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Abstract

Atrial fibrillation is the most common cardiac arrhythmia. During atrial fibrillation, the
atrial substrate undergoes a series of electrical and structural remodeling processes. The
electrical remodeling is characterized by the alteration of specific ionic channels, which
changes the morphology of the transmembrane voltage known as action potential. Structural
remodeling is a complex process involving the interaction of several signalling pathways,
cellular interaction, and changes in the extracellular matrix. During structural remodeling,
fibroblasts, abundant in the cardiac tissue, start to differentiate into myofibroblasts, which
are responsible for maintaining the extracellular matrix structure by depositing collagen.
Additionally, myofibroblasts paracrine signalling with surrounding myocytes will also affect
ionic channels.

Highly detailed computational models at different scales were used to study the effect
of structural remodeling induced at the cellular and tissue levels. At the cellular level, a
human fibroblast model was adapted to reproduce the myofibroblast electrophsyiology during
atrial fibrillation. Additionally, the calcium handling in myofibroblast electrophysiology
was assessed by fitting a calcium ion channel to experimental data. At the tissue level,
myofibroblast infiltration was studied to quantify the increase of vulnerability to cardiac
arrhythmia. Myofibroblasts alter the dynamics of reentry. A low density of myofibroblasts
allows the propagation through the fibrotic area and creates focal activity exit points and
wave breaks inside this area. Moreover, fibrosis composition plays a key role in the alteration
of the propagation pattern. The alteration of the propagation pattern affects the electrograms
computed at the surface of the tissue. Electrogram morphology was altered depending on the
arrangement and composition of the fibrotic tissue.

Detailed cardiac tissue models were combined with realistic models of the commercially
available mapping catheters to understand the clinically recorded signals. A noise model from
clinical signals was generated to reproduce the signal artifacts in the model. Electrograms
from highly detailed bidomain models were used to train a machine learning algorithm to
characterize the atrial fibrotic substrate. Features that quantify the complexity of the signals
were extracted to identify fibrotic density and fibrotic transmurality. Subsequently, fibrosis
maps were generated using patient recordings as a proof of concept. A fibrosis map provides
information about the fibrotic substrate without using a single cut-off voltage value of 0.5 mV.
Furthermore, in this study, using information theory measurements such as transfer entropy
combined with directed graphs, the wave propagation direction was tracked. Transfer entropy
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with directed graphs provides crucial information during electrophysiology to understand
wave propagation dynamics during atrial fibrillation.

In conclusion, this thesis presents a multiscale in silico study of atrial fibrillation mecha-
nisms providing insight into the cellular mediators responsible for the extracellular matrix
remodeling and its electrophysiology. Additionally, it provides a realistic setup to create in
silico data that can be translated to clinical applications that could support ablation treatment.



Zusammenfassung

Vorhofflimmern ist die hdufigste Herzrhythmusstérung. Wihrend des Vorhofflimmerns wird
das Vorhofsubstrat einer Reihe von elektrischen und strukturellen Umbauten unterzogen.
Die elektrophysiologische Umgestaltung ist durch die Verdnderung spezifischer lonenkanéle
gekennzeichnet, die die Morphologie des als Aktionspotential bekannten Transmembranspan-
nungsverlaufs verdandert. Die strukturelle Umgestaltung ist ein komplexer Prozess, der die
Wechselwirkung mehrerer Signalwege, die zelluldre Wechselwirkung und Verdnderungen in
der extrazelluliren Matrix umfasst. Wihrend des strukturellen Umbaus beginnen Fibroblas-
ten, die im Herzgewebe reichlich vorhanden sind, sich in Myofibroblasten zu differenzieren,
die fiir die Aufrechterhaltung der extrazelluldren Matrixstruktur durch Ablagerung von Kol-
lagen verantwortlich sind. Zusitzlich beeinflussen parakrine Signale von Myofibroblasten
mit umgebenden Myozyten auch die lonenkanile.

Hochdetaillierte Rechenmodelle in verschiedenen Mafstiben wurden verwendet, um
die auf Zell- und Gewebeebene induzierte strukturelle Umgestaltung zu untersuchen. Eine
Anpassung eines menschlichen Fibroblastenmodells wurde auf zelluldrer Ebene vorgenom-
men, um die Elektrophysiologie von Myofibroblasten wihrend des Vorhofflimmerns zu
reproduzieren. Zusitzlich wurde der Einfluss des Calciumhandlings auf die Elektrophysiolo-
gie der Myofibroblasten durch Anpassen des Calciumionenkanals an experimentelle Daten
untersucht. Auf Gewebeebene wurde die Infiltration von Myofibroblasten untersucht, um die
Zunahme der Anfilligkeit fiir Herzrhythmusstdrungen zu quantifizieren. Myofibroblasten
veridndern die Dynamik hin zu pathologisch kreisenden Erregungen. Eine geringe Dichte von
Myofibroblasten ermoglicht die Ausbreitung der Depolarisationswelle durch den fibrotischen
Bereich und erzeugt fokale Aktivititsaustrittspunkte und Wellenbriiche innerhalb dieses
Bereichs. Dariiber hinaus spielt die Zusammensetzung der Fibrose eine Schliisselrolle bei
der Verinderung des Ausbreitungsmusters der Depolarisationswelle. Die Anderung des
Ausbreitungsmusters beeinflusst die an der Oberfliche des Gewebes berechneten Elektro-
gramme. Die Elektrogrammmorphologie veridndert sich in Abhéngigkeit von der Anordnung
und Zusammensetzung des fibrotischen Gewebes.

Detaillierte Herzgewebemodelle wurden mit realistischen Modellen der kommerziell
erhiltlichen Untersuchungskatheter kombiniert, um die klinisch aufgezeichneten Signale zu
verstehen. Ein Rauschmodell wurde aus klinischen Signalen erstellt, um die Signalartefakte
im Modell zu reproduzieren. Elektrogramme aus hochdetaillierten Bidomainmodellen wur-
den verwendet, um einen Algorithmus fiir maschinelles Lernen zur Charakterisierung des
atrialen fibrotischen Substrats zu trainieren. Merkmale, die die Komplexitit der Signale quan-
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tifizieren, wurden extrahiert, um die Dichte und Transmuralitit der Fibrose zu identifizieren.
AnschlieBend wurden Fibrosekarten unter Verwendung von Patientenaufzeichnungen als
Proof of Concept erstellt. Die Fibrosekarte liefert Informationen iiber das fibrotische Substrat,
ohne den hiufig klinisch verwendeten Grenzwert von 0,5 mV zu verwenden. Dariiber hinaus
wurde in dieser Studie unter Verwendung von Messmethoden wie der Transferentropie aus
der Informationstheorie in Kombination mit gerichteten Graphen die Wellenausbreitungsrich-
tung verfolgt. Die Transferentropie liefert in Kombination mit gerichteten Graphen wichtige
elektrophysiologische Informationen, um die Dynamik der Wellenausbreitung wihrend des
Vorhofflimmerns zu verstehen.

Zusammenfassend stellt diese Arbeit eine In-Silico-Studie von der Zelle zu detaillierten
Herzgewebemodellen vor, die Einblicke in die zelluldren Mediatoren bietet, die fiir den
Umbau der extrazelluldren Matrix und ihrer Elektrophysiologie verantwortlich sind. Dariiber
hinaus prisentiert die Arbeit eine Simulationsumgebung zum Erstellen von realistischen
In-Silico-Daten, die in klinische Anwendungen iibersetzt werden konnen, um Ablationsbe-
handlungen zu unterstiitzen.



Resumen

La fibrilacién auricular es la arritmia cardiaca mds comtn. Durante la fibrilacién auricular, el
sustrato auricular sufre una serie de cambios o remodelados a nivel eléctrico y estructural. La
remodelacién eléctrica se caracteriza por la alteracion de una serie de canales i6nicos, lo que
cambia la morfologia del potential de transmembrana conocido como potencial de accién.
La remodelacién estructural es un proceso complejo que involucra la interaccién de varios
procesos de sefializacidn, interaccion celular y cambios en la matriz extracelular. Durante la
remodelacion estructural, los fibroblastos que abundan en el tejido cardiaco, comienzan a
diferenciarse en miofibroblastos que son los encargados de mantener la estructura de la matriz
extracelular depositando coldgeno. Ademds, la sefializacién paracrina de los miofibroblastos
afecta a los canales i6nicos de los miocitos circundantes.

Se utilizaron modelos computacionales muy detallados a diferentes escalas para estudiar
la remodelacién estructural inducida a nivel celular y tisular. Se realizé una adaptacién de
un modelo de fibroblastos humanos a nivel celular para reproducir la electrofisiologia de
los miofibroblastos durante la fibrilacion auricular. Ademas, se evalu6 la exploracion de
la interaccién del calcio en la electrofisiologia de los miofibroblastos ajustando el canal de
calcio a los datos experimentales. A nivel tisular, se estudio la infiltracién de miofibroblastos
para cuantificar el aumento de vulnerabilidad a una arritmia cardiaca. Los miofibroblastos
cambian la dindmica de la reentrada. Una baja densidad de miofibroblastos permite la
propagacion a través del drea fibrética y crea puntos de salida de actividad focal y roturas de
ondas dentro de esta drea. Ademds, las composiciones de fibrosis juegan un papel clave en la
alteracion del patrén de propagacién. La alteracion del patrén de propagacion afecta a los
electrogramas recogidos en la superficie del tejido. La morfologia del electrograma se alterd
dependiendo de la disposicién y composicién del tejido fibrético.

Se combinaron modelos detallados de tejido cardiaco con modelos realistas de los
catéteres de mapeo disponibles comercialmente para comprender las sefiales registradas
clinicamente. Se gener6é un modelo de ruido a partir de sefiales clinicas para reproducir los
artefactos de sefial en el modelo. Se utilizaron electrogramas de modelos de dos dominios
altamente detallados para entrenar un algoritmo de aprendizaje automdtico para caracterizar
el sustrato fibrético auricular. Las caracteristicas que cuantifican la complejidad de las
seflales fueron extraidas para identificar la densidad fibrética y la transmuralidad fibrética.
Posteriormente, se generaron mapas de fibrosis utilizando el registro del paciente como
prueba de concepto. El mapa de fibrosis proporciona informacion sobre el sustrato fibrético
sin utilizar un valor tnico de corte de 0,5 milivoltios. Ademas, utilizando la medicién del

vii



viil

flujo de informacién como la entropia de transferencia combinada con gréficos dirigidos, en
este estudio, se siguio la direccién de propagacién del frente de onda. La transferencia de
entropia con graficos dirigidos proporciona informacién crucial durante la electrofisiologia
para comprender la dindmica de propagacién de ondas durante la fibrilacién auricular.

En conclusion, esta tesis presenta un estudio in silico multiescala que proporciona
informacion sobre los mediadores celulares responsables de la remodelacién de la matriz
extracelular y su electrofisiologia. Ademads, proporciona una configuracién realista para
crear datos in silico que pueden ser usados para aplicaciones clinicas y servir de soporte al
tratamiento de ablacion.



Resum

La fibril-laci6 auricular és 1’arritmia cardiaca més freqiient, en la qual el substrat auricular
patix una serie de remodelacions electriques i estructurals. La remodelacié de tipus electric
es caracteritza per I’alteracié d’un conjunt de canals ionics que modifica la morfologia
del voltatge transmembrana, conegut com a potencial d’accié. La remodelacié estructural
és un fenomen complex que implica la relaci6 entre diversos processos de senyalitzacio,
interaccions cel-lulars i canvis en la matriu extracel-lular. Durant la remodelacié estructural,
els abundants fibroblasts presents en el teixit cardiac comencen a diferenciar-se en miofibrob-
lasts, els quals s’encarreguen de mantenir I’estructura de la matriu extracel-lular dipositant-hi
col-lagen. A més, la senyalitzaci6 paracrina dels miofibroblasts amb els miocits circumdants
també afectara els canals iOnics.

Es van utilitzar models computacionals molt detallats a diferents escales per estudiar
la remodelacié estructural induida a nivell tissular i cel-lular. Es va fer una adaptaci6 a
nivell cel-lular d’un model de fibroblasts humans per reproduir-hi 1’electrofisiologia dels
miofibroblasts durant la fibril-lacié auricular. A més, 1I’exploracié de la interaccié del calci
amb I’electrofisiologia dels miofibroblasts va ser avaluada mitjangant I’adequacio del canal de
calci a les dades experimentals. A nivell tissular es va estudiar la infiltracié de miofibroblasts
per tal de quantificar I’augment de vulnerabilitat que aix0 conferia per patir una arritmia
cardiaca. Els miofibroblasts canvien la dinamica de la reentrada, i presentar-ne una baixa
densitat permet la propagacié a través de la zona fibrotica, tot creant punts de sortida
d’activitat focal i trencaments d’ones dins d’aquesta area. A més, les composicions de fibrosi
tenen un paper clau en I’alteraci6 del patré de propagaci6, afectant els electrogrames recollits
en la superficie del teixit. La morfologia dels electrogrames es va veure alterada en funcié
de la disposicié i la composici6 del teixit fibrotic. Per comprendre els senyals clinicament
registrats es van combinar models detallats de teixits cardiacs amb models realistes dels
cateters de cartografia disponibles comercialment. Es va generar un model de soroll a partir
de senyals clinics per reproduir-hi els artefactes de senyal. Es van utilitzar electrogrames
de models de bidominis molt detallats per entrenar un algoritme d’aprenentatge automatic
destinat a caracteritzar el substrat fibrotic auricular. Les caracteristiques que quantifiquen la
complexitat dels senyals van ser extretes per identificar la densitat i transmuralitat fibrotica.
Posteriorment, es van generar mapes de fibrosi mitjancant la gravacié del pacient com a
prova de concepte. El mapa de fibrosi proporciona informacié sobre el substrat fibrotic
sense utilitzar un sol valor de tensi6 de tall de 0,5 mV. A més, utilitzant la mesura del flux
d’informacié com I’entropia de transferéncia combinada amb grafics dirigits, en aquest estudi
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es va fer un seguiment de la direccié de propagacié de I’ona. L’entropia de transferéncia
amb grafics dirigits proporciona informaci6 crucial durant 1’electrofisiologia per entendre la
dinamica de propagacié d’ones durant la fibril-laci6 auricular.

En conclusid, aquesta tesi presenta un estudi multi-escala in silico que proporciona
informacié sobre els mediadors cel-lulars responsables de la remodelacié de la matriu
extracel-lular i la seva electrofisiologia. A més, proporciona una configuracié realista per
crear dades in silico que es poden traduir a aplicacions cliniques que puguen donar suport al
tractament de 1’ablacid.
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Chapter

Infroduction

1.1 Motivation

Atrial fibrillation (AF) is the most common arrhythmia and is characterized by irregular
electrical activity. The estimated worldwide prevalence of AF in adults is between 2%
and 4%, and undiagnosed AF is expected to increase 2.3-fold in the general population.
Increasing age is a prominent AF risk factor, but other comorbidities (arterial hypertension,
diabetes mellitus, obesity, autoimmune diseases, among others) are potent contributors to
AF development and progression [1]. However, AF development and maintenance resulting
from the interaction with substrate remodeling known as fibrosis is still under study.

The atrial substrate is a complex structure composed of approximately 75% cardiac
myocytes of the tissue volume [2]]. The remaining 25% of the volume can contain different
types of cells, i.e., non-cardiomyocytes, that can be electrically connected and could affect
cardiac electric propagation [3H6].

During persistent atrial fibrillation, the atrial substrate undergoes electrical and structural
remodeling. This involves ion channel remodeling [7], fibroblast differentiation [8], changes
in the extracellular matrix and inflammatory processes [9]]. Inflammatory signaling plays
a key role in the electrical and structural remodeling [[10], causing alteration of the action
potential [11]] and differentiation of fibroblasts into myofibroblasts [12} |[13]]. Myofibroblasts
are the cells responsible for maintaining the extracellular matrix and can be electrically
connected to the cardiac myocytes [8} (14, [15]].

This heterogeneity of the atrial substrate alters the cardiac propagation wavefront, and
the dynamics of arrhythmia [16]. Electro-anatomical mapping of the atrial tissue gives a
global overview of different patterns of propagation and shows regions that are associated
with fibrosis or structural remodeling [[17, [18]. Different characteristics of the cardiac tissue
can change the dynamics of excitation propagation and alter arrthythmia patterns and affect
the morphology of the intracardiac signals. Fractionation of electrograms and a single cut-off
voltage value of 0.5 mV are used in clinical practice to define low voltage areas but might be
not sufficient to characterize the cardiac substrate [19].



