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Abstract

The main goal of this thesis is to develop computer assisted translation and machine transla-
tion systems which present a more robust synergy with their potential users. Hence, the main
purpose is to make current state-of-the-art systems more ergonomic, intuitive and efficient,
so that the human expert feels more comfortable when using them. For doing this, different
techniques are presented, focusing on improving the adaptability and response time of the
underlying statistical machine translation systems, as well as a strategy aiming at enhancing
human-machine interaction within an interactive machine translation setup. All of this with
the ultimate purpose of filling in the existing gap between the state of the art in machine
translation and the final tools that are usually available for the final human translators.

Concerning the response time of the machine translation systems, a parameter pruning
technique is presented, whose intuition stems from the concept of bilingual segmentation,
but which evolves towards a full parameter re-estimation strategy. By using such strategy,
experimental results presented here prove that it is possible to achieve reductions of up to
97% in the number of parameters required without a significant loss in translation quality.
Being robust across different language pairs, these results evidence that the pruning technique
presented is effective in a traditional machine translation scenario, and could be used for
instance in a post-editing setup. Nevertheless, experiments carried out within a simulated
interactive machine translation environment are slightlyless convincing, since a trade-off
between response time and translation quality is needed.

Two orthogonally different approaches are presented with the purpose of increasing the
adaptability of the statistical machine translation systems. On the one hand, we investigate
how to increase the adaptability of the language model, by subdividing it into several smaller
language models which are then interpolated in translationtime according to the source sen-
tence to be translated. The specific sub-models are built either by taking advantage of su-
pervised information present in certain bilingual corpora, or by performing unsupervised
clustering on the training set, with the aim of uncovering specific sub-topics or language
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styles present. On the other hand, Bayesian predictive adaptation is elucidated as an efficient
strategy for adapting the translation models present in state-of-the-art machine translation
systems. Although adaptation experiments are only performed within the traditional machine
translation framework, the results obtained are compelling enough for implementing them
within an interactive setup, and such work will be done in thenear future. Nevertheless, it
should be noted that the techniques developed may be readilyimplemented within a computer
assisted translation scenario, in which a statistical machine translation system is providing the
translations that the user needs to modify and validate.

Finally, special attention is devoted to increasing the synergy between the human expert
and the interactive machine translation system. With this purpose, two different forms of
weaker feedback are studied, which intend to increase the productivity of the human transla-
tor. For doing this, two different changes to the traditional interaction scheme are presented.
The first one aims at anticipating the user’s actions, and thesecond one is targeted at increas-
ing the flexibility of the system whenever the user signals that there is an error he wants the
system to correct.
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Resumen

La principal meta de esta tesis es desarrollar sistemas de traducción asistida y de traducción
automática que presenten mayor sinergia con sus usuarios potenciales. Por ello, el objetivo es
hacer los sistemas estado del arte más ergonómicos, intuitivos y eficientes, con el fin de que
el experto humano se sienta más cómodo al utilizarlos. Con este fin se presentan diferentes
técnicas enfocadas a mejorar la adaptabilidad y el tiempo derespuesta de los sistemas de tra-
ducción automática subyacentes, así como también se presenta una estrategia cuya finalidad
es mejorar la interacción hombre-máquina en un entorno de traducción interactiva. Todo ello
con el propósito último de rellenar el hueco existente entreel estado del arte en traducción
automática y las herramientas que los traductores humanos tienen a su disposición.

En lo que respecta al tiempo de respuesta de los sistemas de traducción automática, en
esta tesis se presenta una técnica de poda de los parámetros de los modelos de traducción ac-
tuales, cuya intuición está basada en el concepto de segmentación bilingüe, pero que termina
por evolucionar hacia una estrategia de re-estimación de dichos parámetros. Utilizando esta
estrategia se obtienen resultados experimentales que demuestran que es posible podar la tabla
de segmentos hasta en un97%, sin mermar por ello la calidad de las traducciones obtenidas.
Además, estos resultados son coherentes en diferentes pares de lenguas, lo cual evidencia
que la técnica que se presenta aquí es efectiva en un entorno de traducción automática tradi-
cional, y por lo tanto podría ser utilizada directamente en un escenario de post-edición. Sin
embargo, los experimentos llevados a cabo en traducción interactiva son ligeramente menos
convincentes, pues implican la necesidad de llegar a un compromiso entre el tiempo de re-
spuesta y la calidad de los sufijos producidos.

Por otra parte, se presentan dos técnicas de adaptación, conel propósito de mejorar la
adaptabilidad de los sistemas de traducción automática. Laprimera de ellas se centra en
mejorar la adaptabilidad del modelo de lenguaje, mediante su subdivisión en varios mode-
los de lenguaje más pequeños, pero más específicos. Una vez hecho esto, tales submodelos
se interpolan en tiempo de traducción en función de la frase de entrada en cuestión. Los
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submodelos específicos son construidos o bien teniendo en cuenta información procedente
de etiquetas supervisadas existentes en diferentes conjuntos de datos bilingües, o bien medi-
ante estrategias de agrupamiento no supervisadas, con el propósito de descubrir determinados
temas o estilos lingüísticos. La segunda técnica de adaptación que se presenta en esta tesis
consiste en aplicar la adaptación predictiva Bayesiana a los modelos de traducción subya-
centes en los sistemas de traducción automática actuales. Apesar de que los experimentos
de adaptación se han llevado a cabo en un entorno de traducción automática pura, los re-
sultados obtenidos son lo suficientemente prometedores como para implementar las técnicas
desarrolladas en esta tesis en un entorno interactivo en el futuro cercano. Sin embargo, vale
la pena recalcar que las técnicas presentadas aquí pueden ser implementadas tal cual en un
escenario de traducción asistida, en el cual un sistema de traducción automática proporciona
las traducciones que el usuario debe corregir y validar.

Por último, también se dedica una especial atención a mejorar la sinergia entre el experto
humano y el sistema de traducción interactiva. Para ello, seestudian dos formas diferentes de
realimentación débil, con la intención de mejorar la productividad del traductor humano. Con
este fin, se presentan dos modificaciones al esquema tradicional de interacción. La primera
pretende anticipar las acciones del usuario, mientras que la segunda tiene por finalidad mejo-
rar la flexibilidad del sistema en el caso en que el usuario señale que hay un error que quiere
que el sistema corrija.
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Resum

El principal objectiu d’aquesta tesi és desenvolupar sistemes de traducció assistida i de tra-
ducció automàtica que presenten una major sinergia amb els seus usuaris potencials. Per tant,
el propòsit és dissenyar sistemes més ergonòmics, intuïtius i eficients, amb la intenció de que
l’expert humà es senti més còmode a l’hora d’emprar-los. Perarribar a aquest fi es presenten
diferents tècniques enfocades a millorar l’adaptabilitati el temps de resposta dels sistemes
de traducció automàtica subjacents, així com també es presenta una estratègia per a millorar
la interacció home-màquina en un entorn de traducció interactiva. Tot això amb el proposit
últim d’emplenar el buit existent entre l’estat de l’art en traducció automàtica i les eines que
tenen els traductors humans a la seva disposició.

Pel que fa al temps de resposta dels sistemes de traducció automàtica, en aquesta tesi es
presenta una tècnica de poda dels paràmetres dels models de traducció actuals, la intuïció
de la qual està basada en el concepte de segmentació bilingüe, però que acaba per evolu-
cionar cap a una estratègia de re-estimació d’aquestos paràmetres. Emprant aquesta estratègia
s’obtenen resultats experimentals que demostren que és possible podar la taula de segments
fins un97%, sense minvar amb això la qualitat de les traduccions obtingudes. A més, aquests
resultats són coherents en diferents parells de llengües, la qual cosa evidencia que la tècnica
que es presenta ací és efectiva en un entorn de traducció automàtica tradicional, i per tant
podria ser utilitzada directament en un escenari de post-edició. No obstant això, els experi-
ments duts a terme en traducció interactiva són lleugerament menys convincents, donat que
impliquen la necessitat d’arribar a un compromís entre el temps de resposta i la qualitat dels
sufixos produïts.

D’altra banda, es presenten dues tècniques d’adaptació, amb el propòsit de millorar
l’adaptabilitat dels sistemes de traducció automàtica. Laprimera d’elles es centra en millorar
l’adaptabilitat del model de llenguatge, mitjançant la seva subdivisió en diversos models de
llenguatge més petits, però més específics. Una vegada fet això, eixos submodels s’interpolen
en temps de traducció en funció de la frase d’entrada en qüestió. Els submodels específics
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són construïts bé tenint en compte informació procedent d’etiquetes supervisades existents
en diferents conjunts de dades bilingües, o bé mitjançant estratègies d’agrupament no su-
pervisades, amb el propòsit de descobrir determinats temeso estils lingüístics. La segona
tècnica d’adaptació que es presenta en aquesta tesi consisteix a aplicar l’adaptació predictiva
Bayesiana als models de traducció subjacents als sistemes de traducció automàtica actuals.
Tot i que els experiments d’adaptació s’han dut a terme en un entorn de traducció automàtica
pura, els resultats obtinguts són prou prometedors com per implementar les tècniques de-
senvolupades en aquesta tesi en un entorn interactiu en el futur proper. Tot i això, val la
pena recalcar que les tècniques desenvolupades en aquesta tesi poden ser implementades
sense modificacions en un entorn de traducció assistida en elqual un sistema de traducció
automàtica estadístic proporciona les traduccions que l’usuari haurà de modificar i validar.

Finalment, també es dedica especial atenció a millorar la sinergia entre l’expert humà i el
sistema de traducció interactiva. Per a això, s’estudien dues formes diferents de realimentació
feble, amb la intenció de millorar la productivitat del traductor humà. Amb aquesta finalitat,
es presenten dues modificacions a l’esquema tradicional d’interacció. La primera pretén
anticipar les accions de l’usuari, mentre que la segona té per finalitat millorar la flexibilitat
del sistema en el cas en què l’usuari assenyali que hi ha un error i vol que el sistema corregeixi.
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Preface

Machine translation is a thriving research field that has been receiving an increasing amount
of attention with the up-rise of globalisation. Information technologies, and the popularisa-
tion of user-generated content such as assistance forums, have led big corporations to intro-
duce the use of machine translation, with the purpose of making language-specific content
available to all their potential customers, which are oftenlocated in different parts of the
world and may not be able to understand one common language. However, machine transla-
tion is not only needed in fields where the amount of data is overwhelming, but also in fields
where the bilingual data is perhaps less abundant, but translation quality is critical, such as
foreign affairs, medicine or in the military domain. Hence,the need for more task-oriented
machine translation systems arises. In these scenarios, itis often the case that machine trans-
lation systems need to collaborate closely with human experts, with the purpose of achieving
high quality translations efficiently, giving rise to the popularisation of the computer assisted
translation (CAT) and interactive machine translation (IMT) paradigms. In these scenarios,
the interaction between the machine translation system anda human translator is crucial for
obtaining high quality translations in an efficient manner.While CAT is a very broad research
field covering all imaginable tools which can be made available to the human expert for light-
ening his job, IMT is a specific sub-field of computer-aided translation. Under this translation
paradigm, the computer software that assists the human translator attempts to predict the text
the user is going to input by taking into account all the information it has available. When-
ever such prediction is wrong and the user provides feedbackto the system, a new prediction
is performed considering the new information available. Such process is repeated until the
translation provided matches the user’s expectations. This thesis explores three main prob-
lems that arise when attempting to build task-specific systems which are thought to be used
within a computer assisted translation scenario: system performance, adaptability and usabil-
ity.

In the first place, state-of-the-art statistical machine translation (SMT) systems are often
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unable to yield real-time performance. This problem is evenworse when the system has
been trained on very large amounts of data, which is always desirable given that more data
usually implies higher model coverage. When the amount of translation options and bilingual
data made available to the system increases, translation throughput is necessarily affected,
and model pruning strategies need to be applied with the purpose of not having the human
translator waiting too long for the system to produce its output, which would be on the one
hand exasperating, and on the other hand economically inefficient. In this thesis, we focused
on proposing a model pruning strategy which proves to be ableto decrease system response
time drastically, while keeping translation quality within state-of-the-art ranges.

Another topic tackled in this thesis is system adaptability. There is extensive work in
SMT which proves that the translation quality produced by a typical machine translation
system drops significantly when the text to be translated stems from a different topic than
the data which has been used to train the system. In addition,different human translators
may have different styles when translating a document, which implies that lexical choice
or sentence length may be required to vary even when working within one single domain.
Furthermore, from a user point of view it is mentally exhausting for a human translator to
correct the same mistakes over and over again, while having the impression that those same
mistakes will keep on appearing because the system is not learning from its own errors. For
these reasons, system adaptability is unveiled as a key feature within a machine translation
system that is setup within a human-machine collaborative framework. In the present thesis,
two different model adaptation techniques are presented. The first one deals with the problem
of language model adaptation, i.e., adapting the specific part of the translation system that
controls word ordering and structure in the hypotheses produced. The second one deals with
the adaptation of the translation model itself, which is thepart of the translation system that
will account for lexical choice and sentence length, among other features. Although the
techniques proposed in the current thesis are only applied in a classical machine translation
scenario, they are perfectly suitable for usage within a computer assisted translation scenario,
whenever the translation proposed to the user is generated by means of a typical statistical
machine translation system. Applying the most promissing techniques developed within an
interactive machine translation scenario is left for future work.

Lastly, usability of interactive machine translation systems is also a very important topic
when attempting to build systems that are to be used by human users, whose expertise when
using computers should not always be assumed. Hence, it is important to take special care
when designing the interaction scheme, so that the human translator feels as comfortable
as possible when using the translation interface. In this context, it is important to realise
that the keyboard is not the only input device that the human user may use, but rather that
richer interaction schemes might boost productivity. Nevertheless, it is also important to
keep the interaction interface simple, so that the human expert is not overburdened. In this
thesis, we propose a very simple and intuitive extension to the classical interactive machine
translation interaction scheme, which takes into account the actions that the user performs
before correcting any word of the proposed hypothesis.

The objective of this thesis is, hence, to confront three of the main problems that prevent
IMT systems from being more widely used. More precisely, thescientific contributions of
this thesis can be divided into three groups as follows:
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1. Speeding up decoding in statistical machine translation.A novel parameter pruning
technique is presented. Such technique relies on the concept of bilingual segmentation
for obtaining one single segmentation of each bilingual sentence present in the training
corpus. This technique is then refined and re-oriented as a full parameter re-estimation
strategy, which has as side-effect an important reduction of the computational resources
required at translation time. Experimental results are reported on several different lan-
guage pairs and involving both a SMT and an IMT framework.

2. Language model adaptation.Starting from the idea of bilingual clustering, we pro-
pose a novel method for performing language model adaptation within SMT. For doing
this, the training data is first divided into different subsets. This subdivision step is
either performed in a fully unsupervised manner, or by taking into account supervised
labels present in different bilingual corpora. Assuming that each one of these subsets
presents specific characteristics, such as topic or language style, specific sub-models
are built from them. These smaller language models are then dynamically interpolated
in translation time according to the text to be translated. Experiments are conducted in
a classical SMT setting, involving several different language pairs and corpora.

3. Bayesian translation model adaptation. Bayesian predictive adaptation (BPA) is
an adaptation strategy which has proved to be successful in different research areas
where adaptation is needed. In this thesis, BPA is revised and its core ideas are applied
within a classical SMT framework. For doing this, the theoretical formulation is first
presented, for both a batch and an online adaptation scenario. Exhaustive experiments
analysing BPA performance on different corpora are presented.

4. Enriching user-machine interaction. We study the possibility of considering the
mouse as an additional interaction device between the machine translation back-end
and the human user. Two different scenarios are considered:a first scenario in which
the user does not need to be explicitly collaborative, and which takes advantage of the
different actions performed by the user, and a second scenario in which a collaborative
user is assumed, and which provides more flexibility to the final user interface. Ex-
perimental results within a simulated IMT environment are shown, involving different
language pairs, for both extensions presented.

The above contributions are sequentially organised in7 chapters that cover most of the
work developed in this thesis. A sequential reading of the document is recommended if the
readers wish to learn about the complete work. However, in case the readers be only interested
in a specific research topic, they can also opt to read only thechapters that are related to that
topic, taking into account the following dependency graph among chapters:
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1. Preliminaries

2. Speeding up decoding in
statistical machine translation

5. Enriching
user-machine interaction

3. Language model adaptation

4. Bayesian translation model
adaptation

6. Conclusions

The parameter pruning strategy is proposed in Chapter 2. Thetwo different approaches
to this strategy are presented together with experimental results assessing the quality of the
translations produced by the pruned systems.

The language model adaptation technique is presented in Chapter 3, in both its unsu-
pervised and supervised forms. Then, the application of Bayesian predictive adaptation for
translation model adaptation is presented in Chapter 4. Specifically, BPA is applied both
in an online and in a batch adaptation setting, and for adapting either the log-linear model
weights present in state-of-the-art SMT systems or the feature functions that are leveraged by
such weights. In doing so, the fundamental equation of SMT isrevised, so as to include the
adaptation data and marginalise the model parameters.

The user-machine interaction scheme is revised in Chapter 5. Here, both modifications to
the classical interaction scheme are presented, alongsidewith experimental results within a
simulated IMT environment.

The final chapter, Chapter 6, summarises the conclusions that can be drawn from all
the work described here, together with the work that still lies ahead and the most important
scientific publications that have been derived from this thesis.
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Preliminaries

No man was ever wise by chance.
Lucio Anneo Seneca
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Chapter 1. Preliminaries

Todo lo que usted quiera, sí señor, pero son las palabras las que cantan, las que suben y
bajan... Me prosterno ante ellas... Las amo, las adhiero, las persigo, las muerdo, las derrito...
Amo tanto las palabras... Las inesperadas... Las que glotonamente se esperan, se escuchan,
hasta que de pronto caen... Vocablos amados... Brillan comopiedras de colores, saltan como
platinados peces, son espuma, hilo, metal, rocío... Persigo algunas palabras... Son tan her-
mosas que las quiero poner todas en mi poema... Las agarro al vuelo, cuando van zumbando,
y las atrapo, las limpio, las pelo, me preparo frente al plato, las siento cristalinas, vibrantes,
ebúrneas, vegetales, aceitosas, como frutas, como algas, como ágatas, como aceitunas... Y
entonces las revuelvo, las agito, me las bebo, me las zampo, las trituro, las emperejilo, las
liberto... Las dejo como estalactitas en mi poema, como pedacitos de madera bruñida, como
carbón, como restos de naufragio, regalos de la ola... Todo está en la palabra...

Confieso que he vivido. Pablo Neruda.

Everything you want, yessir, but it is the words that sing, the rise and fall... I prostrate
before them... I love them, sticks them, the chase, bite them, the melt... I so love the words...
The unexpected... Those who greedily hoped for, we hear, until suddenly fall... Fold loved...
Sparkle like colored stones, platinum leap like fish, are foam, thread, metal, spray... I chase
a few words... They are so beautiful that I put all my poem... The grip on the fly when they
humming, and caught, clean the hair, I prepare against the plate, I feel clear, vibrant, Eburne,
vegetables, oily, like fruit, like algae, like agates, likeolives... And then stir, agitations, I did
drink, I did zampa, crush, dress up, the freedom... I leave them in my poem like stalactites,
like bits of polished wood, and coal, as a wreck, gifts of the wave... Everything is in the
word...

I confess that I have lived. Google Translate.
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1.1. Introduction

1.1 Introduction

Natural language processing (NLP) is a research field of artificial intelligence and linguistics
that is gaining more and more importance with the up-rise of computerised communication
technologies. The mass usage of Internet and also the cheap storage possibilities that com-
puters offer have given humanity the opportunity to record and store unprecedented amounts
of linguistic data. At this moment, scientists estimate that the total amount of stored data is
somewhere in the whereabouts of 295 exabytes (i.e.295 · 1018 bytes, or295 · 106 terabytes).
Moreover, the pace at which such data is growing keeps increasing. In order to cope with
such a huge amount of data, computerised approaches dealingwith it have become neces-
sary. Of course, not all this data is susceptible to be processed by NLP systems. However,
this symbolises the fact that, as the amount of data increases, NLP is elucidated as the only
way in which such large amounts of data can be analysed.

Machine translation (MT) is a specific sub-field of NLP, and studies the way in which
automatic systems should be developed so that they are able to translate a certain sentence
in a source language into a sentence in a given target language, such that source and target
sentences preserve the exact same meaning, while being bothwell-formed sentences in their
respective languages. The idea of developing an automatic procedure by means of which a
source text could be translated into a target language without the intervention of a human
can be traced back to the 17th century, when René Descartes proposed a universal language
which would be able to represent all ideas contained within any existing language. Since
then, the idea of aninterlinguato and from which the translation process is simple has been
present in the MT community, although such a language has never been found.

More recently, after World War II and at the beginning of the Cold War, the Georgetown-
IBM experiment achieved during January 1954 to gain a large amount of interest, both
from the general public and from funding agencies, leading to the famous publication by
Weaver (Weaver, 1955). Although the experiment was perceived as a success and the authors
claimed that, with the appropriate funding, MT would be a well-solved problem within three
or five years, the fact was that the experiment implied a system containing only six grammar
rules and 250 vocabulary entries. As progress on MT evolved at a much slower pace than
expected, funding was severely cut after the 1960 report of the ALPAC (Automatic Language
Processing Advisory Committee) (Bar-Hillel, 1960).

The 1960 ALPAC report lead to drastic direction shift in MT research that led to the up-
rise of rule-based machine translation (RBMT) (Hutchins, 1986) systems in the early 1970s.
Such systems, which are currently loosing weight in the state of the art, rely on linguistic
information of both source and target languages, which is basically retrieved from bilingual
dictionaries and grammars. Two different RBMT paradigms were developed: transfer RBMT
systems, which attempt to map the source language into the target language directly, and
interlingual RBMT systems, which make use of an intermediate language which is assumed
to be easy to translate into and from. Although RBMT systems are still in use, many of the
commercial systems implementing RBMT are shifting towardsstatistical MT, such as Systran
and Google translate.

It was not until the late 1980s that statistical machine translation (SMT), the pattern
recognition approach to MT, transformed the state of the artin MT completely, by devel-
oping statistical models which were able to learn to translate between different languages
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in a word-to-word fashion. It was then when the researchers at the IBM Thomas J. Watson
Research Center contributed most significantly to the research in SMT by developing word-
based statistical translation models (Brown et al., 1993),popularly known as IBM models,
which are even nowadays used in current state-of-the-art SMT systems. Together with the in-
troduction of phrase-based models (Koehn et al., 2003; Tomas and Casacuberta, 2001; Zens
et al., 2002), word-alignment models were critical for the up-rise of SMT, which is nowadays
the most dominant technology in MT.

In recent MT evaluations (Callison-Burch et al., 2011; Paulet al., 2010), the most domi-
nant technology was the statistical approach to MT, which isthe one that is currently receiving
the most attention. Nevertheless, recent user reports (Hollowood, 2011; Yuste et al., 2010)
claim that it is possible to achieve better results, from a user point of view, by combining both
SMT and RBMT. This idea has recently given rise to the so-called hybrid MT technologies,
which attempt to leverage the strengths of both paradigms.

1.2 Statistical machine translation

Statistical machine translation (SMT), systems have proved in the last years to be an im-
portant alternative to rule-based MT systems, being even able of outperforming commercial
machine translation systems in the tasks they have been trained on (Callison-Burch et al.,
2007). Moreover, the development effort behind a rule-based machine translation system
and an SMT system is dramatically different, the latter being able to adapt to new language
pairs with little or no human effort, whenever suitable corpora are available (Hutchings and
Somers, 1992).

The grounds of modern SMT were established in (Brown et al., 1993), where the problem
of machine translation was defined as the problem of translating a certain sentencex from a
given source language into a target sentencey, being

x = x1 . . . xj . . . xJ xj ∈ X

y = y1 . . . yi . . . yI yi ∈ Y

wherexj andyi denote source and target words, each one belonging respectively to the source
and target vocabularies,X andY. J = |x| andI = |y| are the lengths of the source and
target sentences, respectively.

In SMT, it is assumed that every source string (or sentence)x may be the translation
of every target stringy. Then, the key idea of SMT is to establish a procedure by means
of which every pair of strings(x,y) is assigned a scorep(y|x), which is interpreted as the
probability thaty is an appropriate translation for a givenx. Such procedure is the SMT
model, which we will denote byM, and then the probability ofy being a translation ofx is
given by the expression

Pr(y|x) ≈ p(y | x;M) (1.1)

=
p(y;M)p(x | y;M)

p(x;M)
(1.2)

where Bayes’ theorem has been applied between Equation 1.1 and Equation 1.2. In the
following,M will be assumed implicit, with the purpose of simplifying notation.
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1.2. Statistical machine translation

Once the SMT model has been established, translating a certain sentencex can be formu-
lated as the problem of finding that specific sentenceŷ that maximises the probability given
in Equation 1.2, i.e.

ŷ = argmax
y

p(y | x) (1.3)

= argmax
y

p(x | y) · p(y) (1.4)

wherep(x) does not affect the maximisation and has been hence neglected in Equation 1.4,
which is often referred to as the fundamental equation of SMT, and also source-channel ap-
proach. Here,p(y | x) has been decomposed into two different probabilities: thestatistical
language modelof the target languagep(y) and the (inverse) translation modelp(x | y).
Although it might seem odd to model the probability of the source sentence given the tar-
get sentence, this decomposition has a very intuitive interpretation: the translation model
p(x | y) will capture the word or phrase relations between both inputand output language,
whereas the language modelp(y) will penalise ill-formed sentences of the target language.

The first translation models were word-based, i.e. source words were translated into
one or more target words, and these words were then re-ordered so as to compose the final
output sentence. For building this word-to-word correspondences, word alignments were in-
troduced (Brown et al., 1993). In the inverse version of the word alignment models, a source
wordxj is aligned to a set of target word positionsaj = {i1, . . . , il}. From a generative per-
spective, such an alignment implies that source wordxj generates target wordsyi1 , . . . , yil .
Modelling the translation process in such a way requires using a hidden variablea, since
alignments cannot be observed in the training process, yielding:

p(x | y) =
∑

a∈A(x,y)

p(x,a | y) (1.5)

whereA denotes the set of all possible alignments betweenx andy.

A large number of different word-alignment models have beenproposed. To start with,
Brown et al. already proposed five different models in their seminal work in (Brown et al.,
1993), with an increasing degree of complexity and which were intended to be trained sequen-
tially by means of the Expectation-Maximisation (EM) (Dempster et al., 1977; Wu, 1983),
each of them yielding good initial values for the next model.Hence, these five models were
intended to be trained sequentially. In addition, other authors (Och, 2003; Vogel et al., 1996)
proposed further models, which have also gained popularity. Figure 1.1 illustrates a typical
alignment between an input and an output sentence.

However, an important breakthrough in SMT was achieved whenthe source-channel ap-
proach was replaced by a maximum entropy (Berger et al., 1996) modelling of the translation
process. By modellingp(y | x) directly, it became possible to introduce a set ofM different
feature functionshm(x,y) into the translation process (Och and Ney, 2002; Papineni etal.,
1998), withm = 1, . . . ,M . Each feature function is then assigned a feature weightλm,
which represents how important is featurehm for the translation ofx into y. This approach
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Figure 1.1: Example of word alignments computed automatically by meansof a word-
alignment model. The left side shows the alignment as a function of the source sentence
(up) and the target sentence (down). On the right side, the alignment is shown in a
matricial form, as is often done in SMT.

leads to the so-called log-linear models, where

p(y | x) =
exp

∑M
m=1 λmhm(x,y)

∑

y′ exp
∑M

m=1 λmhm(x,y′)
(1.6)

=
expλ · h(x,y)

∑

y′ expλ · h(x,y′)
(1.7)

hm(x,y) is a score function representing an important feature for the translation ofx into
y, as for example the language model of the target language, a reordering model or several
translation models. Typically, the largest part of the translation models included into current
state-of-the-art SMT systems can be defined locally, but other models, such as reordering or
language models, can only be defined at the sentence level dueto longer-range dependencies
among translation units. The weightsλ = [λ1 . . . λM ]T are normally optimised with the use
of a development set.

In the expression above, it should be noted that the normalisation term present in Equa-
tion 1.6 has been omitted, since it is considered constant inthe maximisation and is hence not
needed when searching for the best output sentenceŷ. This is important, since computing the
normalisation term would be very costly. Nevertheless, such term is very often needed when
developing more sophisticated approaches, as will be seen in Chapter 4.

Note that, in Equation 1.6, the feature functionshm(x,y) are typically defined in the
logarithmic domain. This means that, in the case that a certain feature represents a proba-
bility, the feature itself will be the logarithm of such probability. For example, if the feature
is ought to represent the direct translation probabilityp(y | x), the feature itself will be
log p(y | x). Nevertheless, in practise some of the features actually dorepresent logarithms
of probabilities, but others, as will be described in next section, do not.
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1.2. Statistical machine translation

Given Equation 1.6, the decision rule is given by the expression

ŷ = argmax
y

M
∑

m=1

λmhm(x,y) = argmax
y

λ · h(x,y) (1.8)

The use of log-linear models implied an important break-through in SMT, allowing for
a significant increase in the quality of the translations produced. However, it should also be
noted that the log-linear approach is actually a generalisation of the source-channel approach
described above: if the set of features is limited to

h1(x,y) = log p(y)

h2(x,y) = log p(x | y)

and the corresponding weights are set to one, i.e.,λ1 = λ2 = 1, searching for the optimum
translation̂y in Equation 1.8 is exactly equivalent to searching forŷ in Equation 1.4.

1.2.1 Phrase-based statistical machine translation

One of the most popular instantiations of log-linear modelsin SMT are phrase-based (PB)
models (Koehn, 2010; Koehn et al., 2003; Tomas and Casacuberta, 2001; Zens et al., 2002).
PB models allow to capture contextual information to learn translations for whole phrases
instead of single words. The basic idea of phrase-based translation is to segment the source
sentence into phrases, then to translate each source phraseinto a target phrase, and finally to
re-order the translated target phrases in order to compose the target sentence. For this purpose,
phrase-tables are produced, in which a source phrase is listed together with several target
phrases and the probability of translating the former into the latter. PB models constitute
nowadays the core of the state of the art in SMT, although morerecent approaches, such as
hierarchical models (Chiang, 2005) or finite state models (Casacuberta and Vidal, 2004) are
able to yield similar translation quality (Callison-Burchet al., 2010; Koehn and Monz, 2006;
Paul et al., 2010).

The model

The derivation of PB models stems from the concept of bilingual segmentation, i.e. sequences
of source words and sequences of target words. Usually, it isassumed that only segments of
contiguous words are considered, and that no overlap between such segments may exist. In
such case the number of source segments is equal to the numberof target segments (sayK)
and each source segment is aligned with only one target segment and vice versa.

From a generative point of view, the process of translating asource sentence into a target
sentence by means of a PB SMT model is accomplished by means ofthe following steps:

1. Segment source sentencex intoK source phrases{x̃1 . . . x̃k . . . x̃K}.

2. Translate each one of the source phrases into target phrases{ỹ1 . . . ỹk . . . ỹK}.

3. Re-order the target phrases so as to build the final output sentencêy.
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Typically, some of the features included into PB-models canbe defined at the local phrase
level, such as the direct translation probabilityp(y|x) =

∑K
k=1 p(ỹk | x̃k). However, other

features, such as the language model or phrase-reordering models cannot be defined at the
translation unit level. We shall denote byhl(·, ·) a feature which can be defined at the local
phrase level, and, conversely,hs(·, ·) will denote a feature which cannot be defined at the
local phrase level. Letκ be a certain segmentation of sentence pair(x,y), which segments
such sentence pair intoK phrases, such that

x = x̃1 . . . x̃k . . . x̃K x̃k ∈ B(x)

y = ỹ1 . . . ỹk . . . ỹK ỹk ∈ B(y)

whereB(x) ⊆ X+ is the set of all possible sequences of contiguous words within sentence
x. Equivalently,B(y) ⊆ Y+ is the set of all possible segments (i.e. sequences of contiguous
words) of the target sentence. Note that, by formulating PB models as above, the model
is restricted to have the same amount of segments in both source and target sides of the
bilingual sentence. This implies that source phrases must produce exactly one phrase in the
target sentence. In addition, sinceB(x) andB(y) have been defined as a subset of the positive
closure over alphabetsX andY, respectively, empty phrases are not allowed, i.e. each phrase
must contain at least one word. Although these two conditions are quite restrictive, these are
a very common assumption made in order to make the search problem more tractable.

Then, the probability of sentence pair(x,y) can be formulated as follows, separating and
re-grouping those feature functions which can be defined at the local phrase level:

p(y | x) =
∑

κ

p(κ) · p(y|x;κ) (1.9)

p(y | x;κ) =
exp

∑M
m=1 λmhm(x,y)

∑

y′ exp
∑M

m=1 λmhm(x,y′)
(1.10)

=
exp{

∑Ml

m=1

∑K
k=1 λ

l
mhl

m(x̃k, ỹk) +
∑Ms

m=1 λ
s
mhs

m(x,y)}
∑

y′ exp{
∑Ml

m=1

∑K
k=1 λ

l
mhl

m(x̃, ỹ′k) +
∑Ms

m=1 λ
s
mhs

m(x,y′)}

=
exp{

∑K
k=1

∑Ml

m=1 λ
l
mhl

m(x̃k, ỹk) +
∑Ms

m=1 λ
s
mhs

m(x,y)}
∑

y′ exp{
∑K

k=1

∑Ml

m=1 λ
l
mhl

m(x̃k, ỹ′k) +
∑Ms

m=1 λ
s
mhs

m(x,y′)}

=
exp{

∑K
k=1 g

l(x̃k, ỹk) + gs(x,y)}
∑

y′ exp{
∑K

k=1 g
l(x̃k, ỹ′k) + gs(x,y)}

(1.11)

In this last expression,gl(·, ·) represents the combination of features defined at the local
phrase level, each one weighted accordingly, andgs(·, ·) represents the combination of fea-
tures which cannot be defined at the local phrase level.

Although Equation 1.9 implies that all possible segmentations of the candidate hypothesis
need to be computed upon search, in practise the Viterbi segmentation is used, and only
the maximum probability segmentation is taken into consideration. If the probability of the
segmentationp(κ) is considered constant, such approximations lead to the following decision
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1.2. Statistical machine translation

rule:

ŷ = argmax
y,κ

K
∑

k=1

gl(x̃k, ỹk) + gs(x,y) (1.12)

where the normalisation denominator in Equation 1.11 has been neglected because it has no
influence on the maximisation. Although it is not common in SMT literature to separate local
and global features, this will be useful later on in other chapters of this thesis.

Learning phrase-based models

The most important step when learning a PB model is to computea phrase-table, which is
a translation table containing each one of the phrase pairs(x̃, ỹ) observed during training,
alongside with the value of each one of the local feature functions.

