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Resum
Els models de predicció de consum elèctric han cridat l’atenció en l’última dècada a

causa de que són de gran ajuda per a la modernització de la xarxa elèctrica i, en con-
seqüència, per al medi ambient. En particular, els models que utilitzen informació je-
ràrquica han demostrat produir més interès darrerament En aquest projecte, proposem
construir un model jeràrquic de previsió de consum elèctric per predir el consum de l’en-
demà. Atès que les dades de consum elèctric es distribueixen en una zona geogràfica
relativament petita es proposa utilitzar una agrupació natural de les dades i deduir auto-
màticament una jerarquia basada en la similitud el perfil de consum dels diferents punts
de mesura. L’objectiu principal d’aquest projecte és crear un model precís que ajudi en la
presa de decisions de les comunitats locals per reduir l’impacte mediambiental i dismi-
nuir els costos econòmics. Per això s’han utilitzat les dades de consum horari dels edificis
públics gestionats per l’ajuntament de Llíria.

Paraules clau: model predictiu, agrupació jeràrquica, consum elèctric, machine learning

Resumen
Los modelos de predicción de consumo eléctrico han llamado la atención en la última

década debido a que son de gran ayuda para la modernización de la red eléctrica y, en
consecuencia, para el medio ambiente. En particular, los modelos que utilizan informa-
ción jerárquica han demostrado producir más interés últimamente. En este proyecto, pro-
ponemos construir un modelo jerárquico de previsión de consumo eléctrico para predecir
el consumo del día siguiente. Dado que los datos de consumo eléctrico se distribuyen en
una zona geográfica relativamente pequeña se propone utilizar una agrupación natural
de los datos y deducir automáticamente una jerarquía basada en la similitud del perfil
de consumo de los diferentes puntos de medida. El objetivo principal de este proyecto es
crear un modelo preciso que ayude en la toma de decisiones de las comunidades locales
para reducir el impacto medioambiental y disminuir los costes económicos. Para ello se
han utilizado los datos de consumo horario de los edificios públicos gestionados por el
ayuntamiento de Llíria.

Palabras clave: modelo predictivo, agrupación jerárquica, consumo eléctrico, machine
learning

Abstract
Load forecasting models have drawn attention over the last decade, due to the fact

that are of great help to the modernization of the power grid, and consequently, to the
environment. In particular, models that use hierarchical information have shown to pro-
duce more interest lately. In this project, we propose to build a hierarchical electricity con-
sumption forecasting model to predict the next day’s consumption. Since the electricity
consumption data is distributed over a relatively small geographical area, it is proposed
to use a natural clustering of the data and automatically derive a hierarchy based on the
similarity of the consumption profile of the different measurement points. The main ob-
jective of this project is to create an accurate model that will help on the decision making
of local communities to reduce the environmental impact and cut economical costs. For
this purpose, the hourly consumption data of the public buildings managed by Llíria’s
town hall were used.

Key words: predictive model, clustering, electricity load, machine learning
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CHAPTER 1

Introduction

1.1 Motivation

Load forecasting refers to the prediction of the power/energy needed to meet the de-
mand and supply equilibrium by power or energy-providing companies. Nowadays,
load prediction is not only an issue of energy companies but also of entities and commu-
nities that wish for a reasonable energy consumption planning.

For that same reason, over the last decade, a large number of countries have dedicated
increasing efforts to the modernization of the power grid. This endeavour is an enormous
step to fight the climate change and will help to accomplish the Paris Agreement of 2015
and the seventh Sustainable Development Goal (Ensure access to affordable, reliable,
sustainable and modern energy).

The modernization process in power grids has precipitated the deployment of smart
meters, devices that record the consumption of electric power (typically at an hourly
rate) and communicate it to some central system for monitoring and billing purposes.
The staggering amounts of data generated by such devices has brought up a new chal-
lenge to the forecasting community, that now has access to high resolution datasets [11].
Furthermore, these datasets are hierarchical in nature as smart meters are grouped by
electric utilities following geographical and structural factors.

It is of no surprise then that, currently, one of the most promising lines of research lies
in exploiting this hierarchical structure as is evidenced by the last Global Electric Fore-
casting Competition’s focus on hierarchical load forecasting [24]. Exploiting hierarchies
is useful because at high levels of the hierarchy the data shows very few irregularities
compared to lower levels which tend to be much noisier [24, 23].

The proposed approaches to hierarchical load forecasting consider datasets generated
by large scale utilities where a hierarchy is already defined, usually following a spatial
criteria. This kind of hierarchies are useful because they implicitly encode very valu-
able information. For instance, in a hierarchy based on a spatial criteria the sibling leaf
nodes are smart meters that belong to the same region and, therefore, they share simi-
lar weather and luminosity conditions, which are factors known to impact the electricity
consumption [6].

In this project, however, we focus our attention in small electric utilities where the
hierarchy is unknown and spatial hierarchies cannot be exploited as the smart meters
are too closely located. This setting occurs in some countries like Spain, where local
communities are entitled to act as direct players in the electricity pool (known as "direct
electricity consumer") and can also negotiate directly in the electricity market. In such
cases, where a spatial hierarchy is not meaningful, we claim that a data-driven approach
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2 Introduction

is a more appropriate solution as it enables to automatically infer a hierarchy grounded
on other factors like the different consumption behaviour that meters exhibit.

To sum up, the problem in matter is to accurately forecast the hourly load consump-
tion of different smarts meters and the aggregation of these points to obtain the total
consumption of an energy consumer.

1.2 Objectives

The main objective of this work is to create an accurate load forecasting system that will
help on the decision making of local communities to reduce the environmental impact
and cut economical costs. In order to solve the problem in question, we will pursue the
following two objectives:

• To construct a hierarchical structure that splits load series at diverse levels following
a natural grouping of data. The hierarchy will provide comprehensive information
on electricity consumption at different levels and will help identify critical points
of the power grid. To achieve this objective we propose the subsequent tasks:

– Preprocess the dataset by correcting anomalies and completing missing data.

– Define the set of features that represents a smart meter.

– Test a range of methods for establishing the data-driven hierarchy.

• To design and develop a load forecasting model that predicts the hourly load con-
sumption of different smarts meters and the aggregation of these points to obtain
the total consumption of an energy consumer. With this objective in mind, we have
defined the ensuing tasks:

– Design and build a predictor on each node of the hierarchy that takes into
account the seasonality of the load consumption data and uses the hierarchical
information.

– Research and explore different methods and/or structures to combine and rec-
oncile the lower level predictions with the higher ones in the hierarchy.

– Compare the performance of the different configurations of hierarchy.

1.3 Organization of the document

This work is structured as follows. First, in Chapter 2, we will discuss the current state
of the art in Load Forecasting. In section 2.1 we will introduce the concept of Load Fore-
casting and its characteristics, followed by section 2.2 which explains the different ap-
proaches to produce a load forecasting model. The chapter ends with section 2.3 that
addresses the hierarchical forecasting models.

Chapter 3 discusses the details of a load forecasting problem applied to the small
village of Llíria. First, in section 3.1 we formally introduce the steps to solve our particular
problem. Second, in section 3.2, we spend a little time explaining the details of the day-
ahead forecasting. Lastly, in section 3.3, we detail the form and information of the dataset
created to tackle this problems in the following chapters. We also explain how we cleaned
the dataset.

In Chapter 4 we will concentrate in the process of creating a data-driven hierarchy
with the dataset presented in Chapter 3. Initially, section 4.1 introduces the concept of
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hierarchical time series. Then, section 4.2 explain the methodology applies to build the
hierarchy and the results obtained wit each method.

Regarding Chapter 5 we will evaluate the performance of the different prediction
models built in this chapter. First, section 5.1 explains coherent hierarchical forecasting
models are made. In the following section, 5.2, we detail how we have constructed the
predictor or predictors for each node in the hierarchy. Finally, section 5.3, is devoted to
a thorough evaluation of all the prediction models that we tested and commenting the
results obtained with each one.

Chapter 6 summarizes all the conclusions and lesson achieved from this project and
outlines some future work directions.





CHAPTER 2

State of the art

In this chapter, we will first introduce the problem at hand, namely load forecasting, and
then present different approaches to address it. Finally, we will come into contact with
hierarchical forecasting models.

2.1 Load Forecasting

Forecasting is the process that involves making predictions based on past and present
data and most often by analysis of the trends that exhibit the data itself. Forecasting
is a problem that appears in a wide range of domains. For example, there are weather
forecasting models to predict the humidity, temperature and wind velocity among other
variables [17]; political forecasting to foresee instabilities on the government of differ-
ent countries or outcomes of political events [9]; in economics to forecast situations of
economical recession [20]; and in technology to prognosticate the new wireless commu-
nication technologies [3].

In the domain of electricity load forecasting, predictions are the power or energy that
will be consumed, which are useful to find the balance of the demand and supply. In
load forecasting the problem is about modelling a system who can accurately predict
the consumption of a zone in the power grid. Depending on the scale, the consumption
might come from just one household [22] to a country [4].

Load forecasting systems can be classified by the time-term or time horizon consid-
ered for the prediction, each one with different sets of objectives and applications. The
most commonly used categories for this classification are the following:

• Short-term (from one hour to several days). It is used to aid power system opera-
tors on different decision making like planning, scheduling and so forth [14]. The
most frequent objective of this type of decision making is the demand response for
distribution and production of electricity [15].

• Mid-term (from one month to a season). It is mainly applied on the operational
planning such as maintenance scheduling, planning for outages and major works
in the power system [1] [2].

• Long-term (from one year or more). It is useful for grid expansion and its own
operation [16]. Also, it has great importance from the business perspective and
processes involving stakeholders, regulators and utilities [5].

