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Abstract

Silicon photonics is a key emerging technology in next-generation communication

networks and data centers interconnects, among others. Its success relies on the

ability of using CMOS-compatible platforms for the integration of optical circuits

into small devices for a large-scale production at low-cost. Within this field,

integrated interferometers play a crucial role in the development of several on-chip

photonic applications such as biological sensors, electro-optic modulators, all-optical

switches, programmable circuits or LiDAR systems, among others. However, it is well

known that optical interferometry usually requires very long interaction paths, which

hinders its integration in highly compact footprints. To mitigate some of these size

limitations, several approaches emerged including sophisticated materials or more

complex structures, which, in principle, reduced the design area but at the expense of

increasing fabrication process steps and cost.

This thesis aims at providing general solutions to the long-standing size problem

typical of optical integrated interferometers, in order to enable the densely integration

of silicon-based devices. To this end, we combine the benefits from both bimodal

waveguides and periodic structures, in terms of high-performance operation and

compactness to design single-channel interferometers in very reduced areas. More

specifically, we investigate the dispersive effects that arise from subwavelength

grating and photonic crystal structures for their implementation in different bimodal

interferometric configurations. Furthermore, we demonstrate various potential

applications such as sensors, modulators and switches in ultra-compact footprints of

a few square microns. In general, this thesis proposes a new concept of integrated

interferometer that addresses the size requirements of current photonics and open up

new avenues for future bimodal-operation-based devices.





Resumen

La fotónica de silicio es una tecnología emergente clave en redes de comunicación e

interconexiones de centros de datos de nueva generación, entre otros. Su éxito se basa

en la utilización de plataformas compatibles con la tecnología CMOS para la integración

de circuitos ópticos en dispositivos pequeños para una producción a gran escala a

bajo coste. Dentro de este campo, los interferómetros integrados juegan un papel

crucial en el desarrollo de diversas aplicaciones fotónicas en un chip como sensores

biológicos, moduladores electro-ópticos, conmutadores totalmente ópticos, circuitos

programables o sistemas LiDAR, entre otros. Sin embargo, es bien sabido que la

interferometría óptica suele requerir caminos de interacción muy largos, lo que dificulta

su integración en espacios muy compactos. Para mitigar algunas de estas limitaciones de

tamaño, surgieron varios enfoques, incluyendo materiales sofisticados o estructuras más

complejas, que, en principio, redujeron el área de diseño pero a expensas de aumentar

los pasos del proceso de fabricación y el coste.

Esta tesis tiene como objetivo proporcionar soluciones generales al problema de

tamaño típico de los interferómetros ópticos integrados, con el fin de permitir la

integración densa de dispositivos basados en silicio. Para ello, aunamos los beneficios

tanto de las guías de onda bimodales como de las estructuras periódicas, en términos

de la mejora del rendimiento y la posibilidad para diseñar interferómetros monocanal

en áreas muy reducidas. Más específicamente, investigamos los efectos dispersivos

que aparecen en estructuras menores a la longitud de onda y en las de cristal fotónico,

para su implementación en diferentes configuraciones interferométricas bimodales.

Además, demostramos varias aplicaciones potenciales como sensores, moduladores y

conmutadores en tamaños ultra compactos de unas pocas micras cuadradas. En general,

esta tesis propone un nuevo concepto de interferómetro integrado que aborda los

requisitos de tamaño de la fotónica actual y abre nuevas vías para futuros dispositivos

basados en funcionamiento bimodal.





Resum

La fotònica de silici és una tecnologia emergent clau en xarxes de comunicació i

interconnexions de centres de dades de nova generació, entre altres. El seu èxit es basa

en la utilització de plataformes compatibles amb la tecnologia CMOS per a la integració

de circuits òptics en dispositius diminuts per a una producció a gran escala a baix

cost. Dins d’aquest camp, els interferòmetres integrats juguen un paper crucial en el

desenvolupament de diverses aplicacions fotòniques en un xip com a sensors biològics,

moduladors electro-òptics, commutadors totalment òptics, circuits programables o

sistemes LiDAR, entre altres. No obstant això, és ben sabut que la interferometría òptica

sol requerir camins d’interacció molt llargs, la qual cosa dificulta la seua integració en

espais molt compactes. Per a mitigar algunes d’aquestes limitacions de grandària, van

sorgir diversos enfocaments, incloent materials sofisticats o estructures més complexes,

que, en principi, van reduir l’àrea de disseny però a costa d’augmentar els processos de

fabricació i el cost.

Aquesta tesi té com a objectiu proporcionar solucions generals al problema de

grandària típica dels interferòmetres òptics integrats, amb la finalitat de permetre la

integració densa de dispositius basats en silici. Per a això, combinem els beneficis tant de

les guies d’ones bimodals com de les estructures periòdiques, en termes de funcionament

d’alt rendiment per a dissenyar interferòmetres monocanal compactes en àrees molt

reduïdes. Més específicament, investiguem els efectes dispersius que apareixen en

estructures menors a la longitud d’ona i en les de cristall fotònic, per a la seua

implementació en diferents configuracions interferomètriques bimodals. A més, vam

demostrar diverses aplicacions potencials com a sensors, moduladors i commutadors en

grandàries ultres compactes d’unes poques micres cuadrades. En general, aquesta tesi

proposa un nou concepte d’interferòmetre integrat que aborda els requisits de grandària

de la fotònica actual i obri noves vies per a futurs dispositius basats en funcionament

bimodal.
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Chapter 1

Introduction

Since the discovery of the transistor in 1947, the miniaturization of electronic

components in limited space has stimulated considerable research effort from both

academia and industry. In 1965, Gordon Moore published his famous essay, the so-called

Moore’s law, in which he predicted that the number of transistors on a chip would

double every two years [1]. This fact established a timeline that came to dominate the

information-technology revolution in the following decades that still prevails today (see

Fig. 1.1). However, Moore’s prediction seems to be nearing to its end. Transistor size

is reaching the nanometer-limit, in which quantum uncertainties appear and thus the

transistor performance becomes undependable [2].

Despite this, innovation beyond Moore’s law continues by bringing together different

technologies that overcome some of these electronic limitations. This is the case of

photonics, concerning the manipulation of light, that provides potential solutions to

mitigate the electronics bottleneck in terms of energy efficiency and bandwidth [3, 4]. In

this context, silicon photonics arises as a disruptive technology driven by the needs of

datacom and telecom, with significant implications in many different areas such as data

centers interconnects [5–7], lab-on-a-chip (LoC) platforms [8–10] or high-performance

computing devices [11, 12], among others. The success of silicon photonics stems

from its ability to use complementary metal–oxide–semiconductor (CMOS) foundries for

high-volume production of photonic integrated circuits (PICs) at low cost. The mature

CMOS industry makes silicon photonics very well positioned to become dominant

against other technologies, which explains the vast increase in scientific interest over the

years [13]. The potential of silicon photonics was first investigated in 1985 [14], where high

index contrast waveguides were fabricated on silicon-on-insulator (SOI) wafers. Since

then, both passive and active components have been extensively demonstrated for the

near-infrared regime by using standard CMOS fabrication processes [15, 16].
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Fig. 1.1 Electronic equipment shrinkage in size as a function of time. Approximately, every decade
a new class of machines emerged in agreement with Moore’s law prediction [2].

Likewise, engineering novel wavelength-scale structures with multiple photonic

functions have shown an unprecedented miniaturization in the final device size, which

in turn reduces costs through high-yield wafer-scale processes [17]. On this matter,

integrated interferometers emerged as key building blocks in all types of photonic devices

such us modulators, switches and sensors [18–20]. Mach-Zehnder interferometers (MZIs)

are the most commonly used structures therein to perform optical interferometry in an

integrated circuit. Here light is split into two different paths and recombined afterwards

to create an interference pattern at the output, which shifts for induced changes in

the relative phase. Nowadays, MZI-based structures are reaching a degree of maturity

never imagined, offering remarkable improvements for low-power consumption and

high-performance operation [21, 22]. Nevertheless, conventional MZIs are usually too

large, which hinders the fabrication and miniaturization of densely PICs. Many of these

components have a length scale of millimeters and even centimeters in order to enhance

the accumulated phase shift between both optical paths at the output [23, 24].

Thereafter, novel structures are reported aimed at reducing the resulting footprint,

for instance, by inserting periodic structures in the MZI arms to increase light-matter
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interaction [25]. These are the so-called subwavelength grating (SWG) waveguides,

consisting of periodically patterned structures arranged in the propagation direction of

light and whose lattice constant is smaller than the effective wavelength so that refraction

effects are suppressed [26, 27]. On the other hand, if the periodicity is in the order

of the effective wavelength of light a Bragg mirror is obtained, where new phenomena

appear due to induced reflections in the structure. This is the case of the well-known

photonic crystals (PhCs) [28], where light may be slowed down, thereby reducing the

physical interferometers length while the optical path remains large. Indeed, notable

improvement is obtained by combining them with MZI-based configurations to develop

highly compact devices [29, 30]. In all aforementioned approaches, although a significant

reduction in the device size is reached, classical MZI configurations still require additional

photonic structures such as power splitters and different optical waveguides to perform

the interference. In this sense, bimodal (BiM) waveguides address existing MZI size

limitations as they do not need any extra structures to make two optical signals interfere

[31, 32]. The operation principle of BiM approaches is based on the interference between

two electromagnetic modes supported by the same optical waveguide, so that the entire

process is carried out in a single-channel structure. Most of these BiM waveguides

have been widely demonstrated in silicon nitride platforms as evanescent-wave optical

sensors for the detection of various biological substances [33–35]. These type of BiM

interferometers present a highly reduced lateral size compared to MZIs, although they

still suffer from very long optical waveguides of several centimeters.

It seems fairly evident that there is still a lack of novel approaches that fully address the

long-standing challenge of miniaturization of photonic integrated interferometers. This

thesis aims to provide general solutions to this field by changing the classical standpoint

of on-chip optical interferometry. Having this in mind, a new concept of interferometer

consisting of periodically patterned materials in all-dielectric single-channel structures

is proposed. This approach encompasses the benefits from periodic structures and

BiM waveguides to design high-performance optical interferometers in extremely

reduced footprints. The potential of these designs is demonstrated for a wide range

of applications such as refractive index (RI) sensors, modulators and switches with

significant improvements compared to conventional solutions. Overall, this dissertation

outlines the ever-growing demand of more powerful photonic devices in next-generation

communication systems where the densely integration of optical circuits at the chip level

is of great interest. Here we pave the road towards the realization of a new interferometric

configuration which is not intended to supersede existing ones but complement them to

strengthen silicon photonics against competing technologies.



4 Introduction

1.1 Objectives

Given the number of applications based on novel structures that have arisen in photonics

over the last years, this thesis attempts to contribute to the field of optical integrated

circuits by engineering new interferometric configurations. To this end, the benefits

from both bimodal waveguides and periodic dielectric structures are encompassed in

order to reduce the design area as much as possible and facilitate their CMOS-compatible

integration in optical circuitry for mass level production.

In this context, the main goal is to investigate the bimodal behavior of light in periodic

waveguides and how we can benefit from the resulting effects to develop interferometric

applications. In such a scenario, the relationship between the wavelength of light and the

structure periodicity will determine the operating regime and thus the physical modeling

that must be considered in the design process. Specifically, we will look into detail

subwavelength grating and photonic crystal structures as different bimodal dispersion

effects are obtained using each of them. Specifically, the main objectives of employing

these two types of periodic structures are:

• Develop a bimodal dispersion engineered waveguide in a SWG structure. By using

these types of periodic waveguides, the device is intended to support a fundamental

dispersive mode that will produce a flat phase shift as a function of wavelength.

This fact enables high-performance spectral-based refractive index sensors, whose

sensitivity does not depend on the sensor length so that very short interferometric

schemes can be conceived.

• Develop a bimodal PhC waveguide working in the slow light regime. By using PhCs,

we drastically reduce the group velocity of the high-order mode which is the most

sensitive to refractive index variations. As a result, we enhance the accumulated

phase shift at the output without the need of very long interferometric paths. These

designs are intended to be experimentally demonstrated for switching and sensing

in very compact footprint devices.

Regarding the methodology, the design starts from a semi-analytical modeling

to propose a device concept, which is later on numerically simulated to prove its

performance. Herein, our objective is to devise, simulate and demonstrate photonic

applications based on bimodal SWG and PhC waveguides. The requirements to

accomplish this aim rely on a theoretical background and a proper use of the simulations

tools, either commercial or open-source software. Thereafter, optimized designs are

fabricated and characterized to obtain the measured results and compare them with the

initial ideas. To this end, an adequate use of the institute’s facilities, including the clean

room and laboratories, is made to fabricate and carry out the experimental work.
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1.2 Structure of the thesis

This thesis describes the work presented to obtain the degree of Doctor of Philosophy

(PhD) in Telecommunication Engineering under the doctorate program of the Universitàt

Politècnica de València (UPV). The research has been carried out in the Nanophotonics

Technology Center of the UPV under the supervision of Dr. Jaime García-Rupérez and

during a three-month research stay at the Photonics Research Group1 of the Ghent

University under the guidance of Prof. Wim Bogaerts.

The organization of this dissertation is conceived as a collection of papers published

in peer-reviewed scientific journals. In these articles we can find the author’s original

contributions with the main findings of this thesis2, as well as the corresponding state of

the art. This document is subsequently structured in the following chapters and sections:

• Chapter 1: Introduction puts the work into the context of photonics. More

specifically, the miniaturization of optical circuits and the contributions of this

thesis to this field are discussed. The main goals of this dissertation and the

procedures to achieve them are also detailed.

• Chapter 2: Fundamentals of dielectric periodic structures provides the principles and

origins of light propagation through periodic media, specifically in subwavelength

and photonic crystal structures. Firstly, light confinement within optical

waveguides is introduced by using ray optics approach and Maxwell’s formalism.

The latter part describes the basis of integrated interferometry including bimodal

approaches in periodic media.

• Chapter 3: Subwavelength grating bimodal waveguides introduces the context

of SWGs and how these are used to develop novel photonic applications. It

also includes our original works on the theoretical design and experimental

demonstration of evanescent-wave based RI sensors on bimodal SWG structures,

Paper A and Paper B, respectively.

• Chapter 4: Bimodal interferometers in one-dimensional photonic crystals includes

the state of the art of PhCs in connection with optical interferometers and bimodal

waveguides aimed at reducing the design length. Our original contributions to

the field in devising and conceiving bimodal slow light interferometers as sensors,

modulators and switches are presented in Paper C and Paper D. In Paper E

we explore new slow-light-enhanced bimodal designs by using dimensionality

reduction techniques.

1 From September to December 2020.
2 The detailed list of publications is shown in the Author’s merits section.
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• Chapter 5: General discussions of the results outlines the main findings of this thesis

as well as discuss the degree of compliance of the objectives. Further steps are also

provided to be addressed in future work related with the topics under discussion.

At the end of the document, a section with complete list of the Author’s merits is given,

including the main contributions to scientific journals and conferences. A section of

References that have been cited throughout the previous sections are also listed in the

appearance order in which they have been included.



Chapter 2

Fundamentals of dielectric periodic
structures

Since ancient times, progress of mankind is largely based on the ability of our ancestors

to recognize the utility of natural materials from the earth. From the improvements of

the mechanical properties in metallurgy, ceramics and plastics to the semiconductor

revolution in electronics, many of the humanity advances stem from a deeper knowledge

of materials and its interaction with the physical laws that govern nature.

In the last few decades, the manipulation of light has attracted increasing attention

due to various prominent advances in optics such as the invention of the laser and the

development of semiconductor optical devices and fabrication techniques [36–38]. In

this context, the search of a suitable transmission medium that guide light became a key

aspect in the progress of this new technology [39]. In the early stages, lens systems and

mirrors were employed to build optical waveguides, although they were too expensive to

use them massively in optical communications systems [40]. With the appearance of the

glass optical fiber with losses below 10 dB/km much of these problems were mitigated,

and fibers became dominant far outweigh all its competitors [41]. In the following

years, however, with the rapid growth of integrated optics, new breakthroughs emerged

on optical circuits based on thin film technology [42], and thereby, dielectric optical

waveguides on CMOS-compatible platforms were widely used in all types of integrated

photonic applications due to its straightforward and low-cost implementation [43, 44].

In this chapter, we provide a comprehensive description on the fundamentals of

light propagation through periodic waveguides. We first introduce general concepts

of optical waveguiding in homogeneous media and then we study light in periodically

patterned structures, specifically subwavelength gratings and photonic crystals, to

develop common path interferometers in highly dispersive bimodal waveguides.
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2.1 Introduction to optical waveguides

Here we present a brief description of optical guiding through dielectric structures, by

firstly introducing two-dimensional models for the case of symmetric and asymmetric

slab waveguides and then considering fully three-dimensional rectangular ones. Light

transmission from the point of view of both geometrical and wave optics is given, as well

as the derivation of the resulting guided and leaky modes [45, 46].

2.1.1 Ray optics approach

Let us first introduce the well-known ray optical model to investigate simple phenomena

in a symmetric planar waveguide. Consider an incident ray Ei propagating through a

medium with a refractive index n1 and with a certain angle θ1, see Fig. 2.1. At the interface

with the medium of refractive index n2, light is partially reflected Et and transmitted Er

with an angle θ2, following the Snell’s law:

n1 sinθ1 = n2 sinθ2. (2.1.1)

Since the refractive index of the core medium n1 is higher than n2, θ2 will be thereby

greater than θ1. As a result, there is a critical angle from which all light rays will be reflected

and none transmitted into the n2 medium. This is known as total internal reflection (TIR)

and the angle that defines this region is given by the following equation

sinθc = n2

n1
. (2.1.2)

θ1
Ei

Et

Er

θ2

hn1

n2

n3

z

y

x

Fig. 2.1 Light rays propagating through a planar optical waveguide with three different media with
a refractive index of the core n1, and upper and lower cladding n2 and n3, respectively.
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If we now consider a third medium of refractive n3 = n2 for which TIR is also produced,

we can get an idea on how light propagates in the z direction. However, not all angles

greater than the critical one are supported in the optical waveguide. Fresnel formulas

define that the incident and reflected rays are related as

Er = r Ei . (2.1.3)

where r is the complex reflection coefficient. Considering that rays are actually

electromagnetic waves that bounce within the optical waveguide, we can define two

polarizations: transverse electric (TE) with the electric field along the x axis, and

transverse magnetic (TM) with the electric field along the y axis. For the TE polarization,

the reflection coefficient is expressed as

rT E = n1 cosθ1 −n2 cosθ2

n1 cosθ1 +n2 cosθ2
, (2.1.4)

and for TM as

rT M = n2 cosθ1 −n1 cosθ2

n2 cosθ1 +n1 cosθ2
, (2.1.5)

using the Snell’s law of Eq. 2.1.1 and substituting we obtain

rT E =
n1 cosθ1 −

√
n2

2 −n2
1 sin2θ1

n1 cosθ1 +
√

n2
2 −n2

1 sin2θ1

,

rT M =
n2

2 cosθ1 −n1

√
n2

2 −n2
1 sin2θ1

n2
2 cosθ1 +n1

√
n2

2 −n2
1 sin2θ1

.

(2.1.6)

When the incident angle is greater than the critical one, the incident and reflected

waves are equal, so that the reflection coefficient is |r | = 1. Given that r is a complex

number and hence a phase shift is imposed, we can rewrite the reflection coefficient as

r = e jφ. Assuming these considerations, we can express Eqs. 2.1.6 in terms of the phase

shift for both TE and TM polarization as

φT E = 2tan−1

√
sin2θ1 − n2

2

n2
1

cosθ1
,

φT M = 2tan−1

√
n2

1

n2
2

sin2θ1 −1

n2
n1

cosθ1
.

(2.1.7)
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Extending the rays approach, light is composed by electromagnetic waves that follow

the rays path. These waves can be written in terms of the phase shift in the exponential

form for the electric and magnetic fields as follows

E = E0e j (kz±ωt ),

H = H0e j (kz±ωt ),
(2.1.8)

where kz is the wavector in the propagation direction, ω the angular frequency and t

the time. Let the waveguide height be h, so that is also confined in the y direction as a

standing wave. The phase shift of this wave across the waveguide and back again can be

represented as

φh = 2hky = 2hk0n1 cosθ1, (2.1.9)

where k0 is the wavevector in free space. It is clear that reflections occur at the upper and

lower interfaces of the waveguide, expressed in Eqs. 2.1.7. Let us call this phase shifts atφu

and φl , respectively, so that together with Eq. 2.1.9 the total phase shift in the waveguide

is expressed as

φt = 2hk0n1 cosθ1 −φu −φl , (2.1.10)

where φt must an integer multiple times 2π for the preservation of the wave propagation

along the waveguide, thus obtaining

2hk0n1 cosθ1 −φu −φl = 2mπ. (2.1.11)

Therefore, there will be a finite set of angles that satisfy Eq. 2.1.11, and hence a

wavevector, or propagation constant that characterizes light propagation. Each solution

is known as light modes and they are different depending on the polarization of light. The

first solution m = 1 for the TE polarization is known as the fundamental mode, and it is

usually expressed as the T E0 mode. Higher order modes are subsequently described by

m and the total number of modes is limited by the waveguide dimensions. In the case of

the symmetrical planar waveguide, for n2 = n3, the upper and lower phase shifts are equal

φu =φl , so that substituting Eqs. 2.1.7 in Eq. 2.1.11, we obtain for the TE polarization

2hk0n1 cosθ1 −4tan−1

(√
si n2θ1 − (n2/n1)2

cosθ1

)
= 2mπ. (2.1.12)

In a asymmetric planar waveguide, where n2 ̸= n3, the upper and lower reflections

do not produce the same phase shift so that φu ̸= φl . In this case, Eq. 2.1.11 for the TE
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polarization yields

k0n1 cosθ1 −mπ= tan−1

(√
si n2θ1 − (n2/n1)2

cosθ1

)
+ tan−1

(√
si n2θ1 − (n3/n1)2

cosθ1

)
. (2.1.13)

These equations can be solved to find the angles θ1 for each mode m that satisfy the

accumulation of phase shifts previously imposed. Therefore, for a given wavelength, it

is possible to have a negative square root value on the right-hand side of Eq. 2.1.13 so

that there are no solutions. This could happen when the critical angle condition is not

reached because the height h is not large enough to support the fundamental mode. Such

thickness will be different for each polarization. On the other hand, it is often convenient

that the waveguide supports only the fundamental mode, single mode operation. This

occurs when the wavelength is sufficiently small so that a single solution for the m = 0 case

is obtained from Eq. 2.1.13. This point, when the fundamental mode appears, is known as

the cut-off frequency and determines from which wavelength light can propagate through

the waveguide.

We can take the planar waveguide model a bit further to extract another interesting

quantity. We can define the effective index of a certain mode and polarization as

ne f f = n1 sinθ1, (2.1.14)

so that it relates with the propagation constant as

ne f f =β
λ0

2π
. (2.1.15)

The effective index is of particular interest as it characterizes a certain propagating

mode in a specific waveguide. It is equivalent to think of a mode propagating straight in

a waveguide with a refractive index ne f f . It is also worth noting that the effective index

value must be in between the refractive index of the core and the cladding, otherwise the

resulting mode will not be propagated and it will be radiated out of the waveguide.

2.1.2 Wave equation in electromagnetic theory

A more complete study of an optical waveguide can be carried out by means of the

Maxwell’s equations, that relate the electric E and magnetic field H vectors. They are
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expressed in its differential form as1

∇·D = ρ,

∇·B = 0,

∇×E+ ∂B
∂t

= 0,

∇×H− ∂D
∂t

= J,

(2.1.16)

where ρ is the electric charge and J the current density vector. The constitutive relations2

relate the E and H fields with the electric and magnetic flux density fields D and B in a

lossless medium as

D = ϵr E,

B =µr H,
(2.1.17)

where ϵr and µr are the relative permittivity and permeability of the medium, respectively.

By properly operating with Eqs. 2.1.16 and 2.1.17 we obtain the wave equation that

describes the propagation of electromagnetic waves, mathematically expressed as

∇2E =µr ϵr
∂2E
∂t 2 . (2.1.18)

In a planar waveguide, the wave equation can be simplified by considering that the

electric field only exists in the x direction, TE polarization. We also consider that the field

is uniform in x since it is assumed to be infinite in this direction. Taking this into account,

we obtain the following scalar equation

∂2Ex

∂2 + ∂2Ex

∂2
z

=µr ϵr
∂2Ex

∂t 2 . (2.1.19)

Given that the electric field E only exists in the x direction, we can express it in its

exponential form as

Ex = E(y)e− j (βz−ωt ), (2.1.20)

so the wave equation is reduced to

∂2Ex

∂y2 +k2
yi Ex = 0, (2.1.21)

1 Bold variables represent vectorial magnitudes with several components.
2 A more detailed derivation of the constitutive relations is explained in the photonic crystals section.
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whence

k2
yi = k2

0n2
i −β2, (2.1.22)

where ni and kyi can represent either the core or the upper and lower cladding. Therefore,

the wave equation allow us to calculate the field profile of each mode, which was not

possible by the optics ray approach. Solving the x component of the electric field for the

cladding, we obtain3

Ex (y) = Ecl add exp
[−kycl add (y −h/2)

]
for y ≥ (h/2), (2.1.23)

and for the core

Ex (y) = Ecor e exp
[− j kycor e y

]
for − (h/2) ≤ y ≤ (h/2). (2.1.24)

Applying boundary conditions of continuity on Ex and its derivative we can also obtain

the following expression for the propagation constants of the modes at each interface

2tan−1
(

kycl add

kycor e

)
= hkycor e +mπ. (2.1.25)

Substituting the value of each propagation constant into Eq. 2.1.25 we get the same

expressions than the ones obtained for the optics ray approach, however, we now have

the field profile equations for each mode m.

The planar model has allowed us to understand the guiding of light within an optical

waveguide. However, more complex structures based on three-dimensional models with

a finite dimension in the x direction are the ones used in integrated optics. These are

the rectangular waveguides, see Fig. 2.2, where light propagates along the z direction

and where the confinement is not only in the y direction but also in the x direction.

The guiding mechanism, as in the case of planar examples, relies on TIR, given that the

refractive index of the core is greater than in both claddings. Hence, we have to design

not only the thickness, but also the width of the waveguide for the desired application.

Rectangular waveguides are fabricated on planar substrates, giving rise to different types

depending on the fabrication technology, materials and applications. In Fig. 2.2 we can

see the three main rectangular waveguides examples with three different geometrical

shapes. It is worth also noting that there are other aspects to consider in the design, such

us the polarization, index contrast, single mode or multimode operation and propagation

3 The expressions for the upper and lower cladding are the same except for a minus sign in the component kycl add ,
here we show them together
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Fig. 2.2 Rectangular waveguides consisting of stripe, rib and buried structures on a planar
substrate, from left to right, respectively. The refractive index of the core (blue colored material) is
designed to be higher than the one of the cladding (grey colored material).

losses. The higher the index contrast the stronger the confinement of the field, which

allows smaller bend radius and thus the densely integration of multiple waveguides in

a chip. The most employed material technology is silicon for the core and silica for the

cladding, by using SOI wafers. These configuration presents a high-index contrast so that

light is easily confined within the waveguide for either TE or TM polarizations.

In the next sections we explore light propagation through non-homogeneous

waveguides made of periodic dielectric structures. Based on mathematical formalism,

we will study in detail how some of the effects obtained in homogeneous media can

be distorted when dealing with periodically patterned waveguides with a smaller pitch

than the wavelength of light, thus giving rise to new optical phenomena with interesting

properties.

2.2 Subwavelength gratings

At the end of the 19th century, Heinrich Hertz conducted a series of experiments to prove

Maxwell’s predictions on electromagnetic waves [47]. He used a dipole transmitter and

a detector surrounded by cylindrical metal mirrors to study the polarization of waves

by passing light through a grid of wires, see Fig. 2.3. It was shown that transmission

was achieved when the wires were perpendicular to the dipoles, while no signal was

collected by the detector when the wires were placed parallel. This effect was later

demonstrated to have its origin in the distance between the wires, when it was found

that the pitch of the grid must be much smaller than the wavelength of the propagating

wave. More detailed theoretical work on periodically layered media was presented by

Rayleigh [48] in the following years, showing the birefringence effect that arises from

wave propagation through subwavelength structures. More recently, Rytov demonstrated

that periodic layered materials behaves like homogeneous media with an effective

dielectric permittivity depending on the wave polarization [49]. In the optical domain,

subwavelength structures were discovered as an inspiration by the eyes of night-flying
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Transmitter

dipole

Detector

dipole

Perpendicular
Polarizer

a)

b) Parallel
Polarizer

Fig. 2.3 Hertz’s experiment on electromagnetic wave propagation through subwavelength wire
grid polarizers. a) The electromagnetic wave pass through the polarizing filter when the wires are
perpendicular to the dipoles and b) transmission is blocked when they are parallel.

moths and they were used as lenses with reduced reflectance effects [50, 51]. Since then,

optical subwavelength devices have emerged for all kind of applications in free-space

optics, polarizers and specially in integrated photonics with the growth of the CMOS

industry [52–54, 27].

