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Abstract

During the last decade, a new trend in medicine is transforming the nature of healthcare
from reactive to proactive. This new paradigm aspires to detect diseases at an early stage
and introduce diagnosis to stratify patients and diseases to select the optimal therapy
based on individual observations. This paradigm transformation relies on the availability
of complex multi-level biomedical data. In order to take advantage of this information, an
important effort is being made to develop new mathematical and computational methods
for extracting maximum knowledge from patient records. This requirement enables the use
of computer-assisted Clinical Decision Support Systems for the management of individual
patients.

The Clinical Decision Support System (CDSS) are computational systems that pro-
vide precise and specific knowledge for the medical decisions to be adopted for diagnosis,
prognosis, treatment and management of patients. The framework and the origin of this
Thesis is precisely the development of a CDSS based on Machine Learning algorithms to
infer predictive models for non-invasive brain tumour diagnosis. This process began with
the European project INTERPRET (2002) and went on with other two European projects
¢TUMOUR (2005) and HEALTHAGENTS (2008), which have endeavoured to develop an
automatic diagnostic tool applied to Proton Magnetic Resonance Spectroscopy (*H MRS)
data from brain tumours. A major aim was to minimize the need for an invasive histolo-
gical diagnosis of a brain tumour biopsy. Machine Learning has been successfully applied
to this problem providing automated analysis of 'H MRS. However, the development of
brain tumour classifiers able to generalize requires a large number of cases to be acquired
for each tumour type and at present the approach has only been used for a few common
tumours. Cases are collected from a large number of hospitals over many years and data
transferred to a centralised database. This approach has several disadvantages, ethical
approval and patient consent needs to be obtained to send and store data. Distributed
databases in which classifiers can be trained without moving the data from the hospital
at which it was collected would provide a practical solution. The ability to retrain the
classifiers as new data accumulates is also an important requirement and to meet these
needs, incremental learning algorithms may give a practical optimal solution.

After the analysis of non-incremental ML approaches for automatic brain tumor diag-
nosis, this Thesis introduces new incremental learning algorithms of general purpose for
stationary environments and particularly for adapting the predictive models to new centers
in the framework of automatic brain tumour decision making using 'H MRS.

Until now, the different CDSS developed for brain tumour diagnosis have only used
non-incremental classification models. Non-incremental classifiers entail an implicit as-
sumption that learning stops when the current training set has been processed. Hence,
the performance of a non-incremental automatic classifier strongly depends on the avail-
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ability of a representative training set for each class. However, the gathering of these
data is often expensive and time-consuming. Under these circumstances the properties of
incremental learning algorithms provide an effective solution.

An incremental learning algorithm sequentially produces a new predictive model when
new observations are available. The new predictive model is determined by the knowledge
held in the previous model and by the information provided by the current data. Therefore,
an incremental learning algorithm should be able to learn additional information from new
data without completely forgetting its previous knowledge, improving at the same time
the performance of the models in the course of time.

The present Thesis introduces the design, development, and evaluation of two new
incremental learning algorithms for general purpose dynamic CDSS with an application
to brain tumour diagnosis. Unlike many state-of-the-art incremental learning algorithms,
we assume that previous data are not accessible at all, which is a common constraint in
medical decision problems with distributed databases.

The first incremental learning algorithm is based on a generative weighted combination
of maximum-likelihood estimators where the data are assumed to follow a multivariate
Gaussian distribution. The algorithm has the ability to learn in an incremental fashion,
improving the performance of the models when new information is available, and converg-
ing in the course of time. Furthermore, it can incorporate new classes to its knowledge
base if new diagnosis are available within the new data allowing the customization of the
models at a particular clinical center. An evaluation using five benchmark databases has
been used to characterize the behaviour of the algorithm and, finally, it has been applied to
automatic brain tumour classification, comparing it with two state-of-the-art incremental
algorithms.

The second algorithm is based on a discriminative logistic regression using a Bayesian
inference paradigm where the posterior parameter distribution of one iteration is used as
a prior parameter distribution for the training of the next model once the new data are
available. This algorithm does not make any assumption on the underlying distribution
of the data. The performance of the incremental algorithm is demonstrated by employ-
ing different benchmark datasets and comparing it to the previous incremental learning
algorithm using also the brain tumour database.

Both algorithms show a good behaviour obeying the definition of incremental learning
algorithm and achieving the desired properties they should have. The algorithms have
the ability to customize an already trained predictive model to the specific distribution of
a particular hospital assuming that new information is ready for supervised classification
at different times, without the need to access to the previously seen data. This ability to
customize a model to a specific clinical centre could be used to improve the behaviour of
a state-of-the-art CDSS for aiding brain tumour diagnosis in the future.
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Resumen

En los dltimos diez anos, una nueva tendencia en medicina esta trasformando la practica
médica de reactiva a proactiva. Este nuevo paradigma aspira a detectar las enfermedades
de forma precoz y usar el diagnostico con el fin de seleccionar la terapia 6ptima en base
a las observaciones individuales. Este cambio de paradigma depende en gran medida de
la disponibilidad de datos biomédicos complejos. Para beneficiarse de esta informacion se
estd llevando a cabo un esfuerzo considerable por desarrollar nuevos métodos matematicos
y computacionales que sean capaces de extraer el maximo conocimiento posible de los
registros médicos. Este requisito posibilita el uso de Sistemas de Ayuda a la Decision
Médica computerizados para la gestion individual de pacientes.

Los Sistemas de Ayuda a la Decision Médica (SADM) son sistemas informaticos que
proporcionan conocimiento preciso y especifico para las decisiones médicas relacionadas
con el diagnostico, pronostico, tratamiento y gestion de pacientes. El origen de esta Tesis
es, precisamente, el desarrollo de un SADM basado en técnicas de Aprendizaje Automatico
para inferir modelos predictivos para el diagnoéstico no invasivo de tumores cerebrales. La
idea parti6 del proyecto europeo INTERPRET (2002) y continué con otros dos proyec-
tos europeos: eTumor (2005) y HEALTHAGENTS (2008), que llevaron a cabo un gran
esfuerzo para desarrollar una herramienta de diagnostico automético aplicada a datos de
espectros de resonancia magnética nuclear (*H MRS) de tumores cerebrales. Uno de los
objetivos principales era reducir la necesidad de llevar a cabo un diagnostico histopa-
tologico invasivo a partir de la biopsia de un tumor cerebral. El Aprendizaje Automaético
se ha aplicado con éxito a dicho problema, proporcionando un anélisis automético del
'H MRS. Sin embargo, el desarrollo de clasificadores de tumores cerebrales capaces de
generalizar requiere la adquisicion de un gran ntimero de casos para cada tipo de tumor
y, hasta ahora, esta aproximacion se ha empleado solo para un conjunto reducido de tu-
mores comunes. Los casos se han recogido a lo largo de muchos anos y a partir de un
conjunto de hospitales y se han transferido a una base de datos centralizada. El problema
de esta aproximacion es que existen impedimentos éticos y legales para almacenar y enviar
los datos. En cambio, las bases de datos distribuidas donde los modelos de clasificacion
pueden ser entrenados sin tener que mover los datos del hospital donde se adquirieron
podrian proporcionar una soluciéon practica. Otro requisito interesante es la capacidad de
reentrenamiento de los clasificadores a medida que se adquieren nuevos datos. una manera
de proporcionar una solucién practica 6ptima que cumpla con ambos requisitos es aplicar
algoritmos de aprendizaje incremental.

Tras analizar las aproximaciones de Aprendizaje Automético no incrementales para el
diagnostico automéatico de tumores cerebrales, esta Tesis presenta dos nuevos algoritmos de
aprendizaje incremental de proposito general para entornos estacionarios y, en particular,
para adaptar los modelos predictivos a nuevos centros sanitarios en el marco de la toma



de decisiones para tumores cerebrales empleando *H MRS.

Hasta ahora, los diferentes SADM desarrollados para el diagnostico de tumores cere-
brales habian empleado solo modelos no incrementales. Estos modelos asumen de forma
implicita que el aprendizaje termina una vez que el conjunto de datos disponible ha sido
procesado, por lo que las prestaciones de un clasificador automatico no incremental de-
pende de la disponibilidad de un conjunto de entrenamiento suficientemente representativo
para cada clase. El problema reside en el considerable coste econémico y temporal que la
adquisicion de estos datos suele suponer. Las propiedades de los algoritmos de aprendizaje
incremental podrian proporcionar una soluciéon efectiva ante esta situacion.

Un algoritmo de aprendizaje incremental proporciona, de forma secuencial, un nuevo
modelo predictivo siempre que se disponga de nuevas observaciones. Este nuevo modelo
queda determinado por el conocimiento adquirido en el modelo anterior y por la infor-
maciéon contenida en los nuevos datos. Por lo tanto, un algoritmo incremental deberia
ser capaz de incorporar informaciéon adicional a partir de los nuevos datos sin olvidar
por completo su conocimiento previo. A la vez, las prestaciones de los modelos deberian
mejorar con el paso del tiempo.

Esta Tesis presenta el diseno, desarrollo y evaluaciéon de dos nuevos algoritmo de apren-
dizaje incremental de propoésito general para SADM dinamicos, con una aplicacién conc-
reta al diagnostico de tumores cerebrales. Al contrario que otros muchos algoritmos incre-
mentales desarrollados, se asume que los datos anteriores no seran accesibles ya que esta
es una restriccién comin en entornos de decision médicos con bases de datos distribuidas.

El primer algoritmo se basa en una combinacién ponderada de estimadores por maxima
verosimilitud donde se asume que los datos siguen una distribucién gaussiana multivari-
ante. El algoritmo es capaz de aprender de manera incremental, mejorando las presta-
ciones de los modelos cuando se dispone de nueva informacion, convergiendo con el tiempo.
Ademas, puede incorporar nuevas clases a su base de conocimiento si estos diagnosticos
estuvieran disponibles. Estas capacidades le permiten adaptar los modelos a cada centro
clinico particular. Para evaluar el comportamiento del algoritmo se han utilizado bases de
datos de referencia y, finalmente, se ha aplicado al problema de clasificaciéon de tumores
cerebrales, comparando sus resultados con los de otros dos algoritmos incrementales de la
literatura.

El segundo algoritmo se basa en una regresion logistica que se ajusta mediante el
paradigma de inferencia bayesiana donde la distribucion a posteriori de los pardmetros de
una iteracion se usa como distribucion de los parametros a priori para el entrenamiento
del modelo siguiente. Este algoritmo no asume ningin tipo de distribucién subyacente
a los datos. Las prestaciones de este algoritmo se evalian mediante diferentes bases de
datos de referencia y comparandolo con el algoritmo anterior empleando también la base
de datos de tumores cerebrales.

Ambos algoritmos muestran un buen comportamiento, cumplen con la definiciéon de
aprendizaje incremental y logran alcanzar las propiedades que deben tener. Ambos algo-
ritmos pueden adaptar un modelo entrenado con datos de un hospital a la distribucion
especifica de otro hospital siempre que se disponga de nueva informacion para poder llevar
a cabo un entrenamiento supervisado. Ademaés, pueden hacer esto sin tener que acceder
a los datos anteriores. Esta capacidad de adaptaciéon a un nuevo centro clinico podria
emplearse en el futuro para mejorar el comportamiento de los SADM actuales en la ayuda
al diagnostico de tumores cerebrales.
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Resum

En els tdltims deu anys, una nova tendéncia en medicina esta transformant la practica
médica de reactiva a proactiva. Aquest nou paradigma aspira a detectar les malalties
de forma preco¢ i usar el diagnostic amb la finalitat de seleccionar la terapia optima
sobre la base de les observacions individuals. Aquest canvi de paradigma depén en gran
mesura de la disponibilitat de dades biomédiques complexos. Per beneficiar-se d’aquesta
informaci6 s’estd duent a terme un esfor¢ considerable per desenvolupar nous métodes
matematics i computacionals que siguin capagos d’extreure el maxim coneixement possible
dels registres medics. Aquest requisit possibilita 1'as de Sistemes d’Ajuda a la Decisio
Meédica computeritzats per a la gestié individual de pacients.

Els Sistemes d’Ajuda a la Decisi6 Médica (SADM) son sistemes informatics que pro-
porcionen coneixement precis i especific per a les decisions médiques relacionades amb
el diagnostic, pronostic, tractament i gesti6 de pacients. L’origen d’aquesta Tesi és, pre-
cisament, el desenvolupament d'un SADM basat en técniques d’Aprenentatge Automatic
per inferir models predictius per al diagnostic no invasiu de tumors cerebrals. La idea va
partir del projecte europeu INTERPRET (2002) i va continuar amb altres dos projectes
europeus: e€Tumor (2005) i HEALTHAGENTS (2008), que van dur a terme un gran es-
for¢ per desenvolupar una eina de diagnostic automatic aplicada a dades d’espectres de
ressonancia magnética nuclear (!H MRS) de tumors cerebrals. Un dels objectius princi-
pals era reduir la necessitat de dur a terme un diagnostic histopatologic invasiu a partir
de la biopsia d’un tumor cerebral. L’Aprenentatge Automatic s’ha aplicat amb éxit a
aquest problema, proporcionant una analisi automatica del 'H MRS. No obstant aixo, el
desenvolupament de classificadors de tumors cerebrals capagos de generalitzar requereix
I’adquisici6 d’'un gran nombre de casos per a cada tipus de tumor i, fins ara, aquesta
aproximacié s’ha emprat solament per a un conjunt reduit de tumors comuns. Els casos
s’han recollit al llarg de molts anys i a partir d’'un conjunt d’hospitals i s’han transferit a
una base de dades centralitzada. El problema d’aquesta aproximaci6 és que existeixen im-
pediments étics i legals per emmagatzemar i enviar les dades. En canvi, les bases de dades
distribuides on els models de classificacié poden ser entrenats sense moure les dades de
I’hospital on es van adquirir podrien proporcionar una solucié practica. Un altre requisit
interessant és la capacitat de reentrenament dels classificadors a mesura que s’adquireixen
noves dades. Una manera de proporcionar una solucié practica optima que compleixi amb
tots dos requisits és aplicar algorismes d’aprenentatge incremental.

Després d’analitzar les aproximacions d’Aprenentatge Automatic no incrementals per
al diagnostic automatic de tumors cerebrals, aquesta Tesi presenta dos nous algorismes
d’aprenentatge incremental de proposit general per a entorns estacionaris i, en particular,
per adaptar els models predictius a nous centres sanitaris en el marc de la presa de decisions
per a tumors cerebrals emprant 'H MRS.

vil



Fins ara, els diferents SADM desenvolupats per al diagnostic de tumors cerebrals
havien empleat sol models no incrementals. Aquests models assumeixen de forma implicita
que 'aprenentatge acaba una vegada que el conjunt de dades disponible ha estat processat,
per la qual cosa les prestacions d’un classificador automatic no incremental depén de la
disponibilitat d’'un conjunt d’entrenament suficientment representatiu per a cada classe. El
problema resideix en el considerable cost economic i temporal que ’adquisicié d’aquestes
dades sol suposar. Les propietats dels algorismes d’aprenentatge incremental podrien
proporcionar una solucié efectiva davant aquesta situacio.

Un algorisme d’aprenentatge incremental proporciona, de forma seqiiencial, un nou
model predictiu sempre que es disposi de noves observacions. Aquest nou model queda
determinat pel coneixement adquirit en el model anterior i per la informacié continguda en
les noves dades. Per tant, un algorisme incremental hauria de ser capa¢ d’incorporar infor-
macié addicional a partir de les noves dades sense oblidar per complet el seu coneixement
previ. Alhora, les prestacions dels models haurien de millorar amb el pas del temps.

Aquesta Tesi presenta el disseny, desenvolupament i avaluacié de dos nous algorisme
d’aprenentatge incremental de proposit general per SADM dinamics, amb una aplicacio
concreta al diagnostic de tumors cerebrals. Al contrari que molts altres algorismes in-
crementals desenvolupats, s’assumeix que les dades anteriors no seran accessibles ja que
aquesta és una restriccié comuna en entorns de decisi6 médics amb bases de dades dis-
tribuides.

El primer algorisme es basa en una combinacié ponderada d’estimadors per maxima
versemblanca on s’assumeix que les dades segueixen una distribucié gaussiana multivari-
ant. L’algorisme és capa¢ d’aprendre de manera incremental, millorant les prestacions
dels models quan es disposa de nova informaci6, convergint amb el temps. A més, pot
incorporar noves classes a la seva base de coneixement si aquests diagnostics estiguessin
disponibles. Aquestes capacitats li permeten adaptar els models a cada centre clinic par-
ticular. Per avaluar el comportament de l'algorisme s’han utilitzat bases de dades de
referéncia i, finalment, s’ha aplicat al problema de classificacié de tumors cerebrals, com-
parant els seus resultats amb els de altres dos algorismes incrementals de la literatura.

El segon algorisme es basa en una regressio logistica que s’ajusta mitjancant el para-
digma d’inferéncia bayesiana on la distribucié a posteriori dels parametres d’una iteracié
s'usa com a distribuci6é dels parametres a priori per a ’entrenament del model segiient.
Aquest algorisme no assumeix cap tipus de distribuci6 subjacent a les dades. Les presta-
cions d’aquest algorisme s’avaluen mitjancant diferents bases de dades de referéncia i
comparant-ho amb ’algorisme anterior emprant també la base de dades de tumors cere-
brals.

Tots dos algorismes mostren un bon comportament, ja que compleixen amb la defini-
ci6 d’aprenentatge incremental i aconsegueixen aconseguir les propietats que han de tenir.
Tots dos algorismes poden adaptar un model entrenat amb dades d’un hospital a la dis-
tribuci6 especifica d’un altre hospital sempre que es disposi de nova informacié per poder
dur a terme un entrenament supervisat. A més, poden fer aixo sense haver d’accedir a les
dades anteriors. Aquesta capacitat d’adaptacié a un nou centre clinic podria emprar-se
en el futur per millorar el comportament dels SADM actuals en I'ajuda al diagnostic de
tumors cerebrals.
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Chapter 1

Introduction

1.1 Motivation

During the last decade, a new trend in medicine is transforming the nature of healthcare
from reactive to proactive. This new paradigm is changing into a personalized medicine
where the prevention, diagnosis, and treatment of disease is focused on individual patients.
Hence, its objective is to evolve from a classical reactive medicine, which waits until the
patient is sick before reacting, to a personalized, predictive, preventive, and participatory
medicine which aims to be cost effective and increasingly focused on wellness. This para-
digm is known as P4 medicine [I, 2]. Among other key benefits, P4 medicine aspires to
detect diseases at an early stage and introduce diagnosis to stratify patients and diseases
to select the optimal therapy based on individual observations and taking into account
the patient outcomes to empower the physician, the patient, and their communication.

This transformation relies on the availability of complex multi-level biomedical data
that are increasingly accurate, since it is possible to find exactly the needed information,
but also exponentially noisy, since the access to that information is more and more chal-
lenging. In order to take advantage of this information, an important effort is being made
in the last decades to digitalize medical records and to develop new mathematical and
computational methods for extracting maximum knowledge from patient records, build-
ing dynamic and disease-predictive models from massive amounts of integrated clinical and
biomedical data. This requirement enables the use of computer-assisted Clinical Decision
Support Systems for the management of individual patients.

The Clinical Decision Support System (CDSS) are computational systems that pro-
vide precise and specific knowledge for the medical decisions to be adopted for diagnosis,
prognosis, treatment and management of patients. The CDSS are highly related to the
concept of evidence-based medicine [3, 4] since they infer medical knowledge from the bio-
medical databases and the acquisition protocols that are used for the development of the
systems, give computational support based on evidence for the clinical practice, and evalu-
ate the performance and the added value of the solution for each specific medical problem.
The CDSS have been cataloged into four categories, depending on the complexity of the
operations performed to extract knowledge from the patient information [5]. The two
most complex types of CDSS are related with the use of artificial intelligence in medicine,
specifically with the use of deductive inference reasoning (type III) and inductive inference
reasoning (type IV). The present Dissertation is in line with the development of CDSS of



Chapter 1. Introduction

type IV, which are based on Machine Learning (ML) algorithms to infer predictive models
from real-world data.

The first CDSS used in clinical practice was developed by Leaper et al. [6] for the
support of diagnosis and surgery of acute abdominal pain based on a naive Bayes ap-
proach. Shortliffe et al. designed and developed a ruled-based expert system for assisting
physicians with the diagnosis and treatment for certain blood infections [7]. Since then, an
increasing emergence of specific CDSS have been designed and developed with relative suc-
cess. The framework and the origin of this Thesis is precisely the development of a CDSS
for non-invasive brain tumour diagnosis that began with the European project INTER-
PRET (2002) [8] and went on with other two European projects e TUMOUR (2005) [9]
and HEALTHAGENTS (2008) [10].

The three European projects (INTERPRET (2000-2002) [8, 11], eTUMOUR (2004-
2009) [9], and HEALTHAGENTS (2005-2008) [10]) have endeavoured to develop a non-
invasive automatic diagnostic tool using ML techniques applied to Proton Magnetic Res-
onance Spectroscopy (‘H MRS) data from brain tumours. A major aim was to minimize
the need for an invasive histological diagnosis of a brain tumour biopsy as is currently
required for the diagnosis and management of brain tumours. Non-invasive brain tumour
diagnosis using 'H MRS has shown considerable promise in aiding patient management
but is not in widespread clinical use due mainly to the difficulties of data interpretation.
ML has been successfully applied to this problem providing automated analysis of 'H
MRS [12, 13| 11, 14]. However, the development of robust brain tumour classifiers re-
quires a large number of cases to be acquired for each tumour type and at present the
approach has only been used for a few common tumours. Cases are accrued from a large
number of hospitals over many years and data transferred to a centralised database. This
approach has several disadvantages, ethical approval and patient consent needs to be ob-
tained to send and store data. In order to expand the applicability of ML techniques to
MRS of a wider range of tumours, more cases need to be collected over a more prolonged
period of time and the logistics of using a centralised database to provide this have so
far proved insurmountable. Distributed databases where the data is held at the data col-
lecting hospitals have major advantages [10] and such a system in which classifiers can be
trained without moving the data from the hospital at which it was collected would provide
a practical solution. The ability to retrain the classifiers as new data accumulates is also
an important requirement and to meet these needs, incremental learning algorithms may
give a practical optimal solution.

Furthermore, a classification framework with a distributed architecture requires the
classification models trained with data from one center to perform well when moved to
another center, that is, to generalize. A model’s performance can be assessed using new
data from the same dataset following a hold-out evaluation strategy, but a further assess-
ment of generalization requires evaluation on data from elsewhere [15]. Poor performance
in new patients may arise because of deficiencies in the design of the model reaching over-
fitting, or because the setting of patients between the training and the new samples are
different, considering factors such as healthcare systems, patient characteristics, and/or
acquisition protocols. As an alternative to the re-calibration of the models [16], 17, 18],
this Thesis proposes the use of incremental learning algorithms for the models to adapt
to the center where they are going to be used.

