
Escola Tècnica Superior d’Enginyeria Informàtica
Universitat Politècnica de València

Formal Analysis of Reddit Network Interactions
DEGREE FINAL WORK

Degree in Computer Engineering

Author: Padró Ferragut, Cristina

Tutor: Alpuente Frasnedo, María

Experimental director: Sapiña Sanchis, Julia

Course 2020-2021

Resum
Amb l’augment de popularitat de les plataformes de xarxes socials en les darreres

dècades, es demana una comprensió més exhaustiva i formal del funcionament d’aques-
tes xarxes a causa de la rapidesa amb què es difon l’informació en aquestes xarxes. Les
operacions d’aquestes xarxes haurien de ser consistents i correctes i amb el mínim d’in-
congruències possibles per mantindre la informació accessible i clara. Reddit, la plata-
forma escollida per a aquest projecte, ha augmentat en popularitat en els darrers anys i,
tot i que no és la plataforma més utilitzada al mercat, és una de les xarxes més potents
pel que fa a la difusió de la informació gràcies a la seva natura de dividir per categories.
Aquest treball es centra en analitzar les propietats i característiques de la plataforma de
xarxes socials Reddit. En primer lloc, es desenvolupa un model formal per a Reddit en el
llenguatge d’especificació d’alt rendiment Maude. "Després d’això, es realitza una anàlisi
d’accessibilitat al sistema Maude, que garanteix la seguretat del sistema demostrant que
no es pot assolir cap estat considerat insegur. Finalment, es comproven les propietats de
la vivència mitjançant el comprovador de models lògics (LMC) de Maude LTL."

Paraules clau: Maude, Mètodes Formals, Model Checking, Reddit, Verificació del codi

iii

v

Resumen
Con el aumento de la popularidad de las plataformas de redes sociales en las últimas

dos décadas, existe una demanda de una comprensión más completa y formal de cómo
operan estas redes debido a la rapidez con que se difunde la información en estas redes.
Las operaciones de estas redes deben ser consistentes y correctas y con la menor cantidad
de inconsistencias posibles para mantener la información accesible y clara. Reddit, la pla-
taforma elegida para este proyecto, ha ganado popularidad en los últimos años y, aunque
no es la plataforma más utilizada en el mercado, es una de las redes más poderosas en
cuanto a permitir que la información se difunda gracias a su naturaleza de división por
categorías. Este trabajo se centra en analizar las propiedades y características de la pla-
taforma de redes sociales Reddit. En primer lugar, se desarrolla un modelo formal para
Reddit en el lenguaje de especificación de alto rendimiento Maude. "Posteriormente, se
realiza un análisis de accesibilidad en el sistema Maude, que garantiza la seguridad del
sistema al demostrar que no se puede alcanzar ningún estado considerado inseguro. Por
último, las propiedades de vivacidad se comprueban utilizando el verificador de modelo
lógico (LMC) de Maude LTL."

Palabras clave: Maude, Métodos Formales, Model Checking, Reddit, Verificación del có-
digo

vii

Abstract
With the rise in popularity of social media platforms in the last couple of decades,

there is a demand for a more thorough and formal understanding of how these networks
operate due to how quickly information is disseminated in these networks. The opera-
tions of these networks ought to be consistent and correct and with as few inconsistencies
as possible to keep information accessible and clear. Reddit, the platform chosen for this
project, has risen in popularity in the last few years and, although it is not the most used
platform in the market, it is one of the most powerful networks in terms of allowing in-
formation to spread thanks to it’s divided-into-categories nature. This work focuses on
analyzing the properties and characteristics of the social media platform Reddit. Firstly,
a formal model is developed for Reddit in the high-performance specification language
Maude. "After this, a reachability analysis is performed in the Maude system, which en-
sures the safety of the system by proving that no states considered unsafe can be reached.
Finally, liveness properties are checked by using the Maude LTL logical model checker
(LMC)."

Key words: Maude, Formal Methods, Model Checking, Reddit, Code Verification

Contents

Contents ix
List of Figures xi

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives of this work . 2
1.3 Project Structure . 2

2 The Formal Specification Language Maude 3
2.1 Modules . 3

2.1.1 Imports . 4
2.1.2 Sorts and Subsorts . 4
2.1.3 Operators . 4
2.1.4 Variables . 4
2.1.5 Parsing . 5

2.2 Functional Modules . 5
2.2.1 Equations . 5

2.3 System Modules . 6
2.3.1 Rules . 6

3 Formal System Analysis by Model Checking 7
3.1 Temporal Logic . 8
3.2 Model-checking in Maude . 9

4 The Social Network Reddit 11
4.1 Reddit structure and features . 12

4.1.1 Structure of Reddit . 12
4.1.2 Actions of Reddit . 12

4.2 Reddit action interactions . 13
4.3 Reddit action interaction with counterintuitive effects 17
4.4 Malicious interactions . 17

5 Reddit formal specification in Maude 19
5.1 Sorts . 19

5.1.1 User . 20
5.1.2 SubReddit . 20
5.1.3 Post . 21
5.1.4 Vote . 21

5.2 Actions . 21
5.3 Reddit action characteristics . 22

6 Analysis and Verification of the Reddit system 25
6.1 Reachability analysis . 25
6.2 Model-cheking . 31

7 Conclusion 33
Bibliography 35

ix

x CONTENTS

Appendix
A Appendices 37

A.1 The Maude deductive model for the Reddit Network 37
A.2 The Maude operational model for the Reddit Network 43

List of Figures

4.1 Sequence 1 . 14
4.2 Sequence 2 . 15
4.3 Sequence 3 . 16

5.1 Anima state transition when consuming createuser action 23

6.1 Anima execution tree of Case 1 . 28
6.2 Anima execution graph of Case 1 . 29

xi

CHAPTER 1

Introduction

Online social networks are global media where people can collaborate, communicate,
spread information and create spaces for dialogue. Reddit is a platform that groups peo-
ple by interest. This platform has been a great forum for scientific and technological
discussion, among other topics of interest, and has even been part of a controversy [6]
that shows the power this platform has to create organized groups. The use of Reddit as
a cooperative platform begs for a more attentive look at the interactions that are occur-
ring on the network in terms of spread of information.

In this project, we have developed a formal model for the social network Reddit in
the high-performance specification language Maude, so that it can then be formally ver-
ified with a model checker and other tools for software analysis that are available in
Maude’s ecosystem. In order to understand the process that was followed to develop
the model, we must recall a few core concepts: formal languages, formal methods and
model-checking.

A formal language is an arbitrary set of chains over some (finite or infinite) alphabet.
In mathematical linguistics and the theory of automata, formal languages are specified by
formal grammars and different types of automata that can be described as modifications
of non-deterministic Turing machines [9]. A formal specification language is composed
of three main components: the syntax that determines the specific notation that can be
used to represent the specification; the semantics that provides the intended interpre-
tation of such a representation; and the set of rules that indicate which of the objects
properly satisfy the specification. The notion of "Formal Methods" refers to mathemati-
cally rigorous techniques and tools for the specification, design and verification of soft-
ware and hardware systems. The value of formal methods is that they provide a means
to symbolically examine the entire state space of a digital design (whether hardware or
software) and establish a correctness or safety property that is true for all possible inputs
[5]. Formal specifications are mathematically-based techniques that can be used to accu-
rately describe a system, to analyze its behavior and to verify its very properties through
effective and rigorous reasoning tools such as model-checking. Model-checking is an
automatic technique for verifying models of software or hardware systems against their
specification. This analysis is based on an exploration of the checked system’s state space.

Model-checking allows a specific formal system to be verified in a way that satisfies
the given properties of interest thanks to the exhaustive analysis of all possible execution
paths of the system. In this work, we chose to verify the online social network Reddit,
on which we have created our model for automated analysis verification purposes. Our

1

2 Introduction

formal model describes the logic of interactions among Reddit accounts. Since the spec-
ification is implemented in Maude, we are able to provide any language expression as
an input and let Maude explore the computations arising from such an expression. This
allows us to automatically verify Reddit’s communication properties in a simple and ef-
fective way.

1.1 Motivation

Social media platforms are an ever-present part of the modern life. These social networks
allow us to communicate, collaborate and connect with people, regardless of distance.
The underlying software that supports the network is constantly evolving and increasing
in complexity, allowing the spread of information, whether benign or not, at incredibly
high speed. Therefore it is necessary to be able to rigorously guarantee its correctness.
That being said, this correctness is difficult to provide, given the complexity behind social
platform algorithms in terms of what, how and where information is being stored and
displayed. For this, Reddit provides an interesting structure, given it’s organized-into-
subgroups nature.

Social networks are comprised of a set of actors (the users) that can have relation-
ships with each other. Amounts of actors and variety of relationships vary between plat-
forms, as each network is organized and maintained differently. To truly understand a
social platform, a complete and rigorous description of a pattern of social relationships
is required. This provides information such as all the relationships between each pair of
actors in the platform [4]. Formal methods allow us to display information quickly and
define a correct and thorough model of a network.

1.2 Objectives of this work

The objective of this project is to apply model verification techniques to the social network
Reddit using the Maude programming language. Maude is a high-performance reflective
language and system supporting both equational and rewriting logic specification and
programming for a wide range of applications [8]. Once this model has been created, we
can later apply automatic model verification to the formal specification of the platform.
By using Maude’s formal tools, we are able to achieve a deeper understanding of Reddit’s
interactions between users and how information is spread within this platform. Also, we
are able to asses whether the system behaves as expected or it deviates from the user’s
intentions. This is done by modeling Reddit interactions in the programming language
Maude, which allows us to use Maude’s model checker to automatically verify Reddit’s
communication properties.

1.3 Project Structure

After this introductory chapter, we introduce the two main technologies that are used
in this project: the language used and the social platform to be be analyzed. Chapter
2 briefly describes Maude, the language that is used to represent the model. Chapter 3
focuses on Model-checking. Chapter 4 provides a thorough overview of Reddit, the social
media platform that we want to analyze. In Chapter 5 we explain in detail the model we
developed for Reddit. In Chapter 6 we describe the analysis and model-checking process
for the developed model. Finally, in Chapter 7, we present the final conclusions on the
project as a whole.

CHAPTER 2

The Formal Specification
Language Maude

In this chapter we explain Maude’s basic syntax and how it works. Maude is a very
flexible, expressive and high-performance language. Statements are simple to under-
stand given its simple rewriting semantics. This simplicity allows Maude to express both
deterministic computations and concurrent, nondeterministic computations, programmed
by equations and rules respectively, making the language very expressive and versa-
tile. Although maintaining such a flexible level of expressiveness without losing too
much performance is no mean feat, it is achieved thanks to rewriting rules that are care-
fully analyzed and are semi-compiled for efficient matching module axioms. This semi-
compilation allows every single rewriting step to be traced in an effective way.

In regards to its structure, a program written in Maude is made up of one or more
modules, which can be functional modules or system modules. Functional modules dif-
fer from system modules in that the latter also support rules, integrating rewriting logic
and enabling transitions between system states.

Maude can be publicly found and downloaded at http://maude.cs.illinois.edu.

2.1 Modules

Maude’s basic units of specification and programming are called modules. Modules are
syntax declarations that provide a notation to describe a system and statements that es-
tablish the system behavior [7]. In Core Maude we distinguish between two types of
modules: Functional modules and System modules. The difference between these two is
in the statements they can have.