In this section we will focus on the fundamentals of electromagnetic wave propagation

trough periodic structures in the subwavelength regime. First, Rytov’s demonstration is

presented for the homogenization of layered media by using effective medium theory.

Then we apply this formalism to optical integrated waveguides based on subwavelength

structures for multimode and broadband operation.

2.2.1 Electromagnetic waves in finely layered media

Let us consider an infinite layered structure as the one shown in Fig. 2.4 with a period

Λ consisting of two homogeneous materials with thicknesses a, b and refractive indices

n1, n2, respectively. Several studies attempted to characterize the electric parameters

of this type of stratified medium, as in the case of Bruggeman’s work in 1935 [55].

However, it was not until 1956 when Rytov demonstrated that layered structures with

very small thicknesses compared to the wavelength, could behave like homogeneous and

anisotropic materials [49].
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Λ

a
b

ε1 μ1

E

H

k

ε2 μ2

z

x

y

Fig. 2.4 Finely stratified structure consisting of two layers of electric permittivity ϵ1,2 and magnetic
permeability µ1,2, respectively, repeated along the z axis with a certain period Λ.

Let us now apply Maxwell’s equations for the calculation of the effective index of the

medium by following Rytov’s derivation [56]. Considering the geometry of Fig. 2.4, it is

clear that there are only three cases of electromagnetic wave propagation through the

structure: parallel to the layers (with either the E field or H field vectors parallel to the

interface), and perpendicular to the layers.

Propagation along the layers and E vector parallel to the interface

Wave propagation in the x direction polarized with E vector along y axis can be

described by harmonic time dependence Maxwell’s equations in the interface between

two consecutive layers, see Fig. 2.5. Those electromagnetic components that are different

from zero are the electric field E = Ey , and the magnetic field Hz and Hx . Therefore, in

z

x

y

0

a

-b

Hz
Ey

Hx ε1 μ1

ε2 μ2

Fig. 2.5 Electromagnetic components distribution for a propagating wave along the layers with E
vector parallel to the interface.



2.2 Subwavelength gratings 17

each layer these fields satisfy the following equations4

∂E
∂z

=−i kµHx ,

∂E
∂x

= i kµHz ,

∂Hz

∂x
− ∂Hx

∂z
= i kϵE

(2.2.1)

where k = w/c is the wavevector, ϵ is the electric permittivity and µ the magnetic

permeability of the material, which change periodically along the z axis: ϵ1,2 and µ1,2 for

the first and second layer, respectively.

The solutions of Eqs. 2.2.1 for electric and magnetic fields will be in the form

E =U (z)e i knx ,Hx =V (z)e i knx ,Hz =W (z)e i knx (2.2.2)

where U ,V and W are functions of z, and n is the refractive index of the medium.

Substituting in Eqs. 2.2.1 we obtain

∂U

∂z
=−i kµV ,

nU =µW,

∂V

∂z
− i knW =−i kϵU .

(2.2.3)

In the interface between two consecutive layers, let us consider ϵ1, µ1 constants from

z = 0 to z = a and ϵ2, µ2 for z =−b to z = 0, see Fig. 2.5. In the first layer, for 0 ≤ z ≤ a exact

solutions of Eqs. 2.2.3 are

U1 = A cosα1z +B sinα1z,

V1 = α1

i kµ1
(A sinα1z −B cosα1z),

W1 = n

µ1
(A cosα1z +B sinα1z),

α1 =
√

k(n2
1 −n2), n2

1 = ϵ1µ1,

(2.2.4)

4 Note that the time dependency is expressed with a minus sign as e−i w t so that the sign of i is reversed compared
to Rytov equations, where it is expressed with a positive sign.
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and in the second layer for −b ≤ z ≤ 0

U2 =C cosα2z +D sinα2z,

V2 = α2

i kµ2
(C sinα2z −D cosα2z),

W2 = n

µ2
(C cosα2z +D sinα2z),

α2 =
√

k(n2
2 −n2), n2

2 = ϵ2µ2.

(2.2.5)

Considering continuity and periodicity conditions for E and Hx fields among other pairs

of layers:

U1(0) =U2(0), U1(a) =U2(−b),

V1(0) =V2(0), V1(a) =V2(−b),
(2.2.6)

we obtain from Eqs. 2.2.4 and 2.2.5 the following set of four homogeneous equations

C = A, C cosα2b −D sinα2b = A cosα1a +B sinα1a,

D = pB , C sinα2b −D cosα2b =−ξ(A sinα1a −B cosα1a),
(2.2.7)

where

ξ= µ2α1

µ1α2
. (2.2.8)

By equating to zero the determinant of the system of Eqs. 2.2.7, we obtain the following

dispersion equation, which determines n as a function of k:

(1+ξ2)sinα1a sinα2b +2ξ(1−cosα1a cosα2b) = 0. (2.2.9)

We can solve Eq. 2.2.9 for ξ, thus obtaining the following two equations:

tan

(
α2b

2

)
cot

(α1a

2

)
=−ξ,

tan

(
α2b

2

)
cot

(α1a

2

)
= −1

ξ
.

(2.2.10)

The first of Eqs. 2.2.10 yields a wave in which E = Ey and Hz are even functions around

its middle for z = 0, while the component Hx is odd so that its mean field over the periodΛ

of the structure is equal to zero. Therefore, the wave is purely transverse with components

only in Ey and Hz fields. Similarly, the second of Eqs. 2.2.10 corresponds to a wave

in which Hx is even and E and Hz are odd respect to the center of the layers; thereby
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the mean field has only the longitudinal component Hx . However, such a wave will be

attenuated for distances of the order of Λ/2π in the x direction, thus this component can

be excluded from the analysis. As a result, we denote the mean value of Ey and Hz over

the period Λ by Ey and Hz . It is necessary now to introduce the effective permeabilities ϵe

and µe by the equations

n =√
µeϵe ,

Ey

Hz

=
√
µe

ϵe , (2.2.11)

where n is the root of the first of Eqs 2.2.10 and

Ey = 1

Λ

(∫ a

0
U1 d z +

∫ 0

−b
2U2 d z

)
. (2.2.12)

Substituting U1 and U2 from Eqs. 2.2.4 and 2.2.5 and using relations 2.2.7 to calculate

Ey , and similarly Hz , we get

Ey

Hz

= µ1α
2
2 −µ2α

2
1

n(α2
2 −α2

1)
. (2.2.13)

Equating this with the second expression of Eqs. 2.2.11 and solving the resulting

equations for ϵe and µe , we obtain

ϵe = n2(α2
2 −α2

1)

µ1α
2
2 −µ2α

2
1

,

µe = µ1α
2
2 −µ2α

2
1

α2
2 −α2

1

.

(2.2.14)

Considering small thicknesses a and b, so that tan(α2b/2) ≈ α2b/2 and cot(α1a/2) ≈
(α1a/2)−1 we find from Eqs. 2.2.14 that

ϵe = ϵ, µe = µ̃, (2.2.15)

where

ϵ= 1

Λ
(aϵ1 +bϵ2),

1

µ̃
= 1

Λ

(
a

µ1
+ b

µ2

)
,

(2.2.16)

for the average value of ϵ and 1/µ over the period Λ5.

5 A more exact estimation considering the cubic terms in the expansion for the correction of the effective values ϵe

and µe is detailed in [49].
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Propagation along the layers and H vector parallel to the interface

In this case, the components different from zero are Ex , Ez and Hy = H, see Fig. 2.6,

yielding the following Maxwell’s equations

∂H
∂z

= i kϵEx ,

∂H
∂x

=−i kϵEz ,

∂Ex

∂z
− ∂Ez

∂x
= i kµH.

(2.2.17)

Considering continuity and periodicity conditions, all formulas derivation in this case

can be obtained from the previous one by replacing H, E, µ, ϵ by E, H, ϵ, µ, respectively.

Therefore, the main field over the period is a pure transverse wave with components Hy

and Ez that satisfy Maxwell’s equations:

∂Hy

∂x
=−i kϵe Ez ,

∂Ez

∂x
=−i kµe Hy ,

(2.2.18)

where the effective values of ϵe and µe are expressed as

ϵe = ϵ1α
2
2 −ϵ2α

2
1

α2
2 −α2

1

,

µe = n2(α2
2 −α2

1)

ϵ1α
2
2 −ϵ2α

2
1

,

(2.2.19)

z

x

y

0

a

-b

Ez

Hy

Ex ε1 μ1

ε2 μ2

Fig. 2.6 Electromagnetic components distribution for a propagating wave along the layers with H
vector parallel to the interface.
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obtained from Eqs. 2.2.14 by the substitution previously shown. The equation for n is in

this case is

α2

ϵ2
tan

(
α2b

2

)
=−α1

ϵ1
tan

(α1a

2

)
, (2.2.20)

that for small values of a and b we obtain

ϵe = ϵ̃, µe =µ, (2.2.21)

where

1

ϵ̃
= 1

Λ

(
a

ϵ1
+ b

ϵ2

)
,

µ= 1

Λ
(aµ1 +bµ2).

(2.2.22)

Propagation perpendicular to the interface

In the last case, the wave propagation occurs along the z axis, normal to the interface, see

Fig. 2.7. Those components different from zero are Ex = E and Hy = H and satisfy the

equations

∂E
∂z

= i kµH,

∂H
∂z

= i kϵE.
(2.2.23)

According to the Floquet’s theorem [57], now the solutions to Eqs. 2.2.23 will be in the

form

E =U (z)e i knz ,H =V (z)e i knz , (2.2.24)

z

x

y

0

a

-b

Hy

Ex ε1 μ1

ε2 μ2

Fig. 2.7 Electromagnetic components distribution for a propagating wave normal to the layers.
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where U and V are periodic functions of z with a certain period Λ.

Substituting in Eqs. 2.2.23 and solving for each separate layer, we obtain for 0 ≤ z ≤ a

U1 = e−i knz (Ae−iα1z +Be iα1z ),

V1 =− α1

kµ1
e−i knz (Ae−iα1z +Be iα1z ),

α1 = kn1 = k
p
ϵ1µ1,

(2.2.25)

and in the second layer for −b ≤ z ≤ 0

U2 = e−i knz (Ce−iα2z +De iα2z ),

V2 =− α2

kµ2
e−i knz (Ce−iα2z +De iα2z ),

α2 = kn2 = k
p
ϵ2µ2.

(2.2.26)

Considering continuity and periodicity conditions expressed in Eqs. 2.2.6 on U and V ,

we get the following set of four equations

C +D = A+B , e i knb(Ce iα2b +De−iα2b) = e−i kna(Ae−iα1a +Be iα1a),

C −D = ξ(A−B), e i knb(Ce iα2b −De−iα2b) = ξe−i kna(Ae−iα1a +Be iα1a),
(2.2.27)

where

ξ= µ2α1

µ1α2

√
ϵ1µ2

ϵ2µ1
. (2.2.28)

Solving the determinant of the system in Eqs. 2.2.25 and 2.2.26 to zero, we get the

dispersion equation of n:

cosknΛ= cosα1a cosα2b − 1+ξ2

2ξ
sinα1a sinα2b. (2.2.29)

We now calculate the mean fields Ex = E and Hy = H over the period Λ, that satisfy

Maxwell’s equations

∂Ex

∂z
= i kµe Hy ,

∂Hy

∂z
= i kϵe Ex ,

(2.2.30)
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for the conditions

n =√
ϵeµe ,

Ex

Hy

= U

V
=

√
µe

ϵe , (2.2.31)

whence

ϵe = nHy

Ex

, µe = nEx

Hy

. (2.2.32)

Solving these equations, we get the expressions for the effective values of ϵe and µe

ϵe = ϵ
[

1+ i kab(µ1ϵ2 −µ2ϵ1)

4Λ
√
ϵµ

]
,

µe =µ
[

1− i kab(µ1ϵ2 −µ2ϵ1)

4Λ
√
ϵµ

]
.

(2.2.33)

Considering small thicknesses for a and b the correction terms of Eqs. 2.2.33 can be

neglected.

Joining together all the cases previously considered, we get the set of Maxwell’s

equations for the mean fields

∂Ey

∂x
= i kµ̃Hz ,

∂Ex

∂z
= i kµHy ,

∂Ez

∂x
=−i kµHy ,

∂Hy

∂x
=−i k ϵ̃Ez ,

∂Hz

∂x
= i kϵEy ,

∂Hy

∂z
= i kϵEx .

(2.2.34)

This set of Maxwell’s equations characterize a medium whose permittivity and

permeability are governed by singly degenerated tensors with the following principal axes

and values:

ϵe
1 = ϵe

2 = ϵ=
ϵ1a +ϵ2b

Λ
,

ϵe
3 = ϵ̃=

ϵ1ϵ2Λ

ϵ2a +ϵ1b
,

µe
1 =µe

2 =µ= µ1a +µ2b

Λ
,

µe
3 = µ̃= µ1µ2Λ

µ2a +µ1b
.

(2.2.35)

Therefore, the resulting layered material behaves like a homogeneous and anisotropic

medium with properties of an uniaxial crystal, and characterized by the dielectric and

magnetic permittivities ϵe and µe .
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2.2.2 Waveguiding in subwavelength structures

Let us now consider a certain dielectric structure of refractive index n1 with a thickness

a, width w and height h repeated along the z axis with a periodicity Λ, see Fig. 2.8.

The gap in between the periodic elements is filled with a medium of refractive index n2

and the whole structure is placed over a substrate of refractive index n3. As it has been

shown in the previous section, wave propagation through the structure is possible for

small periodicities compared to the wavelength. Such a periodic structure can thereby

be modeled as a homogeneous anisotropic material with their corresponding electric

permittivities and magnetic permeabilities, following Rytov’s derivation. Considering

dielectric materials with a permeability value of µe = 1, we can calculate the effective index

as

ne =
p
ϵe . (2.2.36)

Substituting in Eqs. 2.2.35, we obtain

n2
∥ =

a

Λ
n2

1 +
(
1− a

Λ

)
n2

2,

1

n2
⊥
= a

Λ

1

n2
1

+
(
1− a

Λ

) 1

n2
2

,
(2.2.37)

where n∥ and n⊥ is the effective index of the effective medium for a TE polarization wave

with the E vector parallel and perpendicular to the structure periodicity, k1 and k2 in Fig.

2.8, respectively.

This formalism is valid for those structures with a small enough pitch to avoid

diffraction, entering in the so-called subwavelength regime [26]. Many applications are

based on waveguides as the one shown in Fig. 2.8 using the SOI platform, where the core

E k1
E⊥k2

n3

n1
n2

x

z
y

Fig. 2.8 Schematic of a periodic dielectric waveguide based on an array of subwavelength
elements on a substrate.
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is made of silicon (n1 ∼3.5), upper cladding of silica or air (n2 ∼1-1.45) and a substrate

of silica (n3 ∼1.45). Light propagation through these segmented waveguides is modeled

by the Bloch-Floquet modes [58, 59], similar to an electron in a natural crystal. The

propagation of a Bloch mode in a periodic waveguide is defined as6

E(x, z +Λ) = EB , (x, z)e−γΛ (2.2.38)

where EB , (x, z) is the field distribution of the Bloch mode over a period Λ and γB is its

complex propagation constant, expressed as

γB =αB + i kB =αB +nB i
2π

Λ
, (2.2.39)

where αB and kB are the attenuation constant and the wavevector, respectively, and nB

the effective index of the Bloch mode. Therefore, for a given periodΛ the behavior of light

propagated along SWG waveguides will be strongly dependent on the operating frequency.

Figure 2.9 shows the dispersion relation of a certain periodic structure as the angular

frequency w versus the wavector of the Bloch mode k. In the subwavelength regime, for

low frequencies, light behaves like in a homogeneous waveguide and reflection effects

in the interfaces are suppressed, see field distribution of Fig. 2.9. As we increase the

frequency, the wavelength is comparable to the structure periodicity so that light is

reflected backwards. In this case, the periodic waveguide behaves like a Bragg mirror and

the propagating mode is completely attenuated after a certain distance. Above this region

for even higher frequencies, part of the light is radiated into the free space and high-order

bands appear in the band diagram of the resulting photonic crystal.

To determine whether we are working in the subwavelength regime, a first

approximation considering the relationship between the periodicity of the structure and

the effective index of the Bloch mode is usually expressed as follows

nB < λ

2Λ
, (2.2.40)

where λ is the operating wavelength, assuring that we work below the Bragg threshold.

Within the subwavelength region, waveguiding effects must be considered when dealing

with structures as in the case of Fig. 2.8, since the waveguide does not extend infinitely in

x and y directions. It should be also noted that as we get closer to the Bragg regime, more

accurate analysis must be carried out by using numerical methods as the expressions of

Eqs. 2.2.37 are only valid in the deep subwavelength region.

6 A more exhaustive study of Bloch-Floquet formalism is detailed in [58, 59], here we just provide the basis for the
understanding of general concepts.
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Bragg reflection

Subwavelength

π/Λ k

ω

y

z

Homogeneous waveguide

Fig. 2.9 Light behaviour in a periodic dielectric waveguide [27]: schematic dispersion diagram
and field distribution of its corresponding region, left and right part, respectively.

2.2.3 Multimode operation

As in conventional rectangular waveguides, SWG structures can support several modes

propagated along the periodic interface. In Fig. 2.10 we consider a multimode waveguide

with a width w made of a SWG elements with refractive indices n∥ and n⊥, see Eqs. 2.2.37.

Optical modes will be confined within the waveguide as the form

ϕm(x) ≈ sin(kx,m x), (2.2.41)

where the wavevector in the x axis is defined by

kx,m ≈ mπ/w, (2.2.42)

for the mth order guided mode. In turn, the longitudinal component in the z axis depends

on the effective index of the modes as

ne
m = kz,mλ

2π
, (2.2.43)

which is used to design the beat length of certain devices based on multimode operation.

Considering the elliptical dispersion relation of the uniaxial resulting crystal

(
kz,m

n∥

)2

+
(

kx,m

n⊥

)2

=
(

2π

λ

)2

, (2.2.44)
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Fig. 2.10 Top view of a multimode subwavelength waveguide sketch of a certain width w with the
representation of the two first lower order modes [27].

and for the paraxial approximation kx << 2π/λ, we can express the modes effective indices

as follows

ne
m ≈ n∥−

n2λ2n2
∥

8w2n2
⊥

. (2.2.45)

We can now define the beat length Lπ between the lowest order modes by the following

expression

Lπ = 2π

kz,1 −kz,2
≈ 4w2n2

⊥
3λn∥

. (2.2.46)

By properly designing the SWG structure we can engineer the effective indices

n∥ and n⊥ to provide an active control on the beat length, thus becoming

wavelength-independent and therefore enable broadband operation. This fact allow us

to develop novel devices based on SWG structures with improved properties compared

to conventional homogeneous waveguides. Specifically, in the chapter 3 we further

investigate multimode operation in SWGs for high-performance sensing based on the

dispersion effects near the Bragg regime.

2.3 Photonic crystals

In the previous section, we have seen how periodic structures behave like homogeneous

waveguides when the pitch is much smaller than the effective wavelength of the

propagating light. It has also been shown that for larger periodicities light is reflected

and radiated and thus the waveguide becomes lossy. This fact, however, is not entirely
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1-D 2-D 3-D

Fig. 2.11 Sketch of periodic structures as one-dimensional (1D), two-dimensional (2D) and
three-dimensional (3D) photonic crystals. The colors represent different materials with their
respective dielectric constants.

accurate and loss-less transmission can be accomplished beyond the subwavelength

regime. In solid-state physics, electrons avoid scattering effects from the periodic

potential of a crystal lattice because they propagate as waves that meet certain criteria

so that transmission without scattering can be achieved.

In optics, the analogue is the photonic crystal, consisting of macroscopic structures

with a given periodic refractive index instead of atoms with periodic potentials. Photonic

crystals can extend in one, two or three spatial directions, see Fig. 2.11, and avoid

refractions and reflections of light even when the refractive index contrast of the materials

is large, thus obtaining a loss-less periodic dielectric medium. These structures can

manipulate the propagation direction of light and prevent it in some specific directions

and for certain frequencies, the so-called photonic bandgaps. In addition, they allow

propagation with some anomalous effects such as the slow light phenomena, where

light is drastically slowed down which in turn can be used in several useful ways. In

this chapter, we provide a short introduction to light behavior in photonic crystals, and

discuss the main optical properties obtained from the mathematical derivation. Then

we focus on one-dimensional structures and provide the basis to understand the band

structure formation in periodic dielectric structures similar to the ones presented in the

following chapters.

2.3.1 Eigenvalue problem of electromagnetic waves

Light behavior in a photonic crystal is governed by Maxwell’s equations, as we have seen

in the previous sections. However, here the equations are proposed as a linear Hermitian

eigenvalue problem, similar to what occurs in quantum mechanics with the Schrödinger

equation [60]. Let us detail again the macroscopic Maxwell’s equations which are usually



2.3 Photonic crystals 29

formulated as

∇·D = ρ,

∇·B = 0,

∇×E+ ∂B
∂t

= 0,

∇×H− ∂D
∂t

= J,

(2.3.1)

where E and H are the electric and magnetic fields, D and B the electric displacement and

magnetic induction, and ρ and J are the electric charge and current density, respectively.

We consider a periodic dielectric medium consisting of homogeneous materials with

a certain permittivity constant as a function of the position vector r, with no free charges

and no currents: ρ = 0 and J = 0. The constitutive relations relate the electric and magnetic

fields E and H to the displacement and magnetic induction D and B. The components of

the electric field and displacement are related for each component via power series in the

following form7

Di /ϵ0 =
∑

j
ϵi j E j +

∑
j ,k
χi j k E j Ek +O(E 3), (2.3.2)

where ϵ0 ≈ 8.854×10−12 Farad/m is the value of vacuum permittivity. We now consider that

we are working in the linear regime, so that χi j k terms can be neglected. We also assume

macroscopic and isotropic materials, so that E(r,ω) and D(r,ω) relate by the scalar relative

permittivity ϵ(r,ω). We ignore dispersion effects of ϵ and consider a loss-less material,

which means that its value is purely real and positive8.

Taking into account all these considerations and that the value of µ(r) can be

approximated to unity, we obtain the following constitutive relations

D(r) = ϵ0ϵ(r)E(r),

B(r) =µ0B(r),
(2.3.3)

7 This mathematical expression is taken from Bloembergen’s work in 1965 on nonlinear optics [61].
8 Negative dielectric constants are interesting descriptions for some materials such as metals, which may be used

to develop mixed dielectric-metals photonic crystals [62, 63]
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With all these assumptions, Eqs. 2.3.1 become

∇· [ϵ(r)E(r, t )] = 0,

∇·H(r, t ) = 0,

∇×E(r, t )+µ0
∂H(r, t )

∂t
= 0,

∇×H(r, t )−ϵ0ϵ(r)
∂E(r, t )

∂t
= 0.

(2.3.4)

The time dependency of both E and H can be expressed by expanding the fields into

a set of harmonic modes that evolve sinusoidally with time. Therefore, these harmonic

modes can be written as a certain pattern multiply by a complex exponential as follows

H(r, t ) = H(r)e−iωt ,

E(r, t ) = E(r)e−iωt .
(2.3.5)

For a certain frequency, to obtain the field profile of the modes we must insert these

expressions in Eqs. 2.3.4. The two divergence equations yield the next condition

∇·H(r) =∇· [ϵ(r)E(r)] = 0, (2.3.6)

which indicates that there are no sources or sinks of electric displacement and magnetic

field in the medium. In addition, these fields consist of purely transverse waves

perpendicular to the propagation direction, so that for a given plane wave H(r) = ae i kr

for a wavevector k Eq. 2.3.6 requires that a ·k = 0. Likewise, we now focus on the curl

equations

∇×E(r)− iωµ0H(r) = 0,

∇×H(r)+ iωϵ0ϵ(r)E(r) = 0.
(2.3.7)

We now divide the bottom of Eq. 2.3.7 by ϵ(r) and then take the curl. Then, by using the

first equation to eliminate E(r) and combining ϵ0 and µ0 with the vacuum speed of light

we obtain the following expression for the magnetic field H(r)

∇×
(

1

ϵ(r )
∇×H(r)

)
=

(ω
c

)2
H(r). (2.3.8)

Eq. 2.3.8 is the master equation and relates the magnetic modes H(r) with its

corresponding frequencies for a given dielectric structure ϵ(r). Then, we can use the
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second equation of 2.3.7 to obtain the electric field as

E(r) = i

ωϵ0ϵ(r)
∇×H(r). (2.3.9)

This process satisfies the transversality condition ∇·ϵE = 0 given that the divergence of

a curl is always zero. Similarly, we can also obtain H from E in Eq. 2.3.7 as

H(r) =− i

ωµ0
∇×E(r). (2.3.10)

For mathematical convenience it is easier to solve the problem in terms of the

magnetic field H(r) rather than the electric field E(r). The master Eq. 2.3.8 is an eigenvalue

problem in which the eigenfunction or eigenvector9 is the function itself multiplied by

some constant, also called eigenvalue. Specifically, we can express the left side of the

master equation with an operator Θ̂ acting on H(r) as

Θ̂H(r) =
(ω

c

)2
H(r), (2.3.11)

whence Θ̂ is the differential operation that takes the curl, divides by ϵ(r) and takes the curl

again:

Θ̂H(r)≜∇×
(

1

ϵ(r)
∇×H(r)

)
, (2.3.12)

where H(r) is the eigenvector and (w/c)2 the eigenvalues of the system. It should be

also noted that Θ̂ is a linear operator so that many solutions can be obtained as a linear

combination of the eigenvector solutions.

2.3.2 Band structure analysis

Photonic crystals, like atoms or molecules, are invariant for a given translation that is

multiple of the structure pitch. Hence, they have a discrete translational symmetry in

the periodic spatial direction. The periodic length of the structure is called the lattice

constant a and the step vector is the primitive lattice vector. Therefore, for a given

structure, its dielectric constant ϵ(r) will be repeated an integer multiple times ϵ(r) = ϵ(r±a).

The dielectric unit that forms the photonic crystal along the spatial direction is known as

the basic unit cell and its key to identify the eigenmodes of the structure. Furthermore,

the solutions of Eqs. 2.3.8 for H can be expressed as the product of a plane wave with a

9 In related literature it is very common to find eigen as a prefix to define any part of the eigenvalue problem such us
the eigenfield, eigenmode or eigenstate.
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Γ

Μ

Χ

kr

Fig. 2.12 Square lattice of a two-dimensional photonic crystal. On the left hand side the real
space is represented and on the right hand side the reciprocal lattice with its corresponding
Brillouin zone [60].

periodic function by the following equation

Hk (r) = e i kruk(r), (2.3.13)

where k is the wavevector that determines the phase and uk (r) is a periodic function that

defines the field profile with the same periodicity that the dielectric structure, where

uk (r) = uk(r + R) for all lattice vectors R, which in turn, have the same number of

components as the PhC of periodic dimensions. These are known as Bloch modes10

due to the similarities with Bloch states in solid-state physics and Floquet’s modes in

mechanics [64, 65]. It should be noted that wavevectors that differ an integer multiple

times 2π/a are physically the same, so that wavevectors only in the range −π/a < k < π/a

must be considered. This region of non-repeated wavevectors, see Fig. 2.12, is called

the Brillouin zone11. The reciprocal space of wavectors will be also periodic and defined

by the reciprocal lattice vectors. In a 3D photonic crystal with lattice vectors (a1,a2,a3)

their reciprocal lattice vectors are (b1,b2,b3) and may be calculated as ai b j = 2πδi j . These

reciprocal lattice vectors are used to calculate a Bloch mode by using the expression

k = k1b1 +k2b2 +k3b3 where k lies in the Brillouin zone.

In order to calculate the band structure of the system and solve the periodic function

uk(r), we need to insert the Bloch state of Eq. 2.3.13 into the master equation 2.3.8 as

Θ̂Hk =
(
ω(k)

c

)2

Hk, (2.3.14)

10 The fundamentals of Bloch theorem was discovered independently by Hill, Floquet, Lyapunov and Bloch, but the
nomenclature refers to the latest.

