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Chapter 1

Thesis Overview

Contents

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Problem description . . . . . . . . . . . . . . . . . . . . 7

1.3 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Thesis Organisation . . . . . . . . . . . . . . . . . . . . 10

1.1 Background

The new sustainable growth strategy proposed by European Commission in
2019 [EGD 2019], essentially requires the development of sustainable trans-
portation that is climate neutral, cost and energy e�cient and non-polluting.
According to the authors in [Sims et al. 2014], the on-road vehicles contribute
to 22% of the Green House Gases (GHG) emission which is responsible for
global warming. As per the report by European Energy Agency [EEA 2019],
from 2010 to 2016, CO2 per kilometre (g CO2/km) declined steadily by 22
g. The average emissions from new passenger cars increased in 2018 by 2.8 g
CO2/km. According to the data in 2019, CO2/km increased further resulting
in 122.4 g of CO2 per kilometre. This is well above the European Union (EU)
target of 95 g CO2/km in 2020 as shown in Figure 1.1.

The nitrogen oxides (NOx) are identi�ed as another prominent pollutant
coming from the road transportation. It not only has adversarial impact
on ozone concentration but also e�ects the human health [Sims et al. 2014].
However, according to the data in [AQR 2019] the NOx emissions due to road
transportation in the EU-28 countries have been reduced by 40% since the year
2000. This reduction in NOx is majorly due to the stricter emission standards
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Figure 1.1: European Environment Agency for newly registered motor vehi-
cles, In red are the CO2 target in 2015 and 2020, the gray line is the average
CO2 emissions from the new vehicles since 2006 to 2019

imposed by government and advancement in the vehicle technology specially
with the introduction of after-treatment devices in the vehicles. During last
decades the EU has progressively tried to limit the pollutant emissions (the
NOx limits in Figure 1.2) and the target is to tighten these �gures in the near
future with more stringent emission standards.

The limits imposed on the pollutant emissions for a vehicle is a big chal-
lenge for the automotive industry. Vehicle Type Approval (TA) procedure
for the Euro standards was criticized for it being non-representative of the
real-driving conditions [Demuynck et al. 2012]. Before 2018, the TA proce-
dure consisted of testing a vehicle on the NEDC on a rolling test bench under
several operating conditions. This was addressed by calibrating the engine
control and vehicles to pass the test on this cycle. During the actual driving
missions which are far from the NEDC, vehicle under-performs in e�ciency
and emits more pollutants as presented in Figure 1.3, than what was declared
during the TA testing. The uncertainities in the real-world lead to ine�cient
vehicles on the road with higher fuel and emission levels as shown by the au-
thors in [Mock et al. 2012] and [Mock et al. 2013]. According to Chen Yuche
and Jens [Yuche & Jens 2014], NOx emissions by European diesel cars are
shown to have not decreased, despite the continuous tightening of the NOx

TA limits from EU1 to EU6. As compared to the current TA limit value of
0.080 g/km, real-world NOx emissions are found to be even more than 0.32
g/km, these di�erences have been shown by many authors like in Samuel et.
al in [Samuel et al. 2005], Veerle et. al [Veerle et al. 2016] and by Zacharof
et. al in [Zacharof et al. 2016]. Signi�cant e�orts have been made over the
past 5 years to reduce emissions of air pollutants, particularly in the wake of
Dieselgate [Die 2019].
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Figure 1.2: European Diesel emission regulatory limits for NOx from 2005 to
2020. The blue bars represent the NOx limits for NEDC, the red bar is for
the limits on NOx during WLTC and the green bar is for the Real Driving
Emission (RDE) limits for NOx

Figure 1.3: Comparison of the average NOx emissions measured for nv number
of vehicle by European standards (EU-3,4,5,6) to their respective limits from
the year 2000 to 2014
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In 2018, the EU adopted a more realistic driving cycle, the WLTC [Tu-
tuianu et al. 2013] to eliminate the di�erence between declared and actual
emissions. In the EU6D regulations for light duty vehicles, the dynamo-meter
based TA procedure is complimented with on-road emission testing by means
of the portable emission measurement device [Weiss et al. 2012]. These tests
pose several new challenges for automotive manufacturers as vehicle design
and control strategies become more complex. Among the research domains
that can contribute to address the aforementioned challenges, one can identify
the following ones:

• Development of low emission alternative powertrains that run on a fuel
other than traditional petroleum fuels (petrol or diesel):

Popular alternative powertrain systems are Electric Vehicles (EV) [Frieske
et al. 2013], Hybrid Electric Vehicles (HEV), solar powered vehicle
[Singh et al. 2019], bio-fuel among other. Such technologies are usu-
ally compared for energy e�ciency and pollutant emissions with the
conventional vehicles using the life cycle analysis approach. The au-
thors in [Tagliaferri et al. 2016], use cradle-to-grave approach to identify
the energy extensive processes during manufacturing, usage and disposal
phases of the conventional and EV vehicles. During the assessment of
the GHG emissions of a battery electric vehicle in comparison with a con-
ventional Internal Combustion Engine (ICE) vehicle, the well to wheel
analysis by Moro et. al [Moro & Helmers 2015] found that an EV can
save up to 50�60% of GHG .

• Development of high e�ciency powertrain components:

The authors in [Payri et al. 2015] present a comprehensive review of
di�erent technologies that are developed for meeting regulations. In
the conventional vehicles, the continuous improvement in the design of
Diesel and gasoline engines (such as advanced Exhaust Gas Recircula-
tion (EGR) technology [Thangaraja & Kannan 2016, Galindo et al. 2020],
Variable Geometry Turbocharger (VGT) [Feneley et al. 2017], combus-
tion improvement through Homogeneous Charge Compression Ignition
(HCCI), Reactivity Controlled Compression Ignition (RCCI) [Guardi-
ola et al. 2018],.. etc. The after-treatment devices such as Selective
Catalytic Reduction (SCR) [Pla et al. 2020]) have also facilitated the
emission reduction. In the EVs, the research areas include develop-
ment of high capacity batteries while addressing the issues of autonomy,
durability and cost [Zakaria et al. 2019]. The transition from the conven-
tional vehicle to full electric vehicles is slow and has served as a nucleus
in the development of HEV. The research in HEVs is largely focused
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on the topological, optimal component sizing and Energy Management
Strategy (EMS).

• Development of advanced vehicular control system:

The optimal engine control, EMS in HEVs, development of autonomous
vehicles and connected vehicle have gained huge momentum in the last
decades. Broadly speaking, the objective of the automotive controls
is to operate the vehicle or any of its subsystems in the most e�cient
way while ful�lling several constraints at the system and surrounding
levels. As the complexity of engine and vehicle kept growing with the
new technological developments, the demand for more complex con-
trol system also grew. The opportunities arising due to the improved
computational capabilities, connected vehicles and more sophisticated
modelling and control techniques are paving the way for adoption of
optimal control theory in the automotive industry. For instance, the
typical approach in conventional engines was based on the calibrated
maps that contain control set-points as a function of several variables.
These set-points are interpolated according to the current sensor read-
ings, estimations and then corrected for dynamic transients. It requires
a lot of experimental and heuristic knowledge for obtaining a single cali-
bration. Automated frameworks are proposed by the authors in [Stuhler
et al. 2002, Jiang et al. 2012, Hellström et al. 2013] to address this costly
and time demanding solution. The optimal control theory is found rele-
vant in not just engine controls but also in transmission control, EMS for
HEV among others. The e�cient driving is also shown to have signi�-
cant impact on fuel saving and emission by Sciarretta et.al [Sciarretta &
Vahidi 2020a]. Autonomous driving eliminates any human intervention
in vehicle speed control and drives the vehicle in the most energy e�-
cient way for a given powertrain system. An optimal control perspective
for e�cient driving is presented in [Han et al. 2019].

This thesis is focused on the third topic, i.e. the optimisation of control for
modern powertrain systems. The control is important in itself, but also serves
as a technology enabler for the �rst two topics of the above list. Following
section describes the problem that has been addressed in this work.

1.2 Problem description

The problem addressed in the current thesis is to optimise the vehicle con-
trol such that the fuel consumption and constraints regarding the powertrain
behaviour, for instance pollutant emissions or battery state of the charge for
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HEVs is respected in actual driving missions. The thesis proposes model-
based control that approximates the minimum energy consumption of the
vehicle subject to constraints (emissions, electric range, ...) in real driving
conditions by applying optimal control techniques. To do that, three main
topics are covered:

• Models that are capable of estimating (in real-time) the general be-
haviour and performance of the powertrain based on its requirements
(vehicle speed, acceleration, torque demand, environmental conditions)
and control settings (engine management , power-split).

• Statistical models capable of estimating future operating conditions from
the vehicle's history, in addition to other information provided by the
infrastructure (Infrastructure to Vehicle (I2V)) or other vehicles (Vehicle
to Vehicle (V2V)) that is available.

• Optimization algorithms that combined with the above elements can
provide optimal powertrain controls that minimize energy while satisfy-
ing emissions or other forms of constraints.

1.3 Objective

The main objective of this thesis is to extend the application of optimal control
of powertrain in real driving conditions. To this end, there are two design
verticals explored during the development of this thesis � powertrain and
vehicle speed optimisation as presented in Table 1.1:

Powertrain Optimisation Vehicle speed optimisation

- Adaptive Control of diesel engine - Optimal vehicle speed in urban scenario
- Variable smoothening of - Speed Advisory in Real Driving
diesel engine calibration
- Adaptive EMS in a HEV

Table 1.1: The verticals explored in the thesis for improvement in real-world
performance of a vehicle and the applications developed under each vertical

The �rst two topics in the powertrain optimisation are related to the clas-
sical engine control for the conventional vehicles. In particular, the �rst ap-
plication is a standard problem of adaptive control of fuel injection in a diesel
engine for improving e�ciency and constraining the NOx emissions for the
entire trip. This can be easily modi�ed to cover other systems such as EGR,
VGT, urea injection and also to aspects such as soot and response time. To
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do that two main problems are required to be addressed: At �rst the curse of
dimensionality arising due to the number of extra variables and then develop-
ment of models to estimate outputs such as soot and dynamics. The second
problem arises from the optimisation procedure itself. The second application
is regarding the auto-smoothening of the calibration maps of a diesel engine in
real driving conditions. For which a single tuning parameter is used to obtain
a trade-o� between fuel consumption, NOx emissions and the engine torque
reference following capability.

The modern powertrain systems are rapidly progressing towards hybridisa-
tion and electri�cation. Therefore, the scope of powertrain optimisation is not
limited to the engine control but also covers the control of HEVs. The third
problem is regarding the online EMS of a HEV. The State-of-the-Art (SOA)
o�ine EMS is extended with a cycle prediction strategy for making it an
online application. In particular, the performance of developed method is
compared with SOA EMSs in terms of fuel e�ciency and capability to track
the reference State-of-Charge (SoC).

Even though the controllability of the powertrain system is high, the com-
plexity of the control problem increases multi-fold with the increasing number
of control parameters. During its implementation in powertrain systems with
several control inputs and constraints, the optimal powertrain control prob-
lem becomes extremely complex and eventually over-weighs the performance
related bene�ts. For this reason, another research vertical is also investigated
in this thesis: Control of vehicle speed in real-driving conditions. Such con-
trol problems have less number of actuators (acceleration pedal, braking pedal
etc..) but the number of states and disturbances is much higher since it in-
cludes all the powertrain related states plus the ones related to the driver and
the environment. Therefore, the observability (in passive or active control)
is very limited in real-time. The observabilty is related to the ability of the
set of sensors and sources of information to estimate the state of the system.
The limitation is due to the amount of information (I2V or V2V) that is re-
quired to be processed to obtain an optimal control solution. On the other
side, even if the optimal actuations provided with a good estimation of the
system state could be calculated, those actuations arrive to the powertrain
through the driver whose controllability is questionable (at least in the case
of being a human being). In any case, due to the high impact of the vehicle
speed pro�le on its performance in terms of fuel consumption and emissions,
this second veritcal is related to Advanced Driving Assistance System (ADAS)
which has three major sub-domains: the vehicle safety, the e�ciency and the
driving comfort. As this thesis is focused on the development of methods for
improving the vehicle e�ciency in real driving conditions, only the e�ciency
sub-domain is investigated. Specially, two applications are developed � the
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�rst application is regarding the speed optimisation of a vehicle in the urban
scenario with the information of the tra�c light phasing. The objective is to
assess the impact of optimisation on the fuel consumption and NOx emissions
with the tra�c light information. The second application is a speed advisory
in real driving mission for improved fuel economy and travel time.

Other than designing the above control applications for real driving sce-
nario, the thesis also present the �ndings of an assessment regarding the NOx

emission dispersion due to the driving dynamics within the Real Driving Emis-
sion (RDE) regulation (EU6D) limits. The following section describes the
thesis organisation with brie�ng about the contents.

1.4 Thesis Organisation

This thesis has ten chapters (divided into sections and subsections) which are
organised in �ve parts. The �rst part is about the introduction and contains
two chapters: The chapter 1 introduced the background of the sustainable
transportation strategy adopted by the government in recent time with an
emphasis on the real driving emissions. The control role for automotive power-
train management was presented with focus on the requirement of new control
methods to deal with the latest emission regulation. Finally, a general outline
of the problem is described with a clear de�nition of the thesis objective. The
chapter 2 is focused on analysing the current SOA advances in the control of
automotive systems with emphases on SOA of the applications developed in
this work. The �rst section is about the advancement of the diesel engine con-
trol methods in real driving emission perspective. The second section is about
the energy management of the hybrid electric vehicles in recent years. Finally,
the work available in literature related to the vehicle speed optimisation with
the objective of e�ciency improvement are presented within a framework of
advanced driving assistance system.

The following part is about the theoretical tools developed in the thesis
and it contains 3 chapters: The chapter 3 is regarding the vehicle model used
in this work. These models were used at several instances in the development
of this thesis. The vehicle dynamics are addressed with a longitudinal model.
Gear-box, ICE, electric motor, power-coupling device and battery models are
described in di�erent sections. The chapter 4 introduces optimisation tools
with their mathematical formulations and supported by suitable examples.
The �rst section elaborates the dynamic programming as a tool for �nding
a global optimal solution. The second section is regarding the Pontryagins
Minimum Principle and its extension to the Equivalent Consumption Minimi-
sation Strategy. The chapter 5 introduces a tool developed for driving cycle
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prediction in real world conditions. The tool is �rst described in its mathe-
matical form and then, the method of prediction is described with the help of
a simple example.

Then, there is a part describing the experimental setups being used in
the development of the applications. This part has chapter 6 which present
descriptive layout of the relevant engine/vehicle components and instrumen-
tations. The speci�cation of the engine/vehicle are also tabulated. The four
test setups are marked in alphabetical order from A to D and are refered
during the description of the application in the following parts.

The fourth part is about the applications developed during this work and
has three chapters: The chapter 7 present the three design applications under
the vertical of powertrain optimisation as discussed previously in Table 1.1.
Each application is described using a standard format that covers �ve top-
ics: Beginning with the application speci�c introduction and followed by the
method description, case studies used for their validation, results and sum-
mary/conclusions. The chapter 8 present two design applications under the
vertical of vehicle speed optimisation (refer Table 1.1). A similar structure as
in chapter 7 is used to describe the developed methods and important �ndings.
Finally, chapter 9 present an assessment of the impact of driving dynamics on
real driving NOx emissions. Presenting the summary of experimental results
and the conclusions that can be derived from the study.

Finally, the last part is about the overall conclusions and the outlook of this
thesis described in chapter 10. In this chapter the summary of the research
and future scope of the work is presented.
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In conventional vehicles, �ve layers of intelligent vehicle control can be
identi�ed as presented in Figure 2.1:

• Component Control: This includes electronic hardware components such
as sensors, actuators and Electronic Control Unit (ECU)s.

• Drivetrain Unit Control (DUC): They are the controllable vehicle driv-
etrain units, for example the engine, motor, transmission, suspension,
brake and the steering system.

• Powertrain Control: This is a overall control of the drivetrain units on
a vehicle level in�uencing the whole vehicle motion.

• Vehicle Control: At this level, direct V2V communications and direct
V2I communications are controlled such that driving is safe and eco-
nomical.
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Figure 2.1: The �ve layers of vehicle control

• Fleet Control: This layer controls the entire vehicle �ow. Based on the
current location, the vehicle �eets are controlled for safe and e�cient
transportation.

This thesis addresses three levels of the vehicle control: DUC, Powertrain
Control and the Vehicle Control. The �rst section in this chapter present
the SOA in the DUC focusing on the engine controls, the second section
is regarding the SOA in Powertrain control of the HEV. Powertrain control
is usually referred to as the combined control unit for the engine and the
transmission system where, the power demanded by the driver at the wheel is
generally provided by one to two power sources (ICE, battery, fuel cell). The
last chapter is regarding the SOA in vehicle control.

2.1 Drivetrain Unit Control - Internal Combus-

tion Engine

The automatic control of the engine, may be dated back to 1924 with the in-
vention of carburettors [Ritter & Tillotson 1924] for mixing air with the fuel to
supply for combustion. In the early 80's the rising-rate fuel pressure regulators
were introduced by [Sugaya 1978] which exponentially increased fuel pressure
depending on the boost pressure. During the same period the turbocharging
system also introduced the control complexity in the air management system.
After the introduction of the after-treatment devices [Stanglmaier et al. 2002],
the stand-alone ECUs were required to control the ICE in a more powerful
and a complex manner. The latest engine control systems allow an optimal
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coordination of fuel-injection, turbocharging, EGR, Exhaust After-Treatment
(EAT) in stationary and transient conditions. Generally, the main objectives
of the engine control can be summarized as:

• The torque demanded by the driver through acceleration pedal must be
met resulting in good drivability.

• The engine must operate at high thermal e�ciencies resulting in low
fuel consumption while emissions must be within the regulatory limits.

• The system must function in a safe operating region derived from the
individual limits (such as mechanical) of all the elements.

With many mutually dependent subsystems, the engine control is a very
complex problem and the control theory plays an important role in enabling its
optimisation. SOA engine optimisation method is usually based on feedback
and feed-forward controllers. Fixed look-up tables generate the set-points for
feed-forward controller. The look-up tables also referred in the literature as
the maps are obtained using the calibration process as shown by the authors
in [Isermann 2014] with a goal of minimising fuel consumption while ful�lling
the regulatory and customer constraints regarding the emissions and driving
comfort. The SOA engine calibration process is described in the following
subsection.