Hence, the first step when learning PB models is to extract phrase pairs from a sentence-
aligned bilingual corpus. In the last years, a wide variety of heuristic techniques to produce
PB models have been researched and implemented (Koehn et al., 2003). Firstly, a direct
learning of the inverse translation modelp(x|y) was attempted (Marcu and Wong, 2002;
Tomas and Casacuberta, 2001). Other approaches have suggested exploring more linguisti-
cally motivated techniques (Sánchez and Benedí, 2006; Watanabe et al., 2003). However, the
one technique which has been more widely adopted involves the heuristic extraction of phrase
pairs (Zens et al., 2002), in which all phrase pairs coherentwith a given word alignment are
extracted. In most cases, one of the IBM alignments described in previous section is used
for this purpose. Since these word alignments are very restrictive because each target word
is assigned only zero or one source words, source-to-targetand target-to-source alignments
are combined heuristically. This procedure is often calledsymmetrisation. Once this is done,
the set of phrases consistent with the symmetrised word alignments is extracted from every
sentence pair in the training set. An illustration of how this is done can be seen in Figure 1.2

Most typically, the different local featureshm(·, ·) that are included into the translation
table are:

• Inverse translation probability, given by the formula

p(x̃ | ỹ) =
C(x̃, ỹ)

C(x̃)
(1.13)

whereC(x̃, ỹ) is the number of times segmentsx̃ andỹ were extracted throughout the
whole corpus, andC(x̃) is the count for phrasẽx.

• Direct translation probability,p(x̃ | ỹ), which is obtained analogously.

• Inverse and direct lexicalised features,w(x̃ | ỹ), which attempt to account for the
lexical soundness of each phrase pair, estimating how well each of the words in one
language translates to each of the words in the other language. These lexicalised fea-
tures were defined in (Zens et al., 2002)

• A constant feature, orphrase penalty, whose purpose is to avoid the use of many small
phrases in decoding time, and favour the use of longer ones. Typically, this feature is
set to numbere.
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...

...

Figure 1.2: Example of how consistent phrases are extracted from a word alignment.
On the left, the alignment matrix after symmetrisation is shown. Black squares represent
word alignments, whereas extracted phrases are marked witha rectangle involving one
or more squares. On the right, the phrases that would be extracted from that matrix.
Note that wordsecannot be extracted on its own because its alignment requires word
ha to be extracted together with it so as to preserve alignment consistency.

In addition to the local features, typical state-of-the-art SMT systems also include a re-
ordering model. In fact, the non-monotonicity problem in translation is one of the toughest
problems that SMT systems need to face. Different languagesentail different word order, and
systems which do not tackle the re-ordering problem in any way are mostly unable to yield
satisfactory results when translating between language pairs from different origin. This prob-
lem has been well-known in SMT for some time, and (Berger et al., 1996) already introduced
in their alignment models what they called distortion models, in an effort towards includ-
ing in their SMT system a solution for the re-ordering problem. (Vilar et al., 1996), tried
to partially solve the problem by monotonising the most probable non-monotone alignment
patterns and adding a mark in order to be able to remember the original word order. (Kumar
and Byrne, 2005) learnt weighted finite state transducers accounting for local re-orderings
of two or three positions. Other works, such as (Kanthak et al., 2005; Zens et al., 2004),
dealt with input sentence re-ordering, where the main idea is to reorder the input sentence in
such a way that the translation model will not need to accountfor possible word re-orderings.
Other works (Xiong et al., 2006) deal with the re-ordering problem from a maximum entropy
point of view, establishing a re-ordering model based on a set of features which the authors
consider to be important for assessing the (non-) monotonicity of two specific phrases.

However, the re-ordering model which has found perhaps the most widespread accep-
tance among PB SMT systems is the one proposed in (Koehn et al., 2005), where a lex-
icalised re-ordering model is proposed. Let(x̃k, ỹk) be the current phrase being consid-
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Figure 1.3: Alignment matrix with the different re-ordering types.m stands for mono-
tone,s stands for swap, andd stands for discontinuous.

ered,(x̃k−1, ỹk−1) the previous one, in the order established by the source sentence, and
(x̃k+1, ỹk+1) the next phrase pair to be translated by the decoding algorithm. Three possible
re-ordering types, also called orientations, are considered: monotone, swap, and discontinu-
ous. A swap occurs when inverting the order between phrase(x̃k, ỹk) and the previous phrase
(x̃k−1, ỹk−1) would result in a monotonic ordering of the phrases, and a discontinuity when-
ever such swap would still yield a non-monotonic ordering. Figure 1.3 shows examples of
these three classes of orientations. Then, the probabilityof a given phrase pair(x̃k, ỹk) hav-
ing a certain orientationo with respect to the previous phrase(x̃k−1, ỹk−1) is given, following
the maximum likelihood principle, by

p(o | x̃k, ỹk) =
C(o, x̃k, ỹk)

∑

o′ C(o′, x̃k, ỹk)
(1.14)

whereC(o, x̃k, ỹk) is the number of times that phrase pair(x̃k, ỹk) has been observed to
appear in orientationo with respect to the previous phrase in the training data.

In addition to considering the orientation with respect to phrase pair(x̃k−1, ỹk−1), it is
also common to include into the model the probability of phrase pair(x̃, ỹ) presenting a
certain orientation with respect to(x̃k+1, ỹk+1). Since this implies the estimation of a large
amount of parameters, it may lead to sparsity issues. For this reason,p(o | x̃k, ỹk) is typically
smoothed by the prior of orientationo.

The re-ordering model is an example of feature which cannot be defined at the local
phrase level, since it depends on the position of the phrase translated before the current phrase.
Other non-local features also include the language model and a word penalty, which attempts
to regulate the fertility of the source words.

To sum up, typical features present in most state-of-the-art PB SMT systems include
fourteen different feature functionshi:

• the five local features described above, i.e.p(x̃ | ỹ), p(ỹ | x̃), w(x̃ | ỹ), w(ỹ | x̃) and
numbere

• the six probabilities defined by the lexicalised re-ordering model when considering the
orientation with the previous and with the next phrase. In addition, it is also common to
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include an exponential function penalising very long-range re-orderings. This accounts
to a total of seven feature functions belonging to the re-ordering model.

• the language model

• the word penalty

Tuning in phrase-based models

Once the bilingual phrases have been extracted from a sentence aligned bilingual corpus,
the featuresh described in the previous section can already be computed. However, at this
point it is still necessary to obtain an appropriate value for the scaling factorsλ. The pro-
cess of obtaining such a vector is often calledtuning. To this end, numerous methods have
been proposed. For instance, (Watanabe et al., 2007) propose to use of the margin infused
relaxed algorithm (MIRA) (Crammer et al., 2006) for the specific task of adjustingλ. More
recently, (Sokolov and Yvon, 2011) proposed to view the tuning problem as a set of opera-
tions over a specific semi-ring. Alternatively, (Hopkins and May, 2011) proposed to view the
problem as a ranking problem, where each step of the tuning procedure consists in deciding
whether a given translation hypothesis should be ranked lower or higher within the set of
possible hypotheses that are provided by the search procedure. Similarly, (Martínez-Gómez
et al., 2011) propose to view the problem as a regression problem, where the problem of tun-
ing is re-defined as a regression problem in which the log-linear combination in Equation 1.6
should approximately fit the translation quality function used.

However, perhaps the most popular approach for adjusting the scaling factors is the one
proposed in (Och, 2003), commonly referred to as minimum error rate training (MERT). This
algorithm implements a coordinate-wise global optimisation and consists on two basic steps.
First,n-best hypotheses are extracted for each one of the sentencesof a given development
set. Next, the optimumλ is computed so that the best hypotheses in then-best list, according
to a reference translation and a given metric, are the ones that the search algorithm would
produce. Since it is often the case that there is not a singleλ vector that would promote all
the best hypothesis throughout the whole development set tothe first position in then-best
list, a compromise is often achieved, in which the specified metric is maximised. These two
steps are iteratively repeated until convergence, whereλ remains unchanged.

Decoding in phrase-based models

Once the model for PB translation has been established according to Equation 1.11 and the
appropriate decision rule has been stated in Equation 1.12,an algorithm is needed for carrying
out the maximisation described and establishing which is the best candidate hypothesisy∗

that should be produced as final translation. However, the search problem in SMT has been
shown to be an NP-complete problem (Knight, 1999; Udupa and Maji, 2006), which implies
that different approximations and simplifications need to be made in order to deal with the
problem efficiently. To this end, different algorithmic solutions have been proposed, such as
the multi-stack depth-first decoding algorithm (Ortiz-Martínez, 2011) proposed by (Berger
et al., 1996) for word-based models, greedy strategies (Germann et al., 2001), or dynamic
programming solutions (García-Varea, 2003).
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However, the decoding algorithm which has found the most widespread acceptance in
SMT is the one proposed by (Tillmann and Ney, 2003), and whichis an adaptation to SMT
of the classic beam search algorithm proposed in (Jelinek, 1998) for speech recognition. In
this algorithm, the translation is generated sequentiallyfrom left to right, and re-ordering be-
tween source and target phrases happens when the next sourcephrase to be translated,x̃k,
is not located directly after the one that has just been translated,x̃k−1. A typical procedure
for translating a certain input sentence is exemplified in Figure 1.4. In this figure, the initial
(empty) hypothesis is first expanded into several partial hypotheses by using the different
phrases extracted in Figure 1.2. The use of these phrases leads to different coverage vectors,
denoted in the figure byκx, indicating which words of the source sentence have alreadybeen
translated. The reason for keeping track of which words havealready been translated is dou-
ble: on the one hand, for the purpose of not accounting for a given source word twice in the
translation hypothesis; on the other hand, because in this kind of algorithm only hypothe-
ses with the same amount of source words covered compete witheach other. Given that the
probability of a certain hypothesis is computed as a product, the more the amount of source
words translated, the less the probability mass assigned tothat specific hypothesis. Since
hypothesis expansion is done by expanding first those hypotheses with the most probability,
the algorithm would keep expanding hypotheses with few translated words. This is conve-
niently solved by means of the coverage vector by allowing tocompete among each other
only those hypotheses with the same amount of translated words. For example, in Figure 1.4,
the hypotheses that would compete among each other would be©3 and©5 . Note that it is not
normal to have the same sentence both for training and for test: although such a thing could
eventually happen, in this case the same sentence is used forillustrative purposes.

Coverage problems in phrase-based SMT

As described in Section 1.2.1, phrase extraction is typically done by a heuristic procedure,
which attempts to extract a rather large amount of phrases from the bilingual sentences seen
in training. However, given that the heuristic algorithm employed relies on word-alignments
and on the concept coherent phrases, it might be possible that phrases which actually do
appear in the training data, but are not considered coherentmay end up resulting as unseen
for the SMT system. This means, in practise, that the SMT system trained may actually be
unable to account for the correct output sentenceyτ . Furthermore, given the large number
of segments that are extracted from each bilingual sentence, the maximum word length of
a phrase is often restricted for performance reasons, and following common knowledge that
establishes that longer phrases tend to never be seen again.

If the training data was composed only by the bilingual sentence in Figure 1.2, a word as
simple as the Spanish wordse(a reflexive pronoun) would be considered out of vocabulary
by the PB SMT system, even though such word was actually seen in training. More dramatic
is the example shown in Figure 1.5. In this example, which hasbeen extracted from a real
training procedure, only three phrase pairs will be extracted, and the remaining words will
not be included into the PT. The problem here can be easily exemplified by looking at the
word cannot, which presents multiple alignments. In order to include target wordcannot
within a consistent alignment, one would need to include word puedointo the alignment, but
including wordpuedoimplies that wordI is also included. IncludingI also forces the two
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y:
κx:------------
p:1 g1

y:a major
κx:-------**---
p:0.3 g2

y:a major conference
κx:-------***-
p:0.4 g3

y:was held in
κx:****-------
p:0.02 g4

y:a major conference was
κx:**----**---
p:0.22 g5
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Figure 1.4: Example of decoding procedure following the phrases extracted in
Figure 1.2, with the input sentence being "Se ha celebrado en viena una
gran conferencia .". κx illustrates the coverage vector of that specific partial
hypothesis. The coverage vectorκx of a specific hypothesis keeps track of which words
of the source sentencex have been translated until that point, so that words that already
have their counterpart in the target sentencey are not translated again. In this figure,
character- at then-th position specifies that source wordxn has not been translated
yet, and* indicates that already has. The probabilityp of each hypothesis is only for
illustrative purposes.

commas to be included, together with whatever words appear between both. Continuing with
this procedure leads to the necessity of including the wholesentence pair (except for the final
dot) as a phrase before being able to includecannotinto a consistent alignment. However,
as explained above, it is quite common to restrict the maximum length of the phrases to be
extracted. If such maximum is set to e.g. 7, the complete sentence pair will not be included
into the system, andcannotwill remain unknown despite having been observed in training.

As will be seen in the other chapters, the coverage problem will be an issue when dealing
with the different techniques and algorithms described in this thesis, and different approxi-
mations will be needed to confront it. So as to provide a coarse idea about the importance
of the coverage problem, this problem implies that a state-of-the-art SMT system is not able
to produce the reference present in a bilingual corpus in about 30% to 80% of the cases,
depending on the specific corpus being considered.

1.2.2 Statistical machine translation evaluation metrics

Evaluation in SMT is a very controversial issue. On the one hand, human evaluation is
way too costly for experimentation purposes. Having a humantranslator assess the quality
of the output produced by a SMT system for every combination of parameters that need
to be adjusted in tuning time would render research in SMT unfeasible. This leads to the
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Figure 1.5: Example of word alignment that results in coverage problems. Maximum
phrase length of 7 is assumed. Black squares represent word alignments, whereas ex-
tracted phrases are marked with a rectangle involving one ormore squares.

wide-spread use of automatic evaluation metrics that are very cheap to use. On the other
hand, however, there is a growing feeling in the MT communitythat claims that current
SMT systems are not optimising translation quality as such,but are rather optimising a given
evaluation metric without taking into consideration the real impact on the usability of the
translations produced. This is due mainly to the problem of not having a reference sentence
which can be considered ground truth, as is the case in other NLP research fields such as
speech recognition or handwritten character recognition.This implies that it is often very
difficult to assess how good a certain SMT output is, even for humans.

Many different evaluation metrics have been proposed, and this issue has even been the
topic of recent SMT workshops (Callison-Burch et al., 2010,2011). Typically, the main
goal when designing automatic SMT evaluation metrics is to achieve a metric presenting a
high correlation with human judgements of translation quality. However, even this is of-
ten questioned, specially when taking into account that inter-annotator agreement is often
low (Callison-Burch et al., 2011).

In this thesis, SMT output will be evaluated by means of BLEU (Papineni et al., 2001) and
TER (Snover et al., 2006), which are two of the most popular evaluation metrics employed in
SMT.

BLEU (Bilingual Evaluation Understudy) score: This score measures the precision of uni-
grams, bigrams, trigrams, and four-grams with respect to a set of reference translations,
with a penalty for too short sentences (Papineni et al., 2001). BLEU is not an error rate,
i.e. the higher the BLEU score, the better. BLEU can be single- or multi-reference, but
in the present thesis only single-reference BLEU will be used due to corpus restric-
tions. In practise, BLEU implements a geometrical average of n-gram precision. The
consequence of this is that BLEU is often only well-defined onthe corpus level, but
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not on the sentence level. Consider for instance a sentence of three words. Such sen-
tence will never share a common four-gram with the referencesentence, and BLEU
will score zero even when the hypothesis produced by the system and the reference
sentence are identical. As will be seen in further chapters,this may lead to problems
when attempting to identify the best translation for a single input sentence. BLEU will
be reported as a percentage, ranging from 0 to 100.

TER (Translation Edit Rate): Translation Error Rate (Snover et al., 2006) is an error metric
for MT that measures the number of edits required to change a system output into
one of the references. TER is computed as the minimum number of edits required to
modify the system hypothesis so that it matches the reference translation, normalised
by the average number of reference words. In this case, possible edits include insertion,
deletion, substitution of single words and shifts of word sequences. In the original
work, the authors claimed that single-reference TER correlates as well with human
judgements of MT quality as the four-reference variant of BLEU. As in BLEU, TER
can also be multi-reference, but in this thesis single-reference TER will be used. TER
will also be reported as a percentage, although it can yield values over 100.

In addition to BLEU and TER results, confidence interval sizes will also be provided, with
the purpose of assessing whether differences in BLEU and TERare statistically significant or
not. To this end, the methods described in (Koehn, 2004) willbe followed. Specifically, two
different statistical significance tests will be used, bothrelying on bootstrap re-sampling.

• Test-specificbootstrap re-sampling. Typically, for establishing a confidence interval
for a given score it would be necessary to translate a certain(large) number of different
test sets. However, if only one test setE of size|E| is available, an equivalent approach
consists in drawing fromE a random sample of sentences of size|E|, with repetition.
After evaluating the translation quality of such sample, the procedure is repeatedb
times, whereb depends on the precision we would like for the confidence interval.
If a precision of one decimal digit is desired, thenb = 1000, and if two decimal
digits are requested, thenb = 10, 000. Onceb random samplings are extracted, and
their translation quality has been assessed, allb scores are sorted. Dropping the upper
2.5% of the scores obtained yields the upper bound for the95% confidence interval,
and dropping the lower2.5% yields the lower bound for the95% confidence interval.
Then, under the assumption that the sentences within the test setE are independent, we
have the certainty that thetrue score that the SMT system tested would obtain would
be within that interval95% of the times.

• Pairedbootstrap re-sampling. The previous bootstrap re-sampling technique is appro-
priate for evaluating the confidence on the score provided bya certain system. How-
ever, if we are interested in establishing whether a certainSMT systemA performs bet-
ter than another systemB, regardless of where the true score may lie, then we need to
performpairedbootstrap re-sampling. This is done by sampling the test setat random,
in the same way as described above, but this sampling is performed on both systems
at the same time, i.e., the|E| sentences sampled will be translated by both systemsA
andB at the same time. Then, the difference in score,µ(E , A) − µ(E , B), between
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both systems will be measured, and it is such difference which will be sorted, and from
which the confidence interval will be obtained. Hence, and again under the assump-
tion that the sentences within|E| are independent, if both upper and lower bounds of
the confidence interval are positive, it can be said that systemA performs better than
systemB 95% of the times, and if both such bounds are negative, it can be said thatB
performs (significantly) better thanA.

For reporting confidence intervals in this thesis, an efficient implementation of the two
methods above was used. The key idea for performing such implementation relies in per-
forming the bootstrap re-sampling on the sentence-level counts which lead to the translation
scores used, and not on the sentences as such. Hence, much computational effort is saved,
since it is not needed to translateb test sets, obtain such counts, and then compute the fi-
nal translation quality scores; the only thing needed is to repeat the computation of the final
scoresb times. For this reason, obtaining the confidence intervals ends up being very cheap,
and hence the confidence intervals reported in this thesis were obtained after performing
b = 10, 000 bootstrap re-sampling repetitions, unless stated otherwise.

1.3 Interactive machine translation

Information technology advances in modern society have ledto the need of more efficient
methods of translation. It is important to remark that current MT systems are not able to
produce ready-to-use texts (Arnold, 2003; Hutchins, 1999;Kay, 1997). Indeed, MT systems
are usually limited to specific semantic domains and the translations provided require human
post-editing in order to achieve a correct high-quality translation.

A way of taking advantage of MT systems is to combine them withthe knowledge of a
human translator, constituting the so-called computer-assisted translation (CAT) paradigm.
CAT offers different approaches in order to benefit from the synergy between humans and
MT systems.

An important contribution to interactive CAT technology was carried out around the
TransType (TT) project (Foster, 2002; Foster et al., 2002; Langlais et al., 2002; Och, 2003).
This project entailed an interesting focus shift in which interaction directly aimed at the pro-
duction of the target text, rather than at the disambiguation of the source text, as in former
interactive systems. The idea proposed was to embed data driven MT techniques within the
interactive translation environment.

Following these TT ideas, (Barrachina et al., 2009; Ortiz-Martínez, 2011) propose the us-
age of fully-fledged statistical MT (SMT) systems to producefull target sentence hypotheses,
or portions thereof, which can be partially or completely accepted and amended by a human
translator. Each partial correct text segment is then used by the SMT system as additional
information to achieve further, hopefully improved suggestions. In this thesis, we also focus
on the interactive and predictive, statistical MT (IMT) approach to CAT. The IMT paradigm
fits well within the interactive pattern recognitionframework introduced in (Romero et al.,
2011; Vidal et al., 2007).

Figure 1.6 illustrates a typical IMT session. Initially, the user is given an input sentence
x to be translated. The referencey provided is the translation that the user would like to
achieve at the end of the IMT session. At iteration0, the user does not supply any correct
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SOURCE (x): Para encender la impresora:
REFERENCE (y): To power on the printer:

ITER-0
(p) ( )
(ŝh) To switch on:

ITER-1

(p) To
(sl) switch on:
(k) power
(sh) on the printer:

ITER-2

(p) To power on the printer:
(sl) ( )
(k) (#)
(ŝh) ( )

FINAL (p ≡ y) To power on the printer:

Figure 1.6: IMT session to translate a Spanish sentence into English. Non-validated
hypotheses are displayed in italics, whereas accepted prefixes are printed in normal font.

text prefixp to the system, for this reasonp is shown as empty. Therefore, the IMT system
has to provide an initial complete translationsh, as if it were a conventional SMT system. At
the next iteration, the user validates a prefixp as correct by positioning the cursor in a certain
position ofsh. In this case, after the word “To”. Implicitly, he is also marking the rest of
the sentence, the suffixsl, as potentially incorrect. Next, he introduces a new wordk, which
is assumed to be different from the first wordsl1 in the suffixsl which was not validated,
i.e., k 6= sl1 . This being done, the system suggests a new suffix hypothesisŝh, subject
to ŝh1 = k. Again, the user validates a new prefix, introduces a new wordand so forth.
The process continues until the whole sentence is correct, which is validated introducing the
special word “#”. In this example, a potential user of the IMT system would have typed only
one word out of five. Assuming that, without the IMT system, the user would have had to
translate the whole sentence, the potential benefit consists in an effort reduction of 80%. If
a post-edition environment is assumed as baseline, the userwould have typed three words,
versus only one in the case of IMT, leading to an effort reduction of 66% with respect to
post-edition.

As the reader could devise from the IMT session described above, IMT aims at reducing
the effort and increasing the productivity of translators,while preserving high-quality trans-
lation. For instance, in Figure 1.6, only three interactions were necessary in order to achieve
the reference translation.

Formally, IMT is specified as an evolution of the SMT framework, and hence its formula-
tion stems from the so-called fundamental equation of SMT, i.e., Equation 1.3. However, this
equation needs to be modified according to the IMT scenario inorder to take into account the
part of the target sentence that is already translated, thatis p andk:

ŝh = argmax
sh

Pr(sh|x,p, k) (1.15)

where the maximisation problem is defined over the suffixsh. This allows us to rewrite
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κx: *-*

κx: *-- κx: ***

κx: --- κx: **-

κx: **- κx: ***

y: the
p: 0.5

y: green
p: 0.2

y: table
p: 0.3

y: green
p: 0.7

y: green
p: 0.3

y: table
p: 0.6

y: table
p: 0.6

y: chair
p: 0.01

Figure 1.7: Example of word graph illustrating the translation ofla mesa verde. κx is
the coverage vector of the input sentence (see Section 1.2.1), where symbol- indicates
an uncovered word, and symbol* an input word that has already been translated. Each
edge is labelled with both the word emitted when transiting through that edge, and the
probability assigned. Note that, for the sake of simplicity, this word graph is not a real
example generated during a true search process.

Eq. 1.15, by decomposing the right side appropriately and eliminating constant terms, achiev-
ing the equivalent criterion

ŝh = argmax
sh

Pr(p, k, sh|x). (1.16)

An example of the intuition behind these variables is shown in Figure 1.6.
Note that, since(p k sh) = y, Eq. 1.16 is very similar to Eq. 1.3. The main difference

is that the argmax search is now performed over the set of suffixessh that complete(p k),
instead of complete sentences (y in Eq. 1.3). This implies that we can use the same models
if the search procedures are adequately modified (Barrachina et al., 2009).

The phrase-based approach presented in Section 1.2.1 can beeasily adapted for its use in
an IMT scenario. The most important modification is to rely ona word graph that represents
possible translations of the given source sentence. The useof word graphs in IMT has been
studied in (Barrachina et al., 2009) in combination with twodifferent translation techniques,
namely, the alignment templates technique (Och and Ney, 2004; Och et al., 1999), and the
Stochastic Finite State Transducers technique (Casacuberta and Vidal, 2007).

1.3.1 IMT using word graphs

Word graphs (Ueffing et al., 2002) have been successfully applied for a long time in other
natural language processing fields, such as speech recognition (Ortmanns et al., 1997) and
natural language generation (Knight and Hatzivassiloglou, 1995). A word graph is a weighted
directed acyclic graph, composed out of nodes and edges. Each node represents one or more
partial translation hypotheses (see Figure 1.4). In this case, we say one or more because
different hypotheses may be grouped into a same node if they share the same coverage vector
κx and the same completion options. Then, the edges connectingnodes represent transitions
between such nodes, and are labelled each with one word of thetarget sentence,yi, and
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κx: - κx : ∗

y: hello
p: 0.6

y: good morning
p: 0.4

κx: - κx : ∗

y: hello
p: 0.6

y: good
p: 0.4

y: morning
p: 1

Figure 1.8: Example of conversion of a phrase graph (left) into a word graph (right).

weighted by a score assigned by the translation model, whichevaluates how likely it is to
emit wordyi after having already emitted the current partial translation hypothesis. In (Och,
2003), the use of a word graph is proposed as interface between an alignment-template SMT
model and the IMT engine. Analogously, in this thesis, a wordgraph built during the search
procedure performed on a PB SMT model will be used.

During the search process performed by the beam search algorithm (Section 1.2.1), it
is possible to create aphrase graph. In such a graph, each node represents a state of the
SMT model, and each edge a weighted transition between states labelled with a sequence
of target words. Whenever a hypothesis is expanded, a new edge connecting the state of
that hypothesis with the state of the extended hypothesis isadded. The new edge is labelled
with the sequence of target words that has been incorporatedto the extended hypothesis and
is weighted appropriately by means of the score given by the SMT model. Once the phrase
graph is generated, it can be easily converted into a word graph by the introduction of artificial
states for the words that compose the target phrases associated to the edges. Figure 1.8
illustrates an example of this procedure.

During the process of IMT for a given source sentence, the system makes use of the word
graph generated for that sentence in order to complete the prefixes accepted by the human
translator. Specifically, the system finds the best path in the word graph associated with a
given prefix so that it is able to complete the target sentence, being capable of providing
several completion suggestions for each prefix.

A common problem in IMT arises when the user sets a prefix whichcannot be found
in the word graph, since in such a situation the system is unable to find a path through the
word graph and provide an appropriate suffix. The common procedure to face this problem
is to perform a tolerant search in the word graph. This tolerant search uses the well known
concept of Levenstein distance in order to obtain the most similar string for the given prefix
(see (Ortiz-Martínez, 2011) for more details).

1.3.2 IMT evaluation metrics

As explained in Section 1.2.2, automatic evaluation of results is a difficult problem in MT. In
fact, it has evolved to a research field with own identity. This is due to the fact that, given an
input sentence, a large amount of correctand different output sentences may exist. Hence,
there is no sentence which can be considered ground truth, asis the case in speech or text
recognition. By extension, this problem is also applicableto IMT.
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The two metrics most commonly used in IMT are:

WSR Word Stroke Ratio: This metric is computed as the quotient between the number of
word-strokes a user would need to perform in order to achievethe translation he has
in mind and the total number of words in the sentence (Barrachina et al., 2009). In
this context, a word-stroke is interpreted as a single action, in which the user types a
complete word, and is assumed to have constant cost. Moreover, each word-stroke also
takes into account the cost incurred by the user when readingthe new suffix provided
by the system.

KSR Key Stroke Ratio: Similarly as for WSR, KSR measures the total number of key-strokes
a user would need to perform before validating the final translation, divided by the
total number of characters present in the sentence (Barrachina et al., 2009). KSR is
clearly an optimistic measure, since in the scenario proposed the system is constantly
proposing translation options after every key stroke, and the user is often overwhelmed
by receiving a great amount of information. However, since the time taken by the user
to read all those hypothesis is not considered, KSR may not bemeasuring the user’s
effort accurately. For these reasons, in the present thesiswe favour the use of WSR,
instead of KSR.

1.4 Main bilingual corpora

Given that SMT needs huge bilingual sentence-aligned corpora for training the statistical
models that lie at the ground of the SMT system, this technology benefited greatly from
the existence of multinational organisations, such as the Canadian Parliament, the European
Parliament, or the United Nations, which need to translate the proceedings of their meetings
into all the languages which are official within the core of such organisations. One of the first
real-sized corpora that appeared was the Canadian Hansardscorpus, which was the corpus
used in the original works that established the fundamentals of SMT (Brown et al., 1993).

Since then, many corpora have been developed and gathered, some of them being smaller
but more task-specific than the Canadian Hansards corpus, but other corpora preserving gen-
eral domain have become very large, nourished by the increasing number of multinational
organisations which translate their documentation into different languages.

The most important corpus used throughout the present work is the Europarl cor-
pus (Koehn, 2005). This corpus is built from the transcription of European Parliament
speeches published on the web. The data was collected in the 11 official languages of the
European Union, in the period comprised between 1996 and 2010. It was obtained by crawl-
ing the web, then it was aligned at the document level and split into sentences, normalised,
tokenised and aligned at the sentence level. This corpus hasfound a very widespread use in
the SMT community, and has been used for numerous SMT evaluation campaigns (Callison-
Burch et al., 2011; Paul et al., 2010). One main advantage of the Europarl corpus when
compared with other similar-sized corpora is that the Europarl corpus can be downloaded for
free. Given that this corpus increases in size year after year because of its nature, some of
the experiments conducted during the time taken to elaborate this thesis were conducted on
the second version of the corpus, while others were conducted on the third version, after such
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De En Es En Fr En
Sentences 751k 731k 688k

WMT07 Running words 15.3M 16.1M 15.7M 15.2M 15.6M 13.8M
training Average length 20.3 21.4 21.5 20.8 22.7 20.1

Vocabulary size 195k 66k 103k 64k 80k 62k
Sentences 1219k 1272k 1251k

WMT10 Running words 24.9M 26.1M 27.5M 26.6M 28.1M 25.6M
training Average length 20.4 21.4 21.6 20.9 22.5 20.5

Vocabulary size 255k 82k 126k 83k 101k 81k

Devel.

Sentences 2000 2000 2000
Running words 55k 59k 61k 59k 67k 59k
Average length 27.6 29.3 30.3 29.3 33.6 29.3
OoV wrt WMT07 432 125 208 127 144 138
OoV wrt WMT10 348 103 164 99 99 104

Devtest

Sentences 2000 2000 2000
Running words 54k 58k 60k 58k 66k 58k
Average length 27.1 29.0 30.2 29.0 33.1 29.3
OoV wrt WMT07 377 127 207 125 139 133
OoV wrt WMT10 310 111 172 112 114 112

Test

Sentences 3064 3064 3064
Running words 82k 85k 92k 85k 101k 85k
Average length 26.9 27.8 29.9 27.8 32.9 27.8
OoV wrt WMT07 1020 488 470 502 536 519
OoV wrt WMT10 825 404 383 419 424 415

Table 1.1: Characteristics of Europarl for each of the sub-corpora. OoV stands for “Out
of Vocabulary” words with respect to (wrt) the specified training corpus. Devel. stands
for Development, k for thousands of elements and M for millions of elements.

version was released, with the purpose of providing state-of-the-art quality results. In order
to make the results reported in the present thesis comparable with other results reported in
other works, standard partitions of the corpus will be used.Such partitions are the ones es-
tablished in the 2007 Workshop on Statistical Machine Translation (WMT) (Callison-Burch
et al., 2007) of the Association for Computational Linguistics in the case of the version 2 of
the Europarl corpus, and the partition established for the 2010 WMT (Callison-Burch et al.,
2010) in the case of version 3. Statistics for the language pairs used in the present work
are provided in Table 1.1. TheDevtest partition is the test set that was provided for the
2007 WMT for internal evaluation purposes, andTest partition is the set used for the fi-
nal evaluation. At this point, it is important to point out that theTest partition included
a surpriseout-of-domain subset, which is the reason why the number of out-of-vocabulary
words is so high for that specific set. The out-of-domain subset was extracted from the News-
Commentary corpus (see next paragraph).
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De En Es En Fr En

Training

Sentences 86.9k 80.9k 67.6k
Running words 1.8M 1.8M 1.8M 1.6M 1.6M 1.4M
Average length 21.2 20.7 22.5 20.1 23.1 20.0
Vocabulary size 86.7k 40.8k 53.5k 38.8k 43.3k 35.6k

NC 08

Sentences 2051 2051 2051
Running words 47.2k 49.8k 52.6k 49.8k 55.4k 49.8k
Average length 23.0 24.3 25.7 24.3 27.0 24.3
OoV wrt training 2941 1445 1781 1493 1736 1593
OoV wrt WMT10 2015 962 1028 955 998 961

NC 09

Sentences 2525 2525 2525
Running words 62.7k 65.6k 68.1k 65.6k 72.6k 65.6k
Average length 24.8 26.0 27.0 26.0 28.7 26.0
OoV wrt training 3629 1853 2467 1916 2478 2035
OoV wrt WMT10 2410 1247 1357 1229 1446 1247

NC 10

Sentences 2489 2489 2489
Running words 61.3k 61.9k 65.5k 61.9k 70.5k 61.9k
Average length 24.6 24.9 26.3 24.9 28.3 24.9
OoV wrt training 4056 1923 2404 2004 2312 2081
OoV wrt WMT10 2834 1349 1394 1327 1375 1353

Table 1.2: Characteristics of the three News-Commentary test sets that will be used.
Training refers to the News-Commentary training set. OoV stands for “Out of
Vocabulary” words with respect to (wrt) the specified training corpus. NC stands for
News-Commentary, k for thousands of elements and M for millions of elements.

Another corpus that will be used in several chapters is the News-Commentary corpusa.
This corpus was obtained from different news feeds and was used as test set for the WMT in
all its editions after year 2007. For this reason, results ondifferent test sets will be reported,
although standard partitions will always be respected. This corpus will be used mainly for
test purposes, but the training partition of the corpus willalso be used. Characteristics are
provided in Table 1.2.

In addition, other smaller corpora will also be used for the purpose of evaluating the
techniques described in some specific chapters. Given that these corpora will only be used in
isolated occasions, their description will be given in thatspecific chapter.

1.5 Toolkits

For conducting the experiments reported in this thesis, several different NLP toolkits have
been used, with the purpose of focusing on the main ideas which motivate this thesis. These
toolkits are, mainly, the two SMT toolkits Moses and Thot, the word-alignment toolkit

aavailable from http://www.statmt.org/wmt11
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GIZA++ and the language modelling toolkit SRILM.