5



6 State of the art

2.2 Approaches

Electrical load forecasting is a problem that can be solved with a very broad range of
techniques [15] like:

• Artificial Neural Networks (ANN), a machine-learning method based on the con-
nections of neurons inside the human brain. This approach is well suited for load
forecasting since it can provide good predictions when the data is incomplete or
presents noise. Furthermore, it recognizes patterns and detects subtle relationships
in the data. The main drawback of this approach is that it works similar to a black
box, making it difficult to explain the relationships mentioned before. An exam-
ple of this approach can be found in [10], where an ANN is applied to short-term
forecasting in microgrid environments.

• Time series analysis (TSA), a statistical technique to manage a collection of data
points organized in time. The main methods of this approach are the Autoregres-
sive Integrated Moving Average (ARIMA) and Autoregressive Moving Average
(ARMA). These models can work with stationary (not varying in time) and non-
stationary data requiring just the past value of a time series. However, it needs a
good comprehension of the intrinsic statistics and does not produce good long term
predictions [27]. An instance of TSA that uses an ARIMAX model (the X comes
from the use of exogenous information) for forecasting the power consumption of
a building can be found in [19].

• Bottom-up systems, systems that are based on the construction of larger and com-
plex systems by performing some kind of operation, often aggregation of elemen-
tary systems. The main advantage of this approach is that it considers the be-
haviour of different types of energy consumers. On the other hand, the lack of
long term behaviour of the consumers makes it a model with poor results in the
long run. An instance of this approach can be viewed at [8], where an stochastic
bottom-up model for forecasting the load of an individual household is built.

• Support Vector Machines (SVM), a technique that constructs a hyperplane or set
of hyperplanes in a high or infinite-dimensional space. The problem with this ap-
proach is that not all data can be perfectly split with a hyperplane and the com-
putation in a high dimension space is very costly. The technique of soft-margins
solves the first issue, while the Kernel trick method tackles the second one. Some
authors tested this approach with two other approaches (Multiple linear regression
and Multilayer Perceptron) to forecast at short-term in a non-residential building
[18].

• Regression, a statistical method that measures the relationship between variables.
There exists a wide variety of regression methods, what makes selecting the method
that best fits the dataset the hardest aspect of this approach. An illustration of this
approach can be seen in the work presented in [7], in which authors use a new
regression model for hourly forecasting at long term.

2.3 Hierarchical forecasting

Besides the approaches seen in the previous section, a hierarchical variant has shown to
be of interest to research, due to the fact that electrical load forecasts tend to exhibit some
kind of hierarchical structure, as explained in the motivation. This commonly happens
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because the lowest levels of a hierarchy correspond to small sections of the grid, like
buildings, and the highest levels to the total electrical consumption of a country [24, 23].
In other words, the upper levels typically represent the aggregation of the lower levels,
even if the relationship between levels present different natures.

The relevance of using hierarchical information in the predictions can be observed in
the fact that the Global Energy Forecasting Competition of 2017 focused its attention in
hierarchical probabilistic load forecasting solutions, although models without hierarchi-
cal data were also provided [24]. Nevertheless, in the Global Energy Forecasting Com-
petition of 2014, none of the participants used a hierarchical forecasting model [12]. This
reveals the increasing interest on hierarchical models over the past years.

Works that rely on a hierarchical load forecasting typically use organizational hier-
archies by geographical area because data are gathered from large geographical zones,
and following a spatial criteria is more efficient. The reason behind this efficiency is that
these forecasting systems tend to use exogenous variables, that is, information outside
the system like weather data, which is useful to improve the overall accuracy. Hence, ge-
ographical organization turns out to be an adequate criteria to design a hierarchy when
electrical consumption is highly dependent on factors such as the layout of the land and
the weather conditions. In such a case, one can reason that consumers within the same
geographical area have a similar consumption behaviour.

When the hierarchy can not be inferred with geographical information, different vari-
ants of clustering methods are applied as they are algorithms that group data based on
their proximity. Another form of understanding this aggregation is that it organizes data
grounded on the similarity, since samples that are closer to each other present similar
values.

In addition to building the hierarchy, another step is necessary for the prediction
model to work properly. When predictions are made at all nodes in the hierarchy, they
must be coherent with each other; i.e., if a node represents the aggregation of its succes-
sor nodes then the prediction must be equal to the sum of the predictions of these nodes.
There are two ways of doing this process:

• Best Linear Unbiased Mean Revised Forecasts, which is a method that produce
coherent predictions by construction. This means that if we have the prediction
at the top, the predictions at the lower levels are computed by disaggregating this
one (top-down strategy), and that if we possess the prediction at the bottom level,
then, the predictions of the aggregated nodes are in fact the sum of the lower level
predictions (bottom-up strategy). Unfortunately, this has shown to give inaccurate
results, especially when a large number of time series are involved [13].

• A two-phase approach, where predictions are first made at all levels of the hierar-
chy, and then, these are combined or reconciled to create coherent forecasts. The
idea behind this approach is that it improves accuracy by synthesising information
from different forecasts.

On the latter approach, the forecasting literature conveys two main lines of research:

• Mean hierarchical forecasting is characterized by predicting the mean value of the
time series. On this line, it stands out the GTOP (Game-Theoretically Optimal Rec-
onciliation) method [25]. The idea of GTOP lies in (1) calculating the best possi-
ble forecast for the time series disregarding aggregate consistency and then (2) use
a reconciliation procedure to make the forecasts aggregate consistent. By explic-
itly separating the aggregate consistency from the forecast calculation, GTOP over-
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comes the limitations of the modeling power of bottom-up, top-down or middle-
out methods, and allows considering estimators that use more complicated regres-
sion structures.

• Probabilistic hierarchical forecasting refers to a predictive probability distribution
over future quantities or events of interest with the aim of improving the overall
accuracy. In this regard, it sticks out the Mean Combined and Reconciled Proba-
bilistic Forecasting of [23]. Using predictive distributions of the time series rather
than mean forecasts only offers an important advantage, that of aggregating infor-
mation from different levels in the hierarchy through a sparse forecast combination.
Thus, using probabilistic forecasting of the time series enables quantifying the un-
certainty in the predictions for the entire hierarchy while satisfying the aggregation
constraints. In the end, this allows for better decision making and risk manage-
ment.



CHAPTER 3

Problem statement and data
processing

In this chapter we will first give a formal definition of the problem to solve. Then we will
introduce the concept of day-ahead forecasting. Finally, the chapter presents the dataset
used in this project.

3.1 Overview of the problem

The problem that we address in this project is the day-ahead hourly electrical load fore-
casting of the public structures managed by the council of Llíria. For this purpose, the
local government of Llíria installed smart meters, devices that hourly record the electrical
consumption on 69 public facilities.

Our proposal develops a solution to this problem which is divided into the following
stages:

• Stage 1: Background of the problem. In this stage we investigate how the electricity
market operates, specifically we delve into the special type of electrical load fore-
casting models known as day-ahead forecast. The explanation on how the day-ahead
electricity market works, and the constraints and difficulties it poses is presented in
section 3.2.

• Stage 2: Data processing. Our dataset is presented in section 3.3. One of the issues
we need to deal with is the presence of missing values since the lack of values in
the time series data give rise to information gaps of considerably significant size.
Furthermore, the daylight saving time in which we turn clocks ahead or back, mak-
ing us gain or lose one hour, causes non-normalized data and some adjustments are
needed. This will be explained in detail in section 3.3.2.

• Stage 3: Prediction model. This stage is divided into two phases:

– Hierarchical structure. The first phase involves building the hierarchical struc-
ture that follows a natural grouping of data, yielding a division of the load
series in different levels. This structure will organize and present the dataset
as a hierarchical time series, taking advantage of aggregated data. This phase
is further explained in Chapter 4.

– Design and Development of the prediction model. The second phase concerns
the design and development of the forecast model that makes use of the hier-
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10 Problem statement and data processing

archy built in the first phase. For this purpose, different models will be tested.
The details of this phase are broken down in Chapter 5.

3.2 Day-ahead forecasting

The Day-Ahead Energy Market (day-ahead market) is a financial market where partic-
ipants purchase and sell electric energy for the next 24 hours in a closed auction. Our
problem thus consists in forecasting the electricity load of the next 24 hours using histor-
ical data. This is known in the literature as day-ahead forecasting and the reason behind
its constraints is that the auction on which are going to be resourceful is held one day in
advance of the actual values.

Day-ahead forecasting posses their own caveats and some added difficulties. The
main difficulty is that the information that is needed or could help increase accuracy is
not available at the time of the prediction, so the forecasting models tend to rely on other
forecasts or lagged values to provide good predictions. For example, the climatological
data that AEMET (Agencia Estatal de Meteorología or State Meteorological Agency) uses
is not available until after two days have elapsed.

The auction of the electricity market is conducted to determine the price of the elec-
tricity one day before its consumption. In Spain, the market operator of the electric-
ity market is OMIE (Operador del Mercado Ibérico de Electricidad or Iberian Electricity
Market Operator). In this market, the two different types of participants, generators and
consumers of electricity, submit their bids to take part in the trading. In our case, the
council of Lliria is a consumer participant. The day-ahead market is performed every
day, and the market participants have up to 12PM to submit their bids for each of the 24
hours of the following day.

3.3 Dataset

Llíria council runs several buildings and structures which are organized in 69 public
facilities, a group of structures that produce a single electrical bill as they are considered
as a unique entity. The nature of the public facilities is very different such as traffic lights,
public offices, schools or markets. According to their type, we can reason that public
facilities are organized around three major groups:

• Public buildings, facilities that are mainly used by public officials like counselors,
office workers or school personnel. These edifices present a high electrical con-
sumption in working hours.