2.1.1 Engine Calibration

The engine calibration is a process of feeding the engine ECU with a set of
information that de�ne the actions of the actuators during its operation. The
goal of engine calibration process is to obtain optimal and drivable actuation
maps. The SOA engine calibration begins with identifying the set of operating
points (engine speed and engine torque) which are representative of the engine
operation zone (largely dependent on the vehicle application). During the
engine calibration process the actuator settings are identi�ed which, optimise
the engine e�ciency at the identi�ed operating points while, simultaneously
limiting the emission and other requirements on a pre-de�ned driving cycle.
The control structure of the modern diesel engines consists of feed-forward and
feedback controllers. The article by Castagne et al. [Castagné et al. 2008] gives
an overview of several calibration methods. The authors explain traditional
local approaches, characterised by a phase of smoothing after local optimal
settings are found, as well as global approaches, which directly include engine
speed and load parameters in the model.
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Figure 2.2: State-of-the-art Engine Calibration Methods.

As presented in Figure 2.2, the calibration is either based on the experi-
mental or the model-based approach. References to various literature is pre-
sented by the authors in [Kampelmühler et al. 1993], [Rao et al. 1979],[Schöggl
et al. 2002].

Experiment-based calibration: In the experiment based approach, the
optimisation problem may be solved using the Lagrange multipliers where,
the cost of the optimisation is the fuel consumption over a prede�ned driving
cycle and each constraint is attached with a Lagrange multiplier. Thereafter,
following procedure is required:

• All the Lagrange multipliers are set to zero to obtain the fuel optimal
solution.
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• If all the constraints are ful�lled, the actuators settings recorded as a
function of the operating point and used as feed-forward maps in the
calibration

• If any of the constraint is not ful�lled, the corresponding multiplier is
tuned until the solution is reached.

The experiment based calibration method require calibration experts and even
then does not guarantee an optimal solution. With the advent of powerful
computational tools such as MBC tool by MATLAB, the modern calibra-
tion process includes model-based phases in addition to the experiment-based
phases.

Model-based calibration: To reduce the complexity arising due to the
high number of control inputs and mutually contradicting objectives several
researchers have explored model-based calibration approach (a combination
of Control Oriented Model (COM)s and optimisation techniques). In recent
time, the model based approach is gaining ever more popularity due to the
availability of high computational power. These methods are capable of cali-
brating the engine in an online [Tan et al. 2017, Bachler et al. 2003, Asprion
et al. 2014] or an o�ine [Hiroyasu et al. 2002, Luján et al. 2018, Alonso
et al. 2007] setting. Many of the commercially available calibration tools
[Sampson 2009] are purely designed for model-based o�ine optimisation and
do not have a connection to the engine test bench. The AVL CAMEO 4
consists of a test bed and o�ce version with an additional toolbox called as
iPROCEDURE ADAPTIVE DOE and is capable of performing online opti-
misation. The BMW also has its own tool MBMINIMIZE tool to perform
online calibration [Sung et al. 2007] among others.

The process of model-based engine calibration has been broadly divided
into three steps by the authors in [Langouët et al. 2011, Park et al. 2017]. The
�rst step is to select steady-state operating points which are representative of
the engine operation. Then, a global engine model is developed and validated
using measurement data from steady-state experiments. Finally, optimisation
and smoothing are carried out for a representative driving cycle, with the goal
of minimizing fuel consumption, while meeting constraints on pollutant emis-
sion and ensuring good drivability. The constraint over pollutant emissions
such as NOx, Particulate Matter (PM), CO and HC are well de�ned by the
government agencies as presented in the Figure 2.3. The EU has enforced
the type-approval process based on the representative cycles like NEDC and
more recently WLTC. The other constraint is regarding the drivability and
is often de�ned only qualitatively. Assis et al. [Assis et al. 2003] de�ne driv-
ability as the capability of the engine to deliver the torque requested by the
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driver in a way which is pleasant to the driver. From a vehicle perspective, the
driver subjectively provides feedback regarding drivability during the vehicle
development phase. Pedal tip-in and tip-out are the typical drivability testing
scenarios. The authors show that, even though the torque produced by the
engine is desired to be equal to that demanded by the driver, it may result
in undesirable behaviour due to powertrain excitation's during large torque
steps. The authors propose a rail pressure control strategy to dampen the im-
pact of sudden jumps in the engine torque. Nessler et al. [Nessler et al. 2006]
de�ne drivability as the transition felt by the driver between engine speed and
load points during real vehicle driving, which means that a constant power
supply is necessary during acceleration phases while avoiding sudden reduc-
tion of torque in order to have a good drivability. The authors propose to
reduce the Gaussian curvature of the optimal calibration maps in order to
obtain smoother maps. In the articles by Nishio et al. [Nishio et al. 2018]
and Niedernolte et al. [Niedernolte et al. 2006], a constraint in the step size
for each parameter is applied to generate drivable calibration maps. However,
some loss of optimality has been shown by the authors in terms of engine per-
formance due to the manual elimination of the peaks in the map. This method
requires all other parameters to be adjusted consistently in order to achieve
the target torque. However, no relationship has been shown between map
smoothing on the torque reference following capability and the engine perfor-
mance. From an engine perspective, other than calibration map smoothing,
some transient compensation strategies are also applied in order to obtain
smooth transients, which in fact is another method of improving drivability.
Adaptation of exhaust-gas recirculation (EGR) and fuel injection has an im-
pact on transient emissions and drivability, as shown in the article by Zentner
et al.[Zentner et al. 2013]. The authors propose an EGR and injection limiter
to reduce NOx emissions and to improve drivability and the drivability was
characterised by the transient response of the engine during load steps.

The model based technique is fundamentally based on a control oriented
model and an optimisation method (as described in the following paragraphs)
for performing the engine calibration (online or o�ine).

Control Oriented Model: The control-oriented models with reasonable
precision but low computational cost are ideal for testing the complex control
strategies on the engine system. These models are either based on the physical
equations and experiments necessary to identify some key parameters, or they
are based on the experimental data. The control oriented physical modelling
in the ICE is classi�ed by the authors in [Guzzella & Onder 2010] as Mean
Value Modelling (MVM) and Discrete Event Modelling (DEM). The MVM
approach neglects the discrete cycles of the engine and assume that all pro-
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Figure 2.3: Emission constraints in di�erent world region, The �gure is ex-
tracted from the report of Continental automotive [con 2019]
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cesses and e�ects are spread out over the engine cycle. Whereas, in the DEM
approach the reciprocating behaviour of the engine is also modelled. There
is a lot of literature available which describe the methods and their imple-
mentation in the control perspective [Jung 2003, Baldi et al. 2015, Pinamonti
et al. 2017, Guardiola et al. 2012, Guardiola et al. 2014, Jiang et al. 2009, Mar-
tin et al. 2018, Torregrosa et al. 2011, Payri et al. 2005].

The empirical models use the experimental data from an engine of certain
speci�cation where the interesting control actuators are varied as much as
possible within their boundary conditions. The desired model output variables
are stored as a function of the control actions. Such models are data driven
since the predicted outputs are based on simple functions of the measured
data. There are several data driven models described in the literature, where
very popular are based on the Neural network [Atkinson et al. 2008], Gaussian
process [Berger et al. 2011], global regression [Grahn et al. 2012], etc.

Optimisation Methods: The multi-objective optimisation for online or
o�ine calibration is classi�ed in two categories by the authors in [Cavaz-
zuti 2013]: The deterministic and stochastic optimisation. The deterministic
algorithms are commonly based on the computation of the gradient and in
some cases also on the hessian of the objective function. The determinis-
tic optimisation approach is further subdivided into constrained and uncon-
strained optimisation methods. The constrained optimisation methods have
been widely used in the literature for Diesel engine calibration where, the
very popular are Lagrangian method [Hochschwarzer et al. 1992], Sequential
quadratic programming [Hafner & Isermann 2003], Non-linear programming
[Rao et al. 1979]. On the other hand the Stochastic optimisation methods
are based on randomness with slower convergence as compared to the de-
terministic algorithms. In the literature, stochastic methods are found in
the diesel engine calibration as particle swarm optimisation algorithm [Zhang
et al. 2018], genetic algorithm [Millo et al. 2018], evolutionary alogrithms [Ma
et al. 2015] etc. In the thesis [Schmied 2004], the author proposed a new
method called Multistoch which is based on designing dynamic experiments
using constrained functional quanti�cation.

As discussed, the existing engine control is based on the �xed calibration
maps which are optimal for a driving cycle known in advance. With new
regulations the vehicle emissions should be constrained in the real driving
conditions. The following section is regarding the SOA of engine control in
real-driving perspective.
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2.1.2 Engine Control in real driving perspective

Despite a substantial e�ort during the last decades in order to reduce the
fuel consumption and emissions in light duty vehicles by means of improved
powertrain design and controls [Payri et al. 2015], noticeable discrepancies are
still observed between declared and real driving consumption and pollutant
�gures [Pelkmans & Debal 2006, Weiss et al. 2011]. One of the main reasons
for such a deviation is that the driving cycles considered by regulations only
represent to some extent the set of conditions that a vehicle may face during
their entire life. To make-up for such a limitation, the current regulations have
introduced RDE testing procedures as a method to reduce the gap between
declared performance and that perceived by users. In any case, those facts
point out the impact that driving conditions, including tra�c but also driving
style, have on fuel-consumption and emissions. To this aim, the traditional
control scheme based on �xed calibration can be upgraded by including some
degree adaptation introducing the following three features to address the issue
of real-driving uncertainty:

• Vehicle speed prediction model: The prediction model can be based on
the available information about vehicle speed on a given route by includ-
ing information from a database of real-world driving and to generate
the driving cycle using a stochastic process. SOA for construction of
synthetic driving cycles is to randomly append driving segments, where
a segment is a driving sequence between two stops as demonstrated by
Michel in [Michel 1996]. An issue with such a method as mentioned by
Jie and Debbie in [Jie & Debbie N 2002], is that it gives no consider-
ation for di�erentiation in modal events (e.g. cruise, idle, acceleration
and deceleration) and also there is no way to set the length of the cycle.
In [Jie & Debbie N 2002], Jie and Debbie proposes to use a stochastic
process for binning of data until certain statistical criteria are met. The
bins are based on which modal event they belong to and are extracted
from the measured driving cycles. However, due to the size of these
snippets, it is still di�cult to achieve the desired driving distance and
at the same time obtain driving cycles that are representative of real
world. Another way would be to generate single velocity and acceler-
ation states at any instant, instead of the entire bin. One option is to
generate driving cycles by using Markov chains, as described in [TK &
ZS 2011]. This includes extracting information from a database of real-
world tra�c and then analysing the data to generate driving cycles using
a stochastic process. In the article by Gong et. al [Gong et al. 2011],
the Markov chain approach is shown to be the most popular method for
generating representative driving cycles.
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In the article by Francois et. al [François 2017], a considerable disper-
sion has been reported in the driving dynamics of average drivers and
vehicles. In the article [Josh & Vicente 2016] by Josh et. al it has
been shown that the driving conditions (including freezing or hot am-
bient temperatures, driving dynamics, driving at high speeds, driving
at higher altitude and diesel particulate �lter regeneration events) not
covered by the RDE test are to have a relatively high contribution to
overall NOx emissions. As a matter of fact, driver monitoring and driver
style correction can improve fuel economy. According to Rajan et. al
in [Rajan et al. 2012], driver style and driving events like city and high-
way driving both a�ects vehicle energy demand. Hence, both have to
be considered in developing a vehicle. A lot of work is focused towards
improving driver style by providing driver assist both in conventional
vehicles as shown by the Guenter et. al in [Günter Reichart et al. 1998]
and for HEVs as shown by the authors in [Fazal et al. 2010].

• Vehicle model: For estimating the engine performance in real-time a
simpli�ed vehicle model is required. Although, some works have applied
Optimal Control to vehicle powertrains without the so called quasi-static
engine simpli�cations [Asprion et al. 2014, Luján et al. 2018, Maroteaux
& Saad 2015], very simplistic 0D models as followed by the authors in
[Ozatay et al. 2014b, Ozatay et al. 2014c, Sciarretta et al. 2015a]. In the
article by Yang et al. [Zhijia et al. 2013] should be applied for online
purpose.

• A supervisory controller is also required to control the engine for min-
imised fuel consumption with constrained emissions. Optimal control
theory has been widely used in literature as consolidated by the authors
in [Jonas et al. 2014] to address complex control problem. However,
application of these methods in engine management system is still a
big challenge due to their computational cost. Some other methods
have been focused on lower level engine control for Spark-Ignition en-
gine. Extremum seeking method has been widely used in [Hellström
et al. 2013, Corti et al. 2013, Popovic et al. 2006], most of the work
is related to online optimal calibration but does not include real driv-
ing emission constraint. The authors in [Andreas et al. 2010], present
a theoretical basis and algorithmic implementation for allowing the en-
gine to learn the optimal actuator settings in real-time. Even though
short transients have been presented for online optimisation, the ap-
plicability of this method in real driving condition still remains an un-
solved issue. Other methods, like Equivalent Consumption Minimisa-
tion Strategy (ECMS) and Model Predictive Control (MPC) as in [Petri
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et al. 2018, Nishio & Shen 2019], seem to be more promising in real-time
engine control. Stephan et. al [Stephan et al. 2014] proposed an ECMS
method to provide a solution for online optimal control of Diesel en-
gine with constraint in NOx emission. The authors assume a constant
emission reference target which leads unrealistic emission in real-world
driving. In the article by Gokul et.al [Gokul et al. 2019], MPC is formu-
lated to maximise the fuel e�ciency while tracking boost pressure and
exhaust gas recirculation rate references, in the face of uncertainties, ad-
hering to the input, safety constraints and limits on emissions averaged
over some �nite time period. Authors in [Guardiola et al. 2016], present
a model based approach to adapt the engine calibration depending on
the driver behaviour and the target pollutant emissions: they consider
a �xed probability matrix for expected engine operating points, which
does not represent a real world scenario.

2.2 Powertrain Control - Hybrid Electric Vehi-

cle (HEV)

With two energy sources the HEVs present a system with higher degree of
freedom with improved possibilities of reducing the fuel consumption and the
emissions than traditional powertrains exclusively based on ICEs. This po-
tential can be realised through optimisation in any of the three HEV system
levels : the powertrain topology (series HEV, Parallel Hybrid Electric Vehi-
cle (pHEV), series-parallel HEV), the technology and sizing of the compo-
nents and the EMS. Extensive literature is explored by the authors in [Tran
et al. 2020] and [Bradley & Frank 2009] regarding the topology of HEVs.
However, this section is focused on describing the various types of EMS in
the literature for HEVs. In contrast to the conventional vehicle, in HEVs,
the power demand by the driver can be ful�lled by combining the powers
from an ICE and EM. The number of possible combinations depends on the
powertrain topology. For instance, in pHEV con�guration the power can be
delivered by the ICE and EM exclusively or in a combination, the battery can
be also recharged using the regenerative braking system. The main objective
of the EMS in a HEV is to minimise the fuel consumption of the vehicle while
ful�lling the energy demand of the driver and restraining the battery SoC
within a certain range. The EMS must also ensure to operate the system to
ful�l the constraints regarding ICE, EM and battery.

In general, the pHEVs operating modes are classi�ed by the author in
[Markel 2006] as Charge Depleting (CD), Charge Sustaining (CS). In CD,
the SoC may �uctuate but on-average decreases while driving. However, in
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CS mode the SoC is maintained at a certain level. The EMS for pHEVs are
designed to ful�l the conditions of desired operating mode and are broadly
classi�ed by the authors in [Tran et al. 2020] as : Heuristic, Optimisation-
based and learning-based.

2.2.1 Heuristic Supervisory Controller

The early control strategy for the HEVs was based on heuristic consider-
ations which results in Boolean rules [Guzzella & Sciarretta 2005, Moura
et al. 2011, Gong et al. 2008, Peng et al. 2015]. These methods require ex-
haustive experiments and experience to set up a rule based control system.
According to the authors in [Guzzella & Sciarretta 2005], there are two guid-
ing principles of the heuristic supervisory controller in hybrid vehicles: The
�rst principle is to use the engine only if it can run at high e�ciency, while in
the conditions where the engine e�ciency can not be high the electric mode
should be preferred. The engine is used during the warm-ups to activate the
catalyst. In [Peng et al. 2017], the authors propose a method to calibrate the
heuristic control strategy with the global optimisation result. The dynamic
programming is applied to obtain the optimal powertrain energy management
strategy for a series-parallel HEV over a driving cycle and the calibration is
built based on the optimisation results. The second principle is that the bat-
tery SoC must be observed and regulated in such a way that the SoC must
remain within a certain prede�ned limit. The main advantage of these meth-
ods is that they are robust, intuitive and made to directly translate control
speci�cations. The rule-based controllers require experimental database and
the behaviour of heuristic controller strongly depends upon the driving condi-
tions. If the vehicle operates far from the conditions for which the controller
was calibrated, the performance deteriorates [Hofman et al. 2006]. The opti-
mal supervisory controllers aim at eliminating the disadvantages of the rule
based controls by introducing a well-de�ned mathematical approach for opti-
misation.

2.2.2 Optimal Supervisory controller

In the optimisation based methods, the performance index J is either simply
the mass of fuel or a combination of other performance indexes based over
a mission of duration tf . The other performance indexes may include the
emission rates of a regulated pollutant, drivability of the vehicle in terms
of acceleration and jerk-free vehicle operation, frequency of mode switches,
battery life, etc... depending on the vehicle application. In Equation 2.1, a
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simpli�ed cost J is de�ned for a performance index L.

J =

∫ tf

0

L(ω(t), u(t), x(t)) dt (2.1)

ω(t) is the disturbance, in the case at hand the main disturbance is the driving
cycle that has to be followed, u(t) are the control signals and x(t) are the state
variables related to the system dynamics. For studying the energy manage-
ment strategy of the HEVs, the models are usually designed using quasi-static
approach where most of the mechanical, electrical and thermal dynamics of
the subsystems are eliminated. However, there are some states which are
included such as the battery SoC dynamics, temperature dynamics of the
after-treatment devices ([Kum et al. 2013]), battery ageing etc. The most
common is the battery SoC which is not only required to be constrained in-
stantaneously but also the terminal SoC(tf ) must be close to a pre-determined
value. This value is dependent on the type of HEV considered and its oper-
ating mode such as charge depleting, charge sustaining etc. The constraints
on these state variables are handled using the soft (penalising the deviation
from the desired level) or a hard integral constraint (must reach the desired
SoC level). The hard constraint is feasible only if the driving cycle is perfectly
known in advance. However, the soft constraint can be applied in the online
optimisation. Other than the integral constraints on the battery energy con-
sumption there are local constraints that are supposed to be handled by the
optimal controller. Such as, the mechanical limits of the ICE, EM, charg-
ing and discharging rates, torque response, etc. The Optimal Control (OC)
methods are either solved o�ine or online. In the o�ine method optimisation
problem is solved on a desktop without any link to the experimental setup
and therefore real time calculations are not required. However, in the online
methods optimisation problem is solved on a real time control platform with
a link to the experimental setup. The classical methods used in the o�ine
approach are Dynamic Programming (DP) [Gong et al. 2007], Pontryagin's
Minimisation Principle [Kim et al. 2014], and meta-heuristic search meth-
ods i.e. the Genetic Algorithm, Particle Swarm Optimisation and Simulated
Annealing. The online methods are Equivalent Consumption Minimisation
Strategy (ECMS originally developed by [Paganelli et al. 2000]) and Deter-
ministic or Stochastic Model Predictive Control [Johannesson et al. 2007].