11 More detailed information on the reciprocal lattice and Brillouin zones can be found in [60].
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substituting the operator Θ̂ we obtain

∇× 1

ϵ(r)
∇×e i k·ruk(r) =

(
ω(k)

c

)2

e i k·ruk(r),

(i k+∇)× 1

ϵ(r)
(i k+∇)×uk(r) =

(
ω(k)

c

)2

uk(r),

Θ̂kuk(r) =
(
ω(k)

c

)2

uk(r),

(2.3.15)

where Θ̂k is a new Hermitian operator that depends on k and is defined as

Θ̂k ≜ (i k+∇)× 1

ϵ(r)
(i k+∇)× . (2.3.16)

The last of Eqs. 2.3.15 together with the periodic function uk(r) allow us to calculate

the supported modes by a photonic crystal for each wavevector k. This problem will

be limited for the Brillouin zone in the reciprocal space, obtaining infinite solutions for

different frequencies 12. These solutions are ordered in bands with difference indices n, so

that the n = 0 band corresponds to the lowest frequency solution of the system. Moreover,

these bands continuously evolve with the wavevector, giving rise to the band diagram or

dispersion relation of a photonic crystal ωn(k).

To calculate the band diagram ωn(k) of a photonic crystal with a given periodic

structure ϵ(r) we need to make use of computational tools that solve the aforementioned

equations. In this work we use MPB (MIT Photonics Bands) developed by the

Massachusetts Institute of Technology, which is an open source software that computes

definite-frequency eigenstates of the latest equation of 2.3.15 in fully-vectorial and

three-dimensional spaces. It employs an iterative technique to minimize the solutions

of the system for each wavevector k by using plain wave expansion (PWE) numerical

methods13.

Figure 2.13 shows an example of band diagram obtained for a two-dimensional

photonic crystal consisting of a rectangular array of dielectric columns with a lattice

constant a. Light propagates within the plane in all directions and for both TE and

TM polarizations. The vertical axis represents the frequency of the modes, while the

horizontal axis shows the in-plane wavevector k that moves along the irreducible Brillouin

zone, depicted in the left inset of Fig. 2.13. From left to right, it starts from Γ to X and

then to M , covering the entire Brillouin region. Specifically, this band structure has been

12 It is worth noticing that, due to rotational symmetries, some of the wavevectors k inside the Brillouin zone are
redundant, thus we only need to calculate those within the smallest region not related with symmetry, the so called
irreducible Brillouin zone.

13 More detailed information about the software and the code can be found in [66].
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Fig. 2.13 Photonic band structure of a two-dimensional rectangular array of dielectric columns.
The red lines represent the TE polarization modes, while the blue ones represent the TM
polarization modes. The left inset represents the Brillouin zone with the irreducible area shaded
in light yellow. The right inset schematically shows the real space with the dielectric distribution of
two dielectric materials represented in different colors [60].

obtained for a crystal structure of alumina (ϵ=8.9) rods in air with a given radius of r /a=0.2,

as it is shown in the right inset of Fig. 2.13.

2.3.3 Photonic bandgaps and slow light phenomena

Let us consider a multilayer film as the one shown in Fig. 2.14, forming the simplest

photonic crystal in the periodic propagation direction z. In the previous section on

SWG we have considered light propagation through finely layered media so that we

avoid diffraction. In this case, the periodicity is larger enough to produce reflections on

each interface and thus a complete band structure analysis is required. The material is

periodic in z and homogeneous in the x y plane. Therefore we can distinguish between

two different wavevectors parallel and perpendicular to the interface k∥,kz , respectively,

and the band number n. We can express the modes using Bloch formalism as

Hn,kz ,k∥ = e i k∥ρe i kz z un,kz ,k∥(z), (2.3.17)

where k∥ can be any value since no symmetries can be applied, while kz is restricted

within the Brillouin zone −π/a < kz ≤ π/a. We now consider waves that propagate only

in the z direction so that k∥ = 0. In Fig. 2.14 we show the bands ωn(k) for the wavevector
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k = kz for three different multilayer cases: where both materials have the same dielectric

constant and thus it is actually an homogeneous medium, and for low and high-contrast

between the dielectric constants of the layers. Note that for the first case, since there

is no real periodicity, the modes lie along the light line given by the refraction index

of the material considered. Herein the modes fold back into the Brillouin zone when

they reach the limit k = 0.5 2π/a as they are repeated outside this region because of

symmetry conditions in the reciprocal lattice. On the other hand, for cases where we

have different dielectric constants in the layers and real periodicity, a small gap appears

in the region when the modes reaches the end of the Brillouin zone, see the middle and

right graph of Fig. 2.14. This is the so-called photonic bandgap, where modes with a

frequency within the gap are not allowed to propagate in the crystal. Photonic bandgaps

are widely used in many different applications of two and three-dimensional photonic

crystals such as narrow-band filters and sensors. Another important fact is that the higher
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Fig. 2.14 One-dimensional photonic crystal consisting of a multilayer structure and its
corresponding band diagram. Three different examples are depicted: on the left graph, both
layers present the same dielectric constant ϵ1 = ϵ2 = 13, in the middle low-index contrast layers of
ϵ1 = 13 and ϵ2 = 12 and on the right high-index contrast layers of ϵ1 = 13 and ϵ2 = 1 [60].
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the index-contrast between the layers the larger the bandgap. The right graph of Fig. 2.14

shows this effect for a layered medium of ϵ1 = 13 and ϵ2 = 1, which produces a remarkable

gap of forbidden frequencies.

In the aforementioned examples, we must remark another important effect that arises

from the bandgap formation in a photonic crystal. As it is shown in the right graph of

2.14, both n = 1 and n = 2 bands are flattened near the edge of the bandgap. This is

strongly related to the group velocity which is just the slope of the band as a function

of the wavevector for a given frequency. Mathematically, it is expressed as

vg = ∂ω

∂kz
, (2.3.18)

where kz is the wavector in the periodic direction. The group velocity is the velocity

that transports the energy in a lossless and non-dispersive medium with a real value of

the wavevector. In an homogeneous structure without dispersion, the group velocity is

the same than the phase velocity. However, in the case of a photonic crystal, the group

velocity can be seen as the velocity of the envelope through the space, and its usually

different from the phase velocity14. The group velocity is drastically reduced in the vicinity

of the bandgap reaching a point where the slope of the band mathematically goes to

zero. This region is known as the slow light regime, in which the velocity of the wave can

be arbitrarily slowed down to very low values. Moreover, this effect produces a higher

interaction between the propagating electromagnetic field and the structure, which is

highly desirable for buffering and compressing optical signals for photonic applications

[67].

2.3.4 One-dimensional periodic waveguides

Three-dimensional photonic crystals can confine light in all spatial directions and provide

complete bandgaps for the desired frequency. However, the fabrication of these type

of photonic crystals remains challenging due to it structural complexity. Instead of

these, simpler structures based on periodic dielectric waveguides are easier to design

and fabricate as well as they provide most of the photonic crystal features previously

discussed. These structures consist of a one-dimensional periodic pattern in the

propagation direction of light in a three-dimensional model with a certain thickness and

width. Figure 2.15 depicts some examples of periodic waveguides based on a rectangular

waveguide with circular holes, an array of cylinders and a corrugated waveguide, from

bottom to top, respectively. All such structures will present a photonic bandgap in the

14 The phase velocity is defined as vp =ω/kz , so that it would be equal to the group velocity in the case that w is
directly proportional to k
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y
x

z

Fig. 2.15 Periodic dielectric waveguides examples consisting of one-dimensional periodic patterns
in the propagation direction.

propagation direction due to the periodic pattern, while the light will be confined within

the waveguide, in the transversal direction, by the principle of index guiding.

One-dimensional periodic waveguides were first conceived and studied in the middle

of the 90s using the band structure analysis by [68–70]. Similar structures, considering

an uniform strip waveguide and a periodic set of dielectric squares of ϵ = 12, see Fig.

2.16, and herein depicted. In the first case, the homogeneous structure presents a

continuous translational symmetry in the z direction so that k is unrestricted in the band

study, although here we impose an artificial restriction for the sake of comparison. In

the periodic waveguide only the wavector in the periodic direction z is conserved and

thus a discrete translational symmetry is obtained. Specifically, dielectric squares with

dimensions of 0.4a × 0.4a have been considered for the calculations of the bands ωn(kz ).

The wavevector region of 0 < k < 2pi /a is depicted for both cases in the band structure of

Fig. 2.16, as well as the fundamental and first order modes for the TM polarization. The

lightcone for ω ≥ ck is also shown for the extended states of light scattered into the air.

Below the lightcone, discrete modes exists for both continuous and periodic waveguides,

classified as even and odd bands depending on its symmetry in the transversal direction.

It should be noted that the first even band corresponds to the fundamental mode that

propagates for the lowest frequency. One could think that light propagation in the case of

the periodic waveguides results in scattering and losses, however, Bloch theorem states
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that periodic patterns do not need scatter waves since the periodicity guarantees that

the wavevector in the propagation direction is conserved. Therefore, the bands shown in

the right graph of Fig. 2.16 are truly guided modes and propagate along the waveguide

without losses.

Contrary to what occurs in the uniform waveguide, the Brillouin zone in the case of

the periodic waveguide is finite. The region π/a < k < 2π/a is equivalent to −π/a < k < 0

which in turn is a mirrored image of the 0 < k <π/a Brillouin zone region. This fact is key to

understand the formation of high-order modes and their interaction in the band diagram

depending on the polarization and symmetry. For a wider enough structure, more than

two modes can appear for the same frequency resulting in a multimode waveguide. In

the following chapters we study how these modes can be engineered to develop bimodal

waveguides in periodically patterned structures for high-performance operation. We also

show how to exploit the benefits of slow light phenomena in photonic crystals to reduce

the length of the device and thus the resulting footprint.
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Fig. 2.16 Band diagrams of an uniform and one-dimensional periodic waveguide for the TM
polarization, left and right graphs, respectively [60].

2.4 Bimodal interferometry

So far, we have seen how light behaves in periodic media depending on the pitch

and wavelength of the propagating wave. In this section, we explore integrated

interferometers consisting of bimodal configurations based on the previously detailed

periodic waveguides. First, we introduce basic concepts of integrated interferometers
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and then we extrapolate them for the case of bimodal periodic platforms where additional

effects arise and thus improved performance can be obtained.

2.4.1 Integrated interferometers

Optical interferometry is a technique aimed at measuring the interference between

electromagnetic waves that propagate along different optical paths [71]. Towards the

end of the 19th century, various types of interferometric configurations were discovered

as in the case of the Fabry-Perot interferometer, where light passes through parallel

reflecting surfaces producing multiple reflections at each interface [72], or the Michelson

interferometer, where light is splitted into two optical beams and reflected afterwards

to combine their amplitudes [73]. Shortly after, Ernst Mach and Ludwig Zehnder

proposed a simpler configuration in which light travels only once through the optical

paths, instead of twice as Michelson proposed. This is the so-called Mach-Zehnder

interferometer [74, 75], which was widely employed in the next century for all kind of

on-chip photonic applications with the revolution of integrated optics [18, 19]. At the

same time, common path interferometers were discovered and used for the first time as

humidity sensors, where the interference was carried out by two optical modes of the TE

and TM polarization. Although both optical modes propagate in the same waveguide,

they travel at different velocities because of the polarization dependency, so that a phase

shift is induced at the output [76, 77]. More recently, a novel approach of single-channel

interferometry was developed by using a bimodal waveguide that supports the first two

order modes of the same polarization within an optical waveguide. Similarly to the

previous common path interferometer, the higher order mode propagates with a lower

propagation constant than the fundamental mode, resulting in an accumulated phase

shift over a certain distance [78].

The operation principle of an integrated optical interferometer is shown in Fig. 2.17.

On the left hand side a MZI is shown, where light is coupled into the fundamental mode of

the input waveguide, which is splitted into two different arms and recombined afterwards

in a single output port [79]. In contrast, in a BiM waveguide, see right sketch of Fig. 2.17,

a single mode input port supporting the fundamental mode excites the first two order

modes of the bimodal part that similarly contribute to the excitation of the fundamental

mode at the output. In this case the interferometric performance is carried out in a

single-channel structure [31], while in the MZI case, two different physical paths are

required. In both approaches, however, a relative phase shift between the optical signals

is obtained at the output port as a result of either the physical length difference between

the arms in of the MZI, or the propagation constant difference between the modes of the

BiM waveguide [80].
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Due to the wave nature of light, the measured intensity at the output of an

interferometer can be mathematically expressed as a sinusoidal function of the phase

shift by the following equation

Iout = I1 + I2 +2
√

I1I2 cos(∆φ), (2.4.1)

where I1,2 are the intensities in the first and second arms in a MZI, or for the first a second

modes in a BiM waveguide, and ∆φ is the phase shift between both optical signals at the

output. The phase shift of the different optical paths L1 and L2 can be defined as

∆φ= k0

(∫
L1

n(r )dr −
∫

L2

n(r )dr

)
, (2.4.2)

where k0 = 2π/λ0 is the wave number, λ0 the wavelength in vacuum and n(r ) the refractive

index of the medium at a certain point r . Likewise, the phase shift can also be expressed

in terms of the effective index of the propagating modes through the interferometer as

follows15

∆φ= 2π

λ0

(
L1ne f f 1 −L2ne f f 2

)
, (2.4.3)

where L1,2 are the lengths and ne f f 1,2 the effective indices of the the first and second arms

or modes, in a MZI or in a BiM interferometer, respectively, see Fig. 2.17.

It is worth noticing that ne f f 1 = ne f f 2 in a MZI when the dimensions and refractive

index of both arm waveguides are equal, so that the phase shift will therefore depend

15 The effective index can also be expressed in terms of the propagation constant, or wavevector in the propagation
direction, as β= k = ne f f 2π/λ.

input

output

β1

β2

L

βL1

βL2

input

output

Fig. 2.17 Integrated interferometer examples. A Mach-Zehnder configuration is shown on the left
hand side, while a bimodal waveguide is depicted on the right hand side.
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entirely on the length difference between the paths, otherwise they phase shift will be

zero. Similarly, in a BiM waveguide, since both modes propagate through the same optical

path, L1 = L2 and hence the phase shift is produced as a result of the difference between

the effective indices of the modes.

Furthermore, it is also interesting to explore the performance of the interferometer for

a given change either in the refractive index of the core or in the cladding. This allows

us to investigate the response of the interferometer when a variation in the system is

induced for sensing or modulating purposes, for instance. Mathematically, a change in

the refractive index of the system will produce a variation in the effective index of the

propagating modes ∆ne f f 1,2. We can express the total amount of phase shift difference

relative to an arbitrarily given original state by the following equation16

∆φT =∆φ1 −∆φ2 = 2π

λ0

(
L1∆ne f f 1 −L2∆ne f f 2

)
. (2.4.4)

In a conventional MZI configuration, one of the arms is supposed to be isolated from

changes in the refractive index, the so-called reference arm, so that the phase shift will

solely depend on the change in the effective index of the mode propagated through the

active arm, ∆ne f f 2, for example, while ∆ne f f 1 = 0. On the other hand, in a BiM waveguide

both modes will interact with the refractive index variations since they propagate along

the same path and cannot be isolated from each other. That is the reason why BiM

waveguide sensors are designed to maximize the effective index difference, specifically

to obtain a large variation in the higher order mode compared to the fundamental one

∆ne f f 2 >∆ne f f 1. This is due to the fact that the higher order mode is less confined within

the waveguide so it is more sensitive to cladding refractive index variations than the

fundamental mode, which in turn acts as a reference [31]. It should be also noted that in

both cases the resulting phase shift depends on the length L of the interferometer, which

explains why the designs are usually that long and why they require very large footprints.

2.4.2 Bimodal behavior in periodic media

After revising the fundamentals of conventional interferometers, in this section we will

investigate how we can benefit from periodically patterned waveguides to enhance the

interferometric response. The idea of merging periodic structures and interferometers

was first introduced at the end of the last century [81]. The underlying concept was

to reduce the group velocity of one of the propagating modes in a MZI so that the

optical path can be increased while the physical length remains small. This is translated

16 ∆φ1 represents the phase shift for an arbitrarily initial state, and ∆φ2 is the phase shift after a certain change in
the refractive index of the system.



42 Fundamentals of dielectric periodic structures

into a higher variation of the effective index ∆ne f f for a given change in the system

refractive index, and consequently in a higher accumulated phase shift, see Eq. 2.4.4. In a

non-dispersive material like silicon, engineered structures such as periodic waveguides

can produce some dispersion effects in the propagating waves that can be used to

improve the interferometer efficiency.

Interferometry in SWG structures

As we have seen in previous sections, periodic waveguides working in the

deep-subwavelength region can be modelled as uniform structures with a pitch much

smaller than the wavelength of light. However, as we approximate to the PhC regime

increasing the periodicity, electromagnetic modes become dispersive and the resulting

effective index of the effective material becomes strongly dependent on the frequency. In

multimode SWG waveguides, the fundamental mode becomes dispersive as it reaches

the end of the first Brillouin zone, while the higher order modes are not affected. This

fact produces a constant phase shift between the lowest order modes for a wide range

of wavelengths, which has been used in reported works to demonstrate broadband

operation in SWG configurations.

In evanescent-wave based sensors, hetero-modal interferometers with constant phase

shifts as a function of wavelength are investigated for critical spectral-based sensitivity

[82]. The operation principle of these devices is based on the interference between two

modes with different propagation constants, such as a MZI with different waveguide

dimensions in each arm. In these configurations, the output power is measured

for a range of source wavelengths, so that the sensitivity expressed in increments or

differentials can be defined as

S = ∆λ

∆nc
→ S = ∂λ

∂nc
, (2.4.5)

where ∆λ is the shift of a certain spectral feature for a given change in the bulk cladding

refractive index ∆nc . Let us now consider that L1 and L2 are equal and that we work on a

spectral peak (constructive or destructive interference), we can rewrite Eq. 2.4.4 as

∆φ(λ,nc ) ≡ 2πL

λ
η(λ,nc ) = Nπ, (2.4.6)

where η = ∆ne f f 1 −∆ne f f 2 and N is an integer number, an even value for the case of

a constructive interference and odd for the destructive case. Using implicit function

differentiation, the phase derivative respect to the cladding refractive index is defined as

∂φ(λ,nc )

∂nc
= 2πL

λ

∂η(λ,nc )

∂nc
, (2.4.7)
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and respect to lambda as

∂φ(λ,nc )

∂λ
= 2πL

λ

(
∂η(λ,nc )

∂λ
− η(λ,nc )

λ

)
. (2.4.8)

Dividing Eq. 2.4.7 by Eq. 2.4.8, we obtain an expression for the sensitivity as a function

of the phase shift φ, the effective index differences η and wavelength λ:

S = ∂λ

∂nc
= ∂φ(λ,nc )/∂nc

∂φ(λ,nc )/∂λ
= ∂η(λ,nc )

∂nc
/

(
∂η(λ,nc )

∂λ
− η(λ,nc )

λ

)
. (2.4.9)

From this expression, first thing we can highlight is that the spectral sensitivity

becomes theoretically infinite when the slope of the phase shift as a function of

wavelength is zero. Specifically, this condition is reached at the critical working point,

lambda λc , occurring at

∂η(λ,nc )

∂λ
= η(λ,nc )

λ
. (2.4.10)

On the other hand, using bimodal SWG waveguides allows to combine the constant

phase shifts produced by the dispersion of the fundamental mode with the high

light-matter interaction typical of SWG periodic elements, to critically enhance the

sensitivity in spectral-based interferometric sensors. In addition, note that the sensitivity

expression in Eq. 2.4.9 does not depend on the interferometer length, so that long paths

are not required for high performance operation. In order to illustrate this, Fig. 2.18

schematically shows a comparison between a uniform and a SWG bimodal waveguide

for the lowest order modes used to perform the interferometry. The upper figures

depict the propagation constant of both modes at an arbitrarily initial cladding, solid

line, and after a induced change in its refractive index, dashed line. Note that the β0

mode becomes dispersive for lower wavelengths in the SWG structure, which produces

an almost constant phase shift as a function of wavelength, see middle graphs of Fig.

2.18 while in the uniform waveguide the phase shift is directly proportional to the

wavelength. The lower graphs show the transmission spectra generated by the phase shift

for a certain length. In the uniform waveguide, small spectral shifts of the dips towards

higher wavelengths are shown after a change in the cladding refractive index, while in the

SWG case the spectral shifts are larger and shifted towards lower and higher wavelengths

around the critical working point. In chapter 3 we will see in much more detail the design

and development of a refractive index sensor based on bimodal SWG structures, as well

as the experimental verification of the spectral sensitivity based on the effects herein

showed.
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Interferometry in PhC structures

In a conventional uniform bimodal waveguide, the high-order mode is usually more

sensitive to changes in the refractive index since it is less confined within the core, and

hence with a lower effective index than the fundamental mode. For the case of bimodal

SWG waveguides, the fundamental mode becomes dispersive, so that both modes are

sensitive and somehow they cancel each other, accumulating almost no phase shift at

the output. In order to critically enhance the phase shift in a bimodal interferometer, we
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Fig. 2.18 Comparison between the uniform and the subwavelength bimodal waveguides under
a static cladding and for a given variation in its refractive index ∆nc , solid and dashed lines,
respectively. From upper to lower figures, the dispersion relations, phase shifts and transmitted
spectra are shown.
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must reduce the group velocity of the higher order mode (the most sensitive one), and

thus increase the change in its effective index when a refractive index variation is induced.

On this matter, PhCs allow us to engineer bimodal interferometers with highly-dispersive

high-order modes by properly designing the band structure of the unit cell. In this case,

the interferometers are exploited to exhibit a large phase shift at the output, similar to

a conventional MZI and in contrast to SWG bimodal waveguides, where we focused on

the spectral shifts. For sensing purposes, the sensitivity is now expressed in terms of the

phase shift as

S = ∆φ

∆nc
= 2πL

λ0

(
∂ne f f 2

∂nc
− ∂ne f f 1

∂nc

)
, (2.4.11)

where ∆nc is the change in the refractive of the cladding, and ∆ne f f 1,2 the variation of the

fundamental and high-order modes effective index, respectively. As it is expressed by this

equation, the higher the difference between the effective index of the modes, the higher

the phase shift. By reducing the group velocity of the high-order mode we increase the

effective index differences when a change in the cladding is produced. In addition, this

conclusion can be extrapolated to changes not only in the cladding but also in the silicon

core, to extend the use of the interferometer beyond sensing.

Figure 2.19 illustrates how bimodal waveguides are formed in one-dimensional

photonic crystals for larger periodicities than the ones shown with the SWG structures.

Here diffraction and reflection effects are not suppressed and photonic bandgaps are

therefore produced when the bands reach the end of the first Brillouin zone17 [28], see

the PBG of the left graph of Fig. 2.19. In this case the unit cell dimensions are not

sufficiently large to support more than the fundamental mode, so the entire band diagram

is formed by this mode β0 folded into the Brillouin zone. In contrast, for a PhC with larger

dimensions a second mode β1 appears and interacts with the fundamental mode in the

band formation. In the right graph of Fig. 2.19 the second mode β1 intersects with the

folded fundamental mode β0, which couple with each other and form an anti-crossing

point where no modes are allowed to propagate [83, 84]. Within this region a second PBG

is formed, around which the bands are composed by a mixture of the fundamental and the

high-order modes. For the band above the second PBG, a bimodal behavior is obtained,

in which the fundamental β0 mode becomes highly dispersive as it reaches the end of the

Brillouin zone. On the other hand, in the case of the band below the second PBG, is the

higher order mode β1 that becomes dispersive as it nears the Brillouin zone edge. This

band is of particular interest since the desired bimodal operation previously studied is

produced, where the higher order mode works in the slow light regime with very low group

velocity values compared to the fundamental mode. Slow light phenomena enhances

17 In Fig. 2.19 only the irreducible Brillouin zone is shown although no specific values are given. The limit of the
horizontal axis would correspond to a wavevector in the propagation direction, or propagation constant, of 0.5 π/a.
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linear a non-linear optical effects as well as enlarge light-matter interactions with the

surrounding medium [67]. This effect is visible in Fig. 2.19, when the bands nearing the

PBGs present a gentle slope. Since these bands will be shifted when the refractive index

is tuned, very large increments in the effective indices are obtained due to the shallow

gradient of the modes within the slow light region [85, 86].

In chapter 4 we explore the band formation of bimodal PhCs for the creation of

high-performance interferometers by reducing the group velocity of the high-order mode

to enlarge the optical path while maintaining a short physical length. These effects are

investigated for modes of the same even parity and also for the odd parity, specifically

to develop refractive index sensors, modulators and switches with drastically reduced

footprints.
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Fig. 2.19 Band structure representation of one-dimensional photonic crystals. The example on
the left side hand schematically shows the behavior of the bands for a single mode configuration.
On the right side hand, the band structure of a bimodal configuration is depicted. The solid lines
show the bands of the periodic structure, while the dashed lines represent the hypothetical bands
of a uniform non-periodic waveguide of similar dimensions.



Chapter 3

Subwavelength grating bimodal
waveguides

Artificially engineered materials in the subwavelength scale have been known and

used for over fifty years in the field of free-space optics [87, 88]. Early studies

on subwavelength designs were reported in laminar semiconductor structures with

nonlinear optical properties [89, 90], although it was not until the next century when the

subwavelength phenomena was implemented in periodic dielectric waveguides [91–94].

Since then, SWG structures, as synthesized materials with a controllable refractive index,

have been exploited for a plethora of photonic applications such us input couplers,

multiplexers, waveguide crossings or all-optical switches, among others [94–99]. More

recently, anisotropy and dispersion effects have been proved in SWGs in order to

provide broadband operation in integrated optical devices as beam splitters, multimode

interferometers, polarization controllers, mode converters, densely integrated wavguides

and gradient-index lenses [100–106]. At the same time, SWG structures have found

application in evanescent-wave based sensors as a result of the high field delocalization

that interacts with the substance of interest [107, 108]. Due to their the outstanding

sensitivty, conventional structures like ring-resonators have been redesigned using SWG

waveguides to develop enhanced biosensors with very low limit of detection values

compared to other sensing architectures [109–116].

This chapter includes original contributions on subwavelength periodic waveguides

for bimodal interferometry in refractive index sensing applications. In Paper A we

introduce the theoretical design of a bimodal sensor based on the dispersion effects

typical of SWGs for the enhancement of the spectral sensitivity. Paper B address the

experimental demonstration and reports a record-high bulk sensitivity value in the

state-of-the-art of silicon-based sensors.
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Single-channel bimodal interferometric sensor using subwavelength
structures

Luis Torrijos-Morán and Jaime García-Rupérez

Nanophotonics Technology Center, Universitat Politècnica de València,

Camino de Vera s/n, 46022 Valencia, Spain

A novel configuration of photonic sensor based on a single-channel bimodal

interferometer is proposed. The design consists of a subwavelength grating

(SWG) periodic structure supporting two dispersive TE-like modes that interfere

at the output to create fringes in the transmission spectrum. Dispersion relations

of the bimodal periodic structures have been computed in order to study the

sensing performance, obtaining a theoretical bulk sensitivity of ~1300 nm/RIU

and a surface sensitivity of ~6.1 nm/nm. FDTD analysis has been also carried

out to confirm the sensitivity results previously obtained, showing a perfect

agreement between theoretical modelling and simulation.

3.1.1 Introduction

Electromagnetic wave propagation through periodic dielectric media has been widely

studied in the literature for a huge range of configurations and applications, among which

we can find periodic structures for sensing purposes [1,2]. Within this field, the most

relevant examples are photonic crystals (PhCs), which consist of a periodic dielectric

repetition in the space for one, two or three dimensions. They were firstly described in

detail in [3] as a powerful tool for the implementation of all kind of photonic devices,

being later used for a wide range of applications such as modulators, delay lines or

filters [4,5]. Various types of photonic crystals have been also demonstrated for sensing

applications [6–8], offering several advantages in terms of sensitivity and compactness as

a consequence of their inherent dispersion properties.

More recently, other type of periodic structures have emerged as a promising

alternative in the biosensors field: the so-called subwavelength grating (SWG) structures.

These structures can be considered as uniaxial PhCs with lower periodicity values so

that the light propagates through the structure as if it were a homogeneous medium, in

comparison to the Bragg’s behavior occurring in PhCs [9]. Moreover, for periodicity values

lower than the wavelength of light, the refractive index (RI) of the resultant metamaterial

can be engineered to create photonic devices with enhanced properties. This is the

case of broadband beam splitters based on a SWG structure where dispersion control
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was used [10,11], tilted structures controlling anisotropy [12] or high-performance ring

resonator (RR) sensors whose sensitivity is around three times that of a conventional

RR sensor [13].When a cladding RI variation takes place, the effective index change of

a SWG waveguide mode is significantly higher than for a normal strip waveguide due to

the interaction of not only the evanescent field but also the field of the propagating mode

itself [14,15]. This fact has given rise to the appearance of new photonic sensors based on

SWG configurations, offering remarkable advantages respect to the old existing ones and

opening new opportunities in this area.