Modules consist of signatures and statements. Signatures are the basic syntax dec-
laration part of a module and consist of the following: sorts, subsorts, operators and
kinds (we will not go over this last one in the explanation, as they were not used in our
model).Statements, on the other hand, consist of equations and rules.

3

http://maude.cs.illinois.edu

4 The Formal Specification Language Maude

2.1.1. Imports

In Maude, modules can be imported as a submodule of another module in three different
modes: protecting, extending, or including:

1 pr (ModuleExpression) .
2 ex (ModuleExpression) .
3 inc (ModuleExpression) .

• Protecting: means that it avoids adding elements belonging to a module that can-
not be used or would otherwise cause confusion in our imported submodule.

• Extending: means that it will add the elements that might not be usable in a mod-
ule, but does not allow elements would cause confusion in an imported submodule.

• Including: means that it both allows adding elements that cannot be used and does
not avoid the ones that may cause confusion in our imported submodule.

2.1.2. Sorts and Subsorts

Sorts correspond to the types of data being defined in the code and must be the first
thing to be declared in a specification. Subsorts serve to order sorts by expressing what
data types are a subtype of another data type, similar to a parent-child relation.

2.1.3. Operators

An operator is a structure we define that consists of a list of sorts and returns another
sort as a result. Operators in Maude can be overloaded. Operators have the following
structure:

1 op (OpName) : (Sort -1) ... (Sort -n) -> (Sort) [(OparatorAttributes)] .

Sort-1 ... Sort-n are the sorts provided as arguments for the operator, Sort is
the type of result and OperatorAttributes are the possible attributes the operator might
have and express algebraic properties such as the Associativity or Commutativity. We
can also declare various operators at the same time that share the same structure using
the word ops, like this:

1 ops OpName1 OpName2 : (Sort -1) ... (Sort -n)
2 -> (Sort) [(OparatorAttributes)] .

2.1.4. Variables

Variables can be declared in either of two ways, on-the-fly or using the keyword var, and
are constrained to being a particular sort or kind. Variable’s names can be both in upper
and lower case, but it is more customary in Maude to declare them in uppercase.

An on-the-fly variable’s scope is the declaration’s occurrence. Therefore such variable
has to be accompanied by its sort or kind. On-the-fly variables consist of the Variable

2.2 Functional Modules 5

name, a colon and the corresponding sort or kind. Here is an example of a variable de-
clared within a rule:

1 rl [RuleName] OpName(VarName:Sort) .
2 rl [RuleName] OpName(VarName :[Kind]) .

When using the keyword var (or vars for multiple variables of the same sort or
kind), the variable’s scope is the entire module:

1 var VarName : Sort .
2 vars VarName1 VarName2 : Sort .
3 var VarName : [Kind] .
4 vars VarName1 VarName2 : [Kind] .

2.1.5. Parsing

Maude supports user-definable syntax and allows for prefix, suffix and mixfix operator
declarations.

2.2 Functional Modules

Functional modules are comprised of equations that define data types and operations.
These equations are used to simplify the rules by applying them only in the left-to-right
direction and are assumed to be terminating, allowing us to repeatedly apply equations
as simplification rules and reach a term where no more equations apply, thus obtaining
its canonical form.

2.2.1. Equations

The keyword eq serves to declare unconditional equations. Both terms from the equation
must be of the same kind and any variable in RTerm must also appear in LTerm. Equations
are written thusly:

1 eq (LTerm) = (RTerm) [(Attributes)] .

The keyword ceq serves to declare conditional equations. A condition can be either a
single equation or a conjunction of equations using the binary conjunction connective /\

which is assumed to be associative [7]. The general structure of conditional equations is
the following:

1 ceq (LTerm) = (RTerm)
2 if (Condition -1) /\ ... /\ (Condition -n)
3 [(Attributes)] .

6 The Formal Specification Language Maude

2.3 System Modules

System modules specify rewrite theories, which have sorts, kinds and operators and
three types of statements: equations, memberships and rules, which can all be condi-
tional.

System modules contain equations and rules, which specify transitions between states
and will change a state when it matches with the left side of a rule, transforming the state
accordingly to the right-hand side of the rule.

2.3.1. Rules

The keyword rl serves to declare unconditional rules. Both terms from the rule are of
the same kind. Rules describe local concurrent transitions in a system. Rules are written as
follows:

1 rl [(Label)] : (LTerm) => (RTerm)
2 [(Attributes)] .

The keyword crl serves to declare conditional rules. A condition can be either a
single equation, membership or rewrite or a conjunction of them using the binary con-
junction connective /\ which is assumed to be associative [7]. The general structure of
conditional rules have the following syntax:

1 crl [(Label)] : (LTerm) => (RTerm)
2 if (Condition -1) /\ ... /\
3 (Condition -n)
4 [(Attributes)] .

CHAPTER 3

Formal System Analysis by Model
Checking

Formal methods are "the applied mathematics for modeling and analyzing systems". Ac-
tually, correct behavior can be accurately described by using mathematical logic, which
can be used to demonstrate that the program behavior conforms to the intended speci-
fication. Formal methods establish system correctness with mathematical rigor and are
one of the most recommended verification techniques for software development. Model-
based verification techniques are based on models describing the possible system behav-
ior in a mathematically precise and unambiguous manner. Model-checking is an agile
verification technique for concurrent, distributed and reactive models that allows us to
explore all the states of a system automatically and exhaustively by brute-forcing all pos-
sible system states in a systematic possibly implicit manner [2]. This verification technol-
ogy provides an algorithmic means of determining whether an abstract model satisfies a
formal specification expressed as a temporal logic (TL) formula [3].

Model-checking has some advantages over other verification techniques. Experimen-
tal methods such as simulation and testing are not comprehensive and exhaustive, with
vulnerabilities going unnoticed, which model-checking would not ignore. However, its
completeness can only be reliable in a system with a finite number of states that may be
extremely high (> 10 120) but requires the use of abstraction techniques to address systems
with infinite states. That being said, model-checking is currently the lightest and fastest
verification technique and, additionally, it is fully automatic.

Important criteria for a logic are expressiveness and efficiency. Expressiveness re-
flects which kind of properties can and cannot be captured by the logic, such as safety
properties, liveness properties and fairness properties. It is of utmost importance that
all required properties can be expressed, otherwise there is not point in using the ver-
ification method at all. On the other hand, efficiency relates to the complexity of the
model-checking problem for a logic and the performance of model-checking algorithms
for the logic.

Properties of a model that can be verified can be classified in different types according
to the aspects of the system that they contemplate:

• Reachability properties: these are the properties that guarantee that a desired state
can occur.

7

8 Formal System Analysis by Model Checking

• Safety properties: are those that guarantee that a harmful situation is not going to
occur, which is the opposite of reachability.

• Liveness properties: ensure progress in the system, meaning they guarantee that a
process does not end for no reason, that no process dies of starvation, and that no
deadlocks occur.

• Fairness properties: guarantee that a property will be given attention an infinite
number of times, intermittently or from a certain state. This includes recurrence (a
property occurs every so often); and also persistence (a property is infinitely given
and maintained).

3.1 Temporal Logic

In order for a model checker to be able to verify formulas, a logic capable of specifying
the properties on infinite execution paths is required. That is where temporal logic comes
in. If a program can be specified in TL, it can be realized as a finite state system. This
suggested the idea of model-checking—to check if a finite state graph is a model of a TL
specification. Such systems ideally exhibit nonterminating behavior so that they do not
conform to the Hoare-style paradigm. They are also typically interactive, distributed and
nondeterministic [3], i. e., a reactive system.

Temporal logic is a formalism for describing change over time that is used to manage
the executions of the system and fairness issues to guarantee its correctness. It extends
propositional or predicate logic by modalities that permit to referral to the infinite behav-
ior of a reactive system, allowing for the specification of the relative order of events [2].
The temporal logic that we use in this project is the Linear Time Logic or LTL introduced
by Pnueli.

LTL logic models a single timeline, so it is not suitable for asynchronous systems,
where multiple futures are possible depending on which component evolves. The logical
operators it uses are ∨, ∧, ¬, →, ↔, true and false. These are some of the temporary
operators that it incorporates:

• G: is used for always, indicating that p is globally true.

• F: is used for finally, indicating that p is going to be fulfilled at some future time.

• X: is used for next, indicating that p will be fulfilled in the next state.

• U: is used for until, indicating that p must be fulfilled until q is fulfilled, which must
be done at some point.

• R: is used for release, that q must be true until and also in the state in which p is
fulfilled; if p is never satisfied, q will remain infinitely true.

• W: is used for weak until, indicating that p must be fulfilled at least until q is fulfilled;
if that never happens, p will remain infinitely.

• M: is used for strong release.

3.2 Model-checking in Maude 9

3.2 Model-checking in Maude

Maude’s LTL model checker allows algorithmic verification of competing models that
are expressed as rewrite theories. In any Maude system module, we can differentiate two
levels of specification:

• System specification level: the rewriting theory that defines the behavior of the
system.

• Property specification level: one or more properties of interest to be verified.

To examine the system specification, it must be executed in the Maude environment
to observe if it is behaving in the expected and intended way. However, property verifi-
cation requires their specification in a logic as well as a procedure that allows them to be
verified in a finite range of states.

The LTL syntax is specified in the model-checker.maude file. To carry out property
verification, Maude uses the modules defined in this file.

Maude’s LTL model checker allows you to verify:

• Reachability properties:They ensure that a certain state will be reached.

• Security properties: They guarantee that a certain configuration will not be given.

• Liveness properties: They ensure that an action will have its reaction.

Nevertheless, although fairness is expressible in LTL, this model checker is unable to
verify fairness properties, which guarantee that a situation will occur an infinite number
of times. This is because it can only work with a finite number of specific states therefore
not being prepared to make an equational abstraction to determine if these properties
would be fulfilled in an eventual future.

CHAPTER 4

The Social Network Reddit

Reddit is a network comprised of communities based on people’s interests. This means,
essentially, that it is a network of networks, subdivided by topics. The main timeline
is a mix of the different topics the user is interested in. That being said, depending on
whether the user is registered or not, the website adapts its contents, appearance and
available actions.

To unregistered users, Reddit presents the main page with trending news stories and
the most popular posts (organized by Hot, New, Top and Rising), along with a search bar
that is located on the top of the webpage and can be used to search for a topic of choice.

For registered users, the main page is divided into three sections: News, Home, and
Popular. The News is a section organized by topics (US/World, Politics, Business, Tech-
nology, Science, Sports, Gaming, Entertainment, and Crypto) and shows relevant news
for the day. Home presents the main feed of the site, whose content is determined by the
"subreddits" (topics) of interest chosen by the user. While organized in a similar way
to home, Popular shows the top popular posts of the whole website, regardless of what
subreddits the user follows. Registered members submit content to the site such as links,
text posts, and images, which are then voted up or down by other members and can be
rewarded with purchased awards such as gold or silver.