Moses SMT toolkit

Moses (Koehn et al., 2007) is an open source SMT toolkit, licensed under the LGPL license,
which includes a large amount of tools for training and optimisation of PB SMT systems, as
well as a decoder for translating source texts by means of themodels built. Recent versions
of Moses also include a tree-based SMT system, although in this thesis only the PB SMT
system will be used. The most standard setup provides all thefeature functions described in
Section 1.2.1, including the lexicalised re-ordering model described. Unless stated otherwise,
this will be the standard setup used throughout this thesis for establishing the experimental
baselines for assessing the techniques proposed.

Thot SMT toolkit

Thot (Ortiz-Martínez et al., 2005) is also a toolkit to trainPB SMT models and is licensed
under the GPL license. As GPL software, Thot only includes software to train SMT mod-
els. However, since Thot has been developed at the Universitat Politècnica de València, the
present work benefited of internal versions which also include a decoder and a phrase aligner.
In contrast with Moses, however, Thot does not include lexicalised re-ordering models, and
re-ordering is limited to the an exponential function on thedistance. Nevertheless, although
lexicalised re-ordering models have evolved to become a standard when translating between
European languages, the benefit in translation quality introduced is scarce, which means that
results achieved by means of Thot are very near to the state ofthe art.

GIZA++ word-alignment toolkit

GIZA++ (Och and Ney, 2003) is a SMT toolkit that implements training and search for IBM
models 1-5 and HMM. It also includes other tools which becomehandy when working in
SMT, such as a tool to generate word classes or a tool to transform a corpus made out of
strings into a numeric format. Since GIZA++ is used to build the word-alignments which are
the key step when inferring a phrase-table, GIZA++ is used byboth Moses and Thot.

SRI Language Modelling toolkit

SRILM (Stolcke, 2002) is a toolkit for building and applyingstatistical LMs, and is currently
under development since 1995 by the Stanford Research Institute (SRI) Speech Technology
and Research Laboratory. It also underwent important changes within the John Hopkins Uni-
versity/CLSP summer workshops in 1995, 1996, 1997, and 2002. Although SRILM includes
a set of executable programs and scripts for performing the most standard tasks when mod-
elling language, it also provides a wide range of libraries which can be used independently
of the binaries.
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CHAPTER2
Speeding up decoding in statistical

machine translation

Pour examiner la vérité, il est besoin, une fois dans sa vie, de mettre toutes choses en doute
autant qu’il se peut.

René Descartes
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Chapter 2. Speeding up decoding in statistical machine translation

– Bonjour, dit le petit prince.
– Bonjour, dit le marchand.
C’était un marchand de pilules perfectionées qui apaisent la soif. On en avale une par

semaine et l’on n’éprouve plus le besoin de boire.
– Pourquoi vends-tu ça? dit le petit prince.
– C’est un grosse économie de temps, dit le marchand. Les experts ont fait des calculs.

On épargne cinquante-trois minutes par semaine.
– Et que fait-on de ces cinquante-trois minutes?
– On en fait ce que l’on veut...
« Moi, se dit le petit prince, si j’avais cinquante-trois minutes à dépenser, je marcherais

tout doucement vers une fontaine... »

Le Petit Prince. Antoine de Saint-Exupéry.

– Hello, said the little prince.
– Hello, said the merchant.
He was a merchant for the ultimate pills that quench thirst. Are swallowed by a weeks

and we feel no need to drink.
– Why are you selling? said the little prince.
– It’s a big savings in time, said the merchant. The experts have calculated.
We save fifty-three minutes a week.
– And what about those fifty-three minutes?
– We do what we want...
"I, said the little prince, if I had fifty-three minutes to spend, I would walk slowly into a

fountain... "

The Little Prince. Google Translate.
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2.1. Introduction

2.1 Introduction

Nowadays, the key step of the process of statistical machinetranslation (SMT) involves in-
ferring a large table of phrase pairs that are translations of each other from a large corpus of
aligned sentences. The set of all phrase pairs, together with estimates of conditional proba-
bilities and other useful features, is included into the phrase-table. Such phrases are applied
during the decoding process, combining their target sides to form the final translation.

A variety of algorithms to extract phrase pairs has been proposed (Marcu and Wong,
2002; Och and Ney, 2000, 2003; Ortiz-Martínez et al., 2008; Vogel, 2005; Zens et al., 2002).
Typically, these algorithms heuristically collect a highly redundant set of phrases from each
training sentence pair generating phrase-tables with a huge number of elements.

This bulk comes at a cost. Large phrase-tables lead to large data structures that require
more resources and more time to process. More importantly, the large computational cost that
such complex structures entail often implies that SMT systems are not able to yield real-time
translation speed, which is crucial for the wide-spread implementation of PB IMT systems
within modern CAT systems. Typical SMT systems will take several seconds to translate a
certain input sentence, depending on the length of the sentence to be translated, but also on the
amount of bilingual data made available at training time: the more training data, the larger
the phrase-table that is estimated. In addition, effort spent in handling large tables could
likely be more usefully employed in more features or more sophisticated search processes.
Finally, this is also the main restriction for the widespread application of SMT techniques in
small portable devices like cell phones, PDAs or hand-held game consoles; one can imagine
many scenarios that could benefit from a lightweight translation device: tourism, medicine,
military, etc.

In this chapter, it is shown that it is possible to prune the phrase-table by removing those
phrase pairs that have little influence on the final translation performance. The present ap-
proach consists in selecting only those phrase pairs extracted from the most probable segmen-
tation of the training sentences, which are the ones that arelikely to be used during decoding
time.

The technique presented here has several advantages. In thefirst place, it does not depend
on the actual algorithm used to extract the phrase pairs, andtherefore it can be applied to
every imaginable method that assigns probabilities to phrase pairs. In addition, it provides a
straightforward method for pruning the phrase-tables, without the need of adjusting any addi-
tional parameter. Moreover, it does not significantly affect translation quality, as measured by
BLEU or TER scores, while very substantial savings in terms of computational requirements
are reported.

The rest of the chapter is organised as follows. Section 2.2 reviews previously published
techniques to prune the phrase-table. Section 2.3 reviews the bilingual segmentation problem
in order to present our technique to filter the phrase-table.A solution taking into account
both source and target sentence information is provided in Section 2.4. Then, a source-
driven solution for that same problem is, in turn, provided in Section 2.5. This source-driven
solution is revised in Section 2.6, by focusing more on the problem confronted, leading to
a novel formula for the estimation of phrase-pairs within the phrase-table. Experiments are
presented in Section 2.7, and the conclusions drawn from them are presented in Section 2.8.
Future work yet to be done is also presented in this last section.
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2.2 Related work

Most phrase-based decoders already include several built-in thresholds in order to prune the
size of phrase-tables estimated from training corpora (Koehn et al., 2007; Ortiz-Martínez
et al., 2005). They are usually related either to absolute scores of phrase pairs in the phrase-
table or to relative scores between the phrase pairs sharingtheir source phrase.

Apart from phrase-table threshold pruning techniques, which are usually employed in
SMT, different complementary methods in order to reduce even more the size of phrase-
tables have been explored within the last years. For instance, (Johnson et al., 2007) propose
to use significance testing in order to select only those phrase pairs which are the most co-
occurring ones in the training corpus. In their experiments, they show that they are able
to reduce the phrase-table in about90% without any loss in translation quality. However,
they also report that such percentage seems to decrease withlarger corpora, since in larger
corpora the amount of phrases with high frequency counts increases. In this chapter, we
present a phrase-table pruning technique which is able to reduce the phrase-table in about
97%. Even though the experimental conditions are different, weconsider the difference in
reduction and in methodology to be significant. However, future work will involve a more
close comparison between the technique presented in (Johnson et al., 2007) and the methods
presented in the current chapter.

Another work approaching this problem, inspired by the optimal brain damage algorithm,
relies on the idea of usage statistics. For this purpose, (Eck et al., 2007) suggest to translate
a large amount of in-domain data with the current SMT model and keep only those phrase
pairs that were frequently used for the final translation, oralternatively considered during
the decoding process. They report that they are able to pruneabout50% of the phrase-table
without any loss in translation quality. The work presentedin the current chapter resembles
to the work by (Eck et al., 2007) in that the techniques presented here also rely on analysing
how likely a certain phrase pair will be used during the translation phase. However, the tech-
niques presented here do not require additional data, but focus on which phrase pairs would
be used for generating the current training corpus, in a Viterbi-style training. Furthermore,
experimental results show that the techniques presented here are able to yield even larger
reductions in phrase-table size.

The work presented in this chapter also relies heavily on theidea of bilingual segmenta-
tion. Similarly, (Wuebker et al., 2010) propose the use of a single bilingual segmentation in
order to re-estimate translation probabilities by leaving-one-out. As a side effect, the amount
of model parameters is also reduced. In the present work, however, the goal of reducing the
size of phrase-tables is directly targeted, thus achievingmuch larger reductions.

2.3 Bilingual segmentation

The problem of segmenting a bilingual sentence pair in such amanner that the resulting seg-
mentation is the one that contains, without overlap, the best phrases that can be extracted
from that pair is a difficult problem. First, because of the huge number of possible segmenta-
tions that are to be considered. Second, because a measure ofoptimality must be established.
Consider the example:
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Source: La casa verde .
Target: The green house .

When considering this example, one would probably state that a good segmentation for this
bilingual pair is{{La, The}, {casa verde , green house}, {. , .}}. However, why is such a
segmentation better than{{La , The},{casa verde . , green house .}}? As humans, we could
argue with more or less convincing linguistic terms in favour of the first option, but that
does not necessarily mean that such a segmentation is the most appropriate one for SMT.
Furthermore, one could possibly think of several linguistically motivated segmentations for
this small example.

As described in Chapter 1, a variety of algorithms to extractphrase pairs for SMT have
been proposed (Marcu and Wong, 2002; Och and Ney, 2003; Tomasand Casacuberta, 2001;
Vogel, 2005). Typically, the bilingual phrases that compose phrase-tables are extracted by
using a heuristic algorithm (Zens et al., 2002). Such heuristic algorithm is driven by the
following constraint: bilingual phrases must beconsistentwith their corresponding word
alignment matrix. However, this process generates huge phrase-tables with highly redundant
phrase pairs, since a large number of possible overlapping segmentations are extracted, with
the purpose of extracting that segmentation that is useful for the SMT engine. Obviously,
such an aggressive approach is bound to be computationally costly, and decoding time greatly
suffers because of this issue.

For this reason, the main purpose of this chapter is to reducethe extremely high redun-
dancy in the amount of phrase-pairs that current state-of-the-art SMT systems contain, with
the purpose of reducing the time that a human user would be waiting actively for the output
to be produced. For doing this, we first examine two differentmethods to obtain one single
segmentation per sentence pair. These two methods rely on the concept of bilingual segmen-
tation. Of course, extracting several overlapping segmentations from a single sentence pair
may be beneficial, provided that such segmentations are correct. However, obtaining only
the single-best segmentation proves to provide good results, as will be shown in Section 2.7.
Nevertheless, obtaining several possible segmentations is also dealt with implicitly in this
chapter, in Section 2.6, where the possibility of obtainingn-best segmentations is studied.

In SMT, the concept of phrase-based segmentation entails both the fact of dividing both
source and target sentences into phrases, as well as establishing a phrase-based alignment
between the phrases obtained. Moreover, such segmentationentails the use of a certain set
of bilingual phrasesκ, which are the ones that the decoding algorithm would use to translate
a certain input sentencex so as to produce a certain output sentencey. We will denote the
(ordered) set of phrases used for translatingx into y by κ(x,y), whereκ(x,y) ⊂ B(x) ×
B(y), with B(x) andB(y) being the sets of all possible sequences of consecutive words (see
Section 1.2.1), ofx andy, respectively. In addition, the ordered pairs contained inκ(x,y)
have to include all the words of both the source and target sentences, without overlap. Then,
the problem of finding the best segmentationκ̂(x,y) (or Viterbi segmentation) betweenx
andy can be stated formally as

κ̂(x,y) = argmax
κ

p(κ | x,y) (2.1)
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Operating with this last equation, one easily reach the following, equivalent formulation:

κ̂(x,y) = argmax
κ

p(κ | x,y)

= argmax
κ

p(κ,y | x)

p(y | x)

= argmax
κ

p(κ,y | x) (2.2)

In addition, it is also possible to reach the last equation bystarting from Equation 1.3,
describing the typical search process in SMT, which would yield the segmentation̂κ(x,y) as
a by-product:

ŷ = argmax
y

p(y | x)

= argmax
y

∑

κ

p(κ,y | x) (2.3)

≈ argmax
y

max
κ

p(κ,y | x) (2.4)

Then, considering the output sentence fixed leads to the sameformula as the one presented
in Equation 2.2. At this point, three different options for the output sentencey could be
considered: the first one, the most obvious one, would be to consider the reference present
in the training data,yτ , leading toκ̂(x,yτ ). Alternatively, one could also considerŷ, either
the one that would be obtained from Equation 2.3 or the one that would be obtained from
Equation 2.4, if both do not match, leading toκ̂(x, ŷ). Hence, one would suggest that we can
perform a search process using a regular SMT system which filters its phrase-table to obtain
those translations ofx that are compatible withyτ or ŷ. Unfortunately, such problem cannot
be easily solved, since standard estimation tools such as Thot (Ortiz-Martínez et al., 2005)
and Moses (Koehn et al., 2007) do not guarantee complete coverage of sentence pairs seen
in training due to the large number of heuristic decisions involved in the estimation process,
as described in Section 1.2.1. This means that it is often thecase that the SMT system is
not able to produce the correct output sentenceyτ . In this chapter, two different solutions to
this problem are proposed. The first one pursues the goal of obtaining atrue phrase-based
segmentation betweenx andyτ , whereas the second one focuses on the primary goal of this
work, i.e. reducing the amount of bilingual phrases derivedfrom each sentence pair, leading
to asource-drivenbilingual segmentation betweenx andŷ.

2.4 True bilingual segmentation

As described in the previous section, coverage problems inherent to state-of-the-art SMT
systems imply that it is often impossible to obtain the Viterbi segmentation of a given sentence
pair. For this reason, a possible way of overcoming such coverage problems is proposed
in (Ortiz-Martínez et al., 2008). In their work, the main idea is to consider every source
phrase of̃x as a possible translation of every target phrase ofỹ. For this purpose, two main
things are needed: first, a general mechanism to assign probabilities to phrase pairs is needed,
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regardless if they are contained in the phrase-table or not,and second, a search algorithm that
enables efficient exploration of the set of possible phrase segmentations for a sentence pair.

Such mechanism can be implemented by means of the application of smoothing tech-
niques over the phrase-table. As shown in (Foster et al., 2006), well-known language model
smoothing techniques can be imported into the PB translation framework, and these can also
be applied to obtain a phrase-level segmentation. According to (Ortiz-Martínez et al., 2008),
the best smoothing techniques combine a maximum likelihoodphrase-based model statistical
estimator with a lexical distribution by means of linear interpolation or backing-off. The lexi-
cal distribution uses an IBM 1 alignment model (Brown et al.,1993) that allows to decompose
phrase-to-phrase translation probabilities into word-to-word translation probabilities. In the
experiments presented here, a phrase-based statistical estimator has been combined with a
lexical distribution by means of linear interpolation. In addition, (Ortiz-Martínez et al., 2008)
also proposes the use of a log-linear model to control different aspects of the segmentation,
such as the number of phrases in which the sentences are divided, the length of the source
and the target phrases, the re-orderings and so on. This strategy has also been adopted in the
present work. Hence, Equation 2.1 can be rewritten as:

κ̂(x,yτ ) = argmax
κ

p(κ,yτ | x) (2.5)

wherep(yτ ,κ | x) is given, in this case, by smoothed phrase-based model described above.

Although it might seem that Equation 2.5 matches exactly thedecoding problem in SMT,
this is not so, since the maximisation takes place only over the segmentation, and is subject
to the constraint thaty is the actual reference sentence given,yτ . Hence, the typical PB SMT
model needs to be smoothed, and the search space is altered.

Once the scoring function for phrase pairs has been defined, asearch algorithm to find
the bilingual segmentations is required. For this purpose,a search strategy based on the well-
knownstack-decodingalgorithm (Jelinek, 1969) can be used. The stack-decoding algorithm
for SMT attempts to iterativelyexpandpartial solutions, called hypotheses, until a complete
translation is found. The expanded hypotheses are stored into a stack data structure which al-
lows the efficient exploration of the search space. Since thenumber of possible alignments for
a given sentence pair may become huge, it is necessary to apply heuristic prunings in order to
reduce the search space. The stack-decoding algorithm for SMT cannot be directly applied to
bilingual segmentation without certain modifications. Specifically, the stack-decoding algo-
rithm for bilingual segmentation executes a modified expansion algorithm that guarantees the
efficient exploration of the set of possible bilingual segmentations for a sentence pair. Such
heuristic prunings include the limitation of the maximum number of hypotheses that can be
stored in the stack and also the maximum length of the target phrases that can be linked to an
unaligned source phrase when expanding a partial hypothesis (Ortiz-Martínez et al., 2008).

The bilingual segmentation procedure that has been described above allows us to compute
one true segmentation for each sentence pair. Once the segmentations for every sentence pair
have been computed, it is possible to build a phrase-table byonly taking into account those
segments that are contained in the set of true segmentations.
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2.5 Source-driven bilingual segmentation

As it has been explained in Section 2.3, computingκ̂(x,yτ ) according to a given phrase-table
is not an easy task. Specifically, a specific source-target segmentation is often impossible to
generate due to coverage problems of the phrase-based model. In the previous section it
has been shown how to compute a true phrase segmentation between two given sentences.
However, such method must bear with the constraint of havingthe output sentence fixed.
Although such restriction seems logical at training time, it should not be underestimated that
this will not be the case in translation time, and such restriction may introduce a non-intended
bias. The bilingual segmentation technique described in Section 2.4 allows to overcome
coverage problems by combining smoothing techniques with an appropriate search algorithm.
This is done at the cost of modifying the scoring function used during the search process due
to the application of smoothing techniques, and also by introducing new segment pairs. As
said in Section 1, phrase-extraction is typically done by a heuristic algorithm, which has
proved to provide appropriate bilingual segments, and altering such segments may not be a
good idea.

Since the goal is to discard unnecessary segment pairs contained in the phrase-table, an
alternative bilingual segmentation technique that obtains source-drivenbilingual segmenta-
tions is proposed, by relaxing the restriction considered in Equation 2.5, leading to

κ̂(x, ŷ) = argmax
κ

p(κ, ŷ | x) (2.6)

with ŷ being the output sentence provided by the search algorithm according to the standard
search problem in SMT:

ŷ = argmax
y

p(y | x) (2.7)

Note that, in this case,̂y may not be the true optimal output sentence according to the trans-
lation model, but only the best sentence found by the decoder, which may not match with
the true optimal output sentence due to heuristic decisions, approximations and pruning steps
performed within the decoder.

Hence, the output sentencey is allowed to be different from the true reference, and the
segmentation has been induced by taking into account only the input sentence. By using
κ̂(x, ŷ) instead of̂κ(x,yτ ), we ensure that only segments present in the current phrase-table
are used, and no new segments are introduced.

The maximisation described in Equation 2.6 is exactly the same problem as the one of
finding the best translation of a source sentence within a phrase-based system, where the seg-
mentation is obtained as a by-product. Hence, for computingκ̂ it is only necessary to translate
each source training sentence and include into the phrase-table those phrase pairs that com-
pose the output hypothesis. Certainly, translating the source sentence does not necessarily
produce the target sentence in the training pair, but on the other hand no artificial bilingual
segments will be introduced into the phrase-table. In addition, as shown in Section 2.7, ex-
periments show that this approach might be good enough to prune the phrase-table without a
significant loss in translation quality.
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2.6 Phrase-table pruning and parameter re-estimation

In this section, the source-driven segmentation is generalised. However, to understand the
idea behind this generalisation it is key to forget about thebilingual segmentation concept,
and consider the source-driven segmentation technique as afull parameter re-estimation
method, in which the probability of the phrase pairs is re-computed as the expected num-
ber of times that such phrase would be used in translation time. In addition, such probability
may also be re-estimated according to the expected quality of the translation generated using
that specific phrase pair. To this end, it must be noted that, on the one hand, only parameters
(i.e. phrase pairs) that previously had a score greater thanzero may yield a score greater than
zero after the re-estimation (i.e. no new phrase pairs may appear during the source-driven re-
estimation process). On the other hand, phrase pairs which had a score greater than zero may
now yield zero score if such phrase pair is never used during the source-driven segmentation,
which is the key towards phrase-table pruning.

To state the problem more formally, letT be a set of training data andM a SMT model
estimated onT . Then the re-estimation technique works as follows:

1. Obtain a set of good translationsG(x) for each source sentencex ∈ T using SMT
modelM.

2. Extract the set of phrase pairs used to generate all translationsy ∈ G(x), ∀x ∈ T ,
using the phrase alignments provided byM.

3. Score each phrase pair according to the number of times such phrase pair has been
used.

Here,G(x) is defined following two criteria: on the one hand, translations inG(x) are
selected according to the score assigned by SMT modelM; on the other hand, in training
time we do have the reference translationyτ , and hence setG(x) can be chosen according to
a translation quality metricµ(yτ ,y).

Having definedG(x) and after obtaining the set of phrases used when generatingG(x),
the probability of each phrase pair(ỹ, x̃) is re-estimated according to the number of times it
was used, weighted by the quality of the hypothesis it appeared in. Hence, segments likely to
be used often and within good quality translations obtain higher probability. Formally:

p(ỹ|x̃) ≈

∑

x∈T

∑

y∈G(x)

c(x̃, ỹ|x,y) · q(y)

∑

ỹ′

∑

x∈T

∑

y∈G(x)

c(x̃, ỹ′|x,y) · q(y)
(2.8)

wherec(x̃, ỹ|x,y) is the total number of times that phrase pair(x̃, ỹ) is used when translating
source sentencex into hypothesisy, andq(y) is a weighting factor which accounts for how
good doesx translate intoy. Three different approaches are analysed:

1. q(y) = 1: assume that the probability of a phrase pair does not dependon the quality
of the hypothesis it has appeared in. This is the standard approach to score segments in
state-of-the-art SMT systems (Zens et al., 2002).
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2. q(y) = p(y|x): assign each phrase pair a weight given by the likelihood of translating
x into y according to SMT modelM .

3. q(y) = µ(y,yτ ): assign each phrase pair a weight given by quality metricµ(·, ·).
Since we are generatingG(y) with M , the translations provided may differ from the
reference translationy, which is given in training time. Hence, we can assess the
real quality of hypothesisy. This implies that a given phrase pair will be weighted
according to the expected quality of the sentence it appearsin.

Although Equation 2.8 implies a re-estimation of the translation parameters, it must be
noted that it also implies an aggressive pruning in the amount of parameters present in the
translation model, i.e. the number of phrases in the phrase-table: since the estimation of
p(ỹ|x̃) is based on a setG(x) of good translations ofx, only those phrases present in such
translations will be assigned a probability greater than zero, and the rest will be pruned out.
Although it might seem that a smoothing step is needed, the goal is actually to prune those
phrase pairs that do not seem to be useful, and experimental results show that, in fact, such
smoothing is not necessary. In this way, a phrase-table containing only those segments likely
to be used in translation time is obtained. Note, however, that the smoothing mentioned here
implies smoothing the probabilities of existing phrase pairs, and its effects are completely
different from those introduced by smoothing in the case of the true segmentation strategy.

2.7 Experimental results

Experiments on this subject will be conducted by means of theThot and Moses toolkits.
On the one hand, the experiments concerning both bilingual segmentation techniques will be
conducted by means of Thot, since this toolkit includes a tool for segmenting both input and
output sentences following the true segmentation strategy. Hence, for comparison reasons,
the source-driven technique will also be performed by meansof the Thot toolkit. On the
other hand, once these experiments were performed and the potential of both techniques
was established, the generalisation of the source-driven technique, described in Section 2.3,
is analysed by using the more state-of-the-art toolkit Moses, with the purpose of providing
results which could be comparable with those provided in recent SMT evaluation campaigns.
The corpora used will be the Europarl corpus (see Section 1.4).

2.7.1 Bilingual segmentation experiments

Experiments for assessing the effectiveness of the source-driven and true bilingual segmenta-
tion techniques were performed by means of the Thot toolkit (see Section 1.5), in its default
monotonic setup. Results for the source-driven segmentation strategy are shown in Table 2.1.
In addition to the typical BLEU and TER scores, and since the main purpose is to measure
computational efficiency,speedup(Sp) and phrase-table size are also provided. On the one
hand, speedup is defined as

Sp = Tb/Tr (2.9)

whereTb is the time taken by the baseline system andTr is the time taken by the system
with the reduced phrase-table. On the other hand, phrase-table size is presented in millions
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Baseline Source-driven
Pair BLEU TER size w/s BLEU TER size w/s size red. Sp

Es–En 28.2 56.0 5.0 93 27.5 56.2 0.05 1500 99.0% 16
En–Es 27.6 56.6 5.1 76 27.2 56.6 0.12 700 97.6% 9
De–En 21.6 64.8 4.2 100 21.1 64.8 0.06 1500 98.6% 15
En–De 15.2 70.9 5.5 46 15.1 70.2 0.14 400 97.5% 9

Table 2.1: Translation quality, number of model parameters measured in terms of mil-
lions of phrase pairs, number of translated words per secondand speedup (Sp) ob-
tained when using a PB translation system for the source-driven segmentation tech-
nique. Monotonic search was considered. PB model size is given in millions of phrase-
pairs.

of phrase-pairs, measured after filtering the phrase-tableaccording to the current test set,
as is typically done when the test set is available beforehand because loading the complete
phrase-table without any kind of filtering is usually unfeasible even with modern machines.

Since these experiments are somewhat older, they were conducted on the Europarl corpus,
in the partition established for the WMT07 Workshop (see Section 1.4). The development set
was used for estimating the weightsλ of the log-linear combination and the test set was used
for evaluation purposes. Note that, since theTestset was used, and not theDevtestset, the
evaluation data contains an out-of-domain subset, which implies that the problem of reducing
the phrase-table is even more challenging because the proposed techniques need to avoid the
possible over-fitting that such reduction could entail.

Results for the source-driven segmentation technique can be seen in Table 2.2. As shown,
translation quality is not significantly affected by the reduction of the size of the phrase-
table proposed. On the one hand BLEU scores are slightly lower than those of the baseline
system, although confidence tests conducted by means ofTest-specificbootstrap re-sampling
(see Section 1.2.2) showed that these differences are not statistically significant. On the other
hand, TER scores seem to remain completely unaltered, even though a very slight variation
can be observed (0.2 worse for Es–En,0.7 better for En–De).

As for the number of parameters of the models used, it can be seen that such number is
reduced in two orders of magnitude, i.e. the number of parameters remaining in the phrase-
table after applying the source-driven technique is only around 2% the original number of
parameters. Moreover, translation speed is increased by a factor between 9 and 16, all this
without a significant loss in translation quality. In addition, given that the resulting phrase-
table is much smaller, it would be possible to fit the completephrase-table (i.e. without
test-specific filtering) into memory, which implies that theSMT system could be set online
for translation without the need of knowing the test set in advance or using phrase-table
binarisation techniques.

Results for the true segmentation strategy are shown in Table 2.2. As opposed to source-
driven segmentation, translation quality does drop significantly (although not consistently)
with respect to the baseline, ranging from0.5 to 4.4 BLEU points and from0.2 to 5.1 TER
points. In addition, the reduction in size is slightly smaller than in the case of the source-
driven segmentation, and it also seems that the segments kept introduce quite some ambiguity,
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since speedup is significantly lower than in the former case.
One key difference between the two proposed techniques consists in the degree of sim-

ilarity of the pruned phrase-tables obtained by the techniques with respect to the original
phrase-table. Although the true bilingual segmentation allows to obtain a complete segmen-
tation of the source and target sentences, this comes at the cost of introducing smoothing
techniques. Hence, the resulting segmentations contain phrase pairs that are not present in
the original phrase-table. In the experiments carried out,the pruned phrase-tables generated
by the true bilingual segmentation contained a relatively high number of phrase pairs that
were not present in the original phrase-tables, ranging from 10% to 50% depending on the
language pair. In contrast, the source-driven bilingual segmentation, since it merely consists
in translating the source sentence, always generates a pruned phrase-table that is a true sub-
set of the original phrase-table. This suggests that the true segmentation technique not only
prunes the original phrase-table, but also has an importantrole in the estimation of new model
parameters, which could be the reason for the degradation ofthe translation quality.

Baseline True
Pair BLEU TER size w/s BLEU TER size w/s size red. Sp

Es–En 28.2 56.0 5.0 93 23.8 60.8 0.07 380 98.6% 4
En–Es 27.6 56.6 5.1 76 24.7 60.1 0.16 250 96.9% 3
De–En 21.6 64.8 4.2 100 17.5 69.9 0.22 280 94.8% 3
En–De 15.2 70.9 5.5 46 14.7 71.1 0.31 170 94.4% 4

Table 2.2: Translation quality, number of model parameters, number oftranslated
words per second and speedup (Sp) obtained when using a PB translation system for
the true segmentation technique. Monotonic search was considered. PB model size is
given in millions of phrase-pairs.

2.7.2 Parameter re-estimation experiments

Once it was established that the source-driven segmentation technique works properly for
pruning the phrase-table, such technique was considered asa pure parameter re-estimation
method, as described in Section 2.6. In this case, the Moses toolkit was used for the exper-
iments, with the purpose of providing state-of-the-art results that could be compared with
those presented in recent SMT evaluation campaigns and since the comparison between the
source-driven and true segmentation techniques has already been established. In addition, the
more recent version of the Europarl corpus was used, i.e. thepartition of the corpus estab-
lished in the WMT10 Workshop (Section 1.4). The test set usedfor evaluation purposes was,
as in the previous section, theTestsubset (see Section 1.4).

As for theG(·) andq(·) functions described, three settings are analysed:

1. q(y) = 1 andG(x) chosen according to the order in then-best list provided by the
SMT model. This approach is equivalent to the original source-driven segmentation
strategy, when using only the first-best hypothesis. This setting will be referred to by
flat.
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Figure 2.1: Amount of phrases present in the reduced system, given as % with respect
to the original system.
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Figure 2.2: Decoder speed for original and filtered systems.

2. q(y) = p(y|x) andG(x) chosen as above. This setting will be referred to byModScore.

3. q(y) = µ(y,yτ ) andG(x) chosen according to the order defined by quality metric
µ(·, ·). This setting will be referred to byQScore.

The effect of applying the different settings described above was studied. The amount of
phrases present in the phrase-table for each of the settingsdescribed is shown in Figure 2.1.
The method implemented achieves a reduction of about 97% in the amount of phrases present
in the phrase-table, without a significant loss in translation quality, yielding a SMT system
that is able to fit into portable devices: when considering only the first-best hypothesis, the
size of the phrase-table that the decoder had to load into memory was only about 14MB, and
about 35MB when including 50 hypotheses intoG(x), versus 450MB for the original system.
Although these sizes were measured after filtering the phrase-table according to the test set,
as is usually done in SMT, similar conclusions can be obtained when analysing the complete
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Figure 2.3: Translation quality, as measured by BLEU and TER, for the baseline system
and the pruned systems.

phrase-tables. As expected, the phrase-table size increments when considering an increasing
size ofG(x). Settingsflat andModScore present the same amount of phrases, since both
use the sameG(x). In order to study the impact of phrase-table size reduction, translation
speed was measured. As shown in Figure 2.2, the speed that thepruned system is able to
deliver increases in a very significant manner, achieving more than three times the original
speed. In this plot, it can be seen that the speed of the baseline system is much slower than
in the case of the previous subsection, in the experiments regarding the comparison between
the source-driven and true segmentation techniques. This is not because Thot is much faster
than Moses, but because in the present case lexicalised re-ordering is considered, whereas in
the previous case only monotonic decoding was taken into account. In Figure 2.1 it can also
be seen that an average sentence of 30 words, as is the case in most of the corpora considered
in the present thesis, will take less than one second to translate, even when considering re-
ordering, which is perfectly tolerable even with a human translator waiting actively for the
translation.

The effect on translation quality of the re-estimation techniques described was also stud-
ied, and translation quality results are shown in Figure 2.3. As shown, using only the first-best
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Figure 2.4: Relationship between speed/phrase-table size and the translation quality
achieved for the three different strategies analysed.

hypothesis forG(x) leads to a slight degradation in translation quality, as wasalso the case in
the experiments with the segmentation techniques. However, when including 10 hypotheses
intoG(x), this difference is already very scarce, and increasing thesize ofG(x) yields SMT
systems that are able to deliver the same translation quality as the original system, for all the
settings analysed. Another thing that can be noted is that settingQScore appears to perform
better than the other settings considered, which seems reasonable sinceG(x) takes into ac-
count the translation quality of a given sentence before including the phrases it is built of.
Although it might seem that it is able to improve the baselinein terms of translation quality
for French→English, this is not statistically significant, and such finding was not coherent in
other language pairs.

So as to illustrate the translation quality that would be expected when required a certain
speed, or when having certain memory restrictions, speed and phrase-table size are plotted
against BLEU in Figure 2.4. Although, as in the plots, there is no method that clearly per-
forms better (or worse) than the others, it does appear that theModScore setting is the one
that performs worse in terms of requirements/translation quality ratio.

However, there appears to be no significant difference between the three settings anal-
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Figure 2.5: Relative frequency for each discretized value ofp(ỹ|x̃), considering
baseline system and different sizes ofG(x) for theModScore setting (left) and the
QScore setting (right).

ysed. This can be explained by considering Figure 2.5. For plotting this figure, the direct
translation probabilityp(y|x) was rounded to have only one decimal number, and then the
relative frequency of each value was plotted. The plots corresponding to the other language
pairs studied were almost undistinguishable from the present ones (even concerning the shape
of the baseline system). Note that the y-axis is in logarithmic scale for visibility purposes.
As shown, the original system presents a relatively large number of phrase pairs with low
probabilities: for about 35% of the phrase pairs,p(y|x) < 0.4. However, in the reduced
system, less than 10% of the phrase pairs have a probability lower than 0.95. In fact, in the
case of considering only the first-best hypothesis,p(y|x) = 1 for about 84% of the phrase
pairs, versus 47% for the original system. This means two things: on the one hand, that the
actual choice forq(·) will have a limited effect, since it will only affect 16% of the phrase
pairs, although such statement does not necessarily need tohold for the selection function
G(·). On the other hand, that in most cases a certain source phrasewill be associated with a
single target phrase, and the only decisions that the decoder will need to take regard how to
segment the source sentence and then re-order target phrases. Observing Figure 2.5, it could
be argued that a faster technique for phrase-table pruning could be to keep only those phrases
that havep(y|x) = 1. However, such strategy leads to a phrase-table of17% the original
size, and a BLEU score of 12, i.e. larger phrase-tables and much worse translation quality.