At the same time, integrated interferometers have been commonly used as sensors

in lab-on-a-chip (LoC) devices during the last years, with great advantages in terms

of sensitivity for label-free detection [16]. Among them, Mach Zehnder Interferometer

(MZI) is the most representative configuration [17,18] although it needs from additional

structures like MMIs or power splitters to perform the sensing. In addition, different

approaches have been reported in the study of interferometric sensors with enhanced

sensitivities in spectral interrogation-based sensing [19]. A MZI with different waveguide

widths between both arms was experimentally demonstrated for this effect in [20],

reporting really high bulk sensitivity values as a consequence of the differential phase shift

between the excited modes. On the other hand, single-channel interferometer sensors

such as bimodal waveguides appear as one of the best options for integration purposes

in LoC devices due to their simplicity and outstanding surface sensitivity for biosensing

[21–25]. The sensing principle of these sensors is based on the phase shift produced

between the two first TE modes propagating through a bimodal waveguide and measured

at the output by a photodetector. However, long bimodal sections are required in order

to achieve enough phase shift sensitivity as it scales with sensor length, leading to large

footprints of several millimeters or even centimeters.

In this paper, we report the design of a new modal sensor by using a SWG waveguide

as a single-channel interferometer. This concept encompasses the benefits of SWG

structures in terms of high sensitivity to effective indices variations, while maintaining

the characteristics and benefits of bimodal interferometric waveguides. Moreover, as

a consequence of working with periodic structures, dispersive modes can be obtained

for the SWG structure while behaving like a homogenous medium, what also introduces

some of the advantages of PhCs for sensing. As a result, a differential phase shift

providing an extremely high spectral sensitivity is obtained, without the need of large

paths and additional photonic structures. Band diagrams of the two first TE-like modes

were computed to obtain the differential phase shift between them, as well as FDTD

simulations to check the spectral response of the sensor under different sensing scenarios,

showing bulk sensitivities around 1300 nm/RIU and surface sensitivities of 6.1 nm/nm.

This work expands the use of SWG structures for interferometric sensing purposes,
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exhibiting high sensitivities and allowing its integration in reduced footprints of only few

microns.

3.1.2 Operation theory

When an object structure is larger than the wavelength of light, its electromagnetic

behavior can be modelled by the Snell’s law using reflection, diffraction and refraction

coefficients. Wave propagation through a periodic repetition of this kind of structures

gives rise to a lossy system where no light is guided as a consequence of scattering effects

[26]. Conversely, if we consider a periodic medium whose lattice constant is much smaller

than wavelength, light propagates through the structure as if it were a homogenous

medium where diffraction effects are suppressed, thereby obtaining a SWG configuration.

Between these two regimes, when the periodicity is not small enough to avoid diffraction,

rigorous solution of Maxwell’s electromagnetic equations is needed to describe the optical

properties of the resultant structure: a PhC. The most common way to delimit these

regions and to determine whether we are working in the SWG regime or not is described

by the expression λ/Λ>2ne f f where λ is the operating wavelength and Λ is the periodicity

value [27].

Here, we work with periods close to the SWG limit and near the PhC zone, where

the periodic structure supports two true lossless modes as a consequence of working in

the subwavelength regime but with some of the dispersion properties typical of periodic

structures. This fact generates non-linear phase shifts falls between both modes that

cannot be obtained with a normal bimodal waveguide. The design of the proposed sensor

is presented in Fig. 1. It is composed by a SWG bimodal section with a width enough to

support two guided TE-like modes with different symmetry in the ‘x’ axis (even and odd)

for the wavelength range of interest. By properly placing the single mode waveguide used

as input port, both modes of the SWG section are excited. After propagating through the

bimodal section, these two modes will interfere and contribute to the excitation of the

fundamental mode of the single mode waveguide used as output port. The output power

will therefore depend on the phase shift between both modes, creating constructive or

destructive interferences when the differential phase is an even or an odd multiple of π,

respectively. These interferences will give rise to the appearance of spectral dips in the

transmission spectrum for those wavelengths where the modes interfere destructively.

The wavevector difference between the SWG modes for a given cladding RI can be

expressed as ∆kn1 = k1 −k2 where k1,2 are the wavevectors in the propagation direction of

the even and odd modes, respectively. When a RI variation is produced in the cladding of

the SWG sensing structure, the differential phase shift between both modes is described

by the following equation:
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∆φ= L|δk1 −δk2| (1)

where L is the length of the SWG bimodal section and δk1,2 are the wavevectors

differential for a small change in the cladding RI. Taking into account the dispersion

properties of the guided modes, non-linear phase shifts as a function of wavelength are

obtained. Consequences of this effect are studied by calculating the dispersion diagrams

of the periodic structures and how they behave for changes of the cladding RI. In the

following sections, we study how to benefit from dispersion effects in a bimodal SWG

interferometric structure to enhance the spectral sensitivity.

3.1.3 Sensitivity analysis

Bulk sensing

In spectral interrogation based sensors such as resonators, the sensitivity is measured

from the spectral shift suffered by the spectral features of interest when a change in the
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Fig. A.1. Schematic representation of the proposed SWG bimodal sensor where ‘Λ’ is the period,
‘DC ’ the duty cycle of the SWG elements, ‘w ’ the width of the SWG elements, ‘h’ the height and
‘ws ’ the width of the input and output waveguides. The length ‘L’ is determined by the number of
elements N : L = (N −1+DC )*Λ. The inset schematically shows the profile of the propagating
modes.
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refractive index of the cladding is produced [28]. This type of sensors can define its bulk

sensitivity as [29]:

Sb = δλ f

δnc
(2)

where δλ f expresses the shift in nm of a spectral feature for a differential change

in the cladding RI δnn measured in refractive index units (RIU). In this type of

spectral interrogation based sensors, it has been demonstrated both theoretically and

experimentally that significantly higher spectral shifts are obtained when using SWG

structures, since a dramatic change in the modes propagation constant is produced

[13]. These sensing benefits of SWG-based sensors do not only lie in a stronger mode

delocalization, but mainly in the direct interaction of the optical field with the target

medium in the gaps of the SWG elements.

By multiplying and dividing the expression in Eq. (2) by δφ, we obtain an analytical

expression for the bulk sensitivity as a function of the phase shift between the even and

odd modes of the SWG bimodal sensor:

Sb = δφ/δnc

δφ/δλ f
(3)

As it can be seen, the sensitivity is inversely proportional to the phase derivative with

respect to the wavelength. Because of this, the bulk sensitivity can be analytically infinite

as long as the slope of the phase as a function of wavelength reaches zero. This critical

lambda point appears for those values where δφ/δλ f = 0, as it is reported in [19], and

consequently, higher sensitivities are achieved as we get closer to this working point.

Several simulations using MIT Photonics Band (MPB) free software have been carried

out in order to obtain the electromagnetic modes of the periodic SWG sensing structure

and their dispersion relations. This software computes definite-frequency eigenstates

of Maxwell’s equations in fully-vectorial and three-dimensional spaces, calculating

dispersion relations of the periodic structures for different wavevector points [30]. We

have considered a SWG structure made of silicon (n = 3.47) over a silica substrate (n = 1.44)

and an aqueous environment as upper cladding (n = 1.36), for which two TE-like modes

are supported for an operation wavelength around 1550 nm when the design values are

Λ = 290 nm, DC = 50 %, w = 1400 nm and h = 220 nm. Due to scaling properties of

periodic configurations, the bimodal region can be shifted to other operating wavelengths

by properly selecting the period of the structure. The band diagrams obtained for the

even and odd TE-like modes of this SWG structure are shown in Fig. 2(a), while Fig. 2(b)

shows the phase shift between these two modes as a function of wavelength for different

cladding RIs.
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Fig. A.2. (a) Dispersion relations of the even and odd TE-like modes of a SWG bimodal structure
of period Λ= 290 nm, DC = 50%, w = 1400 nm and h = 220 nm, under an aqueous environment
as cladding (n = 1.36). (b) Phase shift as a function of wavelength between both modes for a
cladding of 1.36 RIU and for a RI change of ∆n = 0.07 RIU; N = 40 periods have been considered.

The first thing we can highlight from Fig. 2(b) is that the sign of the wavelength

shift changes from positive to negative values as we move towards higher wavelengths,

obtaining a zero-sensitivity point between these two regions for which the phase remains

the same regardless the RI of the cladding. We can also observe that an abrupt fall in

the phase shift with respect to the wavelength is produced for lower wavelengths, what

is determined by the highly dispersive behavior of the even and odd modes near the

edge of the Brillouin zone, as shown in Fig. 2(a). Contrary for higher wavelengths, the

group velocity of the odd mode increases and starts becoming non-dispersive, provoking

a change in the trend of the phase shift and therefore to the appearance of lower slopes as

a function of wavelength. Taking into account this fact, the maximum sensitivity appears

for the spectral fringes located in the critical sensitivity zone, which is defined as the

highest wavelength spectral region where the bimodal condition is obtained, in which

the phase slope is close to zero, as it was determined in Eq. (3). Note that, for even higher

wavelengths, the odd mode goes below the light cone of the silica lower cladding and

becomes a leaky mode, so this spectral region is not considered for the operation of the

SWG bimodal interferometer sensor. Finally, we can also highlight that the odd mode

presents a lower effective index than the even mode, thus having a higher interaction with

the surrounding medium since it is less confined.

The influence of the duty cycle over the phase shift is depicted in Fig. 3(a) under an

aqueous environment of 1.36 RIU and when a RI increment of 0.01 RIU is considered. It

can be seen how the wavelength shift increases with the duty cycle due to the reduction
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of the slope of the phase shift as a function of wavelength for higher duty cycles. However,

additional propagating modes might be supported by the SWG structure when the duty

cycle is increased, thus losing the bimodal condition required for the operation of the

interferometric sensor. In addition, critical sensitivity regions are narrower for higher

duty cycles, making it more difficult to design spectral dips at those zones. Therefore,

a trade-off is produced between sensitivity and proper operation, obtaining good results

for average values of the duty cycle.
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Fig. A.3. (a) Phase shift between both modes of the SWG bimodal structure for different duty
cycles. Dashed and solid lines show the phase shift for a cladding RI of 1.36 RIU and 1.37 RIU,
respectively. Design parameters are Λ= 290 nm, DC = 50 %, w = 1400 nm and h = 220 nm.
(b) Numerical wavelength shift as a function of the cladding RI for different duty cycles at 1665
nm. Note that the spectral features located in the critical sensitivity region are shifted towards
lower wavelengths for increments of the cladding RI, so absolute values of the wavelength shift
are considered. (c) Bulk sensitivity comparison between the numerical and the semi-analytic
calculations obtained using Eq. (3) at an operation wavelength of 1665 nm.
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Figure 3(b) depicts the sensitivity curves for the different duty cycles considered in the

study. They have been numerically calculated from the MPB band diagrams by obtaining

the absolute value of the wavelength shift between both modes when considering

cladding RI variations being multiple of 3.3 × 10-3 RIU. An operating wavelength of λ =
1665 nm has been considered to calculate the sensitivity, since it is within the critical

sensitivity range and close to the light cone for the considered design. Bulk sensitivity

values of 778.28 nm/RIU, 1065.1 nm/RIU and 1202.9 nm/RIU have been numerically

obtained for duty cycles of 40 %, 50 % and 60 %, respectively. In comparison with the

literature, a sensitivity of 490 nm/RIU was experimentally obtained using a SWG RR [13].

This sensitivity value was recently enhanced by using a multi-box SWG RR, presenting

bulk sensitivities of 580 nm/RIU [31]. Therefore, our proposed sensor configuration

theoretically shows bulk sensitivities more than twice of that reported for other spectral

interrogation based SWG sensors, what represents a significant step forward within this

type of structures. Note that similar sensitivities to those calculated for our bimodal SWG

sensor have been also obtained for other configurations, as for example when using slot

waveguide RRs [32]. However, the fabrication of this type of structures is significantly

more challenging than for the relatively simple bimodal SWG configuration proposed in

this work.

Additionally, semi-analytical bulk sensitivities have been also calculated using Eq.

(3) by applying finite differential derivatives, with respect to the cladding RI and the

wavelength, on the phase shifts obtained in MPB. A comparison between the numerical

and semi-analytical results are presented in Fig. 3(c), showing a good agreement for

the different duty cycles considered. However, the difference between numerical and

semi-analytical results increase with the duty cycle, obtaining a sensitivity as high as 1298

nm/RIU for the semi-analytical study in the case of a DC of 60 %. Finally, it should be

noted that the bulk wavelength sensitivity does not directly depend on the sensor length

if we are measuring the spectral shift. By increasing the sensor length, we can increase the

number of fringes appearing at the same spectral range, but the wavelength shift of each

spectral feature will remain the same.

Surface sensing

The surface sensitivity relates the shift of a given spectral feature with the thickness of

a certain layer with a different RI than the cladding, considering what happens when a

certain biological substance is deposited over the sensor. In the literature, it is defined in

nm/nm by the following expression for spectral interrogation based sensors [33]:

Ss =
∆λ f

ρl ayer
(5)
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where ∆λ f is the feature spectral shift and ρl ayer is the thickness of the deposited layer.

The surface sensitivity has been numerically calculated using MPB for several thicknesses

of a layer deposited over the SWG sensing structure and considering an operation in the

critical sensitivity region. Figure 4(a) shows the surface sensitivity results obtained for

different duty cycles as a function of the layer thickness, while Fig. 4(b) depicts the surface

sensitivity as a function of the wavelength for a SWG structure of 60 % duty cycle when

the thickness of the deposited layer increases from 10 nm to 100 nm. Note that since high

wavelength shifts of the bimodal region are obtained when different layers are considered,

we cannot obtain a common operating wavelength for all thicknesses. Therefore, we have

considered as operating wavelengths those where maximum surface sensitivity values are

placed. Hence, in order to obtain the maximum surface sensitivity results as possible

in future designs, the operating wavelength will depend on the thickness of the specific

biolayer to be detected.

A maximum surface sensitivity of 6.138 nm/nm has been obtained for a layer thickness

of 60 nm in the case of 60 % duty cycle. As it was explained before, results are strongly

dependent on the duty cycle, considerably enhancing the surface sensitivity by a factor
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Fig. A.4. (a) Surface sensitivity as a function of the layer thickness ρ for the SWG bimodal
sensor in an aqueous environment for different duty cycles. The inset depicts the cross section of
the transversal SWG elements in the y − z plane with the deposited layer. A RI of 1.48 RIU is
considered for the deposited layer. (b) Surface sensitivity as a function of wavelength for different
layer thicknesses and a duty cycle of 60 %. The layer thickness goes from 10 nm (light blue) to
100 nm (purple). Note that sensitivity values have been calculated considering only wavevectors
for which the modes remain above the light cone of the silica lower cladding.



60 Subwavelength grating bimodal waveguides

higher than three in the case of 60 % compared to the case of 50 %. This is due to

the significant reduction of the phase slope obtained for duty cycles above 50 %, as it

was previously shown in Fig. 3(a). On the other hand, surface sensitivity decays for

certain thicknesses due to the overlap of the deposited layer within the gap of the SWG

elements. These outstanding results are obtained thanks to the direct interaction of the

optical modes with the deposited layer, obtaining maximum sensitivity values when the

hole is totally filled with the target substance. Such big layers around 60-70 nm could

be interesting in biosensing applications, for example, in the recognition of viruses or

other biological substance with similar dimensions. Nonetheless, the detection of small

protein layers of few nanometers is still feasible using this sensor, since more than 2

nm/nm of surface sensitivity is obtained for a thickness of 10 nm, making it a promising

configuration for biosensing purposes.

Revising the literature, surface sensitivity values around 0.4 nm/nm have been

previously presented for a conventional RR sensor working for TM polarization; these

values have been recently increased until 1 nm/nm and 2 nm/nm for a SWG RR and for a

multi-box SWG RR, respectively, all of them for small layer thicknesses around 10 nm [34].

Our results show better surface sensitivities for this thicknesses range when considering a

60 % duty cycle and an ultrahigh sensitivity behavior for layers around 60 nm, compared

to the values below 0.5 nm/nm reported in the multi-box SWG RR for thicker layers.

3.1.4 Spectral analysis

SWG bimodal sensor excitation

FDTD simulations have been carried out using CST Studio software with the aim of

analyzing the sensor response when it is excited using the single mode access waveguides.

In order to properly excite both modes, an asymmetric coupling of the single mode

waveguide in the x axis is needed. The field distribution of the even and odd modes of

the SWG structure, calculated by using RSOFT software, is depicted in Fig. 5(a) as well as

the profiles of the modes in Fig 5(b). It can be seen that both modes are confined inside

the silicon elements of the SWG structure in the case of the x component of the electric

field. However, high values of the z component distribution are located within the gaps,

what explains the strong field interaction with the cladding. From Fig. 5(b) we can observe

that the x−axis of the even mode is strongly localized in the center of the SWG structure,

while the odd mode is distributed on its outer sides. So, in order to properly excite both

modes, the single mode access waveguide has to be displaced respect to the center of the

SWG structure (x = 0 position). Figure 5(c) shows the transmission spectra calculated for a

SWG bimodal sensor with a duty cycle of 50 % when different lateral positions of an access
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electric field for both modes in the x−axis at y = 0 and z = 0. (c) Transmission spectra for a
50 % duty cycle SWG bimodal structure as a function of the displacement ‘d ’ of a single mode
waveguide of width ws = 450 nm at the input and output. A length of N = 120 elements has been
considered for the calculations.

waveguide of width ws = 450 nm are considered (centered access waveguide - d = 700

nm / displaced access waveguide - d = 375 nm). An interference fringe can be observed

in the spectrum for the displaced waveguide excitation, while an almost flat spectrum is

obtained when the single mode waveguide is centered since only the even mode is excited.

Finally, note that the number of spectral dips available can be significantly increased by

simply increasing the length of the SWG bimodal sensor since higher phase shifts are then

reached for the same range of wavelengths.
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Spectral sensing response

The transmission spectrum of the SWG bimodal sensor has been obtained using FDTD

simulations when considering different RI claddings, in order to study the sensing

characteristics of the final device. As it was previously seen, bulk sensitivity depends on

wavelength since the phase shift between the SWG modes shows a non-linear behavior

and it reaches an almost zero slope for higher wavelengths within the bimodal bandwidth.

Therefore, an accurate design of the sensor is key to obtain optimum spectral dips at

critical sensitivity wavelengths to take maximum advantage from the sensor. Making the

sensor longer produces more spectral features in the bimodal region, easing the design

of high sensitivity fringes. However, when the cladding RI changes, so does the fringe

wavelength and consequently its sensing performance.

Figure 6(a) shows the sensor behavior of the higher wavelength spectral feature

appearing in the spectrum for two different duty cycles (see Fig. 6(b)). The SWG structures

have been designed in order to obtain that spectral feature around 1665 nm with the

purpose of being able to compare the FDTD results with those previously obtained

using MPB. In order to locate the spectral feature at that wavelength, we have simply

properly selected the number of transversal elements considered in the SWG bimodal

structure (N of 120 and 220 for duty cycles of 50 % and 60 %, respectively). Sensitivities

of 1070.1 nm/RIU and 1375.5 nm/RIU have been obtained for duty cycles of 50 % and

60 %, respectively. Additionally, Fig. 6(c) depicts the x−component of the electric

field distribution in FDTD at operating wavelengths corresponding to constructive and

destructive interferences.

Moreover, the use of two significantly different lengths also allows us to demonstrate

that the spectral shift sensitivity is independent of the sensor length, as well as to confirm

that a higher number of spectral fringes is obtained for longer structures (see Fig. 6(b)).

It should also be noted that deeper dips are achieved for lower wavelengths, indicating

that both SWG modes are almost equally excited, while that modal excitation is not as

balanced for higher wavelengths and shallower dips are obtained. Additionally, spectral

dips are narrower and more grouped for lower wavelengths as a consequence of the

dispersion properties of the odd mode at this region. These two factors make that higher

quality factors are achieved for the spectral dips located at lower wavelengths. Therefore,

although the spectral sensitivity does not directly depend on the coupling ratio between

the two modes and on the number of elements N , these are two important parameters

to optimize in future experimental developments, since an increase of the quality factor

of the spectral dips will allow enhancing the limit of detection of the sensor. On the

other hand, we have also to consider that an increase in the number of elements N

will be translated into higher propagation losses that could negatively affect the sensor
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performance. However, as it has been previously explained, the dispersive behavior of the

modes propagating in the SWG structure allows to obtain a very high sensitivity without

the need of very long lengths, what will also contribute to reducing the insertion losses of

the sensor.

Finally, a comparative study between the results obtained in MPB and those from the

FDTD simulations is presented in Fig. 7. As it can be observed, both approaches match

perfectly: the theoretical semi-analytic study of the sensitivity using Eq. (3) with the

dispersion relations calculated using MPB and the shift of the spectral fringes measured

when making a FDTD analysis of the complete structure.

Δλ=28nm

Δλ=20nm

x

z

x

z

2.34e7

-2.34e7

V/m

Ex field at y=0

Ex field at y=0

in out

in out

N=36, λ=1570nm

N=36, λ=1515nm

Δncladding (RIU)
0 0.005 0.01ab

so
lu

te
 w

a
ve

le
ng

th
 s

hi
ft 

(n
m

)

0

5

10

60% DC 
50% DC

(a) (b)

(c)

1375.5 nm/R
IU

1070.1 nm/RIU

wavelength (nm)

1500 1550 1600 1650 1700
-30

-20

-10

0

n=1.35 n=1.37

wavelength (nm)

1500 1550 1600 1650 1700
-30

-20

-10

0

n=1.35 n=1.37tr
an

s.
 5

0%
D

C
 (

d
B

)
tr

an
s.

 6
0%

D
C

 (
d

B
)

Fig. A.6. (a) Spectral shift as a function of cladding RI variations for 50 % and 60 % duty
cycles with N = 120 and N = 220 periods, respectively. Design parameters are Λ = 290 nm,
w = 1400 nm, h = 220 nm and d = 375 nm with a silica lower cladding and under an aqueous
environment of 1.36 RIU. (b) Transmission spectra for 50 % duty cycle (top) and 60 % duty
cycle (bottom) at different RI scenarios. The shaded areas represent the spectral shift of the
interference fringes for a cladding RI increment from 1.35 RIU to 1.37 RIU. (c) x−component
of the electric field at y = 0 slice, for N = 36 periods and 50 % duty cycle. The upper contour
map represents maximum transmission for a wavelength exhibiting constructive interference. The
lower contour map depicts minimum transmission for a wavelength where a spectral dip is located
(i.e., destructive interference). Note that for this number of SWG elements N , spectral dips are
located at different wavelengths regarding the previous spectrum.
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3.1.5 Conclusions

A new sensor concept including SWG structures and single-channel bimodal

interferometers has been presented. The combination of these two concepts allows

significantly increasing the sensitivity of the device while keeping a compact size. The

theoretical background of the SWG bimodal behavior has been studied, as well as its

influence in creating critical sensitivity regions in spectral based sensors. A strong

dependence with the duty cycle has been determined, since it influences the evolution

of the phase shift as a function of wavelength, and thus, the sensitivity. As a result,

ultrahigh bulk sensitivity values that can go even above 1300 nm/RIU have been obtained

both semi-analytically using the dispersion relations of the propagated modes and by

means of FDTD simulations. These sensitivity values improve by a factor of 2.5 those

reported for SWG RRs, by a factor of almost 6 those reported for conventional RRs and

are similar to those reported for other more complex configurations as for the case of

slot RRs. Additionally, surface sensitivity has also been studied, obtaining values of up to

6.138 nm/nm for 60 nm-thick layers, which are, to the best of our knowledge, the highest

reported in the literature for integrated photonic sensors on silicon. Furthermore, the

SWG bimodal interferometric sensor also presents outstanding surface sensitivity values
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of more than 2 nm/nm for thicknesses of few nanometers, similarly to the best results in

SWG RRs.
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Over the recent years, subwavelength grating (SWG) structures have

increasingly attracted attention in the area of evanescent-field photonic sensors.

In this Letter, for the first time to the best of our knowledge, we demonstrate

experimentally the real-time refractive index (RI) sensing using the SWG bimodal

interferometric structures. Two different configurations are considered to

compare the effect of the nonlinear phase shift, obtained between the two first

transverse electromagnetic propagating modes, in the measured bulk sensitivity.

Very high experimental values up to 2270 nm/RIU are reached, which perfectly

match the numerical simulations and significantly enhance other existing SWG

and spectral-based sensors. By measuring the spectral shift, the obtained

experimental sensitivity does not depend on the sensor length. As a result, a

highly sensitive and compact single-channel interferometer is experimentally

validated for refractive index sensing, thus opening new paths in the field of

optical integrated sensors.

3.2.1 Introduction

A periodic dielectric configuration having a lattice constant smaller than the wavelength

of light can be considered a homogeneous anisotropic material in which the

electromagnetic wave propagation is feasible [1]. This is the case of the so-called

subwavelength gratings (SWGs), first described in [2–4] as an alternative type of silicon

waveguides and later on extended to all kind of integrated photonic applications [5,6].

More recently, SWG structures have been reported in the literature for refractive index

(RI) sensing [7], providing very high bulk and surface sensitivities due to a stronger

light–matter interaction with the surrounding media than for conventional waveguides.

As a consequence, several sensor configurations such as ring resonators have been

redesigned using SWG structures [8–11], exhibiting a superior performance in terms of

both the sensitivity and limit of detection. Moreover, SWG also offer additional dispersive

properties [12] that can be exploited to develop, for instance, broadband directional

couplers [13], beam splitters [14], polarization controllers, [15] and densely integrated
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waveguides [16]. Within this context, we proposed in a previous work the use of a bimodal

SWG waveguide as a spectral-interrogationbased sensor [17], where high-sensitivity

values were theoretically obtained as a result of the inherent dispersive behavior of SWG

structures. On the other hand, similar single-channel interferometers in homogeneous

structures have been extensively studied and validated for biosensing purposes [18–20].

In these cases, the sensing performance has been determined by measuring the phase

shift, which scales directly with the sensor length, and with the main drawback that large

dimensions are required to reach high sensitivities.

In this Letter, we experimentally demonstrate for the first time, to the best of our

knowledge, the use of SWG bimodal waveguides as high-performance single-channel

interferometric sensors. The underlying idea is to take advantage of the SWG dispersion

properties to enhance the spectral shift of a certain interference dip in the spectra. As

a result, we show an experimental bulk sensitivity of 2270 nm/RIU for a compact SWG

bimodal device being only ~125 µm long.

3.2.2 Results

The sketch of the proposed configuration is depicted in Fig. 1(a), where a single transverse

electromagnetic (TE) mode waveguide, acting as the input port, excites the first two TE

modes of the bimodal SWG waveguide. Similarly, these two modes will contribute to the

excitation of the fundamental mode of the output single-mode waveguide. At this point,

the transferred power will depend on the phase shift between the propagating modes of

the SWG structure, creating an interference pattern in the transmission spectrum. By

tracking the position of a certain spectral dip in the spectrum, caused by a destructive

interference between both modes, we can determine the sensitivity of the sensor under

different bulk RI variations. In this kind of spectral-interrogation-based sensors, bulk

sensitivity can be mathematically expressed as follows [17]:

Sb = δλ f

δnc
= δφ/δnc

δφ/δλ f
(1)

where δλ f is the differential shift of the spectral dip in nm, δnc is the differential RI change

of the cladding in refractive index units (RIU), and δφ is the differential phase shift in

radians between the two interfering modes. According to Eq. (1), low slopes of the phase

shift as a function of wavelength will increase the the periodic SWG structures created on

silicon (n = 3.47) over a silica substrate (n = 1.44) were computed using the MIT Photonics

Bands (MPB) free software [see Fig. 1(b)]. The design dimensions were the following:

SWG bimodal waveguide width wsw g = 1400 nm, height h = 220 nm, lattice period Λ1 =
260 nm, and transversal elements width wi = 160 nm. In the beginning of the bimodal
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region, at approximately 1500 nm, the even mode is more dispersive than the odd one.

In contrast, for higher wavelengths, the even mode becomes less dispersive than the odd

mode, producing lower slopes of the phase shift as a function of wavelength, as shown in

Fig. 1(c). This fact will provoke high wavelength shifts for those spectral features located at

the low-slope wavelength regions. By using different SWG periodicity values, we can tune

where this effect occurs and study its influence in the shift of the spectral dips. In Fig. 1(c),

we show the evolution of the phase shift as a function of wavelength forΛ1 = 260 nm, wi =
160 nm, and a secondary design of Λ2 = 280 nm and wi = 180 nm. At higher wavelengths,

the slope of both configurations decreases, which will be translated into high spectral

shifts of the dips, as indicated by Eq. (1). Nonetheless, for standard operating wavelengths

at approximately 1550 nm, this effect will be theoretically higher for the SWG structure of

Λ1 = 260 nm, since we are working in a flatter phase shift region than for the Λ2 = 280 nm

configuration.