2 Chapter 1. Introduction

Based on electrogram features at the surface of the tissue, Campos et al. classified
different fibrosis types using in silico experiments [20]. However, quantification of fibrotic
volume fraction and transmurality in the atrial substrate has not been reported yet. Data-driven
approaches can help to overcome the use of a single voltage cut-off value to characterize the
cardiac fibrotic substrate based on a more comprehensive, holistic set of criteria.

Additionally, structural modified cardiac substrate alters the propagation. During persis-
tent AF, the electrical activity is chaotic, and the identification of the wavefront propagation is
not trivial. Granger causality has been proposed as a measurement that globally characterizes
the organization of the wavefront propagation and maps rotational drivers using low spatial
resolution sequentially acquired data [21]. However, it requires sequentially recorded seg-
ments longer than 2.5 seconds, which are not commonly found in clinical electrophysiology
studies. Transfer entropy quantifies the electrogram’s information flow and can be used to
characterize the wavefront propagation for short recorded segments.

Computational modeling provides a better insight into the mechanistic role of fibrotic
tissue characteristics in the initiation and maintenance of arrhythmias [22]. Recently, de-
tailed computational models of the atria have been applied to understand the fibrotic tissue
composition and their effect on the electrical propagation [23H25]] as well as the electro-
grams collected over these regions [22], 26| 27]]. Relevant characteristics of the electrograms
can show how tissue heterogeneities influence their morphology [28] and help on future
therapies [[17, 29].

1.2 Objectives of the Thesis

The main objective of this thesis is to study the electrical propagation in the atrial substrate
in patients with atrial fibrillation using in silico experiments and data-driven techniques.
Computer modeling and simulation will allow to reproduce the biophysical phenomena of
the electrical propagation at different levels and data-driven techniques help to characterize
the fibrotic substrate from electrogram signals and create maps that could be used to guide
ablation therapies.
More specifically, this thesis aims to achieve a better understanding of the following
research questions:
o Characterization of the fibroblast/myofibroblast electrophysiology and its impact on
atrial myocyte action potential.
o Analysis of the role of calcium channels in myofibroblast electrophysiology and its
intracellular calcium handling system.
o Quantification of the impact on arrhythmogenicity of myofibroblast infiltration in atrial
tissue during atrial fibrillation.
o Investigation of fibrosis composition and the effect on electrogram signals.
o Analysis of the use of electrogram signals to characterize fibrotic substrate.
o Investigation of the use of non-parametric measurements to understand the electrical
propagation in cardiac tissue.
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1.3 Structure of the Thesis

Part I presents the motivation, the necessary medical and technical fundamentals, and the
state of the art to put the research described in this thesis into context.
o Chapter 2 provides an overview of cardiac anatomy and the pathophysiology of AF
and fibrosis.
o Chapter 3 reviews the computational models used in this thesis.
o Chapter 4 gives an overview of the clinical electro-anatomical systems used in electro-
physiological studies.

Part II describes the in silico experiments to understand myofibroblast electrophysiology
that conforms fibrotic tissue.
o Chapter 5 shows the results obtained using the myocyte model adaptation to simulate
electrophysiological heterogeneity.
o Chapter 6 contains the simulation results of fibroblasts coupling to human atrial
myocytes.
o Chapter 7 contains the in silico experiments of myofibroblast electrophysiology.

Part III describes the tissue level simulations, which analyze fibrosis’s influence on the
wave front propagation.

o Chapter 8 shows the effect of myocyte-myofibroblast coupling in the atrial tissue
during atrial fibrillation.

o Chapter 9 contains the simulation results of the fibrotic tissue composition and the
effect on electrograms signals.

o Chapter 10 shows the importance of using a realistic geometry of catheters in the in
silico experiments.

o Chapter 11 shows the use of in silico simulations and machine learning to characterize
the atrial fibrotic tissue composition.

o Chapter 12 shows the results of using a non-parametric statistic measurement to
characterize the electrical propagation in cardiac tissue.

Part IV describes the translation of the created models to clinical applications to identify
and characterize fibrotic substrate and wave front propagation.
o Chapter 13 gives an overview of the application of fibrosis maps to guide ablation
therapies.
o Chapter 14 gives an overview of the directed graph information flow vector field map
to show the electrical propagation in clinical data.

Part V presents the conclusions and possible future works from this thesis.
o Chapter 15 concludes the use of in silico studies and the translation to clinical applica-
tions.
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o Chapter 16 gives a brief outlook for future studies.

During my research at the KIT and at the UPV, I published one journal paper, eight
conference contributions as first author, and an additional journal publication is under review.
As a co-author, two journal papers, one conference contribution were published, and an
additional journal publication is under review. Moreover, I supervised four student final
degree theses that partly form the basis of the work presented here. Both publications and
student theses are referenced in the corresponding sections of this thesis.
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Chapter 2

Medical fundamentals

2.1 Atrial anatomy and physiology

In this chapter, the fundamentals of cardiac anatomy, physiology, modeling, and electro-
anatomical mapping are described. These concepts are essential to understand the studies
presented in the subsequent parts and to put them into context. After a brief description of
atrial anatomy and physiology, cardiac electrophysiology is summarized. Then, the state
of the art in clinical mapping systems is presented. For a more in-depth introduction to the
different topics, interested readers are referred to the cited bibliography.

2.2 Atrial fibrillation

Atrial fibrillation (AF) is a global health care issue, with an increasing prevalence and
incidence worldwide. Several theories have been proposed for the AF increase, including the
rising prevalence of AF risk factors such as obesity, diabetes, auto-immune diseases, and
aging of the population (Figure [2.1)).

During AF the atrial substrate undergoes an electrical and structural remodeling which
increases the tissue’s vulnerability to fibrillation initiation and maintenance. As a conse-
quence of AF, an increased risk of stroke and transient ischemic attack have been reported.
Furthermore, AF-related strokes could lead to long-term disability or death.

2.3 Anatomy of the human heart

The heart is a four chamber hollow organ whose main function is to pump blood into the
circulatory system. The human heart lies within the thorax, posterior to the sternum and
costal cartilages, and rests on the diaphragm’s superior surface. The heart occupies a space
between the two lungs in an oblique position, with two-thirds to the left of the thorax’s
midline.
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Figure 2.1: Atrial fibrillation risk factors can originate or modify the cardiac substrate. Atrial fibrosis,
inflammatory mediators, cellular, and molecular changes can modify the substrate arising an electrical
and structural remodeling and the development of additional risk factors and cardiovascular diseases.
Atrial fibrillation is not a deadly arrhythmia but increases the risk of stroke, heart failure, myocardial
infarction, dementia, and others. Adapted from

The pericardium is a serous membrane that surrounds the heart. In the inferior region,
the pericardium is attached to the diaphragm. In the anterior region, the superior and inferior
pericardiosternal ligaments fix the pericardium to the sternum. The pericardial space contains
a lubricating substance called pericardial fluid.

The two upper chambers, i.e. the atria, work as collecting chambers; the two lower
chambers, i.e. the ventricles, pump blood out of the heart. The septum separates the heart
into the left and right sides. The right side collects the blood coming from the circulatory
system and pumps the blood for oxygenation. The oxygenated blood comes from the lungs
to the heart’s left side, which pumps the blood back to the circulatory system (Figure [2.2).

The right atrium has three anatomically distinct regions: the posterior wall, the anterior
wall, and the interatrial septum. The posterior portion has a smooth wall and holds most of
the structures of the right atrium. It receives blood through both the superior and inferior
vena cavae and the coronary sinus. It also contains the fossa ovalis, the sinus node, and
the atrioventricular node. The wall of the anterior portion of the right atrium is lined with
horizontal, parallel ridges of muscle bundles called pectinate muscles.

The right ventricle wall has abundant, coarse trabeculae carnae. The right ventricle
is communicated with the right atrium through the tricuspid valve. The right ventricle
communicates with the lungs through the pulmonary trunk.
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Figure 2.2: Anatomy and blood flow of the human heart. Blue arrows indicate the blood flow direction
from the circulatory system with deoxygenated blood to the right atrium through the superior and
inferior vena cava. Deoxygenated blood then passes to the right ventricle, which pumps the blood to
the lungs through the pulmonary artery. Red arrows indicate the blood flow of oxygenated blood from
the lungs to the left atrium through the pulmonary veins. Oxygenated blood passes to the left ventricle,
and then it is pumped back to the circulatory system through the aorta.

The left atrium receives the oxygenated blood from the lungs through the left and right
pulmonary veins. The pulmonary veins typically enter the heart as two pairs of veins inserting
posteriorly and laterally into the left atrium (individuals with 3 or 5 pulmonary veins have
also been identified). The posterior and anterior walls of the left atrium are smooth. The left
atrial appendage is characterized by pectinate structures similar to the ones found in the right
atrium.

The left ventricle communicates with the left atrium through the mitral valve. The left
ventricle, as the right ventricle, has abundant trabeculae carneae. In contrast to the right
ventricle, the muscular ridges tend to be relatively thin. However, the myocardium in the left
ventricle wall is much thicker than the right one due to the amount of force that needs to be
developed to pump the blood into the circulatory system.
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2.4 Histology of the heart

The atrial substrate is a complex structure composed of approximately 75% cardiac myocytes
of the tissue volume [2] and the remaining 25%, i.e., non-cardiomyocytes [3H6].

Myocytes in the myocardium are organized in bundles, separated by perimysial fibrous
tissue. Within these bundles, strands of myocytes can be separated from each other by
endomysial fibrous tissue. Structural remodeling due to heart disease is often associated with
fibrosis and increased transverse fiber separation. In the atria, fibrosis between myofibers
increases in volume with aging.

Single myocytes are nucleated specialized muscle cells with an almost cylindrical shape
of 100 um length and 10-25 um diameter. However, in reality, myocytes have an irregular
ellipsoidal shape and align along their principal axis.

Histological cuts from atrial tissues from animals with persistent AF using Masson’s
trichrome stain demonstrated a significant increase in diffuse collagenous stroma in the
atria compared to controls (11.01£2.87% and 3.08+0.77%; P < 0.01) [31]]. Cardiac healthy
tissue presents a lower amount of collagenous fibers. Cardiac cells are electrically connected
through channels known as gap junctions allowing action potentials to spread through the
cardiac tissue.

Fibroblasts play a critical role in wound healing in various organs such as skin, lungs,
liver, heart, among others. Fibroblasts’ contribution to wound healing includes migration,
differentiation, and recruitment of inflammatory cells. Differentiated fibroblasts in the heart
are known as myofibroblasts and are responsible for secreting the extracellular matrix in
response to injury signals. They secrete large amounts of matrix proteins, including collagen
type I, collagen type III, collagen type IV, periostin, and fibronectin (Figure [2.3).

Morphologically, myofibroblasts are spindle shaped cells with large endoplasmic reticu-
lum organelles. The characteristics of myofibroblasts are the expression of alpha-smooth
muscle actin (¢SMA) and the intermediate filament desmin. While these characteristics
are well known, the electrophysiology and the molecular mechanisms in myofibroblast
transdifferentiation in vivo are not well understood.

In patients with AF, various degrees and forms of atrial fibrosis can be found, which
results in conduction disturbances. Atrial fibrosis may be sufficient to increase AF vulner-
ability, as shown in mice with selective atrial fibrosis due to overexpression of TGF-f1, a
cytokine that is expressed during the inflammatory process [13]]. The inflammatory process
triggers the differentiation of fibroblasts into myofibroblasts. Myofibroblasts start depositing
the extracellular matrix that underlie the structural remodeling and are obstacles for electri-
cal propagation. Additionally, myofibroblasts can be electrically connected and introduce
depolarization and repolarization heterogeneities within the cardiac tissue.
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Figure 2.3: Fibroblasts (top left corner) are cells that can differentiate by different triggering stimuli. On
the one hand, mechanical tension can differentiate fibroblasts into proto-fibroblasts (top right corner),
which can also differentiate into myofibroblasts. On the other hand, mechanical tension or inflamma-
tory cytokines can directly differentiate fibroblasts into myofibroblasts. Moreover, after the stimulus is
over, some myofibroblasts can differentiate back into fibroblasts.

2.5 Eletrophysiology of the heart

At the microscopical level and under physiological conditions, the distribution of ions in the
extracellular and intracellular medium across the cell membrane yields a resting membrane
potential of approximately -80 mV in cardiac cells. Ions can move across the membrane
through specific ion channels that can open and close in response to changes in membrane
potential or ligands binding to receptors associated with the channel. The orchestrated
interaction of the ion channels leads to a characteristic transmembrane potential waveform
known as the action potential. The action potential can be divided into four phases concerning
the flux of ions across the membrane (Figure [2.4] (blue trace)). Phase 4 corresponds to the
resting potential. Phase 0 is the phase of rapid depolarization. The membrane potential shifts
into a positive voltage range, mainly characterized by an influx of sodium ions. Phase 1
is the phase of rapid repolarization characterized by an efflux of potassium ions. Phase 2,
the plateau phase, is the longest phase. It is unique among excitable cells and marks the
phase of calcium entry into the cell and potassium efflux. Phase 3 is the phase of rapid
repolarization that restores the membrane potential to its resting value. Gap junctions allow
action potentials to spread through the cardiac tissue in a coordinated manner.

During AF, cardiomyocytes undergo an electrical remodeling of ion channels, which will
shorten the action potential (Figure[2.4] (red trace)). Experimental studies have revealed a
decrease in Ic,r, Lo, Lsus, and Igy, currents as factors underlying action potential shortening.
It has also been observed an increase in Ig;. Additionally, several studies have reported
alterations in the proteins that form the gap junctions connexin 40 (Cx40) and/or connexin
43 (Cx43) in patients with AF. Other studies have reported lateralization of connexins, with
an increased heterogeneity in Cx40 distribution and a reduction of Cx43 [32].
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Figure 2.4: Physiologaical human atrial action potential (blue trace) and persistent atrial fibrillation
action potential (red trace). The four characteristic phases of the action potential are shown with the
main ion flux. Cardiac myocytes are in a resting state (Phase 4) mainly maintained by K*. When the
cell is stimulated, it depolarizes (Phase 0) characterized by an influx of Na*. It is followed by rapid
repolarization (Phase 1) and a plateau phase (Phase 3). The cell then recovers its resting state (Phase
4).

At the macroscopical level (Figure [2.3)), the electrical activation of the heart starts at the
sinus node. Sinus node cells are self-excitatory pacemaker cells. The activation propagates
throughout the right atrium and to the left atrium through Bachmann’s bundle from the sinus
node. The atrioventricular node (AV node), located at the atria and ventricles boundary,
provides the only conducting path from the atria to the ventricles. A specialized conduction
system provides propagation from the AV node to the ventricles. This system is composed
of a common bundle, called the bundle of His, which separates into two bundle branches
propagating along each side of the septum, constituting the right and left bundle branches.
The ventricular myocardium activation is performed from the apex to the base and from the
endocardial side to the epicardial side.
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Figure 2.5: The heart’s electrical activation starts at the sinus node, which is located in the right atrium.
The depolarization wave travels across the right atrium to the atrioventricular node and the left atrium
across the Bachmann'’s bundle. The depolarization wave passes to the ventricle from the atrioventric-
ular node to the bundle of His. Its distal section splits into the left and right bundle branches and into
the Purkinje fibers, which activate the ventricular myocardium.

Fibrosis, considered as structural remodeling of the cardiac substrate, can notably alter
the electrical propagation (Figure [2.6). Fibrotic tissue has been shown to attract and anchor
rotational activity. However, it is still unclear how fibrosis alters atrial fibrillation dynamics
and increases the vulnerability to atrial fibrillation.



Figure 2.6: Late-gadolinium enhanced magnetic resonance and histological cuts from hearts that suf-
fered from atrial fibrillation. a) Low density of fibrosis, where magenta color indicates cardiac myocytes
in the tissue. b) Mid-fibrosis density where the amount of collagen (blue) was increased in the histolog-
ical cut. c) High fibrosis density, histological cut reveals a considerable amount of collagen present in
the tissue and a few cardiac myocytes. Adapted from [33].



Chapter 3

Computational modeling of
cardiac electrophysiology

In this chapter, the basic concepts of computational models of cardiac electrophysiology are
introduced. The mathematical formulations cover different scales from single cell ion channel
to the tissue level of the electrical propagation and forward calculation of the intracardiac
signals.