One last note regards average phrase length. Although it is reasonable to think that the
reduced systems will tend to keep longer phrases, this issueis mitigated by the fact that
phrase length is also a feature considered within state-of-the-art SMT systems, and its weight
is adjusted by the MERT procedure according to a given development set. In this sense, it
was observed that the pruned phrase-tables presented slightly longer phrases, although the
difference was never above14% in the experiments detailed in this section. The differencein
average phrase length seemed to depend more on the size ofG(·) than onq(·), and including
more segmentations per sentence tended to yield shorter average phrase lengths.
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Figure 2.6: WSR achieved when applying the parameter re-estimation techniques
detailed above, for French→English and Spanish→English translation. flat,
ModScore andQscore are the settings defined in the previous sub-section. Con-
fidence intervals are not shown for clarity reasons, but their size was always between
1.64 and1.90.

2.7.3 Interactive machine translation results

In addition to the experiments conducted in the SMT framework, additional experiments
were conducted with the purpose of assessing whether the parameter re-estimation technique
presented here provides equivalent results in IMT. For doing this, the PB SMT systems devel-
oped in the previous subsection were employed for producingword-graphs, and these were
then used as back-end for the IMT system. The results in termsof WSR for this experi-
mentation can be seen in Figure 2.6. As shown, when applying the parameter re-estimation
technique described in Section 2.6, the reduced systems present a lower performance than
the baseline system, as measured by WSR. However, it should be noted that this difference is
only statistically different when the size ofG(x) is smaller than20. In addition, it also seems
that theQScore setting is the one that yields the best performance comparedto the other
reduced systems. Nevertheless, even though this observation seems to be mostly true in the
experiments performed, the differences are not statistically significant.

In terms of the time required by the system to produce its output, Figure 2.7 shows two
different comparisons. The upper two plots display the total average time required by the
system to produce the final output. As shown in the plots, the baseline system is about three
times slower than the reduced systems, when setting the sizeof G(x) to 1, and about50%
slower when the size ofG(x) is set to200. At this point, it should be remembered that this
time is computed by simulating the user, i.e. by assuming that the user would want to produce
exactly the same sentence present in the reference, and alsoby assuming that interaction of
the user takes no time at all. In addition, the total time taken also depends on the number
of interactions simulated, i.e., the total number of times that a suffix had to be produced.
For this reason, the average time taken by each system to produce a suffix hypothesis was
also measured, and these are the results shown in the two bottom plots of Figure 2.7. In this
case, the reduced systems perform about three times faster than the baseline system when
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Figure 2.7: Temporal evaluation of the re-estimation techniques detailed above, for
French→English and Spanish→English translation. The two plots on the top show
how many sentences were produced per second in a user-simulated environment, while
the two plots on the bottom show the time consumed in average to produce one single
suffix-hypothesis.

|G(x)| = 1, and about twice as fast as the baseline when|G(x)| = 200. Although this plot
is more meaningful, since it shows the average time taken by the system to respond after
a given interaction of the user, there is still one aspect which makes these plots not totally
clear: when the suffix hypothesis to be produced is the whole translation, the IMT system
takes much more time than when the suffix to be produced is justsome words long. However,
the speed gains achieved by applying the pruning strategiesdescribed in the present chapter
do not seem to depend much on the length of the suffix to be produced. In the worst of the
cases, the suffix to be produced is the whole sentence, which is the same case as in the SMT
experiments. Since the speedup achieved in SMT is coarsely similar to the one achieved in
IMT on a per suffix basis, it can be concluded that the computational gain does not depend on
the length of the suffix to be produced. Nevertheless, in absolute terms, the system will take
much more time to produce longer suffices, and hence the need of pruning techniques will be
more evident.
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2.8 Conclusions and future work

In the present chapter, a technique for pruning the phrase-table is presented. Such technique
relies mainly on the concept of bilingual segmentation, although a generalisation may turn
it into a parameter re-estimation technique. The techniquepresented attempts to assess how
likely is it for a given phrase pair to be used in translation time, and discard it whenever it
is too unlikely to be used. In an attempt to promote those segments which appear in good
quality translations, the resulting phrase pairs may be weighted by the quality of the sentence
produced.

Four main conclusions are drawn. First, that it is possible to reduce the phrase-table by
97% without any significant loss in translation quality, yielding a decoding speed of about
four times faster the original speed, making it possible to use a PB SMT system in a real-
time environment where a human translator is waiting actively. Given that the translation
model obtained is much smaller, the presented technique is also adequate for integrating
SMT systems into hand-held devices without the need of sacrificing translation quality.

Second, that the true segmentation technique does not seem to be an appropriate phrase-
table reduction technique. This is most probably because the smoothing needed to compen-
sate for the coverage problems present in PB SMT systems forces the introduction of too
many new phrase pairs, which may not be the most adequate.

Third, that the amount of phrase pairs present in the phrase-table after the source-driven
segmentation technique (or the specific approaches derivedfrom its generalisation) has been
applied is already very close to the minimum set of phrases that are needed within the phrase-
table if no degradation in translation quality is desired. This is evidenced by the fact that an
important amount of the resulting phrase pairs are assignedprobability1 in the different SMT
models (i.e. feature functions) present. Hence, performing a re-estimation of the parameters
may not be able to yield positive results at all, since the resulting phrase-table is already
almost deterministic.

Lastly, experimental results concerning IMT show that the word-graphs produced by the
pruned systems are not as rich as the ones produced by the baseline system. For this reason,
a human translator would need to perform more interactions in order to correct the initial
hypothesis in the case of the pruned systems. However, such increase might be welcome
whenever the sentences to be translated are sufficiently long, with the purpose of having
the system respond in real time. In this sense, one possible extension to the present work
would be to use the pruned system only with the purpose of generating the first translation
hypothesis, and then use the word-graphs provided by the baseline systems to produce the
successive suffices, in the spirit of improving the time taken by the system only in those cases
where such time is critical.

An inmediate direction for extending the work presented here is to develop other smooth-
ing strategies for the true segmentation technique. In thissense, it is reasonable to assume
that the result achieved by the source-driven approach should constitute a sort of lower bound
for the true approach, i.e. the purpose should be to achieve with the true segmentationat least
the same results obtained with the source-driven segmentation.

Another topic which still deserves a deeper analysis is the definition ofG(·). It appears
that considering differentq(·) functions does not have an important effect on the final trans-
lation quality achieved, since the resulting phrase-tablehas a very low ambiguity. However,
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exploring further options forG(·) may still present a promising extension.
The source-driven segmentation strategy presented in thischapter was first published in

an international workshop:

• G. Sanchis-Trillesand F. Casacuberta. Increasing Translation Speed in Phrase-Based
Models via Suboptimal Segmentation. InProceedings of the 8th International Work-
shop on Pattern Recognition in Information Systems, PRIS 2008, pages 135–143, IN-
STICC Press, Barcelona (Spain), June 2008.

The source-driven segmentation strategy also lead to a publication in an international
conference, by applying it for building Finite State Transducers:

• J. González,G. Sanchis-Trillesand F. Casacuberta. Learning Finite State Transducers
Using Bilingual Phrases. InProceedings of the 9th International Conference on Intel-
ligent Text Processing and Computational Linguistics, CICLing 2008, pages 411–422,
Lecture Notes in Computer Science, Haifa (Israel), February 2008.

Finally, the comparison between both source-driven and true strategies was published in
an international conference:

• G. Sanchis-Trilles, D. Ortiz-Martínez, J. González-Rubio, J. González and F. Casacu-
berta. Bilingual segmentation for phrasetable pruning in Statistical Machine Transla-
tion. In Proceedings of the 15th Annual Conference of the European Association for
Machine Translation, EAMT 2011, pages 257–264, Leuven (Belgium), May 2011.

The experimental results achieved by generalising the source-driven segmentation strat-
egy are not yet published, although an article is being prepared for submission to an interna-
tional conference.
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CHAPTER3
Language model adaptation for statistical

machine translation

Someone will do it. We have to be that one.
Marcello Federico
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He felt faint again now but he held on the great fish all the strain that he could. I moved
him, he thought. Maybe this time I can get him pull over. Pull,hands, he thought. Hold up,
legs. Last for me, head. Last for me. You never went. This timeI’ll pull him over.

[...]
“I wish I had a stone for the knife,” the old man said after he had checked the lashing

on the oar butt. “I should have brought a stone.” You should have brought many things, he
though. But you did not bring them, old man. Now is no time to think of what you do not
have. Think of what you can do with what there is.

The Old Man and the Sea. Ernest Hemingway.

Se sentía débil ahora de nuevo, pero él llevó a cabo en el gran pez toda la tensión que
podía. Lo movía, pensó. Quizás esta vez pueda conseguir que se detuviera. Pull, las manos,
pensó. Levante las piernas. Última para mí, con la cabeza. Última para mí. Que nunca fue.
Esta vez lo voy a tirar encima.

[...]
“Me gustaría tener una piedra por el cuchillo”, dijo el anciano después de haber com-

probado los azotes en el culo remo. “Tendría que haber traídouna piedra.” Usted debería
haber traído muchas cosas, sin embargo. Sin embargo, no ha traído, viejo. Ahora no es
momento de pensar en lo que no tienen. Piense en lo que se puedehacer con lo que hay.

El viejo y el mar. Google Translate.
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3.1. Introduction

3.1 Introduction

In this chapter, the problem of language model adaptation asapplied to statistical machine
translation is examined. In this context,n-gram mixtures of language models are investigated,
which are obtained by clustering bilingual training data. Several clustering techniques are
analysed, some of them attempting to exploit existing manually-annotated information, others
researching different ways of clustering the training dataautomatically in an unsupervised
manner. Then, in translation time, the mixture weights are estimated at several degrees of
granularity, ranging from the pure sentence level to weights estimated on the complete test
set. Experimental results show that, by training differentspecific language models weighted
according to the actual input instead of using a single target language model, translation
quality improvements can be achieved, both in terms of BLEU and in terms of TER.

Hence, the purpose of this chapter is to study different waysof augmenting the LM com-
ponent of the SMT system by introducing parameters that are adapted dynamically to the
input text. With this purpose, the LM is implemented as a mixture of specialised sub-LMs,
which are conveniently estimated through some bilingual clustering of the training data and
then combined following different weighting schemes.

Most part of the work detailed in this chapter was carried outduring a 3-month internship
at theFondazione Bruno Kesslerin Trento, Italy, in collaboration with Dr. Marcello Federico
and Mauro Cettolo. The author of this thesis is very gratefulto both of them for granting him
such an opportunity.

This chapter is organised as follows. Section 3.2 briefly lists other works dealing with re-
lated issues, both regarding LM adaptation in SMT and other related fields, and also regarding
the use of mixture models for adaptation in SMT. The general framework for LM adaptation
by means ofn-gram mixtures researched in this chapter is described in Section 3.3. Sec-
tion 3.4 describes the different supervised approaches studied when dealing with the cluster-
ing problem. Then, in Section 3.5, different unsupervised clustering approaches are analysed
for the case where no manually annotated data exists. Different strategies for assigning the
n-gram mixture weights are described in Section 3.6. The experimental results obtained by
means of these procedures are described in Section 3.7, and the conclusions which can be
drawn from the present work are described in Section 3.8. This last section also describes the
future work still to be done.

3.2 Related work

One of the first approaches to adaptation in SMT was proposed by (Lagarda and Juan, 2003),
in which the translation model is implemented as an unsupervised multinomial mixture of
translation models, where each component is supposed to concentrate most of its probabil-
ity mass on a certain topic. Mixture models for adaptation were also explored in (Civera and
Juan, 2007). However, in this case the mixtures were designed for word alignment modelling.
With this purpose, the authors proposed to replace the standard word-alignments by mixtures
of the HMM alignment model. Since mixture modelling inducessoft partitions, topic spe-
cific alignments were defined by each mixture component. Although achieving interesting
improvements in terms of alignment error rate, improvements in terms of translation quality
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were more limited given the large amount of heuristics applied after the word-alignment step
in order to extract phrases.

Slightly later, (Nepveu et al., 2004) applied other adaptation techniques to interactive
MT, following the ideas in (Kuhn and Mori, 1990) and adding cache language and translation
models to their system. Following the same concept present in hardware cache memories,
the purpose of TM and LM caches is to track short-term fluctuations in word (or phrase pair)
frequency. Then, these caches are combined in a log-linear fashion with the generic LM and
TMs. Although the language model caches did produce interesting improvements in terms of
translation quality, translation model caches did not seemto provide further improvements.

Other authors followed a different approach when confronting the adaptation problem.
For instance, (Koehn and Schroeder, 2007) studied different ways to combine in-domain data
with out-of-domain data. Their experiments ranged from thesimple concatenation of all data
available to more complex combination strategies, such as establishing different translation
and language models which were combined in a log-linear fashion. In a conceptually similar
work, (Bertoldi and Federico, 2009) also explored different ways to combine in-domain and
out-of-domain data, although in this case the data added is only source language data.

Language model adaptation has been deeply explored since atleast the mid 90s in the
ambit of speech recognition (Bellagarda, 2001; Mori and Federico, 1999). Nowadays, also in
the SMT community the interest for LM adaptation is continuously growing. More specifi-
cally, there has been a recent effort towards providing the SMT system with a more adaptable
LM. For example, (Zhao et al., 2004) propose to build a query from a list of candidate trans-
lations for each source sentence. Such query is used to retrieve similar sentences from a very
large training corpus, and the sentences retrieved are usedto build specific LMs which are
then interpolated in translation time with a background LM estimated on all the data avail-
able. Finally, the source sentence is re-translated by using the interpolated LM. By doing this,
they report that they are able to provide stable, although very limited improvements over the
single-LM baseline.

Similarly, (Lü et al., 2007) propose to useterm frequency-inverse document frequency
(TF-IDF) to select similar data within the same training corpus, and then prepare specific
LMs and TMs. These specific models are then interpolated in translation time according to
different weighting schemes. As in the case of (Zhao et al., 2004), they also report minor
but stable improvements in translation quality metrics. Ina similar work, (Yamamoto and
Sumita, 2007) propose to cluster the bilingual training corpus so as to minimise the entropy of
each subset, and then train independent language and translation models from these smaller
bilingual corpora, which are in turn recombined in translation time by performing domain
prediction. Differently, in the present work the final combination of target LMs is obtained
by re-using the weights estimated by maximising the probability of generating the source
sentence by means of the linear interpolation of source sub-LMs.

3.3 General framework for language model adaptation

The key idea behind the language model adaptation techniquepresented in this chapter con-
sists in replacing the language model present in Equation 1.8, which is one of the feature
functionsh(·, ·). Specifically, such feature is typically the language modelof the output sen-
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Figure 3.1: Basic procedure for LM adaptation.

tence, i.e.
h(x,y) = log p(y) (3.1)

which provides the logarithm of the probability assigned bythe target LM to the output
sentencey. Typically, this probability is most often given by a singleword-based LM. In
this work, this formula is extended by considering that suchprobability is given by a linear
interpolation (mixture) of word-based language models, i.e.

p(y) =

M
∑

i=1

wipi(y) (3.2)

where eachpi(y) is a LM trained on sentences of the target language. However,considering
the final probabilityp(y) as a linear interpolation allows the introduction of several different
language models, which may be estimated from different subdivisions of the training data
available. With the help of Figure 3.1, the basic procedure for LM adaptation is described in
the following. Note that this procedure is thought for adapting a LMs trained on the target
side of the parallel corpus in consideration, i.e., LMs trained on other (monolingual) corpora
cannot be adapted by means of this procedure.

Let us assume that the parallel training data have been partitioned into a set ofM bilingual
clusters, according to some criterion. On each cluster, language specific LMs are estimated,
which are then organised into two language specific mixture models. All operations described
so far are performed off-line. Now let us consider a source text or sentence to be translated.
Before translation, the input is used to estimate optimal weights of the source language mix-
ture through Expectation-Maximisation. This being done, the key step is to assume that such
weights contain very valuable information about the distribution of the source language mod-
els, and this information can be passed on to the target mixture of language models by means
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of a certain mapping of the source weights to the target weights. This mapping being done,
the target language model mixture is then used as LM feature function by the SMT system.
In the present work, such mapping will be performed by directly setting the target weights
equal to the source weights. One could easily think of more sophisticated, and possibly more
appropriate, ways of performing this mapping. However, this is a research direction that still
needs to be explored.

In this chapter, two different frameworks for clustering the training data are considered.
On the one hand, it will be first assumed that manually annotated texts are readily available,
and the adaptation procedure will attempt to estimate the best weighting of these supervised
clusters. On the other hand, since manual annotations are not always available, it will also
be studied how to perform LM adaptation by means of unsupervised clustering, while still
following the procedure described in Figure 3.1.

3.4 Supervised labelled data for language model adaptation

In this section, we describe how to take advantage of supervised information present in dif-
ferent bilingual corpora for the specific purpose of language model adaptation. By exploiting
such labels, the bilingual corpus needed for training the SMT system will be divided into
several different sub-corpora, and these sub-corpora willthen be used within the adaptation
framework presented in Figure 3.1. The sub-corpora built will serve as starting point for
building adapted SMT systems as described in Section 3.3. For doing this, two different
bilingual corpora will be considered: the IWSLTa and Nespole! (Lavie et al., 2006) corpora.
For the purpose of differentiation, the termclusterwill only be employed whenever these
sub-corpora are built in a fully automated manner, whereas the termsub-corpuswill be used
in other cases.

Before pursuing with the description of the different labelled corpora employed and how
these labels will be used, a brief overview is necessary so asto keep the motivation clear.
Specifically, part of the IWSLT corpus contains translations of dialogues in a tourism domain,
and has two kinds of labels:

• Labels grouping sentences into the dialogues where such sentences were originated.
Since such dialogues are too short so as to estimate a LM, the dialogues will then
be grouped into different clusters by means of an off-the-shelf clustering algorithm,
treating each complete dialogue as a single sample for the purpose of clustering. These
clusters (of dialogues) will then serve as starting point for the adaptation procedure
described in Figure 3.1.

• Labels describing the nature of the speaker. Four differentspeaker types are considered,
giving rise to four different sub-corpora, which, again, will serve as starting point for
the adaptation procedure. No unsupervised clustering is applied in this case, since the
labels themselves already divide the corpus into four sufficiently large sub-corpora.

On the other hand, the Nespole! corpus contains also dialogue translations in a tourism
domain, and presents several labels:

ahttp://mastarpj.nict.go.jp/IWSLT2009/
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• One label for each type of dialogue act. There are many types of labels, but the corpus
will be divided into only three different sub-corpora so as to prevent sparsity: the
two most different labels will constitute two of such sub-corpora, and the rest of the
sentences will constitute the remaining sub-corpus.

Note, however, that the final experiments will be reported onthe IWSLT corpus, which
implies that the labels present in the Nespole! data first need to be carried on to the IWSLT
data (the procedure for doing this is described below). No purely unsupervised clustering
takes place here, although the sentences within the IWSLT corpus will be assigned different
labels on the basis of likelihood.

With this overview in mind, a more detailed description of the corpora and methods used
follows.

IWSLT

The corpus provided for the 2009International Workshop on Spoken Language Translation
(IWSLT) is composed of two different sub-corpora in Chinese–English: a larger corpus be-
longing to the general tourism domain and a smaller corpus also belonging to the tourism do-
main, but in the more specific context of hotel conversations. The larger sub-corpus, named
Basic Travel Expressions Corpus(BTEC) has no manual annotations, whereas the smaller
corpus, theChallenge Task(CT) corpus, does have manual annotations regarding speaker
and dialogue number. Since the purpose is to perform adaptation, the experiments conducted
focused on the CT data, which is the smaller part, in correct recognition results, Chinese–
English (Zh→En) and English–Chinese (En→Zh) language pairs. The CT corpus includes
for each sentence a dialogue identifier and the speaker class, i.e. agent, customer or inter-
preter. Table 3.1 reports statistics (running words and vocabulary size) of the training corpora
used in our experiments after the preprocessing performed by means of the tools supplied by
the organisers; the numbers for the two directions are different, despite the original texts are
the same, because casing and punctuation have been removed from source texts, but kept on
target texts. The reason for this is that the IWSLT campaign is about speech translation, and
source texts are not provided as sentences as such, but in theform produced by the speech
recogniser.

Zh→En Chinese English
task | W | | V | s̄ | W | | V | s̄

BTEC 148K 8408 7.4 183K 8344 9.1
CT 89K 3734 8.9 141K 3696 14.0

En→Zh English Chinese
task | W | | V | s̄ | W | | V | s̄

BTEC 153K 7294 7.7 172K 8428 8.6
CT 119K 3271 11.8 102K 3737 10.2

Table 3.1: Statistics of the IWSLT training data.|W| stands for running words,|V| for
vocabulary size and̄s for average sentence length.
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Since we are going to exploit speaker and dialogue annotations of the CT corpus, more
detailed statistics are reported in Table 3.2. The figures regard the target side for the Zh→En
task, being those for the other direction very similar.

speaker |W| |V| s̄

agent
native 46.7K 2240 14.8

interpreter 26.8K 1626 14.1

customer
native 33.3K 2082 13.9

interpreter 33.8K 1878 12.9

Table 3.2: Speaker-based statistics of the CT training set.

By exploiting the annotation of the training and development texts, the data available
can be subdivided in two different ways, one related to dialogues and the other to speakers.
Then, these sub-corpora may be used for building different LMs, which will then, in turn, be
considered for interpolation within Equation 3.2.

Dialogue based clustering: the CT data is split into394 different dialogues representing a
complete conversation between an agent and a customer. These dialogues are provided with
identifiers, so that each single dialogue can be separated from the rest, and the different
dialogues can be clustered as a whole, i.e. each one of the resulting clusters will contain
several complete dialogues. For doing this, each dialogue was represented as a bag of both
source and target words. The rationale behind this is to let the clustering algorithm decide
which dialogues appear to be similar and are appropriate forbuilding a specific LM. Since the
clusters are formed relying on the words used in each dialogue, dialogues which have many
words in common will end up in the same cluster, and dialogueswhich present less words
in common will belong to different clusters, and (hopefully) topic-specific LMs will arise.
For the clustering procedure, both source and target sides were used, as suggested by a slight
performance gain observed in preliminary investigation. The number of clusters tested was
2, 4, 6 and 8, and on each of them a different LM was trained (seeFigure 3.1). Additional
LMs were built on the complete BTEC+CT data for smoothing purposes.

Speaker (agent/customer/interpreter) based grouping: In addition to the information de-
scribed above, which identifies each dialogue as a whole, theCT data also contains infor-
mation regarding the role of the current speaker. Since the CT data consists of interpreter-
mediated conversations, four different roles appear: the customer, the agent, and the inter-
preter taking the role of either of the previous two. Hence, four different sub-corpora can be
built exploiting this type of annotation, namely one of agent turns, one of customer turns, and
two of interpreter turns which are translations of agent andcustomer utterances, respectively.
Then, four different language models can be estimated on each side (i.e., language) of each
sub-corpus. In this case, two additional LMs trained on the complete BTEC and BTEC+CT
were included into the interpolation in Equation 3.2.
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Nespole!

Nespole!b (NEgotiating through SPOken Language in E-commerce) (Lavie et al., 2006) was
a European Union funded project, running during years 2000-2002. It aimed at providing a
system capable of supporting advanced needs in e-commerce and e-service by resorting to
automatic speech-to-speech translation. In particular, one of the two implemented showcases
supported multilingual negotiations and discussion between a tourist information/service
provider (a so-called destination) and a customer who wanted to organise a trip exploring all
available possibilities, including travel, accommodation, attractions and recreation, cultural
events, dining and so on. Collected data mirrored such scenario. For the purposes of the work
presented here, 58 Nespole! dialogues were used; they were collected in year 2000 involving
Italian speakers, then translated into English and manually labelled in terms of dialogue acts.
Table 3.3 reports corpus statistics regarding the English side of the dialogues, while Table 3.4
provides the (self-explanatory) labels and counters of themost frequent dialogue acts.

#turns | W| |V| s̄
2522 15335 1344 6.1

Table 3.3: English side statistics of the Nespole! dialogues.

label counter
give-information 963

affirm 408
descriptive 285

request-information 199
acknowledge 122
greeting 80

negate-give-information 62
thank 55

request-action 55
· · · · · ·
total 2522

Table 3.4: Most frequent Nespole! dialogue acts.

The English side of Nespole! data (see Section 3.7.1) was employed for subdividing
the IWSLT training data. Since the Nespole! data includes labels regarding the kind of di-
alogue act of each utterance, the purpose was to carry on suchinformation to the IWSLT
training data, in order to mine possible differences in lexicon, syntactic structure or punctu-
ation that different dialogue acts may entail. For doing this, the Nespole! corpus was first
subdivided into three sub-corpora, according to the dialogue actsgive-information,
request-information, and all the rest. Then, three different 5-gram LMs were esti-
mated on the English side of such sub-corpora. This being done, each English sentence of the

bhttp://nespole.itc.it
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IWSLT corpus was labelled with the tagsgive-information,request-information,
or other, according to which LM of the Nespole! sub-corpora assigns more probability to
that specific sentence. Mirroring such assignments on the Chinese side of the IWSLT corpus
gives rise to three different bilingual sub-corpora, and these three different sub-corpora can
then be used as starting point for the adaptation procedure described in Figure 3.1. The ra-
tionale behind choosinggive-information, request-information andothers
for the initial Nespole! subdivision is these first two dialogue acts are expected to label quite
different sentences in terms of lexicon, syntactic structure and punctuation (when available).

Nespole! texts are quite different from IWSLT texts, although both of them are tourism-
related. In this sense, it is specially illustrative that the cross-corpus perplexity is around
900, while the perplexity of IWSLT development/test sets ranges approximately from 50 to
200. Nevertheless, Nespole! data include valuable semantic annotation which might be worth
exploiting. Note that, since the final evaluation experiments will be performed on the CT data
and using the whole IWSLT corpus for training, the labels present in the CT data constitute
reliable information towards building the final LM interpolation. In contrast, the information
present in the Nespole! corpus first needs to be carried over to the IWSLT data.

3.5 Unsupervised clustering for language model adaptation

It should be clear that the fundamental intermediate step ofthe approach presented here is
the clustering of bilingual training data. The elements of each cluster are sentences. Hence,
the goal of this stage is to group together sentences which are similar to each other from
the lexical point of view. However, since it is not always thecase that supervised labels
are readily available, in this section we explore the use of unsupervised clustering for this
purpose. Unless differently specified, the clustering is performed by

• representing each sentence pair as a bag of both source and target words;

• setting the number of clusters to 4, since a preliminary investigation revealed this num-
ber as begin able to generate clusters quite specialised andnot too sparse.

On both source and target sides, in addition to the 4 LMs trained on each cluster and for
smoothing purposes, the LM built on the whole training data has also been considered.

In the following subsections, three different clustering schemes are described.

Direct clustering

As a first approach, we investigated clustering the trainingdata directly.

Development-induced clustering

Although the direct clustering of the training data is the most straightforward choice, it might
not be the best one, since by definition the goal of any adaptation procedure is to cover
possible mismatches between training and development/test conditions. With this in mind,
the idea is to cluster a given development set, and then attempt to mirror such clustering on

62 GST-DSIC-UPV



3.5. Unsupervised clustering for language model adaptation

CLUSTERING

SENTENCE−BY−SENTENCE

LM INTERPOLATION

(SOURCE)

SENTENCE−BY−SENTENCE

LM INTERPOLATION

(TARGET)

PARALLEL TEXTS

TRAINING

CLASSIFICATION

SRC TGT

DEVELOPMENT

PARALLEL TEXTS

TGT
nt n

SRC
t

LM m

TGT

...
...

CLSTR M

CLSTR 2

CLSTR 1

TRAINING SET CLUSTERS

SRC TGT

...
...

CLSTR M

CLSTR 2

CLSTR 1

SRC TGT

DEV. SET CLUSTERS

LM ESTIMATION

LM1

...

LM2

LMM

LM1

...

LM2

LMM

SRC

LM
SRC

TGT

TGT
m m

SRC
d d

m

SRC TGT

Figure 3.2: Procedure for obtaining development-induced clustering of the training
data.

the training data. The procedure for doing this is shown in Figure 3.2 and is summarised in
the following algorithm:

1. Cluster the bilingual development text

2. Estimate source and target LMs for each cluster from step (1)

3. Partition training data by classifying each sentence pair according to eq. 3.3 (see below)

In step (3), each bilingual training sentencen is assigned to the cluster̂m by the rule:

m̂ = argmax
m

cos(txn,d
x
m) + cos(tyn,d

y
m) (3.3)

wheret andd are vectors ofM (the number of clusters) LM weights and the cosine between
two vectors is defined ascos(a,b) = a·b

||a|| ||b|| , with · being the dot product and|| || being
the 2-norm. In particular,txn is the set of LM weights that maximises the probability of the
source sentencen of the training text, according to the linear interpolationof source LMs
estimated in step (2).tyn is the twin oftxn for the target side.dx

m is the vector of weights
which maximise the probability of again the source LMs of step (2) but on the whole source
side of clusterm of the development set.dy

m is the twin ofdx
m for the target side.

The intuitive explanation of eq. 3.3 relies on the meaning ofcomponents of vectorst and
d. Let us start by the fact that in some sense a LM trained from a specific cluster is a compact
representation of the sentences in that cluster; hence, theoptimisation of LM weights on a text
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provides, through each single weight, a measure of the similarity of that text with a specific
LM, that is a specific cluster. Vectorst andd can then be considered as “fingerprints” of each
training sentence and development cluster, respectively.Thecos() operation on them is then
applied to compute the similarity of training sentences with each clusterm.

Test-induced clustering

For inducing the clustering of the bitext training data it ispossible to use the test set instead
of the development set. Since in this case the target side is not available, the clustering is per-
formed only on the source data, and the classification rule ofeq. 3.3 is modified accordingly:

m̂ = argmax
m

cos(txn ,d
x
m) (3.4)

In this case,dx
m refers to the vector of weights which maximise the probability of source

LMs on the source side of clusterm of the partitioning of thetest set. Note that even if
eq. 3.4 relies only on the source side, it is used to classify both sides of each sentencen of
the training data.

The idea behind performing a test-induced clustering is that of taking profit of the infor-
mation available in the actual text to be translated, with the purpose of grouping together test
sentences which are similar. Nevertheless, the possible benefits of using such information
may not be completely reliable, since only the source side isavailable and the clustering is
instead induced on bilingual data. Note, however, that for performing this kind of clustering
the test data must be known beforehand.

3.6 Weight optimisation strategies

Once different clusters have been obtained and appropriateLMs have been estimated for
each set of clusters, a set of weights is needed for performing the actual interpolation of
LMs that will be used in translation time. For this purpose, three different approaches were
investigated, each one with a different degree of granularity.

Set specific weights

The LM-interpolation weights were estimated on the source side of the complete test set. This
approach, which is the most straightforward, has nevertheless an important drawback: the
estimated weights are those that well model the whole test set on average, without considering
possibly significant differences between specific sentences. Hence, the potential benefit of
estimating several LMs may fade.

Sentence specific weights

In this case, one specific set of weights is estimated for eachsentence of the test set. By
doing so, the purpose is to allow complete freedom to the EM procedure when assigning
the LM weights, and hence achieve better results when separating the training corpus into
several subsets. However, weights computed in such a mannermay be less reliable, since the
estimation is performed on few data (one single sentence).

64 GST-DSIC-UPV



3.7. Experimental results

Two-step weight estimation

This approach merges the previous two in the attempt of keeping their advantages and over-
coming the drawbacks. Once sentence specific weights have been computed, each (source)
sentence is assigned to the specific cluster corresponding to the most weighted LM. This
being done, one set of weights can be re-estimated for each one of the clusters obtained in
this way. This approach has the intuitive benefit of mirroring the clustering of the training
data into the test set, while still avoiding the possible data sparseness issue that can affect the
sentence specific weight estimation. This procedure is illustrated in Figure 3.3.
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Figure 3.3: Two-step weight estimation technique.

3.7 Experimental results

This section reports the results of both language model adaptation strategies described in
Sections 3.4 and 3.5. Translation quality results will be reported in terms of BLEU and
TER. However, with the purpose of getting some insight aboutwhat is really happening
during the adaptation process, additional results will be reported in terms of perplexity (PP).
Perplexity (Bahl et al., 1983) is a measure stemming from information theory, and is defined
as2 raised to the power of the entropy of a given test setY = {y1, . . . ,ym, . . . ,yM}, such
that

PP (Y ) = 2
1
N

∑
m

log2 pLM (ym), (3.5)

for a given language model LM and whereN stands for the total number of words in the
test set. In more intuitive terms, perplexity is often understood as the average number of
possible words that are likely to follow a given prefix. However, perplexity may be used
for two different (but complementary) purposes: on the one hand, perplexity may be used to
compare two different language models, and on the other handit may also be used to assess
the complexity of a given task. In this chapter, perplexity will be used with the purpose of
comparing different language models, i.e. the monolithic baseline language model with the
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interpolated language model built by means of the clustering techniques described. However,
it must be noted that improvements in perplexity are not always mirrored by improvements
in system performance. This implies that perplexity may help towards establishing which
language model performs best, but such conclusion must always be backed up by coherent
results in terms of system performance – translation quality in the case of SMT.

Whenever unsupervised clustering is required, such as in the case of exploiting dialogue
annotation (Section 3.4) or in the case of building unsupervised clusters (Section 3.5), such
clustering will be performed by means of the CLUTOc package. Its default setup includes
thedirect clustering algorithm, which computes thek-way clustering directly by means of
theK-means algorithm (Zhao and Karypis, 2005). The cosine distance was used as criterion
function.

3.7.1 Experiments using supervised labels

In order to study the similarity, or better the differences,between training and testing condi-
tions, the statistics shown in Table 3.2 for the CT training data were also computed for the
development data set (Table 3.5). It clearly results that the two sets differ not only in sentence
length, but also in terms of distribution of utterances fromthe interpreter. We will see later if
and in which cases this mismatch affects system performance.

speaker |W| |V| s̄

agent
native 2.5K 427 15.1

interpreter 0.8K 218 13.2

customer
native 0.5K 152 11.8

interpreter 1.7K 307 12.3

Table 3.5: Speaker-based statistics of the CT development set.

So as to provide an upper bound of the performance that can be reached with the super-
vised adaptation technique presented in this chapter, optimal sentence specific weights have
also been estimated on the reference translations.

Coherently to what has been written at the beginning of this section, experiments were
performed on the development sets of the Challenge Task of IWSLT09, Zh→En/En→Zh,
correct recognition result transcripts tasks. They were split in two parts (DEV1 including 4
dialogues, DEV2 with 6 dialogues) which were alternativelyused for MERT and evaluation.

Results are provided in Figures 3.4-3.11. Each of them includes two plots: the plot on
the top shows BLEU scores, the one on the bottom displays perplexity. Figures 3.4, 3.5, 3.8
and 3.9 report results obtained by dynamically estimating the interpolation weights at the
sentence level (Section 3.6), while Figures 3.6, 3.7, 3.10 and 3.11 refer to the two-step tech-
nique (Section 3.6). Finally, Figures 3.4, 3.5, 3.6 and 3.7 show performance for the En→Zh
direction, while Figures 3.8, 3.9, 3.10 and 3.11 for the Zh→En task.