For the experimental demonstration, the sensor was accessed in and out with a

single-mode waveguide of width ws = 450 nm. Due to symmetry conditions of the modes

field distribution [see Fig. 1(d)], the access single-mode waveguides must be displaced

a certain distance “d” with respect to the x = 0 point to excite the odd parity mode in

the SWG region [see Fig. 1(e)]. A displaced distance d = 350 nm was used for an optimal

excitation of both SWG modes.

These designed SWG structures were fabricated on a silicon-on-insulator (SOI) wafer

with an upper silicon layer thickness of 220 nm and a buried silica layer of 2 µm. Electron

beam lithography, with an acceleration voltage of 30 KeV and an aperture size of 30 µm,

was used in the exposure process on an HSQ negative resist, and inductively coupled

plasma etching of the top silicon layer was employed to transfer the resist patterns into

the SOI wafer. Scanning electron microscope (SEM) images of the fabricated SWG sensors

are depicted in Figs. 1(d) and 1(e).

The optical characterization of the fabricated sensors was carried out using a coherent

TE polarized light from a tunable laser (Keyshight 81980) vertically coupled into the chip

using grating couplers. Light collected at the output is measured using an optical power

meter (Keyshight 81636B) synchronized with the laser sweep. A LabVIEW application was

programed to continuously save the spectrum data, and thus being able to perform time

evolution experiments.

First results of the transmission spectra are shown in Fig. 2(a) for a SWG structure

of N = 480 elements, normalized with respect to a uniform reference waveguide in dB

units. The sensor was covered with pure deionized water (DIW) and with a dilution of

6% ethanol (EtOH) volume in DIW, added gradually on the initial pure DIW dilution to

obtain the desired concentrations. The dilutions were directly dropped onto the sample



74 Subwavelength grating bimodal waveguides

w Λ

W
wsPin

β
even

β
odd

h

β0 β0
Pout

z

xy

Λ =260nm

Λ =280nm2

1

(a)

(d)

odd modeeven mode

200nm(b)

1μm

d

swg

i

(c)

k
z
 (2π/Λ)

0.2 0.3 0.4 0.5

λ 
(n

m
)

800

1200

1600

2000

2400

λ (nm)
1400 1500 1600 1700

Δ
φ

(2
π

ra
d
)

34

38

42

46

even

odd
lightcone

(e)

Fig. B.1. (a) Sketch of the proposed bimodal SWG sensor and its design parameters. (b)
Dispersion diagram of even and odd modes with w = 1400 nm, h = 220 nm, Λ1 = 260 nm, and
wi = 160 nm. (c) Phase shift “∆φ= L ∗ (βeven −βodd )” between the even and odd modes as a
function of wavelength for Λ1 and Λ2 = configurations, and N = 480 elements. (d) Electric field
energy density of the TE even and odd modes excited in the SWG bimodal region. They are
depicted over a SEM image of the fabricated structure. (e) SEM image of the interface between
the SWG bimodal waveguide and the single-mode access waveguide, showing an input–output
displacement distance of d = 350 nm.

and measured afterwards. According to [22], the RI of these dilutions can be linearly

approximated (in mass) for these working conditions (Λ = 1550 nm at 25°C), obtaining

a value of nD IW = 1.3173 and nEtOH6% = 1.3205. The experimental data present a ripple, as

a consequence of the Fabry–Perot resonances produced in the SWG discontinuities, that

could have a negative effect on the limit of detection since the minimum of the spectral

response could not be easily tracked in future biosensing experiments. For that reason,

a Lorentzian fitting was applied to the raw data of each spectral dip to better follow the
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evolution of the minimum. As it was theoretically predicted in [17], the spectral dips are

shifted toward lower wavelengths when the RI of the dilution increases [see Fig. 2(a)].

In addition, it can be seen how the absolute wavelength shift of the spectra for Λ1 =
260 nm is higher than that obtained for the spectra of Λ2 = 280 nm. This is due to the

lower phase shift slope as a function of wavelength obtained for the Λ1 configuration in

comparison with the Λ2 configuration, and for our experimental wavelength range, as

previously described. In addition, note that the spectral shift in both configurations is

lower as we decrease the wavelength, which indicates a high dependence of the sensitivity

with the dip spectral position.

Conversely, a greater number of spectral dips is experimentally observed in Fig. 2(a)

for the configuration with Λ2 = 280 nm compared to the other with Λ1 = 260 nm,

in the same range of wavelengths. This is explained by the higher phase shift slope

obtained for the Λ2 configuration that produces more destructive interferences than the

Λ1 configuration in the same bandwidth. As a consequence, the spectral dips will be

narrower for the Λ2 configuration and thus easier to track in future sensing experiments.

More specifically, for the Λ2 = 280 nm configuration, the full width at half maximum
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Fig. B.2. (a) Experimental normalized transmission spectra with respect to a reference waveguide,
obtained for a bimodal SWG sensor of N = 480 elements, Λ1 = 260 nm, and wi = 160 nm
(upper blue graph), and Λ2 = 280 nm, wi = 180 nm (lower red graph). A Lorentzian fitting is
also depicted over the spectral dips to ease the determination of the minimum location. (b)
Experimental comparison between the numerical simulations and the absolute wavelength shifts
of each spectral dip for a refractive index change of 3.2 × 10-3 RIU as a function of wavelength,
and for the periods of Λ1 = 260 nm and Λ2 = 280 nm. The lines show the numerical simulations
for a continuous range of wavelengths, and the markers show the experimental values of each
spectral dip located at a certain wavelength.
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(FWHM) of the most sensitive spectral dip located at 1580 nm is twice that for the lowest

dip at 1523 nm. Therefore, a trade-off between sensitivity and narrower spectral dips is

observed, although the FWHM of the most sensitive dips could be reduced by increasing

the number of elements N .

To compare the results with simulations, the dispersion relations of both SWG modes

were computed under different cladding RI scenarios of pure DIW and 6 % ethanol

volume in DIW. The computed absolute wavelength shift of each spectral dip and the

experimental results are depicted in Fig. 2(b) for both configurations,showing a good

agreement between theory and measurements for a RI increment of 3.2 × 10-3 RIU.

Moreover, it should be noted again that in Fig. 2(b) the shift is strongly dependent on

wavelength because of the nonlinear phase shift behavior of the SWG structure. This fact

provokes higher sensitivities for those spectral dips located at higher wavelengths.

Likewise, several time evolution measurements were carried out by covering the

SWG sensor with different ethanol dilutions. To this end, real-time spectrum data were

collected for 35 min and subsequently processed to properly track the minimum of each

spectral dip over time. Figure 3(a) shows the tracking of the spectral dip located at 1580

nm forΛ1 = 260 nm andΛ2 = 280 nm configurations. Ethanol dilutions of 2 %, 4 %, and 6 %

in DIW were considered for the experiments, corresponding to a RI of 1.3183, 1.3194, and

1.3205, respectively. The absolute wavelength shift versus RI variations is depicted in Fig.

3(b) for both configurations. In this graph, we obtain a bulk sensitivity of 2270 nm/RIU

for the SWG configuration with Λ1 = 260 nm and a value of 1253 nm/RIU for the SWG

with Λ2= 280 nm. These results are in good agreement with the numerically simulations

previously calculated and consistent with the phase shift slopes presented in Fig. 1(c).

Note that there is a period of time that the measurements take to stabilize, and this is due

to the RI variations occurring when new ethanol dilutions are added.

In comparison with the literature, SWG spectral-based sensors such as multi-box

ring resonators [23] have shown an experimental bulk sensitivity of 580 nm/RIU, and

other configurations like slot ring resonators [24] have been experimentally demonstrated

for RI sensing with sensitivities up to 1300 nm/RIU, as well as slotted photonic crystal

sensors [25] with a reported sensitivity of 1538 nm/RIU. On the other hand, similar

bimodal interferometers [26] using homogeneous waveguides have been presented as

spectral-based sensors with sensitivity values of 789 nm/RIU. Therefore, our proposed

sensor presents a markedly higher bulk sensitivity than previous examples, while keeping

a very low structural complexity, thus confirming the high potential of SWG bimodal

waveguides as a promising alternative for sensing applications in CMOS-compatible

integrated devices.
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three different dilutions of 2 %, 4 %, and 6 % of ethanol volume in DIW. (b) Representation of
the absolute wavelength shift of the spectral dips under different RI variations. The linear fitting
represents the bulk sensitivity experimentally obtained for both configurations.

To investigate the dependence of the experimental sensitivity with the sensor length,

the spectral shift of several dips with SWG configurations of N = 120, N = 240, N = 360,

and N = 480 elements for a RI change of 5.39 × 10-3 RIU was also measured. The rest

of the design parameters are the same used in the previous analysis (ws = 450 nm, w =
1400 nm, h = 220 nm, d = 350 nm, Λ2= 280 nm, and wi = 180 nm). Figure 4(a) depicts

numerical simulations for the numerator and the denominator of Eq. (1), varying the

number N of SWG elements. In this graph, we can clearly see that the value of the

numerator and denominator highly depends on N and wavelength. However, when we

apply Eq. (1) and divide both expressions, the theoretical sensitivity obtained remains

constant for any value of N , although it still depends on wavelength. This theoretical

sensitivity curve is shown in Fig. 4(b) as a function of wavelength. The colored bars

represent the experimental sensitivity of each spectral dip obtained for different N at a

certain wavelength. All the measurements are in a good agreement with the simulations

and remain on the line of Eq. (1). These results demonstrate that the bulk sensitivity,

measuring the wavelength shift, does not depend on the sensor length, as it occurs in

interferometric configurations when measuring the phase shift.

Despite this, as it has been explained before, the quality factor of the spectral dip

increases with N since it is more grouped in the spectrum, and narrower spectral features

are obtained. As a result, longer SWG structures will facilitate the tracking of those

dips and thus enhance the limit of detection of the sensor, although it will increase its

footprint, which is not very suitable for integration purposes. Future optimized designs

must be made to enhance the sensor limit of detection, and thus compare it to other
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existing devices in biosensing applications [27]. The obtained transmission spectra for a

different N were compared to the one recorded with a single-mode waveguide, with the

aim of measuring the insertion losses of the sensor. A value around 1 dB was obtained

for any number of elements N , which means that losses are mainly due to the coupling

between the single-mode access waveguides and the bimodal SWG, and that propagation

losses can be considered practically negligible, thus allowing the use of long bimodal SWG

sections, if desired.

3.2.3 Conclusions

To conclude, in this Letter, we have demonstrated the use of bimodal SWG waveguides

for RI sensing and studied their high-performance experimental features. The proposed

mechanism relies on the dispersive behavior of SWG structures to critically enhance the

wavelength shift of the spectral dips when varying the RI of the cladding. A complete

comparison of experimental results and simulations is provided, as well as time evolution

measurements to evaluate its bulk sensitivity. Values up to 2270 nm/RIU have been

obtained for a SWG periodicity and element width of 260 nm and 160 nm, respectively.

To the best of our knowledge, these experimental results are the highest reported in the
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literature for an integrated silicon RI sensor. Furthermore, its scalable properties allow

us to design the sensor to work at the desired wavelength by simply changing the lattice

period of the structure. Overall, its compact fully etched single-channel design and its

outstanding sensitivity place it as a promising alternative for lab-on-a-chip devices in

future work.
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Chapter 4

Bimodal interferometers in
one-dimensional photonic crystals

Integrated interferometers are fundamental components of current optical circuits.

Among others, the leading candidate is the MZI, which has been employed since the end

of the last century to develop devices such as modulators and sensors [117–119]. However,

the demands of densely integrated chips are significant, and herein conventional MZIs

do not offer clear solutions due to their usually large design area [120–122]. To address

some of these size limitations, PhCs provide remarkable advantages by building MZI

configurations with 2D structures [123–131], or integrating simpler 1D PhCs within the

MZI arms [132–134], to develop, for instance, ultra-compact modulators and switches. To

this end, 1D PhCs are easier to fabricate and provide a smaller lateral size compared to 2D

and 3D structures, which is also desirable for integration purposes [135–142]. Moreover,

they preserve most part of PhC benefits, specifically the slow light effects that may be

used to reduce the interferometer length [143–147]. Even so, MZI-based configurations

require two paths to perform the interferometry, which hinders the integration of multiple

devices in a single circuit. On this matter, BiM waveguides provide common path

solutions as integrated interferomters with significant applications in biosensing [148–

153], although long physical paths are still needed.

The following chapter contains original works on the design and experimental

verification of one-dimensional photonic crystals for bimodal operation. In these articles,

we encompass the benefits from both slow light structures and bimodal waveguides to

develop common path interferometers as high-performance photonic devices such as

modulators and sensors (see Paper C), as well as optical switches (see Paper D), all of

them in extremely compact footprints. In turn, Paper E provides a new design method to

optimize multi-parameter photonic crystals to enhance the bimodal behavior.
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Strongly influenced by the advances in the semiconductor industry,

the miniaturization and integration of optical circuits into smaller devices

has stimulated considerable research efforts in recent decades. Among

other structures, integrated interferometers play a prominent role in the

development of photonic devices for on-chip applications ranging from optical

communication networks to point-of-care analysis instruments. However, it

has been a long-standing challenge to design extremely short interferometer

schemes, as long interaction lengths are typically required for a complete

modulation transition. Several approaches, including novel materials or

sophisticated configurations, have been proposed to overcome some of these

size limitations but at the expense of increasing fabrication complexity

and cost. Here, we demonstrate for the first time slow light bimodal

interferometric behaviour in an integrated single-channel one-dimensional

photonic crystal. The proposed structure supports two electromagnetic

modes of the same polarization that exhibit a large group velocity difference.

Specifically, an over 20-fold reduction in the higher-order-mode group velocity

is experimentally shown on a straightforward all-dielectric bimodal structure,

leading to a remarkable optical path reduction compared to other conventional

interferometers. Moreover, we experimentally demonstrate the significant

performance improvement provided by the proposed bimodal photonic crystal

interferometer in the creation of an ultra-compact optical modulator and a

highly sensitive photonic sensor.

4.1.1 Introduction

The slowing down of light was first theoretically described by Hendrik Lorentz more than

a century ago, when it was shown that the group velocity can be drastically decreased in

the presence of an ultracold atomic vapour [1]. More recently, in 1999, these predictions

were experimentally demonstrated, and a light speed of just 17 m/s was achieved using

an electromagnetically induced transparency quantum phenomenon [2]. This intriguing
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finding captured the interest of the research community and gave rise to significant

work aimed at producing slow light in solids at room temperature. Coherent population

oscillation processes were introduced years later to solve this issue, and the feasibility of

this effect was shown in ruby and alexandrite crystals [3,4]. Likewise, material engineered

structures can create artificial optical resonances and produce slow light. This is the

case for photonic crystal (PhC) structures that consist of periodic dielectric repetition

for any of the three spatial dimensions and where the group velocity of the supported

modes is dramatically reduced near the edge of the Brillouin zone [5]. PhCs can also

exhibit one or several photonic bandgap (PBG) regions, in which certain frequencies are

not allowed to propagate through the structure and where slow light is produced near

the edge of the bands defining these PBGs [6]. Additionally, slow light behaviour can

be observed for guided modes propagating through linear defects introduced in PhC

structures. For instance, two-dimensional (2D) hole patterned PhC waveguides were

exploited to show the active control of light, and an over 300-fold reduction in the group

velocity was achieved on a compact silicon integrated circuit [7]. Slow light also enables

us to temporarily store optical signals or provoke a stronger light–matter interaction that

enhances optical phase non-linearities [8,9], among other advantages. Nonetheless, PhCs

present some limitations regarding the operating bandwidth as well as coupling losses

and the tuning of the slow modes [10].

In this context, three-dimensional (3D) and 2D PhCs have been used in subsequent

years for the creation of 3D PBGs at near-infrared wavelengths [11], ultra-compact

optical switches [12], refractive index (RI) biosensors [13] or near-zero RI materials [14].

However, the combination of these types of PhCs with other integrated structures can be

challenging due to their structural complexity, which hinders fabrication processes for

mass production [15]. Instead, more straightforward designs based on one-dimensional

(1D) periodic waveguides ease the fabrication process while preserving the slow light

benefits of phase non-linearities and dispersion tunability [16]. Furthermore, these

structures have a smaller lateral size in comparison with 2D PhCs, which reduces the

footprint of the device. These were first demonstrated for the propagation of ultrashort

pulses near the band edge with large group delays [17] and as short resonators in

planar integrated platforms [18]. Quasi-one-dimensional PhCs based on Bragg grating

structures were subsequently employed for refractometric sensing [19], and 1D PhC

waveguides were reported for integrated tuneable time delay devices [20] and negative

group velocity anomalous phenomena [21]. These types of corrugated waveguides were

demonstrated with low propagation losses below 1 dB [22], which had a significant impact

years later in the development of several applications, such as mid-infrared slow light

engineering waveguides [23] or label-free biosensors [24]. 1D PhC structures have also

been extensively used in PhC enhancement microscopy applications, as in the case of
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enhanced fluorescence to quantify the concentration of a certain analyte in a liquid

sample [25].

Since the early 1990s, optical interferometry based on Mach-Zehnder interferometer

(MZI)-integrated schemes has been extensively studied for the development of devices

such as silicon modulators [26] and biosensors [27]. Basically, in an MZI, light is split

into two different optical paths and recombined to create an interference pattern at

the output signal. Changes in the real part of the material RI induced, for example,

by a temperature change or by an applied electric field produce a relative phase shift

with respect to the reference arm. MZI-based systems have since been employed in

making compact high-speed low-power consumption silicon modulators [28,29], as well

as high-performance integrated devices for biosensing [30]. Nevertheless, in all of the

abovementioned approaches, the performance of the MZI scales with the length of the

optical paths, which makes it very difficult to design compact interferometers with high

operational features. Accordingly, plasmonic interferometers have been introduced in

recent years to overcome some of these drawbacks, creating high-speed ultra-compact

and low energy consumption modulators [31,32,33]. Similarly, nano-slits in a thin metal

film have been employed to develop plasmonic MZI on-chip biosensors with very high

bulk RI sensitivity [34]. Moreover, other MZI configurations involving novel materials

such as graphene, indium tin oxide (ITO) and lithium niobate have been investigated

for their broadband and efficient electro-optical responses [35, 36, 37]. Although these

interferometers offer prominent breakthroughs in comparison with classic dielectric MZI

configurations, the use of new materials makes the fabrication processes complex and

adds extra costs and difficulties to the micro-structuring of photonic circuits.

Integrating all-dielectric slow light elements in MZI schemes offers some advantages

in terms of footprint reduction for the final device while maintaining a fully silicon-based

structure. This idea was initially introduced at the end of the last century, where

grating structures were included in the optical paths of an MZI modulator to improve

its efficiency by reducing the group velocity of the propagating modes [38]. Later, this

concept was extended to 2D PhCs to develop a highly compact asymmetric MZI of

only 20 µm in length [39], as well as high-speed low-voltage modulators employing

polymer-infiltrated materials [40] or embedded PhC cavities based on electro-optic [41]

or thermo-optic effects [42] with switching speed limitations [43]. For 1D PhC waveguides,

high-speed electro-optic modulators of 500 µm length, including a corrugated waveguide

in one of the MZI arms, have been proposed for a dense integration level in foreseeable

network-on-chip devices [44]. Similar MZI designs, including highly dispersive 1D

periodic structures made of embedded circular holes in rectangular waveguides, have

also been validated for achieving very short biosensing devices [45]. However, classic

MZI-based configurations require additional photonic structures, such as power splitters
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or different optical waveguides, to perform interferometry. In this scenario, bimodal

waveguide sensors were proposed to address limitations regarding compactness and ease

of fabrication [46]. The underlying concept of these interferometers relies on exciting the

first two electromagnetic modes that have the same polarization in an optical waveguide

and making them interfere, converting a change in RI into an intensity modulation. Since

both modes do not interact equally with an induced RI change, a phase shift is therefore

produced between the fundamental mode, acting as a reference, and a higher-order

mode, acting as an active mode. The higher-order mode is more sensitive to changes

in the RI than the fundamental mode in a conventional MZI sensing arm, leading to a

higher accumulated phase shift. This principle has been extensively studied in recent

work for biosensing applications in lab-on-a-chip platforms [47]. Other bimodal concepts

have also been proposed by our group for ultra-high spectral-based sensitivity in silicon

periodic structures in the subwavelength regime [48, 49]. Nonetheless, in this latter case,

the operation principle is different from that of standard bimodal waveguides since both

modes present similar dispersion properties and equally interact with the surrounding

medium and thus create very large shifts in the spectral interferences.

In this work, we propose a short and single-channel bimodal interferometer enabled

by all-dielectric 1D PhC waveguides working in the slow light regime at telecom

wavelengths. We optimize and experimentally demonstrate the periodic structure to

support a dispersive higher-order mode (acting as an active mode) with a drastically

reduced group velocity in comparison to the fundamental mode (acting as reference).

Our design encompasses benefits from PhCs and bimodal-based interferometers in terms

of sensitivity and compactness by including slow light elements of straightforward 1D

designs. We also experimentally demonstrate the operation of these interferometers

when temperature and cladding RI changes are produced, confirming them as promising

alternatives for high-efficiency modulators and high-sensitivity RI sensors, respectively,

both with extremely reduced footprints.

4.1.2 Results

Principle of operation

The proposed design, which is shown in Fig. 1a, is fully based on a silicon structure

surrounded by silica cladding, in which a single-mode input waveguide, supporting the

fundamental mode of transverse electric (TE) polarization, transfers its power to the first

two TE-like even modes in the bimodal region of the 1D PhC: TE0-like and TE2-like. These

two modes propagate through the 1D PhC and, after a certain distance, interfere in the

abrupt discontinuity with the exit single-mode waveguide and thus contribute to the
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excitation of the fundamental TE mode at the output. Therefore, the transferred power

may be expressed as a function of the phase shift accumulated between both modes in

the bimodal region. Consequently, as occurs with a conventional MZI, by measuring

the interference pattern in the transmission spectra, we obtain information about the

phase shift between both modes and how it varies when a change in the RI is induced.

In addition, a rectangular taper is placed in the transition between the single-mode

waveguide and the bimodal PhC waveguide for efficient modal excitation in the periodic

section. The bimodal interferometric structure is composed of a repetition of a basic

unit cell consisting of a transversal element (or corrugation) over a central rectangular

waveguide (see the inset of Fig. 1a), thereby creating a 1D PhC in the z-axis propagation

direction. The design parameters of the proposed unit cell are a lattice period a = 370

nm, transversal element width wi = 220 nm, transversal element length we = 1400 nm,

central waveguide width w = 600 nm and height h = 220 nm, accessed in and out with a

single-mode waveguide of width ws = 450nm.

Figure 1b depicts a dispersion diagram of the designed 1D PhC in the irreducible

Brillouin zone, showing the TE-like bands that will be excited by the fundamental TE

mode of the single-mode input waveguide. Only those bands presenting an even parity

with respect to the x = 0 plane are considered, since the odd parity modes will not be

excited, as in the case of the first-order mode (TE1-like), due to symmetry conditions

in the interface between the single-mode waveguides and the bimodal waveguide. The

first three bands are depicted and show the contributions of the fundamental (TE0-like)

and second-order (TE2-like) modes in blue and red, respectively. The first band (I)

is completely formed by the fundamental mode, while the second and third bands (II

and III) are a combination of both modes. A PBG is created between these two bands

as a result of the anti-crossing point produced by the fundamental mode, folded into

the first Brillouin zone, and the higher-order mode. In PhC theory, when two modes

of the same polarization and parity intersect, they couple, and the bands repel [50],

producing a dispersive behaviour similar to that obtained when a band reaches the

edge of the irreducible Brillouin zone [51] (kz = 0.5 2π/a). Consequently, we obtain two

different bimodal regimes near the PBG for the second and third bands, although in this

work, we focus on the third band since lower group velocities can be achieved in this

operating region. Therefore, in the third band (III), a bimodal behaviour with two different

propagation constants and field patterns (see Fig. 1c) is obtained for wavelengths of

~1550 nm, which is the region of interest (ROI) for our purposes (shaded green area in

Fig. 1b). The fundamental mode is strongly confined within the central waveguide of

the PhC, while the higher-order mode is partially localized in the transversal elements of

the structure. Consequently, the higher-order mode strongly interacts with the periodic

pattern of the structure, thus producing a highly dispersive behaviour of the third band
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Fig. C.1. Design and simulation of the 1D PhC. (a) 3D sketch of the proposed design composed
of two single-mode waveguides at the input/output ports and a rectangular taper between the
uniform and periodic bimodal parts. The inset shows the unit cell dimensions of the 1D PhC.
(b) Dispersion diagram of the 1D PhC showing the first three x−even parity bands for TE-like
polarization. The blue lines depict the contribution of the fundamental mode to each band, and the
red lines show the contribution of the higher-order mode. Dashed lines represent the hypothetical
behaviour of the modes for a uniform non-periodic structure. The green shaded area indicates
the bimodal region created in the proposed structure. The design parameters are a = 370
nm, transversal element width wi = 220 nm, transversal element length we = 1400 nm, central
waveguide width w = 600 nm and height h = 220 nm, and single-mode waveguide width ws =
450 nm. (c) Real part of the electric field x−component for the fundamental and higher-order
modes in the xz plane for y = 0. The field patterns are calculated in the third band for kz = 0.365
2π/a and kz = 0.4752 2π/a. The black dashed line represents the geometric shape of the silicon
1D PhC structure.
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at the end of the Brillouin zone. The group velocity, which is mathematically described

as the derivative of the angular frequency with respect to the wave vector (vg = δw/δk)

, is given by the slope of the bands for each kz = value in the dispersion diagrams

previously shown. Therefore, at high wavelengths in the ROI, slow light is produced for

both modes, which is not suitable for our purposes. In contrast, at lower wavelengths,

only the higher-order mode becomes slow light as it nears the edge of the Brillouin zone,

while the fundamental mode shows normal dispersive behaviour, thus achieving a high

group velocity difference between both modes in this wavelength region.

Under induced RI variations in the system, the effective index of the higher-order

mode will be drastically changed in comparison to the effective index of the fundamental

mode, which acts as a reference. Accordingly, slowing the higher-order mode critically

enhances the phase shift accumulated when a change in the RI is induced. Hence, an

effect is obtained similar to what happens in an MZI when the arm length is increased

to achieve higher phase shifts, but in this case, it drastically slows down the higher-order

mode. To achieve this, we focus on studying the influence of the design parameters on the

bimodal ROI in the third band. In Fig. 2a, we can observe the evolution of the dispersion

relations for the second and third bands for different values of the parameter we. The rest

of the design dimensions are kept as detailed above to obtain a bimodal behaviour around

1550 nm. Figure 2a shows that as we increase we, the second and third bands are shifted to

higher wavelengths. The higher-order mode contribution (red part of the bands) is clearly

more sensitive to we variations than the fundamental mode (blue part of the bands) since

the higher-order mode is more localized inside the transverse elements of the periodic

structure. Having control of the higher-order-mode cut-off frequency enables us to design

for which wavelengths the slow light effect of this mode occurs, thus obtaining the desired

bimodal behaviour. Figure 2b shows the maximum group velocity difference between

both modes in the higher-order-mode slow light region and the bandwidth of the bimodal

ROI as a function of we. As previously explained, the group velocity difference in the

ROI increases with we until we reach wavelengths near the PBG, where the fundamental

mode also becomes slow light. The bandwidth decreases due to the flattening of the

higher-order mode, resulting in smaller wavelength bimodal regions. We selected a we

value of 1400 nm, as this configuration provides a high group velocity difference and a

larger bandwidth. The critical effect of we can also be seen if we calculate the interference

pattern of the spectrum as a sinusoidal function of the phase shift calculated from the

bands in Fig. 2a and for a given length. In Fig. 2c, we can observe how we plays a

crucial role in obtaining a large number of destructive and constructive peaks. With a

we of 1300 nm, only two interference peaks are formed in the ROI, while up to eight peaks

are observed when this parameter is increased to 1400 nm, as if it were an MZI with one

of its arms drastically longer than the other. Moreover, the slow light influence of the
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higher-order mode on the interference pattern periodicity (see Fig. 2c) should be noted,

where more grouped peaks are obtained for those wavelengths where the group velocity

difference is maximized.