• Street lightning. This type of structures show a low load consumption on daylight
hours, since they are only activated at night.

• Special purpose constructions that present a unique consumption behaviour related
to the activities undergone in the buildings. In this group we can find edifices like
churches, penitentiary centers or Arab baths.

There is a smart meter installed in every public facility that hourly records the total
electrical consumption of all the structures or group of buildings related to the facility. It
is relevant to mention that as in any real scenario, some errors as downtime of the meters
may occur, which provoke a lack of records for several hours of the load consumption.
Also some facilities can completely cease its functions for extended periods of time, as
for example public swimming pools that only opens in summer.
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3.3.1. Dataset Creation

The smart meters deployed in each of the public facilities are identified by a key of 20
digits called CUPS (Código Universal de Punto de Suministro or Universal Supply Point
Code). The meters record the hourly value of load consumption and the registered data
is organized on a list for each month. In order to create a dataset with all the information,
we designed a process that gathers all records in a single file and explicitly shows the date
at which the event occurred. The date is inferred since we only have the list of values of
each month with no information concerning the day and hour the values are recorded.
This way, the first 24 read values correspond to the first 24 hours of the first day of the
month. The rest of the values are computed with the same process, we only need to take
care with the daylight saving, which implies that the day it occurs there is 23 recordings
or 25 values, depending on the nature of the change.

The range of dates on which the load consumption is recorded is different for each
smart meter. This is likely due to a gradual installation of the meters instead of setting
them up all at once. In total, the data ranges from January 2016 to January 2019. Another
explanation may be that some public facilities were not functional at the moment of the
deployment, or that they stopped their activity before the record was finished since there
also exist missing months at the end.

The dataset computed with the gathering presents the following features:

• the identifier of the smart meter (CUPS)

• the starting time of the 1-hour period

• the load in kWh for that period

Table 3.1 shows an excerpt of our dataset where each row represents the hourly con-
sumption recorded by one smart meter.

CUPS Date Load

ES0021000008103001SY 23/02/2016 0:00:00 171170
ES0021000008103001SY 23/02/2016 1:00:00 170250
ES0021000008103001SY 23/02/2016 2:00:00 169920
ES0021000008103001SY 23/02/2016 3:00:00 170410
ES0021000008103001SY 23/02/2016 4:00:00 170630
ES0021000008103001SY 23/02/2016 5:00:00 170690
ES0021000008103001SY 23/02/2016 6:00:00 170110
ES0021000008103001SY 23/02/2016 7:00:00 135130
ES0021000008103001SY 23/02/2016 8:00:00 110
ES0021000008103001SY 23/02/2016 9:00:00 110
ES0021000008103001SY 23/02/2016 10:00:00 110
ES0021000008103001SY 23/02/2016 11:00:00 110
ES0021000008103001SY 23/02/2016 12:00:00 110
ES0021000008103001SY 23/02/2016 13:00:00 110
ES0021000008103001SY 23/02/2016 14:00:00 110
ES0021000008103001SY 23/02/2016 15:00:00 110
ES0021000008103001SY 23/02/2016 16:00:00 110
ES0021000008103001SY 23/02/2016 17:00:00 110
ES0021000008103001SY 23/02/2016 18:00:00 38040
ES0021000008103001SY 23/02/2016 19:00:00 190600
ES0021000008103001SY 23/02/2016 20:00:00 190800
ES0021000008103001SY 23/02/2016 21:00:00 192960
ES0021000008103001SY 23/02/2016 22:00:00 192690
ES0021000008103001SY 23/02/2016 23:00:00 176400

Table 3.1: Extract of hourly load consumption
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Aside of the information collected by the smart meters, we also have at our disposal
information about the public facilities where each smart meter was installed such as the
location or the type of facility. This data will be helpful for us to better understand
the consumption behaviour of each meter and validate the hierarchies produced in this
project.

In this project we decided to use separately the data collected in winter and summer,
thus, developing two forecasting models. This decision was made due to the fact that
people consume electricity in different manners on each season of the year, being these
two in particular the ones with more unique behaviours because of the temperature and
hours of daylight. Winter has short cold days and summer has long warm days.

Although seasons are divided by four particular dates, corresponding with two equi-
noxes (date when the sun crosses the celestial equator) and two solstices (date when the
sun reaches its maximum or minimum declination), we have established the division by
months, taking into account the change of temperature in the province of Valencia. With
these considerations in mind, the winter season takes up the months from December to
February, and the season of summer the months from June to September. In table 3.2 we
can see the two datasets created for the winter and summer season detailing the dates
that were gathered along with the name given to each dataset.

Name Period

WIN01 12/2016 - 02/2017 & 12/2017 - 02/2018 & 12/2018 - 01/2019
SUM02 06/2017 - 09/2017 & 06/2018 - 09/2018

Table 3.2: Dataset segmentation summary

We were obligated to work with only 37 out of the 69 public facilities due to a lack
of recordings of load consumption over the winter and summer periods for some of the
facilities. Nevertheless, the list of 37 facilities we worked with contain samples of the
three group of public facilities mentioned above.

As we will see in the following chapters, with the available data, it was possible to
perform interesting comparisons between the models as well as extract valuable conclu-
sions at each step of the development of the project.

3.3.2. Normalizing and filling data

A problem that arises with the hourly load consumption is that, in Spain, we turn clocks
one hour ahead or back from the current time in the last Sunday of March and October
respectively. This causes non-consistent time series in which duplicates, in the sense that
two different values have the same time of recording, or gaps in the information, appear.
In order to solve this issue, we have decided to compute the average of the duplicated
measurements that are produced in October, and fill out the gap of March as we will
explain later in this section.

Some time series in the dataset also present gaps due to a meter malfunction, com-
munication errors and power outages. In consequence, we will preprocess the dataset,
filling out the gaps with different techniques. One of the most common techniques is to
apply interpolation for missing values between a known period.

There exist different types of interpolation methods: linear, quadratic, cubic, spline,
polynomial, etc. A simple test with each method provided us with the insight that spline
and polynomial interpolation provide better approximations to the "correct" value since
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they tend to calculate a smooth curve that resembles more closely the actual behaviour
of data.

However, using interpolation directly on the time series does not solve the problem
as it only fills in the gaps with a curve line that does not maintain the seasonality of the
data. With the aim of improving the interpolation, we deseasonalized the time series
by interpolating only the load consumption of the same hour, in other words, we split a
time series into 24, being each one a series composed by the values of one of the 24 hours.
Then, we can interpolate the missing values on each of the 24 time series. Afterwards, we
add the interpolated values to the original time series to fill the gap. This approach is a
better approximation since the time series formed by the values on the same hour have a
more uniform behaviour and the gaps of the deseasonalized time series are smaller, thus
providing interpolated values that respect the seasonality of the time series.

Figure 3.1 shows both interpolations explained before; the one of the left (Figure 3.1a)
is the approach wherein the seasonality is not preserved; the figure on the right (Figure
3.1b) is the approach in which we deseasonalize the time series to compute the missing
values. The X-axis represents the time that ranges From 2nd February to 5th February,
and the Y-axis is the consumption in KWh. The blue plot denotes the existing recorded
values the red plot is the reconstructed values computed with interpolation. It is im-
portant to mention that the consumption values are indeed points, since they are hourly
values, but they have been linked by a line to properly show the seasonality of the data
so that the blank spaces are not missing values.

(a) Without deseasonalize (b) With deseasonalize

Figure 3.1: Dataset filling with interpolation

Finally, the second approach in which we deseasonalize the time series presents an
edge case which leaves small gaps. These small gaps are in fact the endings of the same-
hour time series, as when they are seen in the deseasonalized time series it is not between
two known points, however, in the original time series the gap may be between two
known values. To fill these gaps, we used the first approach, we interpolated the time
series without deseasonalizing, since they are only one-value gaps with a small margin
of error.





CHAPTER 4

Hierarchy

This chapter will focus its attention on the process and results of building a data-driven
hierarchy. First, we will introduce the concept a hierarchical time series. Secondly, we
will explain the used methodology, and then we will analyse the results provided by
three different ways. Finally, we will extract some conclusions of the results.

4.1 Hierarchical time series

In many occasions, the time series of a particular subject can be grouped following some
criterion, creating another time series by aggregating the time series that form the group.
This process ends up forming a time series hierarchy, also known as a hierarchical time
series (HTS). At the same time, a HTS can be formed by disaggregating a time series.
These two types of processes to produce an HTS are known as:

• Bottom-up: when the hierarchical time series is built by aggregating the time series
at the lowest level (base time series) till arriving to a time series that is the aggrega-
tion of all the ones below it.

• Top-down: when we start from the time series at the highest level of the hierarchy
and we split it to form the lower levels till reaching the base of the hierarchy.

These hierarchical time series often arise due to geographic divisions. For example,
the Valencian Community can be disaggregated by provinces, and these provinces can
be divided in localities as can be seen in Figure 4.1.

Com. Valenciana

Valencia

Valencia Sagunto ...

Castellón

Segorbe ...

Alicante

Denia ...

Figure 4.1: A hierarchical load time series by region

In our case, we depart from the time series produced by each smart meter, therefore,
a bottom up approach has been performed in which the grouping is produced by the
similarities of the data as it will further explained in the next section.

15
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4.2 Clustering

A data-driven hierarchy is built by automatically finding commonalities in the data of
different elements (load series in our case) and grouping them together. Hence, the nature
of the inferred hierarchy is ultimately dependant on the information used to represent
each element. The first step in our data-driven approach is to define a feature vector, a
collection of features that represent an element in our hierarchy.

For our part, we reason that the difference between the load series lies on the usual
hourly consumption of a day, so our feature vector would be formed by the average
hourly consumption of all days, that is to say, the feature vector is composed by the
average consumption of each hour (0, 1, ..., 23) across all the days. This feature vector can
then be understood as a "consumption profile", that shows how the consumption varies
during the day.