The five curves in each plot refer to different systems:

baseline: SMT system using one single LM estimated on the whole training corpus;

cAvailable from http://glaros.dtc.umn.edu/gkhome/views/cluto
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Figure 3.4: En→Zh results (BLEU scores and perplexity) for set DEV1 with different
grouping methods, sentence specific weight estimation.

dialogue: interpolation of LMs built on the dialogue based clustering as described in
Section 3.4;

nespole: interpolation of LMs built on the sub-corpora induced by the Nespole! data
(Section 3.4);

ACI: interpolation of LMs built on the speaker-based sub-corpora as described in Sec-
tion 3.4;

oracle: the LMs are those built on the dialogue basis, but the interpolation weights are
estimated by means of an oracle. So as to provide an upper bound of the performance
that can be reached with the adaptation technique presentedin Section 3.4, optimal
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Figure 3.5: En→Zh results (BLEU scores and perplexity) for set DEV2 with different
grouping methods, sentence specific weight estimation.

sentence specific weights have also been estimated on the reference translations.

In the case of thenespole andACI curves, the number of classes is fixed to3 and5,
respectively, and should be hence plotted as a single point,but is shown in the plots as a short
segment for the purpose of visibility.

Results achieved by interpolating LMs with weights estimated at the test set level (Sec-
tion 3.6) are not reported for the sake of simplicity and because they are not better than those
of the competing techniques, as expected.

Before the detailed analysis, a general comment is that in terms of perplexity the idea of
building LMs on some motivated partition of the training data and then interpolate them with
weights estimated on the actual input performs very well, yielding significant improvements
whatever the grouping technique, the number of sub-corpora(LMs) and the scheme followed
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Figure 3.6: En→Zh results (BLEU scores and perplexity) for set DEV1 with different
grouping methods, two-step weight estimation.

for the estimation of interpolation weights. Moreover, theBLEU score of theoracle system
confirms that the approach is really appealing. On the other side, for the fair systems the
impressive improvement in terms of perplexity is not alwaysmirrored in the BLEU score,
especially for sub-corpora built exploiting either Nespole! annotation or speaker information,
for which even a degradation is observed in some cases.

In relation to the experimental outcomes, the following additional remarks can be made:

• theoracle curves are uni-modal and mostly present a peak at six clusters, which is
then the optimal number of LMs to be interpolated;

• the shape of the curves of the two-step procedure (Figures 3.6, 3.7, 3.10 and 3.11),
although are not higher than those of the estimation performed on single sentences
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Figure 3.7: En→Zh results (BLEU scores and perplexity) for set DEV2 with different
grouping methods, two-step weight estimation.

(Figures 3.4,3.5,3.8,3.9), are more similar to those of theoracle (uni-modal), fact that
makes its behaviour more predictable;

• thedialogue based clustering improves or at least does not worsen too much base-
line BLEU scores, even if it tends to be quite far from the oracle quality; there is no
clear evidence about the optimal number of clusters;

• ACI works quite well for the En→Zh task but not for the Zh→En direction;

• nespole partitioning does not seem to be effective in terms of BLEU score;

• performance by switching the role of DEV1 and DEV2 is quite different;
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Figure 3.8: Zh→En results (BLEU scores and perplexity) for set DEV1 with different
grouping methods, sentence specific weight estimation.

• improvements over the baseline are larger on En→Zh direction than on Zh→En.

It is important to stress the fact that training/development and test conditions were quite
different in the experiments conducted. This was already pointed out by the comparison of
figures in Tables 3.2 and 3.5, but it is even more evident by observing that MERT is effective
only for the En→Zh direction and when DEV2 and DEV1 are used for development and
evaluation respectively, while it degrades the performance of the initial setup in all the other
three cases; Table 3.6 gathers the variations of the BLEU score between initial and final
configurations of the SMT system for the two directions (Zh→En and En→Zh) and with the
two possible roles for DEV1 and DEV2. This disappointing behaviour is probably due to the
too small size of DEV1, fact that could also explain why our adaptation technique does not
work very well on DEV2, i.e. when DEV1 is used for development.
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Figure 3.9: Zh→En results (BLEU scores and perplexity) for set DEV2 with different
grouping methods, sentence specific weight estimation.

test mert ∆ BLEU
on on CE EC

DEV1 DEV2 -0.19 +3.39
DEV2 DEV1 -0.67 -1.12

Table 3.6: MERT effect on the BLEU score.

It can also be observed that, in some rare cases, thatoracle BLEU scores drop below
thedialogue scores. This could be due to the fact that we assume that the LMinterpolation
weights computed on the reference sentence are the ones thatbest exploit the provided mod-
els. However, such assumption could not be true in the case ofa severe mismatch between
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Figure 3.10: Zh→En results (BLEU scores and perplexity) for set DEV1 with different
grouping methods, two-step weight estimation.

such models and reference sentences, leading to the possibility of achieving better scores with
other weights.

A final remark is needed on the fluctuating performance of the ACI sub-corpora. Its
purpose is to obtain speaker-role specific LMs, which shouldtheoretically perform better than
generic LMs when it is possible to know which is the role of theactual speaker. However, if
training and test conditions within each dialogue role present a severe mismatch, as seems to
be the case according to Tables 3.2 and 3.5, such an approach is bound to yield a very limited
benefit, if any.

Despite all the precautions required by the fact that the experimental outcomes are not
unquestionable, an encouraging conclusion can be drawn. Itemerges that the LM adaptation
approach proposed here is promising and can guarantee quitestable improvements over the
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Figure 3.11: Zh→En results (BLEU scores and perplexity) for set DEV2 with different
grouping methods, two-step weight estimation.

baseline quality when the clustering is built at the level ofdialogues and the interpolation
weights are estimated with the two-step scheme.

3.7.2 Unsupervised clustering experiments

The experiments conducted for assessing the unsupervised clustering LM adaptation tech-
nique were performed on the Europarl corpus, in the partition established for the WMT06
workshop (see Section 1.4). In this case, the languages involved in the experimentation were
English→German, English→Spanish and English→French. The baseline and subsequent
systems were built by means of the Moses SMT toolkit, and the weightsλ of the log-linear
model were optimised by means of MERT for the baseline systemon theDevel. set, and
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Language Weight
PP BLEU TER

Signif
pair optimisation BLEU/TER

En–Es

baseline 78.5 30.8 54.9 –
sentence 71.3 30.4 54.6 yes/yes
two-steps 71.2 30.3 54.5 yes/yes
test set 100.1 30.3 54.5 yes/yes

En–De

baseline 141.5 19.0 67.4 –
sentence 129.0 18.2 67.4 yes/no
two-steps 129.7 18.1 67.4 yes/no
test set 202.3 18.0 67.6 yes/no

En–Fr

baseline 50.0 32.9 55.3 –
sentence 45.4 32.7 55.0 no/yes
two-steps 45.5 32.6 54.9 yes/yes
test set 64.5 32.5 55.0 yes/yes

Table 3.7: Performance of the direct clustering approach.

then re-used for all other systems. Although there could be reasons for re-running MERT
when the LM changes, this was done so in order to better isolate the effects of including dif-
ferent LMs into the SMT system. As baseline LM, a 5-gram word-based LM was estimated
on the target side of the training corpus, smoothed according to the improved Kneser-Ney
technique (Chen and Goodman, 1999), by means of the SRILM (Stolcke, 2002) toolkit. The
final translation quality was measured on theDevtest set.

The adaptation procedures presented in Section 3.5 have been experimentally assessed
by translating different test sets, whose quality was measured in terms of BLEU (Papineni
et al., 2001) and TER (Snover et al., 2006).Pairwisestatistical significance tests using paired
bootstrap re-sampling (see Section 1.2.2) were also computed with ten thousand bootstrap
repetitions. These tests, showing whether the improvement(or drop) in translation quality
with respect to the baseline performance is significant at 95% confidence level, were com-
puted for both BLEU and TER and are provided in theSignif column. Note, however, that
even though paired bootstrap re-sampling proves some systems to be statistically differen-
tiable, confidence intervals were in most of the cases in the range of0.7, both in case of TER
and in case of BLEU.

Finally, the columnPP shows the perplexity value of either the single LM (baseline) or
the interpolation of LMs (other cases) computed on the test set references.

Direct clustering

Results observed by directly clustering the training data are shown in Table 3.7, for all three
weight optimisation schemes and for all three language pairs.

A degradation of the BLEU score is observed in any condition,while TER slightly im-
proves for the En–Es and En–Fr pairs, especially when eitherthe sentence-based or the two-
steps estimation schemes are adopted. However, since results are not coherent for both scores,
it cannot be definitely stated whether this form of LM adaptation overcomes the use of the
single baseline LM.
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Language Weight
PP BLEU TER

Signif
pair optimisation BLEU/TER

En–Es

baseline 78.5 30.8 54.9 –
sentence 68.3 31.3 54.4 yes/yes
two-steps 68.3 31.3 54.3 yes/yes
test set 105.6 30.9 54.6 yes/yes

En–De

baseline 141.5 19.0 67.4 –
Sentence 126.0 19.2 66.7 yes/yes
two-steps 126.3 19.2 66.7 yes/yes
test set 206.6 18.7 67.2 yes/no

En–Fr

baseline 50.0 32.9 55.3 –
sentence 43.5 33.2 54.9 yes/yes
two-steps 43.5 33.3 54.8 yes/yes
test set 65.0 32.9 55.1 no/yes

Table 3.8: Performance of the development-induced clustering approach. The best
results are marked in bold.

Development-induced clustering

Results for the development-induced clustering are reported in Table 3.8. In this case, the
LM adaptation does improve the baseline consistently, for both scores and significantly in
almost every setup. Again, the best performing weight optimisation scheme is the two-steps
one, which improves the baseline in all language pairs in a statistically significant way. Per-
formances comparable to those of two-steps optimisation are obtained also with weights es-
timated at the single test sentence level. Again, the optimisation of weights on the whole test
set does not seem to be appropriate.

Test-induced clustering

Lastly, Table 3.9 collects results when the clustering of training data is induced by the test
set. This kind of clustering seems not to be able to exploit the test information provided to
the system; in fact, BLEU is non-differentiable from the baseline in almost every setup, while
TER is improved only at a limited extent. Concerning the weight optimisation, here the best
choice is to perform it on the whole test set, differently from what happened in the other types
of clustering. This could be originated from the fact that LMs are built on clusters induced
by just the test set. For this reason, in this specific case theuse of the whole test set allows
an effective trade-off between the estimation of weights which are good on average on the
whole test set and the sparseness of data on which the optimisation is done. Nevertheless, it
is worth noticing that differences in translation quality are mostly not statistically significant.

Results in Tables 3.7, 3.8 and 3.9 show the different impact that the proposed clustering
and weight optimisation schemes for LM adaptation have on MTperformance. In particu-
lar, the best scores measured in our experiments, marked in bold in Table 3.8, are achieved
when using development-inducedclustering combined with the two-steps (or sentence-based)
weight optimisation. With this setup, the translation quality always improves the one obtained
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Language Weight
PP BLEU TER

Signif
pair optimisation BLEU/TER

En–Es

baseline 78.5 30.8 54.9 –
sentence 72.4 30.9 54.6 no/yes
two-steps 72.2 30.9 54.6 no/yes
test set 105.7 31.0 54.6 yes/yes

En–De

baseline 141.5 19.0 67.4 –
sentence 133.7 18.9 67.3 no/no
two-steps 133.9 18.9 67.3 no/no
test set 204.4 18.9 67.1 no/yes

En–Fr

baseline 50.0 32.9 55.3 –
sentence 46.6 32.8 55.2 no/no
two-steps 46.4 32.8 55.3 no/no
test set 65.2 33.0 55.2 no/no

Table 3.9: Performance of the test-induced clustering approach.

by the baseline system. Such results, which are statistically significant and coherent through-
out all language pairs and for both considered evaluation scores, prove that there is a potential
benefit behind the use ofn-gram mixtures in SMT, also in the non-supervised setup.

From another viewpoint, it seems that the sentence-based interpolation technique is able
to yield the same translation quality than the two-steps weight optimisation. This should
indirectly prove that the input sentence alone contains sufficient information to make the
interpolation procedure stable enough. In fact, average sentence length for the test sets ranges
from 33 words per sentence for French, to 27 words per sentence for German, i.e. fairly long
sentences. Given this experimental evidence and the fact that it is computationally cheaper,
the sentence-based optimisation should be the first choice in presence of quite long input
sentences.

It must also be noted that, although all the subsets of the Europarl corpora belong to the
same domain, they were not extracted randomly: specifically, the training corpus comprises
data from year 1997 to year 2003, although the development and test data are extracted from
the fourth quarter of year 2000. This fact should explain thegood results obtained with
the development-induced clustering, since both test and development sets belong to a very
narrow time frame, in which the topics being debated in the European Parliament were likely
similar. Hence, development-induced clustering may be able to make a better use of the
uneven distribution of training and development/test data, since it resembles the test data, and
contains bilingual information (as opposed to test-induced clustering).

The fact that test-driven clustering only relies on source-sentence information is an impor-
tant drawback that cannot be ignored: preliminary investigations revealed that including both
source and target information into the clustering procedure did have an important impact,
which is evidenced in this case as well. Although it might seem that monolingual cluster-
ing relies on half of the information of bilingual clustering, this is even optimistic: in fact,
bilingual clustering does not only take into account both source and target sides, but also the
interaction between the two, since it also takes into account whether a given source word
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cooccurs with a given target word.

3.8 Conclusions and future work

In this chapter, a technique for adapting the LM of SMT systems to the actual input has
been presented. The assumption is that the LM is provided as alinear interpolation of sub-
LMs, each estimated on a specific portion of the training data. The interpolation weights are
then estimated dynamically on the text to be translated via amaximum likelihood EM-based
procedure.

Different methods for subdividing the training data have been presented, both in a super-
vised and in an unsupervised manner. Regarding supervised subdivision, manually annotated
texts have been used for subdividing the training data; regarding unsupervised clustering, dif-
ferent strategies were presented, some of them attempting to take advantage of development
or test information.

Different schemes for estimating the interpolation weights have also been experimentally
tested when combined with both supervised and unsupervisedclustering strategies.

Results have shown that small improvements may be obtained by partitioning the train-
ing data into more specific sub-corpora, and learning independent language models from
them. However, these improvements were not always statistically significant. In the case
of unsupervised clustering, the best results were achievedby clustering the training data by
exploiting both sides (source and target) of the development set, and estimating the weights
at the sentence level or by means of the two-step approach.

Results achieved in this work reveal that the improvements that can be obtained by our
LM adaptation approach greatly depend on the subdivision technique employed. Since here
only the surface form of single words has been used for clustering the training data, possible
alternatives include clustering the training data according ton-gram or PoS-tag information.

Another issue which deserves an investigation regards the interpolation of target LMs by
re-using weights estimated for the optimal interpolation of source LMs. In fact, although it
appears as a reasonable choice, it could happen that the likelihood on the target side is max-
imised with different weights than those which ensures the maximum likelihood on the source
side. A source-to-target weight map could be learnt from a parallel development/training set.

Lastly, future work also involves comparing the language model adaptation technique
presented here with other thechniques present in the literature, such as the ones described in
Section 3.2. However, it is also worth noting that the technique presented here is compatible
with the most of the techniques described in the above-mentioned section, and hence should
not be viewed as competing approaches.

The biggest part of the work done in this chapter was done during an internship at the
Fondazione Bruno Kessler, in collaboration with M. Federico and M. Cettolo. The first
publication about the supervised LM adaptation technique was published in an international
workshop:

• G. Sanchis-Trilles, M. Cettolo, N. Bertoldi and M. Federico Online Language Model
Adaptation for Spoken Dialog Translation. InProceedings of the International Work-
shop on Spoken Language Translation, IWSLT 2009, pages 160–167, Tokyo (Japan),
December 2009.
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The work presented above was also used within an SMT system submitted for evaluation
to that same workshop. Notably, the English↔Chinese systems submitted ranked second and
third, depending on the task and evaluation method.

• N. Bertoldi, A. Bisazza, M. Cettolo,G. Sanchis-Trilles and M. Federico FBK @
IWSLT 2009. InProceedings of the International Workshop on Spoken Language
Translation, IWSLT 2009, pages 160–167, Tokyo (Japan), December 2009.

The work about unsupervised LM adaptation was presented in an international confer-
ence:

• G. Sanchis-Trilles and M. Cettolo Online Language Model Adaptation via N-gram
Mixtures for Statistical Machine Translation. InProceedings of the 14th Conference
of the European Association for Machine Translation, EAMT 2010, Saint-Raphaël,
(France), May 2010.

In addition, work on bilingual sentence clustering derivedfrom the work presented in this
chapter was presented in another international workshop:

• J. Andrés-Ferrer,G. Sanchis-Trilles and F. Casacuberta Similarity Word-Sequence
Kernels for Sentence Clustering. InProceedings of the 8th International Workshop on
Statistical Pattern Recognition, S+SSPR 2010, Cesme (Turkey), August 2010.
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CHAPTER4
Bayesian translation model adaptation

Los aviones vuelan y no mueven las alas.
Francisco Casacuberta
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“What good is your reality, when justice fails and dishonesty is glossed over and the ones
who keep faith suffer. Helene kept her bargain about Ellis and so did I. What good is your
reality then?”

“Look here,” Furii said. “I never promised you a rose garden.I never promised you
perfect justice...” (She remembered Tilda suddenly, breaking out of the hospital in Nurenburg,
disappearing into the swastika-city, and coming back laughing that hard, rasping parody of
laughter. “Sholom Aleichem, Doctor, they are crazier than Iam!”)... and I never promised
you peace or happiness. My help is so that you can be free to fight for all of these things. The
only reality I offer is challenge, and being well is being free to accept it or not at whatever
level you are capable. I never promise lies, and the rose-garden world of perfection is a lie...
and a bore, too!”

I never promised you a rose garden. Joanne Greenberg.

“Lo bueno es tu realidad, cuando la justicia y la deshonestidad no es pasado por alto y
los que mantienen la fe sufre. Helen mantiene su negocio de Ellis y yo también ¿Qué, pues
bueno es su realidad?”

“Mira aquí”, dijo Furii. “Nunca te prometí un jardín de rosas. Yo nunca te prometí ...”
justicia perfecta (De pronto recordó Tilda, saliendo del hospital en Nurenburg, desapare-
ciendo en la cruz gamada de la ciudad, y volver riendo que la parodia dura, áspera de la
risa. “Sholem Aleijem, el doctor, son más locos que yo!”)...Y yo nunca te prometí la paz o
la felicidad. Mi ayuda es para que pueda ser libre de luchar por todas estas cosas. La única
realidad que ofrecen es el desafío, y de ser así se está libre de aceptar o no al nivel que sea
que usted es capaz. Prometo nunca miente, y el mundo jardín derosas de la perfección es
una mentira... y un taladro, también!”

Yo nunca te prometí un jardín de rosas. Google Translate.
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4.1 Introduction

Nowadays, there are large amounts of bilingual data available for very specific domains,
such as parliamentary speeches or news-wire articles. However, typical IMT systems are
usually used for aiding human translators in very differenttasks, such as translating patient
information leaflets or printer manuals. Such situation leads to a strong discrepancy between
the data on which the underlying SMT system has been trained and the data on which it
is going to be applied. In order to bridge this discrepancy,model adaptationtechniques
are often used. The aim of such techniques is to make the best use of a small amount of
adaptation data, belonging to the domain which is going to betranslated, in order to take
profit of the generality provided by the massive amount of data available in more resourceful
domains.

Adaptation has become a very popular issue in machine translation (Koehn, 2010). Typi-
cally, the adaptation problem arises when two very different sets of training data are available,
which implies also that two different sets of model parameters can be obtained. The first set
of data, which will be referred to as training dataT , is typically very large and usually rather
generic in domain. The second set of data, referred to as adaptation dataA, is usually over-
whelmingly smaller thanT , but belongs the specific task of interest. In such scenario,the
challenge is to modify the output of our system appropriately by taking into consideration
bothT andA: on the one hand, making use ofT is ought to provide robustness to the esti-
mation of the model parametersθ, and on the other handA should introduce a certain bias
towards the specific task that is being tackled. This definition of adaptation is specially ap-
propriate for the Bayesian learning paradigm, where the model parametersθ are treated as
(hidden) random variables which are governed by some kind ofa priori distributionp(θ).
This distribution represents our prior knowledge about what values forθ are good estimates.
Estimatingp(θ) by usingT , and consideringA within the Bayesian predictive distribution to
be used when translating a given sentence leads precisely toa scenario in which the decision
regarding the output sentence is guided byp(θ) (i.e., the prior distribution estimated onT ),
while including a bias towards the adaptation data. Intuitively, the Bayesian framework has
as benefit that the decision regarding the estimation ofθ is not taken by considering only
the topic-specific data available (i.e.,A), which could lead to over-trained estimations. If the
amount of such data is small, the parameter priorp(θ) will compensate this issue and provide
robustness to the resulting estimation.

In this chapter, we will be focusing on adapting either the log-linear weightsλ or the fea-
ture functionsh present in state-of-the-art SMT systems (see Equation 1.6), since appropriate
values of such parameters for a given domain do not necessarily imply a good combination
in other domains. One naïve way in which some sort of adaptation can be performed is to
re-estimateλ or h from scratch only on the adaptation data. However, this is usually not
a good idea, since the amount of adaptation data available isusually not enough to provide
stable estimations, yielding over-trained values of the model parameters that do not perform
well in test time. In addition, such re-estimation is often not feasible given the high compu-
tational cost associated, which may range from a couple of hours to even days depending on
the amount of adaptation data available. In this context, the Bayesian paradigm seems to be
appropriate, since the inclusion of the prior over the modelparameters should compensate
the lack of data. In the work presented in the current chapter, Bayesian predictive adapta-
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tion (BPA) will be used to solve both problems presented. Onlyλ or h will be adapted,
alternatively. Nevertheless, the theory described here could also be used to adapt both.

In Section 4.2 a brief review of current approaches to translation model adaptation in
SMT is provided. Although we are only aware of another work tackling adaptation in SMT
from the Bayesian perspective, numerous works dealing withthis problem by means of other
methods have been reported in the literature. In addition, we also review some works applying
BPA in other fields of natural language processing, such as speech recognition. Contributions
of the present work are also explained in this section. Section 4.3 reviews briefly the Bayesian
learning paradigm. Following these ideas, the formal derivation of BPA as applied to SMT
is presented. We describe how to adapt bothλ andh, although in the present work we
will not attempt to adapt both at the same time. In addition toanalysing BPA in the most
traditional case, as described above, we also study the possibility of extending the application
to other similar scenarios: in Section 4.4, we analyse how toapply BPA in a scenario in which
adaptation data is generated on the fly by a human expert who isamending the sentences
produced by the system. Hence, it might well be the case that there is no adaptation data at
all when the system is required to start translating, and adaptation has to take place in real time
with the user interacting with the system. For such reason, adaptation time is critical, since it
is not affordable for the human translator to be awaiting forthe system to adapt and produce
an adapted translation hypothesis. Another different scenario is considered in Section 4.5,
namely, a scenario in which there is only a small amount of bilingual data available, both
for T andA. In such a scenario, state-of-the-art SMT systems become rather unstable, and
small changes in the training or adaptation data have a very important impact on the final
translation quality produced. Because of this, the main interest behind applying BPA in
this case is to stabilise the parametersθ estimated. Since Bayesian learning often implies
computing the integral over the complete parametric space,sampling techniques are often
used to solve this problem. The sampling methods studied in this chapter are presented in
Section 4.6. Section 4.7 details the different practical approximations that need to be assumed
before attempting to implement BPA within a real-world SMT system. Section 4.8 reports
the experiments performed in order to assess how well the adaptation process performs in
the different scenarios studied. For this purpose,n-best hypotheses provided by a state-of-
the-art SMT system are re-ranked according to the Bayesian predictive distribution. Finally,
conclusions of the present work and future research directions are detailed in Section 4.9.

4.2 Related work

In addition to the works described in Chapter 3 concerning language model adaptation in
SMT and other approaches tackling adaptation from the mixture model point of view, there
are other numerous works that confront the problem of translation model adaptation from
different perspectives. For instance, Foster et al. (Foster et al., 2010) apply instance weighting
techniques in order to weight out-of-domain phrase pairs according to the similarity of such
phrase to the specific domain, and establishing whether it belongs to general language. The
weights are established by means of a logistic model which takes into account simple features
such as the number of tokens of that specific phrase pair, its frequency, the number of out-
of-vocabulary words it contains, etc. In doing so, they showthat it is possible to achieve
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consistent improvements. Another strategy that has been applied for adapting SMT systems
is to mine unseen words from dictionaries (Daume III and Jagarlamudi, 2011). In this sense,
the authors improve translation results by extracting translations from other domains for those
words that are considered out-of-vocabulary by the system for that specific domain. Finally,
other works attempt to perform domain adaptation by selecting as training corpus only those
sentences belonging to a large collection of data that seem to be important in the specific
domain tackled (Axelrod et al., 2011; Gascó et al., 2010).

With respect to Bayesian methods applied to SMT, Zhang et al.(Zhang et al., 2008) ap-
ply Bayesian learning in order to estimate appropriate word-alignments within a synchronous
grammar. Similarly, replacing the expectation-maximisation (EM) algorithm by Bayesian in-
ference has also been studied (Mermer and Saraclar, 2011), and results have shown that ap-
plying Bayesian inference by means of a Gibbs sampler leads to interesting improvements in
translation quality. Furthermore, the proposed method is also shown to overcome a common
problem with EM-estimated word-alignment models, namely,that rare words tend to accu-
mulate too much probability mass. The phrase-alignment problem has also been researched
under the Bayesian learning paradigm (DeNero et al., 2008).In that work, the authors develop
a phrase extraction algorithm that does not depend on a heuristic process, but rather attempts
to extract the phrases through sampling from a translation model including Bayesian prior
information by means of a Gibbs sampler. Recently, the Bayesian learning paradigm was
applied with the purpose of adapting the word alignments that are included in most state-of-
the-art SMT systems (Duh et al., 2011). In that work, the authors propose the use of sequen-
tial Bayesian methods with the purpose of adapting alignment models estimated on a broad
domain corpus to a more specific domain, showing consistent improvements among differ-
ent language pairs. In the present work, however, our purpose is to adapt the parameters of
the final phrase-based model directly, and not the parameters of the single-word models that
precede the estimation of the phrase-based model. Lastly, Bayesian inference has also been
applied successfully to decipherment (Ravi and Knight, 2011), which is a problem closely
related to SMT.

Although only recently applied to SMT, Bayesian adaptationhas been broadly and suc-
cessfully applied in other natural language processing areas, such as speech recognition (Huo
et al., 1995; Kenny et al., 2000; Yu and Gales, 2005). In fact,work done in this direc-
tion is very broad, covering both batch adaptation (Yu and Gales, 2005) and online adap-
tation (Yu and Gales, 2006). Variational Bayes approaches have also been studied (Valente
and Wellekens, 2005), which attempt to find a lower bound to approximate the intractable
marginal likelihood (i.e., the likelihood where model parameters have been marginalised),
yielding point estimates of the model parameters. An alternative to variational Bayes consists
in approximating the marginal likelihood directly by sampling from the posterior distribution
of the data given the model parameters (Yu and Gales, 2005), yielding an approximation of
the real distribution, rather than a point estimate. This latter approach is often referred to as
Bayesian predictive adaptation (BPA), and usually leads tomore robust estimates. This is the
approach that will be followed in the present work.

The present chapter extends work already published in adaptation in SMT in the following
aspects:

• Bayesian predictive adaptation is presented as an appropriate formal framework for
conducting SMT model adaptation.
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• Positive results concerning the adaptation of either log-linear weights or feature func-
tions are presented.

• Different sampling strategies are analysed for their application in Bayesian predictive
adaptation.

• An online version of Bayesian predictive adaptation is shown to have an appropriate
behaviour when adapting the log-linear weights.

• Finally, Bayesian predictive adaptation is also used in order to provide more robustness
to the log-linear weightsλ of a state-of-the-art SMT system trained in low-resource
conditions.

Note that the work presented in this chapter is compatible with much of the work pre-
sented so far concerning adaptation in SMT. For instance, BPA may be applied in combina-
tion with the language model adaptation technique presented in Chapter 3 or different data
combination strategies (see Section 3.2). However, in the present chapter the purpose is to
analyse the performance of the Bayesian predictive adaptation strategies presented, leaving
such combination experiments for future work.

4.3 Bayesian predictive adaptation for SMT

The process of adaptation can be viewed as a statistical process in which some prior knowl-
edge exists regarding the estimation of the model parameters, but there is still some uncer-
tainty about what the exact best estimation might be. In other words, a canonical model with
parametersθT is already available, and it can be assumed that such estimation is a robust
estimation obtained from a large collection of data. Then, as further evidence arrives, we
would like that such estimations are revised so that they reflect the newly arrived data. Such
is the case in the Bayesian learning paradigm (Bishop, 2006;Duda et al., 2001), where model
parameters are viewed as random variables having some kind of a priori distribution. Ob-
serving these random variables leads to a posterior density, which sharpens with additional
observations, and which typically peaks at the optimal values of the model parameters.

An important advantage of the Bayesian learning paradigm isthat it allows to incorporate
prior knowledge in the form of a parameter prior. By doing so,it is able to provide robust
parameter estimates whenever the evidence provided by the training data (or adaptation data
in this case) is not significant enough, i.e., the amount of training (adaptation) data is small.
However, the effect of such prior knowledge fades when incorporating further evidence to
our training data, until a point in which the contribution ofthe parameter prior towards the
complete model distribution is negligible. In addition, the Bayesian learning paradigm does
not attempt to obtain a single best point estimate of the model parameters, but rather relies
on considering all possible parameter values, allowing uncertainty regarding what the best
estimations of such parameters might be.

Within the Bayesian learning paradigm, the probabilityp(y | x) within Equation 1.1 can
be reformulated by means of the predictive distribution as

p(y | x; T ) =

∫

p(y, θ | x; T )dθ, (4.1)

88 GST-DSIC-UPV



4.3. Bayesian predictive adaptation for SMT

whereT represents the complete training set andθ are the model parameters.
However, since we are interested in Bayesianadaptation, we need to consider one training

setT and one adaptation setA, leading to

p(y | x; T ,A) =

∫

p(y, θ | x; T ,A)dθ (4.2)

=

∫

p(θ | x; T ,A) p(y | x, θ; T ,A)dθ (4.3)

≈

∫

p(θ | T ,A) p(y | x, θ)dθ. (4.4)

From Equation 4.3 to Equation 4.4 it has been assumed, on the one hand, that the probability
of the output sentencey does not depend on the complete training and adaptation data, when-
ever the model parametersθ are known. On the other hand, it has also been assumed that
the model parameters are independent from the actual input sentencex. Such simplifications
lead to a decomposition of the integral in two parts: the firstone,p(θ | T ,A) will assess how
good the current model parameters are, and the second one,p(y | x, θ), will account for the
quality of the translationy given the current model parameters. In addition, the integral over
the complete parametric space will force the model to take into account all possible values of
the model parameters, although the prior over the parameters will bias the final distribution
towards those values which are closer to our prior knowledge.

Operating with the probability ofθ by means of the Bayes’ rule, we obtain:

p(θ | T ,A) =
p(A | θ; T ) p(θ | T )

∫

p(A | θ′; T ) p(θ′ | T ) dθ′ . (4.5)

In order to simplify Equation 4.5, and focusing on the probability of the adaptation dataA,
of size|A|, we obtain:

p(A | θ; T ) ≈ p(A | θ) =

|A|
∏

a=1

p(xa,ya | θ) (4.6)

=

|A|
∏

a=1

p(xa | θ) p(ya | xa, θ), (4.7)

where the probability of the adaptation data has been assumed to be independent of the train-
ing data given thatθ is known and has been modelled as the probability of each bilingual
sample(xa,ya) ∈ A being generated independently by a given translation model.

For modelling the prior over the model parameters, i.e.,p(θ | T ), we will assume that
the model parameters follow a normal distribution centred on θT , i.e., the parameter values
estimated on the training data, and with a diagonal covariance matrixI · σT , yielding

p(θ | T ) ∼ N (θ; θT , I · σT ) =
1

(2π)d/2 |σT |1/2
exp

{

−
||θ − θT ||2

2σT

}

, (4.8)

with the varianceσT assumed to be uniform for all parameters. Although there might be rea-
sons for considering a full covariance matrix instead of a diagonal one, or even a co-variance
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matrix where the diagonal is not constant, in the present thesisσT will be considered bounded
for all parameters. Such co-variance matrix, which could beestimated by means of a devel-
opment set, is left as a possible generalisation to the present work. d is the dimensionality
of θ, i.e., the number of parameters that are going to be adapted.In this Equation, as in the
rest of the present thesis, symbol∼ means thatp(θ | T ) is distributed following a certain
distribution, which is specified to the right of such symbol.For now, and in order to preserve
generality, we will not instantiate parametersθ.

To summarise,p(y | x; T ,A) is given by expression

p(y | x; T ,A) ≈ Z

∫

p(A | θ; T ) p(θ | T ) p(y | x, θ) dθ

≈ Z

∫ |A|
∏

a=1

p(ya | xa, θ) N (θ; θT , I · σT ) p(y | x, θ) dθ. (4.9)

Here,Z is the normalisation constant required for ensuring thatp(y|x; T ,A) is actually a
probability. The termp(xa | θ) present in Equation 4.7 can be simplified ifp(A | θ; T ) is
plugged into Equation 4.5. The intuitive reason for this lies in the definition of the model
of p(y | x) itself. One of the main advantages of using a conditional model p(y | x) (dis-
criminative model), instead of attempting to model the joint distributionp(y,x) (generative
model), is that the conditional model does not need to include a model ofp(x) (Sutton and
McCallum, 2006). For this reason,p(x) can be assumed to be independent of the model
parametersθ. Hence, the termp(xa | θ) present in Equation 4.7 can be out-factored in the
integral in the denominator of Equation 4.5, and then simplified with the same term in the
numerator.

Note that the formulation presented here is general enough so as to consider as model
parameters both the log-linear weightsλ and the feature functionsh(·, ·) detailed in Equa-
tion 1.6. In the following, a detailed formulation about howto apply BPA to the log-linear
weightsλ or, alternatively, to the feature functions, is presented.Even though the formula-
tion allows considering both as parameters, and the formulation required for adapting both is
pretty straight-forward once the formulation for adaptingeach independently is available, we
will not attempt to adapt both in the present work. The reasonfor this is that, as it will be
analysed later on, adapting the feature functions is already a very sparse and computationally
costly problem. Hence, adapting both together is a problem that still requires much more
research before being able to yield satisfactory results.