To study the interferometric behaviour of the device, the complete configuration with

single-mode waveguides of 450 nm width as input and output ports was analysed. The

transmission spectra for a length N = 150 elements are depicted in Fig. 3a, with and

without a rectangular taper of 1200 nm between the end of the single-mode waveguide

and the bimodal periodic waveguide. It can be observed that the response is nearly flat

when the taper is not present, since only the fundamental mode is propagated through

the 1D PhC. With a rectangular taper, the higher-order mode is properly excited, and thus,

the interference pattern is clearly observed. Moreover, as was previously shown in Fig.

2c, the interference pattern is more grouped at lower wavelengths, demonstrating the

dispersive behaviour of the higher-order mode in this region. This behaviour appears

for wavelengths of ~1532 nm near the end of the irreducible Brillouin zone for the

higher-order mode, where it becomes slow light. At even lower wavelengths (i.e., below

1530 nm), only the fundamental mode propagates, and thus, a mono-modal response of

the transmission spectrum is observed. The bimodal excitation is optimized for a range of

taper lengths in Fig. 3b, calculated as the difference between a maximum and a minimum

peak caused by modal interference. An optimal amplitude modulation of ~70 % for a taper

of 1200 nm long is obtained for the modal interference nearest to the PBG. However, note

that the bimodal excitation is decreased for lower wavelengths, as shown in the green

shaded area of the ROI in Fig. 3a. To clarify the bimodal behaviour at the interfaces, the

absolute value of the 2D-plane electric field at the output of the bimodal interferometer

is depicted with and without a taper for destructive interference at 1563.5 nm in Fig. 3c

and d, respectively. In the absence of a rectangular taper, all the energy is transferred to

the single-mode output waveguide, while almost no power is transmitted to the output

waveguide when the taper is present due to the proper bimodal excitation, which creates

destructive interference.

To study the interferometric behaviour of the device, the complete configuration with

single-mode waveguides of 450 nm width as input and output ports was analysed. The

transmission spectra for a length N = 150 elements are depicted in Fig. 3a, with and

without a rectangular taper of 1200 nm between the end of the single-mode waveguide

and the bimodal periodic waveguide. It can be observed that the response is nearly flat

when the taper is not present, since only the fundamental mode is propagated through

the 1D PhC. With a rectangular taper, the higher-order mode is properly excited, and thus,

the interference pattern is clearly observed. Moreover, as was previously shown in Fig.

2c, the interference pattern is more grouped at lower wavelengths, demonstrating the

dispersive behaviour of the higher-order mode in this region. This behaviour appears
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Fig. C.2. Optimization of the band structure. (a) Second and third bands for different
transversal element lengths we (the rest of the design parameters are the same as previously
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bimodal region are depicted in blue and red, respectively. (b) Trade-off between the group velocity
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wavelength. Various we lengths are considered, representing the interference pattern evolution
as a result of the slow light behaviour.
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for wavelengths of ~1532 nm near the end of the irreducible Brillouin zone for the

higher-order mode, where it becomes slow light. At even lower wavelengths (i.e., below

1530 nm), only the fundamental mode propagates, and thus, a mono-modal response of

the transmission spectrum is observed. The bimodal excitation is optimized for a range of

taper lengths in Fig. 3b, calculated as the difference between a maximum and a minimum

peak caused by modal interference. An optimal amplitude modulation of ~70 % for a taper

of 1200 nm long is obtained for the modal interference nearest to the PBG. However, note

that the bimodal excitation is decreased for lower wavelengths, as shown in the green

shaded area of the ROI in Fig. 3a. To clarify the bimodal behaviour at the interfaces, the

absolute value of the 2D-plane electric field at the output of the bimodal interferometer

is depicted with and without a taper for destructive interference at 1563.5 nm in Fig. 3c

and d, respectively. In the absence of a rectangular taper, all the energy is transferred to

the single-mode output waveguide, while almost no power is transmitted to the output

waveguide when the taper is present due to the proper bimodal excitation, which creates

destructive interference.

To demonstrate that the fringes in the spectrum are due to modal interference, the

1D electric field x−component along the z−axis for y = 0 in a N = 150 bimodal periodic

structure is calculated. By applying the Fast Fourier transform (FFT) over the propagating

field, we obtain the wave vectors that are excited in the bimodal region. The results

are shown in Fig. 3e as a function of the normalized wave vector axis and for different

wavelengths. Each peak of the FFT corresponds to a propagating mode inside the periodic

waveguide. As shown, the wave vectors of the modes inside the irreducible Brillouin

zone are obtained, as well as those for the unfolded region between kz = 0.5 (2π/a) and

kz = 0.7 (2π/a). This second Brillouin zone is a mirror image of the first region and

provides information about the modes and their dispersion characteristics. Therefore,

perfect agreement is obtained between the positions of the peaks and the band diagrams

previously calculated by using two different simulation methods, which enables us to

clarify the modal excitation inside the 1D PhC. Note that the fundamental mode at kz =
~0.65 (2π/a) has a higher intensity than the higher-order mode at kz = ~0.45 (2π/a), which

means that both modes are not equally excited and explains the results obtained in Fig.

3a regarding the interference pattern amplitude in the transmission spectrum.

Experimental demonstration of slow light bimodal behaviour

We fabricated bimodal interferometers with the design parameters previously detailed

and a taper of nominal length (1200 nm) at the input–output interfaces (see Fig. 4a).

All the parameters of the fabricated structures perfectly match the theoretical design

except for the taper, which has a measured length of ~1400 nm. This difference occurs
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Fig. C.3. Simulation of the bimodal behaviour. (a) Transmission spectra for a bimodal PhC
interferometer with and without a rectangular taper of 1200 nm with the previously detailed
design parameters and for N = 150 cell units repeated along the z−axis. The green shaded
area represents the region of interest of the interferometer, corresponding to the bimodal region
near the PBG. (b) Modal excitation obtained from the amplitude difference between constructive
and destructive interference in the spectrum for different taper lengths. The inset details the
value under consideration in a 3D sketch. (c,d) Electric field absolute value for the xz plane and
y = 0 at the output interface between the bimodal periodic part and the single-mode waveguide
with and without a rectangular taper between interfaces. (e) FFT amplitude of the electric field
x−component along the propagation direction z for different wavelengths in the bimodal region.
The dashed blue and red lines in the wavelength−kz plane represent the dispersion relations
of the fundamental and higher-order modes, respectively. The irreducible and second Brillouin
zones are depicted.
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because the taper was very close to the first transversal element of the 1D PhC, with a

gap of only 60 nm that was not resolved in the fabrication (see Fig. 4a). Despite this

deviation, the fabricated taper length also remains within the optimal bimodal excitation

range, as shown in Fig. 3b; thus, the experimental performance is not expected to

be dramatically altered. Two different bimodal PhC lengths of 74 µm and 148 µm are

considered, corresponding to numbers of periodic elements N = 200 and N = 400. The

total length of the photonic sample is 0.9 mm, corresponding to the on-chip length

between the input–output grating couplers. The experimental transmission spectra for

both configurations are depicted in Fig. 4b. A PBG for wavelengths higher than 1590 nm

can be observed, below which the bimodal ROI is obtained, as was theoretically predicted

in the band diagram and propagation simulations. The raw experimental spectra, as

well as the filtered data, are depicted to distinguish the bimodal interferences from the

ripple caused by Fabry-Perot resonances. The free spectral range (FSR) of the ripple

is homogeneously distributed and very similar to that calculated for an on-chip cavity

distance of 0.9 mm (~1.5 nm), which demonstrates that this is caused by the Fabry-Perot

contribution. Moreover, the results show the same FSR for the two different bimodal

lengths considered; hence, the ripple must be caused by a common optical cavity in both

designs (i.e., the resonances between the access grating couplers).

The positions of the maximum and minimum oscillations originating from the

bimodal constructive and destructive interferences, which are marked with circles in Fig.

4b, are obtained by applying Lorentzian fitting over the filtered spectra. As expected, a

higher number of bimodal interferences is observed in the spectrum for the N = 400

periods than for N = 200 as a result of the increment of the physical optical length

of the interferometer. To evaluate the slow light behaviour of a PhC in standard MZI

configurations [7], the experimental group index of the active arm (β2 mode in our case) is

calculated from the simulations of the reference arm (β12 mode). Therefore, the spectral

dependence of the group index in the higher-order slow light mode can be deduced from

the positions of the maximum λmax and minimum λmi n spectral fringes as:

nβ2
g (λ) = λmaxλmi n

2L(λmax −λmi n)
+nβ1

g (λ) (1)

where L is the length of the bimodal PhC waveguide and nβ1
g is the group index of the

fundamental mode acting as a reference signal. The red and blue markers in Fig. 4c

represent the experimental group index in the N = 200 and N = 400 configurations by

using the equation described above. The bimodal slow light interferometer exhibits

a group index up to ~23 for the higher-order mode, which perfectly matches the

simulations. These simulated values were calculated from the propagation constants of

both modes considered in the bimodal band region, demonstrating that the oscillations
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Fig. C.4. Experimental measurements of slow light bimodal behaviour. (a) Scanning
electron microscopy (SEM) image of the fabricated silicon structures without a silica cover layer.
A detailed picture of the interface between the single-mode and bimodal sections is shown
with the presence of a fabricated rectangular taper of ~1400 nm in length. (b) Normalized
experimental transmitted spectra for N = 200 and N = 400 periods under a silica cover (upper
and lower graphs, respectively). The spectra were normalized with respect to a reference uniform
waveguide measured under the same environmental conditions. Light colours represent the raw
experimental data; dark colours refer to the filtered signal without the Fabry-Perot ripple created in
the photonic circuit cavities. Constructive and destructive interferences are indicated by the black
circles in both graphs. Insets depict a close-up view of the transmission spectrum in the slow
light region. (c) Group index experimentally obtained from the maxima and minima interference
points and with the simulated fundamental mode group index as a reference. Three different
experimental measurements were carried out to obtain the error bars, depicted as the data
standard deviation. The dashed line represents the theoretical results obtained from the band
diagram simulations, which were shifted by only 5 nm towards lower wavelengths to compensate
for the small fabrication deviations.

marked with circles in Fig. 4a and b are due to the bimodal contribution. The simulated

group index of the fundamental mode used in Eq. (1) is shown in green in Fig. 4c and

presents lower group velocity values below 5 in the ROI.

Interferometric performance in dynamic systems

Once the static response is provided, to calculate the phase shift accumulated by an

induced change in the RI, we must also consider the spectral shift of a given interference

peak. Moreover, due to the dispersive behaviour of our proposed structure, the FSR



100 Bimodal interferometers in one-dimensional photonic crystals

caused by the bimodal interferences varies along the ROI, yielding lower values in the

slow light region. Hence, the mean value between two contiguous FSRs is used to obtain

the experimental phase shift, which is calculated as follows:

∆φ(λ) = 2∆λ

(F SRH +F SRL)
(2)

where ∆λ is the wavelength shift of the minima produced for the induced RI changes and

F SRH ,L is the free spectral range at higher and lower wavelengths with respect to a given

minimum interference peak, respectively.

To evaluate the response of the device as an optical modulator, a Peltier heater is used

to change the chip operating temperature. Figure 5a shows the phase shift obtained

as a function of the wavelength for different temperature increments in the N = 200

and N = 400 configurations. In both cases, the effect of slow light is clearly seen at

wavelengths of ~1530 nm, where a drastic increase in the phase shift is obtained, which

is also in good agreement with the simulations. Note that the N = 400 interferometer

results are twice as high as those of the shorter case due to double the length being

used. A fitting of the phase shift evolution is depicted in Fig. 5b for different destructive

minima peaks when the temperature is varied, presenting perfectly linear behaviour

for the available interferences. In the slow light region, phase shift values up to π for

temperature increments of 30 ºC are obtained at the 1532 nm interference, corresponding

to a required silicon RI change of 5.4 × 10-3 for a Lπ length of just 78 µm (see dashed

line in the upper graph of Fig. 5b). Likewise, for the 148-µm-long interferometer at

1529 nm, 13.2 ºC is required for a π phase shift, corresponding to a required silicon RI

change of 2.4 × 10-3. By contrast, outside the slow light region, phase shift values of

π are obtained for a temperature change of 75 ºC at the 1550 nm interference in the

148-µm-long configuration, corresponding to a required silicon change in refractive index

units (RIU) of 1.35 × 10-2 (see dashed line in the lower graph of Fig. 5b). Nevertheless,

even in this regime, efficient interferometers with a large bandwidth are proved for optical

modulation, which also demonstrates scalable design flexibility depending on the desired

operation.

Examples of the measured spectra for the different temperatures considered are

shown in Fig. 5c for slow light and normal operations. The filtered signal is also depicted

to clearly reveal the modulating response in the transmitted spectra between the on and

off states. In addition, it should be noted that the insertion losses and the extinction ratio

of the raw data depend strongly on the ripple of the Fabry-Perot resonances. Nonetheless,

if we consider the filtered spectra as the contribution of the bimodal behaviour, the

insertion losses are ~2.5 dB for the upper graph in Fig. 5c and almost negligible in the

case of the lower graph. In turn, an extinction ratio of ~10 dB is obtained in the slow
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Fig. C.5. Optical response for changes in the silicon temperature. (a) Experimental phase
shift obtained in the fabricated bimodal 1D PhC interferometer as a function of the wavelength for
the different temperature increments considered and for the N = 200 and N = 400 configurations
(upper and lower graphs, respectively). Dashed lines represent the band diagram simulation
results, shifted 5 nm as in the previous case. (b) Evolution of the phase shift measured for a linear
increment in the chip temperature. For the N = 200 configuration in the upper graph, different
minima interference wavelengths at 1559.68 nm, 1546.51 nm, 1537.76 nm and 1532.13 nm are
shown, with the increase in phase sensitivity represented by the shift from red to blue. For the N =
400 configuration, the minima interferences are placed at 1557.24 nm, 1549.73 nm, 1543.73 nm,
1539.23 nm, 1535.75 nm, 1533.08 nm, 1530.54 nm and 1528.95 nm and are represented by the
lines transitioning from red to blue in the lower graph. Five different experimental measurements
were carried out to obtain the error bars depicted. (c) The upper graph represents a close-up view
of the normalized transmission spectrum for the N = 200 configuration (a bimodal 1D PhC length
of 74 µm) working in the slow light region for a temperature change of 25 °C, corresponding to an
accumulated phase shift of 0.9π. The lower graph represents a close-up view of the normalized
transmission spectrum for the N = 400 configuration (a bimodal 1D PhC length of 148 µm)
working in the normal light region for a temperature change of 75 °C and corresponding to an
accumulated phase shift of π. For both graphs, raw and filtered data are represented by light and
dark colours, respectively.

light region, which increases up to ~20 dB outside this regime as a result of the improved

bimodal excitation predicted theoretically.

Additional slow light bimodal structures without the silica upper cladding have also

been fabricated to investigate the performance of the interferometer as a sensor. The

design parameters are the same as those previously used to evaluate the operation as

an optical modulator by means of temperature changes. Its transmission spectra when
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different ethanol dilutions in deionized water (DIW) are deposited over the 1D PhC

interferometric structure are shown in Fig. 6a. Specifically, ethanol volumes in DIW of

3 %, 6 % and 9 % are considered, corresponding to linear RI increments with respect to

pure DIW of 1.6 × 10-3, 3.2 × 10-3 and 4.8 × 10-3 RIU according to the literature [52]. As can

be observed, an interferometric response is now obtained for lower wavelengths (fringes

located around 1515 nm are now tracked) since the DIW-based upper cladding has a

lower RI than that of the silica. The spectrum is shifted towards higher wavelengths when

increasing the RI of the cladding. As in the case of temperature changes, a Lorentzian

fitting is processed over the spectral interferences to properly obtain the minima peaks

caused by the bimodal behaviour (see Fig. 6a). Likewise, by knowing the spectral shift

due to cladding RI changes, we can calculate its corresponding phase shift by using Eq.

(2). Figure 6b shows the accumulated phase shift for the interferences with the highest

sensitivity in the slow light region for a linear increment in the cladding RI for both the N =
200 and N = 400 configurations. The experimental sensitivity can be determined as the

slope of the phase shift fitting for different cladding RI changes. Experimental values up to

75.20 2πrad/RIU and 150.83 2πrad/RIU are obtained for bimodal interferometer lengths

of 74 µm and 148 µm, respectively. The obtained results clearly follow a linear evolution

and present a twofold higher value due to the double length used for this configuration in

comparison to the shorter one, similar to the previous case. In addition, the experimental

results are compared to the simulations by applying the following equation to calculate

the phase sensitivity of the interferometer:

S(λ) = ∆φ

∆nc
= 2πL

λ

(
δne f f 2

δnc
− δne f f 1

δnc

)
(3)

where nc is the cladding RI, L is the interferometer length and ne f f 1,2 is the effective index

of the fundamental and higher-order modes, respectively. In standard MZI schemes in

which one of the arms is completely isolated, the phase sensitivity is related only to

the variation in the sensing arm effective index. In our case, both modes interact with

the cladding variations; thus, the sensitivity depends on the effective index difference

between them. Since the fundamental mode is strongly confined with a low group index

and the higher-order mode presents a high dispersive behaviour, outstanding sensitivity

values are obtained for the proposed bimodal 1D PhC waveguide. The wavelength

dependence of the sensitivity is depicted in Fig. 6c; as shown, its value dramatically

increases in the slow light region, and perfect agreement with the simulations is presented.

To compare these results with those of other interferometers in the literature with

different lengths, values normalized to 1 cm are also calculated, corresponding to almost

identical experimental sensitivities up to 10.62 × 103 2πrad/RIUcm and 10.19 × 103

2πrad/RIUcm for the N = 200 and N = 400 configurations, since they are normalized
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to a 1 cm length to compare our results with the literature. The pink dashed line represents the
simulated sensitivity curve obtained from the theoretical band structures under similar conditions.
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to a common length. Likewise, outside the slow light region, values around 3.5 × 103

2πrad/RIUcm for a large operation range of 30 nm are experimentally demonstrated,

which are not as good as those in the slow light region but still higher than those of other

interferometric configurations. In addition, the spectral sensitivity in nanometres per

RI unit is calculated, yielding values of 138.75 nm/RIU for those minima spectral dips

occurring in the slow light regime shown in Fig. 6a. These values are in the range of the

spectral sensitivities reported for similar slow light elements in the MZI configurations

[45]. However, it should be noted that the spectral sensitivity may change outside the

slow light regime due to the highly dispersive behaviour of the structure.

4.1.3 Discussion

In conclusion, we have proposed and demonstrated the possibility of obtaining optical

interferometers by using a single-channel bimodal periodic structure. Compared to other

bimodal configurations [46,47,48,49], our design makes use of 1D PhC structures with

an active mode working in the slow light regime, which is translated into a significantly

higher phase-shift sensitivity to induced RI changes. This effect has been realized

by engineering the periodic unit cell to achieve active control of the band structure

to optimize the desired bimodal behaviour. An experimental group index of 23 was

measured for the higher-order mode supported by the fabricated 1D PhC. This value is in

the range of those results reported in other works in which similar 1D periodic structures

were included in an MZI [44] but not as high as for works where 2D PhC structures were

directly used to create an MZI [7]. This last result encourages us to look for other PhC

configurations in which the single-channel bimodal slow wave behaviour can be further

exploited to reduce the interferometer footprint and further improve the performance.

Further optimization of the spectral response must be addressed in future experimental

work for the current design, especially to reduce the Fabry-Perot ripple and improve the

modulation depth and losses in the slow light regime.

The proposed device has also been experimentally validated for optical modulation

and sensing purposes to determine its efficiency in dynamic systems. By changing

the temperature of the chip, we can test the response of the interferometer to small

changes in the RI of the silicon structure. In comparison with other interferometers

that include slow light elements [38,39], we propose a highly efficient temperature

modulation where a change of only 30 °C is required to achieve phase shifts of π in

a single-channel interferometer with a footprint of only ~100 µm2. This size means a

reduction of two orders of magnitude with respect to conventional MZI structures [28]

and of more than one order of magnitude with respect to compact MZI modulators

[29] and other interferometric schemes, including those based on the use of 1D and
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2D PhCs [44,53]. Due to its extremely reduced design, this type of bimodal PhC silicon

waveguide may be used for the integration of multiple on-chip modulators [54], as well

as for the implementation of matrix multiplications of several input binary signals for

making all-optical programmable logic devices. However, switching speed limitations as

a result of using thermo-optic effects [43] must be addressed in further developments.

The sensing operation has also been demonstrated for different ethanol dilutions in DIW,

corresponding to a linear change in the RI of the cladding. Experimental sensitivities

of 104 2πrad/RIUcm are reported, which indicate an improvement by a factor of more

than 10 with respect to the traditional MZI configurations [30] and of ~7.5 for slot-based

MZIs and silicon nitride bimodal waveguides [46,55]. These sensitivity results are similar

to those obtained for other slow light MZI sensors [45] but in our case integrated in a

significantly more compact single-channel structure. Furthermore, its straightforward

monolithically formed design in silicon offers remarkable advantages for mass integration

and low-cost production with significant implications for optical network interconnects

or lab-on-a-chip instruments, among others.

4.1.4 Materials and methods

Numerical simulations to obtain the band diagrams of the basic 1D PhC unit cell

were carried out using the MIT Photonics Band (MPB) free software, which computes

definite-frequency eigenstates of Maxwell’s equations in periodic dielectric structures.

It employs the plane wave expansion (PWE) numerical method in fully vectorial and

3D spaces. In particular, we used silicon (n = 3.477) for the periodic structure, with

a thermo-optic coefficient of 1.8 × 10-4/K, and silica (n = 1.444) for the substrate and

cladding, with a grid step of 10 nm, as the mesh. The first five TE-like bands were

computed, including the first three that present an even parity with respect to the x =
0 plane. The simulations of the transmission spectra and the field excitation were

numerically calculated using the software package CST Microwave Studio. In more

detail, we used a fully vectorial 3D time domain solver using finite-integration techniques

to simulate the whole interferometric system, including the single-mode and bimodal

waveguides. A hexahedral grid of 20 cells per wavelength was used for the entire structure,

with silica as the background. In turn, the FFT of the field along the z−axis was obtained

using 5000 points to obtain the propagating modes in the bimodal section. The excitation

of the structure was provided by using standard waveguide ports at the input and output

to provide the scattering parameters.

The photonic structures were fabricated on a silicon-on-insulator (SOI) wafer with

a silicon layer thickness of 220 nm and a silica buried layer of 2 µm. An acceleration

voltage of 30 KeV and an aperture size of 30 µm were used in an electron-beam lithography
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process to create the photonic structures on a hydrogen silsesquioxane (HSQ) negative

resist, and then inductively coupled plasma etching was used to transfer the designed

patterns onto the silicon layer. For the experimental characterization, a continuous wave

(CW) tuneable laser (Keysight 81980) and a coherent TE polarizer were used to vertically

couple the light into photonic structures by using cleaved optical fibres close to the

grating couplers. At the output, a power metre (Keysight 81636B) synchronized with the

laser measured the response of the optical circuits. The transmitted spectra were digitally

recorded using a LabVIEW application, which was also responsible for controlling the

chip temperature by using a Peltier heater connected to the copper holder of the photonic

sample. A time frame of 5 min was used after the temperature changes to let the sample

stabilize at the desired conditions. For the sensing experiments, the chip was placed on an

airtight container and covered with increasing ethanol in DIW dilutions directly dropped

onto the sample and measured after a 5-min stabilization period.
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Switches are essential components in several optical applications, in which

reduced footprints are highly desirable for mass production of densely integrated

circuits at low cost. However, most conventional solutions rely on making long

switching structures, thus increasing the final device size. Here, we propose

and experimentally demonstrate an ultra-compact 2x2 optical switch based

on slow-light-enhanced bimodal interferometry in one-dimensional silicon

photonic crystals. By properly designing the band structure, the device exhibits

a large group index contrast between the fundamental even mode and a higher

order odd mode for TE polarization. Thereby, highly dispersive and broadband

bimodal regions for high-performance operation are engineered by exploiting

the different symmetry of the modes. Two configurations are considered in the

experiments to analyze the dimensions influence on the switching efficiency. As

a result, a photonic switch based on a bimodal single-channel interferometer

with a footprint of only 63 µm2, a power consumption of 19.5 mW and a crosstalk

of 15 dB is demonstrated for thermo-optic tunability.

4.2.1 Introduction

Switches play a prominent role in current communication networks to address the

ever-growing increase in the data centers traffic [1]. In this context, photonics offers

remarkable advantages in terms of low power consumption and high speed operation for

switching applications [2], [3]. Switching light is usually accomplished by interference

between signals that have propagated along different optical paths. To this end, the

most common photonic structures employed are ring resonators and Mach-Zehnder

interferometers (MZIs). Resonant schemes allow very small footprints but at expenses of

decreasing the optical bandwidth [4], [5]. In turn, MZI switches offer a broader bandwidth

as well as a higher tolerance to fabrication deviations, although long optical paths that

increase the resulting footprint are required [6]–[8]. Optical switches based on multimode

interferometers (MMIs) exhibit both a broadband operation and robustness[9]. However,
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these types of structures suffer from a higher power consumption, thus requiring further

improvement in the heaters geometry and fabrication to design short devices [10].

On the other hand, ultra-compact phase shifters are possible by integrating materials

with unique optical properties in silicon. Transparent conducting oxides, such as

Indium Tin Oxide (ITO), have been used either as a more efficient heater [11] or in

hybrid photonic waveguide as an active material [12]– [14]. In the latter, phase shifter

lengths in the micrometer range have been demonstrated but with high insertion losses.

Thereby, the replacement of ITO by high-mobility transparent conducting oxides such

as cadmium oxide have been proposed to reduce optical losses [15], [16]. Alternatively,

photonic crystals (PhCs) have also been largely investigated for thermooptic switching

with ultra-compact lengths and low powerconsumption [17]. PhCs allow to drastically

reduce the group velocity of the propagating mode, the so-called slow light phenomenon,

thus increasing the optical length interaction while the physical length remains small

[18]–[20]. This effect is exploited, for instance, to develop 2D hole patterned array PhC

structures for all-optical switching based on high speed MZIs [21], or for thermo-optic

effects in high-performance MMIs [22] and ultra-compact directional couplers of less

than 100 µm2 footprint [23], [24]. 2D PhCs configurations have also been used to develop

optical microcavities for extremely low consumption at the sub-femtojoule level [25].

However, decreasing the group velocity also makes light coupling to the PhC modes to

be more inefficient and reduces the optical bandwidth, which must be addressed when

using slow light structures [26].

Due to its structural complexity, including 2D PhCs adds extra difficulties in

micro-structuring optical chips, which hinders fabrication processes [27]. Accordingly,

1D PhCs present more straightforward designs suitable for mass-level production, while

preserving the slow light advantages from compactness [28]. In addition, this type of

structures does not need additional periodic cells in the transverse spatial direction,

thus reducing the lateral size and the footprint of the device 1D PhCs have been

demonstrated for tunable delay lines [29], refractometric sensing [30], negative group

velocity phenomena [31], slow light engineering waveguides [32] and biosensing [33],

among others. Accordingly, high speed electro-optic modulators based on 1D PhCs

in MZI configurations have also been demonstrated [34], although the interferometric

structure still poses a limit on the minimum achievable footprint. To overcome some

of these size limitations, single-channel structures based on bimodal interferometry in

periodic subwavelength waveguides are proposed for the development of ultra-sensitive

sensors [35], [36]. Furthermore, bimodal 1D PhC waveguides working in the slow light

regime have also been designed as ultra-compact modulators with footprints of only 100

µm2 [37]. In these last structures, the operation is based on the interference between

two modes of the same polarization and parity in a singlechannel silicon structure, with
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a large group velocity difference and without the need of additional structures or other

materials.

In this paper, we propose the use of bimodal 1D PhC waveguides based on silicon as

highly efficient and ultracompact 2x2 optical switches. We optimize the periodic unit cell

of the 1D PhC to support two TE-like modes of both even and odd symmetry, designed

with a large group velocity difference. The device is experimentally demonstrated for

thermo-optic switching with a very good agreement with simulations. Our design

encompasses the benefits from 1D PhCs and bimodal waveguides, to validate this type

of structures for optical switching with extremely reduced footprints.

4.2.2 Concept and design

The proposed design of the device is presented in Fig. 1, with a periodic bimodal

waveguide acting as the switching structure and four single-mode silicon waveguides

acting as input and output ports. The unit cell of the periodic bimodal section is designed

to be within the photonic crystal regime and to support the fundamental even mode

and a higher order odd mode at the transversal plane, both for the transverse-electric

(TE) polarization. Due to symmetry conditions, the fundamental mode of the displaced

single-mode input waveguide excites the even and odd parity modes in the bimodal

section, which propagate and interfere at the abrupt discontinuity with the single-mode

output waveguides. Therefore, the transferred power may be expressed as a function

of the phase shift accumulated between these two modes in the bimodal section, thus

creating an interference pattern in the transmitted spectra. In addition, a rectangular

taper section for an efficient modal excitation is placed at the interface between the access

ports and the bimodal waveguide.