Posts are organized by subject into user-created boards called "subreddits" (indicated
with "r/"), which cover most topics one could think of. Submissions can be organized
by Best, Hot, New, Top, Controversial, and Rising depending on the number of up-votes
and the up-vote to down-vote ratio. Top is for the most up-voted posts of all time; Best
is also for the most up-voted posts of all time but keeps into account the sample size;
New is for viewing posts in chronological order with the possibility of seeing posts not
yet processed by moderators; Hot is a mix between Best and New, sorting by up-votes
but factoring in how recently they were cast; Rising is for seeing posts that are quickly
becoming popular but do not yet belong to the Hot category; and Controversial is to
see posts that have a very high up-vote and down-vote numbers. If a post gets a large
number of up-votes, it will appear towards the top of their subreddit and, provided they
receive enough up-votes, ultimately on the site’s front page.

Subreddits can be managed by moderators, as determined by the creator of the sub-
reddit. Moderators control and enforce the guidelines that must be followed to post and
comment on a subreddit and have the ability to delete or disable (you can see but not
interact with) a post from the subreddit they moderate. They can also ban (not allow

11

12 The Social Network Reddit

the user to access subreddit at all) or ghost (user can read and post, but the rest of the
subreddit will not be able to see the user’s actions) a user.

Within a post, users can also comment, creating threads of discussion. Comments
can be either text or links (external or to a different subreddit). Reddit also allows users
to use bots on the site, which are used by commenting the bot’s name on a post. Bots
are generally used for subreddit moderation (like removing posts based on keywords in
user’s profile) but can also help the user download a video, alter the text of the original
post, up-vote or down-vote a specific user or subreddit or count words of a post, to name
a few.

4.1 Reddit structure and features

In this section, we describe the basic aspects of Reddit, as well as outline a semiformal
description of the four Reddit characteristics we have chosen to be worked on.

4.1.1. Structure of Reddit

To break down the structure of Reddit in a simplified manner, let us summarize three
distinct components that comprise Reddit’s social network:

• Subreddit: A subreddit is any distinguished category that has been created to form
communities within the general website. It is the main place of interactions. All
posts must belong to a subreddit. Subreddits are followed by users who are inter-
ested in the particular topic they are about.

• Post: Posts are the main form of interaction on the website. They are the content
posted in the subreddits and are published by users, who can make a post on a
subreddit they do not follow, but it is common practice to post on the subreddits
you already follow.

• User: The user, as the name suggests, is the user of the platform. The user will be
the one that will use the Actions described below. In the user’s menu, they will be
able to access the following:

– Posts: This is an overview of the posts created by the user.

– Comments: This is an overview of the comments created by the user.

– Communities: This is a list of the user’s followed subreddits.

4.1.2. Actions of Reddit

In this section, we describe the basic actions that a user can make in order to interact with
the platform [10]:

• Subscribe: This action is used by the user to interact with a given subreddit by
subscribing or unsubscribing. Once the user is subscribed to a subreddit, posts from
this "sub" will be added to the user’s main feed, sorted by whatever parameter the
user sets (Best, Hot, New, Top, Controversial or Rising). For the user to be able to
subscribe to a subreddit, either it is a public subreddit or the user has been invited
to a private subreddit.

4.2 Reddit action interactions 13

• Submit: This action is used to create a new post on the subreddit, which will be a
link to another platform (if it is a link) or a self-post in the subreddit (a self-post
is a post that does not link ouside of Reddit). Posts themselves consist of a title and
a body.

• Comment: This action is used to create a comment on a post. The comment can be
either a new comment or a reply to an already posted message. The basic structure
of a Comment is the following:

– New comment: This comment is a reply that will appear immediately under-
neath the original post and can be considered the parent of a thread of replies
if other users reply to this first comment. A new comment can be:

* Comment on self-post.

* Comment on link post.

– Comment to comment: This comment is a reply to a new comment made on a
post. It will appear underneath the first comment with a vertical line on the left
of the comment, visually indicating that it is related to a previous comment.

Comments can be understood as a recursive structure, with comments within com-
ments, all relating to one original post. This makes conversations about a topic easy
to manage and be compartmentalized into threads. Comments can be clicked on to
"collapse", meaning that if you click on the parent comment, the whole thread is
hidden. This makes reading the comment section easier to manage. Comments
can be sorted by the same parameters as posts, but this sorting will only affect the
parent comment.

• Delete: This action is used to delete a link, self-post or comment.

• Vote: This action is used to cast a vote on a post or comment. There are three basic
actions when voting: The user can up-vote, down-vote or "un-vote". Up-voting
indicates the post has been "liked" by the user and adds +1 to the vote count (Karma).
Down-voting indicates the post has been "disliked" by the user and adds -1 to the
vote count. Un-voting is done by clicking on the already clicked highlighted arrow
to "delete" the vote, equivalent to casting a neutral vote in the vote count. When a
post is voted (up or down), the user who posted gets karma (positive or negative).
Karma is the cumulative amount of votes a user has across all of their posts and/or
comments.

4.2 Reddit action interactions

Reddit interactions seem quite simple, but they are not. Here we provide an example of
three sequences of actions that show some subtleties, as will be explained later on:

• Post in a subreddit p - comment on p - delete p.

• Post in a subreddit p - comment c on p - answer c - delete c.

• Post in a subreddit p - up-vote p - undo up-vote.

In this section we do not seek to introduce a formal discussion yet, but simply provide
an intuitivie explanation for the interaction sequences mentioned above.

14 The Social Network Reddit

Let us consider four Reddit users, say u/aLynx, u/b0bbyPR, u/chocoSystems, and
u/dedTech. We suppose that the four accounts belong to four distinct high-tech workers:
Alice, Bob, Charlie and Dave. Sequence 1, seen in Figure 4.1, involves two users, u/aLynx
and u/b0bbyPR, where u/aLynx makes a post p on a subreddit r/ and u/b0bbyPR com-
ments on the post, then u/aLynx deletes p. Sequence 2, illustrated in Figure 4.2, involves
two users, u/aLynx and u/b0bbyPR, where u/aLynx makes a post p on a subreddit r/ and
u/b0bbyPR makes a comment c on the post, u/aLynx answers c, and finally, u/b0bbyPR
deletes c. Sequence 3 involves three users, u/aLynx, u/b0bbyPR and u/chocoSystems,
where u/aLynx makes a post p on a subreddit r/ and u/b0bbyPR up-votes the post, then
u/b0bbyPR undoes the up-vote, as shown in Figure 4.3. We assume that for all three se-
quences, all users are subscribed to the same subreddit.

Figure 4.1: Sequence 1

4.2 Reddit action interactions 15

Figure 4.2: Sequence 2

16 The Social Network Reddit

Figure 4.3: Sequence 3

4.3 Reddit action interaction with counterintuitive effects 17

In these three sequences we can see how the actions of deleting posts can provide dif-
ferent results. In the first sequence, p is removed from any timeline, along with all of the
comments that could have been made. In the second sequence, c is removed from any
timeline, while the original post remains along with all of the replies that were made to
comment c. Comment c will appear in the thread of conversation as [removed]. Lastly,
in the third sequence, when u/b0bbyPR cancels his up-vote, this does not cause any effect
to p, which still exists at the end.

The presented sequences are just a few of a plethora of interactions that can occurr
on the Reddit platform. As we can see, even if these examples are simple, there are some
counterintuitive or even malicious effects that we explore in the next section. This is why
a formal and accurate model is needed to trace and analyze Reddit interaction patterns.

4.3 Reddit action interaction with counterintuitive effects

Let us consider the four Reddit users mentioned before, u/aLynx, u/b0bbyPR, u/chocoSystems,
and u/dedTech. Alice, Bob, and Dave frequently post on r/formalmethods, while Charlie
only sees the posts from that subreddit when they appear on the Popular tab.

Alice has recently spoken at a conference on building high-performance code analyz-
ers and has decided to post a link to a video of that talk in r/formalmethods. Bob, being a
frequent user of this subreddit sees the new post on his feed and watches her talk. Since
he found it interesting and informative, he decides to up-vote it and comments on the
post by positively praising the talk. The post ends up becoming a popular post on the
subreddit and eventually makes it to the Popular tab.

Charlie sees the post and comments under Bob’s comment, asking about where he
can find more information on formal methods since he is an experienced programmer
but is new to formal methods. After Charlie comments, Alice notices the post’s title con-
tains a typo and decides to delete the post and redo it at another time.

After the post deletion, several things occur: 1) Bob gets notified of Charlie’s com-
ment and can find the post from the notification center but not searching the subreddit in
question. He is also unable to reply to Charlie’s reply, although he can still view the post.
2) Dan, a given user of the subreddit, for a few hours (the post remains "locked" for a few
minutes before being fully deleted) can see the original post on the subreddit with all of
the comments and votes but he is unable to interact with the post in any other way. 3)
Alice can no longer access her deleted post, but Bob and Charlie can access it whenever
they want because their replies to the original post have not been deleted, but the content
of the post will.

4.4 Malicious interactions

In this section, let us consider three Reddit users, u/aLynx, u/b0bbyPR, u/computerWiz,
corresponding to Alice, Bob and Chuck. We suppose that Alice’s and Bob’s accounts be-
long to two distinct tech workers, while Chuck is a user with malicious intent. Alice, Bob

18 The Social Network Reddit

and Chuck frequently post on r/formalmethods.

Alice has recently talked in a conference on building high-performance code analyz-
ers and has decided to post a link to a video of that talk in r/formalmethods. Bob, being
a frequent user of this subreddit,he sees the new post on his feed and watches her talk.
Since he found it interesting and informative, he decides to up-vote it and comments on
the post positively praising the talk.

This time, Chuck sees the post is starting to become popular and decides to use Reddit
bots to 1) hide the original post and 2) popularize his own post. To do this, he utilizes
some bots that will spam the down-vote, report and comment negatively on the origi-
nal post, thus hiding the original post due to unpopularity and possibly forcing Alice to
delete her post or even her whole account. Once the original post is hidden or deleted, he
creates a new account with a similar name to u/aLynx, say u/aLynx1, and he reposts the
original link in his own post, acting as Alice and uses bots to mass up-vote and comment
on the new post.

CHAPTER 5

Reddit formal specification in
Maude

This chapter focuses on describing the formal model of Reddit that has been specified
in the Maude language. Before going into the model, it was necessary to gain fluency
with Maude using the Maude Primer Manual [7], which through a series of explanations,
examples and exercises was a crucial tool for coming to grips with the language. We also
used Anima [1], which was invaluable as a visually intuitive tool to analyze the different
States that can be reached during the program execution. Anima presents the execution
graph of any input term in a given rewriting theory and describes the trace of the applied
equations and rules and the changes they cause in the system. This tool greatly facilitates
reachability analysis early in the design and allows the exploration of potential unwanted
States that may be reached due to errors in the code.

Knowing that Reddit is composed by a series of users, SubReddits, posts, comments
and votes, it is easy to create an initial State that contains all of these. The State is also
given a counter that is used to designate the IDs of every new object created as well as
a list of Actions we can take the system configuration to get to different States. The
constructor that is used to represent the system States is defined by:

1 op _|_|_|_|_|_ : Nat UserSet SubRedditSet PostSet VoteSet ActionList ->
State [ctor] .

5.1 Sorts

Let us explain in more detail the operator presented before, which allows the represen-
tation of any given State in the Reddit model, to be built by considering the following
sorts:

• Nat equates to a counter that we used to assign an ID to each new object that is
created of the four types that Reddit has: user, SubReddit, post/comment and vote.

• UserSet refers to the list of Users registered in Reddit, meaning, created in Reddit.

• SubRedditSet represents the list of SubReddits that exist in Reddit at any given
moment, being able to delete an existing SubReddit or create a new one.