O�ine Methods An o�ine Optimal Control (OC) strategy is a non-causal
since it relies on future information. It requires a priori knowledge of the
driving cycle and therefore they are often used to obtain a standard optimal
solution for comparing the results obtained with the online methods. One
of the very popular method to solve the non-causal optimisation is the DP
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[Bryson & Ho 2018]. In the DP, computation burden is directly dependent on
the number of states and therefore simpli�ed models can be used to solve the
optimsation problem. The DP requires to grid the states and time variables.
It uses the performance index in Equation 2.1 with an extension to any point
in the time-state space by de�ning it as a cost-to-go function of time and
the state. In [Vinot et al. 2007, Scordia et al. 2005, Debert et al. 2012],
authors have shown the application of the DP in optimisation of EMS of
HEV. As mentioned, the computation burden of the DP has a drawback in
the implementation of complex problems, several improved algorithms [Yang
et al. 2019, Lee et al. 2020, Li & Gorges 2019] have been developed.

Other optimisation method that permits a reduction of the computation
e�ort is the PMP which, minimises the following Hamiltonian (H) function at
each time step.

u∗(t) = argmin
v
{H(t, x(t), v, µ(t))} (2.2)

H(t, x, v, µ) = L(ω(t), u) + µ.f(ω(t), u, x) (2.3)

where t is a continuous variable, µ(t) is the co-state which is described by the
Euler-Lagrange equation as:

µ̇(t) = − ∂

∂x
H (2.4)

the function f(.) depends on the SoC, which is dependent on the open-circuit
voltage and internal resistance of the battery. However, this dependency can
be neglected in the case of electric hybrid systems where only large deviation
of the SoC can cause substantial variations of the internal battery parame-
ters. Consequently, the co-state is assumed to be constant along an optimal
trajectory. Therefore, the problem reduces to �nding a constant value of the
co-state (µo) for a given vehicle mission. The relationship between the µo
and SoC(tf ) is monotonous and µo is usually determined using iterations by
correcting the previous estimation and the di�erence between the target SoC
and actual SoC in each iteration. In the case with constant µ, a new meaning
is acquired by the Hamiltonian function. Since the battery open-circuit volt-
age is constant under this assumption, both terms on the right-hand side of
Equation 2.4 can be reduced to power terms:

PH(t, u(t)) = Pf (ω(t), u(t)) + µs.Pe(ω(t), u(t)) (2.5)
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In this equation, Pf (ω(t), u(t)) is the power of the fuel and Pe(ω(t), u(t)) is
the battery electro-chemical power. The dimensionless scaling of the co-state
is termed as equivalence factor µs and is de�ned as:

µs = −µo.
HLHV

UOC .Qo

(2.6)

The formulation in Equation 2.4 is called the Pontryagin's Minimum Prin-
ciple and has been explored in the literature [Hou et al. 2014, Buie et al. 2004].
This method requires a priori knowledge of the driving cycle which is not the
case in real driving missions. The workaround to this drawback are the causal
methods represented by the equation in and are called the ECMS which are
described in the following section.

Causal Methods In contrast to the o�ine methods, the online methods
must be causal as they should not require a priori knowlegde of the driving
cycle and resulting in suboptimal (hopefully near optimal) solutions. The on-
line methods are real-time implementable with a limited computation time and
memory. Three categories were identi�ed by the authors in [Zhang et al. 2020]
namely, instantaneous optimization-based EMSs (ioEMS), predictive EMSs
(pEMS) and learning based EMSs (lEMS).

In the ioEMSs the power split is optimised by minimizing the instanta-
neous cost (fuel consumption and other performances) at each instant. In re-
cent times ECMS and Adaptive Equivalent Consumption Minimisation Strat-
egy (A-ECMS) are explored by many researchers. The ECMS shows promising
but slightly sub-optimal results with a challenge of properly determining the
equivalent factor (µs) [Tulpule et al. 2011]. The ECMS combined with the
cycle prediction methods is the realisation of the Pontryagins Minimum Prin-
ciple (PMP) in real time. The co-state in the PMP was estimated o�ine and
was constant for a known driving mission. In contrast, the co-state in the
ECMS is estimated online usually leading to a variable co-state. The uncer-
tainty in the future driving conditions is curbed by correcting the value of
the co-state in real time. The real-time control performance of an ECMS is
heavily related to the equivalent factor. Therefore, a well tuned equivalent
factor is essential to improve the performance of ECMS. The future power
requirement and the current SoC are used to determine the equivalent factor.
To determine a proper value of equivalent factor, A-ECMS is proposed which
refreshes the control parameters according to the current and future power
demand. There are several methods available in the literature regarding the
online estimation of the co-state. The non-causality is addressed in the liter-
ature by taking advantage of the driving information [Payri et al. 2014]. To
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recognise and predict future driving conditions, researchers propose di�erent
prdictive techniques, the authors in [Guardiola et al. 2013, Payri et al. 2012]
use statistic and clustering techniques to classify the driving characteristics
and Markov chain-based method are used to develop driving cycles based on
previously recorded velocity pro�les on a given route. Out of several methods
available in literature Neural Network (NN)and Markov Chain (MC) based
methods are most popular. In the article by the authors in [Xie et al. 2018],
a comparison of the two approaches is shown in terms of prediction accuracy
and computation speed.

The MPC is another option in predictive EMSs for an unknown driving
mission. Compared with other EMSs, MPC is based on the system predic-
tion information to obtain a rolling horizon optimization. The MPC is a
receding horizon control strategy with a predictive scheme using three main
steps. Firstly, over a prediction horizon the optimal inputs are calculated
which minimise the objective function subject to the constraints. Then, from
the calculated optimal inputs, the �rst element is implemented to the phys-
ical plant and �nally, the entire prediction horizon is moved forward. This
process is iterated from the �rst step. The MPCs are formalised in the lit-
erature in several ways to optimize the power split, such as hybrid MPC [Li
& Goerges 2017], distributed MPC [Josevski & Abel 2016], variable horizon
MPC [Cao et al. 2017]. In [Marx & So�ker 2012], the authors propose non-
linear MPC for energy management with an adaptive prediction time horizon.
Another form of MPC is Stochastic Model Predictive Control (SMPC) and
is proposed in [Li et al. 2016]. In this method, the distribution of driver's
future power demand can be obtained and the MPC is adopted to obtain the
optimal power split for a HEV bus commuting on a particular route.

2.3 Advanced Driving Assistance System (ADAS)

The research community has been traditionally more focused on the engine
design including realistic driving conditions [Ortiz-Soto et al. 2012] or even
close loop emissions control [Tschanz et al. 2013] than on the optimisation of
vehicle operating conditions due to the intrinsically complex nature of this
optimisation problem. The important research e�orts have been focused on
the development and integration of engine technologies aimed to improve fuel
e�ciency and emissions of light duty vehicles. Those e�orts have materialised
in important reductions in emissions and fuel consumption according to reg-
ulation cycles, however, their impact on real driving is limited [Pelkmans &
Debal 2006, Weiss et al. 2011]. Amongst other reasons, the vehicle operat-
ing conditions play a major role in global e�ciency and emissions, therefore,
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di�erences between real driving and regulation cycles give rise to the usual
fact that the actual consumption exceeds that from the vehicle speci�cations.
Note the lack of controllability of the system since the driver manipulability is,
at least, arguable, and it is evident that there are other factors a�ecting driv-
ing that are completely out of control (reactions of other drivers, weather,...).
According to the US Environmental Protection Agency (EPA) and Natural
Resources Canada (NRCan), there is up to 35% fuel economy di�erence be-
tween drivers in the same �eet of vehicles. Similar results are reported from
a �eld experiment by Eaton Corporation, which reported 30% fuel economy
di�erence amongst pick-up drivers. The di�erence in fuel consumption, pollu-
tant emissions and trip duration of the vehicles commuting on the same route
is majorly due to two reasons:

• Di�erence in the driver behaviour: On a given road condition (i.e. two
hypothetical vehicles on a route at the same time and position but with
di�erent drivers), the two drivers are likely to act di�erently. The re-
lated line of research is focused on how the driver should behave to min-
imise fuel consumption and emissions. In [Ulleberg & Rundmo 2003],
the authors conclude that the driver personality primarily in�uences
the driving behaviour. The assessment of the impact of di�erent driv-
ing styles on safety is based on the statistical analysis of the behaviour
of several drivers while driving. The literature about the impact of
driving behaviours on safety is available from past four decades [Cram-
ton 1969], [Canale & Malan 2002], [BLOCKEY & HARTLEY 1995].
However, the impact of driving style on fuel consumption and emissions
is a more recent topic and is addressed by the authors in [Ross 1994],
[Tong et al. 2000], [Ping et al. 2019]. An aggressive driver is more
likely to accelerate/decelerate the vehicle faster than an average driver.
Such behaviour when cumulated for a driving mission results in di�er-
ence in fuel consumption and emissions in the order of 30-35% [Verma
et al. 2013]. Several publications address how to monitor the driver
behaviour and promote Eco-Driving. An example of such a tool is pre-
sented by [Vagg et al. 2013] where, they propose to encourage economi-
cal driving behaviour by giving feedback to the driver with a light code
showing his driving aggressiveness (product of velocity and accelera-
tion), since an aggressive driving style will naturally lead to higher fuel
consumption. A similar approach is presented and evaluated in [Larsson
& Ericsson 2009].

• Di�erence in the speed pro�les due to randomness in tra�c situation: A
vehicle on the same route at di�erent times consume di�erent amount of
fuel, emits di�erent amount of pollutant emissions and covers the same
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distance in di�erent time. A vehicle commuting on the same route will
have di�erent velocity pro�les due on the tra�c situation. The tra�c
situation is largely dependent on two factors: Static environmental fac-
tors and dynamics conditions of the tra�c. In static environment there
are lanes, intersection, position and timings of the tra�c light signals.
The dynamic tra�c conditions are largely due to the intensity of the
tra�c and randomness arising due to the real time tra�c situation.

The improvement of computation capabilities, the introduction of Optimal
Control in powertrain management and the increase of cost-e�ective sensors
and information sources (Global Positioning System (GPS), V2V, V2I, ...)
have lead to an intensive research activity in the assisted driving techniques.
The rapid progress in intelligent transportation systems has signi�cantly in-
creased availability of tra�c information that can be integrated to the vehicle
control system for reducing the impact of randomness in driving on fuel con-
sumption, pollutant emissions and travel time.

Traditionally, an Advanced Driving Assistance System (ADAS) tracks and
utilizes information (such as vehicle location, distance of the objects to the
driver, lane detection, etc.) so as to allow a vehicle to drive more safely.
The research on ADAS can be broadly classi�ed into two categories: The
passive assistance systems that act as a feedback advisory to the driver. The
active assistance systems where, driving is automated to some extent such
as adaptive cruise control and vehicle collision avoidance where the driver
is operating exclusively without any dependence to these systems. The new
developments are into using ADAS as a tool for promoting Eco-Driving (ED)
either passively or actively. ED is a way to optimise the velocity pro�le,
with the aim of reducing the fuel consumption [Ozatay et al. 2014b, Ozatay
et al. 2014c, Sciarretta et al. 2015a] in actual driving. The driving advisory
systems provide velocity and acceleration recommendations that take travel
time, fuel consumption and emissions into account using the route and the
tra�c light schedule information. The integration of the route and tra�c
information such as the position of nearby vehicles, timing and positioning of
the tra�c signal at the intersections [Rakha & Kamalanathsharma 2011, Yang
et al. 2020], road grade[Bakibillah et al. 2018], route maps [Minett et al. 2011],
etc. into the cruise control systems to reduce the overall energy consumption
are the popular research topics. A study on freeway-based eco-driving systems
showed fuel savings of the order of 10-20 % when real-time signals were used
[Barth & Boriboonsomsin 2009]. For this reason ED is a hot topic in the
automotive control sector that has been approached during the last decades
with di�erent methods, e.g. in [Li et al. 2011] with MPC, in [Stanger &
del Re 2013] by using look-ahead information or [Naranjo et al. 2003] with
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fuzzy-logic controllers.
Other than ED, Vehicle Platooning is another application of cruise control

which allows vehicle platoons with optimal inter vehicle distances. This highly
increases the roadway capacity, while the energy consumption is reduced due
to the reduction of aerodynamic drags and unnecessary speed �uctuations.
On several occasions, research work has proven the approach in simulations
[Milanes et al. 2014, van Arem et al. 2006, Fernandes & Nunes 2012], rela-
tively few of them have conducted experiments to prove their strategy [Kianfar
et al. 2012, Ploeg et al. 2014, Englund et al. 2016]. In [Tsugawa et al. 2011],
the authors show that Platooning of 10m gap at 80km/h can reduce energy by
about 15% (measurement) by the aerodynamic drag reduction, and CO2 by
2.1% along an expressway (simulation) when the 40 % penetration in heavy
trucks by the roadway capacity increase. In the present thesis, the applica-
tions developed were related to the ED and the following subsection describes
the SOA of cruise control and ED.

2.3.1 Cruise Control and Eco-Driving

The automatic speed control for vehicles was introduced by Wolfe et al. in
[George F Wolfe 1938]. The objective of the invention was to indicate the
driver through a resistance to the movement of the acceleration pedal that a
pre-determined speed of the vehicle has been reached. In 1950, Teetor [Tee-
tor 1950] invented the modern speed control device for resisting the operation
of the accelerator. The �rst car Imperial, that implemented Teetor's system
was in 1958. In 1965, American Motors corporation introduced a an auto-
matic speed control system. Soon in 1968, Radio Corporation of America
introduced the automotive cruise control system. Since then, the automotive
car industry has been developing advanced Cruise Control Systems in order
to improve the performance measured in terms of driving comfort, driving
safety and fuel e�ciency. Modern cruise control is not limited to maintaining
a desired vehicle driving speed, but it also incorporates the communication of
the vehicle with the infrastructure and the other vehicles in order to improve
the degree-of-freedom. All the information is used to improve the performance
and such systems are termed as cooperative adaptive cruise control systems
in the literature. [Li et al. 2011, Bu et al. 2010, Ploeg et al. 2011]. This line of
study is aimed to obtain a vehicle speed pro�le to minimise fuel consumption
on a given route. This is a problem that matches the �eld of OC. In fact, OC
has been applied to the speed pro�le optimization since 1977 in the work of
[Schwarzkopf & Leipnik 1977], who calculated the optimal speed pro�le on a
hill. From then on, and specially during the last decade, several OC techniques
have been applied to the vehicle speed trajectory optimization at di�erent
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scenarios. Some of these approaches are PMP in [Fröberg et al. 2006, Petit
et al. 2011, Sciarretta et al. 2015b], DP in [Hellström et al. 2009, Hellström
et al. 2010b, Ozatay et al. 2014a] and Direct Methods (DM) in [Saboohi &
Farzaneh 2009, Reig 2017]. Due to the complexity of reproducing real driv-
ing conditions, most of them focus on particular driving conditions (highway,
tra�c lights, ...) and address this topic from a modelling perspective. A com-
prehensive review of them can be found in [Sciarretta & Vahidi 2020b]. In
addition, few of the previous studies include the report of the optimal vehicle
speed pro�le to the driver and the assessment of their impact on the fuel con-
sumption. An example of such study is [Ozatay et al. 2014a] where, authors
propose a cloud-based optimization of the vehicle speed pro�le by DP that is
downloaded in the vehicle for a given route.

In this work the ED techniques are explored in line with the research in
[Hooker 1988]. Hooker et. al show, how the vehicle speed pro�le can be
responsible for up to 30% of the fuel consumption. Other studies [Passenberg
et al. 2009] point out that ED can reduce fuel consumption by about 5%
compared to standard driving . OC theory is explored in the literature to
address the problem of �nding the optimal velocity pro�le on several occasions.
The cost involved in such a problem formulation is generally in the form of
minimising a function from intial to �nal time:

Qf =

∫ tf

ti

qf (v(t), a(t)) dt (2.7)

where, qf is the fuelling rate, v(t) is the vehicle velocity, a(t) is the vehicle
acceleration. The goal of the optimisation is to �nd the speed trajectory v(t)

that minimises the cost index in Equation 2.7. In the literature, there are sev-
eral advanced methods like Model Predictive Control [Li et al. 2011, Stanger &
del Re 2013, Bageshwar et al. 2004], Stochastic Dynamic Programming [Weiÿ-
mann et al. 2018, Johannesson et al. 2007], etc to solve the above problem.
Apart from the main objective there are other constraints that are required
to be taken into account while solving the OCP:

• The ego vehicle must not crash with any vehicle and therefore a mini-
mum inter vehicle distance is required to be maintained.

• The ego vehicle must also adhere the tra�c rules i.e. stoping at red
tra�c lights, safe lane change, maximum permissible speed etc.

• The powertrain related limitations must also be taken into account.

• The driving comfort which is acceptable by a human driver must also
be ensured at all time.
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Combining all these essential requirements turns the OCP into a non-linear
optimisation problem within prediction horizon subject to the dynamic and
non-linear constraints.
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The vehicle velocity and acceleration of vehicle motion in the plane can be
calculated by applying Newton's equations by balancing forces and momen-
tum. The main external forces on the vehicle are balanced with the vehicle
inertial forces in the longitudinal, lateral and the vertical axis. However, in-
cluding the lateral vehicle dynamics largely increase the model complexity
with limited e�ect on the vehicle performance in terms of fuel economy and
emissions. As the scope of this thesis is limited to the evaluation of the fuel
consumption and emissions, the lateral forces are not included in the devel-
oped vehicle dynamic model. A straight road was considered and regarded
as a smooth surface with no vibrations from the road generating vertical dis-
placement in the cabin. Usually, there are two main philosophies used to
model the vehicle powertrain: the backward modelling approach (or vehicle
driven or non-causal) and the forward modelling approach (or driver driven
or causal) as shown in Figure 3.1.