After the analysis of non-incremental ML approaches, this Thesis introduces new in-



1.2. Hypothesis

cremental learning algorithms of general purpose for stationary environments and —in
particular— for adapting the predictive models to new centers in the framework of biome-
dical decision making, applying them to the automatic brain tumour classification using
'H MRS.

Until now, the different CDSS developed for automatic brain tumour diagnosis have
only used non-incremental classification models [11], 9, 10]. Non-incremental classifiers
entail an implicit assumption that learning stops when the current training set has been
processed. Hence, the performance of a non-incremental automatic classifier strongly
depends on the availability of a representative training set for each class. However, the
gathering of these data is often expensive and time-consuming, and a strategy to wait long
enough as to gather enough data all in one set may be undesirable and/or impractical.
Furthermore, there are situations where the access to previous data may be forbidden.
There are also types of data sources where the underlying distributions may evolve over
time rather than be stationary. In particular, this happens in the concept shift [19] 20, 21],
where the target distribution p(c|z) may change in the course of time, and in the covariate
shift 22 20, 2], where the data distribution p(z) changes continously. Under these
circumstances an incremental learning algorithm might be a practical and more effective
solution.

Following previous state-of-the-art research on incremental learning, the proposed al-
gorithms in this Thesis have to reach a trade-off between a stable classifier and a plastic
classifier to face the stability/plasticity dilemma, which states that some information may
be lost during incremental learning. Furthermore, the algorithms have to prove that they
do not suffer from ordering effect bias, which means that presenting the observations in
different order implies achieving different models. Finally, it is interesting if the incre-
mental learning algorithms have also the ability to incorporate new classes or concepts
as they appear. These remarkable properties are considered through the Thesis assuming
the accessing previous data is forbidden.

1.2 Hypothesis

The present Thesis is based on three hypotheses:

I. The ML approach to automatic brain tumour classification yields predictive models
with satisfactory performances.

II. The use of incremental learning techniques applied to biomedical data can help in
the improvement of automatic classification models when they are moved to a new
health organization and/or new cases are available for classification.

ITI. The Bayesian inference provides a straightforward framework to implement incre-
mental learning algorithms to avoid assumptions over the data distribution.

1.3 Goals

In order to verify the first hypothesis, we need to guarantee that the ML paradigm is
feasible for the automatic brain tumour classification task. To reach this goal, an inference
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of predictive models to discriminate among different diagnoses, and the evaluation of the
models using newly collected data are carried out.

The verification of the last two hypothesis defines the main goal of this Thesis: the
design, development and validation of both a frequentist and a Bayesian incremental
learning algorithms and their ability to take advantage of new observations. This goal is
achieved by fulfilling the following specific goals:

e To design the mathematical framework of a maximum-likelihood approach for an
incremental learning algorithm. Then, implement the algorithm and carry out sev-
eral benchmark experiments, and evaluate the algorithm with a real brain tumour
database. This evaluation required the design of an alternative evaluation proce-
dure since the well-known hold-out and resampling methods were not indicated for
incremental problems.

e To design the mathematical framework of a Bayesian incremental learning algorithm,
to develop the algorithm and to evaluate it using benchmark databases as well as
the brain tumour database.

e To compare the performance and the incremental ability of the algorithms with non-
incremental algorithms and other state-of-the-art incremental learning algorithms.

1.4 Contributions

The scientific results of this Thesis concern the application of ML techniques and the
development of new incremental learning algorithms for approximately stationary envi-
ronments. These algorithms have a general ML purpose, but they are also applied for
automatic brain tumour classification in this Thesis. The contributions of this Thesis
have been published in scientific journals and proceedings of congresses in the fields of
Applied Artificial Intelligence, Machine Learning, and Magnetic Resonance.

This Thesis continues the research initiated by Dr. Juan Miguel Garcia-Gomez [23] in
the framework of two European projects where the goal was to develop a ML-based CDSS
for aiding brain tumour diagnosis. The contributions made included the development
of ML-based models in a prospective multicenter evaluation [24] and the analysis of the
effect of combining different MRS times of echo for the automatic classification of brain
tumours [25]. Then, the development of a CDSS for automatic brain tumour diagnosis
was carried out and published in [26, 27].

The main contribution of this Thesis is the development of two algorithms for in-
cremental learning of ML-based models for stationary distributions or limited shifting
distributions. Unlike many of the state-of-the-art incremental learning algorithms, we
assume that, once the datasets are used for fitting the models, they will not be available
again. The first incremental learning algorithm is based on maximum-likelihood param-
eter estimation and a weighted combination of the old model parameters with the new
dataset to develop a new model [28]. The second incremental learning algorithm is based
on the Bayesian inference paradigm. This paradigm assumes that the parameters are
random variables. Taking into account this assumption, the Bayesian paradigm uses the
information given by the observations together with prior beliefs about the parameters of
the model to estimate the distribution of the parameters. This paradigm allows a new
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model to use its parameters as the prior belief of a new model in light of new observed
data. This Thesis shows an implementation of this paradigm in a discriminative logistic
regression model to turn it into an incremental learning algorithm.

Additional contributions of this Thesis have been made to two other lines of research
on brain tumour diagnosis leadered by Elies Fuster-Garcia, regarding the study of com-
patibility of PR models trained with 1.5T MRS with samples of 3T MRS [29], and Javier
Vicente, regarding the design of paediatric brain tumour classifiers [30] and the design of
a tool that allows the selection of the most suitable model in a CDSS [31], respectively.
Collaboration on the mathematical framework, the writing and experimental design was
carried out in these studies.

1.5 Projects and Partners

The development of this Thesis is part of a number of European projects in which the
author has been actively involved:

eTUMOUR [9] Web accesible (Nuclear) Magnetic Resonance (MR) decision support
system for brain tumour diagnosis and prognosis, incorporating in vivo and ex vivo genomic
and metabolomic data. European Commission (VI Framework Program, LSHC-CT-2004-
503094, 2004-2009).

Objectives: (1) Development of a web-accessible CDSS that has a Graphical User
Interface (GUI) to display clinical, metabolomic and genetic brain tumor data. (2) To
provide an evidence-based clinical decision-making computer-human interface by using
statistical pattern recognition analysis of molecular images of brain tumours (using Mag-
netic Resonance Spectroscopy (MRS)) and incorporating new criteria such as genetic based
tumour classifications and related clinical information.

Partners: University of Valencia (Valencia, Spain), Universitat Autonoma de Barcelona
(Barcelona, Spain), St George’s Hospital Medical School (London, UK), University Med-
ical Center Nijmegen (Nijmegen, Netherlands), Stichting Katholieke Universiteit (Ni-
jmegen, Netherlands), Université Joseph Fourier U594 (Grenoble, France), MicroArt S.L.
(Barcelona, Spain), Hospital San Joan de Deu (Esplugues de Llobregat, Spain), Pharma
Quality Europe, s.r.l. (Barcelona, Spain), Hyperphar Group SpA. (Milan, Italy), Katholieke
Universiteit Leuven (Leuven, Belgium), Siemens AG, Medical Solutions (Erlangen, Ger-
many), SCITO, S.A (Grenoble, France), Deutsche Krebsforschungs zentrum Heidelberg
(Heidelberg, Germany), Bruker Biospin SA. (Wissembourg, France), Institute of Child
Health - University of Birmingham (Birmingham, United Kingdom), INSERM U318
(Grenoble, France), Fundacion para la Lucha contra Enfermedades Neurologicas de la
Infancia (Buenos Aires, Argentina), Medical University Lodz (Lodz, Poland) and IBIME-
ITACA group from Polytechnic University of Valencia (Valencia, Spain).

HEALTHAGENTS [10] Agent-based distributed decision support system for brain tu-
mour diagnosis and prognosis. European Commission (VI Framework Program, IST-2004-
27214, 2006-2009).

Objectives: To create a distributed datawarehouse with the world’s largest network
of interconnected databases of clinical, histological, and molecular phenotype data of brain
tumour patients, providing evidence-based clinical decision-making by means of magnetic
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resonance and genetic based tumour classifications, and to develop new methodologies to
fulfill a dynamic clinical decision support system.

Partners: University of Valencia (Valencia, Spain), MicroArt S.L. (Barcelona, Spain),
Universitat Autonoma de Barcelona (Barcelona, Spain), Pharma Quality Europe, s.r.L
(Barcelona, Spain), Katholieke Universiteit Leuven (Leuven, Belgium), University of Birm-
ingham (Birmingham, UK), University of Edinburgh (Edinburg, UK), University of South-
ampton (Southampton, UK), and IBIME-ITACA group from Polytechnic University of
Valencia (Valencia, Spain)

Furthermore, the author of this Thesis is a co-founding member of a spin-off com-
pany, Veratech for Health, that has emerged as a result of the knowledge and technologies
developed over more than 12 years of experience in the research lines of the Biomedi-
cal Informatics Group (IBIME) from the ITACA Institute of the Polytechnic University
of Valencia (UPV). Veratech for Health provides solutions for building large health in-
formation systems, integration and standardization of clinical information, analysis and
knowledge extraction from biomedical data and development of clinical decision support
systems. Some results of this Thesis have been already incorporated to develop techno-
logical products and some others will be useful to develop new ones in the near future.

1.6 Summary of the remaining chapters

Chapter [2] introduces a theoretical framework of the concepts that are used in this The-
sis. It gives an introduction of the ML approach, and highlights the difference
between incremental and non-incremental learning algorithms. In addition, diffe-
rent paradigms for fitting model parameters, such as maximum-likelihood and the
Bayesian inference paradigm are explained.

Chapter [3 presents some initial results on classification of brain tumours using 'H MRS
from a multicenter European database of patients. The results obtained in Chapter[3]
are the starting point to further investigate the development of incremental learning
algorithms.

Chapter [ introduces a new incremental algorithm for Gaussian Discriminant Analysis
based on the weighted combination of the parameters of one model and the estimated
parameters given the new observations. The weights to combine them are based on
an unbiased estimator for combining different measures developed by Graybill and
Deal [32]. The results show that the algorithm is able to learn from new data with a
converging performance, it can include new classes if needed, and it has a negligible
order effect. The algorithm is tested with some benchmark datasets and, finally,
with the 'H MRS brain tumour database.

Chapter [ applies the Bayesian inference paradigm to develop an incremental learning
algorithm to build a discriminative model. Since the analytical computation of the
posterior probabilities are hard to obtain, a Laplace approximation is used. The
algorithm follows two steps. First, the posterior probability of the parameters is
approximated to a Gaussian. Then, the posterior probability is used as a prior
probability that is combined with the likelihood when new observations are available
to produce a new model. The results shows that the algorithm is able to learn
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Figure 1.1: Scheme of the Chapters of the Thesis.
incrementally and has no order effects. As a result, an incremental learning algorithm
that is independent of the data distribution is provided.

Chapter [6] summarizes the conclusions of the Dissertation and explains the future lines
of research and development.






Chapter 2

Theoretical framework

This Chapter introduces the theoretical foundations that are the basis of this Thesis. We
begin with a section about the machine learning and pattern recognition approaches to
the automatic classification. Then, different modeling approaches for classification and
the maximum-likelihood estimation methodology and the Bayesian inference paradigm
are introduced as a way to estimate the parameters of a classification model. Then, the
core concepts of incremental learning are presented. Finally, the evaluation methodologies
followed in this Thesis to test the models are described.

2.1 Machine learning and Pattern recognition

A medical diagnosis is a cognitive process by which a clinician attempts to identify a
health disorder or a disease in a patient. The diagnosis is based on a series of data sources
that serve as the input information to yield the final result. Therefore, this process can be
regarded as a classification problem. Since the field of Pattern Recognition (PR) concerns
the automatic discovery of regularities in data to classify them into different categories,
the problem of medical diagnosis can be automated by means of PR techniques. The PR
models are often developed based on a Machine Learning (ML) approach, which provides
the mathematical and computational mechanisms to infer knowledge from specific data of
a given domain [33] 34].

The life cycle of a PR problem based on ML can be divided into two main phases:
the training phase and the recognition phase (see Figure 2.]). During the training phase,
a dataset is used to build the PR model. In this phase, a pre-processing and a feature
selection or a feature extraction can be established. Then, an adaptive model is fitted,
selected and evaluated in order to obtain the best generalization for solving new cases in
the recognition phase. Once the model is ready, it can be incorporated into a CDSS to
aid in future observations.

The general problem of ML is often described with a random observation s generating
process, which are obtained following a two-stage process [35]. First, a generator produces
random feature vectors x € X following a probability distribution function p(x); then,
a supervisor assigns the class ¢ € C given the feature vector and following the conditional
probability distribution function p(c|x), thus producing samples such as s; = {x;,¢;}
with probability p(x;, ¢;), where p(x;,¢;) = p(x;)p(ci|x;) = p(e;)p(xi|e;). The value p(c)
is known as the prior probability of the class and the value p(x|c) is called the class-
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Recognition: DSS in the clinical environment

Biomedical Feature Prediction
data Preprocess > oxiraction »| Classification ——» Dic;lls‘;on
A A
\ l l
Training Feature | Classification
Corpus

Selection I Design
Figure 2.1: Methodology of the Machine Learning approach

Training: DSS development

p(x) 1 plcx) —— ¢

_"Ma:_>

Figure 2.2: The two-stage generation of learning samples produces an observation x fol-
lowing the distribution p(x), and then a class ¢ is assigned to it. The supervised training
of a model is carried out by observing the pairs (x, ¢) and fitting the parameters « of the
model. Once the model is trained, it has to estimate the output ¢, as close to the true
value ¢ as possible, given any new input observation x .

o

conditional probability or simply the conditional probability.
The aim of ML is to develop a decision rule, also called a model, M that maps a
random feature vector into a class. Hence, a model is a mapping

M:xP ¢ (2.1)

Generally, the model can be defined as a parameterized function ¢ = fu(x, @), « € A that
attempts to approximate the value c. It is thus possible to measure the consequences of
approximating ¢ given x by means of a loss function L(c,¢). In a classification problem,
the loss function is often defined as

0 ifec=c

L(c,é):{ L fode (2.2)

The expression (2.2)) is known as 0-1 loss function. When an object x is classified using a
model M, and given a 0-1 loss function, it is possible to compute the conditional risk of
such model, which is expressed as

R(e[x) = Egx|L(c, fra(x; )] (2.3)

since the set of classes is a finite set with discrete values, the equation (2.3) can be
expressed as

R(e[x) = Y Lle, faa(x; ))p(elx) (2.4)

ceC

10
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In order to compare the performance of different classifiers independently of any specific
observation x a functional risk can be defined and expressed as

R(M.a) = Ex[R(¢]x)]
:/R(é|x)p(x)dx

_ / > Lie. eplelp(x)dx (2:5)

ceC

_ / ZL(C, &)p(x, ¢)dx

ceC

- EX,C[L(Cv é)]

An optimal decision rule is defined as the one that achieves minimum probability of
error. If the prior probabilities and the class-conditional probabilities are known, then the
optimal decision rule is the Bayesian decision rule,

¢* «— argmin R(¢[x) (2.6)
eec
When a 0-1 loss function is assumed, then the conditional risk is the average probability
of error, which can be expressed as

R(elx) = 1 - p(elx) (2.7)

However, the common situation for these distributions is to be unknown. Never-
theless, they can be approximated from a set of observations & = {(x1,¢1), (x2,¢2), ...,
(xn,cn)} € (XP xC) that is supposedly drawn according to p(x, ¢). The basic assumption
in ML is that both the observed and the unseen data are generated by the same process,
which formally means that the data is sampled independently and from an identical pro-
bability distribution (iid). The main goal of ML is to find —based on S— a function or
a model M, whose risk is as close to R(¢*) as possible. Since the model fi(x;a) is
approximated with a supervised training set S, the estimation of the performance of the
model is usually measured using an empirical risk:

Remp(Ma) = % Z L(cn, fama (Xn, ) (2.8)

When the 0-1 loss function is assumed, the empirical risk gives

Renp( M) = 1= 3 8(c, ) (2.9)

where 0 is the Kronecker delta function. Hence, the empirical risk using a 0-1 loss function
simply counts the misclassifications on a set of observations. The inductive criterion to
apply is naturally to select the model with the minimal empirical risk since it should arise
as the one which minimizes the probability of error. This empirical risk minimization
principle can be expressed as

a* «— argmin Re,,,(M,) (2.10)

a€EA
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The Bayesian decision rule to minimize risk calls for selecting the class that minimizes
the conditional risk. To minimize thus the conditional risk we should select the class that
maximizes the posterior probability p(¢|x). Therefore, the equation (2.6]) is transformed
into

¢* «— argmax p(¢|x) (2.11)
eec

From a geometrical viewpoint, a decision rule labels an observation x in the sample
space with a class c. As a consequence, the sample space X is divided into |C| disjoint
decision regions, R.. Thus, a decision region can be defined as

R.={x:p(c|x) > p(d(x)},V # ¢ (2.12)

The surface where the decision regions intersect is called a decision boundary. Finding the
optimal decision rule using equation (ZI1]) gives the optimal decision boundary among
classes, and it will be determined by the set of points where the class-posterior probabilities
are equal,

Fee = {x:plelx) = p(|x)} (2.13)

2.1.1 Generative and discriminative models

The equation (ZII)) specifies that finding out the optimal class requires knowing the
posterior probability of each possible class in order to choose the one that is maximum. If
p(c|x) were known for each class ¢ € C then the best possible classifier with minimum error
rate —called the Bayes error rate— could be achieved. Since the posterior probabilities have
to be approximated, it is possible to apply at least two different approaches for modeling
them: a generative model, or a discriminative model.

Generative models

In the generative approach, the posterior probabilities p(c|x) are computed applying the
Bayes’ theorem

p(x[e)p(c)
p(x)

where p(x|c) is the class-conditional probability density, p(c) is the prior probability of

each class, and p(x) is the marginal distribution that serves as a normalization factor

p(x) =Y p(x|d)p() (2.15)

ceC

plelx) = (2.14)

In this approach, since the marginal distribution p(x) is constant regardless of a particular
class, the decision rule (2.11]) can be expressed as

p(x|c)p(c) }
p(x) (2.16)

— arg max {p(XIC)p(C)}

¢" «+— arg max {
eec
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The final model depends on the assumptions about the class-conditional probability
densities. A common assumption is that the variables follow a multivariate Gaussian
distribution, that is, p(x|c) ~ N (., 3.),

p(xle) = (2m)P2[% |7 exp { - %(X — ) B (x - uc)} (2.17)

with p,. and ¥, being the mean and covariance matrix parameters for class ¢, respectively.
This assumption is followed in the incremental learning algorithm introduced in Chapter [4]

Discriminative models

A discriminative approach attempts to model the posterior probabilities p(c|x) directly
by means of a parametric model that is optimized using a training set. This approach
has typically fewer adaptive parameters to be determined. An interesting model for this
Dissertation is the Logistic Regression model [36], where the posterior probability of class
c =1 is estimated with

exp (w(x)
[+ exp (wio(x)

where w are the parameters of a discriminant function and ¢(-) is a vector of basis functions
that results in a nonlinear transformation of the input data x. This model is only useful
for the two-class discrimination problem. The extension for discriminating more than two
classes is accomplished using the multinomial logistic regression [36].

ple=1lx) = (2.18)

2.2 Maximum likelihood estimation

The frequentist approach to machine learning builds a model by finding the parameters
that best fits the data. This is carried out by using the mazimum likelthood estimation
(MLE) method. This method has become widely used due to its interesting properties.
The MLE selects a configuration of the parameters that maximizes the probability of the
data given the model, which is equivalent to the likelihood of the parameters given the
data. Let & = {x1,29,...,2n} be the observed data, then the likelihood function is

((6|S) = p(S10)

= Hp@n“g)

=1

(2.19)

3

The goal of the MLE method is to obtain the parameter values ¢ that maximize the
likelihood function. It is often convenient to work with the logarithm of the likelihood
function instead of the likelihood itself,

L(0]S) = Zlog{ xn\ﬁ} (2.20)

13
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Therefore, the MLE is based on solving a maximization problem

N
6= ar%engaXZlog {p(:pn|0)} (2.21)
=1

-

The most interesting property of the MLE method is that it is unbiased, i.e., Ef [é] =40.
The ML estimator is also consistent, that is, it is asymptotically unbiased when N — oco.
The ML estimator is asymptotycally efficient, that is, it achieves the smallest mean squared
error amongst all unbiased estimators. Although MLE has good properties, they are all
based on asymptotic assumptions, which means that the MLE relies on the availability
of a great amount of observations. In practical biomedical problems, the samples consist
of a small number of observations and usually a high number of variables. Under these
conditions the ML estimator can be biased. In this scenario, the MLE requires the use of
regularization techniques to avoid overfitting. The overfitting problem appears when the
models adjust their parameters to the noise of the sample rather than to the underlying
distribution of the data avoiding the generalization to unseen data. An alternative is to
use the Bayesian inference to estimate the parameters of the model. This is explained in
the next section.

2.3 Bayesian inference

The maximum-likelihood method involves finding the parameters 0 of the model by max-
imizing (2.20) given the observations. Once the parameters are fitted, the model is ready
for predicting new data using p(zy41|0). However, the problem with this method is that
we have solved the probability of the observed data given the estimated parameters. We
may think that our problem to solve is really the probability of the parameters given
the observed data. This problem can be solved using the Bayesian inference paradigm
where, given that the parameters are unknown quantities, we can treat them as random
variables and use the laws of probability to manipulate those uncertain quantities rather
than maximize the likelihood.

Applying the Bayes theorem, the Bayesian approach to estimate the parameters of a
model given the observed data is

S0, H)p(6|H)
p(SIH) (2.22)
o L(8]S)p(0H)

p(0]5. 1) = P!

where ‘H denotes assumptions on which the probabilities are based. This expression shows
that the parameters follow a probability distribution instead of being a unique value. This
posterior probability of the parameters p(0|S,H) is proportional to the product of a prior
probability of the parameters p(6|H), which reflects the uncertainty about 6 before the
data is taken into account, and the likelihood L£(0|S), which is equal to the probability
p(S|0, H), as expressed in (Z20). This product is normalized using the marginal likelihood
or evidence p(S|'H), which is the integration of the numerator

p(S|H) = / p(S16, H)p(6]H)d6 (2.23)
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As we can see, the prior beliefs that the designer has about the parameter values are a
key element of the Bayesian inference. These beliefs are expressed in mathematical form
using a probability distribution. However, the assignment of a proper prior distribution
depends on the kind of design assumptions that we are willing to apply. There are basi-
cally two different approaches to the definition of the prior probability distribution: the
informative or subjective prior distributions and the non-informative or objective prior
distributions. In this Thesis, only the former approach is used in Chapter [l to assign the
parameter prior.