This consumption profile provides a characterization of the time series that allows
to group them in a similar manner to that expected in the previous chapter, in which
three groups of public facilities where identified without a deep analysis. Nevertheless,
other two feature vectors were tested. In total, the features vector that were used are the
following:

• Day Profile feature vector: daily average of hourly consumption.

• Week Profile feature vector: weekly average of daily consumption, a feature vector
composed by seven features, each one being a day of the week (Monday, Tuesday,
Wednesday, etc.).

• Concatenated feature vector: the union of the two previous profiles, therefore, it
presents 31 features, 24 of the day profile and 7 of the week profile.

It is also relevant to note, that each feature vector is normalized, that is to say, the
values are divided by the maximum value of the vector. It is important to normalize the
data since we want that all dimensions or features are treated equally.

With regard to the data-driven hierarchy, we propose the following 3-tier structure as
a first approach:

• Tier 1: this is the lower tier and each element in this tier represents the electricity
load of a public facility of Llíria as recorded by a smart meter. Therefore, we will
have as many tier-1 elements as smart meters in our dataset.

• Tier 2: the mid tier in the hierarchy represent groupings of load series that display
a similar consumption profile. The number of elements in this tier and groupings
will be automatically inferred from the data, hence the data-driven nature of this
hierarchy.

• Tier 3: the higher tier and single root of the hierarchy represents the total consump-
tion of the public facilities under the Lliria Townhall.

The unsupervised method to group a collection of data is known as clustering. There
are many algorithms that perform clustering but we are going to test the feature vectors
with the following ones: K-Means clustering, Mean-Shift clustering and Expectation-
Maximization (EM) clustering using Gaussian Mixture Models (GMM) [21].

K-Means clustering is an algorithm that given a number of clusters or classes tries
to minimize the sum-of-squares (the difference between a point and the average of the
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class squared) inside the same cluster. Mean shift clustering is a sliding-window-based
algorithm that attempts to find dense areas of data points. It works by updating centroids
to be the mean of the points within the sliding-window. In GMM it is assumed that
data points are Gaussian distributed, thus, the shape of the clusters are defined by two
parameters, the mean and the standard deviation. In order to find this parameters, the
expectation-maximization algorithm is applied.

K-Means and GMM algorithms have as a parameter the number of clusters that it
has to make, thus, to calculate the goodness of a configuration of clusters we decided
to compute the ’rule of elbow’, a method that consists of plotting the sum of squares
distance to each centroid (average sample of the cluster) as a function of the number of
clusters and picking the ’elbow’ of the curve as the number of clusters to use.

4.2.1. Day profile feature vector

The day profile feature vector represents the average consumption behaviour on a day,
thus, with this feature vector we expect to find groups that consume on a daily basis in a
similar way.

In the dataset WIN01, KMeans and GMM return an optimal configuration of four
clusters while Mean Shift produces only three, as seen in Figure 4.2. The four clusters
produced by the two first algorithms are very similar, varying on only a few samples.

KMeans Gaussian Mixture Mean Shift

(a) Centroid 1 (b) Centroid 1 (c) Centroid 1

(d) Centroid 2 (e) Centroid 2 (f) Centroid 2

(g) Centroid 3 (h) Centroid 3 (i) Centroid 3

(j) Centroid 4 (k) Centroid 4

Figure 4.2: Winter Day Profile clustering and centroids
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These clusters have the following characteristics:

• First cluster (Centroid 1): public facilities that have always some consumption but
present a higher load consumption on daylight hours or work hours. In this cluster
we find mainly public buildings.

• Second cluster (Centroid 2): public facilities that only consume on night hours. It
consists of almost all street lightning facilities.

• Third cluster (Centroid 3): public facilities that show a nearly constant consump-
tion. This cluster has traffic lights and pumping stations.

• Fourth cluster (Centroid 4): public facilities that have some low consumption at
midday. This is the cluster with the most different kind of buildings, thus, we rea-
son that they are grouped because they have very little activity. We can find an old
hydraulic cereal mill, a nursing home and a food bank among other buildings.

KMeans Gaussian Mixture Mean Shift

(a) Centroid 1 (b) Centroid 1 (c) Centroid 1

(d) Centroid 2 (e) Centroid 2 (f) Centroid 2

(g) Centroid 3 (h) Centroid 3 (i) Centroid 3

(j) Centroid 4 (k) Centroid 4 (l) Centroid 4

(m) Centroid 5

Figure 4.3: Summer Day Profile clustering and centroids
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When it comes to the results of Mean Shift algorithm, it looks like the samples of the
fourth cluster that produce the other two algorithms have been integrated in the first
centroid (c) and third one (i), producing a variation on the centroid.

We found similar results in the dataset SUM02 as shown in Figure 4.3. This time,
however, Mean Shift returns five clusters instead of three. The centroids appear to be
affected by the change of daylight hours, since for example, the cluster of street lightning
(Centroid 2) has increased the hours of no consumption or the cluster of public buildings
(Centroid 1) has a narrower peak. The fourth cluster (Centroid 4) shows that the activities
consuming electricity are now done before or after midday, probably because these are
the hottest hours of the day. In the case of Mean Shift it seems that the fourth cluster
(l) has been splitted to produce the fifth one (m), since the samples that produced the
consumption after midday have been moved to the latest. This cluster (m) show a peak
because in average, the samples have its highest consumption in these hours, but when
they were unified with the cluster (l) showing a centroid like the fourth one of KMeans (j),
the peak was attenuated by the other samples, since they have almost no consumption.

4.2.2. Week Profile feature vector

The week profile feature vector represents how we consume electricity in each day of a
week, providing a behaviour that is affected in particular by the weekends and showing
in which days there is more activity.

On the first hand, in the dataset WIN01, the algorithms of KMeans and GMM have
an optimal configuration of four clusters, contrarily, Mean Shift returns six groups. The
centroids of these clusters can be seen in Figure 4.4. As with the day profile, the four
clusters created by the two first algorithms are quite similar. They present the following
behaviour:

• First cluster (Centroid 1): public facilities that show a high consumption during
working days and a drop on the weekends. It is formed by public offices.

• Second cluster (Centroid 2): public facilities that have some consumption specially
on Mondays, Tuesdays and Wednesdays. It is composed by public facilities of very
different types.

• Third cluster (Centroid 3): public facilities that have an almost constant consump-
tion. This time, we can find street lightnings merged with the traffic lights and the
pumping station, since seen from the perspective of a week, they consume persis-
tently.

• Fourth cluster (Centroid 4): this cluster differs a little between KMeans and GMM,
but in general it represents public facilities that have a growing consumption at the
beginning of the week and then decreases over weekends. In the case of KMeans
this cluster is formed by some public buildings like a mausoleum and a museum.
When it comes to GMM this cluster is only consists of a sample, a market.

It is relevant to mention that the last three clusters produced by Mean Shift (l, m, n)
are composed by only one public facility, thus, it gives us the insight that this algorithm
does not perform well with this profile. The three public facilities are: a housing, a mar-
ket and a food bank.
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KMeans Gaussian Mixture Mean Shift

(a) Centroid 1 (b) Centroid 1 (c) Centroid 1

(d) Centroid 2 (e) Centroid 2 (f) Centroid 2

(g) Centroid 3 (h) Centroid 3 (i) Centroid 3

(j) Centroid 4 (k) Centroid 4 (l) Centroid 4

(m) Centroid 5

(n) Centroid 6

Figure 4.4: Winter Week Profile clustering and centroids

On the other hand, in summer, the first two algorithms have also established an op-
timal configuration of four clusters, as can be seen in Figure 4.5. As with the previous
profile, the change on temperature and daylight hours has changed the consumption
behaviour, although this time is more subtle, since it affects all the days equally. The
fourth cluster (Centroid 4) is the one that shows more variation, loosing the decreasing
consumption of the weekends.

In reference to Main Shift, as with the winter season, the last three clusters (l, m, n)
are formed by one sample, although, one of them has changed, the housing has been
switched by a public office.
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KMeans Gaussian Mixture Mean Shift

(a) Centroid 1 (b) Centroid 1 (c) Centroid 1

(d) Centroid 2 (e) Centroid 2 (f) Centroid 2

(g) Centroid 3 (h) Centroid 3 (i) Centroid 3

(j) Centroid 4 (k) Centroid 4 (l) Centroid 4

(m) Centroid 5

(n) Centroid 6

Figure 4.5: Summer Week Profile clustering and centroids

4.2.3. Concatenated feature vector

The concatenated feature vector is the union of the day and week profile and hence we
can divide the centroids into two parts, the one that represents the day profile and the
one that refers to the week profile. Regarding the results of clustering, there are certain
aspects that are important to mention. The results obtained with the dataset WIN01 can
be seen in Figures A.1 and A.2, and the outcomes with the dataset SUM02 are shown in
Figures A.3 and A.4, which form part of the Annex A.
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In the first place, all three algorithms have an optimal configuration of four clusters,
giving us the insight that with this feature vector there are clear separations between four
groups. These groups are almost identical to the ones formed with KMeans in the day
profile feature vector.

• First cluster (Centroid 1): public facilities that have always some consumption but
present a higher load consumption on daylight hours or work hours.

• Second cluster (Centroid 2): public facilities that only consume on night hours.

• Third cluster (Centroid 3): public facilities that show a nearly constant consump-
tion.

• Fourth cluster (Centroid 4): public facilities that have some low consumption at
midday.