In PhC theory, when two modes of the same polarization and parity are expected to

intersect, they couple in the same band and form an anti-crossing point [37], [38]. In

contrast, modes of different parity do not interact in the band formation, so that they can

be overlapped with different dispersion properties. Consequently, using modes of even

and odd symmetry provides an additional degree of freedom in obtaining broadband and

highly dispersive bimodal regions, since their dispersion relationships can be designed

independently by a proper control of the unit cell dimensions. Figure 2(a) shows the first

seven bands for a unit cell with pitch a = 370 nm, transversal element width wi = 220

nm, transversal element length we = 1700 nm and central waveguide width w = 650 nm,

everything in a fully etched silicon layer of 220 nm thickness covered by a silica cladding.

The rest of the design parameters considered are single-mode waveguide width ws = 450

nm, taper length t = 1200 nm and distance between the ports d = 300 nm. To obtain

the bands structure of the 1D PhC, definite-frequency eigenstates of Maxwell’s equations



116 Bimodal interferometers in one-dimensional photonic crystals

wi
a

we
w

t

in

bar

cross

x

z

y
ws

d

Fig. D.1. Device schematic of the proposed 2x2 optical switch design, composed of two input
and output single-mode silicon waveguides, a bimodal 1D PhC structure and a rectangular taper
or transition between these two parts, placed both at the input and output interfaces.

have been computed by Plane Wave Expansion (PWE) numerical methods using the MIT

Photonics Bands (MPB) software [39]. As a result, a bimodal behavior between the third

even band and the second odd band is obtained for an operating wavelength around 1550

nm, as depicted by the green shaded area in Fig. 2(a). In this region, the third even and

second odd bands are formed by the fundamental and the first higher order odd modes

folded into the Brillouin zone. Note that the odd mode presents a slow light behavior

at two different wavelengths: at the anti-crossing point with the third odd band and at

the end of the first Brillouin zone, both marked with circles in Fig. 2(a) and (b). At these

wavelengths, the group index of the odd mode is drastically increased whereas a highly

dispersive region with a large bandwidth is obtained in between, as shown in the lower

graph in Fig. 2(b). On the other hand, the even mode presents a non-dispersive behavior

with low group index values for the entire bimodal region. Therefore, a relatively flat and

broad spectral region exhibiting a large group index contrast between the even and odd

modes is obtained in the bimodal region.

The electric field distribution of the even and odd modes at the flat region of the

group index is shown in Fig. 2(c). The even mode is strongly confined within the

central waveguide, while the odd mode interacts with the transversal corrugations, which

causes the highly dispersive behavior of this mode. Fullyvectorial 3D Finite-Difference

Time-Domain (FDTD) simulations using CST Studio software have been employed to
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Fig. D.2. (a) Band structure of the 1D PhC periodic unit cell for the TE-like polarized bands. The
dimensions considered for the simulations are a = 370 nm, wi = 220 nm, we = 1700 nm, w = 650
nm and ws = 450 nm, with a height of 220 nm. The roman numerals indicate the band formation
order for the even and odd parity bands. The green shaded area indicates the bimodal region of
interest, where the odd parity band becomes slow light. Circles mark the region where the group
velocity of the band is critically reduced. (b) Detailed band structure and group index for both
even and odd modes in the bimodal region, upper and lower graph, respectively. (c) Absolute
value of the electric field x−component at y = 0 nm plane for the third even parity band and the
second odd parity band, both at the bimodal region at 1564 nm. (d) 3D-FDTD simulation of the
real part x−component electric field propagation at y = 0 nm plane when the silicon refractive
index changes at 1556 nm wavelength.
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compute the electric field propagation in the optical switch by injecting light into an

input waveguide port, as depicted in Fig. 2(d). The complete device with the input and

output singlemode waveguides, the tapers and the bimodal periodic structure has been

considered to evaluate the switching performance when the silicon refractive index is

changed. The full optical switching from the bar to the cross states can be achieved by a

bimodal structure of only N = 100 periods with a silicon refractive index change of 0.0137.

To optimize the switching performance, the most critical design parameter that

determines the effective index contrast between the even and odd modes is the

transversal element length of the periodic structure, we . By increasing this parameter,

the spectral distance between the slow light regions is reduced, thus increasing the group

index in the flat region, but at expenses of reducing the optical bandwidth. This fact is due

to the influence of such parameter on the cut-off frequency of the higher order odd mode.

However, increasing the group index of slow light modes also leads to a reduction of the
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a function of the transversal element width we . The rest of the design parameters are the same
previously considered. (b) Simulated π length for different silicon refractive index increments at a
common wavelength of 1560 nm.
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coupling efficiency that increases the insertion losses, which must be also considered.

Additionally, insertion losses are also due to the field distribution mismatch between

the fundamental mode of the in-output waveguide and the higher order mode of the

PhC. Figure 3(a) shows the trade-off between the group index obtained for the odd mode

and the insertion losses, both in the flat region. Note that these values remain around

2 dB up to a we of 1700 nm, from which the design becomes highly lossy as the group

index increases. Therefore, the design presents high tolerances to fabrication deviations

regarding we . Two different designs of we1 = 1600 nm and we2 = 1700 nm with odd mode

group indices of 7.85 and 9.14, respectively, have been considered for changes in the

silicon refractive index. In bimodal waveguides, since both modes interact with variations

in the material optical properties, the length required to obtain a phase shift of π for a

given change in refractive index is mathematically expressed as

Lπ = λ

2(∆ne f f ,o −∆ne f f ,e )
(1)

where λ is the wavelength, and ∆ne f f ,o and ∆ne f f ,e is the change in the effective index

of the odd and even modes, respectively. Figure 3(b) depicts the π lengths obtained for

different silicon refractive index changes at a wavelength of 1560 nm, which is within the

flat region of group index. Both we1 and we2 designs of the bimodal 1D PhC have been

computed, as well as for a conventional homogeneous singlemode waveguide of 450 nm

width and 220 nm thickness. The length obtained in the 1D PhC waveguides is shorter

than in the homogeneous waveguide, even though in the bimodal case the resulting

effective index change is the difference between the two modes contribution. In addition,

the length obtained in the we2 = design is clearly shorter than in the we1 case, due to the

higher group index obtained for the first configuration. As a result, compact footprints

can be achieved in the we2 design since the interferometry is produced in a single-channel

waveguide and very short lengths are needed. Specifically, two lengths of 37 µm and 74

µm, corresponding to 100 and 200 periods, are considered for the experimental evaluation

for the we2 and we1 configurations, respectively.

4.2.3 Fabrication and characterization of the chip

The two we1 and the we2 bimodal PhC designs with their respective lengths previously

determined have been fabricated on a silicon-on-insulator platform with a silicon layer

thickness of 220 nm and a silica buried layer of 2 µm. Regarding the fabrication process,

30 KeV of acceleration voltage and 30 µm of aperture size have been employed in the

electron-beam lithography process to expose the photonic structures on a hydrogen

silsesquioxane (HSQ) negative resist. Likewise, inductively plasma etching has been used

to transfer the photonic designs onto the silicon layer. Finally, a silica cover layer of
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700 nm has been deposited on the sample, on which a lift-off process has been used to

evaporate titanium heaters of 160 nm thickness over the 1D PhC structures. The heaters

dimensions are 37 µm x 4 µm in the short we2 design and 74 µm × 4 µm in the long we2

design. The dimensions of the titanium pads are 100 µm × 100 µm in both configurations,

with a separation between them of 200 µm.

Figure 4(a) shows the optical microscope images of the fabricated chip with both we1

and we2 designs, and their corresponding heaters. A scanning electron microscope (SEM)

image of the entire fabricated switching structure of N = 200 periods and we1 is shown

in Fig. 4(b) and a detailed image of the bimodal 1D PhC waveguide is shown in Fig.

4(c). For the optical characterization, a continuous wave laser (Keysight 81980) with a

TE polarizer was employed to inject light into the chip by using on-chip grating couplers.

A synchronized power meter (Keysight 81636B) at the output, controlled by a LabVIEW

application, was used to record the transmitted spectra.

Pads

Ti

Ti

Switch 1

Switch 2

Ti

Ti

in1

in2

out1

out1

in1

in2

out1

out1

100μm

1μm
500nm

(a)

(b) (c)

Heaters

Fig. D.4. (a) Optical microscope image of the fabricated chip with the input and output grating
couplers, the titanium (Ti) heaters and lateral pads. Upper and lower switches have a length of
37 µm and 74 µm for we2 and we1 designs, respectively. (b) SEM image of the optical switch of
N = 200 periods and we2 = 1600 nm with the input and output single mode waveguides and (c)
detailed 1D PhC structure in silicon.
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4.2.4 Experimental demonstration

The normalized transmitted spectra for the bar and cross states are depicted for both we1

and we2 configurations in Fig. 5. As it is shown, an interference pattern is experimentally

obtained as a result of the constructive and destructive interferences between the even

and odd modes in the bimodal 1D PhC. The number of spectral peaks available in Fig.

5(a) is higher than in Fig. 5(b) due to the increment in the physical length in the first case.

It should be also noted that the modal excitation is decreased for those wavelengths near

the slow light regions predicted in Fig. 2(b), while the coupling efficiency is improved in

between. In this region, experimental insertion losses around 1.9 dB and extinction ratios

higher than 17 dB are observed for we1 and we2 configurations at a wavelength of 1576

nm and 1590 nm, respectively, which is in a good agreement with the simulations. For

these wavelengths, a crosstalk of 15 dB between bar and cross states is measured with a

bandwidth of 0.5 nm and 1 nm for we1 and we2 configurations, respectively.

To determine the dispersive behavior of the bimodal 1D PhC [18], the experimental

group index of the higher order odd mode is calculated from the bimodal oscillations in

the transmitted spectra by using the following equation:

no
g (λ) = λmaxλmi n

2L(λmax −λmi n)
+ne

g (λ) (2)

where λmax is the maxima and λmi n the minima positions of the transmission bimodal

oscillations, L the length of the bimodal region and ne
g is the simulated group index of the

even mode as a function of wavelength. In Fig. 5(a) and (b) the positions of the maxima

and minima are marked with circles for the bar port transmitted spectrum. The resulting

experimental group index obtained is depicted in Fig. 5(c), as well as the fitting curve

and the simulated even mode group index. These experimental measurements match the

theoretical results in Fig. 2(b), regarding the definition of two slow light zones of extremely

large group index contrast. Between these two zones, a flat region of almost a constant

group index for the odd mode is obtained. A specific group index value of 7.6 and 9 at

the wavelengths previously considered is experimentally obtained for the we1 and we2

configurations, respectively, which perfectly match the simulations in Fig. 3(a). Moreover,

the optical bandwidth of the group index flat region is reduced because of the influence

of the we2 dimension in the band structure formation, as it was theoretically predicted. A

large group index contrast flat region of 45 nm and 33 nm is experimentally measured for

the we1 and we2 designs, respectively.

To validate the device as an optical switch, the transmitted spectra in the bar and cross

states have been recorded when applying an electrical signal to the titanium heaters. Due

to the thermo-optic coefficient of silicon, the optical response is tuned by the temperature
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Fig. D.5. Normalized transmission spectra of the fabricated optical 2x2 switches with a transversal
element width (a) we1 and (b) we2 with a silica cover as upper cladding. The normalization has
been calculated respect to a reference waveguide of the same length. The filtered spectra are
shown over the raw experimental data, in dark and light colors, respectively. Maxima and minima
peaks corresponding to the constructive and destructive interferences are marked with circles. (c)
Experimental group index calculated from the spectra minima and maxima peaks as a function of
wavelength for both we1 and we2 designs.

changes in the structure caused by the heaters. Figure 6(a) and (b) shows the optical

response in the bar and cross states of the we1 and we2 switches, respectively, for different

voltages. The results present a positive spectral shift originated by an increment in the

temperature, which corresponds to a phase shift around π for both designs. To determine
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the power consumption of the switch, the spectral dips previously detailed at 1576 nm and

1590 nm have been considered in the we1 and we2 designs, respectively. The phase shift

accumulated in the bimodal waveguide may be obtained from the transmitted spectra as:

∆φ= 2∆λ

(F SRH +F SRL)
(3)

where ∆λ is the spectral shift of the transmission dip, and F SRH ,L are the free spectral

range between consecutive dips at higher and lower wavelengths, respectively. In the left

graph of Fig. 6(c), the estimated phase shift with Eq. (3) is depicted as a function of the

applied electrical power. As it was previously predicted, the we2 design presents a higher

switching efficiency than the we1 design, as a result of the higher odd mode group index

for this configuration. Concretely, a power consumption of 19.5 mW is demonstrated

in the we2 configuration, whereas 24.5 mW is obtained in the we1 configuration, for a

π-phase shift. The right graph of Fig. 6(c) depicts the optical power of the bar and cross

states versus the applied electrical power, for both wavelengths previously considered

within the flat region of the group index. It is shown that a lower electrical power is needed

in the we2 design to switch from a minimum optical peak to a maximum. Consequently,

a higher power consumption is required in the we1 design, which confirms the higher

efficiency obtained for the we2 configuration.

4.2.5 Conclusion

To conclude, we have demonstrated an ultra-compact electro-optical 2x2 switch based

on a slow-light-enhanced bimodal waveguide and driven by the thermo-optic effect

in silicon. In contrast to other similar work [37], the periodic unit cell is designed to

support two modes of both even and odd symmetries in the bimodal part of the band

structure. We benefit from this fact to engineer a broadband region of large group

index contrast, thereby improving the switching performance. Two different designs

have been considered to show the trade-off between the group index contrast and the

insertion losses. In comparison with the literature, simulations have demonstrated a

higher efficiency for both slow-lightenhanced bimodal configurations compared to a

standard silicon waveguide integrated in ring resonators and MZI-based switches [3],

[4], [6]. Moreover, the interferometry has been carried out in a single-channel structure

without the need of additional photonic elements, which have significantly reduced the

final size of the device. As a result, an ultra-compact switch with a footprint of only

63 µm2 was achieved, which is smaller than the ones reported in related PhC-based

works in MZI configurations [17], [21] and similar to the ones observed in 2D PhC

[22]–[25], but in our case in a straightforward design that eases the fabrication processes

and cost for high-level production. An insertion loss of 1.8 dB and a crosstalk of 15
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Fig. D.6. Normalized transmission spectra for different voltages and for both designs of (a) we1 =
1600 nm with a device length of 74 µm and (b) we1 = 1700 nm with a device length of 37 µm. (c)
Phase shift and optical power as a function of the electrical power applied, left and right graph,
respectively. A wavelength of 1576 nm and 1590 nm have been considered for the we1 and we2

designs, respectively, both in the flat region of the group index.

dB over a 1 nm bandwidth were obtained with a power consumption of 19.5 mW. The

resulting bandwidth is smaller than for conventional MZI switches [7] but higher than

in the case of RR switches [5]. On the other hand, insertion losses is higher than in

conventional MZIs or ring resonators, where values below 0.5 dB have been reported

by using thermo-optic phase shifters [40], [41]. However, the taper geometry could be

further optimized to minimize insertion losses [42], while power consumption could also
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be reduced with an improved design of the heaters [11]. The results suggest the use of

these types of structures in photonic switching for datacenters in which large matrices

are not required and the overall photonic integrated circuit size would be drastically

reduced [43]. Furthermore, future work in lowering losses would be highly desirable for

improving scalability and addressing other potential applications such as LIDAR systems,

programmable circuits, or neuromorphic computing.
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Interferometers usually require long paths for the ever-increasing

requirements of high-performance operation, which hinders the miniaturization

and integration of photonic circuits into very compact devices. Slow-light based

interferometers provide interesting advantages in terms of both compactness

and sensitivity, although their optimization is computationally costly and

inefficient, due to the large number of parameters to be simultaneously designed.

Here we propose the design of slow-light-enhanced bimodal interferometers

by using principal component analysis to reduce the high-dimensional design

space. A low-dimensional hyperplane containing all optimized designs is

provided and investigated for changes in the silicon core and cladding refractive

index. As a result, all-dielectric single-channel interferometers as modulators

of only 33 µm2 footprint and sensors with 19.2×103 2πrad/RIU·cm sensitivity

values are reported and validated by two different simulation methods. This

work allows the design and optimization of slow light interferometers for

different applications by considering several performance criteria, which can be

extended to other photonic structures.

4.3.1 Introduction

Optical interferometers are essential components in today integrated photonics. Among

others, they are widely used in modulators, switches, sensors and programmable

photonic circuits [1-4], due to their ability of converting a change in the refractive index

(RI) into a shift of the relative phase between two propagating modes. To enhance the

phase shift, further optimization either in the material or in the geometry is required to

maximize light-matter interaction. In sensing interferometers, a strong field interaction

with the cladding is desired to increase the sensitivity [5], for instance by employing

plasmonic configurations [6-9] or lower RI contrast materials such as silicon nitride

[10]. In contrast, typical electro-optical modulators based on Mach-Zehnder (MZI)

interferometers in silicon-on-insulator (SOI) platforms require from highly confined

modes within the waveguide core to assure a complete overlap of the optical and the
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electric field [11-13]. Similarly, SOI thermo-optic switches are also designed to support

highly confined optical modes to optimize the interaction of the optical field with the

core RI changes due to the thermo-optic coefficient of silicon [14-16]. Concurrently,

interferometers performance can also be improved by engineering new structures and

including them in one of the MZI arms, as in the case of slot waveguides [17,18] or

subwavelength grating (SWG) structures [19,20], although roughness scattering losses

must be considered compared to strip waveguides [21].

On the other hand, the physical path of the interferometer limits the size of the device

as long interferometric structures are typically designed to provide high-performance

operation, which hinders the fabrication of densely integrated optical circuits [22].

To solve this issue, long MZIs are proposed as compact interferometers by including

low-loss compact bends with small radius in the MZI arms [23], as well as bimodal

(BiM) waveguide sensors where the interferometry is carried out in a single-channel

structure [24]. More sophisticated BiM waveguides based on SWG structures have also

been reported as compact and high-sensitivity sensors without the need of additional

photonic structures [25,26]. Another interesting approach is to increase the optical path

of the interferometer using slow light structures [27,28], while maintaining a reduced

physical length. This is the case of photonic crystals (PhCs), either combining them

in the arms of a MZI to develop modulators [29-31] and sensors [32], or by fully

integrating an interferometric scheme in a 2D hole-patterned PhC for switching purposes

[33,34]. In this scenario, further improvement was made by including a bimodal behavior

in a single-channel slow light waveguide [35,36], demonstrating high-performance

interferometers as modulators, switches, and sensors, with extremely reduced footprints

compared to the abovementioned approaches. However, the optimization of these

types of periodic structures is not straightforward because of the multiple design

dimensions to consider. Several optimization methods based on genetic algorithms

[37,38], gradient-based optimizations [39,40] or particle swarm [41,42] are proposed

as useful tools to design high-performance grating couplers, SWG structures or PhCs,

among others. More recently, machine learning techniques have also been demonstrated

for designing optimized nanophotonic components using artificial networks [43,44].

Nevertheless, all these optimization methods focus on optimizing a single criterion,

which makes it very difficult to obtain a general perspective of the overall device

performance. In contrast, dimensionality reduction techniques offer interesting design

tools to optimize multi-parameter structures by taking into consideration different

performance criteria [45-48], which eases the design process for the desired application.

In this work, we propose the design and optimization of multi-variable

slow-light-enhanced bimodal interferometers by using principal component analysis

(PCA). A figure of merit (FoM) is provided, which allows us to characterize the desired



4.3 Paper E: Design of slow-light-enhanced bimodal interferometers 133

bimodal band structure and extrapolate it to other different PhC designs. By using PCA

of the FoM, we explore and optimize the low-dimensional design space for changes in

both the silicon core and the cladding RI. Three different interferometers are presented

and optimized as sensors and modulators, offering significant improvements both in

sensitivity and compactness compared to other existing configurations.

4.3.2 Figure of merit definition

In a PhC, when two bands of the same polarization and parity intersect, they repeal

each other and form an anti-crossing point where electromagnetic wave propagation is

forbidden [49]. Furthermore, it has already been demonstrated how slow light bimodal

interferometers, based on two modes with a large group index difference, can be designed

in the vicinity of the anti-crossing point [35]. Figure 1a schematically shows the first three

bands of a band structure in a PhC formed by the fundamental mode folded into the

first Brillouin zone and the higher order mode. Figure 1b and c depict the third bimodal

band and its corresponding group index for both modes as a function of wavelength. The

group index is defined as ng = c/vg where c is the speed of light in the vacuum and vg the

group velocity, which is related to the slope of the wavelength versus the wavevector. Note

that the maximum group index difference is obtained at λ1, where the higher order mode

reaches the end of the first Brillouin zone and becomes slow light. Conversely, at λ2, both

modes present a slow light behavior and almost no group index difference is observed.

This operating principle, involving higher order bands, is obtained within the PhC region,

while in the SWG regime only first order bands are considered. In this work, we define a

FoM to characterize the curvature of the third bimodal band in order to quantify the group

index difference and the bandwidth of the bimodal region. The FoM is mathematically

expressed as

FoM =
∫ λ2

λ1

(ng 2 −ng 1)dλ (1)

where λ1,2 are the entire wavelength limits of the bimodal region, and ng 2,1 are the group

index of the higher order and fundamental mode, respectively. Therefore, the FoM may be

defined as the area under the curve of group index difference as a function of wavelength.

By optimizing this variable, we assure a bimodal region with large group index contrast

and bandwidth, which are the main parameters in order to maximize the optical path

of the interferometer. The higher the group index difference, the larger the phase shift

obtained for a given change in the RI, regardless the physical length. Moreover, the FoM

provides information about the bimodal band curvature, which is common to other PhC

designs in which an anti-crossing point is formed, see Fig . 1a. This fact will allow us to
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compare between PhC configurations of the same design, and between different designs

with new geometric shapes, and thus, with a different light-matter interaction.

4.3.3 Design optimization

In the following section, three designs based on one-dimensional PhC waveguides made

of silicon over silica cladding are investigated for sensing and modulating purposes.

The unit cell geometry is engineered to obtain a bimodal band structure with a similar

curvature than the third band presented in Fig. 1b, so that it can be quantified by

the FoM previously defined. To this end, a first exploration of the multi-parameter

design space is carried out by using MIT photonics band (MPB) free software [50]. MPB

computes definite-frequency eigenstates of Maxwell’s equations by using plain wave

expansion numerical methods, to obtain the band structure of the PhC. The first three

bands for the transverse electric (TE)-like polarization have been computed. An initial

low-resolution sweep of nD simulations is carried out, where n is the number of values for

each dimension and D the number of design dimensions. A collection of good designs
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providing values of FoM above a certain threshold is selected from this initial sweep.

These designs are subsequently used in the PCA to extract the sub-dimensional design

space [46]. PCA finds among the multi-dimensional design space a set of orthogonal

vectors that maximizes the variance of the FoM. Specifically, a two-dimensional

hyperplane formed by the first two principal components is selected, which critically

reduces the design space dimensionality and enables a low-computational exhaustive

mapping. Thereby, a design k with dimensions Lk = [L1,k ...LD,k ] can be expressed as

Lk =αk V1αβ+βk V2αβ+Cαβ (2)

where α, β are the coefficients that describe any design in the hyperplane formed by

the first two principal components vectors V1,2, and Cαβ is the origin constant vector.

High-resolution sweeps of the resulting 2D hyperplane are now reachable, with a wide

collection of good designs for different configurations. Besides, an exhaustive mapping

of the hyperplane can be further evaluated for different criteria beyond the FoM. More

precisely, we are going to investigate the interferometer as sensors and modulators,

thus for changes in the cladding and silicon RI, respectively, and also for fabrication

robustness.

The first 1D PhC design considered is shown in Fig. 2a, based on a periodic corrugated

waveguide in the propagation direction. This design has already been investigated in

Ref. [35], but here we intend to optimize it by using PCA. The unit cell dimensions are

shown on the right-side part of Fig. 2a, for the periodicity a, central waveguide width w ,

transversal element length we , width wi and height h. Note that a rectangular taper for

the efficient bimodal excitation is placed between the single mode in-output waveguide

of width ws and the periodic bimodal structure, although these parameters do not affect

the band calculation. The height is set to 220 nm, which is a typical value used in

SOI wafers for silicon photonics, although this parameter could be also included in the

PCA optimization. As a result, a four-dimensional design of the unit cell is obtained

(a, w, we , wi ). To reduce the computational resources, the number of values for each

dimension n is set to a low value of 4. Thus, an initial sweep of 44 = 256 simulations

has been computed to obtain the band diagram in MPB, and its respective FoM, of the

entire multi-dimensional space. An initial collection of 44 good designs with a FoM over

a threshold of 270 has been selected for the PCA. This value has been selected to obtain a

relatively large number of designs in the initial collection.

Figure 2b depicts the exhaustive mapping, as a function of α and β coefficients, of

the 2D hyperplane after the PCA with a high-resolution sweep of 30×30 MPB simulations.

The black solid contour represents those designs with a FoM of 250, which is the value

calculated in Ref. [35]. Those FoM values out of the color bar range are not represented
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at λ0 wavelength and a given silicon RI increment of 0.01.

to emphasize the optimized values. A relatively large region of different designs with

optimized FoM values is obtained, within which two optimized FoM areas with values

around 280 are observed. Likewise, the hyperplane of optimized designs is explored for

small fabrications deviations of +- 10 nm in the design dimensions. The degradation

of the FoM is shown in Fig. 2c, calculated as d = −(F+ +F− − 2F0)/(2∆δw )) where F+,− is

the FoM for a positive and negative deviation, respectively, F0 the initial FoM without
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deviations and ∆δw is the absolute deviation width considered. Note that a positive

degradation means a reduction of the FoM when deviations occur, whereas a negative

degradation will be translated into an increment of the FoM.

Figure 2d and e show the colormap for the sensitivity and π length, which are strongly

related with the light-matter interaction of the propagating modes with the cladding and

silicon core, respectively. The phase shift has been calculated for a given change in the

cladding and in the silicon RI. Due to the dispersion of these interferometers, the phase

shift strongly depends on the operating wavelength, being much higher for those regions

near λ1 in Fig. 1a. However, coupling losses are also incremented within the slow light

region, so that a trade-off between sensitivity and losses is obtained [51]. Due to this fact,

the phase shift is calculated at λ0 wavelength where the group index of the higher order

mode is limited to 20, since this value has been experimentally demonstrated in similar

structures [35]. At this wavelength, the sensitivity to cladding RI changes shown in Fig.

2d and normalized to a length of 1 cm, has been calculated as S = ∆φ/∆nc , where ∆φ is

the phase shift difference for a cladding RI change ∆nc of 0.01. Similarly, changes in the

silicon RI have also been investigated by calculating the length required to obtain a phase

shift of π, see Fig. 2e. As in the previous case, it has been obtained at λ0 wavelength as

Lπ = π/∆β where ∆β is the increment in the propagation constants of both modes for a

given change in the silicon RI of 0.01. Design 1, marked with a cross in Fig. 2, has been

chosen from the hyperplane at the region where both the sensitivity and the π length

reaches its maximum, and where considerable low values of degradation are obtained. A

FoM of 272.2 with a degradation of 1.41 nm-1, a sensitivity of 10,870 2πrad and a π length

of 27.5 µm has been obtained for the corrugated waveguide optimization of Design 1.

The second design is presented in Fig. 3a, consisting of a double array of circular holes

over a uniform rectangular waveguide, forming a 1D PhC in the propagation direction.

The dimensions of the unit cell are shown in the right-hand side of Fig. 3a, for the

periodicity a, waveguide width w , distance from the waveguide center to the holes center

d , hole radius r and height h. As in the previous case, the height has been fixed to 220 nm,

so that a four-dimensional design space is obtained (a, w,d ,r ). An initial low-resolution

sweep of 256 simulations has been carried out to make a first exploration. In this case,

23 good designs with a FoM above a threshold of 280 are selected for the PCA. Figure

3b shows the FoM colormap as a function of α and β coefficients. A contour delimiting

those good designs with a FoM value higher than 250 is depicted, which demonstrates

that this 1D PhC design can also be improved in comparison to [35]. It should be also

noted that now the maximized area of the FoM is localized on a certain region of the

colormap, close to the edge of good designs. Figure 3c shows that these designs present

high degradation values due to the deterioration of the band curvature at these regions

where FoM is drastically deteriorated. Figure 3d and e show the sensitivity and π length,
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respectively, both calculated at λ0 wavelength. High-sensitivity designs are obtained near

the right-side edge of the hyperplane where high-degradation values were also obtained,

while the π length is clearly optimized in the opposite left side part of the colormap.