Informative priors

The informative prior approach tries to enclose the expert knowledge or the previous expe-
rience in the prior beliefs. Since it is difficult to express the knowledge in a mathematical
form, a very convenient class of informative priors are the conjugate priors. A formal
definition of conjugate prior is

Definition Let P be a family of prior parameter distributions p(f) and F a family of
likelihoods p(x|@), then the family P is a conjugate of the family F if

Vp(z]0) € F Ap(d) € P = p(0|x) € P.

That is, the product of the likelihood and the prior probability results in a posterior pro-
bability that belongs to the same family of distributions as the prior probability. This kind
of conjugate priors often lead to analytically tractable integral expressions for estimating
the parameters. Furthermore, if the posterior is tractable, then it can be used as a prior
belief in subsequent inferences to obtain new posteriors that will be also tractable. This
advantage is the core of the incremental algorithm that is proposed in Chapter [B; however,
one disadvantage is that the only likelihood functions for which conjugate prior families
exist are those belonging to general exponential family models. This poses a problem in
the design of the incremental learning algorithm proposed as we will see later. For a
deeper analysis of conjugate priors and exponential family likelihoods refer to Gelman et
al. [37] or Bernardo and Smith [38].

2.3.1 Final predictive distribution

From a Bayesian approach, to predict the value of a new observation s,., we should
integrate the posterior with respect to the parameters to obtain the final predictive dis-
tribution.

P(5meulS) = / D0 6)p(6]5) 6. (2.24)

When we are dealing with a classification problem, the observations s, are an ordered
pair {x,,¢c,}, where x, are the independent variables and ¢, is the output value. In
order to predict a new output value ¢, given X, the final predictive distribution is

aAlthough the non-informative approach is sometimes called objective we should not forget that all
Bayesian approaches are subjective since they require an expression of prior beliefs to be defined.
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an integration of the predictions of the model with respect to the posterior distribution of
the parameters,

p(cnew|xnew7 S) - /p(cnew|xnewa 0)p(6|5)d07 (225)

The expression of the final predictive distribution can be very difficult to obtain ana-
lytically. There are several ways to overcome this drawback. A widely used method is the
Markov Chain Monte Carlo sampling methods can be used. However, they are often the
source of considerable computational difficulties and cost. An alternative is to find the
value with maximum posterior probability density, 0y;4p. This Mazimum A Posteriori
(MAP) estimate is only useful when it approximates the integral of equation (2.25]).

2.3.2 Laplace Approximation

When calculating a marginal likelihood to obtain the posterior parameter probability
is analytically intractable, we can make use of an analytical approximation —called the
Laplace approximation— as an alternative. There are other types of approximations like
the Variational Inference methods [39, 34] or the Expectation-Propagation method [40] 4T].
However, since the posterior density of our method has a unimodal convex functional
form we can restrict our research to the widely used Laplace approximation which is a
straightforward deterministic local approximation.

A Laplace approximation is a method that aims to find a Gaussian approximation ¢(z)
to a non-Gaussian probability density p(z) defined over a set of continuous variables. Let’s
consider the following distribution function p(z) = Z~!f(z), with Z being a normalization
coefficient. The Laplace approximation searches for an approximated Gaussian distribu-
tion ¢(z) centered on a mode z,,,, of the distribution p(z). If we apply the Taylor series
expansion for log{f(z)}, then

dlog f(2)
0z

19%log f(2)

27 022 (z—20)°+0(2*) (2.26)

z2=20

(Z—Zo)+

z=20

log{f(2)} = log f(20)+

where it is assumed that the higher-order terms, represented by O(z%), are negligible.
Suppose that zg = 24, is a local maximum in f(z), then the first-order term is zero since
it is a stationary point. Now, the Taylor expansion is

log{f(2)} ~ log f(zmaz) + %% (2 = Zmaa ) (2.27)
Taking the exponential and using o
5 _ &log f(2)
022 e
we obtain
[(2) = f(Zmaz) exp { - g(z — zmax)Q} (2.28)

which reminds the form of a Gaussian distribution. A noteworthy fact is that the Gaussian
approximation will only be well defined if the stationary point z,,., is a local maximum
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because it is mandatory for the second derivative of f(z) at the point z,,., to be nega-
tive. Finally, we have a normalized distribution ¢(z) by using the standard result for the
normalization of a Gaussian,

1/2
q(z) = (%) eXp { - g(z - Zmaa:)Q} (229)

The Laplace approximation can be extended for multivariate distributions, where a
distribution function p(z) = Z~!f(z) is defined over a multidimensional space RP. As-
suming that there is an stationary point z,,,, where the gradient V f(z) vanishes, the
Taylor expansion around this point z,,,, is

1
log f(z) =~ 1og f(Zmaz) — §(Z — Znaz) H(Z — Ziaz) (2.30)
where H is the Hessian matrix with dimension D x D, which is defined by

H= —VVlog f(z)|

where V is the gradient operator. Taking the exponential of both sides of the equation
we obtain

(2.31)

Z=Zmazx

£(2) & f(Zomas) oxp { - %(z — ) H(z — zmax)} (2.32)

Using the standard result for a normalized multivariate Gaussian distribution with the
appropriate normalization coefficient the distribution ¢(z) is

o(z) = (27) P2 [H|V2 exp { _ %(z — ) H(z — zmm)}

= N<Zmam7 Hil)

(2.33)

As in the univariate version, this Gaussian distribution will be well defined provided
its precision matrix, H, is positive definite, which implies that the stationary point z,,,,
must be a local maximum.

Now, there is a step-by-step process for using the Laplace approximation to properly
approximate a probability density function p(z) with a Gaussian ¢(z) provided p(z) has
one single mode. The first step is to find a local maximum z,,,, of the given probability
density function p(z) by running some form of numerical optimization algorithm. It is
worth to mention that if the distribution p(z) is multimodal, then there can be different
approximations. The next step is to calculate the inverse of the Hessian matrix for the
stationary point z,,q, as

B & -
H' =- S0 log p(z) (2.34)

finally, we can approximate the probability density function p(z) using ¢(z) = N (Zmnaz, H™Y).
Figure 2.3 shows the results of approximating a bidimensional probability density function
with the Laplace approximation.
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Figure 2.3: A probability density function (a) is approximated to a bidimensional Gaussian
probability density function using the Laplace approximation (b). The maximum value,
which is the same for both densities, is shown with a blue dot.

2.3.3 Monte Carlo sampling methods

The goal in Bayesian machine learning is to obtain a model to predict unseen cases. This
may take the form of equation ([2.24]). If we look carefully to this equation, we can see that
we are evaluating the expectation of a function with respect to the posterior distribution
of the parameters of the model. If we write the posterior probability of the parameters as
Q(0) = p(A|S) and the predictions of the model is written as f(0) = p(Ynew|Xnew, 0), then
the expectation of f(0) is

Elf] = / £(6)Q(6)d6.

The analytical computation of this integration is often difficult. However, there are
sampling Monte Carlo methods that can be applied to solve the problem. Markov chain
Monte Carlo methods make no assumptions concerning the functional form of the distri-
bution. The main disadvantage is however that they may in some circumstances require
a very long time to converge to the desired distribution.

It is possible to obtain a sampling of the parameters by using the distribution p(#|S)
in order to obtain an estimate of the expectation. This is the core idea of the Monte
Carlo sampling method, where a set of parameters © = {0y, 0,,...,0r} are generated by
a process that results in each of them having the distribution defined by (). From this set
of generated parameters © the expectation can be approximated

1
Elf] ~ = ;). 2.35
1~ 7 223 o (2.35)
The problem now is how to generate those values 6;,. There are several Monte Carlo
methods to generate the sample. There exist basic simple methods that generate a set
of independent parameters that follow p(0|S) by means of a generator of pseudo-random
numbers distributed uniformly over the interval [0, 1]. For multivariate distributions, we

have to transform the uniformly distributed random numbers z using a function such that
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y = f(z), which implies that z = f~1(y). Hence, the multivariate distribution of y follows

o1y) (2.36)

p(y) = p(2z) Dy

As explained in Chapter [l our parameter posterior distribution is a multivariate Gaussian
distribution and the sampling method uses the Box-Muller transformation to generate
Gaussian-distributed samples from a uniform distribution inside a unit hypersphere [34].

When the distribution p(#|S) is complicated however generating such independent
values is often infeasible. Nevertheless, it may be possible to generate a series of dependent
values using Markov chains that still can give an unbiased estimate of E[f] as long as the
dependence is not too great so the estimate will still converge to the distribution ) when
T — oo. There are a number of Markov Chain Monte Carlo (MCMC) algorithms such
as the Metropolis-Hastings algorithm [42], the Gibbs sampling [43], or the Hybrid Monte
Carlo [44]. The interested reader can consult [45] for a deep understanding of these and

other MCMC methods.

2.4 Incremental learning

During the last decades the development of the information and communication technolo-
gies has produced an explosion of data growth, which requires rates scalability of data
analysis methods. As an alternative to the expensive computer cluster frameworks for
large-scale analysis [40], incremental algorithms that build approximate models on con-
tinuous and possibly infinite data streams have been developed. At the same time, there
are real-world scenarios, such as medical studies, financial data analysis or other data
streaming applications, where obtaining a dense and representative dataset —essential for
building a proper predictive model- is expensive and time consuming. Hence, data is often
acquired in batches over time where an incremental algorithm may be also applied.

Historically, the development of the machine learning (ML) discipline has been focused
on non-incremental methods where a large dataset is assumed to be available at design-
time. Recently, the ML community has emphasized the research on incremental learning
algorithms [47]. Hence, when a non-incremental ML model is trained, there is an implicit
assumption that learning stops once the current gathered sample has been processed.
Furthermore, it has been a common assumption to believe that the current observed
data and the future data are sampled independently and from an identical probability
distribution (4id). However, incremental ML models assume that learning is an adaptive
process embedded within complex data processing systems where the data are available
in small batches or where the underlying data distribution may change in the course of
time (dataset shift [20] 21]).

The earliest formal description of an algorithm with the ability to learn from new data
was the description of learning in the limit by Gold [48|, which Sharma considers to be the
ideal case of incremental learning [49]. In the initial description, a learning machine could
use all the information seen so far to yield new hypotheses. This ideal scenario has been
theoretically compared to more realistic scenarios where the past information is partly
accessible or is completely unaccessible [50]. Following this research, Lange [51] concluded
that, when noisy data is used, incremental learners with restricted access to data are as
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powerful as unconstrained learning algorithms, which is an interesting conclusion for the
incremental learning algorithms presented in this Thesis.

The easiest way to take advantage from new observations is to build a new model from
scratch using a combination of the old and new data. But this solution may be more
expensive than modifying an already trained system, or even impractical if older training
set data is not readily accessible. Typically, an alternative has been to keep a relevant
subset of the previous data available. This approach was used in the partial memory
learning [52] and in the so-called boundary methods, or maximum margin methods [53],[54].
In our approaches, it is assumed that previous data are not accessible at all. In the last two
decades, various approaches have been developed for providing learners with incremental
learning ability. A number of incremental techniques were designed for decision trees [55]
50, 57|, and then have been applied for data streaming [58]. Incremental learning has
also been used for connectionist models based on structural adaptation [59] 60, (61, [62] [63]
or on weight adaptation [64, 65]. There are some approaches to incremental principal
component analysis [66, 67] that update the projection matrix incrementally. Moreover,
incremental algorithms for Fisher’s Linear Discriminant Analysis have also been developed
in the last decade [68, [69, [70].

Up to the writing time, many state-of-the-art incremental algorithms assume that pre-
vious data are partially or totally accessible. Based on this assumption, these incremental
models handle streaming datasets by time windows of fixed or adaptive size |71}, [72] [73],
by weighting the models in an ensemble [19, [74] 62], or by weighting the data [75]. An
intermediate alternative approach has been to keep only a relevant subset of the previous
data available [52] [54]. However, there are real scenarios with data protection policies or
possible conflict of interests where the previous data are not available if a model trained
with data from one organization is moved to another organization. For instance, when a
model is moved from one hospital to another, patient consent and ethical approval needs
to be obtained to send and store data [28]. In order to take into account this condition,
we will assume that previous data are not accessible at all.

2.4.1 Definition of incremental learning algorithm

Following the definitions of Langley [76] and Giraud-Carrier [77], an incremental learn-
ing algorithm is a learning algorithm that produces a sequence of classifiers M, M, ...,
M for any given training set of samples S;,Ss, ..., S available at different moments
ti,ta, ..., tp, such that M, is determined by M; and S;;;. The main characteristics of
an incremental learning algorithm are: a) it should be able to learn additional information
from new data without completely forgetting its previous knowledge; b) since each M,
can be viewed as the best approximation of the target application, the performance should
improve over time.

This definition is related to a general problem for classification models called the
stability-plasticity dilemma [78]. This dilemma reveals that some information may be lost
when new information is learned (gradual forgetting) and highlights the difference between
stable classifiers and plastic classifiers. On one hand, a completely stable classifier will
preserve existing knowledge, but it will not incorporate any new information. On the other
hand, a completely plastic classifier will learn any new information without preserving any
previous knowledge. The latter case is also known as catastrophic forgetting |79} 80] and
it happens when an already trained model learns a new set of patterns completely erasing
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Figure 2.4: An incremental algorithm generates models in the hypothesis space for two
different ordered sequences of training samples. On the left, there is an evolution of the
models for a order independent algorithm. On the right, there is an evolution for an order
sensitive incremental learning algorithm.

its previous knowledge. To summarize, the challenge is how to design a learning system
that is sensitive to new input without being radically disrupted by such input.

A number of authors [77, 60, 1] include in the definition of incremental learning
algorithms that it should not require access to previous data; however, this issue is not
considered by the vast majority of incremental learning algorithms developed in the last
years |71}, [75, 68, [74], [72]. In this Thesis, we will consider that our incremental learning
algorithms will not require access to previous data since this condition may be imposed
by real-world health organizations.

In addition, Polikar et al. stated in [60] that an incremental learning algorithm should
be able to admit new classes when they are introduced with the new data. This means
that a new target concept appears over time while the rest of the target concepts remain
stable. This issue entails a prior probability shift [21], which represents a significant change
in the underlying joint distribution p(x, ¢). The admission of new classes is a solution that
has been applied to identify additional arrhythmias with a system designed to detect other
cardiovascular disorders by means of electrocardiograms [82].

Another issue to be considered is the problem of the ordering effects in incremen-
tal learning, which has been addressed by several authors [83] [76, 84]. An incremental
learning algorithm suffers from an order effect when there exists two or more different
ordered sequences of the same instances that lead to different models. This is illustrated
in Figure 2.4l where an incremental algorithm searches through a model space based on
different samples of the data. When two different orders of training samples are presented
to the same algorithm it can evolve building different models but, when all the training
samples are duly processed, it leads to the same one. This constitutes an example of
an algorithm that is not affected by the order in which the samples are presented (left).
However, it can happen that each different ordered samples lead to different final models.
This embodies an example of an order effect (right). Therefore, the selection of the final
models may be biased due to the ordering of the introduced inputs.

An incremental learning algorithm is said to be order independent if it never exhibits
an order effect for any possible ordered sequence of samples. Otherwise, the algorithm is
said to be order sensitive. When an incremental learning algorithm suffers from an order
effect the performance of the models achieved usually reflect substantial differences for a
given metrics. If the order effect produces models of nearly equal scores on a metric M,
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then it is a benign order effect for metric M since this effect has relatively little impact on
performance. In contrast, if the order effect produces models with very different results on
the performance metric M, then it is a malignant order effect. The order effect can appear
at three levels: attribute level, instance level, and concept or class level. The instance level
order effect is the most studied order effect. It appears when different models are obtained
when the order of the instances or observations are shuffled. The concept level order effect
happens when the order of the different classes to discriminate entail the development of
different models. Finally, the attribute order effect is related to a order sensitivity of the
models to a different ordering sequence of the attributes or variables of the observations.
This effect has been hardly studied in the state-of-the-art and thus is out of the scope of
this Dissertation.

2.4.2 Incremental learning using Bayesian inference

An incremental learning task [77] consists of a set of observations that arrive over time
in subsets of samples or batches §. We consider that a sample &; arrives at time t. Each
sample has n; observations which are ordered pairs z;; = (x;, ¢;); where x € X D are the
D-dimensional covariates and ¢ € C is the class label, and where the indices denote the
i-th observation of sample t. We assume that only the sample S; is available in time t for
training an incremental model.

We will assume that a model M; is determined by a set of parameters ©;. In the
Bayesian paradigm the parameters of the model © are estimated given the data § and an
overall hypothesis space ‘H using the Bayes theorem,

S|0)p(eH)
p(SIH)

p(O|S, H) = d (2.37)
where p(O|S,H) is the posterior probability distribution of the parameters, p(S|©) is the
likelihood function, p(©|H) is the prior probability distribution of the parameters and
p(S|H) is the evidence or the marginal likelihood, defined as

p(SIH) = / P(SIO)p(©[H)dO (2.38)

We use this approach to define our incremental algorithm by using the posterior probability
estimated in time ¢ — 1 as the prior probability of the model estimated in time ¢. That is,
p(O:H) = p(O:-1|Si, H).

When the model parameters are estimated, a new observation X,., can be classified
with the final predictive distribution expressed as

Do Xnes S, H) = / Do Ko, O)p(O]S, H)dO (2.39)

As previously mentioned, the expression (2.39) is often too complex to solve analyti-
cally and Monte Carlo (MC) sampling methods are required to obtain an approximation to
the desired model. Alternatively, when the distribution is assumed to be sharply peaked,
the Maximum A Posteriori (MAP) approach may be used instead to avoid the integral
computation.
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2.5 Evaluation

In this Thesis, different evaluation methodologies were followed depending on the type
of algorithm we were evaluating. For a non-incremental learning algorithm (Chapter B]),
the evaluation procedure for the experiments was a K-fold Cross Validation (CV) with
stratified blocks. In the CV evaluation, the dataset is divided into K subsets. Then, one
subset is used as a test set and the remaining K — 1 subsets are used to train one model.
This process is repeated K times taking a different subset as a test set and thus training
K different models. Then, the average error of each model is computed. In this evaluation
procedure, every data point appears in a test set exactly once, and comes out in a training
set K — 1 times. The bias of the resulting estimate is reduced as K is increased, while
the variance increases. Thus, it is interesting to achieve a trade-off in the number of K
subsets to be used. Kohavi in [85] proposed K = 10 as an optimum value. In the extreme
case where K = 1 the evaluation method is often known as Leave-one-out evaluation. The
disadvantage of the CV methodology is that the training algorithm has to be rerun from
scratch K times.

The evaluation carried out for the incremental learning algorithms has been an adap-
tation of the k-Random Sampling Train-Test (kRSTT) with stratified test sets with K
repetitions. In this methodology the dataset is randomly split into a set of instances to
train the classification model and the remaining instances to test the model. The adapta-
tion for the incremental learning evaluation takes the training set and splits it into several
subsets S; that are sequentially presented to the learning algorithm to re-train the model
M,. Each incremental model M, is then evaluated using the same test set. This proce-
dure is repeated K times. These methods avoid underestimation of the true error when
the evaluation is carried out in a nested-loop that covers the feature and model selection.

Evaluation metrics

The performances of the classifiers were measured in terms of accuracy (acc). Since we
are using a 0-1 loss function and discrete values for each class, the acc metric is defined
as the rate of well classified instances among all the classified instances,

N
1 R
ace = ngl d(cn, En) (2.40)

It can be seen that this expression is the same as the empirical risk (2.9).

The performances of the classifiers presented in this Dissertation were also measured
with the Geometric mean of recalls or sensitivities for each class (G). The sensitivity of a
class is defined as the ratio of the number of correct classifications of class ¢, T,, divided
by the total number of observations of class ¢, N, that is,

T.

N (2.41)

sen, =

This metric is a good non-linear measure for determining the average success even when
working with highly imbalanced populations. The geometric mean of sensitivities is de-
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fined as

(2.42)

the |C|-th root of the product of the sensitivity of each class (sen.), where |C| is the total
number of classes. The measure GG is only high when all the sensitivities are high and
balanced.

Finally, the Balanced Error Rate (BER) was also used as another metric for imbalanced
datasets. The BER is defined as

BER — - > (1 —sen,) (2.43)

that is, the arithmetic mean of the false positive rates for each class.

2.6 Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance (NMR) (or MR) is the phenomenon where the nuclei of
certain atoms absorb and emit energy because of the effect of an oscillating magnetic
field when they are immersed in other static magnetic field [86]. Magnetic Resonance
Spectroscopy (MRS) is the use of the NMR phenomenon to study the physical, chem-
ical, and biological properties of organic and inorganic molecules in a non-destructive,
non-invasive manner. Typically, for the study of brain tumours, the NMR phenomenon
observed is performed with the 'H sensitive nucleus.

For the protons 'H, the spin quantum number s associated to the particle angular
moment takes the half-integer value (1/2). For this particles, the secondary spin quantum
number m; takes the values my = {—1/2,1/2}. That associates two possible potential
energy levels to the 'H particles (depending on my,) in the presence of a magnetic field
By, being the energy difference between both states

AE,, = —h|Bygl,

where v is the gyromagnetic constant and 5 is the reduced Planck’s constant.
These particles do not align exactly with the axis of the external magnetic field Bg
but precesses around it at a rate given by the Larmor frequency fo,

Jo=7Bo/(27).

In the very first beginning time of the precessing motion around the field, the total
magnetic moment M of material is still near 0. As the elements of the molecule have their
magnetic momenta, they generate magnetic fields that change with the thermical motion
of the environment, so each spin is precessing around a local and changing magnetic
field instead of the applied By, so the spins are slowly deviated. The probability of the
low energy orientations are slightly higher than the probability of the high energy levels.
Hence, when the thermical equilibrium is reached there will be more spins parallel to the
By than anti-parallel. Consequently, a total magnetic moment M # 0 is observed.

24



2.6. Magnetic Resonance Spectroscopy

If a Radio frequency (RF) pulse is applied to the sample, the spins experiment the
influence of two magnetic fields Bg and B;. The first is a static field, the second is an
oscillating one of which the frequency is the resonant Larmor’s frequency fy. A pulse in
the y-axis produces a progressive decay of the M vector to the XY -plane. When the pulse
is over, the spins return to the precession around the static magnetic field, obtaining, as
a result a macroscopic Mxy motion similar to the precession of the spins. Transversal to
the axis coils can acquire the FID signal produced by the My motion.

A noteworthy fact is that the magnetic field for each nucleus depends on the static
magnetic field Bg, but also on the local environment,

Beﬁ‘ = Bo(l — O'/),

where o’ is the shielding constant that depends on the electrical environment of the nu-
cleus. This results in different frequencies of resonance (or Chemical Shift (CS)) of the
same nuclei depending on the molecular environment and the main application of MRS
in biochemistry and molecular biology.

