

experimental spectra; dotted lines correspond to the sum of deconvoluted signals. 

Several 19F resonances were observed in the range between -60 ppm and -90 ppm, 

corresponding to fluorine atoms located inside different silica cages.[55-57] It is noticeable that 

changing the heteroatom from Ga to B drastically modifies the relative fluorine occupation 

of the cages. This could be indicative of the different location of B and Ga atoms in the  

ITQ-66 zeolite framework, as previously detailed in section 7.3.4.3. 
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7.3.5.5 Silicon framework of the ITQ-66 zeolite 

The different chemical environments of the silicon species in the as-made and  

thermally treated gallosilicate ITQ-66 samples were studied by 29Si MAS-NMR  

spectroscopy, whose spectra are shown in Figure 7.38. 

 
Figure 7.38. 29Si MAS-NMR spectra of as-made and calcined gallosilicate ITQ-66 samples.  

Solid lines correspond to experimental spectra; dotted lines correspond to the sum of  

deconvoluted signals. 

The mathematical deconvolution of 29Si MAS-NMR spectrum of the as-made  

25Ga-ITQ-66 yields at least four sets of 29Si resonances. At higher field, there are three  

29Si resonances centred at -110 ppm, -112 ppm and -115 ppm and relative intensities 1:1:1 

approximatively, although they are probably composed of multiple narrower signals. These 

resonances correspond to Q4 Si atoms, tetrahedrally coordinated silicon atoms having silicon 

atoms in their second neighbourhood. At lower-field, a broad and smaller resonance is  

observed, centred on -104 ppm, which is assigned to Q3 Si atoms in the zeolite (Si-O-Ga and 

Si-OH groups). The area of this signal corresponds to 13.5%, while the amount due to  

Si-O-Ga groups should correspond to 8.6% by chemical analyses (calculated by Equation 

7.1)[58], and therefore, the as-made material presents approximately 6% of Si-OH defects. 
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𝑛𝑆𝑖
𝑛𝐺𝑎⁄ = ∑𝐼𝑆𝑖(𝑛𝐺𝑎)

4

𝑛=0

∑0.25

4

𝑛=0

· 𝑛 · 𝐼𝑆𝑖(𝑛𝐺𝑎)⁄  

Equation 7.1 

After calcination, the 29Si NMR profile changes, increasing the intensities of the Q4 

signals, and decrease the intensity of the Q3 signal. The area of the Q3 signal, 8.6%, now 

perfectly matches with the amount of Si-Ga groups obtained by chemical analysis (calculated 

by Equation 7.1), and therefore, no silanol groups remain after thermal treatment. 

The mathematical deconvolution of the overlapped Q4 signal yielded at least five  

different resonances centred at -110 ppm, -111 ppm, -112 ppm, -114 ppm and -117 ppm, with 

relative intensities 2:1:2:2:2. These relative intensities sums a total of 9 different T atoms, 

which results in a divisor of the 72 crystallographic positions found after structural resolution. 

The elucidation of the crystalline structure of the ITQ-66 yielded six crystallographic  

independent silicon positions, while the deconvolution of the 29Si MAS-NMR spectra gave 

only five different silicon environments This could be explained as one of the deconvoluted 

signals is actually composed of two overlapping silicon environments, probably the wider 

resonance, centred at -117 ppm. 

7.4 Conclusions 

The use of two novel phosphonium cations as OSDA´s, the tris(dimethylamino) 

[4-(tri-tert-butylphosphonio)butyl]phosphonium (PN-PC) and the butane-1,4-diylbis 

(triethylphosphonium) cations, has allowed the synthesis of two new materials, the ITQ-58 

and the ITQ-66 zeolites. The use of these OSDA´s present the following features: 

 The use of different phosphorous cations as OSDA´s has allowed the synthesis 

and the structural resolution of the ITQ-58 zeolite, taking advantage of the different 

features that each kind of phosphorous OSDA present. Thus, the problems due to the 

smaller crystallite size of aminophosphonium cations was overcome using a dual 

“head” phosphonium and aminophosphonium OSDA, favouring the crystallization of 

larger crystallites. 
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 A novel fast data collection methodology, the Ultrafast Electron Diffraction  

Tomography technique, has been developed for easily collect diffraction data from 

crystalline samples before the degradation of the sample under the highly energetic 

electron beam. The use of this technique is especially useful in the structural  

resolution of materials where the application of direct methods is difficult due to their 

complex structure. 

 The butane-1,4-diylbis(triethylphosphonium) cation as OSDA has allowed the 

synthesis of the new ITQ-66 zeolite. The use of this relatively simple OSDA presents 

a clearly different structure directing role than its ammonium counterpart, which 

strengthen the fact that phosphorous OSDA´s could present a different structure  

directing agent than ammonium OSDA´s. 

 The ITQ-66 zeolite present a bi-directional pore system, with medium (10 MR) 

and small (8 MR) pores. The presence of pores of different size could be useful in 

applications which require the diffusion of molecules of different size, although in 

this case, only the smallest molecules (like H2) could diffuse through the small pore 

channel of the ITQ-66 zeolite. 