In a forward-looking model, in order to follow the desired vehicle speed
trace, the accelerator or brake pedal signals are sent from the driver model
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Figure 3.1: Scheme of longitudinal forces acting on a vehicle.
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to the di�erent powertrain component controllers (throttle for engine, dis-
placement for clutch, gear number for transmission, or mechanical braking
for wheels). The driver model controls the acceleration signal (usually a PI
type controllers) depending upon the error between the desired and the ac-
tual speed pro�le. As components are reactive to the commands as in real
world, advanced component models are implemented, taking into account
transient e�ects (such as engine starting, clutch engagement/disengagement,
etc.). Hence, the developer can design realistic control strategies. By con-
trast, in a backward-looking model, the desired vehicle speed is imposed to
calculate the engine speed and �nally, �nd out the operating conditions of
each component in order to follow the desired cycle speed. Due to this model
organization, only quasi-static models can be used without being able to re-
alise the control dynamics and therefore transient e�ects can not be taken into
account. The backward modelling approach is useful to de�ne trends while
forward looking approach is used for selection of powertrain con�gurations
and control development. Due to inherent time delay in forward approach,
backward approaches are more suitable for solving the optimisation problem.
During the development of this thesis, both the philosophies were used de-
pending on the requirement of the application. This chapter describes the
modelling techniques of the components that were used during the work. It
contains six section- The �rst section describes the longitudinal model of the
vehicle and the following sections are regarding the modelling technique of the
relevant components.

3.1 Longitudinal Vehicle Dynamics

The longitudinal vehicle dynamics model is based on the dynamics of the
vehicle that generate forward motion. Figure 3.2, shows the set of forces
acting on a typical vehicle longitudinal motion on an inclined road.
The non-conservative forces related with friction are represented by aerody-
namic drag (Fa) and rolling resistance (Fr). The aerodynamic forces depend
on the vehicle shape and in�uence the vehicle motion in six degrees of free-
dom. However, for a standard passenger vehicle, aerodynamic resistance has
the major in�uence on the vehicle dynamics. This is in line with the simpli-
�cation required for studying the longitudinal dynamics. The aerodynamic
drag depends on the vehicle's frontal area A, the drag coe�cient Cd and the
vehicle speed (v). There are two causes of the aerodynamic resistance acting
on the vehicle in motion: the �rst is the viscous friction by the surrounding
air on the vehicle surface. On the other hand, the pressure di�erence between
the front and the rear of the vehicle resulting in the separation of the air �ow.
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Figure 3.2: Scheme of longitudinal forces acting on a vehicle.

A detailed analysis of particular e�ects is only possible with speci�c measure-
ments in a wind tunnel. Usually, the vehicle is simpli�ed to be prismatic
body to model the aerodynamic resistance force and Equation 3.1 is used to
calculate the force.

Fa =
1

2
ACdρv

2 (3.1)

The force, that resists the motion of the tire on the road also called the rolling
resistance is calculated by Equation 3.2:

Fr = µmvgcosβ (3.2)

where µ is a friction coe�cient, dependent on the tyre-tarmac contact, and
therefore di�cult to evaluate accurately. The most important in�uencing
quantities are vehicle speed , tire pressure and road surface conditions while
the rolling friction coe�cient may be assumed to be constant. Generally,
the coe�cient is assumed to be in the range of 0.01 to 0.015 for light duty
vehicles. Regarding the rest of parameters, mv is an equivalent vehicle mass
accounting for the vehicle mass but also for the inertia of the powertrain
rotating parts. The inertia of the rotating masses (wheel and transmissions)
of the powertrain can be taken into account in the respective sub-models. g
is the gravity constant and β represents the road grade, that also leads to a
force against the vehicle advance when it climbs (Fg) which expression is:

Fg = mvgsinβ (3.3)

Note that the energy required to overcome Fg when the vehicle is climbing can
be theoretically recovered when going downhill to the initial position. Finally,
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the traction force comes ultimately from the engine torque or from the brakes,
then:

Ft =

{
ηt(ugb)Meng(neng ,upedal)

rwRt(ugb)
if upedal > 0

upedalF̂b otherwise
(3.4)

where Meng is a non-linear function depending on the engine speed (neng) and
pedal (upedal) representing engine torque, in the case at hand a map based on
experimental data. This torque is transferred to the wheels by means of the
transmission, which e�ciency (ηt) and ratio (Rt) depend on the selected gear
(ugb). Particularly, in the current model, both ηt and Rt are a�ne functions of
ugb. The wheel radius necessary to pass from torque to force is represented by
rw. Finally, a simple force balance leads to the following ordinary di�erential
equation:

v̇ =
1

mv

.(Ft(t)− (Fa(t) + Fr(t) + Fg(t))) (3.5)

which is the main equation of the vehicle longitudinal dynamics. The integra-
tion provides the instanteneous vehicle speed making it a forward modelling
approach. While the parameters in Equation 3.1 to Equation 3.4 can be ob-
tained experimentally or estimated from literature, Equation 3.5 allows track-
ing the velocity evolution as a function of an initial state, the driver actuation
(upedal, ugb) and problem perturbations such as the road grade. It must also
be noticed that all the forces do not act at the centre of mass of the vehicle
which, produce moment and a variation on the pitch. However,these moments
are assumed to be cancelled by the reaction to the normal force on the point
of contact between the tires and the road.

When braking, the force applied to the wheels is proportional to a maxi-
mum braking force (F̂b) through variable upedal. For the sake of model simplic-
ity, both throttle and braking pedals (upedal and ub) are modelled with a single
variable (upedal) ranging from -1 to 1. This assumption involves that situations
where both pedals are actuated at the same time cannot be modelled. The
clutch is not modelled, so the potential losses in this element during normal
operation should be included in ηt while slipping during gear change is ne-
glected. In order to reduce the number of actuators of the model, the braking
and throttle actions (ub and upedal) have been lumped in a single actuator (u)
such that:

upedal =

{
u if upedal ≥ 0

0 if upedal < 0
(3.6)

ub =

{
0 if upedal ≥ 0

u if upedal < 0
(3.7)
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In this sense, analysing Equation 3.6 to Equation 3.7 one can observe that
the model has single state (v) and actuator (u) since the gear shift follows
a prede�ned policy depending on the engine speed, and accordingly on the
vehicle speed. In the following section the powertrain models developed during
this thesis are presented.

3.2 Gear Box

In a conventional vehicle, the internal combustion engine is used to meet the
power demanded by the driver. The transmission of power from the engine
to the wheels passes through gearbox and clutch. Assuming zero losses at
the clutch, gearbox is modelled as a discrete set of gear ratios with a �xed
e�ciency. The torque and the angular speed required at the gearbox output
are calculated based on the following equations:

ωW =
v

rW
(3.8)

ω̇W =
v̇

rW
(3.9)

(3.10)

TW =

{
rW .Ft, if v > 0

0, if v = 0

The parameter rW is the wheel radius, TW the torque at the wheel. The wheel
inertia and constant torque loss is neglected. The gearbox is modelled as the
transmission ratios with constant e�ciencies. The speed and torque required
at the gearbox input to satisfy the demanded speed and torque at the wheel
are calculated by

ωg = νg(gb).ωW (3.11)

ω̇g = νg(gb).ω̇W (3.12)

(3.13)

Tg =

{
TW

ηg .νg(gb)
, if TW ≥ 0

TW .ηg
νg(gb)

, if TW < 0

Where ωg is the angular speed input to the gear box, ωW is the angular
speed of the wheels, ω̇g is the angular acceleration input to the gearbox, ω̇W
is the angular acceleration of the wheels, gb is the selected gear number and
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νg(gb) the corresponding transmission ratio. Tg is the torque input to the
gearbox. The ICE torque include inertial terms which is a product of the
angular acceleration and the required torque.

3.3 Internal Combustion Engine

The design of an ICE model is usually driven from the application require-
ments. In the present work, there are two type of applications that are being
studied: the �rst type of applications are regarding the control of an internal
combustion engine for maximum fuel e�ciency and emission reduction in real
driving missions. These applications require an engine model that is capa-
ble of predicting the trends in fuel consumption and emissions responding to
the variations in engine operating points (ωe, Te) and a few engine actuators
(such as uvgt, uegr, usoi etc..). The second kind of applications, obtain an op-
timal speed trajectory of a vehicle on a real driving mission. Wherein the
engine calibration is �xed and does not require access. The only actuator,
controller has an access to is the throttle position upedal and therefore an even
more simplistic engine model is applicable. The two aforementioned engine
model types are described in the following paragraphs:

Type 1 In this type of engine models, the fuel consumption and engine out
emissions are modelled at each operating point using static response models.
The following three steps are carried out to obtain the engine response models.

• At �rst, the steady-state measurements are carried out at the engine
test-bench. The desired control inputs are varied at each operating
point and the desired torque is obtained by controlling the fuel injection
quantity. The feasible range of control inputs is explored at each op-
erating point. Usually Design-of-Experiment (DOE) technique is used
to reduce the number of tests required for the purpose of building the
engine response models. In this thesis a full factorial DOE technique
was used. One of such measurement campaign was conducted for the
operating points shown in Figure 3.3, the black dot represent the points
tested during the campaign and black line is the limiting torque.

• After completing the measurement, point-by-point models (which is also
referred to as steady-state model) are created, and they are interpolated
using appropriate method. These models are capable of predicting the
e�ect of the input variables on the output variables.

• The prediction capability of the model is validated experimentally at
the operating points which were not included during the model creation.
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Figure 3.3: Engine operating points measured during the testing campaign,
the black line is the limiting torque for the engine

The comparison of the predicted values with measured data provides an
insight on the model quality. In Figure 3.4 and Figure 3.5 the black
dots represent the measurement points used for model creation. The
point represented by the cross are the validation point and the surface
is approximated model for fuel consumption and NOx emission as a func-
tion of start-of-injection and burned gas ratio. The model validation is
carried out by simulating the engine model at several steady-state oper-
ating points. The results Root Mean Square Error(RMSE) is presented
in Figure 3.6, which shows 5% and 10% RMSE in fuel consumption and
NOx emission respectively.

Type 2 In the vehicle speed optimisation problems when the engine calibra-
tion is �xed, the fuel and the NOx emissions are modelled as maps depending
on the throttle position. In this sense, in the vehicle model, the engine torque,
the fuel consumption and NOx emissions are calculated by simple interpola-
tion of experimental data as a function of engine speed (neng) and load (upedal).
The corresponding maps shown in Figure 3.7 have been obtained experimen-
tally in the chassis dynamometer. Note that, in line with other works in the
literature [Guzzella & Sciarretta 2005], the engine dynamics are completely
neglected, the main reasons for such a simpli�cation are:

• A detailed engine model including dynamics substantially increases the
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Figure 3.4: Local model of Fuel consumption at 1800 rpm and 200Nm. The
x-axis represents timing of start of injection before the top dead centre in
degrees. On the y axis there is burnt gas ratio, in the z axis there is normalised
rate of fuel injected
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Figure 3.5: Local model of NOx at 1800 rpm and 200Nm.The x-axis represents
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injected
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ṁ

fu
el

(n
or

m
al

ise
d) Identification

Validation
± 5%

0 0.2 0.4
0

0.1

0.2

0.3

0.4
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Figure 3.6: Validation results of the engine steady state model

complexity of optimisation problem with its corresponding increase in
computational time.

• Vehicle dynamics are much slower than the main engine dynamics spe-
cially when e�cient driving is foreseen and transients are minimised.

The model simpli�cation should not impact much the ability to capture
the plant behaviour. The Figure 3.8 shows the correlation between the fuel
consumed in the tested driving cycles, circles represent driving cycles with
arbitrary driving to identify the model and black bullets show the model
validation. Despite the simplicity of the model, the results show a correlation
of R2 = 87% and di�erences in the fuel consumption at the end of the cycle
are below 0.16l/100km for 80% of the driving cycles considered. In particular,
for the validation set (black dots), the maximum error is below 0.15l/100km.

3.4 HEV architecture

A pHEV has been chosen to show the potential of the control strategy while
the method can be adapted to deal with other powertrain types (series, series-
parallel, charge sustaining,...). In this architecture, i.e parallel arrangement
,the vehicle can be driven by the ICE, the Electric Motor (EM), or both simul-
taneously. Thus, there are di�erent solutions to provide the power required
by the driver with di�erent costs and impacts in future operation, which poses
an interesting optimization problem. The battery is charged either by an ex-
ternal power source, by the ICE or by regenerative braking through the EM.
The main characteristics of the vehicle considered in the present thesis are
shown in Table 3.1, while the layout and main energy �ows in the powertrain
are shown in Figure 3.9.
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Figure 3.7: Experimental engine maps for torque (Meng in upper plot), fuel
consumption (Wf in medium plot) and NOx emissions (NOx in lower plot)
used as quasi-steady engine model.

Table 3.1: Description of the main vehicle features

Vehicle mass 2120 kg
Engine power 98 kW
Motor power 24.5 kW
Battery power 59 kW

Battery energy capacity 0.0432 MJ
Number of gears 6
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Figure 3.8: Vehicle model performance. Left: comparison between measured
and modelled fuel consumption during the set of driving cycles tested. Right:
Percentage of cycles with modelling error (εVf ) below certain limit νVf .

The aim of developing HEV model in this thesis is to support the devel-
opment of control algorithm which manages its power �ow. The engine is
modelled as a quasi-static subsystem whose inputs are the desired torque and
engine speed with fuel �ow as the output. The torque generation dynamics
are fast and hence negligible. The energy management is performed at a much
slower rate than the torque control. Accordingly, the engine is also modelled
as quasi-steady maps with limits over the torque. The maps are presented in
Figure 3.10. The �rst plot represents the engine e�ciency map with respect
to the engine speed and the torque and the second plot presents the ICE op-
erating region with minimum and maximum power with respect to the engine
speed.

3.5 Electric Motor

In Figure 3.9, the parallel architecture of the HEV is presented. The power
sources are the battery and the internal combustion engine. They can together
or individually propel the vehicle through the driveline that constitutes a
torque coupler and a gearbox(GB). The energy can be recuperated in the
battery during vehicle deceleration.

The power split device manage the supply of energy to the wheels by
splitting the power demand between the electric motor and the internal com-
bustion engine. The design of power splitter is not in the scope of this thesis
however, the study is focused on how the power is been split. In particular, the
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Figure 3.9: Layout of a parallel HEV

thesis proposes a novel energy management strategy for a pHEV architecture.
The electric motors are assumed to have fast dynamics and it generates the
requested torque while respecting the maximum torque limtis. The implemen-
tation of the electric motor require e�ciency maps along with the limit maps
based on the angular speed. The maps are presented in Figure 3.12. The �rst
plot shows the variation in motor e�ciency with respect to the motor speed
and the torque. The second plot represent the operating zone of the motor
with limits over the motor power with respect to the motor speed.

3.6 Power- coupling device in pHEV

The most critical system design for hybrid vehicle performance is its transmis-
sion system. The objective of the vehicle transmission system is to maintain
power units to provide suitable traction power under various working condi-
tions while operating under high e�ciency. The torque coupling mechanism
as shown in Figure 3.9, is crucial component in the hybrid propulsion system.
This mechanism integrates the input mechanical power from two independent
sources into output mechanical power within its physical constraints. In this
thesis, the system is considered 100% e�cient assuming the same power �ows
in and out of the system. In the particular parallel architecture used in this
thesis and shown in Figure 3.9, the torque demanded can be satis�ed by the
linear superimposition of two input torques as shown below.

Tg = TICE + TEM (3.14)

The angular velocity of each port cannot be independently controlled be-
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Figure 3.10: ICE Model

cause both motor and ICE are coupled to the same axis. Therefore, the
angular velocity constraint can be expressed as:

ωg = ωICE = ωEM (3.15)

3.7 Battery

To simulate the behavior of an HEV, a battery model is required to evaluate
the output voltage considerations to the battery SoC. A battery pack is usually
obtained by connecting several cells in series and therefore a numerical model
is developed considering one single cell. On the similar line, in this thesis,
the battery pack is modelled as single cell following the Thevenin equivalent
circuit of the battery pack presented in Figure 3.12. A simple model is used
to obtain terminal voltage of the battery as follows

Vb = VOC +R.Ib (3.16)

Pb = Vb.Ib (3.17)

Where Vb is the battery voltage, VOC is the battery open circuit voltage.
R is the internal resistance of the battery depending on the SoC and Ib is
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Figure 3.11: Electric motor model. The maximum e�ciency is 0.92 at 2300
rpm and 60Nm.

the battery current. The backward model is solved for battery current as a
function of power used to charge or discharge the battery. This lead to the
following equation:

Ib =
VOC −

√
V 2
OC − 4.R.Pb

2.R
(3.18)

˙SoC = − Ib
Cb

(3.19)

with Cb the battery capacity. Using the manufacturer charge and discharge
charts, it is possible to reconstruct the map of VOC and of internal resistance
R depending on the state of charge and temperature. However, this thesis
simpli�es the model further to consider the temperature constant and conse-
quently to calculate and to represent on a map the as a function of the battery
SoC and the battery current.
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Figure 3.12: Simpli�ed battery Model
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In an optimal control problem, the trajectories of the control variables u of
a dynamic system f are calculated for minising a cost index. The cost index is
quanti�able, such as energy consumption, time, etc. The state of the dynamic
system is driven by the di�erential equation given by:

ẋ = f(x, u, t) (4.1)

where, x represent the state and t is the time dependence.
There are two optimisation techniques that were the basis of the online

control methods explored during the development of this thesis: Dynamic pro-
gramming and Pontryagins Minimum Principle. The intention of this section
is not to describe them in detail, but to provide insight in some ideas that are
used in the thesis.

4.1 Dynamic Programming and its Application

The DP was originally developed by Richard Bellman [Bellman 1970], who
stated that an optimal policy has the property that, whatever the initial state
and initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the �rst decision. This means
that the problem can be broken into sub-problems of lower size which are to
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be optimised separately. Given that a start and �nal state is de�ned com-
bining the optimal solutions of each sub-problem the solution of the overall
problem can be constructed. By using the dynamic programming an optimal
control input is found such that a pre-de�ned cost function is minimised while
handling multiple constraints on the system states and the control inputs. In
DP problems the following discrete-time dynamic system is considered by the
authors in [Guzzella & Sciarretta 2005]:

xk+1 = f(xk, uk, wk), k = 0, 1, ...N − 1. (4.2)

where, xk are the dynamic states, uk are the control inputs and wk are the
disturbances which are discretised in time and value. The control inputs uk is
a function of state xk and wk is known for all k. A control sequence is denoted
by u = {u0, u1, ..., uN−1}, and the cost associated with it on the problem 4.2 is
de�ned by the following equation. Note that the initial condition is assumed
to be x0.

Ju(x0) = gN(xN) +
N−1∑
k=0

gk(xk, uk(xk)) (4.3)

The optimal trajectory u∗ = {u∗0, u∗1, ..., uN−1} is the trajectory that minimizes
Ju. Let us assume that when using u∗ a given state xt is reached at time t.
Now consider the optimization problem with the initial condition xt at time t
and the cost-to-go E from time t to N is de�ned by

E{gN(x0) +
N−1∑
k=t

gk(xk, uk(xk), wk)} (4.4)

Then the truncated policy u∗(xt) = u∗t , u
∗
t+1, u

∗
t+2, u

∗
t+3..., u

∗
N−1 is optimal for

this new problem.