Secondly, since the four groups are similar to the ones of the day profile feature vector,
we reason that this is due to the features referring to the day profile have more weight
than the ones related to the week profile, in part, because we are facing 24 features to 7.
This can be seen in the centroids of the week part, as two clusters with almost constant
consumption can be found, one formed by the street lights and the other by the traffic
lights, pumping stations, etc. To solve this problem some kind of projection to an equal
number of features should be performed.

4.2.4. Conclusions

After analysing all the results given by the three clustering algorithms, we decided to use
KMeans as the method to build the hierarchy of our forecasting models. This decision is
supported by the fact that the three of them produce similar clusters, but only KMeans is
deterministic, that is, before a same dataset, it produces always the same clusters, thus,
providing us more confidence than the other two algorithms. Furthermore, Mean Shift
and Gaussian Mixture tend to produce clusters with only one sample.

With that said, our data-driven hierarchy will present four nodes or groups at the
middle level, although, depending on the type of feature vector, the children or samples
forming that groups will be different. An example of this hierarchy can be found in
Figure 4.6.

On the other hand, at this point we cannot make a decision on the profile that will
perform better for the forecasting model. Consequently, the hierarchies produced by the
three different feature vectors will be tested on the following chapter.

Aggregation of all time series

Cluster 1

ES0021000008114131QG ...

Cluster 2

ES0021... ...

Cluster 3

ES0021... ...

Cluster 4

ES0021... ...

Figure 4.6: A data-driven hierarchy obtained by clustering



CHAPTER 5

Prediction model

This chapter is devoted to evaluate the different prediction models built. First we will
explain the characteristics of the coherent hierarchical forecasting and how it can be done.
In second place, we will formalize and explain the models that we have created. Then, we
will discuss the results obtained. At the end, we will present some conclusions extracted
from the results.

5.1 Coherent Hierarchical Forecasting

In hierarchical forecasting, the predictions made at each level of the hierarchy, also called
base predictions, are usually not coherent between them because the predictions of a
time series are independent of another one. Coherence on hierarchical forecasting means
that the relation established between levels is fulfilled. That is, that the predictions of a
node are equal to the aggregation of the node children’s predictions. As we mentioned
in section 2.3, there are two ways of producing coherent hierarchical forecasts:

• Best Linear Unbiased Mean Revised Forecasts, a method in which the predictions
are constructed following a top-down or bottom-up strategy.

• A two-phase approach in which a prediction for each node is made and then pre-
dictions are reconciled.

For our part we decided to test only the first approach using two different strategies:
(1) a bottom-up strategy, which simply builds the aggregation predictions following the
hierarchy, and (2) another strategy that follows the minT methodology [26], which in-
volves a few more steps and produces a more sophisticated model.

In Best Linear Unbiased Mean Revised Forecasts, the predictions that comply with
the aggregation constraints of the hierarchy take the following form:

ỹt = SPŷt

where ŷt are the base predictions made independently of the aggregation constraints,
and ỹt are the predictions reconciled, thus fulfilling with the constraints. Aside of these
terms, S and P which are both matrices. The matrix S is known as the summing matrix
since it represents the aggregation constraints and establishes how the predictions at the
bottom level must be added to form the other predictions at higher levels of the hierarchy.
The matrix P is recognized as the coherency matrix as it maps the base predictions to the

23
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reconciled predictions of the bottom level, which means that the reconciled predictions
take in consideration the predictions made at the intermediate levels of the hierarchy.

All things considered, the difference between the simple bottom-up strategy and the
minT lies in the definition of the matrix P as for the same hierarchy the summing matrix
S remains equal.

In order to explain how both strategies have been implemented we will start with an
example of a two-tier hierarchy which can be seen in Figure 5.1. At the higher level we
can find the total aggregation of all time series, which we will call Total. The values or
observations of a time series are denoted by the symbol y and so the observation at time
t at the Total time series is yTotal,t. The top tier time series is disaggregated into two time
series, the A series and B series. Finally, both time series are disaggregated into three
and two time series respectively. Then, the total number of time series is n = 8 and the
number of series at the lowest level (leaf nodes) is m = 5.

yTotal,t

yA,t

yA1,t yA2,t yA3,t

yB,t

yB1,t yB2,t

Figure 5.1: Example of a two-tier hierarchy with five leaf nodes

Once the hierarchy has been established, we first build a summing matrix of order
n × m (n = total number of time series and m = number of time series at the bottom
level). It is important to mention that the m columns represent the nodes at the bottom
level of the hierarchy (yA1,t, yA2,t, yA3,t, yB1,t, yB2,t), and the n rows represent the nodes
in the hierarchy ordered by its level: first the top node, then the first child of the top
node, then the second child and so on up to the last nodes that belong to the bottom level
(yTotal,t,yA,t,yB,tyA1,t, yA2,t, yA3,t, yB1,t, yB2,t). The matrix S is constructed following these
steps:

1. First we compute n - m rows that represent the aggregation constraints. The n - m
nodes that are not at the lowest level of the hierarchy are the nodes formed with
the aggregations of the nodes below them. Each cell of the row is filled with a 1 if
the node corresponding to that column is below the node corresponding to the row
itself, and 0 if not. For example, the row corresponding to yA,t is [1 1 1 0 0].

2. On second place, we fill the rest of the matrix S with an identity matrix of order m,
since each node at the bottom is, in fact, an aggregation of itself with zero.

Following the hierarchy of the example in Figure 5.1, the result summing matrix
would be:

S =


1 1 1 1 1
1 1 1 0 0
0 0 0 1 1

I5


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5.1.1. Bottom-up

In the simple bottom-up strategy, the coherency matrix (P) is constructed quite simply
as P = [0m×(n−m)|Im], where 0m×(n−m) is a null matrix (filled with zeros) and Im is the
identity matrix. When the matrix takes this form, the reconciled predictions are in fact
the same as the base predictions of the bottom level, since the values in other levels of
the hierarchy are not considered. In consequence, the predictions in the hierarchy are, as
we explained, just the aggregation of the base predictions of the bottom level nodes, and
thus, they are coherent. In the example of the Figure 5.1, the coherence matrix would be:

P =


0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


5.1.2. MinT

In the case of minT, Wickramasuriya et al. [26] explained different methods to estimate
the matrix P given that it depends on the forecasts already reconciled and so it can not be
computed. Actually, the coherency matrix P that would lead us to the reconciled forecasts
is given by the following formula:

P = (S′Σ−1
h S)−1S′Σ−1

h

where Σh is the covariance matrix of the h-step ahead reconciled forecasts errors. This
matrix is not identifiable as Wickramasuriya et al. [26] revealed, although we can com-
pute the optimal matrix P by:

P = (S′W−1
h S)−1S′W−1

h

where Wh is the covariance matrix of the h-step ahead base prediction errors, and it is
subject to the condition that SPS = S. Wickramasuriya et al. [26], presented four different
simplifying approximations to calculate this matrix. For our part, we have decided to use
the following methods:

• OLS (Ordinary Least Squares). This approximation considers that the matrix P is
independent of the data and that it only depends on the summing matrix S.

• MinT-VarScale or WLSV (Variance Weighted Least Squares). This approximation
scales the base forecasts at all levels, by employing the variance of the difference
between the observed value and the mean value of the predictions for that obser-
vation, also called residuals.

We used the implementation of both methods provided by the library scikit-hts in
Python.

5.1.3. Base predictions

Despite the wide range of techniques for building a base predictor presented in section
2.2, in this project we decided to use time series analysis for producing the predictors



26 Prediction model

of each node in our hierarchy. As explained before, the two main methods for time se-
ries forecasting are the ARIMA and ARMA models. For our part, we used a variant of
the ARIMA model, the SARIMA (Seasonal AutoRegressive Integrated Moving Averages)
model, more particularly the implementation of the library statsmodels in Python. The dif-
ference between ARIMA and SARIMA lies in that the latter can tackle seasonality, as its
name suggests.

SARIMA models require two components formed by a total of seven parameters:

• Order (p, d, q):

– p: auto-regressive (AR) models forecast the next value or point in a time series
by taking into account the previous values and using them to compute a math-
ematical formula that is closely related to a linear regression. The parameter
p is an integer number that describes how many previous values will be used
for the prediction.

– d: the integration part (I) of the SARIMA models represents that data must
be stationary, that is to say, it does not have to present seasonality or trends.
To do so, the difference of the time series is taken by subtracting the previous
values from each value in the series. This computation has a propensity to
produce a stationary series, or at least more stationary that it was before. The
d parameter is an integer numeral that denotes how many times the series has
to be differentiated.

– q: a moving-average (MA) model executes some computations based on noisy
data along with the slope to carry out a short autocorrelation. The parameter
q is an integer value that stands for a similar meaning than the auto-regressive
one, being how many previous values of the series are putted into the equa-
tion.

• Seasonal order (P, D, Q, s):

– (P, D, Q): these parameters are equivalent to the ones in Order (p, d, q), the
only difference being that P, D and Q only apply to the seasonal part.

– s: the s parameter is an integer number that indicates the periodicity of the
seasonal cycle of the data. For example, if the values are split on a monthly
basis, the seasonal cycle is a year and the value of s is 12. If the data points are
separated on a daily basis, the seasonal cycle is a week and the value of s = 7.

5.2 Forecasting models

With the purpose of testing the bottom-up strategy and the one that follows the minT
methodology, we have built three forecasting models for two different variants; therefore,
we have constructed a total of six forecasting models. Each variant has its own character-
istics, since the prediction step or the interval of values that have to be predicted ahead
of the current time differ from one variant to another.