• PostSet constitutes the list of Posts created in Reddit, belonging to a particular
SubReddit.

19

20 Reddit formal specification in Maude

• VoteSet denotes the list of Votes that correspond to each post, whether positive or
negative (upvotes or downvotes).

The last element represents an ActionList, which we explain in Chapter 5.3.

Corresponding to each of the sorts, we have built their respective values, defined by
using suitable constructors. These elements are what can be created or removed from the
network during the execution of the model:

1 *** Constructors ***
2 op user : Nat String NatList NatList NatList -> User [ctor] .
3 op subr : Nat String String NatList NatList -> SubReddit [ctor] .
4 op post : Nat String String Nat NatList NatList -> Post [ctor] .
5 op vote : Nat Nat Nat Bool -> Vote [ctor] .

5.1.1. User

Users have the following structure:

1 op user : Nat String NatList NatList NatList -> User [ctor] .

• Nat: Id of the user.

• String: Username, written with a "u/" before the username to make it more read-
able within the State.

• NatList: SubReddits the user is subscribed to.

• NatList: List of posts created by the user, in chronological order, regardless of Sub-
Reddit.

• NatList: Total votes obtained on posts the user has made. Also known as karma.

5.1.2. SubReddit

SubReddits have the following structure:

1 op subr : Nat String String NatList NatList -> SubReddit [ctor] .

• Nat: Id of the SubReddit.

• String: Name of the SubReddit, written with an "r/" before the name to make it
more readable within the State.

• String: Description of what the SubReddit is about or for. Can be omitted.

• NatList: List of users subscribed to the SubReddit.

• NatList: List of posts created within the SubReddit.

5.2 Actions 21

5.1.3. Post

Posts have the following structure:

1 op post : Nat String String Nat NatList NatList -> Post [ctor] .

• Nat: Id of the post.

• String: Title of the post. Omitted if the post is a reply to another post, since the title
is considered to be the parent’s title.

• String: Text within the post.

• Nat: ID of the user who created the post.

• NatList: List of comments that have replied to the post.

• NatList: List of votes made on the post.

5.1.4. Vote

Votes have the following structure:

1 op vote : Nat Nat Nat Bool -> Vote [ctor] .

• Nat: ID of the vote.

• Nat: ID of the user who voted.

• Nat: ID of the post where the vote has been cast.

• Bool: Value of the vote (positive or negative).

5.2 Actions

In a system configuration,the ActionList component represents the list of Actions that
can be taken. These actions allow for:

• The creation and deletion of users (createuser and deleteuser).

• The creation and deletion of subreddits (createsub and deletesub).

• The creation and deletion of posts (createpost and deletepost).

• The creation and deletion of comments (reply and deletereply).

• The creation and deletion of votes (addvote and deletevote).

• The deletion of comments in cascade when a parent post or comment is eliminated
(deletereplycascade).

These Actions are designed for creating all the necessary elements that exist in the Reddit
platform and to simulate all possible common interactions.

22 Reddit formal specification in Maude

5.3 Reddit action characteristics

In this last section we recreated the different interactions that were set as an example
in Chapter 4.2. For this we have defined the initial State as well as the initial Actions
taken at a point t in time where the users have been added following the explanations in
Chapter 4, as well as a few SubReddits where the posts can go.

1 --- Initial State
2 op init : -> State .
3 eq init = 0 | none | none | none | none | aListRed .
4 --- Initial Reddit actions
5 op aListInit : -> ActionList .
6 eq aListInit = createuser("u/aLynx") , createuser("u/b0bbyPR") , createuser

("u/chocoSystems") , createuser("u/dedTech") , createsub(0, "r/Maude",
"Lorem ipsum") , createsub(0, "r/ModelChecking", "Lorem ipsum") ,
createsub(0, "r/FormalMethods", "Lorem ipsum") .

Then, we record the different ActionLists that represent the interactions proposed
formerly, which is shown in the following code excerpt:

1 *** Reddit action interactions ***
2 op aListInter1 : -> ActionList .
3 eq aListInter1 = createpost (0, 6, "Conference", "Conference link") , reply

(1, 7, "Good job!") , deletepost (7) .
4 op aListInter2 : -> ActionList .
5 eq aListInter2 = createpost (0, 6, "Maude is cool", "Body of text") , reply

(1, 7, "Nice") , reply(2, 8, "Delete this") , deletepost (8) .
6 op aListInter3 : -> ActionList .
7 eq aListInter3 = createpost (0, 6, "Post here", "Bottom text") , addvote(1,

7, true) , deletevote (8) .

Note that these consequences are in correspondence with the interactions we pre-
sented in Chapter 4, namely:

• Post in a subreddit p - comment on p - delete p.

• Post in a subreddit p - comment c on p - answer c - delete c.

• Post in a subreddit p - up-vote p - undo up-vote.

Finally, recall that rules are what enable transitions between States. In this specifica-
tion, the rules are used to mimic the Actions we can take so that the rule corresponding
to a given Action will consume that Action from the given ActionList. The left part of
this rule corresponds to the current State and the Action that is going to be consumed;
on the right-hand side of the rule we have the resulting state after applying the consumed
Action.

5.3 Reddit action characteristics 23

As an example, if we want to create a user we can use the following rule, which con-
sumes the createuser Action, and so the Action disappears from the ActionList in the
target state, while the new user has been added to the State, as we can see in Figure 5.1:

1 rl [createuser] :
2 CNT |
3 USet |
4 SSet |
5 PSet |
6 VSet |
7 createuser(UName) , AList
8 =>
9 CNT + 1 |

10 USet user(CNT , UName , nil , nil , nil) |
11 SSet |
12 PSet |
13 VSet |
14 AList [narrowing] .

Figure 5.1: Anima state transition when consuming createuser action

24 Reddit formal specification in Maude

In Reddit, when a user deletes a post, the post is removed from the SubReddit but if
someone commented, that post (along with all other comments) remains for them. When
you delete a comment, that comment now appears as [removed] but the list of answers to
that comment remain. In addition, all Karma (votes) received from comments on deleted
posts or replies to deleted comments remain for the user who received those votes. This
leads to many inconsistencies in the network, where posts and comments remain in some
places but not in others. One possibility to model this would be to add a hidden or shown
element in the posts and comments, but the problem of having inconsistent access to in-
formation in the network remains. Therefore we opted for cascade deletion, meaning
once you decide to delete a post or comment, everything linked to that "parent" will also
be deleted. This creates a more controlled network environment that can be seen as a
"repaired" version of the system that allows for better analysis and verification. Here we
present the operations and equations that allow the rule deletereply to delete in cascade
all comments and votes related to that post or comment:

1 op deleteReplyCascade : State NatList -> State .
2

3 eq deleteReplyCascade(CNT | USet | SSet | PSet post(N, T, Txt , UId , CList ,
VList) PSet’ | VSet | AList , NL N NL’) = deleteReplyCascade(CNT | USet
| SSet | (PSet PSet’) | VSet | AList , NL NL’ NL’’) .

4 eq deleteReplyCascade(CNT | USet | SSet | PSet | VSet vote(N, UId , PId , B)
VSet’ | AList , NL N NL’) = deleteReplyCascade(CNT | USet | SSet | PSet
| (VSet VSet’) | AList , NL NL’ NL’’) .

5 eq deleteReplyCascade(CNT | USet | SSet | PSet | VSet | AList , NL) = CNT |
USet | SSet | PSet | VSet | AList [owise].

6

7 rl [deletereply] :
8 CNT |
9 USet |

10 SSet |
11 PSet post(PId , T, Txt , UId , CList , VList) |
12 VSet |
13 deletereply(PId) , AList
14 =>
15 CNT |
16 USet |
17 SSet |
18 PSet |
19 VSet |
20 deleteReplyCascade(CNT | USet | SSet | PSet | VSet | AList , CList ,

VList), AList [narrowing] .

It is worth mentioning that, in contrast to rules, Maude executes the proper equa-
tions without producing any State transitions, meaning that the State is deterministically
simplified in an extremely efficient way.

CHAPTER 6

Analysis and Verification of the
Reddit system

This chapter’s core purpose is to provide an explanation on how the created model has
been analyzed and model-checked. For illustrative purposes we use the Reddit proper-
ties that were mentioned and explained in Chapter 3.2: reachability, safety, liveness and
fairness. While these properties were explained individually, they must be understood as
interrelated and complimentary to one another. Knowing that any property of a reactive
system can be expressed as the conjunction of a liveness property and a safety property,
meaning it is an intersection between the two, we will focus on these two.

To allow for a more complete analysis, both a plain reachability analysis using Maude’s
interpreter and leveraging the more sophisticated Maude’s model-checker, two models
were created following the standard distinction from conceptual modeling, between de-
ductive and operational models: a guided deductive model and an automatic operational
model. In Chapter 6.1 we use the guided model to make the reachability analysis and in
Chapter 6.2 the automatic model is used instead.

6.1 Reachability analysis

Before verifying the liveness and safety properties, making some simple reachability
analysis is sensible. This analysis is geared towards ensuring that all the intended states
are reached by the system and no unwanted or harmful states are found. The Anima tool
[1] is especially useful when dissecting each reached State because it provides a more
visual representation. That being said, the search command that is available when using
Maude in the terminal was also used when a more exhaustive state search was required.

For this reachability analysis we will hearken back to Chapter 5.3, where we had some
interactions that were modeled, the initial State and all the possible Actions we could
use. Using the search command in the Maude terminal, we can find all possible reach-
able states for a given ActionList, and we can also look for some incorrect or harmful
states, eventually ensuring that they are not reachable.

25

26 Analysis and Verification of the Reddit system

The following executions of the model demonstrate that all three cases, correspond-
ing with the three ActionLists shown in Chapter 5.3 yield the expected results, where
they reach their final State with the ActionList consumed.