Design 2 marked with a cross in Fig. 3 has been chosen from a region of optimized π

length designs and low degradation. Specifically, a FoM of 284.6 with a degradation of

0.28 nm-1, a sensitivity of 5,364 2πrad and a π length of 25.9µm has been obtained for the

double hole waveguide optimization of Design 2.

Finally, the third 1D PhC design is presented in Fig. 4a and consists of

two independent transversal elements periodically placed besides a central uniform



4.3 Paper E: Design of slow-light-enhanced bimodal interferometers 139

waveguide, forming a kind of multi-box periodic waveguide in the propagation direction.

In this case, a five-dimensional design space is obtained since a small gap is defined

within the structure. By using PCA, more complex designs can also be optimized which

enables new geometric shapes with new interesting light matter interaction. The unit

cell dimensions are shown for the periodicity a, central waveguide width w , transversal

element length we , width wi , gap between the central waveguide and the transversal

element g and height h. The height is fixed to 220 nm as in previous designs, although

in this case a five-dimensional design is obtained. An initial sweep of 35 = 243 simulations

is computed to select 42 good designs with a FoM above 260. Figure 4b shows the FoM
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colormap as a function of the first and second principal components where two main

regions of designs with a FoM value higher than 250 are obtained. The degradation

is equally distributed, see Fig. 4c, while the sensitivity in Fig. 4d is homogeneously

distributed and maximized for those designs in the left side part of the FoM colormap.

Nevertheless, low-performance regarding the π length is obtained for the entire PCA

mapping in comparison with the previous design, see Fig. 4e. Therefore, Design 3,

marked with a cross in Fig. 4, has been chosen in the region of maximized sensitivity

with a FoM of 275.7, degradation of 1.09 nm-1, sensitivity of 19,196 2πrad and a π length

of 36.6 µm.

4.3.4 Comparison of the results and discussion

The resulting optimized designs from the PCA are presented in Table 1, which shows

a comparison between the main results regarding the FoM, fabrication deviations and

changes in the RI of the cladding and the core of the structure. Dimensions are sorted in

the appearance order in which they have been previously detailed. Note that all designs

present a higher FoM value than the one reported in Ref. [35], which demonstrates

an enhancement of the optical path in slow-light-enhanced bimodal waveguides by

using PCA. Moreover, further improvement in terms of both sensitivity and π length

is presented. Compared to [35], a specific 22 % reduction in the physical length of

the interferometer as a modulator (changes in the silicon RI) is obtained for Design 2,

whereas the sensitivity is increased by a factor of 1.85 for Design 3, acting as a sensor

(changes in the cladding RI). These results are obtained for an all-dielectric structure

compared to other highly sensitive plasmonic sensors based on metallic structures

[6-9]. However, some other parameters that could affect the sensitivity (other material

properties, temperature changes or fabrication deviations) must be considered in future

sensor optimization steps. By reducing the design space dimensionality, we develop a

parallel optimization for both the optical path and the light matter interaction of the

interferometer. Furthermore, this method has been used in three different geometrical

designs to further evaluate the field distribution and its interaction with induced RI

changes. As a result, very different performance are obtained for the configurations

considered, as in the case of the silicon and cladding RI sensitivity contrast between

Designs 2 and 3.

Figure 5a shows the first three bands for the TE-like polarization for the three designs

presented in Table 1. The region of interest is located around 1550 nm at the third band

curvature, marked with the green shaded area of Fig. 5a. As it was schematically explained

in Fig. 1, in this region an anti-crossing point is formed, below which the bimodal desired

operation is obtained, see β1,2 in Fig. 5a. Note that the operating region could be roughly
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Table 4.1 PCA Optimized designs comparison

Design α, β Dimensions (nm) FoM Deg. (nm-1) S (2πrad) Lπ (µm)

Ref. [35] None [370,600,1400,220] 249.8 0.62 10,337 33
1 (corr.) [-0.93,-1.31] [378,560,1638,171] 272.2 1.41 10,870 27.5
2 (hol.) [-1.24,-1.03] [387,1319,439,100] 284.6 0.28 5,364 25.6
3 ( box.) [-0.96,-3.17] [360,726,722,168,90] 275.7 1.09 19,196 36.6
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designed to other wavelengths by simply changing the periodicity of the structure and

re-scaling the rest of parameters. The band structure formation for all designs is very

similar, specifically the curvature of the third band, in accordance with the FoM results

obtained in Table 1. Figure 5b, c and d show the field distribution for Designs 1, 2 and 3,

respectively. Both the fundamental (β1) and the higher order (β2) modes are shown. In all

these cases, the fundamental mode is highly confined within the center of the waveguide,

while the higher order mode is partially localized in the periodic pattern of the structure.

Note that in the right graph of Fig. 5c, the β2 mode is more confined within the silicon
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structure than in the case of the right graph of Fig. 5d, where a high part of the field is

localized within the gap. This fact explains why Design 2 is highly sensitive for changes

in the silicon RI and Design 3 for changes in the cladding RI, and thus their difference

between the sensitivity and π length results.

For the sake of completeness, the results have also been validated with 3D finite

difference time domain (FDTD) simulations using the CST Studio software. In this

case, the unit cells are periodically disposed in the propagation direction with its

correspondent taper configuration of ~1.5µm length and accessed in and out with a single

mode waveguide of 450 nm width. The fundamental TE mode of the input waveguide

excites both modes in the bimodal PhC, which similarly contribute to the excitation of the

fundamental TE mode at the output waveguide. Thus, the bimodal interference pattern

can be observed in the transmitted spectra. Note that as in the case of [35], there will be

a trade-off between the group index and the bimodal bandwidth. To measure the phase

shift, we need to calculate the relationship between the wavelength shift of a constructive

interference in the spectrum and the free spectral range (FSR) by using the following

expression: ∆φ=∆λ/F SR. Figure 6a and b depict the phase shift of the lowest wavelength

interference for all designs as a function of linear changes in the cladding and silicon RI,

respectively.

Note that the most sensitive configuration to cladding changes in Design 3, which

is in a good agreement with the results shown in Table 1. Likewise, Design 2 is the

most sensitive to silicon RI variations, hence the lower π length is obtained for this

configuration, although it presents a lower extinction ratio (2.5 dB) than the other

configurations (15-20 dB) because of the low coupling efficiency to the slow light mode

that must be addressed in a future optimization of the taper design. Design 1 presents a

balanced behavior for changes in both the cladding and core, which also matches with

previous results. Figure 6b shows the considered interference in the transmitted spectra

for all designs under cladding RI changes. The FSR is almost equal in all of them, while the

wavelength shift is clearly higher for Design 3 (green right-side graph), which explains the

results of Fig. 6a. Similarly, Fig. 6d shows the spectra for a change in the silicon core RI of

0.01 and for 1D PhCs with the π lengths calculated in the PCA. The FDTD results perfectly

match previous MPB simulations, an a clear π phase shift is observed in the spectra.

4.3.5 Conclusions

We have demonstrated a method to design and optimize slow-light-enhanced bimodal

interferometers by using dimensionality reduction techniques. A FoM has been

introduced to characterize the bimodal band curvature of the 1D PhC and PCA has been

employed to optimize the optical path of the interferometers in terms of group index
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and bandwidth. A low-dimensional 2D hyperplane containing the optimized designs

has been obtained, which allows us to explore different performance criteria as the

degradation to fabrication deviations, bulk sensitivity and π length for changes in the

silicon RI. As a result, three different single-channel 1D PhC interferometers have been

designed, with remarkable improvements regarding other similar slow-light-enhanced

bimodal structures [35]. Specifically, simulations show that the physical interferometer
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modulation length has been reduced by 22 % for silicon RI variations, which means that

this device can be integrated in an all-dielectric structure of only 33 µm2 footprint. In

comparison with the literature, these results correspond to a reduction of more than

two orders of magnitude respect to conventional MZI structures [12] and more than one

order compared to slow-light based interferometers [28, 31]. Moreover, a sensor with

values of 19.2 ×103 2πrad/RIU·cm has been reported, which means nearly twice as high

as cited slow-light-enhanced bimodal interferometers [35], and more than one order of

magnitude compared to standard MZI sensors and bimodal waveguides [5, 24]. Overall,

these findings open up new avenues to design and optimize bimodal photonic crystal

devices which may lead to novel applications in different areas with enhanced properties.
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Chapter 5

Discussion and conclusions

Once the original contributions have been presented, in this last chapter we highlight the

main results reported throughout the thesis, as well as discuss the principal findings of

the work and relate them with the initial objectives stated at the introduction. We also

detail next steps that will be developed in future works and conclude the document with

some final remarks.

5.1 General discussion of the results

In this section we present a brief discussion on the main results reported. We will consider

separately contributions on subwavelength structures and photonic crystals as they

provide different solutions to the main goal of optical interferometry in a single-channel

waveguides. We will also compare our designs with the state-of-the-art of similar devices,

in order to illustrate the main advantages in the resulting footprint and operational

features.

5.1.1 Bimodal subwavelength waveguides

The first part of the thesis is about bimodal SWG waveguides for spectral-based refractive

index sensing. As it is described in the introduction of Paper A and Paper B, SWG

are attracting increasing interest from the scientific community in the last years due

to their dispersion and anisotropy properties that provide broadband operation and

compactness. Figure 5.1 shows some photonic examples of devices made of multimode

SWGs [154, 101]. Specifically, a directional coupler and a MMI for beam splitting are

depicted, as well as our proposed bimodal refractive index sensor. In our case, we benefit

from the dispersion of the fundamental mode to critically enhance the spectral sensitivity.
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a)

b)

c)

Fig. 5.1. SWG designs based on multimode operation for different photonic applications such
as (a) a directional coupler [154] (b) beam splitter [101] and (c) our proposed bimodal refractive
index sensor.

This fact, combined with the advantages of SWGs for sensing, provides outstanding

results in terms of bulk and surface sensitivity. Figure 5.2 shows some other photonic

sensing structures on SWG based waveguides [155, 156, 115]. In these cases, single-mode

operation is employed but it allows us to illustrate other approaches involving SWGs to

increase the light-matter interaction with the cladding, and thus the sensitivity. Our SWG

elements are similar to the examples herein presented, but in our case to design a bimodal

sensor for spectral-based sensing.

The presented sensor configuration clearly presents dispersion for the even mode at

the region near the end of the Brillouin zone, specifically at lower wavelengths, where

the structure might be considered in between the PhC and the SWG regimes. On the

other hand, for higher wavelengths the structure is in the deep subwavelength regime

with less dispersive modes, especially in the case of the odd mode, although the even one

is still slightly dispersive. This transition between dispersive and non-dispersive regions

provokes a soft non-linear fall in the phase shift between both modes, which creates

the so-called critical sensitivity region. Moreover, these dispersion effects can also be

observed in the transmission measurements where the spectral dips are more grouped for

low bimodal wavelengths in which the structure operates near the PhC regime. Another

interesting property is the scalability of SWG structures to operate in other wavelength

ranges. The operating region of the bimodal structure can be moved to other regions by
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correctly designing the period Λ of the structure. For instance, by reducing the period of

the SWG structure we obtain new bands shifted to lower wavelengths for even and odd

modes, thus moving the operating wavelength. However, we should take into account

that for lower wavelengths we approximate to the light cone, where the modes become

lossy and the bimodal condition cannot be reached.

The presence of fabrication deviations could affect in different ways depending on

which design parameter could suffer from this variability. If the parameter Λ is affected,

the spectral response will be moved to other operating wavelengths, but this would not

be so crucial since the spectra response will be shifted just a few nanometers. Another

parameter that could be affected is the width of the SWG element w . Given that there is a

good agreement between simulations and experimental measurements, the variation of

the width do not affect that much in the modal behavior of the structure since we obtain

similar results for simulated widths from 1300 nm to 1500 nm. Nonetheless, the most

important parameter that has to be carefully controlled in fabrication processes is the

thickness of the SWG element, which determines the duty cycle of the structure. As it has

been reported in the manuscript, the sensitivity is strongly dependent on the duty cycle,

so that variations in this parameter could affect the performance of the sensor.

a) b)

c)

Fig. 5.2. SWG based refractive index sensors consisting of (a) ring resonators [155] (b) slot
waveguides [156] and (c) MZI configurations [115].
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It is worth also noting that the sensor length strongly influences the number of spectral

dips in the critical sensitivity region, but not the sensitivity of those peaks. In addition,

having different N periods for two different configurations allows us to demonstrate this

fact, which is not exclusive of this type of SWG interferometer. The non-dependence

of the sensitivity with the sensor length is a common feature to all MZI schemes

(including bimodal sensors) interrogated with a wavelength sweep. Regarding the losses

for different SWG lengths, the propagation losses are typically higher than in a normal

solid-core waveguides, around 10-25dB/cm. However, one of the objectives of our sensor

proposal is reducing the total length of the sensing structure in comparison with other

interferometric configurations. In that way, we can work with sub-mm structures (instead

of requiring several millimeters or even centimeters lengths), what would introduce losses

below 1 or 2 dB. The limit of detection has not been specifically studied because it

depends on further optimization of the presented designs that must be addressed in

future works. However, a rough estimation of the actual limit of detection value is around

10−5 according to the values provided in [Conf. 4]. In fact, increasing the sensor length

would produce a higher number of peaks with a sharper spectral response and a higher

quality factor that would be easier to track. That reduction of the noise/uncertainty is

translated into a reduction of the limit of detection which would be an advantage, but

not to an improvement of the spectral sensitivity, which remains the same regardless the

sensor length.

5.1.2 Bimodal 1D photonic crystals

The second part of the thesis includes bimodal photonic crystals as common path

interferometers with reduced footprints (Paper C, Paper D and Paper E). To illustrate

the contribution of these findings to the state-of-the-art we must take a look at the

interferometric configurations commonly used as modulators and switches [121, 130,

30, 134]. Figure 5.3 shows some interferometric schemes aiming at improving the

performance by employing extremely long paths in folded waveguides, or including

photonic crystal structures in the MZI arms. In all cases, the main objective is the

same, engineering very long optical paths to increase the measured phase shift at

the output. On this matter, our bimodal interferometers provide high-performance

slow light operation while addressing size limitations typical of the aforementioned

interferometric architectures. Moreover, these findings can be extrapolated to sensing

devices, where bimodal waveguides and MZI including slow light structures have been

widely demonstrated as biosensors, see Fig. 5.4a and b, respectively [32, 133]. Our

approach combines these two ideas into a straightforward design that can be easily

integrated in mass-volume PICs.
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Regarding the losses, light coupling in a PhC waveguide becomes inefficient when

dealing with both slow light and higher order modes. In both Paper C and Paper D a

1D PhC waveguide supporting the fundamental mode and the higher order odd mode is

presented. On the one hand, there is a group index mismatch between the fundamental

mode of the input/output waveguide and the slow light mode supported by the PhC

structure, which causes a Fresnel reflection at the interface. This is translated into a lower

coupling efficiency of the slow light mode, and subsequently, into higher insertion losses.

This fact explains the increasing losses presented in the experimental measurements

of the bimodal PhCs where both insertion loss and extinction ratio deteriorate at the

slow light region. However, there is another fact that contributes to the increment of

the insertion loss. That is the field mismatch between the fundamental mode of the

input/output waveguide and the higher order mode of the PhC structure. The higher

order odd mode presents a different field distribution within the PhC which leads to a

lower coupling, and hence an increment of the insertion losses measured at the region of

high group index contrast. The taper placed at the interface between the input/output

waveguides and the PhC waveguide is intended to improve the coupling efficiency of

the higher order mode. Nevertheless, further work improving the bimodal excitation

a) b)

c) d)

MMI
Strip WG

Grating coupler

EO Polymer1D slot PhC

Mode 

Electrodes
converter 

Fig. 5.3. Interferometric configurations as optical modulators and switches including (a) folded
waveguides and PhCs either (b) two-dimensional, (c) one-dimensional and (d) slot PhC in the
arms of a MZI [121, 130, 30, 134].
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to reduce losses and increase the extinction ratio must be considered. For example,

designing more complex tapered structures as mode converters and step junctions, to

minimize both Fresnel reflection and mode field mismatch, respectively. On the other

hand, propagation losses are almost negligible and they do not contribute to insertion

losses. Besides, note that losses are almost equal between different PhC design lengths,

so that they are not mainly due to this fact, otherwise this would be clearly visible in the

transmitted spectra.

In Paper D we present a switch consisting of a bimodal PhC waveguide and four input

and output ports. The device presents a lower bandwidth than conventional MZIs but

higher than ring resonators-based switches. In turn, insertion loss is higher than both

MZIs and RRs, due to the highly dispersive periodic structure employed. However, future

work in the taper design could minimize losses by improving the coupling efficiency to the

higher order odd mode, as it was previously explained. Moreover, further investigation

in the PhC structure could enlarge the bandwidth, for instance designing larger regions

of group index contrast and reducing the bimodal length. This could help to increase

the free spectral range between consecutive interferences and so the bandwidth. At the

end, the proposed switch acts as a modal MZI in single-channel structure, so further

developments to offer similar performances than a MZI in terms of bandwidth could be

achievable, but in a drastically reduced footprint.

To some extent, the previous work done with bimodal SWG structures has many things

in common with the main ideas of the bimodal PhC part. Nevertheless, we believe that

the operation principle, development, and findings presented in the latter are clearly

a) b)

Fig. 5.4. Interferometric refractive index sensors as (a) bimodal waveguides and (b) MZI-based
schemes with a 1D PhC in one of the arms [32, 133].
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different. We designed the periodic structure to support two modes with large group

velocity difference in order to enhance the accumulated phase shift for changes in the

refractive index of the system, specifically in the higher order mode, in contrast to the

dispersion obtained for the fundamental one in the SWG case. To this end, PhCs allow us

to engineer the band diagram, and thus to design the desired bimodal slow light regions.

Moreover, that is the reason why in the PhC part we provide the sensitivity in terms of

radians per refractive index unit, since the phase shift obtained is drastically improved in

comparison with the almost negligible phase shift accumulated when dealing with SWG

structures. Note that in the case of SWG structures, the group velocity of the fundamental

mode is lower than the group velocity of the higher order mode. In contrast, in the

case of the photonic crystal the group velocity of the higher order mode is much lower

than the group velocity of the fundamental mode. This working condition in photonic

crystal structures is emphasized by drastically slowing down the high-order mode. The

idea of having a fundamental mode acting as a reference and a higher order mode acting

as an active mode for phase shift sensing is exploited in this part, while in the bimodal

SWGs both modes interacted with the cladding variations. It would be pointless to sense

the accumulated phase shift with SWG structures since it would be very low and the

active mode has a higher group velocity than the fundamental one, which would be like

designing a MZI with the sensing arm shorter than the reference one, obtaining a not

desired operation behavior.

Another important fact that distinguish both parts of the thesis is the field of

application of the proposed devices. Bimodal SWG waveguides were mainly focused

on sensing devices, since its dispersion effects were already exploited for other passive

photonic applications such as polarization controllers and beam splitters. On the other

hand, bimodal PhC can be used in a higher number of active photonic applications, as in

the case of the modulators and switches, as a result of the large phase shift accumulated

for induced changes in the silicon refractive index. This idea could be extended to many

other integrated optical applications as in the case of programmable optics, and logic

gates for optical processing, among others. None of the abovementioned applications

could be carried out by using the SWG-based bimodal waveguides, since very high

changes of the refractive index of the silicon structure would be required to achieve a

complete modulation transition, being much higher than in a standard MZI.

5.2 Main conclusions

One could say that the reported articles presented in the previous chapters cover a wide

variety of topics of very diverse nature. Indeed, during this thesis we did not intended

to focus on a specific application, rather on the optical dispersive phenomena that arise
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when dealing with bimodal periodic structures of different kinds. Otherwise, we think that

we might have missed some key insights that remain hidden when facing new research for

the first time. Hence, the main conclusions achieved in this work come from the intuition

of merging different ideas existing in the literature with no apparent relation, in order to

explore new potential applications with enhanced operational features.

The research work presented in this dissertation is included within the silicon

photonics field, in particular, integrated interferometry. The main goal was to develop

bimodal interferometric devices in very compact footprints. To this end, the work carried

out combines different periodic structures such as subwavelength gratings and photonic

crystals, both aimed at reducing the physical length employed and improving the

performance in the interferometry process. Specifically, we explore the resulting effects

of engineering dipersive modes in common path interferometers-based on bimodal

waveguides, and how these can be exploited for different purposes and applications. In all

cases, the designed devices are based on fully etched and all-dielectric structures, which

allow the compatibility with foundry processes.

The following list details each of the conclusions obtained:

• In Paper A we theoretically designed a bimodal waveguide-based on a periodic

pattern of SWG elements that supports the fundamental even and the first-order

odd mode of the TE polarization. By using periodically patterned structures

in the near subwavelength region1, we achieved a dispersive behavior of the

fundamental propagating mode, which produces an almost constant phase shift

between both modes as a function of the wavelength. These effects, together

with the sensing advantages typical of SWGs, have been exploited to develop an

spectral-based refractive index sensor with critical sensitivity regions. The sensor

performance is demonstrated to be strongly dependent on the design dimensions

since they determine the evolution of the phase shift, and thus the sensitivity of

the device. The surface sensing is also studied, providing also outstanding results

because of the inherent high-sensitivity performance of the bimodal SWG sensor.

Furthermore, by measuring the spectral shift, the design becomes non-dependent

on the interferometric length, which benefits the densely integration of multiple

devices in a single chip.

• The bimodal SWG sensor has been experimentally demonstrated in Paper B for

changes in the bulk refractive index of the cladding. The theoretical predictions

have been proved experimentally, providing a detailed comparison with theory

and simulations. The influence of the dimensions on the sensitivity has also been

analyzed as well as the sensor length non-dependence. As a result, a compact

1 We refer to the near subwavelength to that region close to the Bragg regime.
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silicon spectral-based sensor with record-high sensitivity values is experimentally

demonstrated in a bimodal SWG waveguide. Compared to the literature, our

proposed design provides a higher sensitivity than other spectral-based sensors

such as SWG ring resonators, PhCs and BiM interferometers [114, 146, 152] and

critically reduces the physical length typically required in uniform BiM waveguides

when measuring the phase shift [32].

• Paper C proposed, both theoretically and experimentally, a single-channel

interferometer in a one-dimensional PhC that supports the fundamental and the

second-order even modes of the TE polarization. Since both modes are of the same

parity, they interfere in the band structure of the PhC, forming an anti-crossing

point when the fundamental mode is folded into the first Brillouin zone. For lower

wavelengths below this region, the higher order mode becomes slow light, while the

fundamental mode presents a non-dispersive behavior. Therein, the higher order

mode acts as an active mode while the fundamental one acts as a reference. This

bimodal operation enables high-performance interferometry, as large phase shifts

occur when a refractive index change is induced without the need of designing

very long optical paths. Really compact and all-dielectric interferometers are

subsequently demonstrated, as a result of the slow light bimodal interferometry

together with the single-channel-based structure and the small lateral size typical

of 1D PhCs.

• The bimodal PhC interferometer has been demonstrated in Paper C for changes in

the refractive index of the silicon core and cladding, to demonstrate its efficiency

for optical modulation and sensing, respectively. In the first case, the silicon core

RI variation has been tested changing the temperature due to the thermo-optic

coefficient of the silicon. Phase shifts of π have been demonstrated in designs being

more than two orders of magnitude smaller than conventional MZIs, and more

than one order compared to interferometric schemes including PhCs [23, 21, 30].

Regarding the sensing experiments, the reported sensitivities improve by a factor of

10 traditional MZIs, and around 7.5 uniform bimodal waveguides [120, 32]. Overall,

its really compact footprint and straightforward CMOS-compatible design thereby

offer clear advantages respect to other interferometers for mass-level production at

low cost.

• In Paper D we demonstrate optical switching in a slow-light-enhanced bimodal

waveguide for the thermo-optic tunability effect. In this case, the bimodal PhC

waveguide supports the fundamental even and the first-order odd modes of the TE

polarization, which adds another degree of freedom in the designing process. By

exploiting the different parity of the modes, we achieve a large group index contrast
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between the modes for a wide wavelength operation region. The device has been

experimentally tested as a 2x2 switch by using titanium heaters close the photonic

structures. As a result, a switching efficiency higher than in a conventional silicon

waveguide has been demonstrated, everything integrated in an extremely reduced

design area, smaller than the ones used in others PhC-based switches [123, 124].

These results address the ever-growing increase in the traffic of data centers where

multiple switches in densely integrated circuits are highly desirable.

• Paper E explored a new method of designing slow-light-enhanced bimodal

interferometers for high-performance operation. Here the structures are designed

to support the TE fundamental and second-order modes of the even symmetry.

A figure of merit that characterizes the group index contrast in a wavelength

region is defined and used for principal component analysis. By taking the

first two principal components, we reduced the multi-dimensional design space,

which allowed the exhaustive mapping of the optimized designs. Consequently,

the designs have been investigated for changes in both the core and cladding

refractive indices, in order to test their efficiency as modulators and sensors.

Moreover, we proposed different geometrical PhC designs to analyze not only

the band formation but the light-matter interaction for an specific purpose.

Ultra-compact and high-performance interferometers are subsequently presented

by using two different simulation methods and with improved properties compared

to other similar designs. The results suggest the use of this designing method to

engineer novel PhC structures as bimodal interferometers by considering different

performance criteria.

5.3 Future work

Given the rise of photonics in the last few decades, this thesis has intended to

provide specific solutions for the increasingly high demand of smaller integrated devices.

However, we believe there are many aspects that remain open for further investigation in

future works, not only improving the existing results, but also seeking for new research

directions. Therefore, we herein detail a brief list describing some works that might be

considered in future investigations.

• Photonic biosensors have attracted increasing attention from many research groups

to develop LoC devices for real-time diagnosis. On this matter, we have been proving

the bimodal SWG sensor for the detection of different concentrations of the BSA
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protein using in-flow biofunctionalization processes2. However, these tasks are still

ongoing and no clear results have yet been obtained. It would be also fruitful to test

the bimodal SWG sensor in more complex experiments involving the recognition of

some specific biomarkers related with certain diseases.

• The slow light bimodal waveguides have been demonstrated for high performance

operation. Nevertheless, it is well known that 2D PhCs are much more efficient

providing slow light benefits, which means that higher values of the group index

can be obtained for the propagating modes. Taking this into account, it would be

very insightful to design slow-light-enhanced bimodal waveguides in 2D and even

3D PhCs to develop single-channel interferometers with an enhanced performance.

• As in the previous case, PhC bimodal interferometers can be used for biosensing

purposes. In addition, since the sensitivity of the sensor is expressed in terms of

the phase shift, low-cost interrogation systems could be developed by measuring

the sensor response at a given fixed wavelength. Moreover, the bimodal PhC design

could be extrapolated to other CMOS-compatible materials such as silicon nitride

in order to operate not only in the infrared, but also in the visible spectrum as in

the case of other similar sensing devices to reduce costs and absorption losses in an

aqueous environment.

• The bimodal PhC waveguide has been proved for changes in the silicon core

refractive index. It could be really interesting to further investigate the performance

of the device as a high-speed modulator and switch by improving the heaters design

or exploiting plasma dispersion effects in the silicon. Another approach for tuning

the bimodal PhC could be using liquid crystal as cladding and silicon electrodes to

twist the molecules by applying an electric field3. These strong effects, combined

with the ultra-compact design of the slow-light-enhanced bimodal interferometers

could find potential applications in programmable photonics where large meshes

with a high number of optical gates are required.

• The designs proposed by using the dimensionality reduction techniques could be

fabricated and compared with the reported configurations. Furthermore, the idea

of characterizing the bimodal band structure of a PhC by a figure of merit could be

extrapolated to design other configurations such as reconfigurable interferometers,

where we could change the bimodal operation regime by tuning the refractive index

of the silicon core.
2 Some results involving biosensing experiments in SWG bimodal waveguides are presented in conferences [Conf.

4] and [Conf. 5] (see Author’s merits section).
3 This task regarding liquid crystal actuation has been partially developed during the research stay at Ghent

University.
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5.4 Concluding remarks

To conclude, I would like to make one final remark on what has motivated me to get

throughout all these years and make this thesis.

Art and science have much more in common than it seems. They both are driven by

creativity and curiosity of thinking about things that do not exist yet, and perhaps, for

being recognized by others. In that sense, a thesis was for me like an empty painting

waiting to be sketched. The freedom of creating something was my motivation, just like

a craftsman when carving a handmade wooden figure. After all, we are just trying to

understand the world we live in, in the most enjoyable manner possible.

"Music is basically like mathematics, you’re trying to form patterns, patterns that makes

you to understand what is around you and help you get through the next day."

— Thom Yorke
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