3.1 Cardiac cell modeling

In 1952 Alan Hodgkin and Andrew Huxley were the first scientists to describe the ionic
mechanisms underlying the action potential initiation in the squid giant axon [34]. The
neuron cell was modeled using an analogy to an electric circuit where the cell membrane is
represented as a capacitor. Ion channels are represented as variable conductances. Specific
ions can flow through ion channels driven by the electrochemical gradient, represented by
voltage sources, and current sources representing ion pumps. The transmembrane voltage is
determined by the sum of all currents across the membrane as described in Eq[3.1]

dv,
In= Cmd—t’” +E 1 (3.1)

where I, is the total current across the cell membrane, C,, is the cellular membrane
capacitance, % is the derivative of the transmembrane voltage with respect to the time, and
I is the ion current flow for a specific ion species (Na*,K*, Ca?*).

In the Hodgkin-Huxley formulation, channel conductance is assumed to be controlled by
gates that take on values between zero and one, representing the cells’ portion in one state.
Since cells have thousands of ion channels, the current flow produced by ion species passing

through a channel is described by Eq.

Iy :ngnn(Vm —Ey)
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where g, is the maximum conductance of the channel and 7, is a product of all gating
variables. The gating variable is assumed to follow first order dynamics (Eq.[3.2).

n _
dr

nw(vm) B n
(V) (1—1n)=p(Vu)n = ———F——
where o and 3 are rates which can be cast into an equivalent form of a steady state value
(M) and a rate of change (7).

3.2 Tissue and organ modeling

As previously mentioned in chapter 2] cardiac cells are electrically connected via gap
junctions. The mathematical model that describes the electrical propagation’s biophysical
phenomena in cardiac tissue is known as the bidomain model. The bidomain model rep-
resents cardiac tissue as a homogeneous medium of the intracellular and the extracellular
domains. The two computational domains coexist in the bidomain model and occupy the
same geometrical space.

V- (oY) = Bln (3.2)

V- (G€V¢€)) = _Blm _Ie,s (3.3)

Im == Cm% +Ii()n(Vm, V) - Itrans (3~4)
ot

Vin = 0i — ¢ (3.5)

¢ represents the electrical potential, the indices i and e refer to the intracellular and
extracellular spaces, respectively. o is the conductivity tensor, f is the surface to volume
ratio of the myocytes, and /j,, the total transmembrane ionic current density from the cellular
model. The latter is dependent on Vj,, and a vector v of further state variables. I;,4s, a
transmembrane current density stimulus, and /., an extracellular current density, describe
external stimuli. If a bath surrounds a tissue, the bath is treated as an extension of the
extracellular space.

Adding (3.2) and (3.3)) and incorporating it into (3.5)) yields:

V-(0i+0,)Vp=—V-(6;VV,) — Lo (3.6)

V- (0;VVyy) ==V-(6:V.) + By (3.7)

The monodomain model assumes that the intra- and extracellular domains have equal
anisotropy ratios. Although it is a simplification of the bidomain model, it is still valid to
study the electrical propagation in the cardiac tissue.
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In case of equal anisotropy ratios, the tensors can be related by a scalar, A, such as in

Eq[3.8]

o, = Ao; (3.8)

we can recast the bidomain equation in a simpler form. Plugging Eq. [3.8]into [3.2]and
using [3.5]yields

V- Gl'V(P,' = ﬁlm —1 (3.9)

1
V.-o;V¢.=V-0;V§;—V-0,VV, = _I(ﬁl’" +1,). (3.10)

Subtracting from [3.9|and multiplying with A /(1 + 1) results in

A 1 A
—V.o;VV,, =8+ ——F1.— ——1I,. 3.11
Now, subtract[3.9]from [3.11] to obtain
A 1 A
——V.o;VV,, = B], — 1, ——F1;. 3.12
7B1rr
(1+A)V-0;Vp,=—-V-0;VV,, — I, — I, (3.13)

As indicated in Eq.[3.12] the combined effect of the intracellular and extracellular injected
stimulus currents can be interpreted as a depolarizing transmembrane stimulus if we define

A LI—LI- (3.14)
TR \1I+AC 1+A)T '

The choice I, = —1; at any given site is equivalent to a transmembrane current stimulus
of strength 1;/3, that is,

BI, = — LI—LI- - —LI»—LI- - —ﬂ[ =1I. (3.15)
e 1+4°° 1417 1+A" 1+2") 1+A7")

This is consistent with the assumption that the injection of a positive current /; into the
intracellular space increases ¢; which exerts a depolarizing effect upon V,, = ¢; — ¢..

In this case the current terms in Eq. [3.13|cancel out. As expected, any current injected in
one domain is withdrawn at the same spot in the other domain. Therefore no current flow
occurs as a consequence of 7, or I; and no extracellular potential field is set up. All changes
in ¢, are caused indirectly then via changes in V.

Eqgs. reveal that, unlike in the bidomain model where ©, # Ao; holds, the
temporal evolution of the transmembrane voltage in Eq. [3.12]is fully independent of ¢.
Hence, if only the evolution of V,, is of interest, only Eq.[3.12needs to be solved, but not the
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elliptic PDE given by which is a more expensive task. For more detailed considerations
we refer the reader to the report by Nielsen et al [35].

The monodomain model is an approximation which can be used whenever the effect
of extracellular fields upon tissue polarization can be ignored. As mentioned above, since
the temporal evolution of the V,, in Eq. [3.12]is fully independent of ¢,, any changes in the
extracellular potential fields cannot exert any influence upon V,,,.

Therefore, under the assumption of equal anisotropy ratios one needs to solve only the
parabolic PDE above with the intracellular conductivity set to twice the harmonic mean,
0,0.(0; +0,) . This yields

V- (64VVi) = Bl + BLr (3.16)

where the bidomain equivalent monodomain conductivity o, is given as

O, = 0;0,(0; + Ge)’l. (3.17)

Simulations were run using two different software packages. One of the software
was developed during this thesis in the UPYV, in which the source code was based on the
acceleration of the cardiac monodomain simulations using GPUs [36]. As part of the research
project at KIT, simulations were then migrated and extended to bidomain simulations and
ran under the developed software openCARP (www . opencarp.orqg) [37,138].
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Chapter 4

Electro-anatomical mapping

In this chapter, an introduction to clinical electro-anatomical mapping systems is presented.
An overview of mapping catheters, intracardiac signals, and maps generated to guide ablation
therapies is given.

4.1 Intracardiac signails

Single electrodes capture the extracellular potential in respect to a far away reference ground
electrode. These recorded signals are known as unipolar electrograms. Unipolar electrograms
are strongly affected by different artifacts from the patient and the recording system, and by
the clinical environment.

The difference between two signals from neighboring electrodes constitutes a bipolar
electrogram, which is the most common waveform used during a typical clinical electrophys-
iology study.

The main advantage of bipolar recordings is far-field rejection. Far-field artifacts present
in a unipolar signal are removed from the bipolar signal because each electrode of the
bipolar pair perceives a similar far-field voltage signal. Consequently, using a high-pass filter
with a higher cut-off frequency, such as 30 Hz, for bipolar signals helps minimize baseline
drifts/shifts, with no further loss of information. One of the drawbacks of using bipolar
electrograms is that they are affected by the orientation of the electric propagation wavefront.

In the last years, omnipolar electrograms have emerged with the advantage of over-
coming the directional dependence of the bipolar electrogram. The omnipolar electrogram
calculation looks at all possible bipolar electrode orientations and obtains the electrode
orientation—independent electrograms along the maximal bipolar direction.

4.2 Mapping catheters

Available mapping catheters have different shapes and electrode characteristics depending
on the manufacturer (Figure [4.T)). In silico experiments have shown that different electrode

19
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sizes can influence the recorded voltage [39]. Smaller electrodes typically result in sharper
and shorter EGM duration. Therefore, the amplitude of a bipolar electrogram depends on the
electrode size, the angle of incidence between the catheter and tissue [40], and the orientation
of the bipole relative to the wavefront propagation. The design of most multi-electrode
catheters with small electrodes allows reducing the influence of the angle of incidence.
Computer and animal models suggest an optimal spatial resolution with electrodes sizes of
1 mm.

(A) (C)

—

—
) / (B)

Figure 4.1: Commercially available mapping catheters. A) Circular loop catheter; B, Five-splined
catheter (PentaRay, Biosense Webster); C, Linear catheter (Decapolar, Biosense Webster); D, Grid
catheter (HD Grid, Abbott); E, Mini-basket catheter (Orion, Boston Scientific); F, Basket catheter (Con-
stellation, Boston Scientific). Adapted from [41].

Commercially, there are several mapping catheters that are commonly used in the daily
clinical practice for an electrophysiological study. Table 4.1 summarizes the characteristics
of the electrode, such as size, interelectrode space, and diameter of the catheters used in this
thesis.
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Table 4.1: Commercially available cardiac mappping catheters

Model Manufacturer Number of Electrode size Spacing (Edge Spacing
electrodes (mm) to Edge) recorded

(Center to
Center)

Lasso Biosense 20 1 2-6-2 3

Webster

HD Grid Abbott 16 or 32 1 3 4

IntellaMap Boston Scien- 64 0.9x0.45 1.6 25

Orion tific

4.3 Clinical maps

The electro-anatomical mapping system is a fundamental tool for guiding ablation procedures.
The term electro-anatomical mapping is related to the assignment and displays encoded
information (i.e., voltage, activation time) according to its spatial coordinates.

Type Time  Comment

0.08 Lass.. 1624 N/A Mar Loca

Figure 4.2: Patients calculated voltage map during an electrophysiology study. The voltage map at the
right indicates the high or low voltage amplitude derived from the electrograms showed at the left. In
this specific case, purple color indicates values above a defined voltage cut-off value of 0.3 mV.

The distribution of voltage on the cardiac surface is used to identify pathological tissue
or fibrotic areas with a cut-off value. In the ventricle, Marschlinski et al. [42]] using an
ablation catheter with a large tip, determined a low voltage cut-off value ranging from 0.5 mV
to 1.5mV in ischemic regions. Other studies have validated the threshold of 1.5mV in
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animal models of transmural myocardial infarction. However, for fibrosis, only post-infarct
scars have been validated. Whole-heart histology in non-ischaemic cardiomyopathy has
highlighted that no specific voltage cut-offs can be found, as fibrosis patterns and architecture
are different from ischaemic cardiomyopathy.

In clinical practice, bipolar peak-to-peak voltage is of great importance, and a single cut-
off value of 0.5 mV is commonly used to identify fibrotic areas in the atria [43]. Nevertheless,
this cut-off value has not yet been standardized and differentiated from patient to patient due
to the fibrosis microarchitecture [44]].
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Chapter 5

Human atrial myocyte
electrophysiology

The Koivumiki et al. [45] mathematical model of human atrial cells is suitable for investigat-
ing heterogeneous myocyte-to-myocyte electrical coupling, atrial fibrillation electrical re-
modeling, and the heterocellular electrical coupling between myocyte-to-non-cardiomyocyte
cells such as fibroblast/myofibroblast. The myocyte model conductances were fitted to obtain
different action potentials to simulate the electrophysiology from different human atrial
regions, as will be detailed in this section.

5.1 Methods

From Eq. the maximum conductances g, were fitted to reproduce physiological action
potentials of the human atria. The conductance of five ionic currents: transient outward K*
current (I,), potassium rapid current (Ix;), potassium slow current (Igs), time-independent
K+ current (Ig1), and L-type Ca%* current (Ic,r) were fitted using the least-squares fitting
method to reproduce experimental data of the action potential, as proposed in previous
simulation studies [46), |47]].

As many experimental data have the action potential duration at its 90 percent (APDgg)
and the resting membrane potential (RMP), the cost function was defined as in Eq.

10— \/2?1<APDgopred,-—APDgo)2 . \/z;?1<1<’1\4PW,~—RMP)2 o

n n

The fitted models were then simulated for 10000 seconds to ensure long term stability.

Furthermore, the cardiomyocyte model ionic channels were changed to reflect the elec-
trical remodeling during persistent AF in all atrial regions by modifying ion channel con-
ductances for I, , Iio, Ik, sustained outward K* current (Igys), Na*/Ca?* exchanger (NCX),
sarcoplasmic reticulum Ca?* ATPase (SERCA) pump, and ryanodine receptors (RyR), and
specific calcium handling parameters, such as phospholamban (PLB), sarcolipin (SLN), and

25
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the baseline phosphorylation (phos). Dilation was also modeled by increasing the length of
the cell by a factor of 1.1 as proposed by Koivumiki et al. [48]].

At the cellular level in silico experiments offer a wide range of possibilities to investigate
in detail the electrophysiology of single cells.

Following the law of the conservation of charge, the total net flux of ions across a specific
channel can be quantified using the area under the ionic current curve along time. The total
net flux can be used to identify differences in ion channels during pathological events such
as AF or because cellular coupling was altered.

The action potential is a characteristic trace of the transmembrane voltage along time.
In the action potential, we can measure several biomarkers such as APDgg, the amplitude
(APA), RMP, and the change rate of the membrane potential at repolarization (dV/dtpx)

Additionally, the action potential duration (APD) is closely related to the frequency of
stimulation. The faster the cell is paced, the less time has the cell to recover its initial state.
This has been identified as a potential mechanism for arrhythmia. To better understand the
changes of APD in relation to the stimulation frequency, the concept of restitution curves has
been established. The steepness of the APD restitution curve and local tissue refractoriness
are both thought to play important roles in arrhythmogenesis.

The restitution curve’s dependence on its preceding pacing history was investigated by
the standard extra-stimulus (S1-S2) restitution protocol (Figure [5.1). Single myocytes were
stimulated with 5 pulses (S1) at an initial cycle length of 1000 ms followed by an extra-
stimulus (S2) where the coupling interval is progressively shortened. Restitution curve’s
slope is an indicator of arrhymogencity [49]. Maximum slope values less than 1 have been
shown to be less arrhythmogenic than slope values higher than 1.

Restitution Protocol: S1-S2

r Y Y

Prepacing nbeats x 51 nbeats x S1 nbeats x S1

A A A
" r

A

BCL _
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S2=CI1-ACI =
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Figure 5.1: Single cell restitution stimulation protocol. The protocol starts with an initial pre-pacing pe-
riod where a number of defined stimuli are delivered at the chosen basic cycle length (BCL) to stabilize
the action potential. After stabilization, BCL is kept constant, but prematurity of the coupling interval
(CI) of the S2 decreases until the final S2 Cl. Adapted from [50]
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5.2 Results

Atrial electrophysiology heterogeneity was produced for single cell action potential simu-
lations with a BCL of 1000 ms. Fitted relative values for each atrial region with respect to
their maximum conductance are shown in Table[5.1} APDgg values in Table 5.1 matched the
reported experimental values for different regions of the atria [[7}, [S1H54]].

Figure[5.2h depicts action potentials under normal sinus rhythm and Figure[5.2p action
potentials under peAF conditions in the different atrial regions. This study highlights
the differences in APDyq for four characteristic atrial regions, which are common areas
where reentrant activity can be maintained or where ectopic beats are originated. Under
physiological conditions, APDgg was 236.4 ms for RA, 214 ms for LA, 176.1 ms for PV, and
292.8 ms for CT. However, under peAF conditions APDgy was 165.5 ms, 139.8 ms, 120.8 ms,
and 180.2 ms for the RA, LA, PV, and CT, respectively.
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Figure 5.2: a) Human atrial action potential heterogeneity under physiological conditions. b) Human
atrial action potential heterogeneity under the electrical remodeling due to persistent atrial fibrillation.

APDgq decreased by 40% for RA, LA, and CT and by approximately 30% for PV with
respect to normal conditions. In peAF, in addition to APD shortening, RMP dropped from
-75mV to -79mV, and dV/dt,,x increased from 163 V/s to 168 V/s for RA, CT, and LA.
RMP fell from -68 mV to -78 mV, and dV/dt,x rose from 157 V/s to 165 V/s for PV.