If the adaptation data is known beforehand, i.e., there is a bilingual set of data that may be
used for adaptation purposes before the actual test needs tobe translated, the BPA procedure
may take place in an offline setting, in which computational restrictions are not so demanding.
We will name this kind of adaptationbatchadaptation, and in such case the above formulae
can be applied directly. Alternatively, if there is no adaptation set readily available before
the actual test set is to be translated, it is also possible touse the test sentences that have
already been translated as adaptation data for the next sentences to be translated, assuming
an interactive scenario in which each sentence is correctedand validated by a human user
immediately after such sentence is translated by the system. Thus, the adaptation data is
viewed by the system as a data stream, in which each sample arrives at a given timet and
the system needs to make the best out of the information it contains. This kind of scenario
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will be calledonlineadaptation, and in this case computational restrictions are much more
important given that the system needs to adapt its parameters in real time. Section 4.4 will be
devoted to instantiating the formulae presented in this section to an online scenario.

4.3.1 Adaptation of log-linear weights

One way to cope with the adaptation problem is to adapt the scaling weightsλ present in
state-of-the-art SMT systems, described in Equation 1.6 as

ŷ = argmax
y

M
∑

m=1

λm hm(x,y) = argmax
y

λ · h(x,y).

These weights adjust the importance of each single model within the specific task being dealt
with. However, good values for a certain task might not be appropriate values for other tasks.
To exemplify this, consider for instance that the original translation model has been trained
on a domain in which sentences tend to be long, such as for example in a parliamentary
debate. Then, if we intend to translate another domain in which sentences are rather short,
such as sentences of medical diagnosis, we would ideally like thatλ is adjusted conveniently
to reflect this fact. Obviously, adaptingλ will have the drawback that the individual models
(i.e., the featuresh(·, ·)) will not be adapted to the new task, and, furthermore, unseen events
that did not appear inT but do appear inA will still be considered unseen by the adapted
model. Nevertheless, and although adaptingλ is a coarse-grained adaptation strategy, it
cannot be underestimated, since adjusting the importance of every single model present in
state-of-the-art SMT systems often leads to very large improvements in the final translation
quality delivered by the system. Adaptingλ could be seen as an efficient adaptation strategy
aimed at adaptation between tasks which are different, but not dramatically different. When
attempting to adapt a translation model to a very different task, adaptingλ might possibly
not be enough, since e.g. out-of-vocabulary words will havea much more important effect
thanλ.

Typically, the weights of the log-linear combination in Equation 1.6 are optimised by
means ofminimum error rate training(MERT) (Och, 2003), as described in Section 1.2.1.
Such algorithm consists of two basic steps. First,n-best hypotheses are extracted for each
one of the sentences of a given development set. Next, the optimumλ is computed so that
the best hypotheses in then-best list, according to a reference translation and a givenmetric,
are the ones that the search algorithm would produce. These two steps are repeated until
convergence.

This approach has two main problems. On the one hand, that it heavily relies on having
a fair amount of data available as development set. On the other hand, that itonly relies
on the data in the development set. These two problems have asconsequence that, if the
development set made available to the system is not big enough, MERT will most likely
become unstable and fail in obtaining an appropriate weightvectorλ (Clark et al., 2011;
Gascó et al., 2010).

However, it is quite common to have a great amount of data available in a given domain,
but only a small amount from the specific domain we are interested in translating. Precisely
this scenario is appropriate for BPA: under this paradigm, the weight vectorλ is biasedto-
wards the optimal one according to the adaptation set, whileavoiding over-training towards

GST-DSIC-UPV 91



Chapter 4. Bayesian translation model adaptation

such set by not forgetting the generality provided by the training set. Furthermore, recom-
putingλ from scratch by means of MERT may imply a computational overhead which may
not be acceptable in certain environments, such as SMT systems configured for on-line trans-
lation or interactive machine translation, in which the final human user is waiting for the
translations to be produced.

For adapting the log-linear weightsλ by means of BPA, Equation 4.9 needs to be instan-
tiated by considering as translation model a log-linear model. Then, we can assume that the
only parameters of our model are the log-linear weightsλ, i.e.,θ ≡ λ, and that the feature
functionsh are fixed. By doing so, we obtain

p(y | x; T , A) = Z

∫

p(A | λ; T ) p(λ | T ) p(y | x,λ)dλ

∝

∫ |A|
∏

a=1

exp
∑

m λmhm(xa,ya)
∑

y′ exp
∑

m λmhm(xa,y′)

exp

{

−
||λ− λT ||2

2σT

}

exp
∑

m λmhm(x,y)
∑

y′ exp
∑

m λmhm(x,y′)
dλ, (4.10)

with the decision rule given by

ŷ = argmax
y

p(y | x; T ,A). (4.11)

It should be noted that the predictive distribution in Equation 4.10 includes, in its last
term, the same distribution present in the original decision rule given in Equation 1.6, but
complemented with the prior over the model parameters and the probability of the adaptation
sample.

When taking a look at Equation 4.10, it is easy to think that the practical implementation
of such formula will be too costly in computational terms. Infact, a common drawback
when applying the Bayesian framework to real-sized tasks isprecisely the computational
expensiveness of the algorithms derived from such formulation. Nevertheless, we will see
later on, in Section 4.6 that this issue can be efficiently handled by means of random sampling
strategies, which will prove experimentally to yield an appropriate performance.

4.3.2 Adaptation of log-linear features

A natural extension of the adaptation ofλ described above consists in adapting the log-linear
feature functionsh = {h1, . . . , hK}. However, adaptingh is not an easy task, since such
feature functions are often of a very different nature. For instance, some of them, as e.g. the
translation models, are often defined at the local phrase level. This implies that the value of
that specific locally-defined featureh for a given sentence pair(x,y) can be computed as
the summation of the value of that feature for each one of the phrases(x̃, ỹ) that compose
that sentence pair, i.e.,h(x,y) =

∑

k h(x̃k, ỹk). Note that, in this case, we are using a
summation instead of a product because the features are defined in the logarithmic domain.
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However, other features, such as the reordering model, attempt to model long-range depen-
dencies among phrases, and hence cannot be defined at the local phrase level. Other common
features are the number of phrases present in the sentence and the number of words that
compose the output sentence, which cannot be adapted. Although the theoretical framework
would possibly be suitable for adapting all feature functions (which allow adaptation), and
there could be reasons for doing so, in the present work we will only attempt to adapt those
feature functions which can be defined at the local phrase level. Given the premise that such
feature functions are defined at the phrase level, they can beconsidered either as functions
assigning scores to certain phrase pairs, which is zero if such phrase pair has not been ob-
served in training time, or as vectors containing the scoresof the phrases seen in training
time. Hence, the amount of parameters to be adapted in this case is usually in the range of
several millions of parameters, i.e., the number of phrasesthat have been observed in training
time multiplied by the number of features to be adapted. Letℓ be the set of feature functions
defined at the local phrase level. Then, instead of adapting each one of the feature functions
in ℓ, we will simplify the problem by definingg as the weighted combination of such features,
and attempt to adaptg instead. Formally,g is defined as

g(x,y) =
∑

l∈ℓ

λlhl(x,y) =
∑

l∈ℓ

∑

k

λlhl(x̃k, ỹk) =
∑

k

g(x̃k, ỹk). (4.12)

Then, in order to reduce sparseness, we can study the effect of adapting the translation models
defined at the local level by adaptingg. Hence, as done in Section 4.3.1, Equation 4.9 can be
instantiated consideringθ ≡ g as

p(y | x; T ,A) = Z

∫

p(A | g; T )p(g | T )p(y | x,g)dg

∝

∫ |A|
∏

a=1

exp
{

g(xa,ya) +
∑

m/∈ℓ λmhm(xa,ya)
}

∑

y′ exp
{

g(xa,y′) +
∑

m/∈ℓ λmhm(xa,y′)
}

exp

{

−
||g− gT ||2

2σT

}

exp
{

g(x,y) +
∑

m/∈ℓ λm hm(x,y)
}

∑

y′ exp
{

g(x,y′) +
∑

m/∈ℓ λm hm(x,y′)
} dg. (4.13)

In this last equation, the term||g−gT ||2 present in the parameter prior is well defined ifg is
understood as a vector with the size of the phrase-table.

As explained in Section 4.3.1, in this case the integral in Equation 4.13 will also be
handled by means of random sampling strategies. However, itmust also be considered that
in the case of Section 4.3.1 the size ofθ (in that case, the log-linear weightsλ) is very small,
since the amount of models included in state-of-the-art log-linear models is usually around
14. In contrast, when adapting the feature functions the size of θ (in this case the features
g defined at the local translation unit level) is much larger, in the range of several millions
of parameters. For this reason, and as will be explained morein detail in Section 4.8, the
adaptation of the feature functions under the BPA paradigm will not be as successful as the
adaptation of the log-linear weightsλ.
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4.4 Online Bayesian adaptation

The adaptation problem becomes even more important in scenarios where collaboration be-
tween a human expert and a machine translation system is required in order to achieve high
quality translations in an efficient manner. This is the casein scenarios such ascomputer as-
sisted translation(CAT) andinteractive machine translation(IMT) (Barrachina et al., 2009)
(see Section 1.3), where human-machine interaction is essential to produce high quality re-
sults while profiting of the efficiency of machine translation systems. In these scenarios, the
SMT system proposes a translation hypothesis to the human expert, who may then amend the
sentence or accept it completely as correct. Then, the humantranslator expects the system to
learn from its own errors and improve its future translations by using the feedback provided.
To make this problem even more challenging, it is often the case that human translators need
to translate documents with different styles and topics, even in the same day. For this rea-
son, two main challenges arise: first, to make use of the adaptation data provided by the user
even when such adaptation data is very scarce because he has just started working on a new
domain. Second, to perform adaptation based on the current input data, which might be dif-
ferent from the data collected previously, implying that parameters computed for the first set
of sentences might not be appropriate for subsequent ones. These two problems are specially
adequate for anonlineimplementation of BPA, given that the stability will be provided by the
prior over the model parameters. However, since adapting the feature functions is way too
costly for an online setting, in this case we will only attempt to adapt the log-linear weights
λ. By considering as adaptation setA = At only the last|At| sentences already corrected
by the human translator at timet, and considering as model parametersλ ≡ θ, the BPA
paradigm may also be applied for online adaptation by instantiating Equation 4.9 as follows:

p(y | x; T ,At) = Z

∫

p(At | λ; T )p(λ | T )p(y | x,λ)dλ

∝ Z

∫ |At|
∏

a=1

exp
∑

k λk hk(xa,ya)
∑

y′ exp
∑

k λk hk(xa,y′)

exp

{

−
||λ− λT ||2

2σT

}

exp
∑

k λk hk(x,y)
∑

y′ exp
∑

k λk hk(x,y′)
dλ. (4.14)

Note that the data withinAt may be as small as one sentence, or even only an incomplete
sentence. In the case|At| = 1, we have that the system may already start with the online
adaptation with as few as one adaptation sentence. Furthermore, if the SMT system is be-
ing used within an interactive environment, such as IMT,|At| may even be less than one:
whenever a human translator has validated part of the sentence that is being translated, the
SMT system may already start the adaptation process by usingas new evidence the chunk
of sentence that has already been validated.At could be seen as a sort of cache, or trailing
sliding window, whose purpose is to bias the model distribution towards the data seen more
recently.

As will be seen later in Section 4.6, in the Bayesian framework it is quite typical to re-
place the integral over the complete parametric space by a random sampling. Assuming such
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sampling fixed, Equation 4.14 allows an efficient, incremental implementation. To under-
stand why this is so, let us analyse each component independently: first, p(λ | T ) can be
precomputed. Second,p(y | x,λ) needs to be computed for each test sentence, and for
each hypothesis considered, including the summation in thedenominator. However, once
p(y | x,λ) has been computed,p(At | λ; T ) only requires one division and one multipli-
cation in order to incorporate the last sentence. Since eachof the adaptation samples within
p(At | λ; T ) were, at a given time, test sentences, incorporating the probability of the sen-
tence seen at timet − 1 into At only requires one multiplication and one division. Hence,
applying Eq. 4.9 in an on-line setting does not require a significant computational overhead
when compared to the cost of performing the search for the output sentence.

4.5 Bayesian adaptation for model stabilisation

Although the main goal of BPA is model adaptation, another possible application of BPA is
for model stabilisation, where the main goal is to achieve a model that is less prone to over-
train towards specific characteristics of the training set provided. This is quite frequent when
training data is scarce. In the model adaptation task, it is assumed that there is a large amount
of bilingual data readily available from a given domain, butonly few data from the specific
domain we are interested in translating. However, it is not always reasonable to assume that
such large amount of data is available in order to obtain a good estimation forθT . In some
tasks, such as the recent Haitian Creole translation taska, the amount of data available for that
specific translation pair is very scarce, and techniques must be developed for avoiding model
over-training, which would lead to an unstable system in translation time. BPA can also be
applied under this framework, with the purpose of alleviating the problems derived from data
scarcity. In this work, we will be exploring the stabilisation of the log-linear model weights
λ, whose estimation has been shown to be critical and reportedly unstable (Clark et al., 2011;
Gascó et al., 2010). Specifically, we explored two differentpossibilities:

• Assume that a small development setD ⊂ T is available. This development set may
not be enough to obtain a good estimation ofλT , but may be enough to be used as mean
vector for the Gaussian parameter prior within BPA. Then, the sampling procedure will
account for taking into consideration the neighbouring points within the parameter hy-
perplane, thus allowing the SMT system to consider a wider range of different parame-
ters. Hence, the parameter prior is given by expressionp(λ | T ) ∼ N (λ;λD, I · σD),
with λD andσD being estimated on setD.

• Assume there is no appropriate development set at all, or that the set that would be used
as development set would be best used as training data, or even that such development
set is available and it is possible to obtain a certainλD, but thisλD is not an appropriate
value for the mean of the Gaussian prior. However, we will assume that there is some
canonical set of parametersλC , which was obtained beforehand in some way which
is not important at this point (i.e., a very different task),but which is considered to be
robust enough. In this case,p(λ | T ) ∼ N (λ;λC , I · σC).

awww.statmt.org/wmt11/featured-translation-task.html
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Input: θT , the parameter mean vector of sizeQ

Output: S(θT ), a (pseudo-)random sampling ofθT

Initialise: S(θT ) = {θT }

For i in {1, . . . , Ns} do:
s = θT

k = i mod Q
sk = sk + rand(−0.5, 0.5)
S(θT ) = S(θT ) ∪ {s}

Figure 4.1: Algorithm for performing the heuristic sampling described. rand(a, b)
is a value drawn randomly in the interval[a, b], Ns is the desired size ofS(θT ) and
s = [s1, . . . , sk]

T is a single sample.

4.6 Sampling methods

Although Equation 4.9 is the correct thing to do from a theoretical point of view, in practise
computing the integral over the complete parametric space is unfeasible from the computa-
tional point of view. Moreover, it may also be the case that the function to be integrated
is not even integrable. For this reason, it is quite common toapproximate such integral by
means of a discrete sum over a sampling of such parameters. Inthis chapter, several sampling
techniques are explored, ranging from a simple heuristic tothe statistically sound Metropolis-
Hastings algorithm (Hastings, 1970).

In order to preserve generality, the sampling methods described in the following will
be formulated in terms ofθ, which may be appropriately instantiated according to Sec-
tions 4.3, 4.4, and 4.5. In the following, a specific samplingof θ will be denoted byS(θT ).
Although some of the algorithms presented for obtainingS(θT )will actually depend on other
variables asideθT , S(θT ) is adopted for denoting a generic sample ofθ, andSp(·)(θT ) is
employed for denoting that the sample has been obtained according to distributionp(·). This
subindex will be dropped especially in the experiments section, Section 4.8, with the purpose
of keeping notation unclogged and whenever such subindex can be assumed.

4.6.1 Heuristic sampling

As a first approach to sampling the integral in Equation 4.9, the close neighbourhood of the
mean vector of the parameter prior was explored. For doing this, each one of the components
of the parameter vector was perturbed by a random amount, successively, as described in
Figure 4.1. In this case,S(θT ) does not include any subindex because the distribution from
which it has been obtained is unknown and relies on pure heuristic decisions motivated by
working well in practise.

Once an appropriate sampleS(θT ) has been obtained, Equation 4.9 is approximated in
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this case as

p(y | x; T ,A) = Z

∫

p(A | θ; T )p(θ | T )p(y | x, θ) dθ

≈ Z ′
∑

θ∈S(θT )

p(A | θ; T )p(θ | T )p(y | x, θ). (4.15)

Note that normalisation constantZ has been replaced byZ ′ so thatp(y | x; T ,A) is still an
appropriately normalised probability.

Although this algorithm obviously involves a series of heuristic decisions and does not
depend on the actual probability to be sampled, it has one main advantage: it is independent
from p(A | θ; T ). This means that most of the terms within the integral in Equation 4.15 can
be precomputed, except for the probability of the current test sentence, i.e.,p(y | x, θ). Ob-
viously, this implies thatS(θT ) does not need to be recomputed whenever a new adaptation
sample arrives, which would be far too costly when applying BPA in an online scenario.

However, this heuristic algorithm has an important drawback. Other sampling algorithms,
such as Markov chain Monte-Carlo (Bishop, 2006), are appropriate for sampling from un-
normalised distributions, but the algorithm presented here is sensible to normalisation. This
can be seen e.g. in Equation 4.10: dropping normalisation constants leads to a product of
probabilities when computing the probability of the adaptation sample, which implies that
larger amounts of adaptation data will lead to smaller numeric values. Hence, increasing the
size ofA might fail to bias the final integral in a more stronger fashion when compared to the
prior p(θ | T ). For this reason, Equation 4.15 is complemented with a leveraging factorδ,
such that

p(y | x; T ,A) =
∑

θ∈S(θT )

(p(A | θ; T )p(y | x, θ))
1
δ p(θ | T ). (4.16)

Although there are other ways of adding this leveraging term, we chose this one for numeric
reasons.

Note that, although this algorithm resembles slightly the Gibbs sampling procedure (Ge-
man and Geman, 1984), there are important differences. In Gibbs sampling, each one of
the components ofθ would be drawn from the distributionp(θk | θ\k), whereθ\k denotes
θ1, . . . , θK but withθk omitted. This drawing procedure is repeated by cycling through each
one of the components, but when a new sample is drawn, the new value ofθk is used for
drawing the next sample, hence building a Markov chain. Thisis not the case in the algorithm
presented above. Hence, it cannot be said to form a Markov chain and it is not guaranteed
that it will finally sample from the desired distribution. Inaddition, from a pure theoretical
point of view, the termp(θ | T ) should be removed from Equation 4.15 (and hence also from
Equation 4.16) whenever it can be assumed that the heuristicsampling method described here
is obtaining a sample ofp(θ | T ). However, experimental results show that it presents an
appropriate behaviour for the specific task tackled here.

4.6.2 Gaussian sampling

The algorithm described in the previous section has the advantage that it does not require
the adaptation set to be known beforehand, and hence leads tothe benefit of being able to
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precompute most of the terms in Equation 4.15. On the other hand, it is a heuristic approach
that requires the introduction of an additional parameter.An alternative approach that is
still independent from the adaptation data, but has a closerrelation to the actual probability
being sampled is to sample the normal distribution (i.e., the parameter prior) directly, without
taking into account the probability of the adaptation data.In this way, the samples obtained
will follow the distributionp(θ | T ) ∼ N (θ; θT , I · σT ), which implies that they are more
closely related to the actual probability that should be sampled. However, it is not necessary
to re-compute the parameter sampling whenever new adaptation data arrives, as is the case
with the sampling strategy to be presented in the next section.

When samplingθ according top(θ | T ), then Equation 4.9 can be approximated, by the
Strong Law of Large Numbers (Robert and Casella, 2004), as

p(y | x; T ,A) = Z

∫

p(A | θ; T )p(θ | T )p(y | x, θ) dθ

≈ Z ′
∑

θ∈Sp(θ|T )(θT )

p(A | θ; T )p(y | x, θ), (4.17)

where the approximation will be an equality for|Sp(θ|T )(θT )| → ∞.
Looking at Equation 4.17 makes it obvious that considering aδ leveraging factor is mean-

ingless when considering Gaussian sampling, since the prior p(θ | T ) is not even present in
the summation.

4.6.3 Markov chain Monte Carlo

The purpose ofMarkov chain Monte Carlo(MCMC) methods (Bishop, 2006) is to obtain
a set of samplesSp(·)(θT ) of a variable (in this caseθ), where each sample is assumed to
be drawn from a certain distributionp(·), in this case the one comprised within the integral
in Equation 4.4, i.e.,p(θ | T ,A). MCMC methods are widely used in the machine learning
community when applying Bayesian methods and are speciallyappropriate for sampling from
distributions where it is possible to evaluate such distribution except for a certain normali-
sation constant (Bishop, 2006). For doing this, a (first order) Markov chain is established,
where each new sampleb θ∗ depends on the previous sampleθ′. Specifically, in this chapter
we will be using the Metropolis-Hastings (MH) algorithm (Hastings, 1970).

The MH algorithm basically consists of two steps. First, a sample θ∗ from a given
proposal distributionq(θ | θ′) is drawn. Next, such sample is accepted with probability
A(θ∗, θ′), given by expression

A(θ∗, θ′) = min

(

1,
p̃(θ∗)q(θ′ | θ∗)

p̃(θ′)q(θ∗ | θ′)

)

, (4.18)

with p(θ) = p̃(θ)/Zp being the distribution from which we intend to sample (p(θ | T ,A) =
p(θ | T )p(A | θ; T )/Zp in this case), andZp being the normalisation term forp(θ). In
Equation 4.18, it does not matter whetherp̃(θ) is used instead ofp(θ), since the normalisation

bTypically, MCMC establishes a Markov chain between states of the Markov blanket, and the samples denoted
here byθ are actually statesz of the Markov blanket. However, to simplify notation, in this chapter we assume
z ≡ θ.
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termZp within p(θ) can be simplified and the resulting Markov chain would be identical.
This is in practise very useful, since there are many applications, such as BPA in SMT, where
Zp cannot be computed. In addition, if the proposal distribution is symmetric, termsq(· | ·)
can also be simplified.

Once an appropriate sampleSp(θ|T ,A)(θT ) of p(θ | T ,A) has been obtained, Equation
4.9 is approximated, again by the Strong Law of Large Numbers(Robert and Casella, 2004),
in this case as

p(y | x; T ,A) = Z

∫

p(A | θ; T )p(θ | T )p(y | x, θ) dθ

≈ Z ′
∑

θ∈Sp(θ|T ,A)(θT )

p(y | x, θ), (4.19)

where the approximation will be an equality for|Sp(θ|T ,A)(θT )| → ∞. As in the case of
Gaussian sampling, including aδ leveraging term when dealing with MCMC sampling is
pointless.

Even though it might seem odd that termp(A | θ; T ) is dropped in Equation 4.19, but not
in Equation 4.17, the reason for this is that in the case of MCMC theθ-samples are obtained
from the conjugatep(A | θ; T ) · p(θ | T ), which is the same as obtaining them from the
posterior densityp(θ | T ,A), since the normalisation term can be neglected safely because
it is simplified in Equation 4.18. However, in the case of Gaussian sampling theθ-samples
are extracted fromp(θ | T ) directly, without taking into consideration the adaptation sample.
In fact, droppingp(A | θ; T ) in Equation 4.17 leads empirically to very bad results. In
this context, it is also interesting to point out that, for|S(θT )| → ∞, both methods should
theoretically converge to the same distribution. Nevertheless, the different meta-parameters
that control both sampling strategies may imply that one sampling strategy converges slower,
as would be the case, e.g., if the MCMC chain gets stuck in a local optimum of the probability
density function.

When building a MCMC chain, there are several things that need to be taken into account.
In the first place, the proposal distributionq needs to be established. Quite often, this is done
by setting

q(θ | θ′) ∼ N (θ; θ′, I · σo), (4.20)

whereN (θ′, I · σo) is the normal distribution with mean vectorθ′ and covariance matrix
a diagonal matrix with main diagonalσo, whenever independence between the components
of θ can be assumed. However, establishing an appropriateσo is critical; on the one hand,
because too small values ofσo will lead to a high rejection rate and a slow mixing chain,
meaning that the sampling chain will most likely get stuck ata local maximum of the density
hyper-surface. On the other hand, because ifσo is chosen too big it will lead to a chaotic chain
which will keep moving back and forth and will not be able to sample the density function
appropriately.

Another aspect that needs to be taken into account when building a MCMC chain is
the burn-in phase, which is the number of samples that need tobe drawn in order to be
able to assume independence from the initial state of the Markov chain. This point may
be very important, since if the starting point is not well chosen, the first samples obtained
by the MCMC procedure may introduce a non-desired bias whichdoes not depend on the
distribution being sampled, but rather on the starting point of the Markov chain.
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4.6.4 Viterbi-like approach

One last approach to the sampling problem is the Viterbi-like approach. Under this frame-
work, the core idea is to approximate the integral in Equation 4.9 by

p(y | x; T ,A) =

|A|
∏

a=1

p(ya | xa, θ̂) N (θ̂; θT , σT ) p(y | x, θ̂) (4.21)

where

θ̂ = argmax
θ∈S(θT )

|A|
∏

a=1

p(ya | xa, θ) N (θ; θT , σT ) p(y | x, θ) (4.22)

One important note regarding this kind of sampling is that, when assuming the Viterbi-like
approach for the integral, the resulting formulation fits nolonger into the Bayesian paradigm.
The key aspect of the Bayesian framework is precisely that itdoes not rely on a single point-
estimate of the model parameters, but rather keeps the generality provided by considering
all possible parameters. When assuming a Viterbi-like approach, we are in fact assigning a
single-best point estimate of the model parameters. Nevertheless, the Viterbi-like approach
is, from an intuitive point of view, a very straight-forwardapproximation to the integral de-
scribed in the BPA formulation, and, for this reason, we willalso conduct experiments with
this approach. It is worth noting that this single-best point estimate is still conceptually dif-
ferent from the single-best point estimate that would be obtained by applying the maximum-
likelihood framework, or even by using MERT in the case of adaptingλ (see Section 4.3),
since in this Viterbi-like approach the parameter priorp(θ | T ) is still present, and this is not
the case in non-Bayesian approaches.

The intuition behind the Viterbi-like approximation is that p(y | x; T ,A) could be, in
fact, a very sharp distribution, havinĝθ accumulate most of its probability mass. This is often
the case in many natural language processing tasks, as for example in speech recognition. In
other terms, this sampling approach could be seen as a sampling in which |S(θT )| = 1,
but with the specifics ≡ S(θT ) being chosen probabilistically according to distribution
p(y, θ | x; T ,A).

In this chapter,̂θ will be computed as the bestθ observed when samplingp(y | x; T ,A)
according to the algorithm described in Figure 4.1.

4.7 Practical approximations

In addition to performing a random sampling instead of computing the complete integral,
there are several issues that need to be taken care of before attempting to implement the
formula described in Equation 4.9 directly.

Firstly, the denominator within the componentsp(A | θ; T ) andp(y | x, θ) contains a
sum over all possible sentences of the target language, which is not computable. For this rea-
son,

∑

y′ is approximated as the sum over all the hypothesis within then-best list generated
by the decoder. Moreover, instead of performing a full search of the best possible translation
of a given input sentence, we will perform a re-rank of then-best list provided by the decoder
according to Equation 4.9.
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In addition, typical state-of-the-art phrase-based SMT systems do not guarantee com-
plete coverage of all possible sentence pairs due to the great number of heuristic decisions
involved in the estimation of the translation models (see Section 1.2.1). Furthermore, out-
of-vocabulary words may imply that the SMT model is unable toexplain a certain bilingual
sentence completely. This implies that the translation model is often unable to account for
a source sentence having a fixed translation, as is the case inthe adaptation data. Hence,
computingh(xa,ya) may not always be possible. For this reason, instead of usingthe true
reference present in the adaptation set, we will be using thebest possible translation that the
system is able to provide, hence approximatingp(A | θ; T ) as

p(A | θ; T ) ≈

|A|
∏

a=1

exp
∑

k λk fk(xa,y
∗
a)

∑

y′ exp
∑

k λkfk(xa,y′)
, (4.23)

wherey∗ represents the best hypothesis the search algorithm is ableto produce, according to
a given translation quality measure. This approximation was assumed both when considering
θ ≡ λ (Section 4.3.1) andθ ≡ g (Section 4.3.2), so that Equation 4.23 may be instantiated
appropriately following to Equations 4.10, 4.13, and 4.14.

Note that, after the approximations described above, applying BPA for feature function
adaptation as described in Section 4.3.2 implies that only those phrases already present in the
phrase-table, i.e., phrases that have already been seen in the training data, may be affected
by the BPA procedure. In order to introduce new phrases, it would be first necessary to solve
the coverage problem described. This being done, it would bepossible to introduce new
phrases into the phrase-table with a certainǫ score, and then allow the BPA procedure to
determine whether that new phrase pair should be promoted. Theoretically, the formulation
presented in Section 4.3 would allow the introduction of unseen phrases into the phrase-table
with a (possibly small) scoreǫ, and then allow the adaptation procedure to determine whether
such phrase should gain more weight in the translation process. However, in the experiments
performed in this chapter this was not done for comparison reasons, since our purpose is
to analyse how well the BPA is able to adapt existing model parameters: introducing new
phrases has already been done in other works (Ortiz-Martínez et al., 2010), and is known to
provide interesting improvements.

Lastly, adaptingh is a very costly operation, since the amount of parameters tobe adapted
is usually in the range of several millions. For this reason,instead of obtaining fully ran-
domised parameter samples (i.e. sampling the wholeg), we restrained such sampling to only
those entries ofg(x̃, ỹ) that may actually produce a change in the translation of the test sen-
tence being considered. This implies considering for adaptation only those phrase pairs that
are present only in some of the translation hypotheses within then-best list, but not in all
of them. However, this is also costly, since it implies that,first, it must be assessed which
phrases are to be considered. Then, parameter sampling needs to be performed once for each
one of the sentences present in the test set. Note that, if thesampling ofg is performed
without constraints, it is most likely thatp(y | x) no longer describes a probability distri-
bution, since a re-normalisation step would be required. However, since the normalisation
constant required would have no effect on the maximisation described in Equation 1.6, this
re-normalisation step may be safely omitted.
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4.8 Experiments

Experiments were performed by means of the open-source MT toolkit Moses (Koehn et al.,
2007) in its default non-monotonicconfiguration. The phrase-tables were generated by means
of symmetrised word alignments obtained with GIZA++ (Och and Ney, 2003). The language
model used was a 5-gram with modified Kneser-Ney smoothing (Kneser and Ney, 1995), built
with the SRILM toolkit (Stolcke, 2002). The log-linear combination weights in Equation 1.6
were optimised usingminimum error rate training(MERT) (Och, 2003).

In this section, whenever a figure shows two plots side by side, the left plot will display
translation quality and the right plot will display the corresponding confidence interval sizes.
In addition, and unless stated otherwise, thex-axis will always be in logarithmic scale. The
scale of they-axis will be linear whenever the plot displays translationquality, and logarith-
mic in the case of the confidence interval sizes.

4.8.1 Corpora

The experiments conducted in this chapter were carried out on three different bilingual cor-
pora, belonging each one to a different domain.

In the first place, the Europarl and the News-Commentary corpora, in their WMT10 parti-
tion, were considered (see Section 1.4 for further details on these corpora). Due to its generic
nature, the Europarl corpus is suitable for training a first canonical SMT system, which will
be then adapted to more specific tasks. Specifically, the standard featuresh were estimated
on the training partition, whereas the log-linear combination weightsλ were estimated on the
development subsetD by means of MERT. This set of weights will be referred to asλξ. In
addition, the training part of the News-Commentary corpus will be used for the purpose of
obtaining adaptation samples, which will be then used either as adaptation sampleA within
BPA, or as development set when re-estimatingλ by means of MERT. Translation quality
will be assessed on the NC 2009 test set.

Lastly, validation experiments were also conducted on the TED corpus. This corpus is
obtained from a collection of public speeches on a variety oftopics for which video, tran-
scripts and translations are freely available on the Web. Again, the domain is very broad,
since there is no restriction on the subject of the talks. However, due to the nature of the cor-
pus, language style is very different from the other corporamentioned. This corpus was used
in a recent evaluation campaign (Paul et al., 2010), and is only available for French–English
translation. Statistics are shown in Table 4.2. As for NC, the training part will be used for
obtaining adaptation samples.

The major part of the experiments reported in this chapter were performed by using the
NC 2009 set as test data, and hence with the adaptation data drawn at random from the NC
training data. However, some experiments were also performed on the TED data, with the
purpose of validating the conclusions drawn from the NC data. Hence, all of the experiments
reported in this section were conducted on the NC data unlessstated otherwise.
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German English
Training Sentences 100k
(AdaptationA) Run. words 2.5M 2.4M

Vocabulary 102.6k 47.2k

Test 2009
Sentences 2525

Run. words 62.7k 65.6k
OoV. words 3352 1683

Table 4.1: Main figures of the News-Commentary corpus.OoV stands for Out of
Vocabulary. k/M stands for thousands/millions of elements.

French English
Training Sentences 47.5k
(AdaptationA) Run. words 792.9k 747.2k

Vocabulary 31.7k 24.6k

Test
Sentences 641

Run. words 12.8k 12.6k
OoV. words 954 427

Table 4.2: Main figures of the TED corpus.OoV stands for Out of Vocabulary. k/M
stands for thousands/millions of elements.

4.8.2 Machine translation evaluation measures

For the purpose of computing the best hypothesisy∗ as described in Equation 4.23, TER will
be used. Although BLEU is slightly more popular in the SMT community, BLEU is only
well defined on the corpus level, but not on the sentence level(see Section 1.2.2). Hence, it is
not well suited for our purposes since the complete set ofn-best candidates provided by the
decoder can score zero. For coherence reasons, results willbe reported with TER.

In the case of online adaptation, translation quality will be measured before adaptation
takes place, i.e., first the system will propose a hypothesis, then the translation quality of that
hypothesis is evaluated, and finally the adaptation procedure is activated. This implies that
the final translation quality is the average over the complete test set, although the system was
not adapted at all when translating the first sentences.

4.8.3 Batch adaptation results

In the first place, the effect of BPA in a batch setup was studied, i.e., in a scenario where
there is an adaptation set available beforehand. In this context, all of the sampling algorithms
described in Section 4.6 can be applied. The experiments reported in the following were
conducted by using the Europarl training data as training set T and the Europarl development
data for estimating the initial set of weightsλT ≡ λξ (see Table 1.1). The baseline system
reported refers to the non-adapted system, i.e., usingλT ≡ λξ as weight vector within the
decoder to obtain the final translations. The adaptation setA was extracted from the News-
Commentary or TED training data at random, and this extraction was performed 10 times,
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so that each one of the points in the plots presented in this chapter constitutes the average of
these 10 repetitions. Finally, the final test set used for evaluation purposes was the 2009 test
set (see Table 4.1) in the case of the News-Commentary corpus, and the Test set in the case
of the TED corpus.