The command search init =>! X:State . was used in order to obtain only the
final resulting State. If the command search init =>* X:State . was used instead,
we would be able to observe every intermediate State, as shown in Figures 6.1 and 6.2,
which depict Anima’s execution for these examples:

1 ********* CASE 1 *********
2 ***** SOLUTION STATE *****
3 Result of: search init =>! X:State .
4 search in REDDIT -RL : init =>! X:State .
5

6 Solution 1 (state 11)
7 states: 12 rewrites: 28 in 1ms cpu (3ms real) (19178 rewrites/second)
8 X:State --> 9 | user(0, "u/aLynx", nil , nil , nil) user(1, "u/b0bbyPR", nil ,

nil , nil)
9 user(2, "u/chocoSystems", nil , nil , nil) user(3, "u/dedTech", nil , nil ,

nil) | subr(4,
10 "r/Maude", "Lorem ipsum", 0, nil) subr(5, "r/ModelChecking", "Lorem

ipsum", 0, nil)
11 subr(6, "r/FormalMethods", "Lorem ipsum", 0, nil) | none | none | nil
12

13 No more solutions.
14 states: 12 rewrites: 28 in 1ms cpu (3ms real) (17565 rewrites/second)

1 ********* CASE 2 *********
2 ***** SOLUTION STATE *****
3 Result of: search init =>! X:State .
4 search in REDDIT -RL : init =>! X:State .
5

6 Solution 1 (state 12)
7 states: 13 rewrites: 30 in 0ms cpu (0ms real) (54644 rewrites/second)
8 X:State --> 10 | user(0, "u/aLynx", nil , 7, nil) user(1, "u/b0bbyPR", nil ,

nil , nil) user(
9 2, "u/chocoSystems", nil , nil , nil) user(3, "u/dedTech", nil , nil , nil)

| subr(4,
10 "r/Maude", "Lorem ipsum", 0, nil) subr(5, "r/ModelChecking", "Lorem

ipsum", 0, nil)
11 subr(6, "r/FormalMethods", "Lorem ipsum", 0, 7) | post(7, "Maude is

cool",
12 "Body of text", 0, nil , nil) | none | nil
13

14 No more solutions.
15 states: 13 rewrites: 30 in 0ms cpu (0ms real) (46012 rewrites/second)

6.1 Reachability analysis 27

1 ********* CASE 3 *********
2 ***** SOLUTION STATE *****
3 Result of: search init =>! X:State .
4 search in REDDIT -RL : init =>! X:State .
5

6 Solution 1 (state 10)
7 states: 11 rewrites: 24 in 0ms cpu (0ms real) (27874 rewrites/second)
8 X:State --> 9 | user(0, "u/aLynx", nil , 7, nil) user(1, "u/b0bbyPR", nil ,

nil , nil) user(
9 2, "u/chocoSystems", nil , nil , nil) user(3, "u/dedTech", nil , nil , nil)

| subr(4,
10 "r/Maude", "Lorem ipsum", 0, nil) subr(5, "r/ModelChecking", "Lorem

ipsum", 0, nil)
11 subr(6, "r/FormalMethods", "Lorem ipsum", 0, 7) | post(7, "Maude post",

"Bottom text",
12 1, nil , nil) | vote(8, 1, 7, true) | nil
13

14 No more solutions.
15 states: 11 rewrites: 24 in 0ms cpu (0ms real) (24615 rewrites/second)

28 Analysis and Verification of the Reddit system

Figure 6.1: Anima execution tree of Case 1

6.1 Reachability analysis 29

Figure 6.2: Anima execution graph of Case 1

30 Analysis and Verification of the Reddit system

We can also observe different tried searches to incorrect States (for the ActionList
in Case 1, although this is true for all ActionLists) and it is demonstrated that they are
in no way reachable, thus exemplifying how the model can be verified in terms of un-
reachability of forbidden states:

1 ********* CASE 1 *********
2 *** UNREACHABLE STATES ***
3 search init =>! 9 | user(0, "u/aLynx", nil , nil , nil) user(1, "u/b0bbyPR",

nil , 8, nil) user(2, "u/chocoSystems", nil , nil , nil) user(3, "u/
dedTech", nil , nil , nil) | subr(4, "r/Maude", "Lorem ipsum", 0, nil)
subr(5, "r/ModelChecking", "Lorem ipsum", 0, nil) subr(6, "r/
FormalMethods", "Lorem ipsum", 0, nil) | none | none | nil .

4 search in REDDIT -RL : init =>! 9 | user(0, "u/aLynx", nil , nil , nil) user
(1, "u/b0bbyPR",

5 nil , 8, nil) user(2, "u/chocoSystems", nil , nil , nil) user(3, "u/
dedTech", nil , nil ,

6 nil) | subr(4, "r/Maude", "Lorem ipsum", 0, nil) subr(5, "r/
ModelChecking",

7 "Lorem ipsum", 0, nil) subr(6, "r/FormalMethods", "Lorem ipsum", 0, nil
) | none | none

8 | nil .
9

10 No solution.
11 states: 12 rewrites: 28 in 0ms cpu (0ms real) (32332 rewrites/second)

1 search init =>! 9 | user(0, "u/aLynx", nil , 7, nil) user(1, "u/b0bbyPR",
nil , nil , nil) user(2, "u/chocoSystems", nil , nil , nil) user(3, "u/
dedTech", nil , nil , nil) | subr(4, "r/Maude", "Lorem ipsum", 0, nil)
subr(5, "r/ModelChecking", "Lorem ipsum", 0, nil) subr(6, "r/
FormalMethods", "Lorem ipsum", 0, nil) | none | none | nil .

2 search in REDDIT -RL : init =>! 9 | user(0, "u/aLynx", nil , 7, nil) user(1,
"u/b0bbyPR",

3 nil , nil , nil) user(2, "u/chocoSystems", nil , nil , nil) user(3, "u/
dedTech", nil , nil ,

4 nil) | subr(4, "r/Maude", "Lorem ipsum", 0, nil) subr(5, "r/
ModelChecking",

5 "Lorem ipsum", 0, nil) subr(6, "r/FormalMethods", "Lorem ipsum", 0, nil
) | none | none

6 | nil .
7

8 No solution.
9 states: 12 rewrites: 28 in 0ms cpu (0ms real) (98939 rewrites/second)

1 search init =>! 9 | user(0, "u/aLynx", nil , 7, nil) user(1, "u/b0bbyPR",
nil , 8, nil) user(2, "u/chocoSystems", nil , nil , nil) user(3, "u/
dedTech", nil , nil , nil) | subr(4, "r/Maude", "Lorem ipsum", 0, nil)
subr(5, "r/ModelChecking", "Lorem ipsum", 0, nil) subr(6, "r/
FormalMethods", "Lorem ipsum", 0, nil) | none | none | nil .

2 search in REDDIT -RL : init =>! 9 | user(0, "u/aLynx", nil , 7, nil) user(1,
"u/b0bbyPR",

3 nil , 8, nil) user(2, "u/chocoSystems", nil , nil , nil) user(3, "u/
dedTech", nil , nil ,

4 nil) | subr(4, "r/Maude", "Lorem ipsum", 0, nil) subr(5, "r/
ModelChecking",

5 "Lorem ipsum", 0, nil) subr(6, "r/FormalMethods", "Lorem ipsum", 0, nil
) | none | none

6 | nil .
7

8 No solution.
9 states: 12 rewrites: 28 in 0ms cpu (0ms real) (64073 rewrites/second)

6.2 Model-cheking 31

1 search init =>* 11 | user(0, "u/aLynx", nil , nil , nil) user(1, "u/b0bbyPR",
nil , 8, nil) user(2, "u/chocoSystems", nil , nil , nil) user(3, "u/

dedTech", nil , nil , nil) | subr(4, "r/Maude", "Lorem ipsum", 0, nil)
subr(5, "r/ModelChecking", "Lorem ipsum", 0, nil) subr(6, "r/
FormalMethods", "Lorem ipsum", 0, nil) | none | none | nil .

2 search in REDDIT -RL : init =>* 11 | user(0, "u/aLynx", nil , nil , nil) user
(1, "u/b0bbyPR",

3 nil , 8, nil) user(2, "u/chocoSystems", nil , nil , nil) user(3, "u/
dedTech", nil , nil ,

4 nil) | subr(4, "r/Maude", "Lorem ipsum", 0, nil) subr(5, "r/
ModelChecking",

5 "Lorem ipsum", 0, nil) subr(6, "r/FormalMethods", "Lorem ipsum", 0, nil
) | none | none

6 | nil .
7

8 No solution.
9 states: 12 rewrites: 28 in 0ms cpu (0ms real) (67307 rewrites/second)

For instance, the first search corresponds to searching for an irreducible State where
the user u/b0bbyPR has access to his reply after the original post he replied to has been
eliminated, but since no such State can be found, we can prove that cascade eliminations
are made successfully and no inconsistent States where users can see eliminated posts
can be found. The second search corresponds to searching for a normalized State where
the user u/aLynx has access to his post, even after deletion. The third search corresponds
to both u/aLynx and u/b0bbyPR having access to their posts after the original post’s dele-
tion. The last search is similar to the first, but we provide a more flexible searching con-
dition that considers for matching all generated states in any possible branch. Just as
the first search, the searched State is unreachable, thus proving the model generates no
inconsistent States.

6.2 Model-cheking

Now that the reachability has been verified, we can move onto verifying the liveness and
safety properties we mentioned previously. In this section we will employ Maude’s LTL
model-checker to verify a series of properties in our Reddit specification.

We have created a secondary module called REDDIT-PREDS, which contains the pro-
tected system module specification and includes the module SATISFACTION previously
loaded into the Maude environment.

Safety and liveness verification

Liveness properties ensure that if a change or an action has occurred in the system, this
change will have an impact, avoiding system stagnation. Safety properties ensure that
an incorrect or harmful situation is unable to be reached.

32 Analysis and Verification of the Reddit system

For example, we should consider guaranteeing that all posts that have not been di-
rectly eliminated must remain on the platform, even if the user who created them has
deleted their account:

«All posts created by a user will remain in the network, even if the user deletes their account.»

In order to examine this property, we need to translate the statement of the property
into a LTL formula, which we do by equationally defining the following state predicates:

[] (postexists(N:Nat, M:Nat) W <> (userexists(M:Nat) ∨ (¬
userexists(M:Nat))))

1 eq < CNT | USet | SSet | PSet post(PId , T, Txt , UId , CList , VList) | VSet
> |= postexists(PId , UId) = true .

2 eq < CNT | USet user(UId , UName , SList , PList , KList) | SSet | PSet | VSet
> |= userexists(UId) = true .

Another item of interest to ensure that every vote belongs to the post where it was
cast.

«Every vote is always associated to its corresponding post.»

In order to examine this property, we need to translate the statement of the property
into a LTL formula, which we do by equationally defining the following state predicates:

[] (vote(N:Nat) -> post(N:Nat))

1 eq < CNT | USet | SSet | PSet | VSet vote(VId , UId , PId , B) > |= vote(VId)
= true .

2 eq < CNT | USet | SSet | PSet post(PId , T, Txt , UId’, CList , VList VId
VList’) | VSet > |= post(VId) = true .

CHAPTER 7

Conclusion

In this project, we have been able to define a formal specification and model Reddit in
the Maude language and analyze its properties. Subsequently, this specification has been
rigorously analyzed by completing some reachability tests and using model-checking.
The reachability tests were able to prove that every State reached was intended and cor-
rect. We enhanced this analysis by using the Anima tool, which visually assisted us by
providing a visual representation of the execution trees generated by the model. There-
fore, we have been able to create a functional model that passes the tests we have created
and fulfills the properties that were required of it. Furthermore, the properties have been
formulated in LTL and verified using Maude’s model-checker, verifying some security
and liveliness properties, which are beyond what the extent of the reachability analysis
can provide and guarantee a more faithful and correct behavior of the system.

There have been many difficulties encountered during the development of this work.
Firstly, there had to be a lot of time dedicated to learning the Maude language from
scratch. This took a significant amount of time to not only assimilate, but to practice be-
fore creating the model as well. This led to many hitches during the production of this
work as well as the need to rework the model over and over until a definitive model was
made. The stage of verification proved to be an even bigger challenge due to time con-
straints added to the steep learning curve it presented.

In terms of improving this work, there are several steps that could be taken. More
properties could be analyzed with the mode-checker and more subtle Reddit character-
istics could be added. They were deemed unnecessary due to exceeding the scope of a
project like this but could be added in a later work. In addition, a more exhaustive anal-
ysis could be achieved with the use of [narrowing] in the verification process. These are
all proposals that could be added to a future work.