APD restitution curves show the behavior of single cells from different regions of the
atria. Restitution curves in nSR, showed a decrease of APDgy with respect to the diastolic
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Table 5.1: lonic channel conductance and APDgq

28

RA - PM CT BB RAA TV LA PV LAA MV
8to 1.0 0.55 0.5 1.35 1.0 0.25 1.35 1.35 1.0
8kr 1.0 0.55 0.5 2.0 1.35 4.8 1.6 3.20 0.67
8Ks 1.0 1.0 1.0 1.0 1.6 5.12 1.0 1.0 0.67
gcaL 1.0 1.0 1.0 0.8 0.8 0.3 0.67 0.53 1.25
8k1 1.0 1.0 1.0 1.0 1.0 0.74 1.0 1.0 1.0
Simulated nSR
APDyg (ms) 236.4 292.8 292.8 241.2 220.0 214.5 176.1 199.5 172.6
Simulated
peAF
APDgg (ms) 165.5 180.2 180.2 141.5 141.5 139.8 120.8 136.2 110.1
Experimental
APDgg (ms) 207+18 [55] 289+43 [56] 270.0+10 255+45 [57] 173 [47] 200.0 [58] 178.0 [58] 208.12 [59] 158.0 [47]
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interval (DI) (Figure[5.3)). For nSR, the maximal slope of the restitution curve was 0.77 for
the PV. Furthermore, in peAF, the restitution curve’s maximal slope was decreased (0.39).
Restitution curves for peAF were flattened and shifted in the y axis due to the shortening of
APDyy.
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Figure 5.3: Calculated restitution curves for all the different anatomical regions in the human atria. a)
Under physiological conditions, there is a considerable heterogeneity in the behavior of the cardiac
myocyte in the atria. b) Restitution curves from electrical remodeled myocytes due to persistent atrial
fibrillation were flattened, and the dispersion of the curves was reduced.

Figure[5.3h showed that the myocytes from the pulmonary veins had the steppest slope
(0.77) and a spatial heterogenity in restution of APD. The steep slope in the PV region
is mainly due to the reduced availability of Ic,. compared to the other atrial regions. In
contrast, due to peAF remodeling the slope is decreased due to the reduction of potassium
currents and the spatial hetereogenity in restution curves is reduced for all regions of the

atria (Figure[5.3p).
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5.3 Discussion

In silico experiments allowed fitting an existing ionic model to reproduce the heterogeneous
atrial electrophysiology. Krueger et al. [60] reported the importance of the atrial APD
heterogeneity. In this study, we have also incorporated the difference of RMP in atrial
cellular electrophysiology. The pulmonary veins exhibit a more depolarized RMP of -68 mV,
which is in accordance with several experimental data [61]].

The pulmonary vein has a decreased potassium current compared to other regions of the
left atria. In the atria, APD heterogeneity is notable between the right and the left atrium.
However, the local heterogeneity in the regions of the atria is not considerable. Spatial
heterogeneity of the APD has been demonstrated to be pro-arrhythmic and contributes to the
pathogenesis of atrial arrhythmias in humans [62]], specially in the junction between PV and
LA [63]]. During atrial fibrillation, the heterogeneity in both sides of the atrium is reduced
due to the shortening of the APD in both sides of the atria.

Spatial heterogeneity is a key factor in the physiological function of the atria. Restitution
curves of the APD are attributed to the incomplete recovery of ionic currents and concen-
trations after a previous beat. During the short time between beats the I, ionic channel
cannot fully recover and the flow of calcium to the sarcoplamic reticulum is not sufficient.
Our results of the restitution curves during peAF are in accordance to the results shown
by Krummen et al. [64] where APD restitution curves during AF were flattened and with
maximal slope less than one. It is expected that the marked increase in APD restitution
dispersion would promote greater heterogeneous refractoriness across the atria, and lead to a
significant increase in susceptibility of AF especially at rapid heart rates.



Chapter 6

Human atrial myofibroblast
electrophysiology

Several models of fibroblasts have been proposed during the past years [65H68]]. However,
experimental data have shown that there is a difference between atrial and ventricular
fibroblasts electrophysiology. Additionally, fibroblasts are heterogeneous cells and their
electrophysiology is hard to determine under in vivo experimentation or even in vitro [[13}169].
For that reason, an in silico experiment using genetic algorithms was implemented to optimize
the model parameters while maintaining the parameter values within physiological ranges.

6.1 Methods

Using in silico experiments, the parameters of the fibroblast model were determined to
reproduce in vivo experiments. In this study, we first investigate the effect of the sodium
current (In,) and the RMP [131168l169]. We introduce the formulation of Iy, to the underling
fibroblast[68] models according to the experimental results from Poulet et al. [[69]]. A wide
range of 7 initial parameters was fitted. The cost function to minimize was defined in Eq. [6.1]

J(6) = \/ L1 ([Kot)(0)preai — [Ko)? \/ EL 1 (RMP(O)prei —RMP)

n n

Parameters were constrained to vary 10% from the value originally defined in the model.
The constraints assured that the values were kept within reported physiological ranges [65,167-
69]]. The fitted fibroblast model was then simulated for 1000 seconds without stimulation to
ensure long term stability.

Fibroblasts/myofibroblasts were coupled by Eq. [6.4 which represents the current that
flows between cells across gap juntions.

dV myy,
Cmyo ’ T”UO +Ii0n7myo +Igap =0 (6.2)
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dvmfib
Cfib : “dr +Iion7fib —lgap = 0 (6.3)
n
Leap = ) Ggap* (VImyo — Vimyipi)) (6.4)
i=0

The genetic algorithm is a stochastic global search optimization algorithm in difficult
solution spaces. The algorithm is inspired from biological evolution where fitter individuals
are more likely to pass on their genes to the next generation [70].

6.2 Results

The RMP for the fibroblast model was fitted to obtain experimental values [69]. Two
different fibroblast’s RMP (RMPf) (-45 mV, and -26 mV) were obtained. Moreover, as the
fibroblast size differs from the myofibroblast, the membrane capacitance (Cmf) was changed.
Two different values, 6.3pF and 50.8pF, were used for the Cmf value for fibroblast and
myofibroblast. Values for the myofibroblast are listed in Table[6.1]

Table 6.1: Myofibroflast model ionic conductance modifications.

kv BK1I 8BNab 8Nak kv Skv  Pna
1.75 3 522 275 15 18 1

Myocyte RMP and dV/dtp,y (Figure [6.1)) coupled to different numbers of fibroblasts
were analyzed. Myocyte’s RMP (Figure [6.1b) changed similarly when Cmf increased for
both RMPf values (-26 mV and -45 mV). Increasing the number of fibroblasts moved the
myocyte RMP closer to RMPf value. The most significant change was observed in dV/dty,ax
(Figure [6.Tj), which was much lower at an RMPf of -26 mV than the reduction obtained at
an RMPf of -45 mV. When fibroblasts are coupled to myocytes their RMP move closer to
each other and more Na* channels are available, although myocyte Na* channel availability
is reduced due to a more depolarized RMP depending on the number of coupled fibroblasts.

One myocyte was coupled to one, three or nine myofibroblasts to study the effect on
myoycte action potential. The effect of RMP and Cmf is depicted in Figue[6.2] Figure[6.2a
shows the effect of the fibroblast RMP on the myocyte’s action potential. The myocyte’s
RMP was highly depolarized with more coupled fibroblasts. Additionally, the Cmf has little
effect on myocyte’s action potential.

In four characteristic regions of the atria restitution curves were computed to analyze the
effect of three myofibroblasts to one myocyte. Figure[6.3|shows how myofibroblasts increase
the spatial heteorogenity by reducing APDgy. However, in the left atrium, myofibroblasts
reduce APDgg below 100 ms for DIs below 500 ms.
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Figure 6.1: Fibroblasts coupling effect on myocyte electrophysiology. a) Myocyte maximum upstroke
velocity (dV/dtmax). b) Myocyte resting membrane potential (RMP). The levels for myocytes in normal
sinus rhythm (nSR) and persistent atrial fibrillation (peAF) conditions are given in blue and red, respec-
tively. Discontinuous lines are myocytes in peAF coupled to one fibroblast (1:1), 3 (1:3), or 9 (1:9).

6.3 Discussion

Atrial tissue is differently affected by peAF remodeling and by the presence of fibroblasts,
due to the electrophysiological heterogeneity of the different atrial regions. Our results in
isolated single cells show differences in the RMP, dV/dtp,x, and APD for the four different
atrial regions (RA, LA, CT, and PV) in nSR and in peAF. These differences are in agreement
with the simulations carried out by Krueger et al. [46l], who reported the differential effects
of AF remodeling in different atrial regions. It has to be noted that in contrast to the
Krueger study, our model presents a long-term stability in all regions in single-cell and
tissue simulations and also considers the effect of fibroblast coupling. To our knowledge,
this is the first simulation study including the three components (atrial heterogeneity, AF
remodeling, and fibroblasts) using a detailed electrophysiological AP model for fibroblasts
and focusing on the analysis of the different effects exerted by fibrosis in the different atrial
regions. A recent study by Roney et al. [63] showed that high phase singularity density in
the PVs favored the effectiveness of PV isolation in ablation procedure. Their model also
considered electrophysiological remodeling in AF, electrophysiological heterogeneities in
different atrial regions, and fibrosis that was simulated by changes in tissue conductivity. In
a previous study [27]], the same group modeled fibrosis using different methods and did not
consider either electrophysiological heterogeneities in the atrial regions or AF remodeling to
determine how different fibrosis models could affect rotor dynamics.
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Figure 6.2: Effect of fibroblast and myocyte coupling under persistent atrial fibrillation (peAF) electrical
remodeling in RA (baseline model). First and second rows show fibroblasts resting membrane potential
(RMPf) of -26 and -45 mV, respectively, for a fibroblast membrane capacitance (Cmf) of 6.3 pF (first
column) and 50.4 pF (second column). The different traces are action potentials of isolated myocytes
under peAF (blue), one myocyte under PeAF coupled to 1 fibroblast (1:1) (dashed orange), one myocyte
under peAF coupled to three fibroblasts (1:3) (dotted yellow), and one myocyte under PeAF coupled
to nine fibroblasts (1:9) (dotted-dashed purple).

Different experimental studies show that atrial fibroblasts have a different electrophysi-
ology from ventricular fibroblasts 13,165,169, [71]]. Morgan et al. [66] found that fibroblast
electrophysiology changes the dynamics of an arrhythmic process and provides relevant
information on the effect of myocyte-fibroblast coupling in the atria. Our results indicate
that RMPf, Cmf, and the number of coupled fibroblasts altered the behavior of myocytes AP,
as was found in previous simulation studies [68 (72}, [73]]. Furthermore, in the present study
we found that introducing In, current into the fibroblast model had an interesting effect; due
to the high RMP of isolated fibroblasts Iy, current was blocked but when fibroblasts were
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Figure 6.3: Restitution curves calculated for one myocyte coupled to three myofibroblasts (solid lines).
Myofibroblasts change the duration of the action potential and increase the atrial tissue heterogeneity
compared to non-coupled myocytes (dashed lines).

coupled with myocytes In, channels became available. Additionally, myocyte-fibroblast
coupling led to a partial inactivation of the myocyte Iy, due to the higher RMP in the
myocyte.

Fibroblast electrophysiology (RMPf and Cmf) changes myocyte AP characteristics [67)
741 [75]]. Our simulation results also show that electrical coupling with myocytes increases
atrial electrophysiological heterogeneity. Changes in the BCL altered the behavior of the cou-
pled cells, with different responses in different regions. Interestingly, myofibroblast-myocyte
coupling in regions with higher Ix; and Ic,. (RA and CT) exhibited more sensitivity to
changes in frequency, while regions with smaller Ix; and Ic,r. (PV) developed no AP for any
of the BCLs. In contrast to McDowell et al. [[76], we defined different electric characteristics
for atrial myofibroblasts, which have a different effect on myocyte AP. Myofibroblasts act
as the current source, raising the myocyte RMP [75]] depending on the number of coupled
myofibroblasts [67, 68]], thus leading to a partial inactivation of the myocyte Iy, current.






Chapter 7

Myofibroblast Ca?* current and
intfracellular Ca?* handling

Calcium dynamics in contractile cells play a key role in electrophysiology. Recent exper-
imental data have shown that the ionic calcium channel in the myofibroblast membrane
changes the electrophysiological behavior of this cell [77H79]]. Therefore, in this chapter in
silico experiments exploring the presence of Ic,y. are presented.

7.1 Methods

Recent experimental studies have shown that myofibroblasts exhibit a-smooth proteins
and are able to contract [80]. Based on this result, we hypothesize the myofibroblast need
calcium to contract and the presence of a calcium ionic channel and intracellular calcium
handling system. Recent studies have shown that ionic channels permeable to calcium are
present in the myofibroblast membrane[78 [79]. Therefore, we used the genetic algorithms
explained above to explore the influence of the calcium current in the electrophysiology of
the myofibroblast. The number of variables to be fitted was 13. The cost function (Eq.
was then adjusted to minimize the error between the experimental curves for I, calcium
current and the simulated data. Additionally, [K*]o was also considered in Eq. to ensure
long term stability and maintain the value within physiological ranges.

J(9) = ¢ Lot <IcaLp:dz~ —lea)? W_] (Ko*](6)presi—[KoT?

n

A second step was to include intracellular calcium handling. Since differentiated myofi-
broblasts exhibit similar phenotypes to the surrounding myocytes in cardiac tissue, Courte-
manche et al. [81] human atrial model was used to formulate the intracelullar calcium
handling system and was included in the human atrial myofibroblast model. Parameters
of the intracellular handling system were constrained to vary £10% from their established
values in a human atrial cardiomyocyte model. Parameters with variation less than +1%

37
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were taken out to reduce the parameter search space and increase the speed of the genetic
algorithm.

Additionally, three, six, or nine myofibroblasts with only the Ic,;. ionic current or with
the Ic,r ionic current and the intracellular Ca?* were coupled to one myocyte to explore the
effect on APD as described in Chapter [6]

7.2 Results

The fitted parameters for Ic,p are in the range of the available experimental data [79]. The
modified parameters for the Ic,. with the intracellular Ca>* handling system are listed in
Table[7.1] The fitted Iy, parameters’ error was below 1% with respect to experimental patch
clamp data (Figure [7.1)). Figure depicts the result of the fitted I, (blue trace) with
respect to the experimental values (white dots).

Table 7.1: Myofibroflast model including the I, with the intracellular Ca2* handling system ionic con-
ductance modifications.

8v  8K1  8Nab 8Nak kv Skv Pna 8cal KNaca 8cab Kpca fL d
1.34 179 239 084 1404 16.21 0.73 048 2.55 0.57 1.0 1.0 10
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Figure 7.1: Fitted myofibroblast I, according to experimental data. a) Voltage clamp experiments of
the I, where the behavior of the current is shown at different voltages. b) White dots represents the
maximum current value of |, with respect to the experimental data[79] (blue curve).

Figure[7.2|depicts myofibroblast transmembrane voltage. At its resting state, the myofi-
broblast RMP is constant at a value of -26 mV. In the presence of Ic,r, the myofibroblast
exhibits automaticity. The transmembrane voltage range is from -46 mV to 26.5 mV. The
triggered activity has a constant cycle length of 100 ms. When the intracellular handling
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system was included, the automaticity of the myofibroblast ceased. The calcium ions which
were not pumped out of the cell by NCX, were now pumped by the Ipc, and taken inside the
sarcoplasmic reticulum, and Ic,;. was not activated, yielding a RMP of -46 mV.
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Figure 7.2: Myofibroblast transmembrane potential without stimulation. The red trace shows the trans-
membrane potential of the myofibroblast without I, . The yellow trace shows the transmembrane
potential and the automaticity that the myofibroblasts exhibit when I, ionic current is included. Blue
trace indicates the myofibroblast transmembrane potential with I, and the CaZ* intracellular handling
system.

The system of ordinary equations is not linear. The presence of I, and the intracellular
Ca”* changed the net current flux across ionic channels. Due to a decrease of 50% in the flux
of Ix; the RMP has a more negative RMP with respect to the control myofibroblast model.
During the resting state, the net flux across the different ion channels changed. The control
myofibroblast model at resting state has a total flux of potassium ions through the ionic
channels of 6.76 C/s, which helped reach the RMP of -26 mV. When I¢,;, was introduced in
the myofibroblast, the net flux of K* was decreased. The automaticity of the cell was mainly
driven by a constant exchange of potassium from the intracellular and extracellular medium
since the Ic,, channel was deactivated for a RMP of -46 mV (Figure|7.3).

Figure shows the results of in silico experiments exploring the coupling of myofi-
broblast model with Ic,;. and intracellular Ca®* handling to one myocyte. Single myocytes
electrophysiology was less affected when coupled to three, six, or nine myofibroblasts
compared with the effect of coupling the baseline myofibroblast model. Myocytes APDgg
was less affected, and the RMP was less hyperpolarized (from -74 mV to -60 mV). With a
myocyte RMP of -60 mV or more, sodium ion channels were available, and the myocyte can
trigger a complete action potential.
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Figure 7.3: Current across the different ion channels in the membrane of the myofibroblasts. The ionic
currents exhibit different dynamics, and the influx and efflux of K* mainly drives the behavior of the
cell.