As a consequence of these small differences in the resonance frequencies of each nuclei
depending on their molecular environment, it is possible to analyze the composition of a
sample by the study of the frequencies reemitted after a RF radiation stimulation. The
analysis of this frequencies compound is done by the Fourier Analysis of the reemitted
RF radiation. The frequencies where nuclei resonate use to be expressed in parts per
million (ppm). This representation is due to the small distance between different reso-
nance frequencies in contrast to the high frequencies on which they resound. Moreover
the metabolite peaks positions expressed in ppm are invariant over NMR scanner mag-
netic field changes, and therefore allow direct comparisons between spectra obtained using
different NMR scanners. The frequency shift ¢ in ppm is calculated as

:fO_fr

T

J

x 10° (2.44)

where f; is the Larmor’s frequency of resonance of the 'H nuclei and f, is the Larmor’s
frequency of resonance of a reference compound, which is usually tetrametilsilane.
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Chapter 3

Automatic brain tumour classification
by 1H MRS

The ML-based approach to brain tumor classification by MRS has been under development
for more than a decade. This Chapter summarizes some contributions to automatic brain
tumour classification. First, we proposed a combination of Short Time of Echo (STE)
and Long Time of Echo (LTE) single voxel 'H MRS that profits from the advantages
of each TE spectrum. The results showed that there was an improvement when using
the combination of both TE with respect to using only one TE. Second, we contribute an
independent external evaluation for the developed brain tumour predictive models. To our
knowledge, there were no published evaluations of classification models with unseen cases
subsequently acquired at different centers. A number of predictive models for automatic
brain tumour diagnosis were fitted using the INTERPRET project (2000-2002) multicenter
dataset and their performance was estimated using a cross-validation evaluation. Then,
the eTUMOUR project (2004-2009) multicenter dataset was used as an independent test
set to assess the performance of the models. Although the results were reasonably good,
this evaluation showed that there was a bias trend between the performance estimations
of the different datasets. This may indicate the need of incremental learning algorithms
to take advantage of new available data as a way of re-adapting the models to the new
centers.

The core of this Chapter were published paper journals in [25] and [2])]. The author
of this Thesis carried out contributions in both manuscripts regarding the design, deve-
lopment, and evaluation of the experiments. Specifically, Fisher’s Linear Discriminant
Analysis was used for modeling classifiers for automatic brain tumour classification using
STE, LTE, and the combination of both times of echo. Also, Multilayer Perceptron (MLP)
were used for pairwise brain tumour classification. In addition, the author of this Thesis
contributed to the manual preprocessing of several *H MRS brain tumour cases. Finally,
a critical analysis and discussion of the results obtained for different methodologies and
machine learning techniques for automatic brain tumour diagnosis was carried out. This
analysis led to conclude the necessity of incremental learning algorithms for the develop-
ment of CDSS for automatic brain tumour diagnosis and for other general applications.
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3.1 Introduction

Brain tumors are the second fastest growing cause of cancer deaths among people older
than 65 years. Nowadays, the diagnosis and treatment of brain tumors is based on clinical
observations, radiological appearance, and often a histopathological diagnosis of a biopsy,
which is an invasive technique that removes tissue from the subject to determine the
extent of the disease. During the last decade, three European projects (INTERPRET
(2000-2002) [8, 11], e TUMOUR (2004-2009) [9], and HEALTHAGENTS (2005-2008) [10])
have endeavoured to develop a non-invasive diagnostic tool using machine learning (ML)
techniques applied to 'H MRS data from brain tumours. A major aim was to minimize
the need for an invasive histological diagnosis of a brain tumour biopsy as is currently
required for the diagnosis and management of brain tumours.

Non-invasive brain tumour diagnosis using 'H MRS has shown considerable promise
in aiding patient management, due to its ability to provide useful chemical information
about different metabolites and other compounds for characterizing brain tumours [87, [8§].
Currently, the acquisition of 'H MRS use a time of echo (TE) that range between 18 and
288 ms in most studies. A spectrum acquired with a TE < 45 ms is usually considered a
STE spectrum, and a LTE spectrum otherwise. STE (20-35 ms) 'H MRS allows to observe
macromolecules (MM; 5.4ppm, 2.9ppm, 2.25ppm, 2.05ppm, 1.4ppm and 0.87ppm), Myo-
Inositol (mI) and Mobile Lipids (ML) better than in LTE [89]. Single voxel (SV) Short TE
"H MRS is fast (typically 5 min) and robust, so it is very useful for clinical studies [90} 9T].
However, Short TE signals show a large number of overlapping peaks, a strong MM-/ML-
originated baseline, and a certain sensitivity to artifacts [92]. LTE (about 135 ms) 'H
MRS, on the other hand, is less informative than STE because some resonances may be
lost due to a short Ty. However, LTE signals are easier to analyze than STE signals [92].
Lipid resonances (1.3 and 0.9ppm) and MM will not be the dominating components at
LTE, making possible the study of the contributions of lactate (Lac, doublet at 1.33ppm)
and alanine (doublet at 1.47ppm) as inverted peaks [91]. Many successful applications
of pattern recognition (PR) and machine learning (ML) for automated classification of
brain tumours have been reported in brain tumor research [13], 93], [94] 141 95| 06]. In [12],
Hagberg summarizes classification of brain tumors with MRS based on pattern recognition
and clustering methods. Eight of these studies were applied to brain tumor discrimination
from normal tissue or other Central Nervous System (CNS) diseases. All of them were
based on Linear Discriminant Analysis (LDA) or Artificial Neural Network (ANN) applied
to relative metabolite levels or Principal Components Analysis (PCA) transformations,
and they were all evaluated by leave-one-out cross-validation. More recent publications
have also described results for classification of brain tumors based on the MR data available
within the the INTERPRET project (INTERPRET) [13] 8], where linear and kernel-
based methods on MRS features extracted by automatic procedures were applied [97, 93)].
While [92] was focused on the classification of brain tumours using LTE 'H MRS, other
studies [13} 198, 93], [TT] carried out experiments with STE 'H MRS. Based on Least Squares
Support Vector Machines (LS-SVMs) [99], Devos, Lukas et al. in [98, 2] developed
different classifiers for in-vivo 'H MRS and Magnetic Resonance Spectroscopic Imaging
(MRSI) with good performance. Menze et al. [14] published an extensive benchmark
study of quantitation and PR based feature extraction methods combined with learning
strategies to discriminate between recurrent and non-recurrent brain tumors using LTE
'H MRS. They reported that the PR methods perform at least as well as the ones based
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on manual quantitation (5%-10% higher accuracy). However, the development of robust
brain tumour classifiers requires a large number of cases to be acquired for each tumour
type and at present the approach has only been used for a few common tumours. Cases
are accrued from a large number of hospitals over many years and data transferred to
a centralised database. This approach has several disadvantages, ethical approval and
patient consent needs to be obtained to send and store data. In order to expand the
applicability of ML techniques to MRS of a wider range of tumours, more cases need to
be collected over a more prolonged period of time and the logistics of using a centralised
database to provide this have so far proved insurmountable. Furthermore, despite its
ability to provide useful information for characterizing brain tumours, the use of *H MRS
is not in widespread clinical use due mainly to the difficulties of data acquisition and
interpretation, which give rise to bias and variance from single-center or single-machine
studies. Therefore, standardization of acquisition conditions and protocols should make
data from different hospitals compatible and allow the development and evaluation of joint
CDSSs. This standardization aims to reduce, or prevent, possible bias or variance and,
additionally, increases the number of available cases for classifier development and test
purposes.

In this Dissertation, several contributions to the H MRS automatic brain tumour
classification were carried out as the first steps of our research. Next sections summarizes
these contributions.

3.2 Data acquisition and pre-processing

The datasets used for classifier development were acquired by six international centers in
the framework of the INTERPRET project [8], eight in the e TUMOUR project [9], and
four in the HEALTHAGENTS project [10]. The STE spectra acquired were single-voxel
(SV) MRS signals at 1.5T using Point-Resolved Spectroscopic Sequence (PRESS), using a
TE between 30-32 ms, or Stimulated Echo Acquisition Mode sequence (STEAM), using a
TE of 20 ms. The acquisition was carried out avoiding areas of cysts or necrosis and with
minimum contamination from the surrounding non-tumoral tissue. The volume of interest
size ranged between 1.5 x 1.5 x 1.5 cm3, (3.4 mL) and 2 x 2 x 2 cm3, (8 mL), depending
on tumor dimensions. The aim was to obtain an average spectroscopic representation of
the largest possible part of the tumor. These signals were acquired with Siemens, General
Electric (GE), and Philips instruments. The acquisition protocols included PRESS or
STEAM sequences, with spectral parameters: Recycling Time (TR) between 1600 and
2020ms, TE of 20 or 30-32ms, spectral width of 1000-2500Hz, and 512, 1024, or 2048
data-points for STE, as described in previous studies [I00]. In the acquisition of LTE
spectra, the PRESS sequence was used, with a recycling time (TR) between 1500 and
2020 ms, TE of 135 or 136 ms, spectral width of 1000 or 2500 Hz and 512 or 2048
data points. Every training spectrum and diagnosis was validated by the INTERPRET
Clinical Data Validation Committee (CDVC) and expert spectroscopists [11]. The classes
considered for inclusion in this study were based on the histological classification of the
CNS tumors set up by the WHO [I0I]: glioblastomas (GBM), meningiomas (MEN),
metastasis (MET), and low grade gliomas (LGG), which consists of three types of brain
tumours: Astrocytoma grade II, Oligoastrocytoma grade II, and Oligodendroglioma grade
IL.

29



Chapter 3. Automatic brain tumour classification

4 35 3 25 2 15 1 05 4 35 3 25 2 15 1 05 4 35 3 25 2 15 1 05

Chemical shift (ppm) Chemical shift (ppm) Chemical shift (ppm)
4 35 3 25 2 15 1 0.5 4 35 3 25 2 15 1 0.5 4 35 3 25 2 15 1 0.5
Chemical shift (ppm) Chemical shift (ppm) Chemical shift (ppm)
(a) Low grade glioma (b) Aggresive glioblastoma (¢) Meningioma

Figure 3.1: Different spectra for LTE on the top row and for STE on the bottom row.
The Y-axis displays arbitrary units and the X-axis shows the chemical shift in ppm. The
spectra are examples of a low grade glioma (case et2354), a glioblastoma (case et2357),
and a meningioma (case et3028).

3.2.1 Automatic pipeline

During the INTERPRET project, a data acquisition protocol was defined to guarantee
the compatibility of the signals coming from different hospitals [102, 08]. As a result,
each signal was pre-processed according to the INTERPRET protocol. A fully automatic
pre-processing pipeline was available for the training data. Besides, a semi-automatic
pipeline was defined for some new file formats of the test cases from GE and Siemens
manufacturers. The semi-automatic pipeline was designed to ensure compatibility of its
output with the automatic one. This data acquisition protocol was then followed by the
partners of the e TUMOUR project.

The steps of the automatic pre-processing pipeline were: (1) Eddy current correction
was applied to the water-suppressed Free Induction Decay (FID) of each case using the
Klose algorithm [103]. (2) The residual water resonance was removed using the Hankel-
Lanczos Singular Value Decomposition (HLSVD) time-domain selective filtering using
10 singular values and a water region of [4.33, 5.07|ppm. (3) An apodization with a
Lorentzian function of 1Hz of damping was applied. (4) Before transforming the signal
to the frequency domain using the Fast Fourier Transform (FFT), an interpolation was
needed in order to increase the frequency resolution of the low resolution spectra to the
maximum frequency resolution used in the acquisition protocols (see [11] for details in the
acquisition conditions and resolution). This was carried out with the zero-filling procedure.
(5) Afterwards, the baseline offset, which was estimated as the mean value of the region
[11,9]J[—2, —1]ppm, was subtracted from the spectrum. (6) The normalization of the
spectral data vector to the L2-norm was performed based on the data-points in the region
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Figure 3.2: Illustration of a 'H MRS brain tumour signal before the preprocessing pipeline
is applied . It is possible to see that the contribution of water is dominant before
any preprocess step is carried out. The FID in the time domain and in the frequency
domain are shown. After preprocessing, the metabolite concentration arise providing
useful chemical information. The region of interest of the spectrum that results from the
complete preprocessing is shown in the bottom (z-axis in the frequency domain,
y-axis in arbitrary units).

[—2.7,4.33]J[5.07,7.1]ppm. (7) Depending on the Signal-to-Noise Ratio (SNR) and the
tumor pattern, an additional frequency alignment check of the spectrum was performed
by referencing —following the priority— the ppm-axis to the total Cr at 3.03ppm or to the
Cho containing compounds at 3.21ppm or the ML at 1.29ppm. (8) Finally, the region of
interest was restricted to [0.5,4.1]ppm, obtaining a vector of 190 points for each spectrum
where, after the preprocessing filters, the contribution of the residual water is expected to
be minimal and the resonances of the main metabolites arise (see Figure 3.2)).

3.2.2 Semi-automatic pipeline

Due to limitations of the automatic pre-processing software, a number of samples were
preprocessed by a semi-automatic pipeline that was partially based on the Java Mag-
netic Resonance User Interface (jJMRUI) [104]. Some modifications of the semi-automatic
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pipeline with respect to the automatic pipeline were in the following steps: (1) The phase
of the water-suppressed FID was mainly corrected with the reference water. Additional
manual zero-order and first-order phase correction was performed when needed. (2) Resid-
ual water was removed by means of the jJMRUI-implementation of the Hankel Singular
Value Decomposition (HSVD) algorithm [I05]. The filter was parametrized as in the auto-
matic pipeline. From step 3 to step 8 the automatic pre-processing remained equivalent.
As a result, a pre-processing pipeline based on different software implementations but
compatible with the automatic one was set up, and comparable signals for testing the PR
models were obtained.

3.3 Methods

A series of Pattern Recognition (PR) and ML techniques were applied in order to achieve
empirical evidence supporting our experiments. These techniques included several feature
extraction and selection methods that were applied to the real part of the spectra prior
to any classification approach.

3.3.1 Feature selection and extraction methods

The feature extraction methods can be categorized into automatic methods and knowledge-
based methods. The automatic feature extraction methods were Principal Component
Analysis (PCA) [106], and Independent Component Analysis (ICA) [107, T08]. The fea-
ture selection methods included a Stepwise algorithm [I09] and the ReliefF [I10]. The
knowledge-based methods included direct spectral peak integration on selected metabo-
lite resonance region [IT1] and peak height of typical resonances [112].

PCA is a well-known projection method often used for feature extraction in PR [106].
PCA maps the original D-dimensional data into an orthogonal M-space, where the axes
of this new coordinate system are a linear combination of the original variables. The new
coordinate system lies along the direction of maximum variance of the original data. The
more correlated the original variables are, the more the data variation is explained by the
first principal components or loadings (PCs) of the analysis. Hence, feature reduction can
be carried out discarding the remaining PCs.

Stepwise algorithm for feature selection in classification (SW) consists on a greedy hill
climbing approach where the subset of features with the highest performance measure will
be selected in each step and modified in the next step by the addition or deletion of one
variable in the model. ReliefF algorithm for Recursive Elimination of Features (ReliefF)
algorithm is a feature selection method based on how well features distinguish between
instances that are near to each other [I10]. In classification problems, the estimation of
the quality of each variable is calculated by the accumulation of the distance between
randomly selected instances and their K-nearest neighbors of a different class minus the
distance to the K neighbors of the same class.

Coming from signal processing, the goal of ICA is to extract source signals when only
a linear mixture of these source signals is available. The most commonly used assumption
is that the sources are non-Gaussian and mutually statistically independent, as well as
independent from the noise components [108].
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Spectral Peak Integration (PI) is a knowledge-based feature extraction method that
integrates the area under the peaks of the most relevant metabolites as a representation of
the significant information contained in the spectra. To obtain the areas under the peaks
we have considered an interval of 0.15 ppms from the assumed peak centre.

Peak height of typical resonances is another knowledge-based feature extraction method
that uses the height of the peak of the ppm where the metabolites are known to appear.

3.3.2 Classification methods

The classification methods applied were parametric discriminant methods: linear and
quadratic discriminant analysis; kernel-based methods: support vector machines and least-
squares support vector machines; connectionist models: multilayer perceptron and bi-
directional Kohonen networks; and a memory-based method, K-nearest neighbours. Some
of these methods were applied to the full region of interest represented by a data vector of
190 points, and to the extracted features. The K-nearest neighbour was used with local
feature reduced by PCA only.

The parametric Gaussian Discriminant Analysis techniques are designed to find a dis-
criminant functions for each available class assuming that the classes follow a multivariate
Gaussian distribution. The estimation of the parameters of the Gaussian distributions
is based on the maximum-likelihood estimation. The most popular method is Linear
Discriminant Analysis (LDA), which is based on the assumption of a common variance
of the classes. In the Quadratic Discriminant Analysis (QDA) the covariances of the
classes are independent, obtaining quadratic decision boundaries (see Appendix [A]). The
Fisher’s LDA (FLDA) is a reduced-rank version of LDA, which projects the variables into
the lower-dimensional subspace that maximizes the rate of the between-variance and the
within-variance on the training dataset.

The K-Nearest Neighbors (KNN) is a non-parametric classification method where
the samples are assigned to the most frequent class among their neighbors based on the
distances of the test cases to the training corpus in the feature space. KNN is a type of
instance-based learning where the function is approximated locally and all computation
is deferred until classification [33].

The Multilayer Perceptron (MLP) is a connectionist model consisting on a network
of simple units or perceptrons [113], typically called neurons. One neuron computes an
output as a non-linear function of the inner-product of the feature vector x and parameter
vector w, called the weight vector. In a MLP, the input signal forwards layer-by-layer
obtaining an approximation of the probability distribution of each class. During the
training phase, the weight parameters are updated by means of an error-backpropagation
algorithm from the output to the previous layers.

The Bi-Directional Kohonen (BDK) network [I14] is another type of connectionist
model based on a supervised version of the Kohonen network [II5]. Each neuron in the
Kohonen map (a two-dimensional map of neurons) is associated with a weight vector which
is adapted iteratively by some learning function, based on the properties of the objects.
Individual objects are iteratively presented to the units in the network and the weight
vector that is most similar to the particular object is assigned to be the winning unit.
The winning unit and its neighborhood are then adjusted to become more similar to the
particular object. The final Kohonen map then represents the structure of the data in an
interpretable way. In the supervised Bi-directional Kohonen Networks (BDK) two separate

33



Chapter 3. Automatic brain tumour classification

maps are updated, namely the input map (representing the features of the objects) and
the output map (representing the class labels of the objects). The winning unit for an
instance is mainly determined by the similarity of the target and the output unit. When
convergence is achieved, after presenting each object to the network multiple times, the
input and output map structures can be used to classify new unidentified objects.

Support Vector Machines (SVM) [116] are classification methodologies that define the
optimal separating hyperplane between two classes with the maximal margin. This margin
is the minimum distance of patterns of the training set to the hyperplane. SVM represent
data in a higher dimensional space where the linear separating hyperplane is built. The
explicit construction of a mapping to a higher dimensional space is avoided by using the
kernel trick [I16]. Least-Squares Support Vector Machines (LSSVM) is a reformulation of
the SVM resulting in the solution of a linear system [99].

3.4 Contributions in automatic brain tumour classifica-
tion

One contribution was to improve the performance of automatic brain tumour classifiers
by combining the LTE and STE spectra of each patience in order to take advantage of the
complementary views of the chemical composition of brain tumours that each TE offers.
Despite the great effort and the contributions in automatic brain tumour classification,
nobody had proposed a combination of both TE spectra for the development of a single
brain tumour classifier before. A remarkable exception was the work carried out by Ma-
jos et al. [I17], where they performed a clinical comparison between the STE and LTE
discrimination capacity and pointed out the potential interest of combining both times of
echo. A second contribution was related to the external validation of automatic brain tu-
mour classification models to assess generalization [I5]. The raw MR data acquired during
INTERPRET were incorporated into the eTUMOUR dataset for classifier development.
This provided a unique opportunity to evaluate INTERPRET-based models by means of
cases of a later date from partly different hospitals with different instrumentation, but ob-
tained using the same or compatible acquisition protocols. The multiproject-multicenter
evaluation included in this Dissertation gives a close-up perspective of the conditions that
predictive models may face under different real clinical environments, and points out the
possibility of using incremental learning algorithms to adapt one model to the character-
istics of different centers.

3.4.1 Combination of Long and Short Time of Echo

The combination of the information provided by the two different times of echo for au-
tomatic classification of brain tumours has been a new contribution in the PR approach
for brain tumour CDSS. Specifically, the author of this Thesis contributed to the de-
velopment of Fisher’s Linear Discriminant Analysis (LDA) for the classification of three
types of brain tumour. We were interested in obtaining a combination of the STE and the
spectra without introducing any prior restriction or assumption of relationship between
them. Therefore, it was considered that the a concatenation of the D, points from the
STE spectrum vector followed by the Dy, points of the LTE spectrum vector was the
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3.4. Contributions in automatic brain tumour classification

Table 3.1: Results for the Fisher’s LDA for the Combined TE, the STE, and the LTE
Dataset Accuracy (%) Confidence Interval (%, a = 5%)

Short TE 88.8 [83.7, 92.8]
Long TE 82.5 [76.6, 87.5]
Combined TE 88.7 [83.6, 92.7]

most direct approach. This joint vector is treated as a (Dge + Dy )-dimensional vector-
valued observation of the distribution of the diagnosis. Then, the discrimination functions
may choose simultaneously among the features from both spectra to solve the proposed
prediction model. As a result, the Combined TE dataset of 185 samples with 380 data
points was obtained. To compare the combined approach with single approaches, we also
generated the STE dataset composed by 185 samples with the 190 values in the region of
interest of the STE spectrum, and the LTE dataset of 185 samples with the 190 values in
the region of interest of the Long TE spectrum.

The LDA technique has been successfully applied in many biomedical applications,
including Decision Support Systems based on MRS for brain tumor diagnosis [11], 118].
This method was applied to the aforementioned datasets. One of the advantages of the
method is the possibility of plotting the latent space where the variables are projected.
When a multi-class task of three classes is solved, the latent space is bi-dimensional (2D),
and it could be used to visualize the projection of the samples in a 2D plot. Before
applying LDA, the input space should be reduced in a proper way; for this study we used
two methods, the Stepwise algorithm for feature selection in classification (SW) algorithm
and the PCA for feature selection and extraction.

A kRSTT with stratified test sets with 150 repetitions was the evaluation procedure
used for all the reported experiments. The partitions for repetitions were random and
independent among the experiments with the training set composed by 70% of cases of
each class. The evaluation was carried out in a nested-loop that covered the feature and
model selection in order to avoid underestimation of the true error.

The best models were obtained using SW and Fisher’s LDA. The developed multiclass
classifiers discriminate among the three aforementioned superclasses (Aggressive tumor:
GBM and MET (AGG), Low-grade meningiomas (MEN), and Low-Grade Glial (LGG))
simultaneously. A SW followed by LDA was applied to compare the Combined approach
with STE or LTE based classifiers. TableB.Ilshows the kRSTT evaluation of the SW-+LDA
approach of the multiclass classifiers applied on the Combined TE, the STE, and the LTE
datasets. Based on the predictions achieved by the different classifiers, some of the cases
from the datasets were singled out for potential critical review by experts. In addition,
Figure [3.3] shows the latent space of the Fisher’s LDA.