5.2.1. First variant: one predictor per node

The first variant establishes three models that have one predictor per each time series
used, but for simplifying we will say that there is one predictor per node.
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It is important to notice that with this variant, the prediction step ranges from 24 to
48, in other words, the interval predictions that we are interested go from 24 to 48 from
the actual time if we are dealing with a day-ahead forecasting. This is better understood
with an example: if we want to predict the 24 values of tomorrow, as it is done in day-
ahead forecasting, we have to start from the last value of yesterday since the present day
has yet not begun, and thus, we do not have its values. With that said, we have to skip
the first 24 predictions, which represent the current day, and keep the next 24, which are
related to the day of tomorrow. In consequence, we are taking the values at order 24 to
48 of the predictions.

These three models present the following features:

• BU1: a model that follows a bottom-up approach of the Best Linear Unbiased Mean
Revised Forecasts methodology; it only needs one predictor for each of the bottom
level nodes, i.e., 37 predictors in our case.

• root1: this model presents only the predictor of the root or top node; that is, the
node that represents the aggregation of all time series.

• minT1: in this forecasting model we have built one predictor for each node in the
hierarchy so we have 42 predictors (37 nodes at the bottom, 4 at the intermediate
level and 1 at the top). Furthermore, we reconcile the predictions by performing
both OLS and WLSV.

The base predictions of this variant employ a SARIMA model with the default Order
(1, 0, 0) and a Seasonal order of (1, 1, 1, 24), since our data is arranged in an hourly basis
and in consequence the seasonal cycle is a day (24 hours).

5.2.2. Second variant: 24 predictors per node

The second variant differs from the first one in that each node has 24 predictors, a predic-
tor for each hour of a time slot of a day. In fact, it is the same process that we performed
in section 3.3.2 for deseasonalizing the time series.

Another relevant thing to mention is that, as we divided the time series by the time
slot, the prediction step is smaller. In other words, with the first variant we had to predict
with the same predictor the next 24 to 48 values while in the second variant we only have
a prediction step of two, since we skip the first next value, that would represent the
prediction of the current time at a specific time slot, and the second prediction refers to
the prediction of tomorrow.

The three models of this variant are arranged in a similar manner than the first vari-
ant, being:

• BU24: the model that follows the bottom-up approach of the Best Linear Unbiased
Mean Revised Forecasts methodology.

• root24: the model in which we only predict for the root node.

• minT24: the model that reconciles the predictions of all nodes in the hierarchy.

With this variant, the SARIMA models of the base predictions present a seasonality
of s = 7, since each values would represent a day, and in consequence, the seasonal cycle
would be a week. We have used also the default Order (1, 0, 0), and the Seasonal order
would be as follows (1, 1, 1, 7).
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5.2.3. Summary

In Table 5.1 we can see a summary of all the models explained with the total number of
predictors used, which will help to show the magnitude of each model.

Model Predictor x Node Total Nº Predictors Description

BU1 1 37 Bottom-up
root1 1 1 Root prediction

minT1 1 42 Reconciled model
BU24 24 888 Bottom-up
root24 24 24 Root prediction

minT24 24 1008 Reconciled model

Table 5.1: Summary of forecasting models

5.3 Experimental Evaluation

To test the six models that we have built for this project, we decided to use as dataset
only the season of winter and summer of one year. The season of winter comprises from
December of 2017 to January of 2018 and the season of summer ranges from June of 2018
till September of 2018. This year was taken as it is the most recent and complete one. We
also had for the winter season some data of the year of 2019, but it lacks the month of
February, thus, the season would comprise only two months instead of three.

Both datasets have been divided in two sets of data, the training and validation set.
The training set has been used to build the predictors of the model, and the validation set
has served us to measure the accuracy of each model. The split between both set has been
made so that the validation takes the last 10 days of the season. In Table 5.2 we can see a
summary of both sets with the number of values that have each one and its identification
name.

Season Name Set Date Nº Values

Winter WINPRED01
Training 01/12/2017 - 18/02/2018 1920

Validation 19/02/2018 - 28/02/2018 240

Summer SUMPRED02
Training 01/06/2018 - 20/09/2018 2688

Validation 21/09/2018 - 30/09/2018 240

Table 5.2: Summary of training and validation sets

For evaluating the accuracy of the models, we decided to use three well known met-
rics for forecasting problems on the predictions of the root or top node, since our interest
is to accurate predict the total consumption. The metrics are:

• ME (Mean Error): it is the mean of the differences between the values observed
and the value predicted. It is also known as the forecast bias, since it indicates if
the model tends to under-forecast (negative value) or over-forecast (positive value).
The formula is:

ME = (
1
n
)

n

∑
t=1

yt − ỹt
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• MAE (Mean Absolute Error): it is the same as ME with the difference that the error
is in absolute value, so that negative values do not cancel the positive ones and
vice-versa. It shows how much fails to predict the model. The formula is:

MAE = (
1
n
)

n

∑
t=1
|yt − ỹt|

• MAPE (Mean Absolute Percentage Error): it is quite similar to MAE, the main dif-
ference is that it is scale-dependent since we divide the MAE with the actual value,
thus, giving a percentage. There exist some caveats that are relevant to mention.
First, the intuition says that the values range from 0% to 100%, but it can be greater.
In second place, it cannot be used when the actual values are 0 as we cannot divide
by this value. This is one of the reason that it is difficult to use in load forecasting,
as there may be no consumption. In our case it is not a problem because we only
evaluate with the observations of the top node, that in any time the value is 0. The
formula is:

MAPE = (
1
n
)

n

∑
t=1

∣∣∣∣yt − ỹt

yt

∣∣∣∣
5.3.1. Winter season results

The results of the models with the dataset of WINPRED01 can be seen in Table 5.3. At
first glance, the models that have one predictor per node (BU1, root1, minT1) have less
accuracy, considering the MAPE error, than the models that present 24 predictors (BU24,
root24, minT24), manifesting almost 10% of error less. This gives us the insight that when
the prediction step is smaller, i.e., predicting closer from the known values, there is less
room for error and the accuracy of the base predictions increases. This improvement
in the accuracy of the base predictions has an impact in the model, improving also the
accuracy of the model.

Model Reconciliation Hierarchy ME MAE MAPE

BU1 None Not relevant 772.8061 6177.7572 0.2033
root1 None Not used -1977.6650 6418.1765 0.1873

minT1

OLS
Day -1905.2842 6402.9428 0.1872

Week -1905.2842 6402.9428 0.1872
Conc. -1905.2842 6402.9428 0.1872

WLSV
Day 60.9806 6166.1484 0.1952

Week 60.9806 6166.1484 0.1952
Conc. 60.9806 6166.1484 0.1952

BU24 None Not relevant 1649.7941 4180.2191 0.1233
root24 None Not used 1893.8011 4076.1108 0.1193

minT24

OLS
Day 1887.3799 4051.1479 0.1183

Week 1887.3799 4051.1479 0.1183
Conc. 1887.3799 4051.1479 0.1183

WLSV
Day 1734.7404 3885.4117 0.1111

Week 1734.7404 3885.4117 0.1111
Conc. 1734.7404 3885.4117 0.1111

Table 5.3: Winter results
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Regarding the results of the different hierarchies that produced the feature vectors
on Chapter 4, there exist very little differences that could be perceived if we showed
all the decimal of the results, but nevertheless, we can state that the three hierarchies
are equally good, since no one stands out over the others. We had hoped that at least
the hierarchy formed by the weekly profile would have a different result, since it was
the most different, but this was not the case. In Figures 5.2 and 5.3 we can see that in
models minT1 and minT24, which make use of the predictions of the intermediate levels,
no relevant distinction appears between using one hierarchy or another.

(a) minT1 with OLS

(b) minT1 with WLSV

Figure 5.2: Winter comparison of the hierarchies with each reconciliation method

Concerning the ME in Table 5.3, almost all models tend to over-forecast except the
models root1 and minT1 with OLS reconciliation, which under-forecast almost the same
quantity. The first variant appears to be the most heterogeneous in that sense, since it
presents very different values, having negative values, positive values and close to zero
values, which expresses the all three models present distinct forecasting behaviours. This
changes of conduct can be seen in Figure 5.4 in which we use only the best model of minT1
(OLS) compared to the other two of the same variant. Another thing that we can observe
is that the root1 and minT1 tend to under-forecast, whereas the model BU1 is inclined to
over-forecast.
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(a) minT24 with OLS

(b) minT24 with WLSV

Figure 5.3: Winter comparison of the hierarchies with each reconciliation method

Figure 5.4: Winter comparison of the one predictor variant models
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On the other hand, the second variant is quite homogeneous, showing values between
the range of 1650 and 1900, that considering the scale of the data is can be said that they
are similar. In Figure 5.5 we can observe that the deviations between models predictions
are smaller than the models of the first variant. As with the comparison of the other
variant, we only used the best model of minT24 (WLSV) in the Figure.

Figure 5.5: Winter comparison of the 24 predictors variant models

With respect to the MAE metric in Table 5.3, we are also able to find dissimilarities
between both variants. The models with one predictor by node have more or less 6000
kWh of error while the models with 24 predictors by node decrease this number by 2000,
thus giving rise to an average of 4000 kWh of error.

The MAPE results shown in the same Table (5.3) reveal that the predictor at the root
node (root1 and root24) has more accuracy than the bottom-up model (BU1 and BU24) in
both variants, but the reconciled models perform better, at least with one of the reconcili-
ation methods, supporting our hypothesis that hierarchical forecasting reduces the error
of the base predictions.

In regard to the reconciliation methods, and looking at the MAPE values of the Table
(5.3), it appears that OLS performs better when we only have one predictor per node,
and WLSV when we have 24 predictors per node. This may be due to the fact that WLSV
estimates the matrix Wh, mentioned in section 5.1.2, from the matrix W1 (the covariance
matrix of the 1-step ahead base prediction errors), and therefore, since the models of 24
predictors have a step prediction of h = 2, we can expect W2 to be very similar to W1.
On the other hand, for the one predictor models, we have a step prediction of 24 to 48
and the approximation based on W1 struggles. In contrast, we would say that OLS does
not function better with the models of one predictor per node, but that WLSV behaves
worse. Figures 5.6 and 5.7 display that divergence on accuracy between both reconcilia-
tion methods.