7.3 Discussion

In vitro and in vivo studies have shown that the number of myofibroblasts and collagen in
rat hearts were reduced by blocking L/T-type Ca**channels [82-84]. These studies suggest
that Ca?* ion channels and calcium intracellular handling plays an essential role in the
electrophysiology of myofibroblasts and the understanding of the development of cardiac
fibrosis.

Miragoli et al. [135] have shown myofibroblasts’ automaticity. The results presented in
this study are in accordance with previously mentioned experimental data. The myofibroblast
model with I, shows automatic activity mainly driven by the voltage-activated potassium
channels due to the small conductance of I [85]. However, by introducing the intracellular
Ca’* handling system, the autonomic activity ceased due to the regulation of the Ca®* in the
intracellular space, which regulates the function of the NCX exchanger and the NaK pump.

Moreover, when the intracellular handling system was introduced, the autonomic activity
stopped. However, it is worth noticing that the RMP was -46 mV. This finding is in accordance
with the RMP reported in different studies [69, 80]. The wide range of RMP reported
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Figure 7.4: Myocyte action potential without myofibroblast coupling under the electrical remodeling
due to persistent atrial fibrillation (blue trace). The myocyte was then coupled with one, three, six, and
nine myofibroblasts with I, and intracellular CaZ* handling. Six or nine coupled myofibroblasts highly
influence the myocyte’s action potential duration and the resting potential.

experimentally can be due to the differentiation of fibroblast into myofibroblast and their
phenotype.

A better understanding of the fibroblasts’ electrical properties should lead to an improved
comprehension of AF pathophysiology and a variety of novel targets for antiarrhythmic
intervention. The presence of calcium current and intracellular handling system is an
important factor that needs to be explored in more detail.
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Chapter 8

Myofibroblast infiltration

Myofibroblasts have been shown to disturb the electrical conduction in the cardiac tissue [[15}
86]. Previous results from single cell simulations have shown how myofibroblasts can
alter the myocyte action potential [36l [87]]. Therefore, this chapter covers the in silico
simulations at tissue level that study the role of the electrical coupling between myocytes
and myofibroblasts in cardiac tissue.

8.1 Methods

Using 1D tissue strands, the aim of this study was to analyze the effect of myofibroblast
infiltration on conduction velocity. One dimensional (1D) detailed tissue strands were created
with different element sizes to account for the differences between myocytes and fibroblasts.
Diffusion coefficients were then calculated considering the physiological size of each cell, as
shown in Eq. [8.1] [88]].

1
D p—
pSCry

where D is the diffusion coefficient, p is the cellular resistivity, S is the surface-to-volume

(8.1)

ratio of the cell, and Cy, is the membrane capacitance.

To simulate tissue strands under physiological conditions and sinus rhythm, the diffusion
coefficient was tuned to achieve realistic conduction velocities of the cardiac tissue [47]].
In addition, four different densities of myofibroblasts (10%, 20%, 40%, and 60%) were
uniformly randomly distributed in the fiber. Tissue strands were stimulated from the right
side with ten pulses at a basic cycle length of 1000 ms.

Two-dimensional (2D) tissue patch meshes of 5 cm x 5 cm, representing cardiac tissues
were built with a central region of 2 cm diameter. In the tissue central region, four different
densities of myofibroblasts (10%, 20%, 40%, and 60%) were uniformly randomly distributed.
To minimize the effect of the random distribution, ten different realizations for each density
were created.

45
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Additionally, a cross-shock (S1-S2) protocol was used to quantify the structurally re-
modeled cardiac tissue vulnerability to initiate and maintain an arrhythmia (Figure [8.1]). The
tissue was stimulated from the left border with five pulses (S1). S1 was paced at a basic
cycle length of 1000 ms to stabilize the tissue. Afterwards, an S2 stimulus at the end of the
refractory period was applied at the left lower quarter of the tissue to induce a reentry.

50 ms 180 ms 190 ms

210 ms 240 ms 260 ms

Figure 8.1: Snapshots in time explaining the cross-schock (51-52) protocol. The first panel (left upper
corner) shows the S1 pulse and the depolarization wave. At 180 ms, the tissue cells are finishing their
repolarization phase, and then at 190 ms, a second stimulus (S2) was introduced in the lower left quarter
of the tissue to induce a reentry. From the time 210 ms, it is possible to observe the reentry activity's
progression and maintenance in the cardiac tissue.

Looking for an S2 that creates a sustained reentry is a tedious job. A function was created
to automate the search of the right time to introduce the S2 stimulus. The function traced
one node’s action potential and calculated APDgg of one given node. Then S2 was applied,
and then, using a bisection algorithm, different S2 are tested. The function then looks at the
action potential trace from four given nodes to define a sustained reentry. A sustained reentry
was defined as electrical tissue activity longer than 1 s. If the reentry was sustained for 1 s
or longer, the S2 time was considered to calculate the tissue’s vulnerability time window to
arrhythmia. Phase singularities (PSs) detection was used to obtain the instantaneous location
of the reentry [89,|90]]. Phase maps based on the Hilbert transform (HT) of the APs were
created [91}192]] by computing the instantaneous phase 6, which values ranged from -7 to &
radians:
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where Vm is the transmembrane potential. Then PSs, where all phases converge (7),
were computed to track the rotor trajectory:

f Vodr — 421 ©.2)

Detected PSs were also used to assess the heterogeneity degree in the tissue due to the
inclusion of fibrotic regions following the trajectory of the reentry tip.

Finite element monodomain simulations were ran using GPUs [36]. Meshes with
quadrilateral elements with a resolution of 100 ttm were created, and time discretization of
1us was used.

8.2 Resulis

Electrical remodeling of atrial fibrillation has already an impact on the tissue conduction
velocity. Tissue strands show how myofibroblasts alter the local conduction velocity of the
cardiac tissue (Figure [8.2).

During nSR and without fibroblasts, the RA has a CV of 70 cm/s, CT has a CV of 100
cm/s, LA has a CV of 70 cm/s, and PV has a CV of 80 cm/s (discontinuous blue lines). AP
propagation along the strand was affected by peAF electrical remodeling (discontinuous red
lines), and CVs dropped significantly. At higher fibroblast (dark grey) or myofibroblasts (light
grey) densities in the strand, CV dropped. Boxplot measurements of the CV were represented
for the 100 random distributions of fibroblasts for each density (10%, 20%, and 40%). The
region with the greatest differential effect on the CV was the PV, depending on whether the
distribution was with fibroblasts or myofibroblasts. PV also experienced conduction blocks
in some of the random distributions (indicated by blue asterisks). Conduction block was also
seen in the LA at a density of 40% in some distributions.

Tissue simulations were run to quantify the tissue vulnerability to reentry under atria
fibrillation electrical remodeling and in the presence of myofibroblasts with different densities.
Figure [8.3|shows snapshots of phase maps (taken at the same time). Reentrant circuits can be
seen in the RA (top panels) and the LA (bottom panels) in peAF remodeling and increasing
levels of myofibroblast density from left to right (membrane potential snapshots can be seen
in Supplementary Figure S4). In the absence of myofibroblasts, a functional reentry was
obtained in RA and LA. The tip of these rotors (Figure[8.3] first column), corresponding to
the PS superimposed in white on the phase maps, describes a regular circular path, which
agrees with the results obtained in previous simulation studies [93]]. In the LA, the rotor tip
describes a smaller path due to the shorter wavelength caused by shorter LA ERP [46,47,(94]].
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Figure 8.2: Conduction velocity (CV) of a tissue strand in four different regions of the atria with ran-
dom fibroblasts (Fib) or myofibroblast (MyoFib) distribution and different fibroblast densities. For each
density 100 random configurations were simulated. CV measurements are represented in boxplots.
(A) Right atria (RA). (B) Pulmonary vein (PV), (C) Left atria (LA), and (D) Crista terminalis (CT). Adapted
from
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Figure 8.3: Instantaneous phase maps and phase singularities (in white) for different densities of myofi-
broblasts (non-fibrotic, 10%, 20%, and 40%) in the right atria (RA) and left atria (LA) under conditions
of persistent AF remodeling. Adapted from

When myofibroblasts were present in the center of the tissue, the obstacle altered the
reentrant activity. Small percentages of myofibroblasts (10%—20%) allowed the wavefront
to propagate through the fibrotic region, but the electrophysiological heterogeneities of
myofibroblasts and myocytes caused wave breaks, which were detected as PSs. However,
propagation in the fibrotic region was practically blocked when myofibroblast density was
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raised to 40%, which produced an anatomical reentry surrounding the fibrotic obstacle. Since
the wavefront did not propagate through the fibrotic region, the number of wave breaks was
significantly reduced, as were the number of PSs detected.

The myofibroblasts in the tissue increased vulnerability to reentry, measured as the
vulnerable window (VW), a time interval for which premature S2 stimulation generates a
reentry (Figure 8). In the RA, the vulnerable window in the absence of myofibroblasts was
37 ms. When myofibroblasts density was raised to 10%, the VW increased to 38 £+ 0.0 ms.
The VW also increased (39 + 0.63 ms) when density was raised to 20%, but at 40%, the VW
dropped below the control value (35 + 0.82 ms). Interestingly, LA was more sensitive to
myofibroblasts with a larger VW than the RA. The LA VW, in the absence of myofibroblasts,
was 40 ms. When myofibroblasts density was raised to 10%, the VW rose to 40 £+ 0.10 ms,
at 20% it increased to 40.5 = 0.53 ms, and at 40% it dropped to 38 + 0.88 ms.

8.3 Discussion

Structural remodeling in cardiac tissue contributes to the reduction of conduction velocity,
delaying regional functional activations, and increasing structural heterogeneities, which
are essential factors for establishing a reentrant driver or conduction block [2]]. Our results
show that fibroblasts and myofibroblasts can alter the activation time in a 1D tissue strand, in
agreement with different studies [6}95]. One hundred random configurations for different
fibroblasts/myofibroblasts densities in the four atrial regions were implemented. Zhan et
al. [96] showed that fibroblasts can alter the CV and can lead to blocks in conduction
with fibrosis densities of 40% and 45%. Our results showed that a high density (40%)
led to conduction blocks in the LA and that the PV was the most sensitive region to the
presence of fibroblasts-myofibroblasts. Similarly, in an experimental study, Miragoli et
al. [[15] showed that myofibroblast proliferation changed the tissue conduction velocity and
myocyte dV/dtyax. Our results showed a reduction in CV, in agreement with several other
experimental and simulation studies that found that fibroblasts-myofibroblasts can establish
an electrical coupling with myocytes, reducing their dV/dty,.x and activation time, reflected
in reduced CV [6, (8 [15,97]]. We also found a monotonic reduction in all four atrial regions.

Tanaka et al. [98]] have shown that local fibrosis distribution reduces CV in the different
atrial regions, in agreement with our results, which showed a reduced CV with a tendency to
homogenize in all four atrial regions. CV heterogeneity is responsible for giving the atria the
characteristic activation times [99]; if all the regions were to have a homogenous CV, this
might induce the appropriate conditions for reentrant rhythms and conduction blocks [[100]].
As the fast conduction systems (CT) conduction velocity was significantly reduced, this may
be an interesting AF mechanism in the right atrium.

Structural remodeling and endo-epicardial dissociation alter the atrial substrate and could
produce macroreentries and focal activity [101}[102]]. When the propagation was analyzed in
different regions of the atria and at different myofibroblast densities, it was found that a low
myofibroblasts percentage increased the number of PSs due to wave breaks. However, at
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higher percentages, propagation through the fibrotic zone was blocked, the number of wave
breaks and PSs decreased, and an anatomical reentry was anchored around the fibrotic zone,
in agreement with previous studies [27,[/6]. Several simulation studies have also shown that
reentry dynamics are altered by heterogeneities of the AP in the cardiac tissue [61 [103]], the
presence of fibroblasts [66, (104, [105]], and that PSs increase in the zones with fibroblasts [25]].

Waks and Josephson [[106] demonstrated that the rotation dynamics depend on the atrial
region (RA or LA) and its electrophysiological characteristics, as did we in the present study
in which vulnerability to reentries and the dynamics of the rotation depended on the atrial
region. LA presented slightly wider VWs, due to its shorter APD.

Gomez et al. [[107] showed that the density of fibroblasts had a biphasic impact on the
ventricular vulnerable window for reentry. Moreover, our results showed the same VW
biphasic behavior for the first time in atrial tissue. Krul et al. [108]] found that local fibrosis
is associated with reentrant activity, in accordance to our results at low fibroblast density
(10%), considered as a region of local diffuse fibrosis, which presented higher vulnerability
to reentry and resulted in multiple wave breaks. When myofibroblast density was raised
(20%), tissue vulnerability to reentry rose, and conduction blocks occurred. However, at
higher densities (40%) conduction blocks also occurred, but the VW dropped, as was found
by Campos et al. [109]. This suggests that myocyte-fibroblast coupling in peAF plays an
essential role in AF electrical propagation [[110], with different effects in different atrial
regions.



Chapter 9

Fibrosis composition

Cardiac and lung fibrotic diseases cause over 800,000 deaths per year worldwide [12].
The fibrotic process is complex and several cellular mediators and signalling pathways are
involved (Figure[9.T).
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Figure 9.1: Atrial fibrillation (AF) is a complex pathology and inflammation plays a role in the initia-
tion and maintenance of AF. Danger-associated molecular patterns (DAMP) or alterations in the Renin-
Angiotensin-Aldosterone System (RAAS) trigger a cascade of reactions in the cardiac myocyte, which
results in a remodeling of gap junctions and ionic channels. Additionally, cardiac myocytes segregate
cytokines such as TGF-B1, which recruit mast cells and macrophages. Furthermore, TGF-§1 also trig-
gers the differentiation of fibroblasts into myofibroblasts which deposit collagen and are responsible
for the extracellular remodeling.

Cardiac fibrosis has been classified as a cardiomyopathy, and its composition varies from
patient to patient. In cardiac fibrosis, differentiated fibroblasts or myofibroblasts are mainly
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responsible for structural remodeling. Experimental studies have shown that myofibroblasts
derived from AF patients display different phenotypes compared to those patients in the
healthy control group [69]. Differentiation of fibroblasts can be triggered by paracrine
signalling from myocytes or other cells in the cardiac tissue. The paracrine signalling of
cytokines, such as transforming growth factor f 1 (TGF-f1), interleukin 6 (IL-6), and tumor
necrotic factor alpha (TNF-) are segregated by myocytes, fibroblasts and macrophages,
this process is known as inflammation. Myofibroblasts alter the extracellular medium,
depositing protein fibers (collagen I, collagen III) to maintain the cardiac tissue’s integrity.
Using confocal microscopy, Greiner et al. have shown, with a high level of resolution, the
composition of fibrotic tissue where different types of cells are found [111]].

In this chapter, the fibrotic composition was varied, and the effect on electrical propaga-
tion and the electrograms was quantified. Part of this work was presented as a conference
contribution [112]].

9.1 Methods

Two-dimensional (2D) patch meshes of 5 cm x 5cm x 0.2 cm (Figure[9.2)), representing cardiac
tissues were built with a central structurally remodeled region of 2 cm diameter. In the central
region of the tissue, different tissue properties arrangements were simulated to study the
effect of myofibroblasts coupling, the inflammatory paracrine remodeling and the deposit of
collagen fibers. Within the region, myofibroblasts and collagen were randomly distributed
with different ratios (0%-100%, 25%-75%, 50%-50%, 75%-25% and 100%-0%). TGF-
B 1 paracrine remodeling was represented by modifying ion channel conductances, 50%
reduction in Ik, 50% reduction Ic,r,, and 40% reduction in sodium current Iy, [11]]. The
mesh was conformed by tetrahedral elements with an average length of 100 um to capture
the details of collagen deposit in the cardiac tissue.

D Inflammation remodeled myocyte

1 .Myofibroblast
D Collagen

D peAF remodeled myocyte

Figure 9.2: Dimensions of an atrial tissue patch of 5cmx5cmx 0.2 cm with a circular area of 2cm
of diameter. The circular region has different cells: myocytes affected by persistent atrial fibrillation
(pink) and inflammation (yellow). Additionally, myofibroblasts (blue) and collagen fibers were modeled
as empty cylindrical holes in the cardiac tissue (white).
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Additionally, collagen was modeled as cylindrical strands to mimic the texture reported
in interstitial fibrosis during AF [[101]. Moreover, percolation has been described to better
reflect the findings in experimental data [26] |63]]; therefore elements representing collagen
were taken out creating empty spaces in the mesh.