Lastly, on a more personal note, we must acknowledge that although the field of ex-
pertise studied did not pertain to this particular branch of learning, as I have studied
the networking branch, this project has allowed for an enlightening learning experience
within this particular field of knowledge. This switch in field was hard to adapt to as
Maude proved that, although the core concepts are easy to grasp, the depth and flexibil-
ity it has proved too steep a learning curve at certain points in the making of this project.
That being said this project has been able to provide an extensive amount of knowledge
in a short period of time. Here we include the practical use and theory of Maude lan-
guage, language theory, model checking, temporal logic, and the expression and analysis

33

34 Conclusion

of properties. I now have a desire to expand my knowledge in this field further, as I think
it is not only useful, but crucial in certain fields.

Bibliography

[1] M. Alpuente, D. Ballis, F. Frechina, J. Sapiña. Exploring Conditional Rewriting Logic
Computations. Journal of Symbolic Computation, 69:3-39, 2015. Last consulted, July
2021. Article consulted at https://riunet.upv.es/handle/10251/61030. Tool con-
sulted at http://safe-tools.dsic.upv.es/anima/.

[2] C. Baier and J. P. Katoen. Principles of Model Checking. MIT Press, January 2008.

[3] E. M. Clarke, E. A. Emerson, J. Sifakis. Model Checking: Algorithmic Verification and
Debugging. Communications of the ACM, November 2009, vol. 52, no 11.

[4] R. Hanneman and M. Riddle. Introduction to Social Network Methods. Riverside, CA:
University of California, Riverside. Can be consulted at https://faculty.ucr.edu/
~hanneman/nettext/index.html.

[5] R. Butler. Langley Formal Methods Program. What is Formal Methods. Last consulted,
June 2021. Consulted at https://shemesh.larc.nasa.gov/fm/fm-what.html.

[6] cbsnews.com. How Reddit posters made millions as Wall Street lost billions on GameStop’s
wild stock ride. Last consulted, June 2021. Consulted at https://www.cbsnews.com/
news/gamestop-reddit-wallstreetbets-short-squeeze-2021-01-28/

[7] M. Clavel, F. Durán, S. Eker, S. Escobar, P.Lincoln, N. Martí-Oliet, J. Messeguer, C.
Talcott. Maude Manual (Version 3.1). Last consulted, July 2021. Consulted at http:
//maude.lcc.uma.es/maude31-manual-html/maude-manual.html.

[8] M. Clavel, F. Durán, S. Eker, S. Escobar, P.Lincoln, N. Martí-Oliet, J. Messeguer, C.
Talcott. The Maude System. Last consulted, April 2021. Consulted at http://maude.
cs.illinois.edu/w/index.php/The_Maude_System.

[9] Encyclopedia of Mathematics. Formal language - Encyclopedia of Mathematics. Last
consulted, June 2021. Consulted at https://encyclopediaofmath.org/index.php?
title=Formal_language.

[10] Reddit.com. reddit.com: api documentation. Last consulted, April 2021. Consulted at
https://www.reddit.com/dev/api.

35

https://riunet.upv.es/handle/10251/61030
http://safe-tools.dsic.upv.es/anima/
https://faculty.ucr.edu/~hanneman/nettext/index.html
https://faculty.ucr.edu/~hanneman/nettext/index.html
https://shemesh.larc.nasa.gov/fm/fm-what.html
https://www.cbsnews.com/news/gamestop-reddit-wallstreetbets-short-squeeze-2021-01-28/
https://www.cbsnews.com/news/gamestop-reddit-wallstreetbets-short-squeeze-2021-01-28/
http://maude.lcc.uma.es/maude31-manual-html/maude-manual.html
http://maude.lcc.uma.es/maude31-manual-html/maude-manual.html
http://maude.cs.illinois.edu/w/index.php/The_Maude_System
http://maude.cs.illinois.edu/w/index.php/The_Maude_System
https://encyclopediaofmath.org/index.php?title=Formal_language
https://encyclopediaofmath.org/index.php?title=Formal_language
https://www.reddit.com/dev/api

APPENDIX A

Appendices

A.1 The Maude deductive model for the Reddit Network

1 fmod REDDIT is
2 pr STRING .
3 pr NAT -LIST .
4

5 *** State declaration ***
6 sort State .
7

8 *** User declaration ***
9 sorts User UserSet .

10 subsort User < UserSet .
11

12 op none : -> UserSet [ctor] .
13 op __ : UserSet UserSet -> UserSet [assoc comm id: none] .
14

15 *** SubReddit declaration ***
16 sorts SubReddit SubRedditSet .
17 subsort SubReddit < SubRedditSet .
18

19 op none : -> SubRedditSet [ctor] .
20 op __ : SubRedditSet SubRedditSet -> SubRedditSet [assoc comm id: none]

.
21

22 *** Post declaration **
23 sorts Post PostSet .
24 subsort Post < PostSet .
25

26 op none : -> PostSet [ctor] .
27 op __ : PostSet PostSet -> PostSet [assoc comm id: none] .
28

29 *** Vote declaration ***
30 sorts Vote VoteSet .
31 subsort Vote < VoteSet .
32

33 op none : -> VoteSet [ctor] .
34 op __ : VoteSet VoteSet -> VoteSet [assoc comm id: none] .
35

36 *** Constructors ***
37 op user : Nat String NatList NatList NatList -> User [ctor] . --- Id ,

Name , Subscribed SubReddits , Created Posts , Obtained total Votes (
Total Karma)

38 op subr : Nat String String NatList NatList -> SubReddit [ctor] . ---
Id , Name , Description , Users subscribed to SubReddit , Posts in
SubReddit

37

38 Appendices

39 op post : Nat String String Nat NatList NatList -> Post [ctor] . --- Id
, Title , Text , User ID (creator), Comments underneath , Votes on
post

40 op vote : Nat Nat Nat Bool -> Vote [ctor] . --- Id , User who voted ,
Post where vote belongs , Value(positive or negative)

41

42 endfm
43

44 fmod REDDIT -EQ is
45 protecting REDDIT .
46

47 *** Actions ***
48 sorts Action ActionList .
49 subsort Action < ActionList .
50

51 --- Create an ActionList that will determine what actions can be
performed in the State

52 op nil : -> ActionList [ctor] .
53 op _,_ : ActionList ActionList -> ActionList [assoc id: nil] .
54

55 --- Create a User (Add User to Reddit)
56 op createuser : String -> Action . --- Username
57 --- Delete a User (Delete User from Reddit)
58 op deleteuser : Nat -> Action . --- Post ID
59 --- Create a SubReddit (Add User to Reddit)
60 op createsub : Nat String String -> Action . --- User ID , SubReddit ’s

Name , SubReddit ’s Description
61 --- Delete a SubReddit (Delete SubReddit from Reddit)
62 op deletesub : Nat -> Action . --- SubReddit ID
63 --- Create a Post (Add Post to User and SubReddit ’s PostLists)
64 op createpost : Nat Nat String String -> Action . --- User ID,

SubReddit ID, Title , Text
65 --- Delete a Post (Delete Post from User and SubReddit ’s PostLists and

delete all comments and votes made on that post)
66 op deletepost : Nat -> Action . --- Post ID
67 --- Subscribe User to SubReddit (User add SubReddit to their list of

SubReddits and vice versa)
68 op subscribe : Nat Nat -> Action . --- User ID, SubReddit ID
69 --- Unsubscribe User (User remove SubReddit from their list of

SubReddits and vice versa)
70 op unsubscribe : Nat Nat -> Action . --- User ID, SubReddit ID
71 --- Create a Comment (Add Post to Post’s list of Comments)
72 op reply : Nat Nat String -> Action . --- User ID, Post ID, Text
73 --- Delete a Comment (Remove Post from Post’s list of Comments)
74 op deletereply : Nat -> Action . --- Comment(Post) ID
75 --- Delete a Comment (Remove Post from Post’s list of Comments)
76 op deletereplycascade : Nat -> Action . --- Comment(Post) ID
77 --- Cast a Vote on a Post (Add Vote to User and Post’s lists of votes)
78 op addvote : Nat Nat Bool -> Action . --- User ID, Post ID, Upvote or

Downvote
79 --- Delete a Vote from a Post (Delete Vote from User and Post’s lists

of votes)
80 op deletevote : Nat -> Action . --- Vote ID
81

82 *** Operators ***
83 op deletecascadeP : NatList -> ActionList .
84 op deletecascadeV : NatList -> ActionList .
85 op deleteall : NatList -> ActionList .
86

87 *** Variables ***
88 var Us : User .
89 var Sub : SubReddit .
90 var P : Post .
91 var V : Vote .

A.1 The Maude deductive model for the Reddit Network 39

92 var N : Nat .
93 var NL : NatList .
94

95 *** Axioms ***
96 *** Idempotency ***
97 eq Us Us = Us .
98 eq Sub Sub = Sub .
99 eq P P = P .

100 eq V V = V .
101

102 *** Equations ***
103 eq deletecascadeP(nil) = nil .
104 eq deletecascadeP(N NL) = deletereplycascade(N) , deletecascadeP(NL) .
105

106 eq deletecascadeV(nil) = nil .
107 eq deletecascadeV(N NL) = deletereplycascade(N) , deletecascadeV(NL) .
108

109 eq deleteall(nil) = nil .
110 eq deleteall(N NL) = deletepost(N), deleteall(NL) .
111

112 endfm
113

114 mod REDDIT -RL is
115 protecting REDDIT -EQ .
116

117 *** Variables ***
118 --- For rules ---
119 vars T Txt T’ Txt’ UName SName SDesc : String . --- Variables for Title

, Text , Username , SubReddit description
120 vars UList SList PList CList VList KList : NatList . --- Lists
121 vars UList’ SList’ PList ’ CList’ VList ’ KList’ : NatList . --- Lists ’
122 vars UList’’ SList’’ PList’’ CList’’ VList ’’ KList’’ : NatList . ---

Lists’’
123 vars UList’’’ SList ’’’ PList’’’ CList ’’’ VList’’’ KList ’’’ : NatList .

--- Lists ’’’
124 vars UId SId PId CId VId : Nat . --- IDs
125 vars UId’ SId’ PId’ CId’ VId’ : Nat . --- ID’s
126 vars X CNT : Nat . --- Counter for creating IDs
127 var B : Bool . --- Boolean to Upvote or Downvote
128 --- Sets ---
129 var USet : UserSet .
130 var SSet : SubRedditSet .
131 var PSet : PostSet .
132 var VSet : VoteSet .
133 var AList : ActionList .
134

135 *** Initial State ***
136 op _|_|_|_|_|_ : Nat UserSet SubRedditSet PostSet VoteSet ActionList ->

State [ctor] .
137

138 *** Sequences as seen in the TFG paper ***
139 --- Initial State
140 op init : -> State .
141 eq init = 0 | none | none | none | none | aListInit , aListInter1 .
142 --- Initial Reddit actions
143 ---7 initial actions (0-6)
144 op aListInit : -> ActionList .
145 eq aListInit = createuser ("u/aLynx") , createuser ("u/b0bbyPR ") ,

createuser ("u/chocoSystems ") , createuser ("u/dedTech ") , createsub
(0, "r/Maude", "Lorem ipsum") , createsub (0, "r/ModelChecking", "
Lorem ipsum ") , createsub(0, "r/FormalMethods", "Lorem ipsum") .

146

147 *** Reddit action interactions ***
148 op aListInter1 : -> ActionList .

40 Appendices

149 eq aListInter1 = createpost (0, 6, "Conference", "Conference link") ,
reply(1, 7, "Good job !") , deletepost (7) .