Jk(xk) = min
uk
{gk(xk, uk) + Jk+1(fk(xk, uk))} (4.5)

then, if u∗k = u∗k(xk) minimised the right side of the above equation for each
xk and k, the policy u∗ is optimal.

The above formulation results in an optimal solution however, the com-
plexity of the programming algorithm is exponentially realted to the number
of states and the control inputs. This limits the usage of the algorithm for
lower order problems. During the implementation of DP algorithm the higher
discretization of state and input spaces in a continuous application yield more
accurate solution requiring high computational time. The computational re-
quirement is substantially reduced by using the set implementation of the DP
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Algorithm 1 Calculate Optimal u∗s
for k =N-1 to 1 do

[xk+1G]← F (Xgrid, Ugrid, k, ...)

Jk ← G+ V (xk+1, k + 1)

J(tx, k)← min Jk
u(tx, k)← argmin Jk

algorithm. Where, instead of using the standard for-loops for every state,
every input variable and time the following algorithms are used as follows.

The formulation of DP is presented below using a simple application. A
frictionless ball starts from rest to cover a short distance of 3 meters in a
maximum time of 4 seconds. The objective is to �nd the best speed pro�le
minimising acceleration which is inherently related to the energy needed to
move the ball from the starting to the ending point. The constraints are
regarding the maximum speed vmax and minimum vmin and acceleration limits
umin and umax. Considering speed (v) and distance (l) as system states, their
dynamics are governed by the equation of motion as follows:

l̇ = v

v̇ = u
(4.6)

The cost to go is modeled as J:

J(u) =
T∑
t=0

(1 + |u|) (4.7)

while the control inputs are limited to discrete valeus of u:

u ∈ [−1, 0, 1] m/s2 (4.8)

with some constraints on distance and velocity:

l0 = 0

lend = 3

v0 = 0

vend = 0

lmin ≤ l ≤ lmax

vmin ≤ v ≤ vmax

(4.9)

Where lmin and lmax are 0 and 3 m respectively. vmin and vmax are 0 and 3
m/s respectively.
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To solve this problem using dynamic programming we move systematically
from one side to the other as described in algorithm 1. Suppose that we move
backward from right to left. At the last intersection at 4 s there is no decision
to make. The �rst decision is made at 3 s. At this time the ball should have
covered 2m and must be at 1m/s as shown in �gure 4.1. The optimal cost-to-
go with respect to two states at each time step is presented in the �rst column
plots of �gure 4.2. Clearly, the corresponding optimal control input at 4s is
u = -1 m/s as shown in the second columns plots. Which implies that the
optimal strategy is to decelerate the vehicle to rest. As we move leftwards at
2 s in 4.1, the optimal acceleration presented moving upwards in �gure 4.2 is
0 m/s2 while maintaining constant velocity of 1 m/s. Further left at 1 s, the
optimal acceleration is still 0 while maintaining the speed at 1 m/s. Finally
at 0 s, the vehicle should acclerate at 1 m/s2 to go from 0 to 1 m/s.

0 1 2 3 4
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0 1 2 3 4
0
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2
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1

Figure 4.1: Realisation of the DP algorithm, on x-axis is the time and on
y-axis are the distance, velocity and acceeration.
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Figure 4.2: Realisation of the DP algorithm. The contour represent cost-to-go.
in the �rst column and optimal strategy in the second column

4.2 Pontryagin's minimum Principle, applica-

tion and extension to ECMS

In the previous section the DP is presented as an optimisation tool for solving
the control problems with multiple states and control inputs. DP provides the
optimal global solution while the curse of dimensionality makes it computa-
tionally challenging. For this reason, the PMP is one of the popular method
which is applied to solve the optimal control problem. The PMP is a gen-
eralization of the Euler-Lagrange equations that also include problems with
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constraints on the control inputs. The problem considered for minimisation
is given by

J = φ(x(tf )) +

∫ tf

t0

F (x(t), u(t))dt

subject to : ẋ = f(x, u), x(t0) = x0, and x(tf ) = xf

(4.10)

The Hamiltonian function is de�ned as H(x, u, p), where p is costate that
depends on time.

H = F + pTf (4.11)

For a �xed tf , the J is modi�ed by adding a term that adds up to zero as
ẋ = f(x, u).

J = φ(x(tf )) +

∫ tf

t0

f(x(t), u(t))dt+

∫ tf

t0

p(t)T (f(x, u)− ẋ)dt (4.12)

J = φ(x(tf )) +

∫ tf

t0

(H(x, u, p)− pT ẋ)dt (4.13)

The optimal control strategy u(t) is associated with state trajectory x(t). A
di�erent control strategy v(t) which is not very far from the optimal, if applied,
results in the state trajectory which is close to x(t) and can be represented as

x(t) + δx(t) (4.14)

The change in the state trajectory yields a corresponding change in the mod-
i�ed performance index. We represent this change as δJ :

δJ = φ(x(tf ) + δx(tf ))− φ(x(tf ))+∫ tf

t0

(H(x+ δx, v, p)−H(x, u, p)− pT δẋ)dt
(4.15)

The integral above is calculated by parts resulting in∫ tf

t0

(pT δẋ)dt = p(tf )
T δx(tf )− p(t0)T δx(t0)−

∫ tf

t0

ṗT δxdt (4.16)

note that δx(t0) = 0 because, a change in the control strategy does not change
the initial state. Taking into account the above, the cost function can be
rewritten as

δJ = φ(x(tf ) + δx(tf ))− φ(x(tf ))− p(tf )T δx(tf )+∫ tf

t0

(H(x+ δx, v, p)−H(x, u, p) + ṗT δx)dt
(4.17)
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the term φ(x(tf ) + δx(tf ))− φ(x(tf )) is replaced with its �rst order approxi-
mation while H(x, v, p) is added and subtracted under the integral to obtain.

δJ = (∇xφt=tf − p(tf ))T δx(tf )+∫ tf

t0

(H(x+ δx, v, p)−H(x, v, p) +H(x, v, p)−H(x, u, p) + ṗT δx)dt
(4.18)

The (H(x+ δx, v, p)¯H(x, v, p) is replaced with its �rst order approximation,

δJ = (∇xφt=tf − p(tf ))T δx(tf )+∫ tf

t0

(
∂H

∂x
δx+H(x, v, p)−H(x, u, p) + ṗT δx)dt

(4.19)

If p is the solution to the di�erential equation

∂H

∂x
+ ṗT δx = 0 (4.20)

with the �nal condition

p(tf ) = ∇xφt=tf (4.21)

reduces the deviation in the cost to

δJ =

∫ tf

t0

(H(x, v, p)−H(x, u, p))dt (4.22)

If the u is optimal then (H(x, v, p) − H(x, u, p)) must be greater than zero.
The necessary conditions for u to minimise J subject to the constraints in the
Equation 4.11 are:

ṗ = −(
∂H

∂x
)T (4.23)

where H = H(x, u, p) = F (x, u) + pTf(x, u)

H(x∗, u∗, p∗) = min
u
{H(x, u, p)} (4.24)

The PMP can be used to solve the minimum fuel problem described in 4.7-
4.9. The goal was to derive the state to the origin with minimum cost. The
states in the problem are distance(x1) and velocity(x2) while the dynamics
are governed by:

ẋ1 = x2

ẋ2 = u
(4.25)



60

If we apply u=±1, the system response can be represented by the following
equations:

if u = 1,

x2(t) = t+ c1

x1(t) =
1

2
t2 + c1t+ c2

x1(t) =
1

2
(t+ c1)

2 + c3x1(t) =
1

2
x2(t)

2 + c3

(4.26)

the hamiltonian for the system can be formulated as:

H = 1 + |u|+ [p1 p2][0 1; 0 0][x1;x2] + [0; 1]u

H = 1 + |u|+ p1.x2 + p2.u
(4.27)

the equation of the co-state can be derived as:

ṗ = −Hx
T

ṗ1 = −Hx1

ṗ1 = 0

p1 = cṗ2 = −Hx2

ṗ2 = −p1
p2 = −c1t+ c2

(4.28)

the above equation shows that p2 is linear in time.
To �nd the optimal control, the value of u making 0 the derivative of the

Hamiltonian respect to u should be found:

Hu =
u

|u| + p2 (4.29)

then :

Hu =

{
p2 + 1, if u ≥ 0

p2 − 1, if u < 0

Note that provided the value of p2, Hu is constant, leading to a linear depen-
dence of H with u.

Therefore the control law can be described using the three conditions based
on the sign of H which depends size of p2 .

u(t) =


−um, if 1 < p2(t)

0, if − 1 < p2(t) < 1

um, if p2(t) < −1
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Therefore the control depends on p2(t) - but since it is a linear function
of time, it is only possible to get at most 2 switches. Also, since ẋ2(t) = u,
and since we must stop at tf , then must have that u = ±um at tf . The
problem then reduced to �nding two switches occuring at t1 and t2 while from
t1 to t2 there will be coasting phase with u =0.The possible optimal solutions
based on the control law u(t) are represented in Figure 4.3. Application of the
constraints result in the black line which is consistent with the results from
dynamic programming explained in the previous section.
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Figure 4.3: Realisation of the PMP algorithm, on x-axis is the time and on
y-axis are the possible distance, velocity and acceleration for minimised cost.
The dark black line is the optimal solution meeting the constraints.
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An online energy management strategy that is optimal and can be im-
plemented in real time has been a topic of interest by researchers and the
industry. Optimal control methods guarantee an optimal solution if the driv-
ing cycle is perfectly known in advance. However, perfect knowledge of the
driving cycle is not possible and ECMS allows to �nd a suboptimal solution
with some estimation of the driving conditions. To this end, online calculation
of the co-state is required to deal with the changing driving scenarios. Thus,
any estimation of future information to feed the ECMS control module with
appropriate values of the equivalence factor is required. Usually, driving cycle
prediction techniques are used to forecast the distribution of various future
driving conditions like velocity, acceleration, driver behaviour etc. The fore-
cast is primarily used in the predictive energy management strategies of the
vehicle. On one hand, in the conventional vehicles, the forecast can be used to
optimise the engine control while on the other hand, the energy management
strategy is optimised for the hybrid electric vehicles. In this chapter a popular
method based on MC is described for the purpose of driving cycle prediction.
The �rst section describes the MC principle followed by a section regarding
its application in the cycle prediction.
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5.1 Markov Chain Principle

A collection of random variable (X(r)) is referred to as stochastic process. The
index r is often considered to be time (t) and depending on the application it
is either continuous-time or discrete-time process. The Markov Chain (MC)
is a stochastic process Xt, t = 0, 1, 2, 3, 4... having the property that given
the present state, the future is conditionally independent of the past. The
stochastic process takes on a �nite number of possible values or states. The
representation Xn = i means that the process is in state i at time n. If the
process is in state i, there is a �xed probability Pij that it will be in the state
j at the next time step. The de�ning property of the MCs is

P{Xn+1 = j|Xn = i,Xn−1 = in−1, ..., X1 = i1, X0 = i0} = Pij (5.1)

for all states i0, i1, in−1, i, j and all n ≥ 0. Since probabilities are non-negative
and the process must make a transition into some state, we have

Pij ≥ 0 for i, j ≥ 0 and
∞∑
j=0

Pij = 1, for i = 0, 1, ...
(5.2)

A simple example with a velocity prediction can be used to explain the MCP
better, suppose that a vehicle is driven during some time interval and the
minimum and the maximum speed of the vehicle during this period is 0 and
40 km/h respectively. The vehicle velocity is a state that can be assumed to
be any integer between 0 and 40. In order for this process to be a MC, the
probability that the velocity of vehicle in the next time step is a given value,
lets say 30 km/h depends only on the velocity at current time step. In that
case, the model is MC and the di�erent probabilities are transformed into a
transition matrix. For a MC, P represent the matrix of one-step transition
probabilities Pij, so that

P =


P00 P01 P0j ...

P10 P11 P1j ...

... ... ... ...

Pi0 Pi1 Pij ...


In the below transition matrix, the probability of process in state i to tran-
scend to state j in the next time step is 0.4.In P , we the rows of the matrix are
representing the state the process is currently in, and the columns represent
the state that they are going to. The process either stays in the same state or
moves to other one and therefore the sum of the probabilities along any row
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of P must be equal to 1.

P =


0.2 0.22 0.37 ...

0 0.2 0.35 ...

... ... ... ...

0.1 0.25 0.4 ...



The above probability is a one-step transition probability and it can be further
extended to n-step transition probability P n

ij. P n
ij is the probability that a

process proceeds from the state i to the state j over n additional steps. In a
MC, state j is said to be accessible from state i if P n

ij ≥ 0 for some n ≥ 0. If
two states in a MC can communicate, they are said to be in the same class. If
there are more than one class in a process if is not possible to travel freely from
one class to another as there exist no communication between two classes. The
driving cycle prediction using MC also assumes that the vehicle speed in the
next time step is dependent only upon the velocity at the current time step.
The following section describes the process of synthesizing the driving cycle
and the assumptions required for them to be a MC.

5.2 Implementation of MC principle in Driving

cycle prediction

In the present work, the MCP based driving cycle prediction tool was de-
veloped for its application in building RDE-regulated driving cycles, engine
control in real-driving scenario and in energy management of HEVs on real
driving mission. These applications are described in chapter 7,chapter 8 and
chapter 9 however, the tool is described in this section. The synthesis process
of the driving cycle has three major steps- data collection and post-processing,
de�ning state and obtaining the TPM and �nally decoding the future states.
The description of the synthesis process is presented as a �ow chart in Fig-
ure 5.1.
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Figure 5.1: Illustration of velocity generator in urban phase

• Data Collection and Postprocessing:

The �rst step in the development of driving cycle prediction tool is to
choose a driving mission and a driver to conduct the experimental task.
In this thesis, a route between Valencia and Canals is chosen which com-
prises urban and motorway phases. The experimental data is obtained
by driving the vehicle on the route for several trips while recording the
time, speed and the position of the vehicle. The randomness in the
recorded driving cycles is due to the tra�c conditions and driver be-
haviour on a particular day. However, since all the experiments are
conducted by the same driver, on an average its impact is assumed to
be considerably low. During the tests, a GPS was used and ECU read-
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ings were accessed by means of a Vag-Com communication system to
measure vehicle velocity and engine parameters, mainly speed and esti-
mated torque. The driving cycles obtained from the above experimental
campaign are the input driving cycles in Figure 5.1. The obtained driv-
ing cycles are converted from the time domain to the space domain to
obtain distance dependent TPMs. In order to take into account the
particularities of driving conditions depending on the vehicle position,
e.g. di�erences between urban and highway driving, the obtained veloc-
ity pro�les are divided into several segments, in the case at hand with
1 km length. Following the post processing of the data the TPMs are
constructed.

• Construction of the TPMs:

The short driving cycles obtained for each segment are used to model the
vehicle speed as a Markov process, where the vehicle speed is considered
a random process (V ) satisfying:

P (Vn+1 = vn+1|V1 = v1, V2 = v2, . . . , Vn = vn)

= P (Vn+1 = vn+1|Vn = vn)
(5.3)

where vj represent possible values of V , subindex n is the present time,
n + 1 represents some point in the future and subindex 1, 2, ..., n − 1

points in the past. Equation 5.3 states that given the present state
(Vn = vn) the probability for this random process for the next future
(Vn+1 = vn+1) is independent of the past. In this sense, estimating the
transmission matrix can be done by observing the sequences of states and
the frequency in the transitions between them. For practical reasons,
the data has been discretized in steps of 1 km/h in velocity. Let Ni,j

the number of times the vehicle speed is i in a given time (Vn+1 = i)
provided that was j in the previous instant (Vn = j). The probability
of being in state i given that it was in state j in the previous time can
be estimated as: All the transition probabilities are stored as a TPM
for each segment and are represented as (TPMk), where k represents
the segment have been extracted from the experiemental data. After
the TPMs are constructed, the Cumulative Probabilty Function (CPF)
(F(vt, st, r)) is built by integrating the TPM rows. In particular, the
probabilities are assumed to be equal to the event frequency in each
segment. The �gure below shows the TPM for one segment.
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Figure 5.2: Speed transition probabilities from current speed vi to vi+ in a
representative segment

• Decode the future state:

Once the function F have been built, the vehicle position within the route
is used to choose the corresponding TPM. The current vehicle position
(st) and speed (vt) are used to estimate the driving cycle main param-
eters, consisting on the duration T̂ − t, vehicle speed and acceleration
sequences (v̂t:T̂ and ˆ̇vt:T̂ ) and estimated road slope evolution during the
cycle (γ̂t:T̂ ). Then at every time-step, the next vehicle speed is selected
generating a random number between 0 and 1 (r ∈ [0, 1]) choosing the
vehicle speed whose CPF is equal to this random number r. The inte-
gration of the vehicle speed allows to compute the next vehicle position
in the route, which is used to estimate the road slope and identify the
next TPM to be used. The process is repeated in time until the vehicle
destiny is reached.

Note that the availability of the current vehicle position requires a track-
ing device, e.g. GPS. On the other hand, the estimation of the road pro-
�le needs cartographic information and the speci�cation of the route in
order to compute the road slope by interpolating the estimated position
obtained from integration of v̂t:T̂ .

This step is illustrated with an example in Figure 5.3. For instance
the initial velocity v0 is 17 km/h. The generator randomly generates a
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probability i.e. 0.98 and uses the cumulative probability function CPFi,k
for i=17 km/h and selects accordingly the velocity for next time step
i.e. 19.7 km/h (20 km/h, nearest integer). Then, in the next iteration,
a CPF value is randomly generated (0.85) and similarly it predicts 22
km/h for the next time step. This process continues for tk steps, and the
then switches to a new TPMk which is based on the di�erent segment.

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

CPF @ 17km/h

CPF @ 20km/h

Figure 5.3: Illustration of velocity generator in urban phase
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During the development of a control application for a vehicle or an engine
there are several instances when a real system is required to be tested either
during the design process itself or in the veri�cation and validation stage. The
testing is performed in a controlled environment, which allow experimental re-
producibility and validation over a wide range of conditions by designing the
application speci�c case studies. There are several experimental campaigns
run during this work, each campaign is detailed in the third part of the thesis.
This chapter is focused on describing the testing setups with a brief introduc-
tion about the objective of each application. In speci�c, there are 6 di�erent
applications tested on four experimental setups. The �rst three applications
(A.1, A.2, A.3) were tested on the same diesel engine test setup (Setup � A),
with only slight di�erences. The fourth application (B.1) is tested on a four-
cylinder diesel engine test bench (Setup � B). The experiments related to the
�fth application (C.1) were conducted on a chassis dynamometer (Setup �
C) and the last application (D.1) was tested on a real vehicle (Setup � D)
which was driven between two locations in Spain.
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Stroke x Bore[mm] 84.8 x 75
Displacement[cc] 1498
Compression ratio 16:1
Number of Cyl. Inline 6
Valves per Cyl. 4
Rated Torque 300Nm @ 1750rpm
Emission std. Euro 6

Table 6.1: Engine speci�cation.