Reentry was initiated using a cross-shock stimulation and PSs were quantified. Addition-
ally, pseudo-unipolar equally spaced (1 mm) electrograms were computed at the surface of
the tissue using the infinity volume conductor approximation Eq.[9.1]

1 Lsye
= — ——dV 9.1
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where o is the conductivity coefficient of the medium, I, is the current density and
||x — xsrc|| is the Euclidean distance from the source point to the measuring point. Bipolar
EGMs were calculated from two unipolar EGM with a spacing of 1 mm (Figure 1, panel B).
The criteria for fractionation were based on the duration of the active segment of the signal
using the Nonlinear Energy Operator (NLEO) algorithm described by Schilling et al. [113]]
and the Shannon Entropy [[114]. Signals with peak to peak values below 0.5 mV were not
considered for the calculations.

9.2 Resulis

When the fibrotic density was low (10% and 20%), the excitation was able to propagate
across the fibrotic region (Figure[9.3p). In contrast, for higher density (40%), conduction
was blocked in this region (Figure [09.3p). Reentry changed gradually from functional to
anatomical due to block of conduction. Figure [9.3b shows a biphasic behaviour of the
number of PSs quantified with different compositions of the fibrotic area. For all densities
the maximum amount of PSs was achieved for a proportion of 50% of myofibroblasts and
50% of collagen in the cardiac tissue.

EGMs in Figure[9.4] show the different morphologies inside and outside of the fibrotic
region. Depending on the myofibroblast-collagen ratio, EGM’s morphology is also affected.
Additionally, the EGM morphology outside of the fibrotic area did not change significantly.
EGM activity duration increased inside the fibrotic region compared to the duration at the
outside of this region. For the fibrotic density of 10% we detected segments with shorter
duration (45.21+1.24 ms). Increasing fibrosis density (20%) increased the duration of the
segments (60.73£1.10 ms), and for higher density of fibrosis (40%), segments were shortened
again with a duration of (46.59+1.29 ms) or inactivity near the core.

Figure shows the difference in duration of the active segments and Shannon entropy
found inside and outside of the fibrotic region. Fibrotic regions with a lower percentage of
myofibroblasts (below 50% compared to the percentage of collagen) had active segments
with shorter duration. When increasing the percentage of myofibroblast densities (above
50% compared to the percentage of collagen), propagation exhibited a slower frequency of
activation, which was reflected in segments with a longer duration of activity.
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Figure 9.3: a) Snapshot of a single time frame for three tissue patches from the right atria, left atria,
and pulmonary vein. The first column depicts a reentry activity without fibrosis. The second to fourth
columns show how reentry dynamics change due to the presence of fibrotic tissue. b) Different fibrotic
compositions change the reentry dynamics, where a mixture of myofibroblasts and collagen exhibit a
high density of singularity points.
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Figure 9.4: Electrograms calculated at the surface of the cardiac tissue. White and black dots show
the signal at the outside the fibrotic area where the signal is not affected by fibrosis composition. The
gray dot shows how the electrogram computed at the core of the fibrotic tissue is affected due to its
composition. Fractionated signals were mainly found with a mixture of myofibroblasts and collagen.
Adapted from

For simulations with 40% fibrotic density, we were not able to detect any activity near the
core. This center of the fibrotic region had an EGM with a smaller peak-to-peak amplitude
(below 0.5 mV). However, the Shannon entropy was homogenously distributed and higher
compared to the values at the outside the fibrotic region.
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Figure 9.5: a) Mean duration of the active segment for different fibrosis densities and myofibroblasts
vs. collagen ratios inside and outside the fibrotic region. As fibrosis density increases, the duration of
the detected segment also increases. At 40% fibrosis density voltage becomes very small and block can
occur. b) Mean Shannon Entropy at the inside and outside of the fibrotic region. Different densities of
fibrosis increase the Shannon Entropy, it is not significantly affected by the ratio of myofibroblasts vs.
collagen. Adapted from [112]

9.3 Discussion

Heterogeneities in the fibrotic tissue do not only alter the dynamics of the reentrant activity
but can change the morphology of the EGM. McDowell et al. explored the influence of using
collagen, fibroblasts, and gap junction reduction but neglected the effect of inflammation [76]];
however, they did not study the effect on the EGM’s morphology. An increase in the number
of myofibroblasts in the cardiac tissue affects the rotation dynamics due to the ability of
these cells to follow myocytes action potential [25]. Myofibroblasts introduced a delay in
propagation but not a block when they are sparsely distributed (less than 40% density) [2,13]].

Ashihara et al. [104] showed that fibroblasts present in the atrial substrate could alter
the morphology of the EGM. Our results also show that myofibroblasts changed the mor-
phology of the EGM. Since myofibroblasts tend to homogenize cardiac tissue, segments
with shorter activity duration were found compared to simulations where only collagen was
present. However, depolarization and repolarization heterogeneity introduced by inflam-
mation paracrine remodeling in the myocyte and myofibroblast infiltration can increase the
tissue’s vulnerability to arrhythmia [115]].

The simulations showed that the composition of the fibrotic tissue clearly affects the
dynamics of the reentry. Roney et al. [27] also showed that modeling methodologies of
fibrotic tissue have a large effect on rotor dynamics in 3D simulations. However, it is still
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unclear how fibrosis structure and transmurality may affect the morphology of the EGM.
This will be subject of investigation in subsequent chapters of the present Thesis.

Understanding the mechanisms responsible for initiation, progression, and resolution of
cardiac fibrosis is crucial and may help design anti-fibrotic treatment strategies and ablation
therapies for patients with peAF.
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Computational modeling of
infracardiac signals

Signals measured at the surface of cardiac tissue are known as electrograms. Electrograms
are generated by cellular depolarization during the propagation of the electrical activation in
cardiac tissue.

Electrograms recorded in electrodes close to the cardiac surface are know as unipolar
electrograms. Unipolar electrograms from healthy tissue have a biphasic deflection. With a
depolarization front approaching the electrode, the potential field is positive, which results in
a positive deflection of the electrogram. The value of the electrogram becomes zero at the
time when the wavefront is precisely underneath the electrode. Then, when the wavefront
propagates away from the electrode, the electrogram becomes negative because the electrode
is located in the negative part of the potential field.

Several modeling studies calculate the extracellular potential at one point in space but
they neglect the effect of electrode’s geometry and orientation [116} [117]]. This chapter
explores the effect of modeling a realistic geometry of the catheter on EGM. Part of this
study has been published as a conference contribution [[39] and a preprint [118]].

10.1 Methods

Two different setups were created to study the influence of the electrode and catheter’s
geometry on computed electrograms in in silico experiments. Both setups modeled the
cardiac tissue with a surrounding blood bath. In the first setup, a grid of 16 cubic electrodes
of 1 mm side length, and interelectrode space of 3 mm was created. In the second setup,
the realistic geometry of the two catheters was placed at the surface of the tissue. The HD
Grid catheter (St. Jude Medical, EnSite HD Grid catheter, St. Paul, MN) with a constant
interelectrode space of 3 mm and the Lasso catheter (Biosense Webster, Diamond Bar, CA,
USA) with an interelectrode distance of 2 mm between electrodes of one pair and 6 mm
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between pairs. Realistic geometries that consider electrode size, separation, and position
with respect to the wavefront were taken into account.

Bidomain simulations were ran using openCARP [37, [38] to simulate the biophysical
phenomena of the electrical propagation in the cardiac tissue and the catheter’s influence on
the electrograms at the surface of the tissue.

The blood bath around the cardiac tissue was modeled as a conductive medium with
a conductivity of 0.625 S/m [[119} [120]]. Electrodes were modelled as a highly conductive
material (1 x 10'2 S/m). In the case of the catheter, insulator materials were modelled with a
low conductivity 1 x 1076 S/m.

Figure 10.1: Model of the in silico setup with the commercial catheter. a) HD-grid model included on
top of a fibrotic area. b) 20-pole lasso catheter over a non-fibrotic tissue.

Additionally, a realistic clinical noise model was added to the simulated electrograms to
produce a more accurate unipolar electrogram. More in detail, clinical unipolar electrograms
were extracted from patients’ recordings. With the help of the tool ECGDeli [121]], the ECG
signal recorded on the surface of the thorax of the patient was used to detect the time windows
of the ventricular activity, which corresponds with the duration of the QRST complex. The
detected time windows were used to automatically blank the ventricular far-field artifact
from unipolar electrograms. Afterwards, the non linear energy operator (NLEO) algorithm
was used in the signal without the ECG complex to detect the atrial activity. Also atrial
activity was blanked from unipolar electrogram. The remaining signal was then pure noise
artifacts present during the electrophysiological study.

With the isolated noise artifact segments, an autoregressive model was fitted to obtain a
generalized clinical noise model. The model was determined by Eq. [10.1}

p
X, = Z 0:Xi—i+€& (10.1)
i=1

where X; is the time series and & is white noise. The model order p was determined
based on the Bayesian information criterion. The smallest Akaike information criterion
value determined the global order, and the model coefficients ¢; were averaged to obtain
a global model representing the clinical noise of intracardiac signals. The generalized
model was added to the simulated unipolar signals as depicted in Figure[I0.2] After adding
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noise, unipolar synthetic signals were filtered using a band-pass filter between 0.05 Hz and
900 Hz. Additionally, bipolar electrograms were calculated by subtracting the signals from
the corresponding pairs of electrodes and filtered by a band-pass filter between 30 Hz and
300 Hz used in clinical settings.
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Figure 10.2: Workflow to generate the noise model and the addition to the simulated signals. In the
top left corner, the different segments of the activity from a clinical unipolar electrogram are depicted.
Autoregression was applied on the noise segments. The noise model was used to estimate the simu-
lated unipolar electrogram with noise. Afterwards, the unipolar electrograms (red and blue trace) were
filtered, and the bipolar electrogram was calculated by subtracting the unipolar electrograms. Adapted
from [118].

10.2 Results

The use of realistic geometries to represent the electrodes alters the morphology of simulated
electrograms. Figure[I0.3p shows a simulated bipolar electrogram sensed with cubic elec-
trodes where the impact of filtering on the positive slope becomes visible. Figure[I0.3p shows
a simulation with a cylindrical electrode geometry mimicking the commercial catheters used
in this study. The resulting electrogram is not symmetric and filtering has no significant effect
on the positive slope, which is steeper than in the electrogram sensed with cubic electrodes.
Adding noise to the simulated signals decreases their amplitude and fractionates the morphol-
ogy (Figure[I0.3f). Simulated bipolar electrograms without noise have a higher amplitude of
R and S peaks, which decrease with the addition of noise. Figure [I0.3|d compares a simulated



60 Chapter 10. Computational modeling of intracardiac signals

signal with a clinical signal. In simulated electrograms negative and positive slopes are close
to the values of the clinical signal, 0.1 mV/ms and 0.25 mV/ms, respectively.
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Figure 10.3: Importance of using a realistic electrode geometry and adding noise for simulated intrac-
ardiac signals. a) Bipolar electrogram signal recorded with a cubic electrode (blue trace) and the corre-
sponding filtered signal (red trace). b) Signal recorded with a cylindrical electrode (blue trace) and the
resulting signal after filtering (red trace). c) Simulated signals recorded with a cylindrical electrode with
and without noise and the resulting signals after filtering. d) Comparison of a simulated signal with a
clinical signal.

In silico electrograms were validated against clinical electrograms recorded from areas
of the atria with peak-to-peak amplitudes higher than 0.5 mV. Cross-correlation was used to
align clinical signals and simulated electrograms in time for maximal similarity. Simulated
bipolar signals for non-fibrotic tissue had a correlation of 91.13£0.05 % with clinical signals.
Clinical high voltage (peak-to-peak >0.5 mV) and simulated control electrograms (no fibro-
sis) had a peak-to-peak voltage of 1.67+0.05mV and 2.254+0.01 mV, respectively. Clinical
and simulated control electrograms had a duration of 18.30+0.56 ms and 17.540.04 ms,
respectively.
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10.3 Discussion

The bidomain model captures the biophysical phenomena of cardiac depolarization and
the generated electric field in the extracellular medium with wavefront propagation. The
biophysical model also simulates the equipotential characteristic of a metal electrode and the
influence of the geometry in the simulated electrogram.

Nairn et al. [39] have shown the importance of the electrode size in the amplitude of
the electrogram. Furthermore, the results presented in this chapter showed the importance
of introducing a realistic geometry of the catheter to compute the electrogram morphology.
Additionally, simulated bipolar electrograms from this study have shown a high correlation
with clinical bipolar clinical signals [43].

A high correlation between clinical and in silico electrograms is of great importance to
study the electrical activation of the cardiac tissue. Electrograms from in silico experiments
provide the information of the cardiac cells’ action potential (sources) that will generate the
extracellular potential measured by the electrode. Therefore, there is a great necessity to use
realistic geometries to understand the mechanisms that affect the electrograms and translate
the gained knowledge to clinical applications that improve the patients’ quality of life.






Chapter ] ]

Fibrosis characterization using
machine learning

With the increasing amount of clinical data available, the use of machine learning for
the interpretation of cardiac signals is steadily increasing. Machine learning has been
extensively used in electrocardiogram analysis due to its potential to analyze big datasets and
uncover mechanistic information about cardiac electrical function [[122H124]. Several studies
aimed at quantifying AF mechanisms and automatically localize reentrant drivers using in
silico or clinical electrograms [125} [126]]. Less attention has been paid to how intracardiac
electrograms can provide information about the cardiac substrate based on fibrosis effects
on the signal morphology. Campos et al. classified different types of fibrosis based on
electrogram features using in silico experiments [20]. However, quantification of fibrotic
volume fraction and transmurality in the atrial substrate has not been reported yet to the best
of our knowledge. Additionally, data-driven approaches can help to overcome the use of a
single voltage cut-off value to characterize the cardiac substrate and distinguish between
non-fibrotic and fibrotic tissue based on a more comprehensive holistic set of criteria. Part of
this work was presented as a part of a prepint [[118]].

11.1 Methods

11.1.1 Modeling realistic setups

Computational cardiac modeling can considerably accelerate the process of designing and
evaluating medical devices, including mapping systems and software to treat patients with
cardiac arrhythmia. The American Society of Mechanical Engineers (ASME) Verification
and Validation Subcommittee standard V& V40 (Verification and Validation in Computational
Modeling of Medical Devices) outlines credibility requirements of a computational model
based on risk.
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Following the recommendations of the ASME V&V40 the modeling steps (Figure [TT.T)
for the present study were carefully chosen.
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Figure 11.1: ASME V&V40 workflow to verify and validate models that will be translated to clinical
applications. Adapted from [127]

As an input of the flowchart in Figure [IT.1] two questions of interest were defined:

1. "Can tissue fibrotic characteristics be derived from intracardiac signals to guide abla-
tion therapies?"

2. "Can synthetic data be used to train a classifier to locate fibrotic tissue and quantify its
characteristics?"

These guiding questions helped define the required model level of detail for the in silico
experiment. In the next step, we established the risk-informed credibility of using a detailed
biophysical model to simulate electrograms and use them to generate a hybrid dataset which
combines clinical and synthetic signals. Risk-informed assessment defined the level of
uncertainty and the model’s complexity based on the context of use (CoU) of the in silico
experiments. The CoU of the model is to generate a hybrid dataset to train a classifier to
locate and quantify fibrotic tissue.

The strategy used to model fibrosis affects the dynamics of electrical propagation as
described by Roney et al. [63]], which in turn affects electrogram morphology. Fibrosis
modeling uncertainty was reduced by considering several realizations of random uniformly
distributed collagen fibers with different volume fraction and transmurality. We overcame
the limitation of catheter geometry and wavefront direction by including two models of
commercially available catheters (HD-grid catheter and 20-pole lasso catheter) and pacing
from three different locations [[128]]. Two different human atrial cardiomyocyte models were
considered to minimize the uncertainty of the action potential morphology influence on the
electrogram. Moreover, an autoregression model of clinically measured noise artifacts was
created. The modeled clinical noise in combination with the simulated electrograms reduced
the uncertainty of simulated with respect to measured electrograms. Considering all points
mentioned above, the risk-informed assessment of using in silico experiments to characterize
the fibrotic substrate was defined as medium.

Afterwards, Table [TT.1]establishes the credibility level based on the model risk [129].
Verification steps of the software’s quality code is ensured using an automatic regression
testing framework [37]], and numerical solutions were established following the steps of
Niederer et al. [130]]. In silico electrograms where compared with different clinical mea-
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surements from different healthy areas of the atria to evaluate the degree of credibility of
bidomain simulations (Figure[T0.3[).