Furthermore, three pairwise classification models were developed and evaluated using
LS-SVM for automatic classification of AGG, MEN, and LGG brain tumours. Again, the
evaluation was carried out with a kRSTT methodology. The results for these classifiers
are shown in Table

3.4.2 Multicenter evaluation of automatic BT classifiers

For the prospective multicenter evaluation of automatic brain tumour classifiers, six pair-
wise classifiers for Glioblastoma (GBM), MEN, Metastases (MET), and LGG diagnoses
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(a) Short Time of Echo (b) Long Time of Echo

(c) Combination of both Times of Echo

Figure 3.3: The latent space projection of the Fisher’s LDA models for the (a) STE, (b)
LTE, and (c) Combined TE. The Figure shows that the combination of both times of echo
reaches a better latent space data projection.

were developed and tested on Single voxel (SV) STE MRS signals.

The aforementioned feature extraction methods were applied to the real part of the
spectra prior to any classification approach. These methods also included direct spectral
Peak integration (PI) on selected metabolite resonance regions, and Peak height of typical
resonances (PPM), as well as the full region of interest represented by a data vector of
190 points (190). The selected features for the classifiers were derived from previous
studies |98, 25] or from model validation based on the training dataset.

To develop the pairwise models, ten methods were applied: parametric discriminant
analysis (LDA, FLDA, and QDA); Kernel-based models (SVM and LSSVM); Artificial

36



3.4. Contributions in automatic brain tumour classification

Table 3.2: kRSTT evaluation of the LS-SVM for pairwise classification of AGG, MEN
and LGG classes. The percentage of LTE features selected by ReliefF with respect to the
total number of features is shown in brackets in the features columns.

Task Dataset Features Accuracy [CI] (%) AUC
AGG vs. MEN Combined TE 380 [LTE:50%)] 95.3 [91.2,97.8] 0.992
Short TE 100 92.6 [87.8,96.0] 0.982

Long TE 190 92.2 [87.3,95.7] 0.975

AGG vs. LGG Combined TE 10 [LTE0%] _ 92.6 [87.3,96.1] _ 0.970
Short TE 10 92.1 [86.7,95.7] 0.966

Long TE 10 90.5 [84.8,94.6]  0.95

LGG vs. MEN Combined TE 50 [LTE:42%)] 97.5 [92.6,99.3] 0.996
Short TE 50 96.0 [90.3,98.7] 0.993

Long TE 100 94.5 [88.2,98.0] 0.993

Neural Networks (MLP and BDK); and single and ensemble classifiers using K-nearest
neighbours and local feature reduced by PCA (PCA-KNN) were used. Specifically, the
author of this Thesis contributed to the development, validation and evaluation of the
MLP models and with the critical discussion of the results of the rest of the developed
models.

For each task, different combinations of feature extraction and classification methods
were applied in the study. An estimation of the error (ERR) and Balanced Error Rate
(BER) for the INTERPRET dataset using a 10-fold CV was carried out for each model.
Then, the models followed an independent prospective evaluation using the e TUMOUR
database.

After estimating the models using a 10-fold cross-validation evaluation with the IN-
TERPRET database, the estimation of the BER were obtained on the independent test
dataset of eTUMOUR. Figure shows the results with all the pairwise classifiers based
on both the CV and the prospective independent test data.

For each binary classifier a multilayer perceptron (MLP) was trained. After the pre-
processing of the data, a region of interest between 4.1 and 0.5 ppm’s was selected. This
means that 190 features were considered as the input of each MLP. After this region
selection the data were normalized in order to scale the data between 0 and 1. The output
consisted of two units, one for each class.

As a first step, the topology of each binary classifier and the parameters for training the
nets were selected. In order to simplify the models without losing its predictive power only
one hidden layer was used. For this single hidden layer 4, 8, 12 and 16 hidden units were
tested. The algorithm for training the nets was the backpropagation with momentum. The
learning rate, p, varied between 0.01 and 1 and the momentum factor, p, varied between 0
and 0.5. Each feed-forward neural network was trained doing an exhaustive scan of these
parameters and its error was estimated using a 10-fold cross validation evaluation.

In order to avoid overfitting, a stopping criterion had to be established. In this ex-
periments, overtraining was avoided by stopping the learning procedure when the mean
square error of the training set converged, i.e., when the learning process began to slow
down rapidly [119]. In this study, learning began to slow down after 100-200 training
cycles.
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A summary of the results of all the models are shown in Figures [3.4] and B35l
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Figure 3.4: A summary of the results obtained for each set of models regarding (a) each
pairwise classification problem and (b) each type of classification method (dLDA and
dQDA stands for a LDA with diagonal covariance matrix and a QDA with diagonal
covariance matrices, respectively). The performance is measured with the BER.

3.5 Discussion and conclusions

For SW-based multiclass classifiers, the comparison between the use of the combined TE
and the single STE show that both approaches are similar. However, the accuracy of the
LTE approach is considerably lower with a significant p-value using a Friedman’s non-
parametric two-way analysis of variance test (o = 0.05). Furthermore, in Garcia-Gomez
et al. [25], we showed that there are significant differences among the three approaches
when pairwise classifications are delivered.

The classifiers developed from the INTERPRET dataset seem to be robust enough
for predictive classification of prospective cases from e TUMOUR. We can conclude, from
the multicenter evaluation, that accurate classification of new cases is feasible using data
acquired in a mixed set of different hospitals, with different instrumentation, but similar
acquisition protocols. The pairwise discrimination between Glioblastoma, Meningioma,
Metastasis, and Low-grade Glial achieved accuracies of around 90%. However, the dis-
crimination of Glioblastoma and Metastasis did not achieve a result better than 78%
accuracy. Our results consolidate the conclusions of previous studies on automatic brain
tumor classification using MRS but with multiproject-multicenter data for training and
subsequent test.

An interesting conclusion from [24] is that the use of PI is comparable in terms of
discriminative power to other feature extraction algorithms. Furthermore, in Menze [14]
and Luts [120] it is shown that PI has also a comparable performance than using quan-
titation methods for estimating the concentration of the metabolites. Since PI is faster
to calculate and easier to implement, these results justify the use of PI in the following
models carried out using the incremental learning algorithms developed in this Thesis.
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Figure 3.5: Scatter plot of the performance measured in BER estimated by the IT set
consisting of new eTUMOUR cases and the BER estimated by the CV using the INTER-
PRET cases. The solid-blue line represents that BER(IT) and BER(CV ) are equal. The
black-dasehd line represents the trend of the cloud of points where BER(CV)< 0.2 and
BER(IT)< 0.3. We can observe from the trend that there has been a subestimation of the
error of the models since BER(IT) is almost always higher than BER(CV). This bias from
the models trained with the INTERPRET dataset and evaluated with the e TUMOUR
dataset points out that some differences may exist from one dataset to the other. One
possible solution to avoid this bias could be to merge both datasets and develop new mod-
els from scratch. This solution may be useless unless we could evaluate the models with
a different independent test set. A different solution is to apply an incremental learning
algorithm using small subsets of new samples to develop incremental models provided they
become available in the course of time.
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There are still many remaining challenges in brain tumor classification by 'H MRS.
One of the most important is the limited number of available spectra per tumor type [94],
which enables the use of incremental learning algorithms as a practical solution. The
specific epidemiological distribution of tumors, with extremely low prevalent classes, and
the increasing recognition of brain tumor molecular subtypes seems to be the reason for
that limitation [I12I]. However, the development of robust brain tumour classifiers requires
a large number of cases to be acquired for each tumour type. In standalone CDSS, the
data is gathered from a large number of hospitals over many years and data is transferred
to a centralized database. As explained in chapter [l ethical approval and patient consent
needs to be obtained to send and store data. Furthermore, to expand the applicability of
ML techniques to MRS of a wider range of tumours, more cases need to be collected over
a more prolonged period of time. This challenge has proven to be difficult to overcome
using centralized databases. As an alternative, distributed databases allow the possibility
to train new classification models without moving the data from the hospital at which it
was collected. Hence, the ability to retrain the classifiers as new data accumulates is also
an important requirement.

Furthermore, as shown in Figure 3.5 there may appear a bias between different health
centers. The development of new models from scratch may be a useless solution unless we
could evaluate the models with a different independent test set, which would entail the
effort of obtaining new observations.

The aforementioned reasons justify the application of an incremental learning algo-
rithm using small subsets of new samples to develop incremental models provided they
become available in the course of time. For this purpose, two different incremental learning
algorithms are proposed in the following chapters.
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Chapter 4

Incremental Gaussian Discriminant
Analysis based on Graybill and Deal
welghted combination of estimators for
brain tumour diagnosis

In the last decade, ML techniques have been used for developing classifiers for auto-
matic brain tumour diagnosis. However, the development of these ML models rely on a
unique training set and learning stops once this set has been processed. Training these
classifiers requires a representative amount of data. However, the gathering, preprocess,
and validation of samples is expensive and time-consuming. Therefore, for a classical,
non-incremental approach to ML, it is necessary to wait long enough to collect all the
required data. In contrast, an incremental learning approach may allow us to build an
initial classifier with a smaller number of samples and update it incrementally when new
data are collected. In this Chapter, we introduce an Incremental Gaussian Discriminant
Analysis (IGDA) learning algorithm based on the Graybill and Deal weighted combina-
tion of estimators. Each time a new set of data becomes available, a new estimation
is carried out and a combination with a previous estimation is performed. iGDA does
not require access to the previously used data and is able to include new classes that
were not in the original analysis, thus allowing the customization of the models to the
distribution of data at a particular clinical center. An evaluation using five benchmark
databases has been used to characterize the behaviour of the iGDA algorithm in terms of
stability-plasticity, class inclusion and order effect. Finally, the iGDA algorithm has been
applied to automatic brain tumour classification, and compared with two state-of-the-art
incremental algorithms. The empirical results obtained show the ability of the algorithm
to learn in an incremental fashion, improving the performance of the models when new
information is available, and converging in the course of time. Furthermore, the algorithm
shows a negligible instance and concept order effect, avoiding the bias that such effects
could introduce.

This Chapter has been published in the Journal of Biomedical Informatics in [28].
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Chapter 4. Weighted Incremental Gaussian Discriminant Analysis

4.1 Introduction

In this work, an ML-based method is proposed to continously adapt an automatic brain
tumour diagnosis model to reflect the most recent information included in newly acquired
cases. An incremental learning algorithm based on a weighted combination of Gaussian
parameter estimation is presented for automatic brain tumour diagnosis. Our method
relies on the Graybill and Deal combination of unbiased estimators [32], [122] originally
developed for the estimation of a common mean when several sets of data come from
different measurement methods or different laboratories. The Graybill-Deal estimator is
known to be unbiased for the mean [122] 123]. In this Thesis, it has been applied to
discriminant analysis to develop a straightforward method for updating the parameters
of each class when new observations arrive, adjusting the parameters of the model to
incorporate new classes in the discriminant space when needed, and showing a benign
order effect at instance and concept level. Some benchmark experiments have been carried
out to show these issues and, finally, the incremental algorithm has been applied for brain
tumour diagnosis.

4.2 Methods

The formal purpose of classification is to assign instances to one class among |C| possible
classes based on a set of features obtained from each observation. A decision rule M is
a function that maps an object x € R? into a class ¢ € C. An error is incurred if the
decision rule assigns the instance to a wrong class. The final objective is to minimize
the error for discriminating among different classes. In discriminant analysis, each class
is represented by a function g¢;(x),i = 1,...,|C|. A classifier M(x) assigns the class ¢; if
gj(x) > gi(x),Vj # i. When a 0-1 loss function is used, finding the class that maximizes
the log-likelihood of the posterior probability p(c|x) is equivalent. Using Bayes’ rule,
assuming that the density functions follow a multivariate normal, p(x|c) ~ N(p., 2.),
and taking into account that the prior probabilities are parameters to be estimated, then
the expression can be evaluated using

Ge(x) = X"W X+ W, X + W , (4.1)

where W, = =187 w. = ¥ 'p, and we = logm, — 3log|X.| — 1S ', The
mean, p,, the covariance matrix, 3., and the prior probabilities, 7., of the class ¢ are
the parameters that can be estimated by the maximum-likelihood method using a set of
labeled samples [33].

This decision rule divides the sample space into |C| decision regions. The points x of
the sample space which satisfy that g;(x) = ¢;(x), ¢ # j make the decision boundary as ex-
plained in Chapter[2l These discriminant functions describe quadratic decision boundaries
except when the covariance matrices of all the classes are identical. If a common covari-
ance matrix is used the quadratic terms of Equation (41l cancel giving rise to a linear
boundary. Linear and quadratic versions are both available in the proposed incremental
algorithm.
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4.2.1 Graybill-Deal combination of estimators

Given k sets with NN; instances xi,...,2zy, in each set, for ¢ = 1,...,k, it is possible to
estimate the common mean of the population using a weighted mean, where the weights
w; depend on the number of instances and the population variance, provided that all the
variances are known. When the true variance is not known, the sample variance is used
instead. In this case, the weighted mean is computed by

k
XGD - ZUA}ZXZ 5 (42)
1=1

where X; is the mean value of the i-th set. The weights are calculated using the sample
variance as

NS
Ef:l Nj/SJ2 ’

where S? is the sample estimate variance of the corresponding set. Notice that the esti-
mation given by (3] gives higher weight to those sets with larger number of instances
N; and smaller variance S?. Graybill and Deal [32] demonstrated that the estimation of
the mean p using Xgp is unbiased, that is E[Xgp] = p.

It is trivial to extend this result to the combination of the mean for multivariate
samples. However, the need of a combined estimator for the covariance matrix of the
samples presents a harder challenge. In the next subsection, a solution is proposed as part
of the developed incremental algorithm.

(4.3)

)

4.2.2 Incremental Gaussian Discriminant Analysis based on Graybill-
Deal estimation of weights

Let the training dataset be obtained in different samples, S;, that are available in times
t;;i = 1,...,T. The Graybill-Deal estimation for Gaussian discriminant analysis begins
with the adjustment of the parameters for each class based on maximum log-likelihood
using the first set of samples. Hence, the prior probabilities for each class, 7r£1 ; the mean
vector, ,u,((;l); and the covariance matrices, E((:l) are estimated following the usual maximum
log-likelihood estimation [33].

A model M, is composed of a mean ugi), a covariance matrix 29, a prior probability
7T£i), and the number of instances N of each class. The first iteration of the algorithm
estimates the parameters of the first model. When a new dataset S; is available in time
ti, © > 1, the first step is to carry out a new parameter estimation from S;, where fi_, 20,
7., and N, are calculated for each class. Then, the prior probabilities of the new model

M, are updated based on the number of samples per class:

N® = NO-D L N, | (4.4)
N® = NED 43" NO | (4.5)
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(4.6)

where N.” is the number of instances of S; and the class ¢. The new mean and a weighted
covariance matrix are calculated as

) = w0 4 (1=l (1.7
Egz‘) _ wgz‘)zt(jfl) +(1- w((:i))ic ’ (4.8)

where w!” and (1-— wéi)) are the weights for updating the parameters of class c. The
weights are calculated using the Graybill-Deal combination of estimators (A3]) and they
are subject to 0 < wci) <1 and ), wci) = 1. We propose to adapt the variance to
multivariate distributions by means of the total variation which is the sum of the variances
S? = tr(X;), which is equivalent to the sum of the eigenvalues of the covariance matrix.

After estimating and incrementally updating the parameters, the common covariance
matrix can be used to obtain a linear discriminant instead of a quadratic discriminant as
previously explained. The pseudocode for the iGDA algorithm is given at the end of the
Chapter.

One interesting property is that the algorithm allows the possibility of introducing new
classes if required. Therefore, if a new set of samples includes data from a new class, an
estimation of the additional parameters is carried out. The prior probabilities are updated
according to the new data set and the parameters of the new class are retained within the
model, thus modifying the final decision boundaries and the regions described for each
class. This is due to the generative model approach followed by the algorithm.

4.2.3 Comparison with other algorithms

Learnt™ is a well-known incremental learning algorithm proposed by Polikar in [60].
Learn*™ is inspired by the AdaBoost algorithm [124], which was developed to improve the
classification performance of weak learnersd. Schapire [125] showed that a weak learner
can be transformed into a strong learner using a boosting procedure.

Learn*™ uses the concept of boosting to incrementally improve the performance of
the classification. In contrast with AdaBoost, Learn™ does not extract the subsets from
the same training set but from the successive observations available throughout time.
Learn™™ uses a weak learner to generate multiple hypotheses from different subsets of
data. Therefore, each hypothesis learns only a portion of the input space. The weak
learner is based on a perceptron, thus each hypothesis defines a linear hyperplane as a
decision boundary. When the algorithm learns with a new set of samples, it generates a
new set of hypotheses. The outputs of all the hypotheses are combined using a weighted
majority voting. Therefore, Learn™™ does not require access to previously used data
during the incremental learning and it does not forget previously acquired knowledge.

Another well-known incremental learning algorithm is the incremental Linear Discrim-
inant Analysis (iLDA) proposed by Pang et al. [68]. iLDA uses a constructive method

aA weak learner is a learning algorithm that performs slightly better than random guessing.
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for deriving an updated discriminant eigenspace for classification. A typical Linear Dis-
criminant Analysis (LDA) secks directions in the D-dimensional space that are efficient
for discrimination, projecting the observations to a P-dimensional space where P < D.
To obtain the projection matrix W, the ratio between the between-class scatter matrix
S} and the within-class scatter matrix S, must be maximized. Once the observations are
projected, different ML techniques can be used for classification purposes [34].

The iLDA method aims to obtain a new discriminant eigenspace model ® by combin-
ing two discriminant eigenspace models €); and €);,; from different samples S; and Sy,
acquired at time ¢ and ¢ + 1 respectively. This new model, ®, updates the sample mean,
the S, matrix and the S, matrix and results in a new projection matrix W. Once the
data are projected in the new discriminant eigenspace, a nearest neighbour algorithm is
used for classification purposes. For technical details see [68]. iLDA does not require
access to previously seen data and it can also include new classes if needed.

Finally, a naive incremental Gaussian model is used as a baseline for comparison with
the above methods. This model updates its parameters from scratch. That is, the previous
data and the current data are used to train a new model using quadratic discriminant
analysis [33] (see Appendix [Al).

4.3 Benchmark experiments

The behaviour of the iGDA algorithm has been tested on several databases with a threefold
purpose: 1) to show that the developed algorithm is able to incrementally learn and
adapt the parameters of the classifier, improving its performance without incurring in
catastrophic forgetting; 2) to show how the iGDA algorithm is able to introduce new
concepts or classes into its knowledge representation; 3) to analyze whether the order in
which the instances are introduced into the analysis have a crucial influence in the final
hypothesis, that is, if the algorithm is order dependent or not. The selected datasets have
only real attributes since the iGDA is restricted to that set of numbers. In order to avoid
possible bias, every experiment was evaluated following a K random sampling train-test
strategy, where K = 100.

4.3.1 Stability /Plasticity dilemma
Vehicle Silhouette Database

The vehicle silhouette database has been extracted from the UCI Machine Learning Repos-
itory [126]. The purpose of this database is to classify a given silhouette into one of four
different types of vehicle using a set of 18 features. The database consisted of 846 in-
stances. It was divided into a training partition (630 instances) and a test partition (216
instances). The training partition was split again into 7 training sets Sy, ..., Sy of 90 in-
stances with a similar prevalence to the original database for each class. Table [£.1] shows
that there is a gradual loss of information relating to the previous training datasets when
new observations are introduced using the quadratic iGDA. However, the overall perfor-
mance increases from 62% to 84%. The linear iGDA showed an increase from 73% to
78%, also with a gradual forgetting when new information was added (Table not shown).
These results are comparable to the performance of a completely new quadratic classifier
trained with the entire training dataset (85%) and to a linear classifier (80%).
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Dataset My Mo M3 My M Mg M-

S 99.93 97.42 95.48 94.22 93.22 92.57 92.11
S - 97.43 95.04 93.52 92.90 92.26 91.86
Ss - - 95.31 94.16 93.18 92.53 91.90
Sy - - - 94.24 93.38 92.64 92.08
Ss - - - - 92.68 92.06 91.54
Se - - - - - 92.27 91.79
Sy - - - - - - 91.73
TEST 62.00 79.08 81.53 82.82 83.62 84.09 84.54

CI (a =1%) +1.44 £0.71 +0.62 +0.65 +0.65 +0.63 +0.59

Table 4.1: Training and test accuracy for the Vehicle Silhouette Database using a quadratic
iGDA. The rows indicate the different datasets Sp,...,S7 and the columns show the
hypothesis or models M; built from a previous model M,_; and the new dataset S;,
except My which is built from S; only. Each column shows the average performance (%)
on the current and the previous training datasets for the current model. The last rows
(TEST, CI) indicate the evolution of the average accuracy of the models in the course of
time evaluated with an independent test set and the confidence interval (o = 1%).

Dataset M1 MQ Mg M4 M5

S 69.11 99.14 98.16 97.77 97.44
Ss - 99.16 98.32 97.70 97.31
Ss - - 98.24 97.64 97.25
Sy - - - 97.55 97.17
Ss - - - - 97.39
TEST 52.21 94.12 94.95 95.20 95.34

CI (o =1%) £3.56 +0.48 +0.46 +0.43  £0.42

Table 4.2: Training and test accuracy (%) for the Wisconsin Breast Cancer Database
using a quadratic iGDA.

Wisconsin Breast Cancer Database

The Wisconsin Breast Cancer Database from the UCI Machine Learning Repository con-
sists of 569 instances with 30 variables from a digitalized image of a fine needle aspirate
(FNA) of a breast mass. The objective in this problem is to classify the instances into a
malignant (37.3%) or a benign (62.7%) breast tumour. The database was divided into a
test partition (169 instances) and a training partition (400 instances) that were also split
into five different sets of 80 instances Sy, ..., 5. Each partition had the same prevalence
for each class as the whole database. The results of the quadratic classifier are shown
in Table 2] The linear iGDA also showed an improvement on accuracy: from 91.14%
to 94.38% for the independent test set. As shown in the previous experiment, there is
generally an improvement in overall classification as the new data are used for incremen-
tal learning, but a gradual forgetting is observed with respect to the previous datasets.
The poor performance of the first classifier in the quadratic iGDA may be due to the low
number of instances in the first dataset S; and it is known that quadratic discriminant
classification rules generally require larger samples than those based on linear discriminant
analysis [127].
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Dataset M,y Mo M M, M M

S 88.89 90.53 90.82 90.73 91.16 91.60
Sy - 89.97 90.70 90.45 90.64 91.11
Ss - - 69.58 87.50 88.93 89.12
Sy - - - 87.44 88.97 89.15
Ss - - - - 62.40 84.76
Se - - - - ~ 8499
TEST 50.78 52.93 60.52 68.28 71.73 83.50

CI (a = 1%) £0.60 +0.48 +0.61 £0.78 +0.62  £1.01

Table 4.3: Training and test accuracy (%) for the Concentric Circle Database using a
quadratic iGDA.