150 op aListInter2 : -> ActionList .
151 eq aListInter2 = createpost (0, 6, "Maude is cool", "Body of text") ,

reply(1, 7, "Nice") , reply(2, 8, "Delete this") , deletereply (8) .
152 op aListInter3 : -> ActionList .
153 eq aListInter3 = createpost (0, 6, "Maude post", "Bottom text") ,

addvote(1, 7, true) , deletevote (8) .
154

155 *** Rules ***
156 rl [createuser] :
157 CNT |
158 USet |
159 SSet |
160 PSet |
161 VSet |
162 createuser(UName) , AList
163 =>
164 CNT + 1 |
165 USet user(CNT , UName , nil , nil , nil) |
166 SSet |
167 PSet |
168 VSet |
169 AList [narrowing] .
170

171 rl [deleteuser] :
172 CNT |
173 USet user(UId , UName , SList , PList , KList) |
174 SSet subr(SId , SName , SDesc , UList UId UList’, PList ’) |
175 PSet |
176 VSet |
177 deleteuser(UId) , AList
178 =>
179 CNT |
180 USet |
181 SSet subr(SId , SName , SDesc , (UList UList ’), PList’) |
182 PSet |
183 VSet |
184 AList [narrowing] .
185 --
186 rl [createsub] :
187 CNT |
188 USet user(UId , UName , SList , PList , KList) |
189 SSet |
190 PSet |
191 VSet |
192 createsub(UId , SName , SDesc) , AList
193 =>
194 CNT + 1 |
195 USet user(UId , UName , SList , PList , KList) |
196 SSet subr(CNT , SName , SDesc , UId , nil)|
197 PSet |
198 VSet |
199 AList [narrowing] .
200

201 rl [deletesub] :
202 CNT |
203 USet |
204 SSet subr(SId , SName , SDesc , UList , PList) |
205 PSet |
206 VSet |
207 deletesub(SId) , AList
208 =>
209 CNT |

A.1 The Maude deductive model for the Reddit Network 41

210 USet |
211 SSet |
212 PSet |
213 VSet |
214 deleteall(PList) , AList [narrowing] .
215 --
216 rl [createpost] :
217 CNT |
218 USet user(UId , UName , SList , PList , KList) |
219 SSet subr(SId , SName , SDesc , UList , PList ’) |
220 PSet |
221 VSet |
222 createpost(UId , SId , T, Txt) , AList
223 =>
224 CNT + 1 |
225 USet user(UId , UName , SList , (PList CNT), KList) |
226 SSet subr(SId , SName , SDesc , UList , (PList ’ CNT)) |
227 PSet post(CNT , T, Txt , UId , nil , nil) |
228 VSet |
229 AList [narrowing] .
230

231 rl [deletepost] :
232 CNT |
233 USet user(UId , UName , SList , PList PId PList’, KList) |
234 SSet subr(SId , SName , SDesc , UList , PList ’’ PId PList ’’’) |
235 PSet post(PId , T, Txt , UId , CList , VList) |
236 VSet |
237 deletepost(PId) , AList
238 =>
239 CNT |
240 USet user(UId , UName , SList , (PList PList ’), KList) |
241 SSet subr(SId , SName , SDesc , UList , (PList ’’ PList’’’)) |
242 PSet |
243 VSet |
244 deletecascadeP(CList) , deletecascadeV(VList) , AList [narrowing] .
245 --
246 rl [subscribe] :
247 CNT |
248 USet user(UId , UName , SList , PList , KList) |
249 SSet subr(SId , SName , SDesc , UList , PList ’) |
250 PSet |
251 VSet |
252 subscribe(UId , SId) , AList
253 =>
254 CNT |
255 USet user(UId , UName , (SList SId), PList , KList) |
256 SSet subr(SId , SName , SDesc , (UList UId), PList’) |
257 PSet |
258 VSet |
259 AList [narrowing] .
260

261 rl [unsubscribe] :
262 CNT |
263 USet user(UId , UName , SList SId SList ’, PList , KList) |
264 SSet subr(SId , SName , SDesc , UList UId UList’, PList ’) |
265 PSet |
266 VSet |
267 unsubscribe(UId , SId) , AList
268 =>
269 CNT |
270 USet user(UId , UName , (SList SList’), PList , KList) |
271 SSet subr(SId , SName , SDesc , (UList UList ’), PList’) |
272 PSet |
273 VSet |

42 Appendices

274 AList [narrowing] .
275 --
276 rl [reply] :
277 CNT |
278 USet user(UId , UName , SList , PList , KList) |
279 SSet |
280 PSet post(PId , T, Txt , UId’, CList , VList) |
281 VSet |
282 reply(UId , PId , Txt’) , AList
283 =>
284 CNT + 1 |
285 USet user(UId , UName , SList , (PList CNT), KList) |
286 SSet |
287 PSet post(CNT , T, Txt’, UId , nil , nil) post(PId , T, Txt , UId’, (

CList CNT), VList) |
288 VSet |
289 AList [narrowing] .
290

291 rl [deletereply] :
292 CNT |
293 USet user(UId , UName , SList , PList PId PList’, KList) |
294 SSet |
295 PSet post(PId , T, Txt , UId , CList , VList) post(PId’, T’, Txt’, UId’

, CList ’ PId CList ’’, VList’) |
296 VSet |
297 deletereply(PId) , AList
298 =>
299 CNT |
300 USet user(UId , UName , SList , (PList PList ’), KList) |
301 SSet |
302 PSet post(PId’, T’, Txt’, UId’, (CList ’ CList’’), VList ’) |
303 VSet |
304 deletecascadeP(CList) , deletecascadeV(VList) , AList [narrowing] .
305

306 rl [deletereplycascade] :
307 CNT |
308 USet user(UId , UName , SList , PList PId PList’, KList) |
309 SSet |
310 PSet post(PId , T, Txt , UId , CList , VList) |
311 VSet |
312 deletereplycascade(PId) , AList
313 =>
314 CNT |
315 USet user(UId , UName , SList , (PList PList ’), KList) |
316 SSet |
317 PSet |
318 VSet |
319 deletecascadeP(CList) , deletecascadeV(VList) , AList [narrowing] .
320 ---
321 op hasVoted? : VoteSet Nat Nat -> Bool .
322 eq hasVoted ?(vote(VId , UId , PId , B) VSet , UId , PId) = true .
323 eq hasVoted ?(VSet , UId , PId) = false [owise] .
324

325 rl [addvote] :
326 CNT |
327 USet user(UId , UName , SList , PList , KList) |
328 SSet |
329 PSet post(PId , T, Txt , UId’, CList , VList) |
330 VSet |
331 addvote(UId , PId , B) , AList
332 =>
333 if hasVoted ?(VSet , UId , PId)
334 then
335 CNT |

A.2 The Maude operational model for the Reddit Network 43

336 USet user(UId , UName , SList , PList , KList) |
337 SSet |
338 PSet post(PId , T, Txt , UId’, CList , VList) |
339 VSet |
340 AList
341 else
342 CNT + 1 |
343 USet user(UId , UName , SList , PList , (KList CNT)) |
344 SSet |
345 PSet post(PId , T, Txt , UId , CList , (VList CNT)) |
346 VSet vote(CNT , UId , PId , B) |
347 AList
348 fi [narrowing] .
349

350 rl [deletevote] :
351 CNT |
352 USet user(UId , UName , SList , PList , KList VId KList ’) |
353 SSet |
354 PSet post(PId , T, Txt , UId , CList , VList VId VList ’) |
355 VSet |
356 deletevote(VId) , AList
357 =>
358 CNT |
359 USet user(UId , UName , SList , PList , (KList KList’)) |
360 SSet |
361 PSet post(PId , T, Txt , UId , CList , (VList VList’)) |
362 VSet |
363 AList [narrowing] .
364

365 endm

A.2 The Maude operational model for the Reddit Network

1 fmod REDDIT is
2 pr CONVERSION .
3 pr NAT -LIST .
4

5 *** State declaration ***
6 sort State .
7

8 *** User declaration ***
9 sorts User UserSet .

10 subsort User < UserSet .
11

12 op none : -> UserSet [ctor] .
13 op __ : UserSet UserSet -> UserSet [assoc comm id: none] .
14

15 *** SubReddit declaration ***
16 sorts SubReddit SubRedditSet .
17 subsort SubReddit < SubRedditSet .
18

19 op none : -> SubRedditSet [ctor] .
20 op __ : SubRedditSet SubRedditSet -> SubRedditSet [assoc comm id: none]

.
21

22 *** Post declaration **
23 sorts Post PostSet .
24 subsort Post < PostSet .
25

26 op none : -> PostSet [ctor] .
27 op __ : PostSet PostSet -> PostSet [assoc comm id: none] .
28

44 Appendices

29 *** Vote declaration ***
30 sorts Vote VoteSet .
31 subsort Vote < VoteSet .
32

33 op none : -> VoteSet [ctor] .
34 op __ : VoteSet VoteSet -> VoteSet [assoc comm id: none] .
35

36 *** Constructors ***
37 op user : Nat String NatList NatList NatList -> User [ctor] . --- Id ,

Name , Subscribed SubReddits , Created Posts , Obtained total Votes (
Total Karma)

38 op subr : Nat String String NatList NatList -> SubReddit [ctor] . ---
Id , Name , Description , Users subscribed to SubReddit , Posts in
SubReddit

39 op post : Nat String String Nat NatList NatList -> Post [ctor] . --- Id
, Title , Text , User ID (creator), Comments underneath , Votes on
post

40 op vote : Nat Nat Nat Bool -> Vote [ctor] . --- Id , User who voted ,
Post where vote belongs , Value(positive or negative)

41

42 *** Variables ***
43 var Us : User .
44 var Sub : SubReddit .
45 var P : Post .
46 var V : Vote .
47 var N : Nat .
48 var NL : NatList .
49

50 *** Axioms ***
51 *** Idempotency ***
52 eq Us Us = Us .
53 eq Sub Sub = Sub .
54 eq P P = P .
55 eq V V = V .
56

57 endfm
58

59 mod REDDIT -RL is
60 protecting REDDIT .
61

62 *** Variables ***
63 --- For rules ---
64 vars T Txt T’ Txt’ UName SName SDesc : String . --- Variables for Title

, Text , Username , SubReddit description
65 vars UList SList PList CList VList KList : NatList . --- Lists
66 vars UList’ SList’ PList ’ CList’ VList ’ KList’ : NatList . --- Lists ’
67 vars UList’’ SList’’ PList’’ CList’’ VList ’’ KList’’ : NatList . ---

Lists’’
68 vars UList’’’ SList ’’’ PList’’’ CList ’’’ VList’’’ KList ’’’ : NatList .

--- Lists ’’’
69 vars UId SId PId CId VId : Nat . --- IDs
70 vars UId’ SId’ PId’ CId’ VId’ : Nat . --- ID’s
71 vars X CNT : Nat . --- Counter for creating IDs
72 var B : Bool . --- Boolean to Upvote or Downvote
73 --- Sets ---
74 var USet : UserSet .
75 var SSet : SubRedditSet .
76 var PSet : PostSet .
77 var VSet : VoteSet .
78

79 *** Initial State ***
80 op _|_|_|_|_ : Nat UserSet SubRedditSet PostSet VoteSet -> State [ctor]

.
81

A.2 The Maude operational model for the Reddit Network 45

82 *** Sequences as seen in the TFG paper ***
83 --- Initial State
84 op init : -> State .
85 eq init = 0 | none | none | none | none .
86

87 *** Rules ***
88 rl [createuser] :
89 CNT |
90 USet |
91 SSet |
92 PSet |
93 VSet
94 =>
95 CNT + 1 |
96 USet user(CNT , "u/User" + string(CNT , 10), nil , nil , nil) |
97 SSet |
98 PSet |
99 VSet [narrowing] .