In the last figure, Figure 5.8, we can perceive something interesting between the best
model of each variant, that the results can not show. It appears that minT1 with OLS tends
to follow a more constant behaviour, however, minT24 with WLSV tries to fit the variation
of the actual values, which seems to be another reason to explain why the second variant
presents better results.
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Figure 5.6: Winter comparison of the reconciliation methods in minT1

Figure 5.7: Winter comparison of the reconciliation methods in minT24

Figure 5.8: Winter comparison of the best reconciled model from minT1 and minT24
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On the other hand, we also reasoned that it would be interesting to analyze the error
of the predictions by time slot, in order to evaluate the performance of the predictors of
the second variant. The results can be observed in table 5.4. In general, we can see that all
models have a significant increase of the percentage of error at 7H that then grows slowly
till 14H when another boost of the error occurs. After that, it appears another more rapid
raise, and a huge boost of the error at 18H, the hour with the most percentage of error.
Finally, the last hours (19H to 23H) present low MAPE values. This seems to support
the idea that it is more difficult to predict the behaviour of the working hours, which can
present a more diverse behaviour. In fact, the 18H often coincides with the end time of
working hours, which may explain the peak of error.

Another thing that we can observe is that all three models present very similar MAPE
results considering the scale of error in each time slot, with only a few hours in which we
can detect strange behaviours, like at 8H where there is a significant reduction in BU24
and a greater one in minT24 with WLSV.

It is relevant to mention, that in this table (5.4), the hierarchies also do not show up
any important difference. Also, it is of interest that examples can be found in which each
type of model is better than the rest, for example, in 7H, the best model is BU24; in 10H,
the best is root24; in 0H, the model minT24 with WLSV predominates; and lastly, in 19H,
the best model is minT24 with OLS. This implies that, although in general, the best results
for this variant with the dataset of WINPRED01 are the ones coming from minT24 with
WLSV, by time slots, it does not hold always true.

Model BU24 root24 minT24

Reconciliation None None OLS WLSV
Hierarchy Not relevant Not used Day Week Conc. Day Week Conc.

0H 1.61 1.71 1.69 1.69 1.69 1.45 1.45 1.45
1H 2.22 1.45 1.47 1.47 1.47 1.9 1.9 1.9
2H 1.82 1.62 1.61 1.61 1.61 1.53 1.53 1.53
3H 2.32 1.48 1.49 1.49 1.49 1.98 1.98 1.98
4H 2.19 1.69 1.7 1.7 1.7 1.88 1.88 1.88
5H 2.06 1.36 1.37 1.37 1.37 1.81 1.81 1.81
6H 1.96 1.48 1.47 1.47 1.47 1.62 1.62 1.62
7H 10.67 13.74 13.66 13.66 13.66 11.57 11.57 11.57
8H 15 25.64 24.57 24.57 24.57 7.77 7.77 7.77
9H 12.54 14.46 14.38 14.38 14.38 12.88 12.88 12.88
10H 14.86 11.29 11.35 11.35 11.35 13.4 13.4 13.4
11H 17.65 14.31 14.33 14.33 14.33 16.4 16.4 16.4
12H 14.26 12.94 12.98 12.98 12.98 13.8 13.8 13.8
13H 13.75 13.59 13.6 13.6 13.6 13.7 13.7 13.7
14H 19.51 20.66 20.63 20.63 20.63 19.91 19.91 19.91
15H 21.55 24.04 23.93 23.93 23.93 21.5 21.5 21.5
16H 27.54 31.5 31.36 31.36 31.36 28.36 28.36 28.36
17H 38.25 24.53 23.55 23.55 23.55 22.09 22.09 22.09
18H 63.46 59 59.12 59.12 59.12 61.91 61.91 61.91
19H 4.53 3.39 3.36 3.36 3.36 3.95 3.95 3.95
20H 2.03 2.24 2.21 2.21 2.21 1.94 1.94 1.94
21H 1.78 1.35 1.36 1.36 1.36 1.53 1.53 1.53
22H 2.48 1.83 1.83 1.83 1.83 2.16 2.16 2.16
23H 1.97 1.06 1.07 1.07 1.07 1.59 1.59 1.59

Table 5.4: Winter MAPE results in percentage for each time slot
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5.3.2. Summer season results

The statistics of the models with the dataset of SUMPRED02 can be seen in Table 5.5.
Contrary to what happened with the winter dataset, we cannot state that the models
that have one predictor per node (BU1, root1, minT1) have less accuracy than the models
that present 24 predictors (BU24, root24, minT24), considering the MAPE metric, although
in average, the 24-hour variant models have more accuracy. In fact, the best prediction
model would be root1, giving us the insight that with the summer season a hierarchical
forecasting model is not needed.

Model Reconciliation Hierarchy ME MAE MAPE

BU1 None Not relevant 1263.6765 4797.5865 0.2470
root1 None Not used -915.3680 4610.1531 0.1830

minT1

OLS
Day -858.0247 4600.9833 0.1840

Week -858.0247 4600.9833 0.1840
Conc. -858.0247 4600.9833 0.1840

WLSV
Day 292.3206 4567.8879 0.2130

Week 292.3206 4567.8879 0.2130
Conc. 292.3206 4567.8879 0.2130

BU24 None Not relevant 1077.2804 4180.2191 0.1865
root24 None Not used -392.1624 4798.1969 0.1952

minT24

OLS
Day -353.4929 4772.8913 0.1947

Week -353.4929 4772.8913 0.1947
Conc. -353.4929 4772.8913 0.1947

WLSV
Day 423.1194 4375.5318 0.1871

Week 423.1194 4375.5318 0.1871
Conc. 423.1194 4375.5318 0.1871

Table 5.5: Summer results

When it comes to the different hierarchies already commented, as with the winter
season, we can state that all three configurations of the hierarchy are to the same degree
good. In Figures 5.9 and 5.10 we can see that in models minT1 and minT24, there is not
any important difference between using one hierarchy or another.

With respect to the ME metric in Table 5.5, it appears that there is a more varied be-
haviour. We can notice that root and minT with OLS models of both variants tend to
under-forecast more than what they over-forecast, meanwhile BU and minT with WLSV
tend to the contrary. Also, since the values of the ME are smaller, it indicates that the
behaviour of the model does not have a clear tendency to over or uder forecast. This
behaviours of the models can be seen in Figures 5.11 and 5.12.

Regarding the MAE metric on the same Table (5.5), we can spot an homogeneous set
of values in both variants, presenting an average of 4600 kWh of error. Although, it is
relevant to mention that the models with 24 predictors show the widest range of values,
since the model root24 is the one with the greatest value and the model BU24 the one with
the smallest.
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(a) minT1 with OLS

(b) minT1 with WLSV

Figure 5.9: Summer comparison of the hierarchies with each reconciliation method

In connection with the MAPE results, that we can see in Table 5.5, they reveal that
there is in average of 20% of error and that the increase of accuracy appears not to be
affected by the number of predictors per node. On the other hand, contrary to what we
saw in winter results, the root node (root1 and root24) does not always have more accu-
racy than the bottom-up model (BU1 and BU24), and the reconciled models also do not
seem to perform better, which contradicts our hypothesis that hierarchical forecasting re-
duces the error of the base predictions, at least with the summer season. It is relevant to
mention, that it does not appear any relevant decrease in the percentage of error, other
than that seen in models BU1 and root1, which present a reduction of 6% of error.
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(a) minT24 with OLS

(b) minT24 with WLSV

Figure 5.10: Summer comparison of the hierarchies with each reconciliation method

Figure 5.11: Summer comparison of the one predictor variant models
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Figure 5.12: Summer comparison of the 24 predictors variant models

In regard to the performance of the reconciliation methods, considering the MAPE
metric in Table (5.5), we find similar analysis to the ones of the winter results. The same
reason for which OLS function better with one predictor models and WLSV with 24 pre-
dictors looks like to be maintained. This is supported by the fact that OLS stills performs
better in the model of the first variant (1 predictor) and WLSV in the model of the second
one (24 predictors). In Figures 5.13 and 5.14 we can also see the difference between both
reconciliation methods.

Figure 5.13: Summer comparison of the reconciliation methods in minT1

Last figure, Figure 5.15, reveals again what we have recognized from the table 5.5,
that the models show very little differences between them, since we only can perceive
little differences between the time series of the predictions.
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Figure 5.14: Summer comparison of the reconciliation methods in minT24

Figure 5.15: Summer comparison of the best reconciled model from minT1 and minT24

In addition to this, and as we did in the results of the winter dataset, WINPRED01,
we have also evaluated the percentage of error by time slots. The results can be observed
in table 5.6. In general, we can see that all models follow a a behavior similar to that
already explained in the winter counterpart, but with an increase in the error in all time
slots, since, as we have mentioned throughout the analysis, it seems to be more difficult
to predict in summer. Also, this behaviour has a shift of one hour, starting the increase
of error one hour later, at 8H instead of 7H, this may be due to daylight saving hours, in
fact, in march we change one hour forward, which fits perfectly with what we have seen.

As with season of winter, we can observe very similar MAPE results in each time slot,
with only a few strange behaviours in particular hours. The most eye-catching variations
between models can be found at 19H and 20H where BU24 surprises with a huge decrease
of the error.

Finally, in this table (5.6) as with the table 5.4, the hierarchies also do not indicate that
there exist differences between them, and examples of time slots in which different mod-
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els performs better than the rest appear. For example, at 0H, BU24 has the best results,
and at 1H, root24 takes the advantage.