4.3.2 Introduction of new classes
Concentric Circle Database

The concentric circle database is a synthetic set of five classes each belonging to a concen-
tric ring of data. This database is used to test the ability of the incremental algorithm to
introduce new classes. The data is bidimensional with a uniform distribution inside each
ring (see Figure ] left). The database was split into 6 different sets: S; and S, included
50 instances from each of classes 1, 2, and 3; S3 and S, included 50 instances from classes 1
to 3 and 100 instances from class 4; finally, S5 and Sg contained 100 instances from classes
1 to 4 and 200 instances from class 5. Therefore, equal prior probabilities were kept for
the number of instances of each class. An independent test set was generated with 10 000
instances from each class. In order to simulate the general behaviour of the algorithm
in a real scenario, the test set included all the five classes. Since the database describes
quadratic boundaries, only quadratic iGDA was employed (see results in Table [£.3)).

As demonstrated in Table 43 iGDA has the ability to include new classes with an
increase in overall classification performance for the test set as soon as data from new
classes appear in the new datasets.

Image Segmentation Database

The Image Segmentation database from the UCI Machine Learning Repository consists of
2310 instances with 18 attributes for segmenting the images from 7 outdoor images. The
seven classes are: brickface, sky, foliage, cement, window, path, and grass. The database
was split into three training subsets &; (including classes brickface, sky and foliage), So
(including all the classes except path and grass), Sz (including all the classes), and one
test partition (231 instances) were all the classes were represented. The prior probabilities
of all classes were made equal as for the previous experiment. The results for the linear
version of the iGDA algorithm are shown in Table 4] and are comparable to that in
Mubhlbaier et al. [62], where the best improvement went from a 42.2% to a 91.0% after the
third dataset. Although there was an improvement for the quadratic version, the results
obtained were poor: from 22.2% to 58.8%.

47



Chapter 4. Weighted Incremental Gaussian Discriminant Analysis

Dataset M,y M, M

S 98.45 99.69 99.78
S, — 88.25 87.45
S; — — 94.63
TEST 42.14 64.30 91.42

Cl (o =1%)  +0.15 4041  +0.43

Table 4.4: Training and test accuracy (%) for the Image Segmentation Database using a
linear iGDA.

Figure 4.1: The Concentric Circle dataset is shown on the left. Five classes are drawn
following a uniform distribution in their corresponding ring. Assuming Gaussian distribu-
tions the decision boundaries can be obtained. In addition, the two-dimensional synthetic

dataset is shown on the right. The class ¢; follows p(ci|x) ~ N <(8), ((1)/ * /g)>, and class

¢y follows a distribution p(ce|x) ~ N ((g), (é/ 41 /g)). The decision boundary is a parabolic
curve.

4.3.3 Order effects

Instance level order effects

A synthetic dataset with two categories drawn from different multivariate normal dis-
tributions (shown right in Figure [LJ]) has been used to analyze the instance level order
effects. A training set of 400 instances and a test set of 4000 instances were drawn from
the distributions with equal prior probabilities for each category. The training set was
split into 20 different training samples with 20 instances in each sample. The samples
were used for incremental learning to build consecutive models as explained before. To
evaluate the order effects, the instances were permuted in 100 experiments and the mean
accuracies and the decision boundaries of the models of each iteration in the experiments
were compared.

The Vehicle Silhouette database was also used to reinforce the analysis. The same
configuration as in Section [£.3. T was prepared, but the instances were permuted 100 times
to test the effect of the instance order. Figure shows the convergence in accuracy for
these two experiments, whereas Figure shows the iterative convergence of the decision
boundary for the two-dimensional synthetic dataset.
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Figure 4.2: Boxplots of the accuracy of the models trained with different permutations
of the instances. The X-axis shows the iterations of the incremental models. The top
Figure shows the results for the two-dimensional synthetic database with 20 iterations.
The bottom Figure shows the results for the Vehicle Silhouette database. The convergence
of the accuracy proves that the instance order has a benign effect on the final models for
both datasets.
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Figure 4.3: Convergence of the decision boundaries of each model in 20 iterations for
the two-dimensional synthetic database. The variance of the different parameters of the
decision boundaries is also shown at the top of each iteration. The iterations are shown
left-to-right, top-to-bottom. It can be seen that the first models present arbitrary decision
boundaries because their parameters are adjusted from the first sample only. When further
samples are used for learning, the decision boundaries and their parameters begin to
converge until the final iteration.

Concept level order effects

The Concentric Circle database was used to analyze the effect of the concept order on
the iGDA. The database was divided into six different samples as in Section To
avoid the problem of imbalanced classes [128], the prior probabilities were forced to be
equal. With this set-up of samples and classes and considering that there are five possible
categories, the possible combinations for introducing different categories in each sample
are 20. Therefore, 100 repetitions of 20 different combinations of samples were analysed.
Figure[4.4] depicts the convergence of the incremental algorithm. The results show a benign
concept lever order effect when the prior probabilities of the categories are equal.

4.4 Experimental design for brain tumour diagnosis

So far, the behaviour of the iGDA algorithm has been studied using different benchmark
datasets with a focus on various properties. In this section, the iGDA algorithm is ap-
plied to a real biomedical problem of high medical relevance: automatic brain tumour
classification with *H MRS. The current gold standard classification of a brain tumour
is a histopathological analysis of biopsy; but this is an invasive surgical procedure with
potential adverse consequences for the patient. An alternative is a diagnosis based on 'H
MRS, which is a non-invasive technique that provides biochemical information on tissue
in vivo. The database used for our evaluation contains single voxel proton magnetic reso-
nance spectra (SV 'H MRS) acquired at 1.5T from brain tumours at nine European and
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Figure 4.4: Convergence of the median accuracies of each combination of samples for the
Concentric Circle database. The X-axis shows 6 iterations of the incremental models, each
one corresponding to a sample ;. The convergence proves that the concept order has a
slight effect on the accuracy of the models.
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one Argentinian hospitals. Data used in this work was gathered during three European
projects: INTERPRET, eTUMOUR, and HEALTHAGENTS. As explained in Chapter 3]
an acquisition protocol was defined in INTERPRET to provide maximum compatibility
of the spectra obtained using different MRS systems at the different participant hospi-
tals [129, [130]. This acquisition protocol was extended to the data acquisition procedure
in eTUMOUR and HEALTHAGENTS. The spectra were acquired with MR scanners of
several manufacturers: Siemens, General Electric and Philips. The acquisition protocols
included Point Resolved Spectroscopy (PRESS) and Stimulated Echo Acquisition Mode
(STEAM) sequences [I131] with a range in the Time of Repetition (TR, between 1600 and
2020 ms), the Time of Echo (TE, 20 or 30-32 ms), the spectral width (1000-200 Hz), and
the number of data-points (512, 1024 or 2048) [I1]. Each spectrum was semi-automatically
pre-processed in order to suppress the water peak, perform a phase correction, suppress
the base line, normalize the spectrum area and correct the frequency shift as described
in [24].

Spectral patterns contain resonance peaks related to the concentration of different
metabolites in the tissue analyzed which are useful for tumour classification purposes [25]
24]. Based on a biochemical prior knowledge, a total number of 15 features were obtained
from the integration of the signal under a spectral region associated with each metabolite
of interest (see Figure L0]). Signal quality and the diagnosis associated with each spec-
trum was validated by the INTERPRET Clinical Data Validation Committee [I1], the
eTUMOUR Clinical Validation Committee, and expert spectroscopists. In INTERPRET
and eTUMOUR the class of each case was determined by a panel of histopathologists,
while in HEALTHAGENTS the class was established by the original histopathologist.

Three types of brain tumour classes were taken into account in the experiments: ag-
gressive brain tumours (AGG), including Glioblastomas and Metastases; low-grade glial
tumours (LGG), including grade II Astrocytoma, Oligodendroglioma and Oligoastrocy-
toma; and Meningioma (MEN). The prevalence of the brain tumour classes considered in
this study is shown in Table 3l

A Gaussian assumption is made since all the variables are continuous. Furthermore,
both quadratic and linear classifiers have previously been shown to be powerful enough
to achieve good results in automatic brain tumour classification [IT], 24]. Although there
may be more sophisticated feature selection techniques for this problem [120} 24], the use
of peak integration is a good trade-off between complexity and performance, and it is
independent of the different incremental data subsets. Finally, the evaluation method is
based on K-random sampling train-test where K = 100 because the iterative incremental
procedure makes the use of cross-validation or bootstrapping difficult. From the K rep-
etitions the mean accuracy is shown and the standard deviation is used to estimate the
confidence interval.

In these experiments, three specific desired features of a clinical decision support system
(CDSS) based on ML techniques were analyzed: 1) the convergence of the classifiers in
terms of stability /plasticity; 2) the effect of including new classes; 3) the customization of
the classifiers in relation to the distributions of data in different hospitals.

4.4.1 Convergence of the iGDA

Following the methodology applied in Section A.3.1] we tried to show how the iGDA al-
gorithm is able to learn brain tumour discrimination with MRS in an incremental fashion
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ppms

Figure 4.5: The features selected for classification are the peak integration of the metabo-
lites observed in the brain (vertical dotted lines): Creatine (3.93 ppm and 3.02 ppm),
Choline (3.21 ppm), N-Acetyl Aspartate (2.01 ppm), Myo-Inositol (3.26 ppm and 3.53
ppm), Glycine (3.55 ppm), Taurine (3.26 ppm), Glutamate/Glutamine (2.04 and 2.46
ppm), Alanine (1.47 and 3.78 ppm), Lactate (1.31 ppm), and Lipids (1.29 and 0.92 ppm).
The peak integration computes the value of the area under the peaks considering an in-
terval of 0.15 ppm from the assumed peak centre. The mean spectrum of each class of
brain tumour is shown: aggressive (solid black line), low grade glial (dashed line), and
meningioma (solid grey line).

from different subsets of training data. This was evaluated using the whole brain tumour
database to show how the iGDA performance improved in the course of time when new
observations were used to update the classifier. The whole database (see Table [L.0) was
randomly split into a training partition (300 samples, 39.5%) and a test partition (460
samples, 60.5%). The decision of using only 39.5% of data for training is justified by the
need of simulating a real scenario where the number of instances might be small. Al-
though more incremental iterations could have been performed at the cost of having fewer
instances for testing, the selected samples are enough to demonstrate the convergence of
the algorithm and reduction in the standard errors of the results. The training partition
was split into ten subsets of 30 samples. The whole test partition was used as an inde-
pendent test set for each new updated classifier. The performance of the classifiers was
measured in terms of the accuracy. The linear and quadratic versions of iGDA and the
results were also compared to the performance of the other incremental algorithms.

4.4.2 Inclusion of new classes

In this second experiment, centers in Table .5l were used in order to address the inclussion
of new classes. Each center initially contained only two classes (LGG, MEN). An initial
classifier was trained from the first group of hospitals (CENy). Subsequently, using data
from the rest of hospitals, the remaining class (AGG) was included in the following subsets
and each generation of the classifier was evaluated with an independent test set. When
introducing new classes, a problem of imbalanced classes may appear [12§], resulting in a
classifier with null sensitivity for the new class. In order to detect such a bias, a geometric
mean of sensitivities was used to evaluate the classifiers in these experiments.
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Center Classes Total
AGG LGG MEN

CEN, 111 44 29 184

CEN, 108 48 34 190

CEN, 114 44 33 191

CENj; 120 26 49 195

TOTAL 453 162 145 760

Table 4.5: The different centers and the number of instances per class. AGG: aggressive,
LGG: low-grade glial, and MEN: Meningioma.

4.4.3 Customization to different centers

The third experiment simulates the customization of the classifier for a hospital by adapt-
ing a general model into the specific distribution of one hospital. Data from three hospi-
tals (CENp) were used to train an initial classifier. Three other groups from two hospitals
(CEN;, CEN,, and CENj3) were made for testing the iGDA. These groups were cho-
sen to balance the number of samples in each center. In addition, all the centers were
grouped together in order to obtain a general behaviour of the convergence of the al-
gorithm to compare with. This multicenter dataset is called CEN;_3 and is defined as
CEN;_3 = U?:1 CEN;. Table shows the prevalence of each class in the dataset ac-
cording to the four data groups used. Each center was divided into a test set and four
subsets with 20 random samples in each one. Once the initial classifier was trained, it was
used to automatically classify data from the test set of the other centers. Then, the first
sample &7 of CEN; was used to update the classifier with the iGDA algorithm. The same
process was performed with the first sample S; of the other two centers, thus obtaining
a total of three new incrementally updated classifiers. After incremental updating of the
classifier of each center, a new evaluation was carried out using the independent test set
of the corresponding center.

4.5 Results in brain tumour classification with MRS

4.5.1 Convergence of the iGDA

The comparison with the Learn™ and the iLDA algorithms shows that the accuracies of
all these methods converge asymptotically (see Figure [6]). This result suggest that the
iGDA algorithm works properly as an incremental learning algorithm.

Generally speaking, the linear version of the iGDA algorithm performs better than the
Learn™™ and the iLDA algorithms. However, the quadratic version of iGDA needs three
incremental updates to reach a comparable accuracy with the other algorithms. This
behaviour may be explained by the low number of samples of the less prevalent classes
in each subset. Nevertheless, there is asymptotic convergence of all methods: the data
fits to the Gaussian model assumed by the iGDA, which describes linear or quadratic
boundaries, as well as to the model assumed by the Learn™™ algorithm, which divides the
sample space using multiple hyperplanes.
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Figure 4.6: Comparison of the evolution of the accuracies of the linear iGDA (solid line and
triangles), the quadratic iGDA (solid line and circles), iLDA (dashed line and triangles),
and Learn™ (dashed line and circles) incremental learning algorithms. Also, a naive
Gaussian classification model updated from scratch is compared (dotted line and circles).
The first iteration is the performance of the initial classifier. From the second batch on,
the incremental algorithm is executed. The experiment was repeated 100 times. The
plots represent the mean value of all the experiments. The x-axis shows the different
moments of time, ¢;, of new observed data. The y-axis shows the accuracy. The iGDA
using Graybill-Deal weight estimation shows a very good performance and it converges
asymptotically.

The significance of differences (o« = 5%) among algorithms was evaluated with a mul-
tiple comparison test using a Friedman’s nonparametric two-way analysis of variance test
with Tukey’s honestly significant difference criterion from the first to the last iteration.
The linear iGDA always displays a significant difference with respect to the other algo-
rithms except with the iLDA in the first iteration. From iteration 8 to 10 the differences
among the algorithms are all significant (p < 0.01), except between the quadratic iGDA
and the naive incremental GDA retrained from scratch.

4.5.2 Inclusion of new classes

The mean accuracy of the results obtained when a new class appears inside the new
observed samples improve from 0.29 to 0.78 in 10 incremental iterations. Since the con-
vergence is asymptotic, the first two iterations show the biggest improvement: from 0.29
to 0.45 and to 0.57. Thereafter, the improvement is slower. The geometric mean of sensi-
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tivities (G) improves from 0 to 0.76. Our results show that the first classifier is unable to
correctly classify any sample belonging to the new class and thus G = 0. But, after further
learning from two additional samples that include cases of the new class, the subsequent
classifiers converge, obtaining not only a good accuracy but also a good G without for-
getting to classify the initial classes. Our results show that the iGDA is able to introduce
the new class into its knowledge base.

4.5.3 Customization to different centers

The third experiment tried to simulate a practical environment where a trained classifier
is used for classification with data coming from different populations of patients and/or
different acquisition machines. The results in Figure [L.7 show how the initial classifier
exhibits a performance that clearly needs improvement. Therefore, when the classifier is
updated with the new observations, the performance increases significantly with a small
additional set of samples. In every new center, the accuracy of the incremental classifier
improves in the course of new observations being used to incrementally train the classifier.
Each observation included 20 new samples. The centers were joined in a unique set to
compare the evolution of each center with the evolution of all the centers and show that
the accuracy tends to converge asymptotically.

In general, the sensitivities for the first classification model in the centres CEN;, CEN,,
and CENj are between 0.71 to 0.76 for AGG, 0.85 to 0.86 for LGG, and 0.29 to 0.58 for
MEN. After four incremental iterations the sensitivities vary from 0.79 to 0.83 for AGG,
0.74 to 0.84 for LGG, and 0.51 to 0.73 for MEN. Therefore, the incremental algorithm
seems to be prone to balance the sensitivities of the different tumour types, increasing the
sensitivities of the AGG and MEN tumour types while slightly decreasing the sensitivity
of the LGG tumour types.

Again, a multiple comparison test (a = 5%) was carried out. Initially, only CEN,
and CENj3 showed significant differences but by iteration 5, only CENj3 showed significant
differences against the other centers (p < 0.01).

The same multiple comparison test (o« = 5%) was used to analyze the statistical
differences in the incremental models developed in the iterations of each center. These tests
showed that the models of CEN; and CENj3 had significant differences among iterations,
except for the results of iteration 4 and 5, where the accuracies converge. With respect
to the models of center CEN, there were significant differences between iteration 1 and 2
and between iterations 2 and 4, and iterations 3 and 5.

4.6 Discussion and conclusions

4.6.1 Technical aspects of the iGDA

The iGDA algorithm is presented as a new incremental algorithm for Gaussian dis-
criminant analysis based on a weighted combination of different parameter estimations.
It obeys the definition about the incremental learning algorithm given by several au-
thors [70], [77, 60]. iGDA does not use any previous original datasets, but updates its
knowledge by means of the information of the newly observed data and its already ac-
quired knowledge. Therefore, it can be used when dealing with problems where past
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Figure 4.7: Comparison of the evolution of the mean accuracies of the different incremental
learning algorithms trained with data from center CENy and tested with data of new
centers: CEN; (grey dash dotted line with triangles), CENy (grey dashed line with circles),
CENj; (grey dotted line with squares), and the evolution of the convergence for the union
of centers CEN; to CENj, that is, CEN;_3 (black).

information is inaccessible or where there are problems gathering an appropriate dataset
in a reasonable time. In such situations, this incremental learning algorithm can avoid
the waiting time by using a small amount of information to build an initial simpler model
and then update the model incrementally, and allow for additional classes, as new infor-
mation arrives. Furthermore, the implementation of the algorithm is straightforward and
the models can be estimated in polynomial time.

Figure 7] shows that the evolution of the updated classifiers in centers CEN; and
CENj is comparable to the evolution of the classifiers from all centers taken together.
However, the evolution using the dataset from center CENj3 shows the highest improve-
ment. This is consistent with the Kullback-Leibler (KL) divergence between the joint
distributions for all ¢, p(x,¢), of CENy and CENj, which are higher than the KL diver-
gence of p(x,c) between CENy and CENjy, and between CENy and CEN,. This may be
explained by the prevalence of the different brain tumour types in center CENj3, which has
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an influence on the prior probabilities of the models. Hence, while the updated classifiers
of CEN; and CEN, are improving the knowledge concerning the conditional distributions
p(x|c), the updated classifiers of CENj3 are reinforcing the knowledge of the conditional
distributions as well as the prior probabilities 7.. The final accuracy reached is similar to
the median accuracy rate achieved in [24] for quadratic and linear discriminant analysis.
In our results, the iGDA is comparable with the baseline model and the other incremental
algorithms.

Since the experiments were repeated 100 times to avoid any possible bias, the results
show a general behaviour of the iGDA algorithm. However, when the convergence to
a minimum error has been achieved, there may be situations where addition of a new
biased dataset results in a model with a slightly poorer performance than the previous
one, but without statistical significance. Thus, when a convergence has been reached
small oscillations in the accuracy of the models may be observed, similar to other iterative
procedures.

An interesting feature of iGDA is that it does not have a malignant order effect [76],
neither at instance level nor at concept level. This means that the order of the instances
may give rise to slightly different models, but with similar discrimination accuracies. Our
results show that the decision boundaries of the models are also similar regardless of the
order in which the instances appear, or even the order in which the classes are introduced
into the analysis.

One limitation of the iGDA algorithm is that it assumes that the data will follow a
Gaussian distribution. This assumption may be useful for real number variables, even
when they do not follow a Gaussian distribution, but this approach is useless for discrete
distributions, such as Bernoulli or multinomial distributions. Nevertheless, the extension
of these concepts may be of interest to other distributions, including discrete ones. The
unimodal Gaussian assumption also restricts the type of decision boundaries to linear or
quadratic boundaries.

Another feature of the iGDA is its ability to include new classes. However, this abi-
lity may lead to an imbalanced class problem [128§] if the new class is underrepresented
compared to the previous classes. This may be also related to the outvoting problem that
occurs in incremental learners based on voting schemes such as the Learn™™ [60, 62]. Fur-
thermore, the behaviour of the weights in multivariate distributions and the combination
of the covariance matrices using the Graybill-Deal estimation must still be theoretically
studied and is the focus of future work.

4.6.2 Potential clinical interest of iGDA for brain tumour diag-
nosis

Primary brain tumours are proportionately less frequent than other cancers, but they are
devastating diseases with high mortality. An accurate initial diagnosis of brain tumours
has important consequences for therapeutic decisions and prognosis. Compared to most
other tumours, obtaining brain tumour tissue for diagnostic purposes is relatively difficult
even when using the advance technique of stereotactic biopsy [I32]. The clinical DSS
that are based on ML techniques and 'H-MRS have shown a promising results for non-
invasive brain tumour diagnosis. However, the development of robust classifiers requires
acquisition of a large number of cases. Furthermore, in multicenter projects it is usually
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assumed that the data have similar distributions, however in practice we may expect some
differences in data distributions or class assignments. A straightforward application of the
incremental method presented here is its ability to customize an already trained classifier
to the specific distribution of a particular hospital. In other words, if a hospital has a
limited number of samples for a particular class, a classifier trained with data from other
hospitals can be used as an initial model and then adapted to the distribution of the patient
population or the hospital scanner performance. Thus a classifier can be developed that
has a customization to the hospital, but without the need for an unachievable acquisition
of local data. The development of new models in the course of time as new data is acquired
is related to the concepts of temporal and external validation reported by Altman et al.
in [I5]. Based on the results, our incremental algorithm could enhance the performance
of such models when evaluated with subsequent patients coming from new hospitals.

In the framework of a clinical DSS the iGDA algorithm that has been developed
may take advantage of the availability of new information to adapt the knowledge of the
current system to the evolution of the data domain and also to extend the lifecycle of
the system in a real clinical environment. Assuming that new information is ready for
supervised classification at different times, the iGDA algorithm can learn from such new
data without access to the previously seen data, even when a new class arises.