6.1 Experimental Setup - A

Application Objective A.1 To develop a control method that adapt the
diesel engine calibration in a real driving mission for minimising the fuel con-
sumption while restricting the NOx emission under a prede�ned limit.

Test setup A.1 The diesel engine with speci�cations tabulated in (Ta-
ble 6.1) was tested at CMT-Motores Termicos facilities whose schematic is
presented in Figure 6.1. The engine is coupled to an asynchronous Horiba
DYNAS 3 dynos which is controlled through the personal computer interface
Horiba STARS. The dyno is able to perform steady-state, dynamic tests and
in particular it is able to emulate the vehicle behaviour to carry out tests
simulating the real driving speed pro�les.

An open engine ECU was sourced from the manufacturer to study various
engine control strategies. The base ECU is used to obtain the feed-forward
calibration maps of the desired output parameters. The ETK port allows
streaming and bypassing the important signals from an eternal ETAS setup.
In the original ECU, the fuel path is controlled through the look-up tables
depending on the engine speed, pedal position and corrections related to the
temperatures, ambient conditions etc.. On the other hand, the air-path is
more complex with the EGR valve and the VGT actuators acting together
to achieve the desired air �ow and the intake manifold pressure. Due to the
coupling of two actuators, only one actuator is usually controlled in the close-
loop. Depending on the engine operating condition, the controller is able to
choose the actuator to be controlled. For instance, at low engine load and
low engine speed condition, the EGR is very crucial for NOx emissions and
therefore the EGR valve is controlled in a close loop. While the VGT is
controlled through feed-forward maps in open loop. On the other hand at
high engine speed and high engine load the VGT is controlled in a close loop
while EGR valve is controlled through a feed-forward map. It should be noted
that all the close-loop control in the base ECU rely upon pre-calibrated PIDs.
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Figure 6.1: Experimental setup-A.1. At the node m1, the start of injection
was bypassed and controlled through dSpace. At m2, the NOx emission and
the exhaust gas concentration is measured.

The design of experiment approach was used to model the engine torque
and ṁNOx emissions as a function of the input parameters. To do that, the
engine torque and ṁNOx emissions were measured while varying the param-
eters such as vgt position xvgt, egr valve position xegr, start of injection θsoi
and fuelling rate ṁfuel. For which, a rapid prototyping system (RPS) was
connected via ECU ETK port allowing for sending and receiving the engine
signals. This by-pass con�guration is created using INTERCRIO and gener-
ated in the dSpace system.
The important measurement nodes for this application are represented by the
red dots in the Figure 6.1. For the concentration's measurement in the test
bench, the Horiba MEXA 7100 DEGR GA is used to measure the concen-
tration of NOx at one point of the exhaust line. This apparatus employs
techniques like the non-dispersive infrared (NDIR) for the NOx measurement.
Regarding the data recording, the use of di�erent systems to record data im-
plies that three �les are obtained for each experiment in this setup i.e. from
dSpace, STARS and ETAS. In order to be able to phase the di�erent �les
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afterwards, the RPS dSpace triggers a square signal, which allows phasing
them in post-processing.

The real-time simulation of the developed controller interfaces with the
engine test bench using actuators and sensors; these actuators and sensors
have their own characteristics which detract from the realism of complete
system response. The vehicle is emulated by a numerical model interacting
with a physical engine system. A similar approach is also applied to validate
the hybrid electric vehicle model in the following application A.2.

Application Objective A.2 To develop an online energy management
strategy for a parallel hybrid electric vehicle on a real driving mission.

Test setup A.2 The application was tested in the same experimental setup
described in A.1 except for the parameters that were bypassed and an ad-
ditional input to the dSpace Microautobox. The need for real-time com-
munication is satis�ed by means of a Controller Area Network (CAN) bus.
The experimental test platform uses CANopen protocol to integrate all the
elements and assure synchronous distribution of reference speed and torque
commands, as well as to read back the actual speed and torque. The torque re-
quired from the diesel engine is calculated using the vehicle backward model in
the Simulink and is translated into the throttle position through a calibration
map. To test a realistic hybrid electric vehicle on this engine testing setup, the
torque sensor system provides the torque feedback signals from the test-bench
back into the dSpace. Inside the dSpace, the reference and feedback torque
signals generate error signals and the excess energy is absorbed by the electric
motor in the vehicle dynamic model where the instantaneous battery state-
of-charge is calculated. The HiL system allows the online assessment of the
developed EMS controller. The total energy consumed in di�erent measure-
ments on a same driving cycle of length 20km produced a standard deviation
of 43.5 kJ . This energy was later used for correcting the total fuel consump-
tion during di�erent experiments on the same driving cycle. The engine speed
and the throttle position are calculated in advance using a vehicle backward
model and are imposed in the Horiba - STARS. The engine speed which is an
output of the real-time simulation on the dSpace must be synchronised with
the engine speed that is an input from the Horiba STAR dyno control. This
synchronisation was achieved manually in the present case by triggerng the
bypassed signal and the driving cycle in STARs at the same moment. The
fuel consumption is not a direct measurement, but rather a calibrated value
within the ECU. The ECU usually contain signals giving an indication of the
amount of fuel being injected into the cylinder. The remaining connection
measurements are similar to the �rst application.
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Application Objective A.3 To study the impact of driving dynamics in
real driving emission test on NOx emissions dispersion.

Test setup A.3 The diesel engine described in applications A.1 and A.2
with speci�cations as in Table 6.1 was used for the experiments. In addition,
the engine was also equiped with a state-of-the art after-treatment system
comprising Diesel oxidation Catalyst, Diesel Particulate Filter and Selective
catalytic reduction system. No parameters were required to be bypassed for
this application and therefore the dSpace and ControlDesk were redundant.
Several driving cycles were imposed through Horiba-Stars while measuring
the fuel consumption and NOx emissions before and after the after-treatment
system. The nodes m1,m2 and m3 represent the approximation of the fuel in-
take, NOx emissions before and after the after-treatment system respectively.
The NOx concentration was measured using the Horiba MEXA 7100 DEGR
GA as in previous applications.

6.2 Experimental Setup - B

Application Objective - B.1 To develop a control method that varies the
diesel engine calibration smoothing for minimising the fuel consumption while
restricting the torque error and NOx emissions under a prede�ned limit.

Test setup - B.1 The measurements presented in this study were obtained
from a dynamic engine test-bench at ETH Zurich. The engine under consid-
eration is a commercial heavy-duty Diesel engine.

The schematic of the application is presented in Figure 6.2. The work
was carried out in a test bench mainly composed by an engine coupled to a
dynamometric brake. The engine was a four-stroke, heavy-duty Diesel engine
with four cylinders, turbocharged, intercooled EGR and with a common-rail
injection system. This engine (see main speci�cations in Table 6.2) is repre-
sentative of those typical used in Diesel construction equipment in Europe.
The engine was instrumented to measure several key temperatures and pres-
sures (intake air, fuel, exhaust gases, lube oil, etc.). A piezoelectric pressure
transducer coupled to a charge ampli�er was used for recording instantaneous
in-cylinder pressure. Crankshaft rotational speed and instantaneous piston
position were determined by means of an angle encoder. For the rapid proto-
typing of the software developed and tested in this study, a dSpace MicroAuto-
Box system was applied in combination with MATLAB/Simulink from Math-
Works, Inc. This device is also used for the data acquisition of the various sen-
sor signals. The engine speed is controlled by a highly dynamic dynamometer.
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Figure 6.2: Experimental setup-B.1
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Type Heavy-duty Diesel engine
Engine displacement 7 litres
Number of cylinders 4

Rated power 200 kW @ 1900 rpm
Features Common rail fuel injection,

turbocharged, cooled EGR

Table 6.2: Engine characterstics

Therefore, the engine speed can be considered an exogenous input rather than
an output of the system. The engine speed and torque are measured using
rotary encoder and a torque transducer, respectively. The NOx emissions are
measured using a production type sensor mounted immediately downstream of
the turbine. The fuel consumption is not directly measured but retrieved from
the previously calibration maps on the ECU. The fresh air mass-�ow entering
the compressor is measured using a hot-�lm air mass �ow sensor. In order
to measure the amount of EGR, two CO2 sensors (Cambustion NDIR500)are
employed.

6.3 Experimental Setup - C

Application Objective - C To assess the impact of tra�c light informa-
tion availability in terms of fuel consumption and NOx emissions.

Test setup - C A 2014 diesel vehicle meeting EURO 5 emissions standards
was used in this work. The vehicle speci�cations are given in Table 6.3.
The vehicle was installed on a twin axle chassis dynamometer as shown in
Figure 6.3. Even though the vehicle in this study was 2-wheel drive, the rear
wheels were motored to avoid vehicle controller errors during testing. The
dynamometer is situated within a climatic chamber that controls temperature
and humidity. The vehicle was driven by a Strahle Autopilot SAP2000 robot.
Vehicle cooling was provided by an WLTC speci�cation frontal fan where fan
speed was controlled as a function of vehicle speed.

Data logging was undertaken from four separate computer systems:

1. An In�ux Technologies Rebel data logger was connected to the vehi-
cle ECU through the On-board diagnostics (OBD) port and measured
approximately 70 di�erent data channels relating to the engine control
system.

2. The robot host computer which logged all information relating to the
robot pedal positions, pedal actuation forces and internal controllers.
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Table 6.3: Test vehicle speci�cations
Vehicle

Engine displacement 2.0L
Max. power 100 kW
Max. Torque 320 Nm
Emissions level EURO 5
After-treatment DOC + DPF
Unladen mass 1800 kg

Gearbox Manual 6 Spd

3. An AVL RoadSim dynamometer host computer which logged speeds and
forces on the individual axles of the system.

4. A Sierra CP Cadet test cell control computer which logged all informa-
tion from emissions analysers.

In total around 150 data channels were recorded across all the data systems
and all data was logged at 2 Hz (which was limited by the OBD logger).

In this work, the two key metrics from the experimental investigation are
the fuel consumption and the NOx emissions. For fuel consumption, it was
decided to use the estimated fuel injection quantities from the engine con-
troller. ECUs will usually contain signals giving an indication of the amount
of fuel being injected into the cylinder. It is important to note that this is not
a measurement, but rather a calibrated value within the ECU. Nevertheless,
this fast signal can be a reasonable estimate of fuel consumption that o�ers
a high resolution during transient events. In a modern engine, the numbers
are usually available as a mass of fuel injected for each individual injection,
and therefore the total fuel consumption is obtained by summation of the n
individual injections as shown in Equation 6.1. For the test vehicle in this
work, up to 4 individual injections were observed during normal running.

ṁf =
2Neng

60

n∑
i=1

mf,i (6.1)

Where Neng is the engine rotational speed (rev/min) and mf,i is the fuel
injected in grams during an engine cycle for injection number i of a total
number of injections n.

NOx emissions concentrations were sampled using a Horiba MEXA ONE
system with the sampling point located downstream of the Diesel particulate
�lter (DPF) and Diesel Oxidation Catalyst (DOC). The mass �ow of NOx

is them obtained using equation Equation 6.2 where the exhaust mass �ow
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Figure 6.3: Chassis dynamometer layout illustrating key measurement and
data acquisition devices. Experimental setup - C

(ṁexh) is calculated from the air mass �ow and fuel mass �ow obtained from
the engine management system.

ṁNOx = ṁexhcNOxuNOx (6.2)

where cNOx is the NOx concentration in the exhaust gas and uNOx is a constant
value obtained from emissions measurement standards.

6.4 Experimental Setup - D

Application Objective - D To optimise the speed pro�le in real time and
recommend the driver, the optimal speed sequence that minimises the fuel
consumption on a particular route.

Test setup - D A 2015 diesel vehicle meeting EURO 5 emissions speci�-
cations was used in this work. The main vehicle characteristics are shown in
Table 6.4.

The vehicle was instrumented with the following sensors m1,m2 and m3

shown in the schematic Figure 6.4:

• a GPS antenna,

• a NOx and λ sensor,



82

Table 6.4: Test vehicle speci�cations
Vehicle

Engine displacement 1.4 L
Max. power 50 kW
Max. Torque 160 Nm
Emissions level EURO 5
After-treatment DOC + DPF
Unladen mass 1125 kg

Manual Gearbox 6 Spd

• a pressure transducer and an inductive sensor to measure in-cylinder
pressure and phase it with the crank angle.

Also, OBD-II SAE J1979 mode 01 information is read by means of a
Controller Area Network (CAN) interface. This information is captured and
processed with a National Instruments PXI system equipped with analog in-
puts (board model), high speed CAN interface (board model) and a USB se-
rial interface. A scheme of the instrumentation system is shown in Figure 6.4.
This system allows to capture in-cylinder pressure with an angular resolution
of one sample per degree at 5100 rpm, ṁNOx values ten times per second and
On-board Diagnostics (OBD)-II relevant values �ve times per second. Geo-
graphical position of the vehicle is acquired with a temporal resolution of one
sample per second, which is the GPRMC message period. Optimal speed ref-
erences are also managed by the PXI system. This information is presented to
the user in a screen and updated every two seconds. In Figure 6.4, the nodes
m1 is to acquire the crank angle θcyl, the node m2 is for cylinder pressure Pcyl

and m3 is for exhaust emissions ṁexh and ṁNOx emission.
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Figure 6.4: Scheme of the acquisition system. Experimental setup-D
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The objective of this chapter is to describe the applications developed for
this thesis. The applications are either developed for control of diesel engine or
hybrid electric vehicle. There are three sections in this chapter; each section is
dedicated for an application in a structured way. The section 7.1 describes the
modelling and validation of an adaptive diesel engine controller for a vehicle
on real driving mission. The section 7.2 is regarding a new calibration method
that enables variable-smoothing of a diesel engine for improved performance
of a vehicle on real driving missions. Finally, section 7.3 is regarding an
online controller for optimal energy management of a parallel hybrid electric
vehicle for minimised fuel consumption and constrained state-of-charge on an
unknown driving mission.

7.1 Adaptive control of Diesel Engine

7.1.1 Introduction

Motivated by the requirement of improvement in fuel-e�ciency with minimal
emissions, the control of diesel-engine is being investigated in this section. De-
spite the continuous tightening of the NOx emission type approval limits, the
di�erence between the type approval NOx and the real world NOx emissions
has grown over the years ([Chen & Borken-Kleefeld 2014]). The reason for
this discrepancy is the uncertainty due to driving dynamics, ambient temper-
ature and road slope during real driving conditions which are not considered
in the engine calibration process. SOA engine calibration method is based on
feedback and feed-forward controllers. Fixed look-up tables are employed as
the set-point generator and the feed-forward controller. The standard engine
calibration approach consists on taking a limited set of driving cycle to make
an optimisation and then use the obtained results to �ll the calibration maps.
However, in this case, the optimality of the calibration for a given driver will
depend on the similarity between the considered driving set for calibration
and his driving patterns. Moreover, this approach neglects other boundaries
such as the tra�c, pollution levels in the area or other environmental condi-
tions. The presented approach poses the calibration problem as an optimal
control problem by �nding a set of optimal calibration maps in real time. The
calibration maps contain the set points that minimise the instantaneous fuel
consumption (ṁf) over a sequence of engine speed (ωe) and torque (Te), while
ful�lling the integral constraint on (NOx) emission on an unknown driving
cycle. To solve the problem, a look-ahead strategy is proposed to periodically
adapt the engine calibration such that the cumulative fuel consumption is
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minimised while ful�lling the integral NOx emission constraint. The strategy
is to estimate the driving cycle and then calculate the vehicle performance
(fuel consumption and the NOx emission) on the estimated cycle using a 0-D
vehicle model. The performance is calculated in parallel with di�erent start-
of-injection (SOI) calibration maps resulting in a set of SOI maps associated
with di�erent levels of cumulative fuel consumption and emissions. A super-
visory controller updates the calibration from the available set of maps such
that, the cost function is minimised while integral constraint is also ful�lled.
The constraint on NOx emission is time dependent and is calculated as the
di�erence between the actual NOx emission (measured by the sensor) and the
NOx limit for entire trip.

Speci�cally, this method involve three developments: The �rst is a driving
cycle prediction tool (elaborated in chapter 5) which is based on the space-
variant transition probability matrix obtained from an actual vehicle speed
dataset. Then, a vehicle and an engine model described in chapter 3, to pre-
dict the fuel consumption and NOx emissions on a driving cycle. Finally, an
adaptive controller is proposed which calibrates the engine online, to ful�l the
NOx emission constraint at the end of the driving mission while minimising
the fuel consumption. The developed control strategy was implemented and
assessed on an engine test bench described in section 6.1. The engine perfor-
mance using the proposed method is compared with the SOA static calibration
technique for di�erent NOx emission limits on real world cycles.

7.1.2 Method description

As mentioned before, the online engine control require the following:

• A vehicle speed prediction model.

• A simple but accurate vehicle model to estimate the engine performance
online.

• A controller to calculate and implement the optimal actuations in the
real-time.

In this sense, the proposed control algorithm has three layers: The �rst
layer is to predict the power demand of the vehicle, the second layer computes
the expected fuel consumption and NOx emissions depending on the SOI cali-
bration map(from a limited set of possible calibrations). The last layer applies
and holds the optimal calibration with minimum expected fuel consumption
from those whose expected NOx emissions are below a prede�ned limit.

In Figure 7.1, schematic of the high level control system of the developed
method is presented. Where vestim and vreal are the estimated and real vehicle
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speeds respectively.Prediction Horizon Window (PHW) is the moving time
window for which the fuel consumption and engine out NOx emissions are
cumulated. The length of the PHW is a design choice (calibration parameter)
which a�ects the closeness of the cumulative NOx emissions at the end of the
cycle from target emissions/limits. Larger the window, farther will be the
NOx emissions from the target. On the contrary, short windows will avoid
fuel reduction potential since the problem will be transformed on tracking a
constant NOx emission, and will have an excessive computation cost for the
real-time implementation. The route is discretised in space, where each section
is referred as a window and based on the predicted emissions for an upcoming
window, the control actions that minimise fuel consumption keeping emissions
under a limit, is calculated and stored as a calibration map, that is applied
during the next time window. For the purpose of explanation, the schematic
has three time frames represented by the three columns as past, present and
upcoming time windows. During each PHW there are three processes hap-
pening in parallel, represented by the three rows. The top row represents the
�rst process, which is regarding the estimation of driving cycle and calcula-
tion of engine speed and torque using a backward vehicle model. The vehicle
model calculates the engine torque, fuel consumption and the NOx emissions
by interpolating the experimental data. The detailed description of the vehi-
cle and engine model was presented in chapter 3. The second process as in
central row is regarding the calculation of the optimal actuator settings and
their conversion into the calibration maps. The calculation of the optimal
calibration map is based on the predicted NOx emissions for the upcoming
PHW, the measured NOx emission in the current window and the NOx emis-
sion limit. At the end of each window, the calibration is updated based on
the optimal control problem formulated in the following paragraph. Finally,
the bottom row represents the third process which is regarding application of
the updated calibration maps. In this study, the size of PHW (in red boxes)
is chosen to be 100 sec. It must be noted that during the �rst time window,
standard calibration map is applied.