To synthesise the experimental setup, the different SMT systems compared in this section
when adaptingλ are:

• Baseline system: Phrase-pairs extracted from the Europarltraining corpus (i.e.,h esti-
mated on the Europarl training data). Log-linear weightsλ estimated on the develop-
ment partition of the Europarl corpus,λT ≡ λξ

• BPA: Initial setup identical to the baseline system. Then, adaptation samplesA were
randomly extracted from the training partitions of the in-domain corpora (i.e., NC or
TED). The setλ estimated on the Europarl development data is used asλT within the
parameter priorp(λ | T ) in all the experiments concerning the adaptation ofλ.

• MERT: Initial setup identical to the baseline system. Then,the adaptation samplesA
described above were used for estimating a new set of log-linear weights by means of
MERT.

• MERT+: Initial setup identical to the baseline system. Then, bothA and the Europarl
development set were used for estimating a new set ofλ.

TheMERT andMERT+ settings will be used in the last part of this section, when comparing
the performance of the BPA systems.

The first experiments conducted were performed by adapting the scaling factorsλ and
with the purpose of analysing the effect of the different parameters involved in the heuris-
tic sampling strategy, such as the leveraging factorδ, the prior varianceσT , or the size of
S(θT ). With the same purpose, additional experiments were performed for the Viterbi, Gaus-
sian and MCMC sampling strategies. Since feature function adaptation is much more costly
than adapting the scaling factorsλ, most of the experiments reported involve adaptingλ,
although some experiments adaptingh are also reported. Adaptingλ by means of BPA is
compared with using the adaptation setA as development set for re-estimatingλ from scratch
by means of MERT, and also with re-estimatingλ by using both the adaptation dataA and
the development set.

Heuristic sampling

Effect of different values of the leveraging factorδ Results for this kind of sampling
are shown in Figure 4.2, for different values of theδ leveraging factor and with increasing
number of adaptation samples.

On the one hand, the plot on the left side displays translation quality, as measured by TER.
As shown, BPA is able to improve over the unadapted system from the very beginning. Re-
garding the effect ofδ, the results show that this parameter leveraging factor hasan important
role in the confidence interval sizes, which is why increasing δ leads to smoother adaptation
curves. In addition, smaller values ofδ lead to a slight degradation in translation quality
when the amount of adaptation samples becomes larger, and also present slightly more noisy
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Figure 4.2: Batch adaptation for different values of delta. News-Commentary corpus
considered. In these plots, the size of then-best list was fixed to200.
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Figure 4.3: Batch adaptation for different values of delta for the TED corpus. In these
plots, the size of then-best list was fixed to200.

curves, i.e., with larger confidence intervals. The reason for this can be explained by looking
at Equation 4.16. Sincep(A | θ; T ) is in practise implemented as a product of probabilities,
the more adaptation samples the smaller becomesp(A | θ; T ), and a higher value ofδ is
needed to compensate this fact. Although larger values ofδ do not suffer the problem de-
scribed, they yield smaller improvements in terms of translation quality for smaller amount
of samples. This suggests the need of aδ which depends on the size of the adaptation sample.
Despite the fact that the differences between differentδ values observed in Figure 4.2 for
larger adaptation set sizes are very small, and are in fact only statistically significant in some
cases, such differences were found to be coherent in other language pairs and other corpora
(see Figure 4.3 for results on the TED corpus). Values forδ smaller than1 were also analysed,
although the resulting curves ended up always between the ones corresponding toδ = 1 and
δ = 16, but without displaying a clear behaviour. This result is actually quite logical, since
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values ofδ smaller than1 do not have much sense from a theoretical point of view either.

Effect of the prior distribution variance σT Another (meta-) parameter that needs to be
fixed empirically is the variance of the normal distributionof the model parameters, i.e.,
p(θ | T ) ∼ N (λT , I · σT ). For doing this,δ = 4 was chosen, according to the experiments
detailed above and given that it appears to be the value that presents a good compromise
in quality for small and big adaptation set sizes and in addition presents a more smooth
behaviour than the curves with smaller values ofδ. The result of considering different values
for σT is shown in Figure 4.4. The effect ofσT in the performance achieved by BPA is
very important, since low values ofσT lead to low variability and no adaptation takes place.
On the other hand, too high values ofσT may yield too abrupt changes, leading to over-
trained adaptation curves and larger confidence intervals.Confidence intervals did not seem
to present important changes when varyingσT , and are hence omitted here for clarity reasons.
However,σT = 0.1 did seem to yield slightly smaller confidence intervals thanσT = 0.01,
which is the reason why the rest of the experiments in this section were performed with
σT = 0.1. ForσT ≥ 1, the adaptation curves were practically indistinguishable.
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Figure 4.4: Translation quality for different variancesσT . In this case,δ was set to4
and the size ofS(θT ) was set to200.

Considering different n-best list sizes As said in Section 4.7, the BPA implementation
used in the present work approximates the summation

∑

y′ as the sum over a givenn-best
list. Moreover, the best hypothesis that the system is able to deliver is also selected from
such ann-best list. For these two reasons, it is also interesting to study the behaviour of
BPA when incrementing suchn-best list, and this was done onceδ andσT had been fixed
empirically. In order to avoid an overwhelming amount of results, only those results obtained
when considering 100 adaptation samples are displayed in Figure 4.5. As it can be seen,
TER drops quite monotonically for allδ values, until about 800, where it starts to stabilise.
We consider that this is also an interesting result. When increasing then-best list size, it is
probable that the hypothesisy∗ is chosen from a deeper position in such list. Although this
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Figure 4.5: Batch adaptation with heuristic sampling for different values ofδ andn-
best. The left plot displays translation quality as measured by TER and the right plot
displays confidence interval sizes. The size of the adaptation data was fixed to 100
sentences. Note that, for clarity reasons, thex-axis isbroken, meaning that the distance
between the1000 and10000 ticks is actually altered.

sounds reasonable, it could also be possible that deepeninginto then-best list would yield
degenerate values of TER (Martínez-Gómez et al., 2011), hence leading to an over-trained
system. However, this does not seem to be the case with BPA.

Effect of increasing the amount of sampled parameters Finally, we also studied the ef-
fect of varying the number of sampled parameters|S(θT )|. Theoretically, increasing the size
of this set size should only lead to more stable results, but should not have any effect in terms
of translation quality: whenever it can be assumed thatS(θT ) is a good representative of the
true distribution of the model parametersθ, increasing the number of sampled parameters
should only provide more robustness. As expected, (average) translation quality was not af-
fected by the size ofS(θT ), and the curves obtained were almost identical. For this reason,
only the confidence interval sizes are reported here. Such results are shown in Figure 4.6,
with the amount of sampled weights|S(θT )| being represented in the plot bynw. The re-
sults show that the more sampledλ, the more stable the results appear to be. However, when
increasing|S(θT )| from 1000 to 2000, the improvements in stability are alreadyvery scarce,
and might not be worth the computational overhead.

Viterbi approach

The Viterbi approach described in Section 4.6.4 was also analysed, and the results obtained
are shown in Figure 4.7, for different values ofδ. When comparing this set of plots with Fig-
ure 4.2, it is interesting to realise that the effect of the Viterbi approach is that the leveraging
factorδ has practically no effect. This is true both when the amount of adaptation samples is
low, but also when the amount of adaptation samples increases. On the one hand, this is a de-
sirable behaviour, since it drops the necessity of usingδ when dealing with small adaptation
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Figure 4.6: Effect of increasing the size ofS(θT ), i.e., |S(θT )| denoted bynw in the
plot, on the size of the confidence intervals.δ was set to4, and the size of then-best
list to 200.

sets. On the other hand, however, it means that for larger adaptation setsδ does not compen-
sate the problem described in Section 4.6.1 and all adaptation curves seem to re-bounce after
about 100 adaptation samples have been seen. The fact that all curves present a very similar
behaviour may be due to the own nature of this sampling strategy: sinceS(θT ) is restrained
to one single-bestλ, chosen according to the distribution to be sampled, the results are bound
to be very similar.
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Figure 4.7: Batch adaptation with Viterbi sampling and different amount of adaptation
set sizes. The size of then-best list was fixed to200 andσT = 0.1.
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Gaussian sampling

The next set of experiments involved sampling only according to the Gaussian prior. Results
for differentσT values are shown in Figure 4.8. DifferentσT values did not seem to affect
the final translation quality, and the adaptation curves present almost the same shape. As
shown, this sampling strategy performs almost as well as theheuristic approach until about
80 adaptation samples. At that point, the curves start to bounce back in a more chaotic
fashion than in the case of heuristic sampling. Most likely,this is due to the larger confidence
intervals entailed by sampling from Gaussian prior, when compared to those obtained with the
heuristic sampling, as shown in the right part of the figure. The reason for this might be that
Gaussian sampling introduces less variability than the heuristic sampling strategy because of
their own nature: Gaussian sampling obtains manyλ-samples from the close neighbourhood
ofλT , because of the shape of the Gaussian distribution, while the heuristic sampling strategy
is able to obtain more differentλ samples. Hence, the hypothesis provided as output in the
case of Gaussian sampling has been chosen by observing less variability in S(θT ), and is
thus less robust. Of course, having more variability inS(θT ) while ignoring completely the
distribution being sampled is not beneficial as such, but given that the true distribution being
sampled contains the probability of the adaptation dataA, and such probability is ignored by
both the heuristic and Gaussian strategies, increasing variability may be, to a certain extent,
the best way to include intoS(θT ) samples which are actually near the peak of the true
distribution that should sampled.
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Figure 4.8: Gaussian sampling strategy for batch adaptation ofλ.

MCMC sampling

As for MCMC sampling, the first experiments were conducted inorder to establish appro-
priate values for prior and proposal distribution variances (σT andσo, respectively) and the
interaction thereof. As for the case ofσT in heuristic sampling,σT andσo have a very im-
portant role in MCMC. As explained in Section 4.6.3, on the one hand, small values ofσo

lead to slow mixing chains and no adaptation would take place, but on the other hand too high
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Figure 4.9: Translation quality for different values ofσT andσo within the MCMC
procedure for BPA.δ = 1 and size ofn-best set to200.

values lead to noisy chains that never converge and hence do not yield appropriate results.
Furthermore,σo is tightly related toσT , since they both control how much variation is intro-
duced into the predictive distribution of BPA. Their interaction is shown in Figure 4.9. This
plot displays the translation quality that can be achieved for a givenσT , when varying the
proposal distribution varianceσo. As expected,σT andσo seem to be very closely related,
and the best values forσo depend on the prior distribution variance, with all curves present-
ing an optimum atσo = 0.1 · σT . Consideringσo > σT seems to lead to systems where
no adaptation takes place, and all curves remain steadily atthe baseline translation quality
whenever the proposal distribution variance is higher thanthe prior variance. As for the case
of heuristic sampling, adequate values forσT seem to be1 or 0.1. Again, in the rest of the
experiments within this Section,σT was set to0.1 for having slightly smaller confidence in-
tervals, and henceσo = 0.01. Confidence intervals are omitted in this case because they were
very similar, except for the cases were no adaptation takes place, where confidence interval
sizes were very near to 0.

Another aspect that needs to be taken into account when working with MCMC is the
length of the burn-in phase. As Figure 4.10 shows, this aspect of the MCMC chain does
have a slight effect on the stability of the resulting system, although it fades away when
increasing the size ofS(θT ). This was quite expected, since increasing the length of the
Markov chain implies that the initial noise it might containis smoothed by the rest of the
chain. However, when observing the plot, it does seem that anappropriate burn-in phase
should contain between 500 and 1000 samples, although the differences observed are so
scarce and incoherent that no final conclusion could be drawn. Nevertheless, after observing
this plot, the length of the burn-in phase was set to 500 in therest of the experiments of this
chapter that involve MCMC.

As for the effect of considering differentS(θT ) sizes, i.e., different MCMC chain lengths,
the results of such experimentation are presented in Figure4.11. In the left plot, translation
quality is shown, whereas the right plot displays the size ofthe confidence intervals in the
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Figure 4.11: Effect on translation quality and confidence interval sizesof considering
different S(θT ) sizes, denoted bynw in the plot. Burn-in duration was set to200.
σT = 0.1 andσo = 0.01.

logarithmic scale. Although it might seem thatS(θT ) size is a critical factor when applying
MCMC in BPA, such conclusion is not completely true. Taking acloser look at the confi-
dence intervals, these were as large as 3 TER points when considering only 10 samples of
θT . Hence, differences observed in terms of translation quality are not significant. What is
significant, however, is that stability in BPA is achieved byincreasing the number of obser-
vations ofθT that approximate the integral in Equation 4.9. As for the case of the heuristic
method above, the difference in stability between performing 1000 or 2000 sampling steps
may not be worth the computational overhead, since at that point the curves present almost
the same shape.
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Lastly, and as done for the case of the heuristic sampling above, we also analysed the
effect of varying the size of then-best list considered. Such results are shown in Figure 4.12.
As in the case of heuristic sampling, BPA is able to cope well with additional input infor-
mation, and additional hypotheses in then-best list imply that BPA is able to select better
hypothesis without incurring into over-trained solutions.

Comparison between BPA and parameter re-estimation

In addition to results with BPA and for comparison purposes,experiments usingA as devel-
opment set for performing a full re-estimation ofλ with MERT were also conducted. How-
ever, it could be argued that such setup is not a fair comparison, since BPA also makes use of
the information obtained in the training phase, such information being contained within the
prior over the parameters. For this reason, we also provide results obtained by re-estimatingλ
on a development set built of the original development set used for the initial estimation, and
the adaptation data, both concatenated, i.e.,D ∪A. This setup will be referred to asMERT+.
Nevertheless, note that such baselines are not really a faircomparison. On the one hand,
because they are both by far much more costly than BPA, since re-estimating the parameters
from scratch takes several hours or even days, whereas the BPA implementation takes only a
couple of minutes. On the other hand, because the MERT procedure involves several transla-
tion steps, each of which re-computes then-best list and hence has better chances to obtain
better hypotheses.

Results of such comparison can be seen in Figure 4.13, where only the heuristic and
MCMC sampling strategies are reported in order to avoid clogging the plots. It can be seen
that BPA is able to provide better results than re-estimatingλ from scratch for small sizes of
A. If such re-estimation is carried out by using onlyA, it comes to a point where it performs
better than BPA. However, re-estimatingλ by using bothA and the Europarl development
data (D) provides significantly worse results.

On the other hand, theMERT setup displays a rather chaotic curve, which can be explained
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Figure 4.13: Translation quality, as measured by TER, obtained when comparing per-
forming a full re-estimation ofλ by means of MERT, and when using the same adapta-
tion data as adaptation set within BPA. News-Commentary corpus considered.

when looking at the plot on the right, which depicts the size of the confidence interval sizes
in logarithmic scale. For small sizes ofA, such intervals are relatively large for the case of
MERT, as large as 3 TER points. However, in the case of BPA they are much smaller, as
small as 0.6 even for as few as 10 adaptation samples. In contrast,MERT+ yields very small
confidence interval sizes, but, as seen previously, is not able to provide better performance
than BPA.

Regarding the performance of the MCMC sampling strategy when compared to the heuris-
tic sampling, the experimental results in Figure 4.13 show that the heuristic strategy is able
to yield better results in terms of translation quality thanthe MCMC strategy, until about
100 adaptation samples, which is the point where the normalisation problem described in
Section 4.6.1 starts to appear. Nevertheless, it is at that point where the advantages provided
by BPA start to fade. In addition, the heuristic strategy provides smaller confidence interval
sizes, and, furthermore, it is much cheaper in terms of computational resources. Hence, it can
be stated that the heuristic strategy is the one that yields the best results, when applying BPA
to SMT.

Additional experiments comparing BPA with both sampling strategies and the MERT
baselines were performed on the TED corpus. The meta-parameters in BPA were set ac-
cording to the experiments performed previously on the News-Commentary corpus. Such
experiments are shown in Figure 4.14, for the case of TER, andin Figure 4.15 for the case of
BLEU. In this case, the conclusions to be drawn are similar tothose obtained from the News-
Commentary corpus, although in this case both MERT setups behave slightly worse than in
the previous case. More specifically, theMERT setup presents very high confidence intervals
when the amount of adaptation samples is low, and theMERT+ setup does not achieve to per-
form significantly better than the baseline setup in any case. Meanwhile, both BPA settings
are able to improve performance from the very beginning, improving the baseline by more
than 2 TER (1-2 BLEU) points with as few as 50 adaptation samples. In terms of BLEU,
the BPA approaches seem to behave in a slightly less predictable fashion. However, this is
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Figure 4.14: Translation quality, as measured by TER, obtained when comparing per-
forming a full re-estimation ofλ by means of MERT, and when using the same adapta-
tion data as adaptation set within BPA. TED corpus considered.
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Figure 4.15: Translation quality, as measured by BLEU, obtained when comparing
performing a full re-estimation ofλ by means of MERT, and when using the same
adaptation data as adaptation set within BPA.TED corpus considered.

actually expected, since the best possible hypothesisy∗ is selected according to TER.

With the purpose of getting some insight about where the improvements come from,
we analysed then-gram precision and the brevity penalty implemented withinBLEU. For
a certainn, n-gram precision is computed as the number ofn-grams that match between
the candidate hypotheses and the references, normalised bythe total amount ofn-grams
that constitute the references. The brevity penalty is defined asmin(1, r), beingr the ratio
between hypothesis and reference lengths, and gives an insight about how well the SMT
system is predicting the length of the reference translations. By analysingn-gram precision
and brevity penalty, the purpose is to elucidate whether theimprovements achieved are due to
a better lexical choice of the translation units, or rather due to a better prediction of reference
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10 adaptation samples 100 adaptation samples
baseline Heur. MCMC MERT MERT+ Heur. MCMC MERT MERT+

BLEU 16.7 16.4 15.8 14.2 16.9 16.1 16.0 16.2 16.8
1-gram 54.9 55.5 56.0 56.2 54.9 56.7 56.8 56.2 55.0
2-gram 23.5 23.6 23.5 22.3 23.5 24.2 24.2 23.9 23.4
3-gram 11.5 11.6 11.3 10.5 11.6 11.8 11.9 11.8 11.5
4-gram 6.0 6.0 5.8 5.2 6.0 6.1 6.1 6.1 6.0
brev. pen. 0.97 0.95 0.92 0.88 0.98 0.91 0.90 0.92 0.97

Table 4.3: Analysis ofn-gram precision and brevity penalty for10 and100 adapta-
tion samples, considering heuristic and MCMC sampling within BPA and MERT and
MERT+ strategies (i.e., including the adaptation data only, or the adaptation and devel-
opment data for re-estimatingλ. NC corpus considered.
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Figure 4.16: Time in minutes consumed by the different adaptation approaches com-
pared. In the case of BPA, 2000 samples forλ were obtained, and the size of the
n-best list was set to 200. Note that both axes are shown in logarithmic scale. News-
Commentary corpus considered.

length. These results are shown in Table 4.3 when using10 and100 adaptation samples for
the case of the News-Commentary 2009 test set. In this table,it is interesting to see that both
BPA approaches andMERT are able to yield highern-gram precision rates than the baseline,
and even than theMERT+ setup, but are severely penalised by the brevity penalty, leading
to significantly lower BLEU scores than the baseline. This was actually expected, since the
TER score considered within BPA does not include the brevitypenalty. However, the fact that
n-gram precision is higher leads to the conclusion that the improvements obtained over the
baseline are due to a better lexical choice of the phrases involved in the translation process,
and not to a side-effect of adjusting the output sentence length.

One last word regarding this comparison involves computational time. Figure 4.16 reports
the time consumed by each one of the approaches reported in Figure 4.13. In the case of the
two BPA strategies, the amount of sampled weights was 2000, i.e., the most costly and stable
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experiments involving BPA conducted in this section. Regarding the time taken by both BPA
approaches, it must be noted that both include the time consumed for generating then-best
lists for the adaptation data and the sentence-level TER counts. In fact, the time taken only
by the BPA implementation ranges from10 minutes up to20, depending on the amount of
adaptation samples considered, but computing the sentencelevel TER counts gets specially
costly when longer sentences are involved. As the plot shows, both BPA implementations take
much less time than the MERT alternatives, being the heuristic BPA alternative the fastest one
in a consistent manner. Note that, in Figure 4.16, the y-axisis plotted in logarithmic scale,
which implies that the BPA implementations are about one order of magnitude faster than the
MERT alternative, and two orders of magnitude faster thanMERT+.

Feature function adaptation

Preliminary experiments conducting Bayesian predictive adaptation of the model featuresh
were also performed. However, given the extremely high computational cost involved, only
a small number of these experiments were performed. Specifically, in the case of the NC
2009 test set the adapted system achieved a TER score of66.0, compared to66.2 of the
baseline system. In the case of the TED test set, the adapted system achieved a TER score of
63.0, compared to63.2 of the baseline system. This (minor) improvement was achieved by
settingδ = 32 and with2000 adaptation samples. However, these experiments are extremely
costly from a computational perspective. Even when combining all the features defined at the
local phrase level, as described in Section 4.3, and performing the approximations described
in Section 4.7, re-scoring the translation hypotheses obtained when translating the test set
takes about one week in a single-threaded implementation with only 1000 repetitions of the
heuristic sampling algorithm described in Section 4.6. Forthese reasons, and although there
seems to be some potential in the adaptation of the feature functionsh, no further experiments
in this direction were performed.

4.8.4 Online adaptation results

In the previous section it has been shown that MCMC has a more reliable behaviour in a
batch adaptation setup than the heuristic algorithm. Nevertheless, when confronting an on-
line adaptation problem, time constraints imply that MCMC is not applicable, sinceS(θT )
would need to be redrawn for each new adaptation sample seen by the system. Alterna-
tively, sampling from the Gaussian prior seems to be slightly more unstable than the heuristic
sampling strategy. For these reasons, only experiments with the heuristic algorithm were per-
formed for online adaptation, and only for the adaptation ofthe log-linear weightsλ, since
adaptingh proved to be too expensive for an online BPA implementation.

The result of applying BPA in an online setting can be seen in Figure 4.17. In this figure,
the x-axis is the amount of trailing samples considered, i.e., the number of trailing sentences
that are included into the setAt described in Section 4.4. This figure only includes the re-
sulting translation quality because the confidence interval sizes did not seem to vary much
with δ, as was the case with batch adaptation. It is interesting to point out that the translation
quality curves seem to present a minimum at about 100 adaptation samples, and adding fur-
ther trailing sentences intoAt seems to actually produce a significant degradation in the final
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Figure 4.18: Confidence interval sizes for different sizes ofS(θT ), denoted bynw in
the plot.

translation quality achieved. This seems to point towards the possibility that there is a certain
locality in the weights.

As for the amount of sampled weights,|S(θT )|, varying this value did not appear to pro-
duce any change in terms of translation quality. However, this was so only when considering
the average of all the10 repetitions performed, since the size of the confidence intervals did
present interesting changes. Such confidence intervals areshown in Figure 4.18. As expected
after the experiments conducted with batch adaptation, thesize of the confidence intervals
drops significantly when increasing the size ofS(θT ), yielding very small confidence inter-
vals when|S(θT )| = 100000. Nevertheless, each one experiment with|S(θT )| = 100000
takes about20 hours, when compared to several minutes in the case of|S(θT )| = 2000.
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Figure 4.19: Translation quality when considering increasingn-best size. δ = 2,
σT = 0.1 and|S(θT )| = 2000.

For this reason, the additional decrease in confidence interval sizes might not be worth be-
yond|S(θT )| = 2000. In addition, note that the size of these confidence intervals cannot be
compared directly with the size of the confidence intervals shown when applying BPA in a
batch setup, since the experimentation in the batch setup entailed obtaining a new adaptation
sample at random for each point in the plot. This is not the case when dealing with online
adaptation because re-drawing the adaptation data is not possible because the adaptation data
At is fixed to be the last sentences observed in the current test set being translated.

The effect of increasing the sizeN of the n-best list was also analysed. Results for
|S(θT )| = 1000 and|At| = 100 are shown in Figure 4.19. As was expected, the translation
quality provided by including the sliding windowAt improves when increasing the amount
of n-best considered. However, this improvement seems to decaygradually, and increasing
N from 500 to 1000 already yields scarce improvements.

Finally, in Fig. 4.20 the results of varyingσT of Eq. 4.10 are shown. The translation
quality delivered by the Bayesian sliding window is, in the worst case, the same as the base-
line system. For lower values ofσT , the sliding window has no effect at all until about 100
samples. The optimal value forσT seems to be 1 or 0.1. For all experiments above,σT = 0.1
was chosen due to having slightly smaller confidence intervals and because this was also the
value chosen in the case of batch adaptation.

4.8.5 Bayesian adaptation for system stabilisation

Lastly, experiments concerning the use of BPA for system stabilisation purposes, as described
in Section 4.5, were also conducted. For doing this, a low-resource environment was sim-
ulated by randomly selecting a (small) training setT from the News-Commentary training
data. In addition, a random development setD of 100 sentences was also extracted from the
remainder News-Commentary training data, ensuring thatD andT are fully disjoint, i.e.,
D ∩ T = ∅. Note that this development set is not the same one referred to in the previous
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Figure 4.20: Effect of varyingσT within N (λT , I · σT ). The size of then-best list
was set to200. |S(θT )| = 2000 andδ = 2.

experiments, since in this caseD was obtained from the NC data, and in the previous experi-
ments it was a fixed set belonging to the Europarl data. Then, the random training setT was
used for phrase extraction and building the phrase-table, while the random development set
D was used within MERT for estimating the corresponding set ofweightsλD. This being
done, two different approaches were used for BPA. In the firstoption, the set of weights esti-
mated with MERT was used as mean vector within the parameter prior in BPA, i.eλT ≡ λD

(first option described in Section 4.5). In the second option, the set of weights estimated for
Europarl by means of MERT was used as parameter prior, i.e.,λT ≡ λξ (second option in
Section 4.5). Finally, the test set used for the final evaluation was the same as in the previous
experiments. The results of this setup are shown in Figure 4.21. As shown, all the alterna-
tives present decreasing TER scores when adding more training data, as expected. However,
the two BPA approaches perform slightly better in average than the MERT approach. In
addition, taking a look at the confidence interval sizes reveals an interesting result: the con-
fidence intervals are smaller when using BPA, which actuallymeans that applying BPA as
a post-processing step does actually provide more stable results. Finally, it can also be seen
that usingλξ, i.e., a “well-estimated” prior knowledge within BPA (in this caseλξ), yields
even more stable results than using aλT estimated on much less data, even if such data is
in-domain data (in this caseλD). These results lead to the conclusion that using BPA in-
stead of MERT or as a complementary post-process step is a good option in low-resource
environments, even if this is not an adaptation problem any longer.

4.9 Conclusions and future work

In this chapter, Bayesian predictive adaptation has been thoroughly analysed for its appli-
cation to statistical machine translation. On the one hand,the theoretical framework for
adapting either the feature functions or the log-linear weights present in most state-of-the-art
statistical machine translation systems has been developed. On the other hand, experimental
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Figure 4.21: Translation quality and confidence interval sizes when using BPA as a
stabilisation method.baseline computed by means of MERT,mert-BPA stands
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CFI plot also presents the y-axis in log-scale. The size of the training data is given in
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results analysing the effectiveness of such adaptation procedures have been reported. In ad-
dition, three different scenarios have been studied where Bayesian adaptation can be applied:
batch adaptation, online adaptation and system stabilisation.

Regarding the adaptation of the log-linear weights, results show that BPA has an interest-
ing potential when the amount of adaptation data is relatively small. Consistent improvements
in translation quality are obtained over the baseline system, as measured by TER, with as few
as 10 adaptation samples, and up to an amount of adaptation data that allows a complete
re-estimation of the model parameters. Results show that BPA, when applied to log-linear
weight adaptation, proves to be more stable than MERT, whichrelies heavily on the amount
of adaptation data and turns very unstable whenever few adaptation samples are available. It
should be emphasised that an adaptation technique, by nature, is only useful whenever the
amount of adaptation data is low, and our technique proves tobehave well in such context.
Whenever the amount of adaptation data is high, the best thing that one can do is to re-
estimate the model parameters from scratch, although such re-estimation is often very costly.
From a computational point of view, the Bayesian adaptationtechnique presented does not
imply a significant computational overhead, the largest part of the computational complexity
being taken by the sentence-level computation of the translation quality counts, which are
required for the adaptation data. Hence, we consider that the technique presented here could
easily be implemented within the decoder itself without a significant increase in computa-
tional complexity. We consider this important, since it implies that rerunning MERT for each
adaptation set is not needed.

Different parameter sampling strategies have been studiedwhen applying Bayesian pre-
dictive adaptation to the adaptation of the log-linear weights, such as Markov chain Monte
Carlo, sampling from the Gaussian prior, an ad-hoc heuristic sampling strategy and the Viterbi
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sampling approach. From the experimental results obtained, it emerges that the ad-hoc heuris-
tic sampling strategy is able to perform at least as well as MCMC, and is computationally less
expensive. Nevertheless, this heuristic strategy requires the introduction of an artificial meta-
parameterδ because the probability distribution is not normalised. Such leveraging factor
must be tuned beforehand. In contrast, the MCMC strategy does not require thisδ, but ap-
pears to provide slightly less stable results.

Experimental results also show that BPA is an appropriate adaptation strategy for its ap-
plication to the adaptation of log-linear weights in an on-line setup. In this context, interesting
improvements in translation quality may be obtained without introducing a significant com-
putational overhead (less than a second per sentence). Including such an adaptation capability
is critical in environments where human translators work incollaboration with the SMT sys-
tem, such as in an interactive machine translation scenario. A possible extension of the work
presented here regards the assignment of a decaying weight to each sample within the sliding
window (the adaptation sample)At.

In addition, it has also been shown how to apply BPA in order toachieve more stability
in the results achieved in conditions where bilingual data is very scarce. By adopting the
best point-estimation of the model parameters as mean vector within the Gaussian prior,
more stable results are achieved, while yielding improvements in translation quality as well.
Adopting as mean vector an external, canonical set of parameters which may be assumed to
be well estimated provides even more stability to the results.

Regarding the adaptation of the feature functions, experiments conducted in this direction
are not very encouraging: although not negative, the computational overhead introduced is
not justified by the very limited improvements in translation quality achieved. One possible
reason for this may be that current state-of-the-art SMT systems act more like a memory-
based MT system, rather than a fully-fledged statistical system with properly estimated sta-
tistical distributions. As pointed out in Section 2.7.2, ifthe final amount of phrase pairs that
actually have a competing phrase (i.e., the number of phrases that are not chosen determin-
istically) is very low, re-estimatingh is bound to have a very small effect, if any. Another
possible reason might be that there are too many parameters to be adapted, in which case sev-
eral strategies could be followed in order to solve both the sparsity problems derived and the
problem involving the high computational overhead. In the first place, it would be interesting
to research possible ways of binding the parameters presentin the phrase-table, such as using
unsupervised clustering algorithms or grouping the different bilingual phrases according to
their part-of-speech tags. Another possible strategy for confronting this problem is to make
use of the different phrase-table reduction techniques that are present in the literature, such
as the ones described in Chapter 2 or the ones presented in (Eck et al., 2007; Johnson et al.,
2007).

The author would like to thank Dr. Nicola Cancedda for his very helpful comments on
a previous version of this chapter, which led to improving the contents in a very significant
manner.
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CHAPTER5
Enriching user-machine interaction in

IMT

Probleme kann man niemals mit derselben Denkweise lösen, durch die sie entstanden sind.
Albert Einstein
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Chapter 5. Enriching user-machine interaction in IMT

EINSTEIN: »Man sperrt uns ein wie wilde Tiere!«
MÖBIUS: »Wir sind wilde Tiere. Man darf uns nicht auf die Menschheit loslassen.«
NEWTON: »Gibt es wirklich keinen andern Ausweg?«
MÖBIUS: »Keinen.«
EINSTEIN: »Johann Wilhelm Möbius. Ich bin ein anständiger Mensch. Ich bleibe.«
NEWTON: »Ich bleibe auch. Für immer.«
MÖBIUS: »Ich danke euch. Um der kleinen Chance willen, die nun die Welt doch noch
besitzt davonzukommen.«Er erhebt sein Glas.»Auf unsere Krankenschwestern!«
Sie haben sich feierlich erhoben.
[...]
Sie trinken, stellen die Gläser auf den Tisch.
NEWTON: »Verwandeln wir uns wieder in Verrückte. Geistern wir als Newton daher.«
EINSTEIN: »Fiedeln wie wieder Kreisler und Beethoven.«
MÖBIUS: »Lassen wir wieder Salomo erscheinen.«
NEWTON: »Verrückt, aber weise.«
EINSTEIN: »Gefangen, aber frei.«
MÖBIUS: »Physiker, aber unschuldig.«

Die Physiker. Friedrich Dürrenmatt.

EINSTEIN: “They locked us like wild animals!”
MOBIUS: “We are wild animals. We must not let ourselves to humanity.”
NEWTON: “Is there really no other way”?
MOBIUS: “No”.
EINSTEIN: “Johann Wilhelm Möbius. I am a decent person. I’m staying.”
NEWTON: “I will stay. For good.”
MOBIUS: “I thank you. To the small chance of sake, which is nowthe world has yet get
away. ”He raised his glass.“To our nurses!”
You have risen solemnly.
[...]
They drink, the glasses on the table.
NEWTON: “Turn us back into lunatics. Therefore, we Spirits as Newton.”
EINSTEIN: “fiddles again as Kreisler and Beethoven.”
MOBIUS: “Let reappear Solomon.”
NEWTON: “Crazy, but wise.”
EINSTEIN: “Trapped, but free.”
MOBIUS: “Physicist, but innocent. ”

The physicist. Google Translate.
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5.1. Introduction

5.1 Introduction

Interactive Machine Translation was first introduced within the TransType (Foster et al., 1997;
Langlais et al., 2000, 2002) project, where it proved to be able to deliver interesting benefits
to potential users, by considerably reducing the effort needed in order to translate a com-
plete text. Nevertheless, one aspect which has remained mostly unchanged since those first
approaches to IMT is the user–machine interaction protocol: traditional IMT systems only
received feedback whenever the user typed in a new word. However, such protocol accepts
many improvements. In the present chapter, we show how to enrich user–machine interac-
tion by making use of weaker feedback. Specifically, two types of pointer actions (PAs)
are considered here as weaker feedback. The first one, which we have namedanticipated
proposal, proposes to observe the actions that the user performs before modifying a given
hypothesis, with the purpose of anticipating such modification. The second kind of weaker
feedback consists in allowing the user to simply state that he does not like the (partial) hy-
pothesis provided, and that he wants it to be replaced. This latter kind of feedback will be
referred to as partial refusal. Both of these interaction capabilities will be implemented in the
present chapter by means of a pointer action (PA), although one could easily picture other
devices for performing these kind of actions.

The rest of this chapter is structured as follows. Section 5.2 briefly reviews similar work.
Then, Section 5.3 details the main idea behind considering pointer actions as an additional
information source for the system, and how it is possible to take advantage of the actions the
user is performing even when no keyboard action is performed. Next, in Section 5.4, an ad-
ditional twist to pointer actions is detailed so as to offer the user different explicit interaction
possibilities, with the purpose of reducing the number of times the user will need to intro-
duce additional words. Experimental results are presentedin Section 5.5, in which an IMT
environment is simulated with the purpose of assessing the benefits that can be achieved by
means of the two different PAs presented. Finally, the conclusions that can be drawn from the
work presented in this chapter are detailed in Section 5.6, together with possible extensions
that will be conducted as future work.