The ability to customize a model to a specific clinical centre could be used to improve
the behaviour of a state-of-the-art CDSS for aiding brain tumour diagnosis. Further work
will include the integration of the incremental algorithm developed in this work into a
generic and dynamic DSS for clinical environments such as the aforementioned CDSSs
and CURIAM [I33]. The CURIAM Brain Tumour version [26] offers orientation on brain
tumour diagnosis and is currently being tested in a clinical setting at several hospitals in
Europe. The incremental learning method shown here may also complement to an audit
model of brain tumour classifiers [31] and help provide dynamic optimisation of a CDSS.
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Algorithm 1 Incremental Gaussian Discriminant Analysis

Input: S;y1 = {(xn, ) }; M;
Output: M,
Require: Ve e §;, N, > 1
for all c € S do
e — N./N
Be < 3 2 Tn
Y — NLL (@ — p) " (0 — p2,)
end for
if M;_1 # () then
for all c € S do
Wit1,W; < Graybill-Deal(Ni, EZ‘, Ni+1, Ei—i—l)
NN
NiTI{N?
P — wip e o,
Y win S0 4 o3
end for
end if
if linear then
for all c€ S do
Y. — X
end for
end if
for all c € S do

Te <

we = logm, — (1/2)log |2] — (1/2)uf =7 e
end for
return M,
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Algorithm 2 Graybill-Deal computation of weights
Input: Ny, Ny, 34, 39
Output: wi,ws

Sy = trace(X)

Sy = trace(Xs)
N1/S1
i1 Ni/Si

Wy = 1-— w1
return wq, ws

w1 =
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Chapter 5

Designing an incremental learning
algorithm based on a Bayesian
discriminative logistic regression

In this Chapter, we develop a new incremental learning algorithm for biomedical decision
problems where no access to previous data is allowed. Unlike the previous iGDA algorithm,
no assumptions over the underlying data distributions are made, and the estimation of the
parameters are carried out using a Bayesian inference paradigm instead of the maximum-
likelihood estimation. The Bayesian inference paradigm plainly fits with the design of
an incremental learning algorithm by recursively using the posterior probability of the
parameters of a model as the prior belief of a new model trained when new data is
available. In this work, we introduce an incremental algorithm that uses a Bayesian
paradigm to develop a discriminative logistic regression model based on an approximated
posterior for two-class discrimination. Assuming that the parameters follow a multivariate
Gaussian distribution, and taking into account that the posterior density of the parameters
is unimodal, a Laplace approximation is carried out with a Newton-Raphson optimisation
to find a local maximum. The performance of our algorithm is demonstrated by employing
different benchmark datasets and is compared to a previous incremental algorithm and
a non-incremental Bayesian model, showing that the algorithm is independent of the
data model, iterative, and has a good convergence. Finally, we compare the Incremental
Discriminative Bayesian Logistic Regression (iDBLR) and the iGDA algorithms using the
brain tumour database.

This Chapter has been submitted as a journal paper with the title “Designing an in-
cremental learning algorithm based on a Bayesian discriminative logistic regression” by
Salvador Tortajada, Javier Vicente, Elies Fuster-Garcia, Montserrat Robles, and Juan
Miguel Garcia-Gomez.

5.1 Introduction

In this work, we introduce an application of the Bayesian inference paradigm for the
design of an incremental learning algorithm for binary classification that works incremen-
tally only with the new available data assuming that previous data are not available. From
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now on, it will be referred to as incremental Discriminative Bayesian Logistic Regression
(iDBLR). The Bayesian inference presents conceptual differences in the parameter estima-
tion given the observations with respect to the traditional maximum-likelihood parameter
estimation [38, B7]. Mainly, the Bayesian subjective interpretation of probability as a
degree of belief assumes that the parameters are random variables and, consequently the
inference results in a distribution of parameters. Precisely, one of its main advantages is
the use of the prior beliefs about the parameters to estimate their posterior probability.
This feature is the basis of our incremental approach since the posterior probability of the
parameters of one iteration is used as the prior belief for the next iteration in a natural
way as explained in the next section, where the full model is presented. Since the Logistic
Regression is a two-class discriminative model it is thus unable to incorporate new classes.
Therefore, this ability is not assessed for this algorithm. Section introduces the bench-
mark dataset used for validating the algorithm and Section [5.4]shows the results compared
to the iGDA algorithm, which also assumes that previous data are not available. Finally,
some discussion and conclusions are drawn in Section

5.2 Bayesian Discriminative Logistic Regression

The logistic regression is a generalized linear model that is used as a discriminative model
for binary classification problems. When the outcome variable is binary some transforma-
tions have to be fulfilled which implies a different choice in the parametric model compared
to a linear regression. Usually, the output variable is the membership of the observation
into one of two possible classes C = {0,1}. Taking as a reference the class ¢ = 0, the loga-
rithm of the odds ratio of the probability of one class p(c = 1|x) and the other p(c = 0|x)
can be used as a discriminative function

(c= 1|x)} (5.1)
—0

where p(c = 0]x) = 1 — p(c = 1]x) and ¢(x) is an explicit and general basis expansion of
the input such that ¢(x) = [¢1(X),. .., om(x)]", and each ¢,,(x) defines the m-th basis
function applied to data vector x. This expression for the logistic regression can be used
to obtain a discriminative classifying method since we can classify an object x into class
¢ = 1if p(c = 1|x) > 0.5. This is equivalent to decide that x belongs to class ¢ = 1 if
wio(x) > 0.

Using the exponential of (5] it is possible to obtain the value of the probability of
class 1 given an observation x (see Appendix [B))

exp{w p(x)}
1+ exp{w"¢(x)}

Now, our purpose is to estimate the parameters w of the discriminative model g(x).
With the Bayesian approach we can estimate the posterior probability of the parameters

ple = 1]x) = (5.2)
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W using

p(w, c|X, H)
p(c|X, H)

where p(w, ¢|X, H) = p(c|X, w)p(w|H). The overall hypothesis H is the first assumption
we make about the parameters and it is established only in the first iteration as explained
later. Therefore, we have to define the likelihood component, the prior probability, the
evidence and the hypothesis ‘H. Let m(¢p(x,)) = p(c = 1|¢p(x,)), which is the model
defined in (5.2]) that is parameterized by the vector w. Then, assuming that the instances
x are independent and identically distributed, the likelihood function can be expressed as

p(wlc, X, H) = (5.3)

||
1=

plelX.w) =TT [~((x)) (1 = m((xa))'

i
I

(5.4)

[exp(w™e(x,))] ™
LT exp(wi(x)

Il
—1=

n

We assume that the prior probability of the parameters follows a multivariate Gaussian
distribution with mean w and covariance matrix C, that is, w ~ N (w, C). Furthermore,
the first time a model is built an overall hypothesis ‘H is required. Hence, we assume that
the prior probability is p(w|3) = N(0, 37I), with 8 being an arbitrarily small precision.
Now, a joint-likelihood consisting of the likelihood and the prior probability product is
defined to obtain the posterior probability:

ple, w|X, §) = p(c|X, w)p(w|5)

[exp(W™@(x,))]™" . _ (5.5)
1 + eXp(WTgb(xn))N(W’ C).

||£2 =

We still need to calculate the evidence or marginal likelihood p(c|X, ) in the denominator
of equation (5.3]). The expression for this marginal likelihood is

p(eX, ) = / p(e/X, w)p(w|B)dw
/H Xp(W(xn))] N(w, C)dw

1+ exp(wTo(x,,))

(5.6)

Since there is no analytical solution to this integral, we can obtain a Laplace approximation
to the posterior in order to obtain the analytical advantage and avoid the use of sampling
techniques.

5.2.1 Laplace Approximation and the incremental DBLR

The Laplace approximation is a method that uses a Gaussian distribution to represent
a given probability density function. This approximation for Bayesian logistic regression
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has been used earlier [134]. Assuming that the posterior probability follows a multivariate
Gaussian distribution it is possible to apply an analytical method to solve the estimation
of w. Furthermore, since the incremental learning algorithm uses the posterior probability
estimated in time ¢ — 1 as the prior probability in the next estimation, it is required that
both probabilities belong to the same class of density functions. As a consequence, it is
also assumed that the Gaussian probability density function is a conjugate prior of the
logistic regression likelihood function. Therefore, applying the Laplace approximation

/X, wip(w]d)
X N

where wj;4p is the maximum of the posterior and the covariance C; is defined as

p(wle, X, ) =

(WMAPact)a (57)

owow?

Ct:—< > logp(c,w|X,ﬁ)> . (5.8)

Therefore, we have to estimate the Maximum A Posteriori parameter and compute the
curvature of the posterior at that point. Taking the logarithm of the joint likelihood and
assuming that the prior probability is p(w|3) ~ N (waap, Cy),

p(w|3) = (2m) |G| dexp { - %(w Wi G W )} (59)

the logarithm of the joint log-likelihood is

L= logp(c, W|X, WArAP, Ct)

— Z W' (x,) — log (1 4 exp(w¢(x,))) (5.10)

—_
|

— —(w— WMAP)TCt_l(W — Wyrap) — Bl log(2m) — 5 log |Cy|

\)

The first derivative is

Y -1
o _ ;cnq’)(xn) — ple=1x)$(xn) = C; (W = Warap) (5.11)

=®"(c—p) — C;l(w — Wrap)

where the N x 1 vector of class-membership probabilities is defined as p = [p(c =
1x1),...,p(c = 1|xx)]" and the N x M matrix ® is defined as

or(x1) . dum(x1)

P = : Om(Xn) :
or(xn) .. du(xn)
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The second derivative is

CL_ 3 Tp(e = 1]x;)(1 =1 C;!
wowr —;¢(Xn)¢(xn) p(c=1]x;)(1 = p(c = 1]x;)) — C; (5.12)
=-®"Ve — C; '

where V is a N x N dimensional diagonal matrix where each v,,, = p(c = 1|x,)(1 —p(c =
1/x,)). Therefore, each v,, can be interpreted as variances. As a result, the covariance
matrix of the approximate posterior is

-1
C, = ((I'TV<I> + Ct11> (5.13)

In order to find the parameter values wy;4p which yields the maximum of the param-
eter space, an iterative Newton-Raphson [135] optimization method can be used to find
the roots of our function. This method is defined as

0 o ( oL )laﬁ (5.14)

Waap = Wauar T \ guowt) ow
Therefore, applying the first derivative (5.11]) and the second derivative (5.12)) into the
definition of the Newton-Raphson step (5.14]) we obtain

—1
W, = W, + (CPTV@ + Ct11> (@Tc —®"p - C (Wi — WMAP)>
—1
= (@TV(I’ + Ct11> (((I’TV(I’ + C;}1>Wt_1 + CI)TC — <I)Tp — C;jl (Wt—l — WMAP))

~1
= (@TV(I’ + Ct_—11> <<I)T (V‘I’Wt—l +c— p) + Ct__lleAp>
(5.15)

An important issue to consider in the optimization algorithm is the stopping criterion
for testing the convergence to a minimum. A widely used stopping criterion which does
not require knowledge about the solution is to test that the norm of the gradient is less
than a threshold, that is,

IVl = [lwi —wiaf[ < e (5.16)

The disadvantage is that it can be difficult to choose the magnitude for €. In our experi-
ments however we checked that the algorithm had a similar behaviour irrespective of the
order of magnitude for € from 107! to 1077.

The approximation that we propose is illustrated in Figure [B.Il where the Laplace
approximation to the product of the Gaussian prior distribution p(w|3) = A(0, 371)
and the likelihood of the logistic regression model p(c|X, w) yields a posterior that follows
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(a) Prior distribution p(w|3) (b) Likelihood distribution p(c|X, 3)

'

-

(c) Joint distribution p(c, w|X, 3) (d) Laplace approximation distribution p(w|c, X, 3)

Figure 5.1: Illustration of the estimation of the posterior parameter distribution for a
model with two parameters. The Laplace method approximates the joint distribution
log p(c, w|X, wyrap, C;) to a multivariate Gaussian distribution.

a new multivariate Gaussian distribution p(wle, X, 5) ~ N (Wg\? 4p> Ct). This solution
enables the use of each posterior parameter distribution as an informative prior parameter
distribution in the next iteration as explained in Chapter The pseudocode of this
incremental learning algorithm is shown in the Algorithm [3

5.2.2 Bayesian Logistic Regression classification

Once the logistic regression parameters are estimated using the incremental Bayesian
approach, it is possible to obtain a class prediction for a new observation x,.,, with the
following expression

p(C = ]-|Xnewa X7 C, H) = /p(C = ]-|Xnewa W)p(W|Xa C, H)dW (517)

An estimate of the above integral can be performed using samples simulated from our
approximate posterior where each wy is simulated or drawn from p(w|c, X, H) (5.7), that
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is, wg ~ N (wyrap, C), such that

1
ple = 1nen X, €) & 5 37 ple = 1neu W)
(5.18)

However, although the sampling is easy to apply, it has a high computational cost because
it needs a minimum number of necessary runs. The alternative to approximating by
sampling averaging is to assume that the posterior is sharply peaked around the MAP
value. Therefore, the object classification can be carried out using the MAP estimate to
approximate the predictive posterior probability with

P(C = 1|XnewaX7c) ~ P(C = 1|X7LEW7WMAP’X’C)
B 1 (5.19)
1+ exp(=Wi ap@(Xnew))

The assumption that the MAP value can approximate the whole posterior distribution
seems reasonable since in our benchmark experiments the results of Monte Carlo sampling
to obtain a set of generated parameters were comparable to the results obtained using
MAP approximation, indeed the accuracy curves were perfectly overlapped. Therefore,
we decided to use the MAP approximation for the rest of the experiments due to its
simplicity and its lesser computational cost.

5.3 Materials

5.3.1 Stability /Plasticity dilemma
Synthetic datasets

The incremental learning algorithm proposed has been evaluated with different bench-
mark databases for dichotomous classification. The first three benchmarks are synthetic
datasets with bidimensional data where each of the classes follow a unimodal bivariate
Gaussian distribution with different mean vectors and covariance matrices obtaining dif-
ferent decision boundary configurations by selecting the appropriate class distributions.
The values of the mean vectors and covariance matrices as well as the type of the deci-
sion boundary that achieves the theoretical Bayes error, p(error), are shown in Table (.11
The fourth benchmark was a synthetic bidimensional dataset where each class belongs to
a concentric ring of uniformly distributed data. This benchmark shows the property of
having a 0% Bayes error. Finally, two dichotomous classification problems where each
class follows a mixture of two bivariate distributions have been used to evaluate the in-
cremental algorithm in front of multimodal Gaussian distributions. Figure shows the
six aforementioned synthetic benchmarks and their theoretical decision boundaries.

A total of |B| = 15 incremental training subsets were drawn. FEach training set or
incremental sample had 20 instances with a different prevalence in each class. Initially,
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Dataset 11 i ¥ o p(error) Decision boundary
A (20)" (02)" I 1 0.08  Line
1 2 1 2
T T 3
B (00)" (04) 5 & 5 5 0.02  Line
1/ 0 1/ 0
T T 8 4 .
C (01)" (03) 0 1/, 0 1/, 0.05  Ellipse

Table 5.1: True parameters of the distributions of the class-conditional probabilities.
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Figure 5.2: Distributions of the classes and theoretical decision boundary for the synthetic
benchmark datasets.
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a model is estimated using a prior distribution p(wg|3) ~ N (0, 37'T). Then, an approx-
imated posterior using Laplace approximation is calculated. Therefore, p(w;|c, X, H) ~

(1) . . . . . .
N(w,/ . p, C) and successive models are estimated using the previous posterior as a prior,

obtaining |B| incremental models where p(wp|c, X, H) ~ N(W%?AP, C). Furthermore, de-
pending on the basis expansion function it is possible to obtain different decision bound-
aries. Finally, the predictions were obtained using a MAP approach to estimate the new
test observations (equation [5.19). This process was repeated 100 times to avoid any bias.

The results were compared with another incremental algorithm: the iGDA algo-
rithm [28] (see Chapter M). This algorithm fits with most of these synthetic datasets
since it assumes that the data follow a unimodal Gaussian distribution.

Two benchmark datasets from the UCI machine learning repository [126] were also
used.

Vehicle Silhouette dataset

The purpose of the Vehicle Silhouette dataset is to classify a given silhouette into one of
four different types of vehicle using a set of 18 features. Since we have a dichotomous
classification algorithm the four original classes were merged into two classes (the first
class included Opel and Saab original classes, while the second included Bus and Van
original classes). The dataset consisted of 846 instances. It was divided into a training
partition (630 instances) and a test partition (216 instances). The training partition was
split again into 7 training sets Si,...,S7 of 90 instances with a similar prevalence to
the original training dataset for each class. The sequential models obtained were tested
with the previous training sets in order to observe if a gradual forgetting appeared, and
with the independent test set to observe that the generalization performance increased
asymptotically.

Wisconsin Breast Cancer dataset

The Wisconsin Breast Cancer dataset consists of 569 instances with 30 variables from
a digitalized image of a fine needle aspirate (FNA) of a breast mass. The objective in
this problem is to classify the instances into a malignant (37.3%) or a benign (62.7%)
breast tumour. The database was divided into a test partition (169 instances) and a
training partition (400 instances) that were also split into five different sets of 80 instances
S1, ..., S5. Each partition had the same prevalence for each class as the whole dataset.

5.3.2 Order effects

Instance level order effects

The two-class multivariate Gaussian distribution synthetic dataset shown in Figure [4.1]
from Chapter [ has been used to assess the instance level order effects for the iDBLR
algorithm. In order to compare the results between the iGDA and the iDBLR algorithms
the configuration of the training set and its splitting in different incremental batches,
and the configuration of the test set was the same as in Section [L.3.3t the training set
consisted of 400 instances divided into 20 different batches with 20 instances in each one;
whereas the test set consisted of 4000 instances. The order effects were evaluated by
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Center Classes Total
AGG NON

CEN, 111 73 184

CEN, 108 82 190

CEN, 114 7 191

CENj; 120 75 195

TOTAL 453 307 760

Table 5.2: The different centers and the number of instances per class. AGG: aggressive,
and NON: non-aggressive (a mixture of low grade gliomas and meningiomas).

permuting the training instances in 100 experiments in order to compare the distribution
of the accuracies and the decision boundaries yielded by the models.

5.3.3 'H MRS Brain Tumour dataset

Finally, the iDBLR algorithm is evaluated with the *H MRS Brain Tumour database. As
explained in Chapters B and 4 the dataset consists of "H MRS of brain tumour tissue that
are labeled with one class among three different types of tumour classes; however, since
the logistic regression is a two-class classification model, the three classes AGG, MEN, and
LGG have been transformed into only two classes: AGG and a mixture of non-aggressive
(NON) that includes the MEN and the LGG classes. The dataset has been divided into
four different centers as explained in Chapter [ (see Table 5.2]). The center CEN, was used
to train an initial model whose accuracy is estimated using a Leave-One-Out evaluation.
Then, the model is evaluated with an independent test set from centers CEN;, CENjy, and
CENj. Then, with subsequent subsets of data from these centers, different incremental
models for each center are developed and their performances are evaluated with the same
test set (see Section 2.1 for details).

A comparison with the iGDA algorithm has been carried out for the two-class clas-
sification problem in order to compare the ability of each algorithm to customize the
parameters of the corresponding models to the new available data from each new cen-
ter. A noteworthy fact is that, while the iGDA assumes an underlying Gaussian data
distribution, the iDBLR does not assume any specific data distribution.

5.4 Results

The results of the simulated datasets, the different benchmark datasets, and the Brain
Tumour dataset are explained in the subsections below.

5.4.1 Stability /Plasticity dilemma
Synthetic datasets

The results for the different synthetic bidimensional datasets are shown in Figure b.3]
and 5.4l Each subfigure shows the incremental results for the iDBLG, compared with the
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Figure 5.3: Results for the first three synthetic bidimensional Gaussian datasets. The
Figure shows the theoretical Bayes error (solid black line), the incremental evolution of
the iGDA models (solid gray line with whiskers) and the iDBLR models (solid black line
with whiskers), and the accuracy of a non-incremental Bayesian logistic regression trained
only with the current data (dashed black line with whiskers). The whiskers represent
the confidence intervals (o« = 0.05). In the first dataset (left) the error converges to the
theoretical Bayes error (8%). In the second synthetic bidimensional dataset (center) the
iGDA error converges to the theoretical Bayes error (2%) while the iDBLG still shows
room to improve. Finally, in the third synthetic bidimensional dataset (right), the error
converges to the theoretical Bayes error (5%). The decision boundaries of the iDBLG
models with the best accuracy of all the repetitions are shown on the bottom frames.

iGDA algorithm and the results obtained with a discriminative logistic regression algo-
rithm that is trained only with the data of each iteration (top frame); also, an example of
the decision boundary extracted by the best iteration of the iDBLG algorithm is shown
(bottom frame). The results show that each new incremental model outperforms the pre-
vious ones. The incremental performance is always better than the performance of a model
trained using only each new dataset. An iDBLG model M; had the same performance
than the one obtained by creating a new model from scratch with the subset U;Zl S;.
This curve is not shown because it was overlapped with the incremental one.

The iGDA has a better performance than the iDBLG algorithm when the data distribu-
tions are Gaussian (see Figure 0.3]). Nevertheless, the latter outperforms the iGDA when
the data do not follow Gaussian distributions (see Figure [5.4]). This is consistent with the
design of both algorithms since the iGDA assumes that the underlying data distributions
follow a multivariate Gaussian while the iDBLR does not consider any assumption about
the data.
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Figure 5.4: Results for the last three synthetic bidimensional non-Gaussian datasets. The
Figure shows the theoretical Bayes error (solid black line), the incremental evolution of
the iGDA models (solid gray line with whiskers) and the iDBLR models (solid black line
with whiskers), and the accuracy of a non-incremental Bayesian logistic regression trained
only with the current data (dashed black line with whiskers). The whiskers represent the
confidence intervals (o = 0.05). In the first one (left) the error converges but the theoret-
ical Bayes error is lower (0%). In the second dataset (center) the iDBLR error converges
to the theoretical Bayes error (1%). In the last dataset (right) the error converges, but the
theoretical Bayes error is lower (0.05%). However, the iDBLR still has room to improve.
On the contrary, the iGDA has a higher error rate because it is unable to describe cubic
decision boundaries.
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Dataset My Mo M3 My M Mg M-

S 96.44 95.40 95.36 95.27 95.10 95.08 95.03
S - 94.75 94.52 94.33 94.33 94.47 94.25
Ss - - 94.95 94.97 94.81 94.80 94.79
Sy - - - 94.78 94.76 94.66 94.67
Ss - - - - 94.92 94.76 94.60
Se - - - - - 94.34 94.00
Sy - - - - - - 94.53
TEST 89.29 91.85 92.72 93.11 93.40 93.52 93.57

CI (a = 5%) +0.54 £0.70 +0.48 +0.37 +0.33 +0.32 +0.32

Table 5.3: Training and test accuracy for the Vehicle Silhouette Database using a linear
basis function ¢(x) = [x° x!] within the incremental algorithm. The rows indicate the
different datasets Si,...,S7 and the columns show the models M; built from a previous
model M;_; and the new dataset &; using the posterior probability in time ¢ — 1 as
the prior probability in time ¢; except M; which is built from &; and assuming that
p(w|B) = N(0,37'). Each column shows the average performance (%) on the current
and the previous training datasets for the current model. The bottom rows (TEST, CI)
indicate the evolution of the average accuracy of the models in the course of time evaluated

with an independent test set and the confidence interval (a = 5%).