Fuel consumption optimisation with constrained NOx emissions The
inputs to the low level controller shown in Figure 7.2 are the estimated vehicle
velocity v(s), estimated engine speed ωe, engine torque Te and dynamic NOx

emission limit (N̂O
dyn

x ) which is updated after every PHW based on Equa-
tion 7.1.

N̂O
dyn

x = N̂Ox −
∫ s

0
ṁNOxmeas∫ s

0
vmeas(s)

ds (7.1)
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Figure 7.1: High level control schematic: Top row is vehicle speed prediction,
middle row the calculation of optimal control and storing it as calibration
maps and bottom row is the application of control to the real engine. Three
columns represent time windows, where middle column represent the present
time, left and right columns represent past and future time windows.
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Figure 7.2: Low level controller schematic: Inside the dotted box are the
fuel and NOx models, a calculator and an adaptive calibration map for SOI
actuation. Block in the top left has the vehicle velocity prediction model to
obtain the v(s) and a vehicle backward model to obtain engine speed and
torque traces for the corresponding v(s). Block in the bottom left is the
actual engine speed and torque traces corresponding to the actual vehicle
speed (v(s)real) imposed on the engine test-bench. The ICE block represents
engine test-bench.

Where, N̂Ox is the prede�ned emission limit for the entire trip, ṁNOxmeas is
the rate of NOx emissions measured by the sensor, vmeas(s) is the measured
vehicle velocity and s is the distance travelled by the vehicle.

Within the controller there are quasi-steady engine model and an opti-
miser. The engine model performs online calculation of fuel consumption
and NOx emissions during the transient operations with di�erent calibration
maps in parallel. This is achieved by modelling engine as a set of maps as in
Equation 7.2

mf(ωe,Te, SOIα(k))

NOx(ωe,Te, SOIα(k))
(7.2)

The two outputs of the engine model are the fuelling rate ṁf and the NOx

emissions depending on the calibration index k. The three input parameters
for the engine model are ωe, Te and α(k). The baseline calibration SOIstd is
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perturbed using α(k) as shown in Equation 7.3.

SOIα(k) = SOIstd + α0(k) + α1(k) ∗ ωnorm
e

+α2(k) ∗ Tnorm
e

(7.3)

where, α0, α1, α2 ∈ [−1, 1], ωnorm
e , Tnorm

e are normalised engine speed and
torque in euclidean space. Then, obtained calibrations are stored as vectors
into a matrix A as in Equation 7.4, where α(k) is a vector of the three coe�-
cients of the kth calibration.

The lookup set must ful�l the following conditions:

• They must lie within the feasible actuator boundary. In the current
study, SOI was explored within [SOIstd-3,SOIstd+3] CAD, which is in
the feasible boundary shown in Figure 7.3 for the engine under study.
The engine must have sensitivity to the changing calibrations within the
look-up set.

• Calibration maps must be smooth enough in order to ful�l conditions of
drivability. For ensuring map smoothness following strategy is used.

A =



α(1)

α(2)

α(3)

.

.

α(k)

 ;α =
[
α0 α1 α2

]
(7.4)

Finally, the controller selects an optimal calibration α(k) by solving the
problem in Equation 7.5, where fuel consumption is minimised for a given
distance s while being within the dynamic NOx limits .

min
α(k)∈A

∫ s

0

ṁf

v(s)
ds

subject to :

∫ s

0

ṁNOx

v(s)
ds− N̂O

dyn

x ≤ 0

(7.5)

The components of α are discretised in 3 elements leading to 27 combinations
which is the size of the lookup set. Figure 7.4, presents sequence of optimal
calibration map adapting with time for the �rst 600 s of a real driving cycle.

7.1.3 Designed use cases for method validation

In the current study three driving cycles are considered: The �rst cycle C0

is an estimated cycle, synthesized using the tool described previously. The
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Figure 7.3: Standard SOI calibration map with the upper and lower boundary,
within which the optimal maps have been explored

Figure 7.4: Representation of the adaptation of SOI calibration with time.
Maps update at the end of the moving prediction horizon window of 100 s.
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second and third cycles � C1 and C2 respectively are the real world cycle
(recorded in past). In Figure 7.5, the evolution of the vehicle speed is pre-
sented. The plots at the bottom present the frequency of engine operations for
the three cycles, it can be noticed that the aggressiveness of C0 is higher than
C1 and less than C2. Using these three cycles, a case study was designed for
the method validation. Three relevant scenarios are considered based on the
driving dynamics of the predicted vehicle speed, driving dynamics of actual
vehicle speed and limits over NOx emissions.

• The �rst scenario Scen1 is when the actual driving cycle coincides with
the estimated driving cycle.

• The second scenario Scen2 is when the aggressiveness of actual driving
cycle is less than the estimated cycle.

• The third scenario Scen3 is when the aggressiveness of actual cycle is
higher than the estimated cycle.

For each scenario, two cases case1 and case2 which are regarding the con-
straint on NOx emission are presented, where case1 and case2 are with N̂Ox

less than 0.2 g/km and 0.3 g/km respectively for the trip.

7.1.4 Results

In Figure 7.6, Figure 7.9 and Figure 7.11, the results of the engine performance
for the three scenarios are presented. The comparison is made with the engine
performance using standard calibration stdcal (which in the present study is
SOIstd). It should be recalled that during the �rst 100 sec the controller applies
standard calibration regardless of the scenario or the case.

Scen1 : In Figure 7.6 the estimation of driving cycle is perfect; therefore
the estimation of emissions for PHW would be di�erent from the actual emis-
sions only due to the error in engine modelling, the di�erence due to driving
uncertainty would be zero. In Figure 7.8, an enlarged view of 0-360 sec is
presented. The emissions in g/km are very high at the beginning of the cycle
and therefore SOI is largely retarded for both the cases in order to reduce
NOx emissions. The di�erence in performance can be noticed with δmf and
δNOx (de�ned in (Equation 7.6), as the percentage of cumulative deviation of
fuel consumption or NOx emissions for a case and standard calibration). At
the beginning of this phase of the cycle NOx emissions are largely reduced;
while at the end of this phase as the emissions are less than the limits, the
controller emphasises on saving the fuel.
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Figure 7.5: Predicted and measured vehicle speed on the route under con-
sideration; frequency of engine operating points for the three cases velocity
pro�les
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δmf =

∫ s
0
mfcase1,2 −

∫ s
0
mfstdcal∫ s

0
mfstdcal

× 100

δNOx =

∫ s
0

NOxcase1,2 −
∫ s
0

NOxstdcal∫ s
0

NOxstdcal

× 100

(7.6)

From 360-1800 sec vehicle speed is mostly constant (representative of the
highway driving) and only few transients appear due to the road slope e�ect,
for case1 the SOI is retarded more than case2 to have lower NOx emissions
at the end of the cycle. For case2 the emissions are within the N̂Ox while
for case1 emissions are 0.21g/km. For a lower emission constraint, adapting
the calibration to the actual driving scenario allows to have 14 % reduction in
emissions with a penalty of 1.3 % in fuel consumption. If the NOx constraint is
relaxed to 0.3 g/km and the calibration is adapted to the actual driving cycle,
as in Figure 7.7, fuel consumption can be reduced by 0.9 % while limiting the
NOx emissions below 0.3g/km. It can be observed that lower emission limit
can be achieved with the calibration look-up set.

Scen2 : In Figure 7.9, the actual driving cycle is less aggressive than the
estimated driving cycle, therefore the estimation of emissions for PHW would
be higher than the actual emissions. From 100-360 s, even though the vehicle
is running at lower velocity, the estimated emissions are more than actual and
hence the SOI is retarded. For instance, during the second PHW, the esti-
mation of emission is higher and therefore the control strategy is to minimise
the emission as much as possible. At the beginning of third PHW the NOx

limit is corrected due to lower emission produced in second PHW. The higher

N̂O
dyn

x limit, makes a calibration, favouring better fuel e�ciency. Thereby, for
case1, 5% reduction in emissions is possible while insigni�cant increase in fuel
consumption as shown in Figure 7.10. In case 2, the fuel consumption can
be improved upto 3.9 % while staying within the emission limits. Moreover,
in both the cases the limits on NOx emissions are ful�lled at the end of the
cycle.

Scen3 : In Figure 7.11, the actual driving cycle has higher aggressiveness
than the estimated driving cycle. Accordingly, the estimation of emissions
for PHW would be lower than the actual emissions, resulting in a strategy
favouring NOx reduction in the second PHW. Under-estimating the cycle ag-
gressiveness leads to unful�lled constraint in case1. In order to ful�l the NOx

limit, the SOI is largely retarded during the cycle. As presented in Figure 7.12,
emissions are reduced by 14% with a 1.1% penalty in fuel consumption for
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Figure 7.7: Scen1; Cumulative fuel consumption and NOx emissions and their
relative di�erence with standard calibration

case1. In case2, it is possible to reach the emission target of 0.3 g/km, while
further reducing fuel consumption by 0.8 %.

The result can be summarised as:

• In scenarios 2, the constraints in both the cases are satis�ed. Therefore,
considering a driving cycle with higher aggressiveness for calculating
calibration is a preferred approach to ful�lling the NOx constraint.

• In the �rst and third scenario, the constraint in case1 can not be ful�lled,
this is because the range of the look-up set for SOI is limited to 6 Crank
Angle Degree (CAD). Including more actuators and increasing their
range will directly in�uence the range of achievable NOx emissions at the
expense of control complexity. In addition to the control actions taken,
there is an impact of the driving condition itself on the fuel consumption
and emissions. However, with the developed methodology the emissions
could be brought as close to the limit as possible by adaptation of the
engine controls.

7.1.5 Summary and conclusions

The discrepancy in actual and declared Diesel engine emissions has raised a
trend in applications which can optimise the engine performance during ac-
tual driving conditions. This section was aimed to present a pre-lookup based
online adaptive calibration method to minimise fuel consumption with con-
strained NOx emissions. The methodology followed during the development of
application was also presented. Following the development of necessary tools,
a case study was designed and tested on an engine testing set-up. The main
�ndings of the study are as follows:
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Figure 7.10: Scen2; Cumulative fuel consumption and NOx emissions and
their relative di�erence with standard calibration

• The implementation of the proposed methodology shows that the NOx

emissions can be constrained in real driving condition. The developed
method is a mid-way to optimal control methods, which are computa-
tionally expensive for real-time application and state-of-the-art method
based on �xed calibration which do not take into account most of the
real driving uncertainties.

• The study demonstrates a real-time capable application of the Markov
based cycle prediction tool also shown by Lujan et al. in [Luján et al. 2019].
The proposed method takes the advantage of available information about
the velocity pro�le on a given route. This method is detailed in chapter
5.

• The study shows that aggressiveness is a critical parameter for evaluat-
ing real-time calibration of a Diesel engine. As the cycle prediction tool
is e�ciently able to capture the driving aggressiveness, with the pro-
posed tool fuel consumption can be minimised up to 3 % while staying
well within a prede�ned emission limit. Otherwise, the controller can
not reduce the emissions below a certain level and then a driver advisory
can be used to advise the driver about aggressiveness in order to ful�l
emission targets.
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their relative di�erence with standard calibration

7.2 Variable Smoothing of Diesel Engine Cali-

bration

7.2.1 Introduction

The calibration process for Diesel engines involves three major steps. First,
the engine speed and load domain�in which the engine is operated�is iden-
ti�ed. Then, a global engine model is created, which can be used for o�ine
simulations to estimate engine performance. Finally, optimal calibration maps
are obtained by formulating and solving an optimisation problem, with the
goal of minimizing fuel consumption while meeting constraints on pollutant
emissions. This last step in the calibration process usually involves smooth-
ing of the maps in order to improve drivability. The proposed method in this
section presents a single tuning parameter for the trade-o� between fuel con-
sumption, NOx emissions and drivability during transient engine operation.
Drivability is addressed as the capability of the engine to follow a reference
torque pro�le. A model-based optimal calibration approach is used to ob-
tain maps which meet a speci�ed NOx emissions limit while minimizing the
fuel consumption. Then, the tuning parameter is introduced to obtain di�er-
ent levels of map smoothness, which is based on the classical total variation
method originally proposed by Rudin et al. [Rudin et al. 1992] and has been
extensively used in the literature [Zhi et al. 2016, Aubert & Kornprobst 2006].
Finally, a time-varying smoothness strategy is generated and tested, with the
goal to further improve engine performance and drivability, as compared to
calibration maps with a �xed level of smoothness. The method was experi-
mentally validated on a heavy-duty Diesel engine, and the non-road transient
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cycle (NRTC) was used as a case study. The error between the reference and
actual engine torque was used as a metric for drivability, and the error was
found to decrease with increasing map smoothness.

7.2.2 Method Description

For the calibration of Diesel engines, it is common practice to model the
input-output relationships statically [Berger 2012, Schüler 2001]. Various soft-
ware tools are available to support the calibration engineer with the steady-
state measurements and subsequent modelling [Gschweitl et al. 2001, Gutjahr
et al. 2017, Mat 2017]. After that, model-based optimisation techniques are
often used to �nd an engine calibration that yields the lowest possible fuel
consumption while adhering to the limits on pollutant emissions [Hafner &
Isermann 2003, Sequenz 2013].

For the engine in this study, the static engine model and model-based
calibration were obtained as described in [van Dooren et al. 2019]. The control
inputs u consist of the amount of fuel injected per cylinder and per cycle minj,
the start-of-injection usoi in degrees before top dead centre, and the desired
burned gas ratio xbg in the intake manifold. Whilst the amount of injected
fuel is controlled to reach the requested torque T ref

e , the two remaining control
inputs usoi and xbg are the degrees of freedom to trade o� fuel consumption ṁf

against engine-out NOx emissions ṁNOx . This is done as in [Elbert et al. 2017]
by formulating and solving the following optimisation problem:

u∗(ωe, Te, µNOx) = arg min
u
{(1− µNOx) · ṁf +

µNOx · ṁNOx}
(7.7)

The optimal control inputs u∗ for each engine operating point depend
on the weighting or �strategy parameter� µNOx ∈ [0, 1]. Choosing a higher
value for µNOx results in lower engine-out NOx emissions, but at the cost of a
higher fuel consumption. While the engine strategy can�and usually is��xed
during the calibration process, the authors of [Elbert et al. 2017, Guardiola
et al. 2016] have shown that an adaptive operating strategy can be used to
adapt the raw emissions in a situation-speci�c manner.

The optimal values from (Equation 7.7) are stored on the engine control
unit (ECU) as static maps that serve as a feed-forward controller. An EGR
controller controls the intake valve and EGR valve position to reach the desired
burned gas ratio.

Variable Map Smoothing The optimal calibration maps obtained from
the previous section are usually non-smooth. The calibration engineer may
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chose to smooth them manually or using available tools as in [Gschweitl
et al. 2001, Gutjahr et al. 2017, Mat 2017]. The methods are usually based
on �ltering techniques, where the value of �ltered data point is the average of
original data point and its adjacent points. A group of adjacent points in the
original data are multiplied point-by-point by a set of coe�cients that de�nes
the smooth shape, the products are added up and divided by the sum of the
coe�cients, which becomes one point of smoothed data. Subsequently, the
set of coe�cients is shifted one point down the original data and the process
is repeated. Mean �ltering methods are not well suited for speci�cally elim-
inating peaks from the maps. Another method used for smoothing is based
on computing the second derivative (local curvature) at each point and then
calculating the average of the squared values of the local curvature for the
entire map.

The methods described above do not explicitly take into account the cost
of smoothing in terms of closeness to the original map or the loss of optimality.
In this work, a variational method is applied to obtain the smooth maps. The
method is based on a classical variation model for image de-noising, originally
proposed by Rudin et al. in [Rudin et al. 1992]. The problem is formulated
as the following convex optimisation problem and solved by the primal-dual
method as demonstrated by Zhi et al. in [Zhi et al. 2016]:

min
u

∫
{ (1− µsm) · (u− u∗)2 + µsm · ∇ux,y } dx dy (7.8)

where u are the control inputs of the smoothed two-dimensional (x,y) cali-
bration map and u∗ denotes the optimal but non-smooth map, obtained from
the model-based calibration method described in the previous section. For
all the investigations presented in this application, a �xed engine strategy
µNOx = 0.11 was used.

The �rst term in Equation 7.8 accounts for the closeness of the obtained
smoothed map to the original optimal but generally non-smooth map, and
the second term contributes to the total variation of the obtained map. The
closeness to the original map has been considered rather than the cost in
terms of fuel consumption and NOx emissions in (Equation 9.1). This is done
to separate the optimisation and smoothing phases in the calibration process.
The normalised total variation in the direction of engine speed and torque is
∇ux,y. The regularisation weight µsm ∈ [0, 1] is used to tune the smoothness
level of the maps. When µsm = 1, only the second term in Equation 9.1 is
minimised, producing the smoothest possible map. For µsm = 0, no smoothing
is applied, and the resulting map is the original non-smooth map.

The continuous problem in Equation 7.8 can be discretised and solved
numerically as in Equation 7.9, where n = 5 is the grid size of the map under



107

consideration:

min
u

n∑
i=1

n∑
j=1

{ (1− µsm) · (ui,j − u∗i,j)2 + µsm · ∇ui,j } (7.9)

in which ∇ui,j denotes the �rst order forward di�erence operation, de�ned as:

∇ui,j =

[
ui+1,j − ui,j
ui,j+1 − ui,j

]
(7.10)

Five calibration maps with di�erent values of µsm ∈ {0, 0.2, 0.4, 0.6, 0.9}
were calculated. Figure 7.13 and Figure 7.14 show the impact of varying
µsm on the calibration maps for start-of-injection (usoi) and burned gas ratio
xbg, respectively. The original maps u∗ are shown in grey, and they are non-
smooth. With increasing value of µsm, the smoothness of the maps visibly
increases. As µsm is increased from zero, the maps initially get smoother
where a maximum reduction of the total variation can be achieved. When µsm
is further increased, also the remaining regions of the map become smoother.