Model BU24 root24 minT24

Reconciliation None None OLS WLSV
Hierarchy Not relevant Not used Day Week Conc. Day Week Conc.

0H 4.98 5.28 5.27 5.27 5.27 5.11 5.11 5.11
1H 2.97 3.34 3.33 3.33 3.33 3.13 3.13 3.13
2H 2.41 2.87 2.85 2.85 2.85 2.44 2.44 2.44
3H 3.36 2.91 2.9 2.9 2.9 3.06 3.06 3.06
4H 3.05 2.97 2.97 2.97 2.97 2.95 2.95 2.95
5H 2.84 2.22 2.22 2.22 2.22 2.44 2.44 2.44
6H 3.47 2.83 2.84 2.84 2.84 3.14 3.14 3.14
7H 4.71 6.54 6.34 6.34 6.34 2.78 2.78 2.78
8H 18.83 25.32 25.15 25.15 25.15 21.72 21.72 21.72
9H 28.65 22.92 22.94 22.94 22.948 25.53 25.53 25.53
10H 28.9 23.07 23.2 23.2 23.2 25.77 25.77 25.77
11H 34.75 34.58 34.56 34.56 34.56 34.5 34.5 34.5
12H 33.77 32.1 32.15 32.15 32.15 33.03 33.03 33.03
13H 23.18 21.94 21.97 21.97 21.97 22.63 22.63 22.63
14H 34.03 35.94 35.89 35.89 35.89 34.88 34.88 34.88
15H 41.77 36.06 36.19 36.19 36.19 36.69 36.69 36.69
16H 52.02 47.76 47.85 47.85 47.85 49.63 49.63 49.63
17H 57.29 70.52 70.15 70.15 70.15 62.69 62.69 62.69
18H 34.4 34.63 34.63 34.63 34.63 34.51 34.51 34.51
19H 13.69 30.8 30.34 30.34 30.34 21.15 21.15 21.15
20H 5.12 11.36 11.13 11.13 11.13 6.57 6.57 6.57
21H 4.8 3.98 3.93 3.93 3.93 4.17 4.17 4.17
22H 4.73 4.7 4.7 4.7 4.7 4.72 4.72 4.72
23H 4.06 3.94 3.94 3.94 3.94 4 4 4

Table 5.6: Summer MAPE results in percentage for each time slot

5.4 Conclusions

All things considered, after seeing the results on both datasets, the one from winter, WIN-
PRED01, and the one from summer, SUMPRED02, we can conclude that our reasoning
about a coherent hierarchical forecasting being more helpful to increase the accuracy of
the base predictions holds only with the winter season as the best model for summer does
not take into account the hierarchy. This difference of the behaviour from one dataset to
another may be due to the variability of the observed values in each season. Winter tends
to be a season with a more constant behaviour without big outliers (values very differ-
ent of the other values), as the days are shorter and the temperatures are more steady.
On the other hand, the season of summer seems more dependant of external factors like
the temperature. Although the Mediterranean coast has more stable climates, it is true
that heat waves appear intermittently in summer, which may cause abrupt changes in
electricity consumption behavior, such as turning on the air conditioning or stopping the
activities that were made at that moment. This rationale may be supported by the fact
that the predictions of winter show more accuracy in general, and also a decreasing of the
error in the models, meanwhile, the models in summer reveal a bigger and less different
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percentage of error. Furthermore, we can notice more spikes in the figures of the summer
season.

For the part of the different hierarchies constructed with the three feature vectors of
Chapter 4, both results, demonstrate that the three hierarchies have such similar results
that the differences cannot be seen in the figures and results without enlarging them
to a greater degree of detail. Even the time series of the clusters, which can be seen
in Figure 5.16, show significant differences in two of them. Nevertheless, it seems that
by aggregating the four time series into the total aggregate series or root, it clears the
differences producing what we have already commented, that they are extremely similar.

On the other hand, the result of the errors by time slot appear to support our first con-
clusion, in which summer is a season with more difficulties to forecast. Meanwhile, win-
ter by presenting a more constant behaviour, improves the accuracy of the predictions.
Furthermore, the analysis shows that the working hours which present more variability
on its behaviour also present added challenges.

Finally, we have to mention that we also tried a model in which the reconciliation is
made by a neural network, everything seemed to indicate that a neural network receiv-
ing as input the base predictions and outputting the reconciled predictions would make
sense, since it would be able to find the contribution of each series to the reconciled one.
However, the results did not show a consistent behavior and the best percentage errors
associated with this model were still too high compared to those previously seen. For
this reason, it was decided not to continue with this way.

(a) Cluster 1 (b) Cluster 2

(c) Cluster 3 (d) Cluster 4

Figure 5.16: Comparison of the time series of each hierarchy by cluster





CHAPTER 6

Conclusion

In this project we have managed to accomplish the objectives that we proposed to our-
selves in Chapter 1. After having gone through the entire process to build a model for
predicting electricity consumption, we feel that we are prepared to synthesize the devel-
opment of this work.

The first objective that we proposed was to construct a hierarchical structure that
would group the load series by the similarities of data. This objective was achieved
thanks to the knowledge acquired in the Intelligent Systems course, which was later re-
inforced in the Social Web Behaviour course of the fourth year, where we learned how to
do this through clustering, in particular KMeans. It is true that the rest of the methods
were unknown to us and it was necessary to investigate their details in order to analyze
the results obtained correctly. It is also worth mentioning that Gaussian mixture models
were seen in the Machine Learning course, although we did not initially realize that they
could be used for this purpose. In general, we spent too much time on this objective, as
the decision to focus on the winter and summer seasons was not made until much later.
Therefore, the time spent on clustering for a whole year was mostly wasted, although it
also helped us to know how to write the Chapter 4 correctly.

The second objective that was presented was to design and develop a load forecasting
model to predict the total consumption of an energy consumer. This was the most un-
certain objective of the project, because during the undergraduate course we do not see
problems of regression, i.e. prediction of the next values in a series, and in particular the
techniques and methods used. But we do not start from a total lack of knowledge, since
in subjects such as Intelligent Systems, Perception and Machine Learning we see classi-
fication problems, which after all are prediction problems in which the class to which a
sample belongs is predicted. Furthermore, they also provided us with the mathematical
basis to tackle this project and the methodology for analyzing different models.

On the other hand, and continuing with this objective, we had an added difficulty
since the results of the summer season did not comply with the hypothesis that we had
proposed, in which the hierarchy made in the first objective was used to obtain better
results in the prediction models, so we repeatedly asked ourselves if we were doing the
right thing, investigating in turn other possible ways, like a neural network. In the end,
the results presented in Chapter 5 are all we could explore after verifying that the results
were what they were and that there were no errors in the implemented code.

Finally, we believe that this project can be expanded through the following avenues:

• Exploring exogenous variables: during this project we have tried different predictor
models such as SARIMA. These models accept variables that depend on factors ex-
ternal to the data set. It would be interesting to investigate whether climatological
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data such as temperature, humidity, luminosity or whether there has been precip-
itations can help to improve the accuracy of the models by predicting behavioral
changes in the time series.

• Testing other dataset: it is possible that with another data set with the same elec-
tricity consumption prediction problem, our hypotheses could be fulfilled in the
two seasons of the year, winter and summer. Therefore, reinforcing the work and
decisions made in this project.

• Changing the scale of the problem: this project included a small town of Valencia,
Llíria, so we chose to use an approach in which the hierarchy was built by similar-
ity between the data. It would be intriguing to investigate whether in problems of
another scale, such as at the level of a building where we would have the consump-
tion data of different appliances or at the level of an autonomous community where
we would have the consumption data of its localities, this type of data-driven hi-
erarchy would work as we would expect, thus, improving the predictions of the
models.

• Investigating other approaches: another way to continue this work would be to
try to implement other hierarchical forecasting approaches such as the GTOP algo-
rithm presented in Chapter 2.
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APPENDIX A

Figures of the concatenated profile

KMeans Gaussian Mixture Mean Shift

(a) Centroid 1 (b) Centroid 1 (c) Centroid 1

(d) Centroid 2 (e) Centroid 2 (f) Centroid 2

(g) Centroid 3 (h) Centroid 3 (i) Centroid 3

(j) Centroid 4 (k) Centroid 4 (l) Centroid 4

Figure A.1: Winter Concatenated Profile clustering and centroids of the hourly part
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50 Figures of the concatenated profile

KMeans Gaussian Mixture Mean Shift

(a) Centroid 1 (b) Centroid 1 (c) Centroid 1

(d) Centroid 2 (e) Centroid 2 (f) Centroid 2

(g) Centroid 3 (h) Centroid 3 (i) Centroid 3

(j) Centroid 4 (k) Centroid 4 (l) Centroid 4

Figure A.2: Winter Concatenated Profile clustering and centroids of the daily part
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KMeans Gaussian Mixture Mean Shift

(a) Centroid 1 (b) Centroid 1 (c) Centroid 1

(d) Centroid 2 (e) Centroid 2 (f) Centroid 2

(g) Centroid 3 (h) Centroid 3 (i) Centroid 3

(j) Centroid 4 (k) Centroid 4 (l) Centroid 4

Figure A.3: Summer Concatenated Profile clustering and centroids of the hourly part



52 Figures of the concatenated profile

KMeans Gaussian Mixture Mean Shift

(a) Centroid 1 (b) Centroid 1 (c) Centroid 1

(d) Centroid 2 (e) Centroid 2 (f) Centroid 2

(g) Centroid 3 (h) Centroid 3 (i) Centroid 3

(j) Centroid 4 (k) Centroid 4 (l) Centroid 4

Figure A.4: Summer Concatenated Profile clustering and centroids of the daily part
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