5.2 Related work

A work that is very similar to the one described here was performed in (Romero et al., 2009).
However, such work researched the use of weaker feedback within an interactive handwritten
text recognition scenario, and not in an IMT setting as is thecase in the present chapter.
In addition, weaker feedback has been also researched for interactive text generation (Ruiz,
2010), where the main goal is to help handicapped people to communicate in cases where
they might have lost the ability to do so by other means such aswriting, oral communication
or typing.

Even though the work presented here does not take advantage of a multimodal setting,
other works exist, in which the classical IMT framework is expanded by taking advantage of
multimodality. For instance, (Alabau et al., 2011) proposethe use of a speech recognition
system with the purpose of allowing the human user to correctthe errors made by the IMT
system by simply stating, orally, where such errors were made. However, instead of allowing
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SOURCE (x): Para encender la impresora:
REFERENCE (y): To power on the printer:

ITER-0
(p) ( )
(ŝh) To switch on:

ITER-1
(p) To
(sl) |switch on:
(ŝh) power on the printer:

ITER-2

(p) To power on the printer:
(sl) ( )
(k) (#)

(p̂h) ( )
FINAL (p ≡ y) To power on the printer:

Figure 5.1: Example of anticipated proposal pointer action which solves an error of a
missing word. In this case, the system produces the correct suffix sh immediately after
the user validates a prefixp, implicitly indicating that we wants the suffix to be changed,
without need of any further action. InITER-1 , character| indicates the position where
a pointer action was performed,sl is the suffix which was rejected by that pointer
action, and̂sh is the new suffix that the system suggests after observing that sl is to
be considered incorrect. Character # is a special characterintroduced by the user to
indicate that the hypothesis is to be accepted.

the speech recognition full freedom when recognising the corrections of the user, such recog-
nition was biased by the translation model in such a way, thatthe best scoring suffixes are
those that are most probable according to both the SMT systemand the speech recognition
system. In related work, (Alabau et al., 2011) propose a similar scenario, but allowing the
user to correct the errors by means of a graphic tablet or screen, with which the user may
interact by writing in some word, or even just some kind of gesture.

5.3 Anticipated proposal as a form of weaker feedback

The key idea behind considering pointer actions as an additional communication vehicle be-
tween the system and the user is that, in order to correct a hypothesis, the user first needs
to position the cursor in the place where he wants to type a word, be it for correcting it, for
introducing a new word, or for deleting an existing one. In this case, we will assume that
this is done by performing a pointer action. By doing so, the user is already providing a very
valuable information to the system. Namely, he is signalling that whatever information is
located before the cursor is to be considered as correct, hence validating the current prefixp.
More importantly, however, he is also signalling that he does not like whatever word comes
afterp, and that he is about to change it. At this point, the system can capture this fact and,
knowing that such suffix is to be considered as incorrect, provide a new translation hypothesis
in which the prefix remains unchanged and the suffix is replaced by a new one in which the
first word is different to the first word of the previous suffix.

An example of such behaviour can be seen in Figure 5.1. In thisexample, the SMT system
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first provides a translation which the user does not like. Hence, he positions the cursor before
word “switch”, with the purpose of typing in “power”. By doing so, he is validating the
prefix “To”, and signalling that he wants “switch” to be replaced. Before typing in anything,
the system realises that he is going to change the word located after the cursor, and replaces
the suffix by another one, which is the one the user had in mind in the first place. Finally, the
user only has to accept the final translation.

Obviously, having the system change the incorrect suffix does not mean that the new
suffix will be correct. However, given that the system knows that the first word in the current
suffix is incorrect, the worst case would only imply that the newly introduced word would
still be incorrect. This entails that the user would need to type in the correct word, as he was
going to do anyway. However, if the new proposed suffix happens to be correct, the system
will have spared the user one interaction, which is typing inthe new word, and the user will
happily find that he only needs to accept such word, or perhapseven the complete suffix.

We are naming this kind of pointer action anticipated proposal because the user does
not need to perform an explicit action in order to inform the system that it needs to change
the suffix: it is the system itself who realises that the user is going to type in a word and
anticipates the user’s intentions, suggesting a new suffix hypothesis. For this reason, and
given the fact that the user would need to position the cursoranyway, it is important to point
out that any improvement achieved by this kind of pointer action is an improvementper se,
since it requires no further effort from the user. For this reason, it is assumed to have no cost.

The anticipated proposal pointer action can be formulated as: Given a source sentencex,
a consolidated prefixp and a suffixs′ suggested by the system in the previous interaction,
search for another suffix̂s such that the first word in̂s is different from the first word ins′

ŝ = argmax
s:s1 6=s′

1

P (s|x,p, s′) (5.1)

5.4 Partial refusal pointer action

In contrast to anticipated proposal pointer actions, one could easily picture a scenario where
the user simply wants a given suffix to be changed, without taking into consideration whether
the cursor is already located just in front of the first erroneous word. Assuming that the
underlying IMT system is efficient enough when attempting toprovide high quality suffixes,
the human expert would just need to click before the first wordof the suffix he intends to
change in order to have it replaced without any further action. This pointer action is named
partial refusal because the user needs to explicitly ask thesystem for another hypothesis by
means of a pointer action, whereas in the case of anticipatedproposal pointer actions the user
only performed a pointer action whenever he needed to position the cursor before typing.
Obviously, this could also be done by using some other different device, but in this case we
assume this is done using the mouse. Note that this kind of pointer action does imply an
added cost, since the user needs to perform an explicit action for signalling the system that
he wants the suffix to be replaced. However, if the underlyingMT engine providing suffixes
is powerful enough, the benefit obtained may easily be worth the hassle, since performing a
pointer action is less costly than introducing one (or several) whole new word. Of course, in
this kind of pointer action the system is expecting a participative and collaborative attitude
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SOURCE (x): Seleccione el tipo de instalación.
REFERENCE (y): Select the type of installation.

ITER-0
(p) ( )
(ŝh) Select the installation wizard.

ITER-1
(p) Select the
(sl) |installation wizard.
(ŝh) install script.

ITER-2
(p) Select the
(k) type
(ŝh) installation wizard.

ITER-3
(p) Select the type
(sl) |installation wizard.
(ŝh) of installation.

ITER-4

(p) Select the type of installation.
(sl) ( )
(k) (#)
(ŝh) ( )

FINAL (p ≡ y) Select the type of installation.

Figure 5.2: Example of partial refusal pointer action which corrects anerroneous suffix.
In this case, an anticipated proposal pointer action is performed inITER-1 with no
success. Hence, the user introduces word “type” in ITER-2 , which leaves the cursor
position located immediately after word “type”. In this situation the user would not
need to perform a pointer action to re-position the cursor and continue typing in order
to further correct the remaining errors, since he could simply continue typing the word
he has in mind. However, since he has learnt the potential benefit of pointer actions,
he performs a partial refusal pointer action in order to ask for a new suffix hypothesis,
which happens to correct the error.

from the user, which was not the case in the case of anticipated proposal weaker feedback.
An example of such an explicit pointer action correcting an error can be seen in Figure 5.2

In this case, however, there is a cost associated to this kindof pointer actions, since the
user does need to perform additional actions, which may or may not be beneficial. It is very
possible that, even after asking for several new hypothesis, the user will even though need
to introduce the word he had in mind, hence wasting the additional pointer actions he had
performed.

Assuming the user has already performedn pointer actions until the current moment
and is demanding yet another suffixŝ from the system, the partial refusal problem can be
formalised in a very similar way to the case of anticipated proposal pointer actions:

ŝ = argmax
s:s1 6=s

(i)
1 ,∀i∈{1..n}

P (s|x,p, s(1), s(2), . . . , s(n)) (5.2)

wheres(i)1 is the first word of thei-th suffix discarded, ands(1), s(2), . . . , s(n) is the set of
all n suffixes discarded.

Note that this kind of pointer action could also be implemented with some other kind of
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interface, e.g. by typing some special key such asF1 or Tab. However, the experimental re-
sults would not differ, and in the existing user interface itseemed more intuitive to implement
it as a pointer action.

5.5 Experimental results

In addition to WSR, and because pointer actions are also introduced as a new action, results
in terms ofPointer Action Ratio(PAR) will also be reported. PAR is the quotient between
the amount of partial refusal pointer actions performed andthe number of words of the final
translation. Hence, the purpose is to elicit the number of times the user needed to request a
new translation (i.e. performed a pointer action), on a per word basis.

Also for the case of partial refusal pointer actions, results in terms of uPAR (useful PAR)
will also be reported. uPAR indicates the amount of pointer actions which wereuseful, i.e.
the pointer actions that actually produced a change in the first word of the suffix and such
word was accepted. Formally, uPAR is defined as follows:

uPAR =
PAC − n ·WSC

PAC
(5.3)

wherePAC stands for “Pointer Action Count” (the total number of pointer actions per-
formed),WSC for “Word Stroke Count” (the total number of word strokes performed) and
n is the maximum amount of pointer actions allowed before the user types in a word. Note
thatPAC − n · WSC is the amount of pointer actions that were useful sinceWSC is the
amount of word-strokes the user performed even though he hadalready performedn pointer
actions, i.e.,n ·WSC is the number ofuselessPAs.

Since WSR and PAR will be used with a single reference, the results presented here are
clearly pessimistic. In fact, it is relatively common to have the underlying SMT system pro-
vide a perfectly correct translation, which is "corrected"by the IMT procedure into another
equivalent translation, increasing WSR and PAR significantly by doing so.

Experiments were conducted on the Europarl corpus, in the partition established for the
WMT08 (see Section 1.4). Specifically, the language pairs studied were Spanish→ English,
French→ English and German→ English.

As a first step, an SMT system was trained for each of the language pairs cited in the
previous subsection. This was done by means of the Moses toolkit (Koehn et al., 2007), and
the weightsλ of the log-linear model were optimised by means of MERT.

This being done, word graphs were generated for the IMT system. For this purpose,
the multi-stack phrase-based decoder which is part of the Thot toolkit (Ortiz-Martínez et al.,
2005) (see Section 1.5) was employed. The Moses decoder was discarded in this case because
preliminary experiments performed with it revealed that the decoder by (Ortiz-Martínez et al.,
2005) performs clearly better when generating word graphs for their use in IMT. In addition,
an experimental comparison in regular SMT with the Europarlcorpus found that the per-
formance difference between both decoders was negligible.However, it must be noted that
the experiments performed in this chapter were carried out in year2008, and since then the
quality of the word graphs provided by the Moses decoder has greatly improved (the ver-
sion used at that time was checked out from the official subversion repository on November
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Table 5.1: WSR improvement when considering non-explicit MAs. “rel.”indicates the
relative improvement. All results are given in %.

pair baseline ant. proposal rel.
Es–En 63.0±0.9 59.2±0.9 6.0±1.4
En–Es 63.8±0.9 60.5±1.0 5.2±1.6
De–En 71.6±0.8 69.0±0.9 3.6±1.3
En–De 75.9±0.8 73.5±0.9 3.2±1.2
Fr–En 62.9±0.9 59.2±1.0 5.9±1.6
En–Fr 63.4±0.9 60.0±0.9 5.4±1.4

13, 2007). The decoder was set to only consider monotonic translation, since in real IMT
scenarios considering non-monotonic translation leads toexcessive waiting time for the user.

Finally, the word graphs obtained were used within the IMT procedure to produce the
reference translation contained in the test set, measuringWSR and PAR. The results of such
a setup can be seen in Table 5.1. As a baseline system, the traditional IMT framework pre-
sented in Section 1.3 is reported, in which no pointer actionis taken into account. Then,
anticipated proposal pointer actions were introduced, obtaining an average improvement in
WSR of about 3.2% (4.9% relative). The table also shows the confidence intervals at a con-
fidence level of 95%. These intervals were computed following the bootstrap technique de-
scribed in Section 1.2.2. Since the confidence intervals do not overlap, it can be stated that
the improvements obtained are statistically significant.

Once the anticipated proposal pointer actions were considered and introduced into the
system, the effect of performing up to a maximum of 5 partial refusal pointer actions was
analysed, taking as baseline system this time the one that already includes anticipated pro-
posal pointer actions. Here, the user was modelled in such a way that, in case a given word is
considered incorrect, he will always ask for another translation hypothesis until he has asked
for as many different suffixes as pointer actions considered. The results of this setup can be
seen in Figure 5.3. This yielded a further average improvement in WSR of about 16% (25%
relative improvement) when considering a maximum of 5 explicit pointer actions. However,
relative improvement in WSR and uPAR drops significantly when increasing the maximum
allowed amount of explicit pointer actions from 1 to 5. For this reason, it is difficult to imag-
ine that a user would perform more than two or three pointer actions before actually typing
in a new word. Nevertheless, just by asking twice for a new suffix before typing in the word
he has in mind, the user might be saving about 15% of word-strokes.

Although the results in Figure 5.3 are only for the translation direction “foreign”→English,
the experiments in the opposite direction (i.e. English→“foreign”) were also performed.
However, the results were very similar to the ones displayedhere. Because of this, and for
clarity purposes, we decided to omit them and only display the direction “foreign”→English.
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Figure 5.3: WSR improvement when considering one to five maximum PAs. Allfigures
are given in %. The left column lists WSR improvement versus PAR degradation, and
the right column lists WSR improvement versus uPAR. Confidence intervals at 95%
confidence level following (Koehn, 2004).

5.6 Conclusions and future work

In this chapter, new input sources for IMT have been introduced. By considering pointer
actions as a form of weaker feedback, it has been shown that a significant benefit can be
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obtained, in terms of word-stroke reduction, both when considering only anticipated proposal
pointer actions and when considering pointer actions as a way of offering the user several
suffix hypotheses (i.e.,partial refusal). In addition, these ideas have been applied on a state-
of-the-art SMT baseline, such as phrase-based models. To achieve this, word graphs were
first obtained for each sentence which is to be translated. Experiments were carried out on a
reference corpus in SMT.

Note that there are other systems (Esteban et al., 2004) that, for a given prefix, provide
n-best lists of suffixes. Although it might seem that such approach is very similar to the
one presented here, the functionality of the present systemis slightly (but fundamentally)
different, since the suggestions are demanded to be different in their first word, which implies
that then-best list is scanned deeper, going directly to those hypotheses that may be of interest
to the user. In addition, this can be done “on demand”, which implies that the system’s
response is faster and that the user is not confronted with a large list of hypotheses, which
often results overwhelming.

As future work, a human evaluation would be necessary to assess the appropriateness of
the improvements described.

The work presented in this chapter was accepted for publication in an international con-
ference:

• G. Sanchis-Trilles, Daniel Ortiz-Martínez, Jorge Civera, Francisco Casacuberta, En-
rique Vidal and Hieu Hoang Improving Interactive Machine Translation via Mouse
Actions. In Proceedings of the Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2008, pages 485–494, Honolulu, Hawaii (USA), October
2008.

In addition, it also lead to a publication in an international workshop:

• G. Sanchis-Trilles, M.T. González, F. Casacuberta, E. Vidal and J. Civera Introducing
Additional Input Information into IMT Systems. InProceedings of the 5th Joint Work-
shop on Multimodal Interaction and Related Machine Learning Algorithms, MLMI
2008, pages 284–295, Utrecht (The Netherlands), September 2008.

Furthermore, currently there is work in progress for publishing an article in an interna-
tional journal, together with similar work done by another author in the field of interactive
text recognition.
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CHAPTER6
Conclusions

La inspiración existe, pero tiene que encontrarte trabajando.
Pablo Ruiz Picasso
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Asnografía

Leo en un Diccionario: Asnografía,s.f.: Se dice, irónicamente, por descripción del asno.
¡Pobre asno! ¡Tan bueno, tan noble, tan agudo como eres! Irónicamente... ¿Por qué?

¿Ni una descripción seria mereces, tú, cuya descripción cierta sería un cuento de primavera?
¡Si al hombre que es bueno debieran decirle asno! ¡Si al asno que es malo debieran decirle
hombre! Irónicamente... De ti, tan intelectual, amigo del viejo y del niño, del arroyo y de
la mariposa, del sol y del perro, de la flor y de la luna, paciente y reflexivo, melancólico y
amable, Marco Aurelio de los prados...

Platero, que sin duda comprende, me mira fíjamente con sus ojazos lucientes, de una
blanda dureza, en los que el sol brilla, pequeñito y chispeante, en un breve y convexo firma-
mento verdinegro. ¡Ay! ¡Si su peluda cabezota idílica supiera que yo le hago justicia, que yo
soy mejor que esos hombres que escriben Diccionarios, casi tan bueno como él!

Y he puesto al margen del libro: Asnografía,sentido figurado: Se debe decir, con ironía
¡claro está!, por descripción del hombre imbécil que escribe Diccionarios.

Platero y Yo. Juan Ramón Jiménez.

I read in a Dictionary: Asnografía,nd: It is said, ironically, by description of the donkey.
Poor donkey! So good, so noble, so sharp you are! Ironically... Why? Not even a descrip-

tion would deserve it, you, whose story would be a true description of spring? If the man who
should say good ass! If it’s bad ass man should say! Ironically... From you, so intellectual,
friend of the old and the child, the stream and the butterfly, sun, and the dog, flower and
moon, patient and thoughtful, melancholy and gentle, MarcoAurelio of meadows...

Platero, which undoubtedly includes, stares at me with her big eyes shining, a soft hard-
ness, where the sun shines, tiny, sparkling in a short and convex green-black sky. Oh! If
your furry idyllic stubborn I do know that justice, that I am better than the men who write
dictionaries, almost as good as him!

And I put the book aside: Asnografía,figurative sense: It must be said, with irony of
course!, For description of the man who writes dictionariesidiot.

Platero y Yo. Google Translate.
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6.1. Summary

6.1 Summary

The work developed in this thesis confronts three of the mainproblems present in state-
of-the-art statistical machine translation systems, and which prevent their wide-spread use
within current computer assisted translation tools. Thesetopics are efficiency, adaptability,
and usability.

Striving for decreasing the response time of state-of-the-art machine translation systems,
we presented a novel technique for pruning the total amount of parameters present in the
translation system. The intuition behind this technique isto obtain one single segmentation
of each bilingual sentence present in the training data, arriving to a full re-estimation of the
model parameters. With the purpose of reducing the possibleeffects on translation quality,
n-best segmentations are also considered. In statistical machine translation, experimental
results show that a very aggressive pruning may be performedwithout any loss at all in
translation quality, achieving very important speedup rates. The experiments were carried
out by using state-of-the-art statistical machine translation systems, covering several different
language pairs, and with corpora used in standard machine translation tasks. In interactive
machine translation, the performance gains achieved without any loss in system performance
are less impressing, although not negligible at all. However, it must be kept in mind that the
experiments performed in this direction were carried out ina simulated interaction setting,
with only one reference translation, which implies that theevaluation metric used has a very
important impact on the results obtained.

When confronting the adaptability problem, two different research directions were ex-
plored. On the one hand, we developed a strategy for increasing the adaptability of the lan-
guage model, which is a key component of every machine translation system. This technique
is inspired by the idea of increasing the flexibility of the language model by subdividing
it into several, more specific, sub-models. Such models wereconstructed either by taking
advantage of supervised labels concerning dialogue act information, when such labels are
available, or by building unsupervised clusters of the available training data. The results ob-
tained on different standard machine translation tasks point towards a potential benefit which
can be achieved by applying the technique described. Even though the improvements ob-
tained in the work presented here are relatively limited, these are coherent throughout all the
experiments performed, involving different corpora and language pairs.

On the other hand, adaptability was also pursued by dealing with the translation model
adaptation problem from the Bayesian perspective. In this context, Bayesian predictive adap-
tation is unveiled as a powerful adaptation method in statistical machine translation, with
a statistically sound formulation, allowing an efficient implementation, and which entails
consistent and coherent improvements. Experiments performed on standard corpora in statis-
tical machine translation and with state-of-the-art systems have proved that the adaptation of
the log-linear weights present in modern models is an effective way of adapting the transla-
tion model, yielding important improvements in translation quality even when the amount of
adaptation data is very low. However, adapting the feature functions led to a less promising
result, since the additional computational burden does notjustify the marginal (yet coherent)
improvements obtained.

Finally, concerning the usability of modern interactive machine translation systems, we
have presented a simple, yet effective, extension of the traditional interaction scheme. The
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key idea that has led to this extension involves realising that the the human translator is
not only interacting with the translation system by means ofthe keyboard. In this sense,
we have presented the mouse as a valuable information supplier, both in an implicit and in an
explicit way. On the one hand, we have shown how to anticipatethe possible changes the user
might want to perform, and on the other hand we have shown how to enrich the information
facilitated to the user, while preventing clogging the interface with too much information.
Experimental results in a simulated interactive machine translation scenario show that there
is much to be gained by adopting the ideas described in this direction.

To summarise, the main contributions of this thesis are the following:

1. It is shown that the phrase-table present in state-of-the-art statistical machine transla-
tion systems can be aggressively pruned without any loss in translation quality. We
present a technique for doing this, which evolves to a parameter re-estimation method.

2. Language model mixtures are presented as a promising way of providing flexibility to
the language model. Results reported on different tasks point toward potential benefits.

3. Bayesian predictive adaptation is applied to statistical machine translation. The theo-
retical framework for achieving this is presented, and experimental results on different
corpora prove that substantial improvements can be achieved. More specifically, the
adaptation of the log-linear weights provides consistent improvements, while adapting
the feature functions provides only marginal improvements.

4. The traditional interactive machine translation interface is improved by taking into ac-
count the mouse with which the user is able to perform different actions. By doing so,
it is possible to improve the productivity achieved by a human translator in about15%.

6.2 Scientific publications

Even though the scientific publications derived from this thesis have already been listed in
their corresponding chapters, at this point we would like tosummarise them, but listed ac-
cording to their importance, rather than their research area.

First, an article was published in an international journal, with an estimated impact factor
in year2010 of 2.607:

• P. Martínez-Gómez,G. Sanchis-Trillesand F. Casacuberta. Online adaptation strate-
gies for statistical machine translation in post-editing scenarios. InPattern Recogni-
tion. (In press) (Relative to Chapter 4)

In addition, several research articles have been publishedin international conferences
ranked A by the Computing Research and Education Association of Australasia (CORE):

• G. Sanchis-Trilles, Daniel Ortiz-Martínez, Jorge Civera, Francisco Casacuberta, En-
rique Vidal and Hieu Hoang Improving Interactive Machine Translation via Mouse
Actions. In Proceedings of the Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2008, pages 485–494, Honolulu, Hawaii (USA), October
2008. (Relative to Chapter 5)
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• G. Sanchis-Trillesand F. Casacuberta. Bayesian Adaptation for Statistical Machine
Translation. InProceedings of the Joint IAPR International Workshops on Structural
and Syntactic Pattern Recognition and Statistical Techniques in Pattern Recognition,
S+SSPR 2010, pages 620–629, Çesme, Izmir (Turkey), August 2010. (Relative to
Chapter 4)

• J. Andrés-Ferrer,G. Sanchis-Trilles and F. Casacuberta Similarity Word-Sequence
Kernels for Sentence Clustering. InProceedings of the 8th International Workshop on
Statistical Pattern Recognition, S+SSPR 2010, Cesme (Turkey), August 2010. (Rela-
tive to Chapter 3)

• G. Sanchis-Trillesand F. Casacuberta. Log-linear weight optimisation via Bayesian
Adaptation in Statistical Machine Translation. InProceedings of the 23rd Inter-
national Conference on Computational Linguistics (postervolume), COLING 2010,
pages 1077-1085, Beijing (China), August 2010. (Relative to Chapter 4)

There have also been numerous publications indexed in the CORE ranking, but with less
estimated impact:

• J. González,G. Sanchis-Trillesand F. Casacuberta. Learning Finite State Transduc-
ers Using Bilingual Phrases. InProceedings of the 9th International Conference on
Intelligent Text Processing and Computational Linguistics, CICLing 2008, pages 411–
422, Lecture Notes in Computer Science, Haifa (Israel), February 2008. (Relative to
Chapter 2)

• G. Sanchis-Trilles, M.T. González, F. Casacuberta, E. Vidal and J. Civera Introducing
Additional Input Information into IMT Systems. InProceedings of the 5th Joint Work-
shop on Multimodal Interaction and Related Machine Learning Algorithms, MLMI
2008, pages 284–295, Utrecht (The Netherlands), September 2008. (Relative to Chap-
ter 5)

• G. Sanchis-Trilles and M. Cettolo Online Language Model Adaptation via N-gram
Mixtures for Statistical Machine Translation. InProceedings of the 14th Conference
of the European Association for Machine Translation, EAMT 2010, Saint-Raphaël,
(France), May 2010. (Relative to Chapter 3)

• G. Sanchis-Trilles, D. Ortiz-Martínez, J. González-Rubio, J. González and F. Casacu-
berta. Bilingual segmentation for phrasetable pruning in Statistical Machine Trans-
lation. In Proceedings of the 15th Annual Conference of the European Association
for Machine Translation, EAMT 2011, pages 257–264, Leuven (Belgium), May 2011.
(Relative to Chapter 2)

Further publications which are neither indexed in the Journal of Citations Report (JCR)
ranking nor in the CORE ranking have also been published:

• G. Sanchis-Trillesand F. Casacuberta. Increasing Translation Speed in Phrase-Based
Models via Suboptimal Segmentation. InProceedings of the 8th International Work-
shop on Pattern Recognition in Information Systems, PRIS 2008, pages 135–143, IN-
STICC Press, Barcelona (Spain), June 2008. (Relative to Chapter 2)

GST-DSIC-UPV 143



Chapter 6. Conclusions

• G. Sanchis-Trilles, M. Cettolo, N. Bertoldi and M. Federico Online Language Model
Adaptation for Spoken Dialog Translation. InProceedings of the International Work-
shop on Spoken Language Translation, IWSLT 2009, pages 160–167, Tokyo (Japan),
December 2009. (Relative to Chapter 3)

• N. Bertoldi, A. Bisazza, M. Cettolo,G. Sanchis-Trilles and M. Federico FBK @
IWSLT 2009. InProceedings of the International Workshop on Spoken Language
Translation, IWSLT 2009, pages 160–167, Tokyo (Japan), December 2009. (Relative
to Chapter 3)

• V. Alabau, F. Casacuberta, L.A. Leiva, D. Ortiz-Martínez,G. Sanchis-Trilles. Sis-
tema web para la traducción automática interactiva. InActas del XI Congreso In-
ternacional de Interacción Persona Ordenador, INTERACCION 2010, pages 47–56,
Valencia (Spain), September 2010. (Relative to Chapter 5)

• G. Gascó, V. Alabau, J. Andrés–Ferrer, J. González-Rubio, M. A. Rocha,G. Sanchis-
Trilles , F. Casacuberta, J. González and J. A. Sánchez. ITI-UPV system description for
IWSLT 2010 InProceedings of the 2010 International Workshop on Spoken Language
Translation, IWSLT 2010, pages 85–92, Paris (France), December 2010. (Relative to
Chapter 4)

Finally, there is one further publication which has been submitted to an international
journal with an estimated impact factor of2.971, but which has not yet been accepted:

• G. Sanchis-Trillesand F. Casacuberta. Batch and online Bayesian predictive adapta-
tion in statistical machine translation. InComputational Linguistics. (submitted for
revision) (Relative to Chapter 4)

In addition, further work carried out during the same periodof time than the present
thesis, but that is not directly related to the topics presented here, was published in several
international conferences and workshops:

• G. Sanchis-Trillesand F. Casacuberta. N-Best reordering in Statistical Machine Trans-
lation. InProceedings of IV Jornadas en Tecnología del Habla, IVJTH, pages 99–104,
Zaragoza (Spain), November 2006.

• G. Sanchis-Trilles and F. Casacuberta. Reordering via N-Best Lists for Spanish-
Basque Translation. InProceedings of the 11th International Conference on Theoret-
ical and Methodological Issues in Machine Translation, TMI2007), pages 191–198,
Skövde (Sweden), September 2007.

• G. Sanchis-Trillesand J.A. Sánchez. Vocabulary Extension via POS Informationfor
SMT. In Proceedings of Mixing Approaches to Machine Translation, MATMT 2008,
pages 63–70, San Sebastián (Spain), February 2008.

• G. Sanchis-Trillesand J.A. Sánchez. Using Parsed Corpora for Estimating Stochastic
Inversion Transduction Grammars. InProceedings of the 6th edition of the Interna-
tional Conference on Language Resources and Evaluation, LREC 2008, pages 1825–
1827 , Marrakech (Morocco), May 2008. (CORE C)
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• J. González-Rubio,G. Sanchis-Trilles, Alfons Juan and F. Casacuberta. A novel align-
ment model inspired on IBM Model 1. InProceedings of the 12th Annual Conference
of the European Association for Machine Translation, EAMT 2008, pages 47–56, Ham-
burg (Germany), September 2008. (CORE B)

• G. Sanchis-Trillesand J.A. Sánchez. Phrase segments obtained with StochasticIn-
version Transduction Grammars for Spanish-Basque translation. In Proceedings of
the V Jornadas en Tecnología del Habla, JTH 2008, pages 119–122 , Bilbao (Spain),
November 2008.

• P. Martínez-Gómez,G. Sanchis-Trillesand F. Casacuberta. Online learning via dy-
namic reranking for Computer Assisted Translation. InProceedings of the 12th In-
ternational Conference on Intelligent Text Processing andComputational Linguistics,
CICLing 2011, pages 93–105 , Tokyo (Japan), February 2011. (CORE B)

• P. Martínez-Gómez,G. Sanchis-Trilles and F. Casacuberta. Passive-Aggressive for
On-line Learning in Statistical Machine Translation. InProceedings of the Iberian
Conference on Pattern Recognition and Image Analysis, IbPRIA 2011, pages 240–247,
Las Palmas de Gran Canaria (Spain), June 2011. (CORE C)

• G. Gascó, M.A. Rocha,G. Sanchis-Trilles, J. Andrés-Ferrer and F. Casacuberta. Does
more data always yield better translations?. InProceedings of the 13th conference of
the european chapter of the Association for Computational Linguistics, EACL 2012,
accepted for publication, Avignon (France), April 2012. (CORE A)

6.3 Future work

Research is a never-ending field of work. One never knows where it will end, because it
will never end, and the researcher is compelled to keep on pushing the frontier of human
knowledge in a constant attempt of breaching it. Hence, oncethis thesis is completed, a large
amount of work remains yet to be done.

Regarding the parameter pruning technique described in Chapter 2, there are two main
directions which are worth exploring. The first one concernsthe choice of the weighting
factorG(y). We understand that the choice ofG(y) is critical, and the goal should be to
improve the translation quality obtained by the baseline system, both in statistical machine
translation and in interactive machine translation. In this sense, there has been recent work by
other research groups (Duan et al., 2011) that points in thissame direction, and which shows
that there is a research area worth of being explored. The second direction which we intend
to explore regards relaxing the different restrictions applied in translation time. Typically,
there are several constraints which are applied to the search process so that the computational
cost involved is not too high, such as maximum stack size or maximum number of translation
options per input phrase. However, given that the techniques presented here reduce such cost,
it would be interesting to analyse the effect on translationquality of relaxing such restrictions,
given that computational time is not such a big issue after applying the parameter pruning
technique described.
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Concerning model adaptation, the first step is to apply the adaptation techniques described
in this thesis within an interactive machine translation scenario. In this sense, there is already
some work being performed, which unveils the adaptation problem in IMT as a problem with
its own identity, i.e., techniques that behave correctly ina traditional machine translation
setting cannot be applied directly in an interactive scenario. The reason for this is that the
metric to be optimised in SMT does not correlate completely with the metric to be optimised
in IMT. Although it might seem that this is a minor problem, some adaptation strategies,
such as Bayesian predictive adaptation, need to select the best hypothesis in a non-interactive
SMT scenario. Moreover, adaptation in IMT might take place even before the full sentence
has been validated, and this is bound to open different research possibilities as well.

In Bayesian predictive adaptation, the prior over the modelparameters has a key role
when computing the best output hypothesis. For this reason,and given the positive results
achieved by the implementation presented, we consider thatit is a problem which deserves
further attention. Furthermore, it can be proved experimentally that no single set of log-linear
weights is able to produce the best output, in terms of translation quality, for each one of the
input sentences present in the adaptation data. Guided by these two facts, we consider that it
would be interesting to consider Gaussian mixtures for the parameter prior.

Given that the four sampling strategies presented yield different performance in terms
of final translation quality, another possible extension tothe work presented in Chapter 4
consists in studying other possible parameter sampling strategies, as for instance particle
filters or other sequential Monte Carlo methods (Doucet et al., 2001).

In addition, we would also like to explore other possible adaptation techniques. One
technique that has found a very wide acceptance in speech recognition, but has not been ex-
plored as of yet in machine translation, is maximum likelihood linear regression (MLLR)
(Christensen, 1998). The application of this technique to machine translation is not straight-
forward, since the different approximations carried out inthe statistical models used in SMT
imply that several counts required for the EM estimation maynot be computed easily. Never-
theless, we would like to explore this possibility, and analyse to which extent it can be applied
to SMT.

Finally, even though in this case the extension proposed in Chapter 5 was performed
by only considering the mouse, one could easily imagine different devices which might be
transparent to the user and do not necessarily imply overwhelming the user with too many
different stimuli, and are yet able to provide the system with very important information.
Possible examples might be, for instance, a simple optical pen or even gaze tracking device.
In addition, one can also imagine other possible interaction schemes that may take advantage
of the mouse (or other devices), and which can boost the productivity of the human translator
even further. For example, one such scheme might be to enablethe user to select a given part
of the translation hypothesis, without requiring that suchpart must be a specific suffix, and
ask the system for other possible translation options for that specific fragment. We plan to
research all these possibilities in the near future.
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List of Figures

1.1 Example of word alignments computed automatically by means of a word-
alignment model. The left side shows the alignment as a function of the
source sentence (up) and the target sentence (down). On the right side, the
alignment is shown in a matricial form, as is often done in SMT. . . . . . . . 6

1.2 Example of how consistent phrases are extracted from a word alignment. On
the left, the alignment matrix after symmetrisation is shown. Black squares
represent word alignments, whereas extracted phrases are marked with a rect-
angle involving one or more squares. On the right, the phrases that would be
extracted from that matrix. Note that wordsecannot be extracted on its own
because its alignment requires wordha to be extracted together with it so as
to preserve alignment consistency. . . . . . . . . . . . . . . . . . . . .. . . 10

1.3 Alignment matrix with the different re-ordering types.m stands for mono-
tone,sstands for swap, andd stands for discontinuous. . . . . . . . . . . . . 11

1.4 Example of decoding procedure following the phrases extracted in Fig-
ure 1.2, with the input sentence being "Se ha celebrado en viena
una gran conferencia .". κx illustrates the coverage vector of that
specific partial hypothesis. The coverage vectorκx of a specific hypothesis
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