100

101 rl [deleteuser] :
102 CNT |
103 USet user(UId , UName , SList , PList , KList) |
104 SSet subr(SId , SName , SDesc , UList UId UList’, PList ’) |
105 PSet |
106 VSet
107 =>
108 CNT |
109 USet |
110 SSet subr(SId , SName , SDesc , (UList UList ’), PList’) |
111 PSet |
112 VSet [narrowing] .
113 --
114 rl [createsub] :
115 CNT |
116 USet user(UId , UName , SList , PList , KList) |
117 SSet |
118 PSet |
119 VSet
120 =>
121 CNT + 1 |
122 USet user(UId , UName , SList , PList , KList) |
123 SSet subr(CNT , "r/SUB" + string(CNT , 10), "Lorem ipsum", UId , nil)|
124 PSet |
125 VSet [narrowing] .
126

127 rl [deletesub] :
128 CNT |
129 USet |
130 SSet subr(SId , SName , SDesc , UList , PList) |
131 PSet |
132 VSet
133 =>
134 CNT |
135 USet |
136 SSet |
137 PSet |
138 VSet [narrowing] .
139 --
140 rl [createpost] :
141 CNT |
142 USet user(UId , UName , SList , PList , KList) |
143 SSet subr(SId , SName , SDesc , UList , PList ’) |
144 PSet |
145 VSet

46 Appendices

146 =>
147 CNT + 1 |
148 USet user(UId , UName , SList , (PList CNT), KList) |
149 SSet subr(SId , SName , SDesc , UList , (PList ’ CNT)) |
150 PSet post(CNT , "Title" + string(CNT , 10), "Text", UId , nil , nil) |
151 VSet [narrowing] .
152

153 rl [deletepost] :
154 CNT |
155 USet user(UId , UName , SList , PList PId PList’, KList) |
156 SSet subr(SId , SName , SDesc , UList , PList ’’ PId PList ’’’) |
157 PSet post(PId , T, Txt , UId , CList , VList) |
158 VSet
159 =>
160 CNT |
161 USet user(UId , UName , SList , (PList PList ’), KList) |
162 SSet subr(SId , SName , SDesc , UList , (PList ’’ PList’’’)) |
163 PSet |
164 VSet [narrowing] .
165

166 --
167 rl [subscribe] :
168 CNT |
169 USet user(UId , UName , SList , PList , KList) |
170 SSet subr(SId , SName , SDesc , UList , PList ’) |
171 PSet |
172 VSet
173 =>
174 CNT |
175 USet user(UId , UName , (SList SId), PList , KList) |
176 SSet subr(SId , SName , SDesc , (UList UId), PList’) |
177 PSet |
178 VSet [narrowing] .
179

180 rl [unsubscribe] :
181 CNT |
182 USet user(UId , UName , SList SId SList ’, PList , KList) |
183 SSet subr(SId , SName , SDesc , UList UId UList’, PList ’) |
184 PSet |
185 VSet
186 =>
187 CNT |
188 USet user(UId , UName , (SList SList’), PList , KList) |
189 SSet subr(SId , SName , SDesc , (UList UList ’), PList’) |
190 PSet |
191 VSet [narrowing] .
192 --
193 rl [reply] :
194 CNT |
195 USet user(UId , UName , SList , PList , KList) |
196 SSet subr(SId , SName , SDesc , UList , PList ’) |
197 PSet post(PId , T, Txt , UId’, CList , VList) |
198 VSet
199 =>
200 CNT + 1 |
201 USet user(UId , UName , SList , (PList CNT), KList) |
202 SSet subr(SId , SName , SDesc , UList , (PList ’ CNT)) |
203 PSet post(CNT , T, "Txt", UId , nil , nil) post(PId , T, Txt , UId’, (

CList CNT), VList) |
204 VSet [narrowing] .
205

206 rl [deletereply] :
207 CNT |
208 USet |

A.2 The Maude operational model for the Reddit Network 47

209 SSet |
210 PSet post(PId , T, Txt , UId , CList , VList) |
211 VSet
212 =>
213 CNT |
214 USet |
215 SSet |
216 PSet |
217 VSet [narrowing] .
218

219 ---
220 op hasVoted? : VoteSet Nat Nat -> Bool .
221 eq hasVoted ?(vote(VId , UId , PId , B) VSet , UId , PId) = true .
222 eq hasVoted ?(VSet , UId , PId) = false [owise] .
223 rl [upvote] :
224 CNT |
225 USet user(UId , UName , SList , PList , KList) |
226 SSet |
227 PSet post(PId , T, Txt , UId’, CList , VList) |
228 VSet
229 =>
230 if hasVoted ?(VSet , UId , PId)
231 then
232 CNT |
233 USet user(UId , UName , SList , PList , KList) |
234 SSet |
235 PSet post(PId , T, Txt , UId’, CList , VList) |
236 VSet
237 else
238 CNT + 1 |
239 USet user(UId , UName , SList , PList , (KList CNT)) |
240 SSet |
241 PSet post(PId , T, Txt , UId , CList , (VList CNT)) |
242 VSet vote(CNT , UId , PId , true)
243 fi [narrowing] .
244

245 rl [downvote] :
246 CNT |
247 USet user(UId , UName , SList , PList , KList) |
248 SSet |
249 PSet post(PId , T, Txt , UId’, CList , VList) |
250 VSet
251 =>
252 if hasVoted ?(VSet , UId , PId)
253 then
254 CNT |
255 USet user(UId , UName , SList , PList , KList) |
256 SSet |
257 PSet post(PId , T, Txt , UId’, CList , VList) |
258 VSet
259 else
260 CNT + 1 |
261 USet user(UId , UName , SList , PList , (KList CNT)) |
262 SSet |
263 PSet post(PId , T, Txt , UId , CList , (VList CNT)) |
264 VSet vote(CNT , UId , PId , false)
265 fi [narrowing] .
266

267 rl [deletevote] :
268 CNT |
269 USet user(UId , UName , SList , PList , KList VId KList ’) |
270 SSet |
271 PSet post(PId , T, Txt , UId’, CList , VList VId VList ’) |
272 VSet

48 Appendices

273 =>
274 CNT |
275 USet user(UId , UName , SList , PList , (KList KList’)) |
276 SSet |
277 PSet post(PId , T, Txt , UId’, CList , (VList VList’)) |
278 VSet [narrowing] .
279

280 endm
281 mod REDDIT -PREDS is
282 pr REDDIT -RL .
283 including SATISFACTION .
284

285 *** Configuration (State) ***
286 sort Reddit .
287 subsort Reddit < State .
288

289 *** Variables ***
290 var CNT : Nat .
291 var USet : UserSet .
292 var SSet : SubRedditSet .
293 var PSet : PostSet .
294 var VSet : VoteSet .
295 var R : Reddit .
296 --- For rules ---
297 vars T Txt T’ Txt’ UName SName SDesc : String . --- Variables for Title

, Text , Username , SubReddit description
298 vars UList SList PList CList VList KList : NatList . --- Lists
299 vars UList’ SList’ PList ’ CList’ VList ’ KList’ : NatList . --- Lists ’
300 vars UList’’ SList’’ PList’’ CList’’ VList ’’ KList’’ : NatList . ---

Lists’’
301 vars UList’’’ SList ’’’ PList’’’ CList ’’’ VList’’’ KList ’’’ : NatList .

--- Lists ’’’
302 vars UId SId PId CId VId : Nat . --- IDs
303 vars UId’ SId’ PId’ CId’ VId’ : Nat . --- ID’s
304 var B : Bool . --- Boolean to Upvote or Downvote
305

306 *** Operators ***
307 op vote : Nat -> Prop .
308 op user : Nat -> Prop .
309 op post : Nat -> Prop .
310

311 *** Equations ***
312 --- All existing posts will continue existing as long as they are not

explicitly deleted.
313 --- postexists(N:Nat , U:Nat) => [] (postexists(N:Nat , U:Nat) W

deletePost(NP))
314 ---eq < CNT | USet | SSet | PSet post(PId , T, Txt , UId , CList , VList) |

VSet > |= postexists(PId , UId) = true .
315 ---eq < CNT | USet | SSet | PSet | VSet > |= userexists(UId) = true .
316

317

318 --- Every vote is always associated to its corresponding post
319 eq < CNT | USet | SSet | PSet | VSet vote(VId , UId , PId , B) > |= vote(

VId) = true .
320 eq < CNT | USet | SSet | PSet post(PId , T, Txt , UId’, CList , VList VId

VList’) | VSet > |= post(VId) = true .
321

322 endm
323 mod REDDIT -CHECK is
324 protecting REDDIT -PREDS .
325 including MODEL -CHECKER .
326 including LTL -SIMPLIFIER .
327

328 *** Variables ***

A.2 The Maude operational model for the Reddit Network 49

329 var CNT : Nat .
330 var USet : UserSet .
331 var SSet : SubRedditSet .
332 var PSet : PostSet .
333 var VSet : VoteSet .
334 var R : Reddit .
335

336 --- For rules ---
337 vars T Txt T’ Txt’ UName SName SDesc : String . --- Variables for Title

, Text , Username , SubReddit description
338 vars UList SList PList CList VList KList : NatList . --- Lists
339 vars UList’ SList’ PList ’ CList’ VList ’ KList’ : NatList . --- Lists ’
340 vars UList’’ SList’’ PList’’ CList’’ VList ’’ KList’’ : NatList . ---

Lists’’
341 vars UList’’’ SList ’’’ PList’’’ CList ’’’ VList’’’ KList ’’’ : NatList .

--- Lists ’’’
342 vars UId SId PId CId VId : Nat . --- IDs
343 vars UId’ SId’ PId’ CId’ VId’ : Nat . --- ID’s
344 var B : Bool . --- Boolean to Upvote or Downvote
345

346

347 ---op initConfig1 : -> Reddit .
348 ---eq initConfig1 = < 0 | none | none | none | none > .
349

350 endm

	Contents
	List of Figures
	Introduction
	Motivation
	Objectives of this work
	Project Structure

	The Formal Specification Language Maude
	Modules
	Imports
	Sorts and Subsorts
	Operators
	Variables
	Parsing

	Functional Modules
	Equations

	System Modules
	Rules

	Formal System Analysis by Model Checking
	Temporal Logic
	Model-checking in Maude

	The Social Network Reddit
	Reddit structure and features
	Structure of Reddit
	Actions of Reddit

	Reddit action interactions
	Reddit action interaction with counterintuitive effects
	Malicious interactions

	Reddit formal specification in Maude
	Sorts
	User
	SubReddit
	Post
	Vote

	Actions
	Reddit action characteristics

	Analysis and Verification of the Reddit system
	Reachability analysis
	Model-cheking

	Conclusion
	Bibliography
	Appendices
	The Maude deductive model for the Reddit Network
	The Maude operational model for the Reddit Network