Table 11.1: Summary of the credibility factors. Assesment was based on the ASME V&V40 stan-
dard [129].

Activity Credibility factor Rigor  Credibility level
Verification
Code Software quality assurance D High
Numerical code verification D High
Discretization error D High
Calculation Numerical solver error D High
User error N/A N/A
Validation
Model forms C High
Computer model Model input N/A N/A
Comparator Test sam_p]es C Mediurp
Test conditions B Low-Medium
Assesment Equivalency of input parameters N/A N/A
Output Comparison 4 Medium/High
C Relevance of the quantities of interest N/A N/A
Applicability

Relevance of the validation activities to the CoU C Medium/High

11.1.2 In vivo and in silico electrograms

The dataset was composed of two data sources. The first source was clinical data from in
vivo recordings from patients who were diagnosed with persistent AF. From the clinical data
source, a cut-off value of 0.5 mV was used to distinguish electrograms from healthy and
pathological tissue. Electrograms from healthy tissue were validated by expert cardiologists
in the field of electrophysiology.

The second source of data were in silico electrograms from fibrotic tissue. In silico
experiments were set up to collect the electrograms at the surface of the fibrotic tissue.
The tissue was stimulated from three different locations. The left and bottom border were
stimulated to simulate a planar wave across the fibrotic tissue. Additionally, the tissue’s left
top corner was stimulated to simulate a non-planar wave across the fibrotic area. Simulated
signals were added with the realistic clinical noise model explained in chapter[I0} which
reproduced the noise present in the clinical unipolar electrograms.

Both in silico electrograms and clinical electrograms followed the standard clinical
practice filter configuration. Unipolar electrograms were filtered using a band-pass filter
from 0.05 Hz to 900 Hz. Then bipolar electrograms were calculated and a band-pass filter
from 30 Hz to 300 Hz was used.

In this study a method based on the Hilbert transform is proposed to detect the atrial
activity segments from the electrograms. The electrogram signal was transformed in the
Hilbert space as depicted in Figure[IT.2a. From the centroid (orange trace) a vector was used
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to measure the distance to the signal and to trace loops in the signal. Frequency distributions
of loop distances were used to distinguish atrial activity and noise artifacts (Figure [I1.2b).
As a result, atrial activity packages were detected as depicted in Figure[TT.2k.

@

b
1200

(3
>

/ Distance threshold

o
N

1000 ¢

o

800

600

Imaginary
S
8

Frequency

400 -

Signal
Centroid
Distance 200

)
(o)

04

0 : ) 7000 8000 0"
Real 02 a000 4000 5000 6000 0 0.1 .02 0.3 0.4
04 o 1000 2000 Samples Distance

c 04 o
Pe Activity segment

T

w—*‘u ‘ ¥ ‘ "

0.2 n l

£

o

Voltage (mV)

°
o

0 1000 2000 3000 4000 5000 6000 7000 8000
Samples

Figure 11.2: Electrogram activity detection in the Hilbert space. a) Electrogram signal (c) in the Hilbert
Space with centroid (orange trace), green arrow depicts the distance measured from the centroid to the
signal. b) Frequency distribution of centroid to signal distance, red line represents mean value plus one
standard deviation. c) Bipolar electrogram (blue trace) and activity segments (orange trace). Adapted
from [118].

11.1.3 Machine learning

Nowadays, there is a wide variety of machine learning algorithms. Two main branches of
machine learning algorithms can be clearly identified: supervised algorithms and unsuper-
vised algorithms. Supervised algorithms are best suited to problems where there is a set of
available ground truth data to train the algorithm. Unsupervised algorithms automatically find
structure in the data without labels by extracting characteristic features and similar clustering
data. The lack of a ground truth makes hard measuring the accuracy of an unsupervised
algorithm.

In this thesis, supervised algorithms are used to characterize the atrial fibrotic substrate
from electrogram features due to ground truth data availability, thanks to the highly detailed
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in silico experiments. In the hybrid dataset, every single bipolar electrogram was labeled as
non-fibrotic, 10% fibrotic density, 20% fibrotic density, 40% fibrotic density, 60% fibrotic
density, subendocardial (0.5 mm), partial transmural (1 mm) or total transmural (2 mm). The
features extracted from bipolar electrograms quantify their complexity. For each bipolar
electrograms, segments of atrial activity were calculated by tracking closed loops in Hilbert
space. The distribution of the radius of every single loop was calculated and the mean value
plus one standard deviation was chosen to distinguish between cardiac activity and noise.
The peak-to-peak amplitude was calculated for each active segment. Furthermore, different
entropy measures (sample entropy [131]], Shannon entropy [114], spectral entropy [132],
and Kolmogorov complexity [[133]]) were calculated for each segment of atrial activity.
Additionally, the fractal dimension coefficient was calculated for the whole 2.5 s signal
segment [[134]).

Four different supervised machine learning algorithms (support-vector machine, decision
tree, random forest, and K-Nearest neighbor) were benchmarked to define which algorithm
was most adequate to identify the characteristics of the fibrotic tissue from extracted features
of the electrograms. Hyperparameter for each algorithm were tuned to find the best set of
parameters that best fitted the problem.

Afterwards, both clinical and simulated electrograms were synergically combined to
create a hybrid dataset containing in vivo and in silico electrograms. The hybrid data set
was split into training, validation, and test sets as a 70%/15%/15% random split. All classes
were guaranteed to be in all subsets. The validation set was used by the Greedy technique to
tune the classifier optimally. Furthermore, validation set accuracy was used to check that the
algorithm was not overfitting when comparing against the test set accuracy. One hundred
different realizations were run using hold-out cross-validation to obtain the mean accuracy
of the classification algorithm.

11.2 Results

The benchmark for the machine learning algorithms is depicted in Figure[TT.3] One hundred
different realizations were done in order to obtain the mean value and the standard deviation
for each algorithm. For this specific case the used decision tree had a mean accuracy of
97.3%+0.6. Random forest, support vector machine and K-Nearest neighbor had and mean
accuracy of 92.2%=+0.9, 96.2%=0.6, and 93.8%=+1.5, respectively.

Extracted features from bipolar electrograms are depicted in Figure The main
diagonal shows the distribution of the calculated features for the different groups of signals
(different fibrotic densities in Figure [[T.4p, different degrees of fibrosis transmurality in
Figure [IT.4p). Peak-to-peak amplitude is not a good feature to determine the degree of
fibrosis due to the wide range of amplitudes that overlap for fibrotic vs. non-fibrotic cases.
While sample entropy can distinguish between fibrotic and non-fibrotic tissue, the distribution
of the values overlaps for different densities. The distinction between different fibrosis
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Figure 11.3: Machine learning benchmark of four different algorithm to characterize the cardiac fibrotic
substrate. One hundred random realization were done to measure the accuracy of the classifier for the
specific task. Decision tree, random forest, support vector machine (SV) and K-Nearest neighbor (kNN)
had and mean accuracy of 97.3%+0.6, 92.2%4-0.9, 96.2%+0.6, and 93.8%=+1.5, respectively.

transmuralities is not possible using only one feature since the value for all features overlap
for all density or transmurality values (Figure[IT.4b, main diagonal).

A decision tree classification algorithm was trained to separate different fibrosis densities
and degrees of transmurality. The combination of signal complexity features was determined
by a Greedy forward algorithm. The dataset was randomly divided into 70% train, 15% test,
and 15% validation. The mean accuracy of the three classifiers was calculated by doing
100 different realizations. Figure [[T.5a shows the confusion matrix of the classifier for
distinguishing between non-fibrotic and fibrotic tissue. The mean accuracy for this classifier
was 97.9540.03% with 98.81+0.01% sensitivity and 97.1640.01% specificity. The classifier
slightly overestimated the fibrotic areas. Figure [I1.5b shows the classifier performance to
identify fibrosis density (non-fibrotic, 10%, 20%, 40%, and 60%) with a mean accuracy of
97.01£0.02% and 96.33+0.03% and 99.054+0.01%, for sensitivity and mean specificity,
respectively. The most relevant features for classification of fibrosis density, determined by
the Greedy forward algorithm, were sample entropy and spectral entropy.
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Figure 11.4: Feature distribution for all in vivo and in silico electrograms (including noise). Single feature
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Figure 11.5: a) Confusion matrix of the decision tree classifier for identifying non-fibrotic vs. fibrotic
substrate. b) Confusion matrix of the decision tree classifier showing the performance for identifying
different fibrosis densities. c¢) Confusion matrix of the decision tree classifier showing the performance
for identifying transmurality of fibrosis. d) Effect of increasing the electrode surface to tissue surface dis-
tance on the accuracy of the classifiers to distinguish fibrotic tissue, density and transmurality. Adapted

from [118].

To identify transmurality of fibrosis in the tissue, the classifier yielded a mean accuracy
of 94.62£0.01%, 92.99+0.02% sensitivity, and 97.86+0.01% specificity. For fibrosis
transmurality, misclassification occurred for some cases. Nevertheless, it is able to distinguish
all four classes (non-fibrotic, 0.5 mm, 1 mm and 2 mm). The most relevant features for
classification of transmurality were sample entropy and peak-to-peak amplitude.

Furthermore, the effect of increasing the distance between the catheter and atrial endocar-
dial surface on the classifiers’ accuracy was investigated. The classifier’s accuracy dropped
with increasing distance, as shown in Figure [I1.5] The accuracy of the classifier dropped
to 0% for electrode-to-tissue distances bigger than 4.1 mm, to distinguish non-fibrotic from
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fibrotic tissue. To identify different densities, the accuracy dropped to 59.17% at 1.1 mm
distance of the tissue. Additionally, transmural accuracy dropped to 33.30% with a distance
of the tissue of 1.1 mm (Figure[TT.5d).

11.3 Discussion

With the increasing number of data available, data-driven approaches help improve patient’s
diagnosis and therapies. Several studies used data-driven approaches with clinical data to
characterize electrocardiogram signals measured on the body surface [135H138]]. Costabal
et al. used a hybrid dataset approach to interpret activation times during AF[139]. In this
Thesis a detailed in silico setup was developed as a perfectly controlled testing environment
to understand intracardiac signals recorded with two different commercial catheters. Further-
more, a decision tree classifier using clinical and simulated data to characterize signals based
on complexity measurements was trained. Decision trees offer a comprehensible structure
to follow the decisions taken for the classification. All three classifiers had a high accu-
racy. Despite overlapping features for different degrees of transmurality (Figure[T1.4p), the
combined features used to train all decision tree classifiers distinguished non-fibrotic tissue,
fibrosis volume fraction and all three different transmuralities of fibrosis from electrogram
signals. Our results suggest that combining clinical and simulated data helps to characterize
electrical tissue properties more accurately than using synthetic data alone. In future work,
the classifier could be extended to include more training signals recorded directly at the
surface of the tissue and at certain distances above the tissue to increase the perfomance
when there is non direct contact of the catheter with the tissue surface.

Different ablation strategies target fibrotic areas by ablating or isolating them [[12]]. Both
techniques rely on a voltage cut-off value for the identification of possible fibrotic areas.
While ablating fibrotic areas tries to homogenize the fibrotic substrate, isolation encloses the
fibrotic regions and connects them to the pulmonary vein isolation lines to prevent a potential
proarrhythmic effect. This suggests that identifying fibrotic tissue through electroanatomic
mapping is essential and the choice of a single voltage cut-off value may not be sufficient
to decrease the recurrence of arrhythmia [17]. Gutbrod et al. showed the importance of
fibrosis transmurality for electric propagation during AF [140]. Using a hybrid dataset
approach, our findings can help standardize the identification of non-fibrotic vs. fibrotic
areas and provide valuable information on the fibrotic tissue characteristics such as fibrosis
density and transmurality. Several studies have shown that low-density fibrosis can modify
the propagation and initiate or maintain arrhythmia [43] [141]. The border zone of high-
density fibrotic areas are prone to be a point of anchor for rotational activity [[108, [142-144]]
while low-density fibrosis micro-structure can alter the propagation pattern and maintain
reentry [[145,1146]. The trained classifier was used on five patients from the test set of our
patient cohort to distinguish and characterize fibrotic tissue. For clinical data, not all low
voltage areas were marked as fibrosis when using a single cut-off value. Areas with low-
density (10%) subendocardial fibrosis (0.5 mm) were annotated as high voltage area when
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using a single peak-to-peak cut-off value of 0.5 mV. Therefore, the use of hybrid datasets and
data-driven approaches could help estimate fibrotic tissue characteristics to support planning
of ablation therapy.

The results show that current clinical standards for substrate mapping using bipolar
voltage alone are not sufficient to characterize the atrial fibrillation substrate comprehensively.
Machine learning algorithms trained using hybrid datasets and multiple features obtained
from intracardiac signals may overcome these limitations providing fibrosis density and
transmurality maps. This may lead to optimized therapeutic approaches.

The model approach does not capture the influence of atrial anatomy, nevertheless our hy-
brid dataset approach tries to minimize this effect by including clinical signals. Furthermore,
increasing the catheter to tissue distance decreases the accuracy of the classifier. The effect
of the distance can likely be minimized if the dataset is extended by including signals that
were acquired at a certain distance of the cardiac tissue. Additionally, only a homogeneous
distribution of fibers from the endocardium to the epicardium was considered, which may not
represent heterogenous tissue architecture observed in some regions of the atria. In this study
the effect of inflammation-induced paracrine remodeling or myofibroblast interaction [36]]
was not included. While our approach shows promising results and highlights the essential
features of intracardiac signals to characterize atrial substrate, validation through independent
experimental and clinical data is desirable.

The modeling approach successfully answered the question of interest: A classifier
can be trained using clinical and simulated data to characterize the cardiac substrate to
support ablation therapy by providing fibrosis density and transmurality maps. Moreover, the
credibility assessment showed that detailed cardiac modeling can be a valuable framework.
In the future, classifiers to predict cardiac tissue characteristics could be integrated in
clinical electroanatomic mapping systems. Finally, our study emphasizes the potential of
in silico experimentation and data-driven approaches to characterize the patient’s substrate
and demonstrates the potential of software tools to support medical decisions during the
procedure.
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Determination of wavefront
direction using transfer entropy

Determining the direction of the wavefront is essential to understand the behavior of atrial
electrical activity. Van Nieuwenhuyse et al. [147] have recently shown the advantage of
using directed graphs to understand the wavefront direction; however, the method relies on
the annotation of electrograms, which is not a trivial task under AF due to the complexity of
the signal. In neuroscience and more specifically in the study of the electroencephalogram,
statistical approaches have emerged as a powerful tool to understand the electrical activity of
the brain [[148]]. Statistical methods have the advantage of not relying on the electrical signal’s
annotation of biomarkers. This chapter explores the use of information theory measurements
to understand the electrical propagation in cardiac tissue. Part of this work was presented as
a conference contribution.

12.1 Methods

12.1.1 Transfer entropy

In non linear systems, statistical relationships between the process variables reveal informa-
tion about the biophysical dynamics. Therefore, identification of the relevant variables and
characterization of their interactions are crucial for a better understanding of the underlying
mechanism in a complex system.

Different studies use mutual information, which provides a model-free approach to
quantify the information overlap between two variables. However, mutual information only
captures the information shared by two variables but not the flow of information between two
variables. Therefore, Scheriber et al. [149]] proposed transfer entropy (TE) as an information
measurement.

73
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TE is defined by Eq.[I2.1} which measures the amount of uncertainty that is reduced in
future values of one variable (Y) by knowing past values of another variable (X), given the
past values of the first variable (Y).

n
TEX—>Y)= ) P(M+uﬁ%”)log%y”nt> (12.1)
Ve pe+1y7)

where X and Y are the variables to be considered for calculating the flow of information,

12.1.2 Directed graphs

In mathematics, and more specifically in graph theory, a graph is made up of a set of vertices
connected by edges (Figure[I2.Th). A directed graph is when the edges have a direction
associated with them.

In a directed graph (DG) (Figure[I2.1p), an arrow is considered to indicate the direction
from node (vertex) v1 to node (vertex) v2; where v2 is the head and v1 is the tail of the arrow.
The relation of the nodes is described in the adjacency matrix. The adjacency matrix of a
directed graph is unique up to identical permutation of rows and columns.

Undirected graph Directed graph

el

el

Figure 12.1: a) Undirected graph, where vertices or nodes are connected with bidirectional edges. b)
Directed graph,where vertices or nodes are connected with directed edges represented by arrows.
Arrow'’s tail points the source and the arrow’s head points to the sink.
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A directed graph was created using the physical electrode position and its relation with
its neighbors. Electrodes will correspond to nodes of the graphs and edges are all possible
connections with all its neighbors. TE values are used to add directionality to each edge of
the graph. Higher TE values will indicate a higher flow of information. Therefore, for each
direct neighboring node the maximum TE value was used to define the direction of the edge.