 The ITQ-66 zeolite presents a preferential incorporation of boron and gallium in 

specific lattice positions. However, aluminium was not successfully incorporated in 

the material, limiting the potential applications of this zeolite to weak acid catalyst or 

separation/adsorption for the time being. 
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Chapter 8 

Conclusions 

 

8.1 General conclusions 

As a general conclusion of this thesis, several zeolite structures have been obtained 

by using phosphorous cations as OSDA´s. The main general conclusions are: 

 It has been proved that phosphorous OSDA´s present a higher stability than  

ammonium OSDA´s depending on the synthesis media and conditions. 

 Also, the joint use of phosphorous and ammonium OSDA´s has allowed the  

selective incorporation of phosphorus to the target material. 

 Two new zeolite structures, the ITQ-58 and the ITQ-66 zeolites, have been  

obtained. 

 Several known zeolites have been obtained with alternative synthesis pathways, 

like the ITQ-27 (IWV) and UTD-1 (DON) zeolites, and the less studied STF, ITE and 

MEL zeolites. 

As previously detailed in section 1.3, at least 18 zeolitic structures had been  

successfully synthesized by using phosphorous OSDA´s. After this thesis, the number of  

zeolite structures obtained with phosphorous OSDA´s have been increased to 22. 
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The detailed conclusions for each chapter are summarized below: 

8.2 OSDA stability 

The stability studies discussed in this chapter have proven that phosphorous cations 

generally present improved crystallization rates and stabilities respect to traditional  

alkylammonium cations when used as OSDA in the synthesis of zeolites. 

 The use of phosphorous OSDA´s increase the crystallization rate for a given phase 

compared with related ammonium OSDA´s. This result suggests that there is a higher 

affinity between the phosphorous OSDA´s and the zeolitic matrix than the  

corresponding ammonium OSDA´s. 

 The phosphorous OSDA stability is heavily influenced by the chemical nature of 

the phosphorous cations. Thus, phosphonium cations are more stable under any  

condition than closely related ammonium cations. Phosphazenium cations present a 

great stability in hydroxide media, but are highly unstable in fluoride media, while 

aminophosphonium cations present a middle stability under hydroxide and  

fluoride media. 

 These results must be highlighted only while comparing closely related cations, as 

not every phosphorous OSDA is always more stable than any ammonium OSDA. 

However, these studies have led us to carry on more sensible screening syntheses for 

OSDA´s in its more stable media depending on the chemical nature of the OSDA. For 

example, hydroxide media is prioritized over fluoride media when using phosphazene 

bases, while fluoride media is prioritized when using alkylphosphonium or  

alkylammonium cations as OSDA´s in the synthesis of zeolites. 

 The stability of OSDA´s is influenced by the synthesis gel composition. Silicate 

species increase the stability of the cations, while the introduction of boron further 

increases the stability of the cation, even when no crystalline product is obtained. This 

leads to suggest the use of negatively charged additives which could enhance the  

stability of the cation in the synthesis media. 

The study of the stability of OSDA´s is a useful complementary tool when testing 

cations as OSDA´s. A quick decomposition could lead to the formation of species yielding 

different phase selectivity than the desired, while stable cations could be tested at higher 
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temperatures and/or synthesis times. A stable OSDA could also be reused leading to an  

effective increase of the incorporation yield of the OSDA. 

8.3 Phosphorous-modified zeolite 

The use of phosphorous cations as OSDA´s has allowed the synthesis of two  

phosphorous modified zeolites, the MFI and the RTH zeolites, using a dual template  

synthesis methodology jointly using closely related nitrogen and phosphorous OSDA´s. This 

synthesis methodology provides the materials with the following features: 

 The use of P-OSDA and N-OSDA yields zeolites with controlled phosphorus  

contents. The preferential incorporation of phosphorus allows to selectively and  

accurately incorporate the needed amount of phosphorus. 

 The calcination of the aluminosilicate materials obtained by this methodology  

allows keeping most of the phosphorus incorporated, and thus, the P/Al ratio could be 

tuned just by using the required P/(P+N) OSDA ratio in the synthesis gel. 

 The introduction of phosphorus by this methodology allows modifying the textural 

and acidic properties of the final materials avoiding further post-synthesis treatments. 

 The application of post-synthesis treatments, as calcination, hydrogenation at high 

temperature, or washing with NH4Ac, allows the removal of different amounts of 

phosphorus. However, the use of the dual template synthesis methodology is more 

flexible than the hydrogenation at high temperature and the washing with NH4Ac, 

since phosphorus removal by these latter methods is difficult to control. 

 The use of the dual template methodology allows the incorporation of different 

amounts of phosphorus in a small pore zeolite, the RTH zeolite, that is impossible by 

post-synthesis treatments. 

 The introduction of phosphorus in the RTH small pore zeolite leads to diffusional 

constraints when the phosphorus content reaches a critical amount, between 0.6 and 

1.2 wt.%P, but pore blockage does not occur. 