Vehicle Silhouette dataset

Table (.3l shows that there is a gradual loss of accuracy relating to the previous training
datasets when new observations are introduced using Bayesian incremental algorithm. We
call this effect gradual forgetting and it is related to the stability-plasticity dilemma [78],162].
However, the overall performance increases from 89% to 93%. This performance is lower
than the one obtained by the iGDA algorithm, which increases from 93% to 97%.

Wisconsin Breast Cancer dataset

The results are shown in Table 5.4l There is an improvement in overall classification as
the new data are used for incremental learning, but no gradual forgetting is observed with
respect to the previous datasets. In this case, the overall performance —an increase from
95% to 97.5%— is better than the iGDA results, which increase from a 94% to a 97%.

Dataset My Mo M3 My M

S 97.44 97.84 97.87 98.18 98.15
So - 97.75 98.00 98.14 98.20
Ss - — 97.69 97.81 97.85
Sy - — - 97.86 98.00
Ss - - - - 98.06
TEST 95.69 96.56 97.03 97.33 97.50

CI (o =5%) +3.98 +3.57 +3.33 +3.16 +3.06

Table 5.4: Training and test accuracy (%) for the Wisconsin Breast Cancer Database

using a linear basis function ¢(x) = [x°, x| within the incremental algorithm.
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Figure 5.5: Boxplots of the accuracy of the models trained with different permutations
of the instances. The X-axis shows the iterations of the incremental models. The Figure
shows the results for the two-dimensional synthetic database with 20 iterations.

5.4.2 Order effects

Instance level order effects

The results for the evaluation of the ordering effects at instance level show that the iDBLR
algorithm has also a negligible order effect as Figure shows. The different permuta-
tions of the instances show that, after learning from all the available incremental batches,
the obtained final models have a convergent accuracy. The convergence of the decision
boundaries for the different models obtained for the bidimensional synthetic dataset is
shown in Figure 5.6l These results prove that the algorithm has a benign order effect.
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Figure 5.6: Convergence of the decision boundaries of each model in 20 iterations for the
two-dimensional synthetic database. The variance of the Maximum A Posteriori parameter
vector wys4p is shown at the top of each iteration. The iterations are shown left-to-right,
top-to-bottom. Again, it can be seen that the first models present arbitrary decision
boundaries since their parameters are fitted from one single sample. When further samples
are used for learning, the decision boundaries and their parameters begin to converge until
the final iteration.
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Figure 5.7: Comparison of the evolution and improvement of the mean accuracies (x-axis)
of the iDBLR (solid lines) and the iGDA (dashed lines) and for the new centers: CENj
(blue), CENy (red), CENj3 (green), and the union of the three aforementioned centers
(black).

5.4.3 1H MRS Brain Tumour dataset

The results for the iDBLR for automatic brain tumour diagnosis show the ability of this
algorithm to improve the performance of the subsequent incremental models when new
observations are available to re-adapt its parameters. Figure 5.7 shows that the perfor-
mance of the iDBLR is better than the one obtained by the iGDA. This may be due to
a non-Gaussian underlying distribution of the brain tumour dataset. The performance
difference of the iDBLR models compared to the iGDA as we saw in the synthetic ex-
periments supports this. Another reason is that the Bayesian approach regularises better
than the traditional maximume-likelihood approach which explains the difference in the
first iteration where no incremental learning has been performed yet. Again, the CENj
shows the better improvement among the other centers. This is consistent with the results
obtained in Chapter M for the iGDA algorithm.
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5.5 Discussion

In this Chapter we introduce an algorithm for updating the parameters of a discriminative
logistic regression model by using the posterior probability approximation of iteration ¢
as a prior probability on iteration ¢ + 1. Unlike many previous works [19] [75], 52| [74] [72],
no access to previous data is allowed, which satisfies a common constraint found in many
organizations where the data may be distributed [28]. Hence, we assume that only the
data of the current batch ¢ is available in time ¢. Thus, the classification model is able to
classify data of a future batch ¢ + 1 only with the knowledge extracted from the previous
model M;_; and the current data S;. This is equivalent to having a sliding time window
of size 0 [72].

Our solution to the incremental learning problem achieves the following desired prop-
erties defined by Street in [19]: it is iterative, processing batches of data at a time instance
rather than requiring the whole set at the beginning; the algorithm requires only one pass
through each data sample; since the parameters of the model are always the same and
the incremental step only changes their values, the model structure requires a constant
amount of memory and does not depend on the size of the data; finally, if the evolution
of the algorithm is stopped at moment ¢, the model M, provides the best answer at that
moment. Furthermore, it has a negligible order effect which provides robustness to the
algorithm.

Compared to the iGDA algorithm, the new Bayesian algorithm does not make any
assumption over the data. Instead, it assumes that the parameters follow a multivariate
Gaussian distribution allowing a good model fitting to the data independently of its distri-
bution. Since the algorithm is based on basis expansion functions ¢(x) it can describe any
polynomial decision boundary. One interesting research may be set out to automatically
select the degree of the polynomial to best fit the observed data while keeping parsimony.

From a clinical viewpoint, a noteworthy fact is that the iDBLR algorithm achieves the
same performance as its non-incremental version trained from scratch. This implies that
waiting long enough to gather a representative amount of clinical data to produce a first
classification model may be unnecessary since using the incremental version it is possible to
obtain a similar model from a previous one that could have been trained using the available
clinical observations at each moment. Therefore, a dynamic CDSS may be working from
the first moment it has a sample available regardless of its representativeness and improve
the models as soon as new data become available. This may be also a complement to an
audit model that may choose the best classifier for any clinical question [31].

One obvious limitation of the model is that it is unable to discriminate more than
two classes. A multinomial logistic regression model can be applied instead to extend its
ability to discriminate more classes. In addition, since the Laplace approximation is based
on a unimodal Gaussian distribution, the iDBLG is only applicable to such distributions,
capturing only local properties of the true distribution. Hence, if the joint parameter
distribution follows a multimodal distribution, which may happen when a concept drift
occurs, it may be a wrong approximation. This can be overcame by using a deterministic
global approximation, such as the Variational Bayes approach [136] [34] or the Expectation
Propagation approach [137|, on (5.7) instead of the Laplace approximation. Finally, the
use of the Newton-Raphson method to optimize the MAP value of the distribution may
be risky when a drifting concept happens, since the old wyap may be a bad starting point
—or a saddle point— for the method which may imply a diverging behavior of the method.
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Therefore, the iDBLG algorithm may not be suited when drifting concepts occurs [21].
Hence, although the iDBLG algorithm works well in stationary environments, it should be
used with caution when applied to problems in non-stationary environments. In the latter
case, a tracking of drifting concepts could be applied in order to detect changes [138] and,
therefore, develop a new strategy to deal with these problems.

In summary, our contribution proposes an algorithm where the Bayesian approach can
be used to develop an incremental learning algorithm for discriminative models by using
the knowledge of one model, represented by the posterior probability, as a prior knowledge
for the development of a new model given new observations and without making any
assumption on the underlying distribution of the data.
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Algorithm 3 Laplace Approximation

Input: X, t,w, C, degree
Output: w0, Cew
® — (X, degree)
Woid <~ W
Coq — C
while ||Vw|| > ¢ do
P — 1/(1 —+ exp(@wold))
V — diag(P(1 — P))
Chew — (®'VP + C;l}l)_l
Whew < Cnew(I’T(Vq)Wold +t— P) + (Cnewcglilwold)
VW] [|[Wnew — Woul|
Woid <~ Whnew
end while
return w,,.,,, C,cw
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Chapter 6

Concluding remarks and future work

6.1 Conclusions

The present Thesis deals with the use of ML discipline to solve biomedical decision pro-
blems. Specifically, we have applied them to develop computer-assisted CDSS for auto-
matic brain tumour classification. The first contributions are focused on the development
of ML-models for brain tumour diagnosis and their prospective evaluation. These models
however lack the ability to adapt their parameters when new data is available or when the
models are moved from one hospital to another. The remaining of this Thesis introduces
two new incremental learning algorithms, which assume that previous data are not acces-
sible, for the development of models having adaptability to new centers or when data are
obtained is small batches.

The technical aspects covered in the Thesis include the mathematical design of two
different incremental learning algorithms and the development of a series of benchmark
experiments to carry out an evaluation of their performances and the final accuracies of the
yielded models. The incremental learning algorithms assume that previous observations
are not accessible once they have been used to train the model. This assumption is
consistent with the problems found during the development of the HEALTHAGENTS
project. The advantages and disadvantages of both, the iGDA, and the iDBLR algorithms
are summarized in Table This Table shows that since the iGDA is a generative model,
the number of parameters is higher than the discriminative iDBLR, unless M = c¢-d. The
use of basis expansion functions allows the iDBLR to describe a polynomial decision
boundary surface, while the Gaussian distribution assumption of the iGDA allows to
describe at most a quadratic decision boundary surface. The use of Bayesian inference in
the iDBLR entails an implicit regularization while the iGDA needs an explicit smoothing
technique to regularize the models built. However, the use of logistic regression in the
iDBLR restricts the classification models to a two-class discrimination problem, while the
iGDA can deal with multiclass problems, and therefore include new classes if needed.

The conclusions extracted from this Thesis are:
e The result of a prospective multicenter-multiproject evaluation show that the predic-
tion of in-vivo MRS is possible using models inferred by multicenter datasets, where

the data comes from a mixed set of different hospitals using different instrumenta-
tion although they are obtained under the similar acquisition parameters. However,
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Table 6.1: Comparison of the features of the incremental learning algorithms. In the
table, M is the number of basis expansion functions, ¢ is the number of classes and d is
the number of variables or dimensions.

iGDA iDBLR
Type of model Generative Discriminative
Parameter estimation Weighted maximum-likelihood  Bayesian inference
Data distributions Assumes Gaussian distributions No assumptions
Decision boundary Quadratic Polynomial
# of parameters s(d(d+3)) M(d+1)
Discriminates Multiple classes Two classes
Regularization Explicit Implicit
Order effects Benign Benign
Incorporates new classes Yes No

prospective evaluation shows the need of new cases to improve the ML models. Also,
the combination of Short and Long Times of Echo has been proposed for 'H MRS-
based Brain Tumor (BT) classification. These results entail the interest in taking
advantage of the new data as they become available which justifies the research on
incremental learning algorithms for these problems.

e A new incremental learning algorithm for Gaussian discriminant analysis based on a
weighted combination of different parameter estimations has been designed, imple-
mented, characterized, and validated. It obeys the definition about the incremental
learning algorithm given by several authors [70, [77, [60]. The algorithm does not
use any previous original datasets, but updates its knowledge by means of the infor-
mation of the newly observed data and its already acquired knowledge. Therefore,
it can be used when dealing with problems where past information is unavailable
or where there are problems gathering an appropriate dataset in a reasonable time.
In such situations, this incremental learning algorithm can avoid the waiting time
by using a small amount of information to build an initial simpler model and then
update the model incrementally, and allow for additional classes, as new information
arrives and showing a negligible order effect.

e Another new incremental learning algorithm based on the Bayesian inference pa-
radigm has been also designed, implemented, characterized, and evaluated. This
algorithm updates the parameters of a discriminative logistic regression model by
using the posterior probability approximation of one iteration ¢ as a prior probability
on the following iteration t 4+ 1 without making any assumption on the underlying
distribution of the data. Unlike many previous works [19, [75] 52] [74] [72], no access
to previous data is allowed, which satisfies a common constraint found in many or-
ganizations where the data may be distributed [28]. Hence, we assume that only
the data of the current batch t is available in time ¢. Thus, the classification model
is able to classify data of a future batch ¢ + 1 only with the knowledge extracted
from the previous model M;_; and the current data S;. This is equivalent to having
a sliding time window of size 0 [72]. Furthermore, prior information can also be
incorporated for the initialization of the learning process. Since the algorithm does
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6.2

not depend on the data distribution, it can be applied to several practical problems
in medicine.

Both incremental learning algorithms are iterative, processing batches of data at a
time instance rather than requiring the whole set at the beginning; both algorithms
require only one pass through each data sample; since the parameters of the models
are always the same and the incremental step only changes their values, the structure
of the models require a constant amount of memory and do not depend on the size
of the data; finally, if the evolution of the algorithms are stopped at moment t,
the models M, provide the best answer at that moment. Finally, the performance
of the incremental learning algorithm is equivalent to the performance of the non-
incremental learning algorithms, but the former has the advantage of being able to
adapt themselves to new data learning in an incremental fashion.

Future work

Some of the future lines of research directly related to the results of this Thesis are:

The incremental learning algorithms have been developed mainly for real number
variables. The extension of the introduced incremental learning concepts may be of
interest to discrete distributions.

The iGDA assumes a unimodal Gaussian distribution of the data. The iDBLR
assumes a unimodal distribution since the Laplace method is a local approximation.
A future line of work is to develop incremental learning algorithms that are able to
deal with multimodal distribution. In the case of the iGDA algorithm it may be
possible to research for incremental EM algorithms. While in the case of the iDBLR
it may be interesting to apply a deterministic global approximation, such as the
Variational Bayes approach [39] [34] or the Expectation Propagation approach [137].

The iDBLR algorithm is unable to discriminate more than two classes. Future work
will include the design and development of a multinomial logistic regression model
to extend its ability to discriminate more classes.

In the iGDA, the behaviour of the weights in multivariate distributions and the
combination of the covariance matrices using the Graybill-Deal estimation must be
still theoretically studied.

In the iDBLR, an interesting research may be set out to incorporate the degree of
the linear generalized model. This may be accomplished by using a Bayesian model
comparison framework [139, [134].

Further work will include the integration of the incremental algorithm developed
in this work into a generic and dynamic DSS for clinical environments such as
the aforementioned CDSSs and CURIAM [133]. The incremental learning method
shown here may also complement to an audit model of brain tumour classifiers [31]
and help provide dynamic optimisation of a CDSS.
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Appendix A

(Gaussian Discriminant Analysis

A generative classification model estimates the class posterior probability p(c|x) by means
of the Bayes’ Theorem

p(x[e)p(c)

plelx) = ()

where p(c) is the prior probability of class ¢, and p(x|c) is the likelihood or class-conditional
probability density. A Gaussian Discriminant Analysis (GDA) is a generative model that
assumes that the class-conditional densities follow a multivariate normal or Gaussian dis-
tribution, that is, p(x|c) ~ N (u,, 3.), where . is the vector mean and X, is the covari-
ance matrix of the respective multivariate Gaussian distribution of class ¢ € C. Hence,

p(xle) = (2m) P2 exp { — 2 (x — ) B x — )} (A1)

where D is the dimension of the data.

As explained in Chapter 2 to minimize the probability of error of a classification
model, the decision rule of a Bayes’ classifier should be

"« argmax g.(x) (A.2)
ceC

where g.(x) is a discriminant function for class ¢ expressed as

9e(x) = p(clx)
_ pxle)p(o) (A.3)
p(x)

The decision rule ([A.2) is transformed by using logarithmic notation and taking into
account that the denominator p(x) is independent of the class,
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" = arg max ¢.(x)
ceC

= argmax p(c|x)
ceC

()

_ p(x[c)
= argmax ————=
ceC p(X
C

= arg max p(x|c)p(c)

ceC
= argmax log{p(x|c)} +log{p(c)}
ce

"@

~—

If the class-conditional probability of the expression of the decision rule is replaced with
the multivariate Gaussian equation (A.l),

1 1 1
¢" = argmaxlog{p(c)} — 7 log || - 7x"%; X=X - B e (A4
ce

We see that the equation ([A.4]) has the form of a quadratic function since the discriminant
function g.(x) can be written

ge(x) =x"Qx+ L. x + K. (A.5)
where 1
Q. = —52;1 (A.6)
LC = Eglﬂc (A7)
1
K. =log{p(c)} — 5 10g DA —MCE e (A.8)

Geometrically, when the covariance matrices of the classes are arbitrary, the decision
boundary surface is hyperquadratic, and thus they can take any of the general forms:
hyperplanes, pairs of hyperplanes, hyperellipsoids, hyperspheres, hyperhyperboloids, or
hyperparaboloids.

When the covariance matrices of each class are identical, say ¥, = ¥, then the decision
boundary surface is an hyperplane since the quadratic terms of the discriminant function
of each class cancel each other (see Figure [A.T]).
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(d) Eliptic decision boundary

Figure A.1: Illustration of a linear decision boundary (a), when both distributions have
the same covariance matrix. When the covariance matrices of each class are different,
then the decision boundary can take any quadratic form (b,c,d). The decision boundaries
are shown with a black solid line under the distributions, where the Mahalanobis ball
containing the 95% of the data are also displayed with the color of its corresponding class.
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Appendix B

Logistic regression

The logistic regression model is a well-known algorithm for solving a two-class classification
problem, where C = {0,1}. We have seen that, taking one class as a reference, for instance
y = 0, the logarithm of the odds ratio can be used as a discriminant function

9(x) = wi(x)

o [pe=10) (B.1)
- g{p<c=0|x>}

where p(c = 0]x) = 1 — p(c = 1]x), and ¢(x) = [P1(X), P2(X),...,dm(x)] is a basis
expansion function. Let p = p(c = 1]x), then from equation (B.I) we can find out the
expression for p using the exponential function and solving,

W) = log { 2= LY

ple=0[x)
o {09} = L
e {(w'ex)
14 exp {WT¢(X)}
and, consequently,
1
1 —

b= 1+ exp {WT¢(X)}

This function of w'¢(x) is also called the logistic sigmoid function, which is often
applied as an activation function for Multilayer Perceptrons (see [140]). To determine the
parameters w of the logistic regression function it is possible to use a maximum-likelihood
approach or a Bayesian approach (see Chapter [). For this purpose, we shall make use of
the derivative of the logistic sigmoid function. Considering that 7(¢(x,)) = p(c = 1|x,),
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then

o (p(x,)) _ 0 exp {WT¢(Xn)}
ow Ow 1+ exp {w"¢(x,)}
_ O(xn) exp {w b (xn) } (1 + exp {w (x) }) — exp {w'p(x) } exp {w ¢ (x) }
(1 + exp {wTo(x,) } )
_ @ (xn) exp {WT¢(Xn>} 1
1+exp{wTp(x,)} 1+ exp{wTp(x,)}
= d(x%n)m(P(xn)) (1 — w(b(x0)))

(B.2)

This interesting final results expresses the derivative of the logistic sigmoid function in
terms of itself.

Whether we apply a frequentist or maximum-likelihood approach or a Bayesian ap-
proach, the parameters w are fitted making use of the likelihood function. Given a dataset,
S ={(x1,c1), (x2,¢2), ..., (XN, cn)}, where ¢, € C, the likelihood function for the logistic
regression can be written

N

w) = [T [m(@(x)™ (1 = m((x0))' ] (B.3)

n=1
As usual, to facilitate the calculation and to avoid underflow computation problems, we
can take the logarithm of the likelihood (log-likelihood function), which gives

£w) =Y {enlog [r(d(x))] + (1 - e log [(1 - n(d(x))]}  (BA)

n=1

If we wish to find the value of w that maximizes £(w) we have to differentiate the log-
likelihood with respect to w.

W) _ 05 {euog [r(90x:))] + (1 — ) og [(1— m(6(x.)))] }
N gy M@= m(@06) () (L= m(b(xa))
- ;‘f’( n)en m((xn)) L)1~ en) 1 —7m(p(xn))
=" (%) e — T((x0))]
n=1 (B.5)

We see that the factor involving the derivative of the logistic sigmoid function has can-
celled, leading to a simplified form for the gradient of the log-likelihood. Therefore, the
contribution from a particular observation x,, is given by ¢, — 7(¢(x,)), which can be
understood as the error between the true value and the prediction of the model, times the
basis function vector ¢(x,). Once we have obtained the partial derivative we must set the
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resulting expression of equation (B.5) equal to zero and solve. For logistic regression the
expressions in these equations are nonlinear and there is no closed-form solution. How-
ever, since the error function is convex it has a unique maximum. It requires thus special
methods for their solution like the iterative reweighted least squares based on the Newton-
Raphson iterative optimization scheme (see McCullagh and Nelder [I41] or Rubin [142]).
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Glossary

Mathematical notation

X Column vector x

D Dimension of a D-dimensional array x = (z1,...,2p)

S A sample or a set of observations S; = (z;,¢;),i =1,...,N;x; € RP ¢; €
C = {c1,...,¢|} is a supervised training sample with N cases, where
the i-th case has an input vector x in a R” space and the output target
or class y; € YV

N Number of cases or observations in a sample S.

IC| Number of concepts or classes ¢ € C expressed as the cardinal number of
a set.

w, 0,3 Parameters.

p(z) Probability density function of a random variable x.

p(z|ly)  Conditional probability density function of a random variable x given y.

p(z,y) Joint probability density function of two random variables z and y.

E.[f] Expected value of f over .

E.,[f] Expected value of f over  given y.

0 Estimated value of y

I/l Norm of x.

M Matrix M.

MT* Matrix transpose M

M- Inverse of a matrix M.

M| Determinant of a matrix M.

Acronyms

acc accuracy

AGG Aggressive tumor: GBM and MET
BER Balanced Error Rate

BDK Bi-directional Kohonen Networks
BT Brain Tumor

CDSS Clinical Decision Support System
CS Chemical Shift
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Appendix B. Logistic regression

cv Cross Validation

GBM Glioblastoma

GDA Gaussian Discriminant Analysis

GUI Graphical User Interface

!H MRS Proton Magnetic Resonance Spectroscopy
ICA Independent Component Analysis

iDBLR  Incremental Discriminative Bayesian Logistic Regression
iGDA Incremental Gaussian Discriminant Analysis
kRSTT k-Random Sampling Train-Test

LDA Linear Discriminant Analysis

LGG Low-Grade Glial

LSSVM Least-Squares Support Vector Machines
LTE Long Time of Echo

MEN Low-grade meningiomas

MET Metastases

ML Machine Learning

MLP Multilayer Perceptron

MR (Nuclear) Magnetic Resonance

MRS Magnetic Resonance Spectroscopy

NMR Nuclear Magnetic Resonance

PR Pattern Recognition

PCA Principal Component Analysis
Pl Peak integration

PR Pattern Recognition

ReliefF  ReliefF algorithm for Recursive Elimination of Features

RF Radio frequency
STE Short Time of Echo
Sv Single voxel

SVM Support Vector Machines

SW Stepwise algorithm for feature selection in classification
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