12.2 Results

Simulated electrograms had a total duration of 8 s. The length of the signal was reduced to
2.5 s which is the duration of the clinical recordings. The reduction of the signal’s length had
little effect on the value of TE. Signals with 8 s had a TE value of 0.4 and signals of 2.5 s had
a value of 0.38.

Figure 12.2: Different TE matrices patterns of calculated TE. a) TE pattern for a planar wave following
the fiber direction while b) shows a planar wave transversal to the fiber direction and c) a radial planar
wave. When conduction block modifies the propagation direction. d) shows a u-turn of the wave
propagation due to a line of block. e) shows a fibrotic area where the propagation can travel across,
and d) shows a reentry activity around a fibrotic area where the pattern is sparse but organized.
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Transfer entropy was calculated for each electrode with all the others. Values of transfer
entropy were then shown as a matrix where the diagonal is the TE value with its self
(Figure [I2.2). Different wave front propagation arises different matrices patterns. Planar
waves patterns are organized blocked pattern matrix with a maximum transfer entropy value
of 0.45 (Figure[12.2h). When a reentry is generated, the matrix pattern is now disorganized
with a maximum transfer entropy value of 0.4 (Figure [12.2f).

. Subendocardial (0.5 mm) low .
density (10%) fibrosis area

| -
Early activation Late activation

Transmural (2 Mm) high
density (60%) fibrosis area

Figure 12.3: Directed graph calculated using a directed graph from an HD-grid. a) Subendocardial low-
density fibrosis alters the wave propagation locally. DG-TE can locate the local block while activation
times fail to distinguish local blocks. b) DG-TE map shows a block due to a transmural high-density
fibrotic area and shows the wave front’s local direction. In contrast, local activation times show a delay
on the activation but not a conduction block.

Directed graphs help to visualize local and global directionality of the depolarization
wave in the cardiac tissue. In the case of a planar depolarization wavefront, TE in a
combination of DG shows the propagation direction. When reentry was induced, DG
shows the direction of the rotational activity, and the disconnection of nodes identifies the
conduction block where the reentry was anchored. Moreover, under the presence of low
fibrosis density (10%) in the cardiac tissue (Figure @h), DG shows the global direction of
the wavefront and reveals local alteration in the directionality of the wave front propagation
due to the presence of collagen. Increasing the amount of fibrosis (40% - 60%) in the tissue
alters the global and local propagation (Figure [I2.3p), indicating a high level of accuracy in
the presence of collagen deposits in the tissue.
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12.3 Discussion

Transfer entropy has shown to be a robust measurement to characterize the flow of infor-
mation between two neighboring signals and to characterize the direction of the wave front
propagation. Directed graphs help to preserve the spatial relation of each node, while provid-
ing the electrophysiology information between them. This information is of great importance
during a clinical electrophysiology study to understand the wavefront propagation and the
dynamics of an arrhythmia. The results presented in this chapter are in agreement with the
finding from Rodrigo et al. [150] that showed that causality relations between electrograms
could help guiding ablation therapies.

Van Nieuwenhuyse et al. [[147] have shown the advantage of using directed graphs to
determine reentry circuits during atrial flutter. However, the algorithm provides global
direction of the wave front and macroreentry paths. The combined DG-TE has the advantage
of showing local and global direction of the wave front which provides a more detailed
information of possible micro structural block due to low density fibrosis (10%) and bigger
structural blocks which occur with higher densities of fibrosis (40% and 60%). DG-TE helps
to understand the mechanism of conduction block and provide useful spatial information
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Clinical fibrosis maps

Beyond pulmonary vein isolation, targeting the substrate has been proposed as another
ablation strategy with promising results. However, the determination of low-voltage areas
that define fibrotic substrate is based on a cut-off voltage value of 0.5 mV. The amplitude of
electrograms is strongly affected by the angle of incidence of the wavefront, the electrode
size, the thickness of cardiac tissue, and the distance of the recording electrodes to the cardiac
tissue. In this chapter, the trained machine learning classifier was used in patient recordings
as a proof of concept to overcome the use of a single cut-off voltage value to determine
the fibrotic susbtrate and its composition. Part of this work was presented as a part of a
prepint [118]].

13.1 Methods

This study includes five patients recruited at Stddtisches Klinikum Karlsruhe with the
diagnosis of persistent AF. The five patients recordings were used as a proof of concept to test
our approach to characterize the atrial tissue from clinical electrograms. Electroanatomical
maps were acquired during sinus rhythm using the CARTO3 mapping system (Biosense
Webster, Diamond Bar, CA, USA) with the Lasso catheter (Biosense Webster) or with
the Rhytmia mapping system (Boston Scientific, Cambridge, MA, USA) with the Orion
mini-basket catheter (Boston Scientific, Cambridge, MA, USA).

Fibrosis maps were created from a high density of electrogram recordings. However,
missing data were interpolated using a radial basis function kernel (RBF). The RBF function
computes the similarity for two points x; and x, (Eq.[I3.1).

= x]?
202

where ||x; — x||? is the Euclidean distance and o2 is the variance of the distribution.

K(x1,x2) = exp( ) (13.2)
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13.2 Results

We applied the trained classifier to intracardiac signals measured in five patients of the test
set of our cohort, which were not used to train the classifier, to create maps of atrial substrate
characteristics. Figure [I3.1] presents representative results for patient 1. The yellow dot
(Figure [I3.Tj, posterior view) shows a signal annotated as high voltage and identified as
non-fibrotic tissue by the classifier.
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Figure 13.1: Anterior and posterior view of patient 1 maps for clinical low/high voltage (a) and clas-
sification results for non-fibrotic vs. fibrotic (b), fibrosis density (c), and fibrosis transmurality (d). The
green dot represents a signal at the base of the pulmonary vein which was marked as high voltage and
classified as subendocardial (0.5 mm) low density (10%) fibrotic tissue. The white dot refers to a signal
recorded in the pulmonary vein classified as low voltage and high density (60%), transmural (2 mm) fi-
brotic tissue. The yellow dot represents a high voltage area identified as non-fibrotic and the light blue
dot indicates a signal collected in the pulmonary vein annotated as high voltage and classified as low
density (20%), partially transmural (1 mm) fibrotic tissue. Modified from [118].

Low voltage and high voltage areas determined by the clinical system using a cut-
off value of 0.5mV are shown in Figure [[3.Th. The low voltage areas showed a mean
dice similarity coefficient of 69.844-0.03% with the predicted fibrotic areas for the five
patients. Patients 1, 3, and 4 showed fibrotic areas mostly within the low voltage areas.
Figure [I3.Tb shows the classified fibrotic areas based on the signal features by the machine
learning approach, where electrogram signals were fractionated and exhibited a longer
activity duration independent from their peak-to-peak amplitude (Figure [13.Th, anterior
view, green and white dot). Regions annotated as high voltage areas partly exhibited
fractionated electrograms with a peak-to-peak voltage (1.4 mV) above the cut-off value of
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0.5mV (Figure [I3.1h, posterior view, light blue dot) where these areas were classified as
low density (20%) and partially transmural (1 mm) fibrosis. Fibrotic volume fraction was
estimated using patient electrograms as input for the classifier (Figure [I3.1c). In general
for this patient cohort, high density was located at the core of fibrotic areas. Furthermore,
Figure [I3.Td shows the classification of different transmuralities. Fully transmural fibrosis
was predominantly found in areas of high fibrotic density. Thus, not all high-density fibrotic
areas are entirely transmural. In contrast to patients 1,3, and 4, patient 2 and patient 5 had a
low similarity (55.74% and 58.76%, respectively) of low voltage and fibrotic areas due to a
generally low peak-to-peak voltage in the electrograms.

13.3 Discussion

In this chapter, a novel approach was presented to characterize the patient’s fibrotic substrate
using the trained machine learning algorithm developed in chapter 11| using the recorded
electrograms. Currently, voltage and activation time maps are used to guide ablation thera-
pies [151]]; however, they rely on manual annotation of the electrograms and do not provide
information about the cardiac substrate. The generated fibrosis maps add additional infor-
mation about the cardiac substrate and especially the fibrotic density and transmurallity,
which could help to guide ablation procedures. The data-driven approach presented in this
chapter overcomes the use of a single cut-off value to characterize the atrial fibrotic substrate.
Although the model needs further validation, the present study is a proof of concept on how
machine learning could help improve clinical treatments.






Chapter ] 4

Direct graph - Transfer entropy
flow maps

Understanding the electrical propagation during atrial fibrillation (AF) is crucial for an opti-
mal ablation strategy. Technologies like Coherent mapping [152]] and STAR mapping [153|]
estimate the electrical propagation relying on the annotation of local activation time (LAT)
of electrograms, which is hard to determine in complex signals. Transfer entropy (TE)
measures the amount of information flow between two processes, and allows the study of the
propagation’s spatio-temporal dynamics without electrogram annotation.

14.1 Methods

This study includes five patients recruited at Stidtisches Klinikum Karlsruhe with the
diagnosis of persistent AF. The five patients recordings were used as a proof of concept
to test our approach to characterize the atrial tissue from clinical electrograms. Patiens’
electroanatomical maps and recordings were the same as used in chapter[I3]

Electrograms were imported and stored in a standard structure where data from the
geometry, recorded signals coordinates and time of recording were collected to create the
directed graph and calculate TE. Recording time was used to overcome the limitation of non-
sequential recording characteristic of the electrograms collected during an electrophysiology
study. Afterwards, a directed graph (DG) was created to obtain the propagation direction.
Regions of the atria where data were not collected was interpolated using the RBF described
in Eq.

The available recordings were mapped non sequentially. Therefore, a weighting coeffi-
cient was introduced to resolve the global direction of the wave front based on the recording
time without the need of annotating local activation times on the acquired electrograms.
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14.2 Results

Local and global direction is depicted in Figure[I4.1] Electrograms collected from a close
area showed local conduction direction (black arrow). White arrows indicate the global
direction of the wave front. Red areas correspond with late activation times which in which
global direction was going around. However, there were areas of late activation time where
local direction was altered but followed the global direction. According to the results shown
in Chapter [T2]this might correspond with areas of low density fibrosis (10%).

N -
Early activation Late activation

Figure 14.1: DG-TE flow map showing the local and global direction of the propagation during fib-
rillation. Black arrows indicate the local wave front propagation and white arrow indicate the global
propagation. Local activation times are in the background as a reference.
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14.3 Discussion

Current technologies such as Coherent map (Biosense) or STAR mapping [[153]] and other
studies have shown the possibility to determine the wavefront direction and using a graph ap-
proach [[154[155]]. Most of these methods rely on the annotation of LAT on the electrograms,
which is not a trivial task under peAF due to fractionation of the signal.

In this proof of concept, we proposed a method that does not rely on the annotation of
clinical electrograms and overcomes the limitation of nonsequential mapping by introducing
a weighting coefficient to resolve the wavefront’s global direction.






Chapter

Conclusion

This chapter summarizes and briefly discusses the main contributions of the present thesis,
that go beyond the state of the art in translating computational modeling to clinical applica-
tions. The main conclusions corresponding to the specific objectives defined in this thesis
are summarized as follows:

1. Characterization of the fibroblast/myofibroblast electrophysiology and its impact on
myocyte action potential
Cardiac structural remodeling is a complex process that involves the interaction of different
types of cells that are present in the cardiac tissue. During persistent atrial fibrillation, the
presence of fibrosis modifies electrical propagation in cardiac tissue. However, in this thesis,
the fibrotic tissue composition was explored using computational models at different scales.
Fibroblast differentiation to myofibroblast is a key factor in understanding the dynamics of
electrical propagation. In this thesis, the characterization of the electrophysiology of human
atrial myofibroblast was assessed by fitting the model parameters to existing experimental
data. Moreover, the RMP and sodium current of myofibroblast is of great importance in
cardiac propagation.

2. Analysis of the role of calcium channels in myofibroblast electrophysiology and its
intracellular calcium handling system
Additionally, in silico experiments allowed to go beyond the limitations of in vitro exper-
iments and explore more in detail the electrophysiogy of isolated cells. In this thesis, we
explored the presence of ionic calcium channels in the membrane of the myofibroblast and
the intracellular handling. These results are in accordance with the literature and could
explain the wide range of data due to the fibroblasts’ ability to differentiate and express
different ionic currents.

3. Quantification of the impact on arrhythmogenicity of myofibroblast infiltration in
atrial tissue during atrial fibrillation
At the tissue level, a high density of myofibroblasts will lead to a block of conduction, and
reentry activity that is anchored to the border of the area where myofibroblasts were present.
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Interestingly, in case of myofibroblasts’ low density this allows the reentry to meander
inside the area defined as fibrotic, changing the dynamics of the fibrillatory event. Increased
myofibroblast density induces a biphasic behavior of the tissues vulnerability where the
reentry activity progresses from functional to an anatomical due to the conduction block.

4. Investigation of fibrosis composition and the effect on electrogram signals
The study of tissue fibrosis was carried out, looking at how fibrosis increases the tissue’s
vulnerability to trigger a reentry event and how the composition alters the intracardiac signal
collected at the surface of the tissue. Longer duration of electrograms was observed when
fibrosis was composed of myofibroblast; however, by introducing a third component such as
collagen electrograms where fractionated due alteration of the wave propagation.

5. Analysis of the use of electrogram signals to characterize fibrotic substrate
Simulated electrograms were compared with clinical signals from healthy tissue to validate
the modeling methodology. Realistic modeling of the catheter and a clinical noise model
was used to create realistic signals compared with in vivo recordings. To further verify and
validate the proposed modeling in this Thesis, the ASME V&V40 recommendations were
followed. After the validation of the model and the creation of 1048 different simulations, a
machine learning algorithm was used to characterize the fibrotic substrate. This study showed
that machine learning provides information about the cardiac fibrotic substrate without the
need to set a single cut-off value to distinguish healthy tissue from pathological tissue.

6. Investigation of the use of non-parametric measurements to understand the electrical
propagation in cardiac tissue
Throughout this Thesis, it was shown that fibrosis alters the propagation of the depolarization
wavefront. Therefore, transfer entropy in a combination of directed graphs was used to
indicate the depolarization wavefront’s direction. Transfer entropy does not need annotation
of the electrograms, which is advantageous when the signals are fractioned. As a proof of
concept, fibrosis maps and DG-TE maps were created to characterize the patients’ fibrotic
substrate and the direction of the wavefront from clinical recordings.

General conclusion

In conclusion, in silico experiments help to study and understand the electrophysiology of
isolated cells. Moreover, in silico experiments can be extended to tissue level simulation to
study how different cells and collagen interact and change the depolarization wavefront. In
addition, in silico data were used to synergistically create a dataset with in vivo recordings
to train machine learning algorithms that can be used to guide ablation therapies. During
electrophysiology studies, knowing the depolarization wavefront direction helps understand
the dynamics of the reentrant activity. DG-TE flow allows to create a map that indicates the
wavefront direction with no need of electrogram annotation.
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Outlook

At the cellular level, the investigation of calcium ionic currents and intracellular calcium
handling can be further extended to validate the results. Additionally, the main hypothesis for
including calcium dynamics in the myofibroblasts electrophysiology is under the assumption
that myofibroblasts are cells that can mechanically contract. Therefore, coupled simulations
of electrophysiology and mechanics can be carried out to fully understand intracellular
calcium handling at the cellular level. Additionally, at the tissue level, coupled simulations
can assess the effect of heterogeneous contraction during atrial fibrillation.

The model of the atria which included the catheter’s model can be further developed to
create a more realistic setup that better reflects clinical recordings. Furthermore, exploring
the advantage of the open code of openCARP a simulated electrogram reference electrode can
be extended to use an external signal that corresponds to the Wilson central terminal, which
is used in clinical setups as a reference signal. Additionally, the Discontinuous Galerkin
method can be implemented in openCARP to study the cardiac tissue’s fibrotic composition
at a microscale resolution.

Further studies can be carried out to improve the machine learning algorithm to charac-
terize the atrial substrate better. From the created matrices of TE, machine learning algorithm
can be trained to characterize the depolarization pattern and identify regions that are driving
the reentry activity.

With the increase of high-density electro-anatomical recordings, further investigation
of the DG-TE can be developed to detect micro reentry loops and global macro loops that
better support ablation therapies.
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