 The introduction of phosphorus in the synthesis stage avoids the formation of  

significant amounts of P2O5 phosphorous species that are not interacting with the  

aluminium species of the materials. These species negatively affect to the textural 
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properties of the material without providing a positive effect due to its lack of  

interaction with framework aluminium species. 

 The introduction of lower amounts of phosphorus by the dual template  

methodology than by post-synthesis treatment allows to identify discrete phosphorus 

resonances by 31P MAS-NMR spectroscopy. These discrete resonances appear in alu-

minosilicate material´s spectra of both MFI and RTH zeolites, but their intensities 

vary depending on the thermal treatment and the phosphorus content of each material. 

 The intensity of some of the 31P resonances could be linked with the relative  

intensity of the different 27Al resonances. Likewise, these 27Al resonances could be 

linked with the acidic properties of the materials. Although the specific phosphorous 

species have not yet been identified, additional NMR experiments could reveal more 

details about the chemical nature of these phosphorous species interacting with the 

framework aluminium species in zeolites. 

8.4 Synthesis of IWV and DON zeolites 

The use of a novel aminophosphonium cation as OSDA, the tris(diethylamino)(me-

thyl)phosphonium cation, has allowed the synthesis of two known materials, the ITQ-27 

(IWV) and the UTD-1 (DON). Thus, the use of this OSDA constitute an alternative synthesis 

pathway, presenting the following features: 

 The aminophosphonium OSDA allowed obtaining the IWV zeolite as  

aluminosilicate, borosilicate, germanosilicate and all-silica materials, both in fluoride 

and hydroxide media, and in highly concentrated synthesis gels. However, aluminium 

was not fully incorporated to the zeolite framework in hydroxide media syntheses. A 

deeper study of the synthesis conditions could fix this result. 

 The all-silica IWV zeolite has been synthesized for the first time, which allowed 

a deeper study of the IWV structure by MAS-NMR, suggesting a lower symmetry. 

However, the final spatial group has not been determined yet. 

 The use of a phosphorous OSDA allows the introduction of phosphorus in the 

IWV zeolite during the synthesis stage. The different post-synthesis treatment allows 

modifying the phosphorus content, which translate in a modification and modulation 

of the textural and acidic properties of the final material. 
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 The hydrogenation at high temperature of the IWV materials has allowed  

obtaining materials with the highest BET surface and micropore volumes ever  

reported in IWV zeolite. 

 The aminophosphonium OSDA allowed obtaining the DON zeolite as  

aluminosilicate, borosilicate and all-silica materials in hydroxide media. However,  

aluminium was not fully incorporated to the zeolite framework. A deeper study of the 

synthesis conditions could fix this result. 

 The DON materials obtained present similar properties to previously reported, but 

the aminophosphonium OSDA is easier and/or cheaper to synthesize than previous 

described OSDA´s. 

 The aminophosphonium OSDA is easily recoverable after zeolite synthesis and 

remains stable after hydrothermal treatment, which allows its reuse. 

8.5 Synthesis of new zeolite materials 

The use of two novel phosphonium cations as OSDA´s, the tris(dimethylamino)[4-

(tri-tert-butylphosphonio)butyl]phosphonium (PN-PC) and the butane-1,4-diylbis(tri-

ethylphosphonium) cations, has allowed the synthesis of two new materials, the ITQ-58 and 

the ITQ-66 zeolites. The use of these OSDA´s present the following features: 

 The use of different phosphorous cations as OSDA´s has allowed the synthesis 

and the structural resolution of the ITQ-58 zeolite, taking advantage of the different 

features that each kind of phosphorous OSDA present. Thus, the problems due to the 

smaller crystallite size of aminophosphonium cations was overcome by using a dual 

“head” phosphonium and aminophosphonium OSDA, favouring the crystallization of 

larger crystallites. 

 A novel fast data collection methodology, the Ultrafast Electron Diffraction  

Tomography technique, has been developed for easily collect diffraction data from 

crystalline samples before the degradation of the sample under the highly energetic 

electron beam. The use of this technique is especially useful in the structural  

resolution of materials where the application of direct methods is difficult due to their  

complex structure. 
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 The butane-1,4-diylbis(triethylphosphonium) cation as OSDA has allowed the 

synthesis of the new ITQ-66 zeolite. The use of this relatively simple OSDA present 

a clearly different structure directing agent than its ammonium counterpart, which 

strengthen the fact that phosphorous OSDA´s could present a different structure  

directing agent than ammonium OSDA´s. 

 The ITQ-66 zeolite present a bi-directional pore system, with medium (10 MR) 

and small (8 MR) pores. The presence of pores of different size could be useful in 

applications which require the diffusion of molecules of different size, although in 

this case, only the smallest molecules (like H2) could diffuse through the small pore 

channel of the ITQ-66 zeolite. 

 The ITQ-66 zeolite presents a preferential incorporation of boron and gallium in 

specific lattice positions. However, aluminium was not successfully incorporated in 

the material, limiting the potential applications of this zeolite to weak acid catalyst or 

separation/adsorption for the time being. 
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