In Figure 7.15, the impact of µsm on the primary and secondary terms
of Equation 9.2 is shown. As expected, with increasing µsm, the normalised
total variation of the map decreases at the cost of its distance from the original
map.

7.2.3 Results

In this study the following two sets of experiment were conducted:

• The �ve calibration maps obtained from the method described in subsec-
tion 7.2.2 were tested on the engine test bench described in section 6.2.
The Non-Road Transient Cycle (NRTC) cycle was run to obtain the
trade-o� between fuel consumption, NOx emission and torque error.

• The optimal problem was solved to obtain a µsm pro�le for minimising
the NOx emission while constraining the fuel consumption and torque
error within prede�ned limits. The obtained variable µsm strategy was
tested on the engine.

Trade-o� between Performance and Drivability The calibration maps
in Figure 7.13 and Figure 7.14 show that with an increasing µsm, the SOI is
advanced at lower engine speeds and torque, whereas SOI is retarded at higher
engine speed and torque. On the other hand, the burned gas ratio is reduced
at high engine torque and increased for µsm = 0.6 and 0.8, regardless of the
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Figure 7.13: Impact of smoothing on soi calibration maps
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Figure 7.14: Impact of smoothing on egr calibration maps.
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Figure 7.15: Impact of weighting factor on the total variation ∇ui,j and dis-
tance from the original map

∑
(ui,j − u∗i,j)2

engine speed. The obtained calibration maps are stored in the engine ECU as
static maps to serve as a feed-forward controller. Taking the NRTC as a case
study, the various maps are implemented and tested on the engine test-bench.
The results are presented and discussed in this section.

Figure 7.16 shows the instantaneous engine torque, start-of-injection, burned
gas ratio, fuel consumption, and NOx emissions during the NRTC. The cumu-
lative impact of the control actions can be clearly seen in the instantaneous
NOx emissions in the bottom plot.

In order to compare the torque response of each calibration map, the error
between reference and actual engine torque is calculated for the cycle as:

T error
e =

∑
NRTC

(T ref
e − Te) (7.11)

The top plot in Figure 7.17 shows the reference torque pro�le T ref
e . In

the bottom plot, normalised T error
e is shown for the cycle. It is normalised by

dividing T error
e obtained with a speci�c calibration by the error obtained with

µsm = 0. As expected, with increasing smoothness of the calibration maps,
the torque error is reduced consistently.

In Figure 7.18, the trade-o� between fuel consumption, NOx emissions,
and torque error is shown. For µsm = 0.9, the NOx emissions increase by 9%,
fuel consumption increases by 1%, and an improvement in torque response
is observed. Table 7.1 consolidates the parameters related to the engine per-
formance with di�erent values of µsm. Based on this data, the calibration
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Figure 7.16: Instantaneous engine torque, start-of-injection, burnt gas ratio,
fuelling rate, NOx emissions measured at the test bench with di�erent smooth-
ness levels
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µsm 0 0.2 0.4 0.6 0.9
BSFC 0.991 0.99 0.989 0.992 1
NOx 0.916 0.938 0.977 0.979 1
Terror 1 0.977 0.955 0.943 0.917

Table 7.1: Impact of µsm on BSFC (normalised), NOx emissions (normalised)
and T error

e for NRTC

engineer may chose the value of µsm that ful�ls the performance requirements.

Time-varying Smoothness Calibration A map smoothing method was
developed and used to obtain a trade-o� between fuel consumption, NOx emis-
sions and Terror

e in the previous section. Based on the resulting trade-o�, a
time-varying smoothness strategy is proposed to minimise the NOx emissions
while constraining fuel consumption and Terror

e . A case study is designed to as-
sess the impact of time-varying smoothness on the engine performance. From
the set of �ve calibrations of the previous section, µsm = 0.2 is assumed to be
the favourable choice of a calibration engineer based on the emission and the
drivability constraints. The objective of the case study is to obtain a sequence
of µsm for the NRTC to minimise NOx emissions while obtaining the same or
less fuel consumption and torque error as compared to the �xed smoothness

Figure 7.17: Reference torque pro�le (top) and cumulative error in torque
reference tracking (bottom)
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Figure 7.18: Trade-o� between torque error and engine performance with
di�erent smoothing levels

strategy. To do this, µsm is adapted in a time window of 100 s. In each time
window, µsm is selected from the already tested set of calibrations such that
the cumulative NOx emissions in the window are minimised while keeping fuel
consumption and Terror

e less than or equal to the reference calibration, which
is µsm = 0.2. This can be formulated as the following optimisation problem:

min
µsm

∑
win

NOx

subject to
∑
win

ṁf ≤
∑
win

ṁf (µsm = 0.2)

∑
win

T error
e ≤

∑
win

T error
e (µsm = 0.2)

(7.12)

where win = 100 s is the size of the time window, during which the perfor-
mance parameters are cumulated and based on which the smoothing strategy
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is chosen. The resulting time-varying calibration, i.e. sequence of µsm, is
tested on the engine test-bench on the NRTC.

The strategy obtained from (Equation 7.12) is shown in the top plot in
Figure 7.19. The normalised engine torque errors obtained from the �xed and
time-varying strategies are shown in the bottom plot. The control actions
and instantaneous engine performance are compared for the two strategies in
Figure 7.20. The NOx emissions are largely reduced from 300 to 500 s, with
similar fuel consumption and improved drivability. From 600 to 900 s, with
µsm = 0, the calibration is optimal in terms of fuel consumption and NOx

emissions. The non-smooth maps have less impact on the drivability, as the
driving cycle is largely non-transient during this time period.

For the purpose of analysis, the cycle can be divided into four distinct
phases, based on engine speed, torque, and the amount of transient operation.
The �rst phase ranges from 0 to 250 s and consists of medium load and medium
transients, phase 2 is between 250 to 450 s consisting of high load and high
transients, the third phase is between 450 to 900 s consisting of high load and
low transients, and phase 4 is between 900 to 1238 s and has low load and
medium transients.

Phase 1: With increased smoothness, xbg is decreased and usoi remains
largely una�ected. Resulting in higher NOx emissions with higher µsm. There-
fore, the controller chose to operate at µsm = 0.2 .

Phase 2: With higher map smoothness, xbg is reduced while usoi is signi�-
cantly retarded, resulting in less NOx emissions. On the other hand, reducing
xbg has a positive impact on torque reference following capability of the en-
gine. During high load transients, the fuel injection is temporarily reduced to
avoid high soot emissions [Guzzella & Amstutz 1998]. This negatively in�u-
ences the torque reference following capability. Therefore, a smooth actuation
of xbg and usoi is desirable during this period. Another factor which positively
in�uences torque reference following capability is the improved acceleration
of the turbocharger with reduced xbg during load jumps. The controller in-
creases µsm to 0.9, resulting in reduced NOx emissions and improved torque
reference following capability of the engine.

Phase 3: With increasing smoothness, usoi is retarded compared to the
original maps. There is very little xbg in both the smooth and non-smooth
map. As a result, the NOx emissions are reduced as shown in the bottom plot
of Figure 9.5. Because the engine operation is less transient during this phase,
the controller chooses µsm = 0.

Phase 4: For medium loads at the end of the cycle, the xbg and usoi are
more or less similar for all levels of smoothness. Therefore, the di�erences are
minimal in the engine performance and thus µsm = 0.2 is chosen.

Figure 7.21 shows the engine performance obtained with the time-varying
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smoothness strategy, as compared to the �xed calibration strategy. With the
time-varying smoothness, NOx emissions can be reduced by 3-4% compared
to the �xed calibration, while maintaining the same fuel consumption and
torque reference following capability.

Figure 7.21: Comparison of engine performance for �xed and time-varying
smoothness calibration.

The result highlights the potential of variable smoothing on a driving cycle.
Although, this demonstration is made for the NRTC it can be extended to the
real world scenario by online estimation of the error in torque,Brake Speci�c
Fuel Consumption (BSFC) and NOx emission. These estimations require a
driving cycle prediction tool, an engine model and a supervisory controller
to choose the optimal value of the proposed tuning parameter in real driving
condition.
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7.2.4 Summary and Conclusions

Drivability is improved by smoothing of optimal calibration maps obtained
from model-based calibration. With smoothing of the calibration, the maps
move away from the optimal settings. This results in a loss in optimality in
terms of fuel consumption and NOx emissions. This intervention is necessary
especially during high transient engine operation, where a rough transition
leads to poor drivability. A method is proposed to smoothen optimal calibra-
tion maps which are obtained from a model-based Diesel engine calibration
approach. The non-smooth, xbg and usoi maps are optimal for a driving cycle
to minimise fuel consumption with constraint on NOx emissions. The smooth-
ing method uses a tuning parameter µsm to reduce the total variation of the
optimal maps to generate a set of smooth calibration maps. Drivability is
addressed as the capability of the engine to follow the demanded torque pro-
�le and is shown to improve with the map smoothness. A trade-o� between
fuel consumption, NOx emissions and torque error is obtained on the NRTC.
Based on the results, an increase in µsm from 0 to 0.9 results in 9% increase in
the NOx emissions, 1% increase in fuel consumption and 9% decrease in Terror

e .
A time varying smoothing method is proposed which adapts µsm in a moving
time window based on the cumulative fuel consumption, the NOx emissions
and the torque error. In di�erent phases of the cycle, the engine operates
at di�erent transient intensities. Having a degree of control freedom in map
smoothness provide �exibility to adapt µsm based on the intensity of the tran-
sients. It has been demonstrated that same levels of torque reference tracking
performance and fuel consumption can be achieved while reducing NOx emis-
sions by 3-4% with the application of time-varying smoothness strategy as
compared to the state-of-the-art �xed calibration method.

• A variation-based methodology is proposed to change the smoothness
of the calibration maps using a single tuning parameter. The addi-
tional degree of freedom can be used to trade o� fuel consumption, NOx

emissions, and drivability. This �exibility can be of great help for the
calibration engineer, while optimality is guaranteed at all times.

• A time-varying smoothness strategy is proposed to further improve en-
gine performance and drivability. This is achieved by exploiting the fact
that the driving cycle consists of various phases with the engine opera-
tion being more or less transient. By choosing an appropriate smoothing
strategy for each phase, the NOx emissions can be reduced, while hav-
ing the same fuel consumption and drivability as in the case of a �xed
smoothing strategy.
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An additional degree-of-freedom has provided more �exibility to control
the engine with the time-varying smoothness strategy. The proposed method
can be extended to the real world scenario by including a driving cycle pre-
diction model, an engine model and a controller that can optimally chose the
proposed smoothness tuning parameter such that the fuel-e�ciency is max-
imised while limiting the reference torque error and the NOx emission.

7.3 Online optimal Energy Management strat-

egy for Parallel HEV

7.3.1 Introduction and problem description

This chapter proposes an online Energy Management Strategy (EMS) for a
plug-in Hybrid Electric Vehicle (pHEV) with the goal of minimising the fuel
consumption while ful�lling the constraint on the terminal battery State-of-
Charge (SoC) on a driving mission. In order to cope with limitations of
both heuristic and Optimal Control (OC)approaches, several model based ap-
proaches have been proposed in past, most of them are based to some extent on
OC, but sacri�cing optimality for the sake of applicability. Amongst them, one
can �nd Equivalent Consumption Minimization Strategy (ECMS) proposed by
[Paganelli et al. 2000] and Deterministic or Stochastic Model Predictive Con-
trol as in [Johannesson et al. 2007]. The ECMS is probably the most widely
explored approach with several versions, all of them showing near-optimal
results with a challenge of properly determining the equivalent factor (EF)
[Tulpule et al. 2011]. The values of EF are cycle-dependent and hence pose the
issue of non-causality. The task of updating the co-state online as driving sce-
narios vary is referred to as co-state adaptation and the supervisory controller
is referred to as adaptive optimal supervisory controller. Method falling in this
category are referred in the literature as Adaptive-ECMS(A-ECMS) strategy
[Onori et al. 2015, Lei et al. 2020]. The non-causality is addressed in the lit-
erature by taking advantage of the driving information [Payri et al. 2015, Yu
et al. 2020] to estimate the suitable values of the weighting factor between
fuel and battery energy sources. The adaptation techniques in the literature
are classi�ed in two categories: The �rst category is adaptation base on the
driving cycle prediction. The equivalence factor is estimated online based on
a look ahead horizon de�ned in terms of energy at the wheels, to determine
at each instant the most likely behaviour. [Sciarretta et al. 2004, Ambuhl
& Guzzella 2009]. In literature, the task of driving cycle prediction is usu-
ally performed using Neural-Network (NN) and Markov-Chain (MC) based
methods. In the article by the authors in [Xie et al. 2018], a comparison of
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the two approaches is shown in terms of prediction accuracy and computa-
tion speed. The MC based method is shown to outperform the NN based
method. In the article [Sun et al. 2017], authors proposed a RBF-NN speed
prediction method integrated to the A-ECMS. This method used open-loop
speed prediction derived from the current vehicle state. The second cate-
gory of the adaptation methods is by exploiting the fact that the equivalence
factors are similar for cycles with similar statistical properties. To recognise
the driving cycle characteristics, the authors in [Guardiola et al. 2013, Payri
et al. 2012, Gu & Rizzoni 2006, il Jeon et al. 2000] use statistic and clustering
techniques to classify the driving type. Most of the pattern recognition algo-
rithms in the literature �rst identify the kind of driving conditions the vehicle
is undergoing, and then select the most appropriate equivalence factors from
a prede�ned set.

This application addresses the adaptation by using the �rst method men-
tioned above. In the original A-ECMS, introduced by the authors in [Musardo
et al. 2005], the algorithm predicts mission that the vehicle is following and
determines the optimal Equivalent Factor (EF) for the current mission by the
direct optimization method. The cycle prediction is based on a �xed transition
probability matrix for the entire route and it does not account for the devia-
tion in the predicted and the actual vehicle velocity. To this end, a close-loop
driving cycle prediction method based on the MC approach is introduced in
the A-ECMS. The driving prediction uses the historical information to obtain
space dependent transition probability matrices and then uses Markov prin-
ciple to recursively predict the driving cycle and update the EF based on the
online ECMS results. In this way, the predicted speed and the EF adapt them-
selves periodically during the Control Horizon Window (CHW) such that, at
any instance the power split is optimal and the expected terminal SoC is close
to the desired level.

The main objective of the study is to develop an online applicable EMS for
a pHEV that exploits the information obtained when the vehicle recurrently
covers a given route. For application purposes, a route of 21km including
rural, highway and urban areas has been chosen. The route was covered by
the same driver 50 times during consecutive working days.

Regarding the vehicle, a pHEV has been chosen to show the strategy po-
tential while the method can be adapted to deal with other powertrain types
(series, series-parallel, charge sustaining,...). In this architecture, i.e parallel
arrangement ,the vehicle can be driven by the ICE, the EM, or both simulta-
neously. Thus, there are di�erent solutions to provide the power required by
the driver with di�erent costs and impacts in future operation, which poses an
interesting optimization problem. The battery is charged either by an exter-
nal power source, by the ICE or by regenerative braking through the electric
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Figure 7.22: Real driving missions

motor. The main characteristics of the vehicle considered in the present work
are shown in Table 3.1, while the layout and main energy �ows in the pow-
ertrain are shown in Figure 3.9 The addressed problem will be to optimize
the power-split of the pHEV in order to minimise the fuel consumption of
the vehicle in the considered route avoiding SoC excursions over the battery
limits.

7.3.2 Method Description

The problem previously described �ts perfectly in the �eld of Optimal Con-
trol, as the extensive literature on EMS shows [Tang & Rizzoni 2016, Jiang
et al. 2017, Du et al. 2016]. The associated Optimal Control Problem can be
written as:


arg minu

∫ T
0
ṁf (u, v)dt

ẋ = g(x, u, v, v̇, γ)

h(x, u, v, v̇, γ) ≤ 0

(7.13)

where, for the sake of readability, the explicit dependence of the variables
on time has been omitted, T is the driving cycle duration, g is the function
describing the state dynamics (equation 3.18) and h represents the local con-
straints imposed on the state and control variables in order to guarantee the
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physical operation limits (maximum and minimum limits on battery state of
charge and power, speed and torque of powertrain elements).

Regarding the solution of system Equation 7.13 one can observe that pro-
vided the dependence on T, v, v̇ and γ a proper estimation of such parameters
is needed. In fact, the optimal solution of the problem can only be obtained
if perfect knowledge of the driving cycle is available. Assuming a suitable
approximation of those variables, there is a wide set of solutions in literature
consolidated by the authors in [Zhang et al. 2020]. Amongst them, those de-
rived from the Equivalent Consumption Minimization Strategy (ECMS) are
widespread since provide a feasible on-board application. The ECMS is aimed
to replace the integral problem presented in Equation 7.13 with a set of equiv-
alent problems to be solved at every time step:

J = Pf + µPb (7.14)

where the parameter µ, is a weighting factor between fuel and battery energy
sources. An analytical derivation of the ECMS can be obtained from the
PMP [Serrao et al. 2009], in any case, intuition shows that a penalty on the
battery use should be included in the cost function to avoid its depletion. The
selection of the proper value of µ depending on the driving conditions is the
key aspect of the ECMS. Provided a driving cycle (T, v, v̇ and γ) the value of
µ that ful�ls with constraints in problem Equation 7.13, and particularly the
limitations in the SoC.

According to the suitability of the ECMS method and requirement of an
estimation of driving cycle, the proposed controller is presented in Figure 7.23.

The prediction block uses the current vehicle position (st) and speed (vt) to
estimate the driving cycle main parameters, consisting on the duration T̂ − t,
vehicle speed and acceleration sequences (v̂t:T̂ and ˆ̇vt:T̂ ) and estimated road
slope evolution during the cycle (γ̂t:T̂ ). The prediction block is based on the
tool described in chapter 5.

Once the driving cycle is estimated, the power demand block calculates the
desired torque and speed based on the vehicle model described in section 3.1
and using T̂ , v̂t:T̂ , ˆ̇vt:T̂ and γ̂t:T̂ .

The inputs to the µ calculation block are the estimated torque and speed
vectors (T̂gt:T̂ and ω̂gt:T̂ ) and the current SoC (SoCt). The optimal µ in the
sense of that leading to minimum SoC at the end of the estimated driving
cycle is calculated by an iterative method, in the case at hand the bisection
method. Note that the condition of minimum SoC at the end of the cycle
has been chosen due to the plug in nature of the powertrain and taking into
account that the vehicle can be fully recharged at the end of the route. In any
case, the target SoC can be modi�ed adding a new calibration parameter to
the control strategy. The calculated µ is applied during a prede�ned CHW,
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Figure 7.23: Proposed control architecture where st is the current vehicle
position, ·̂ represents an estimated variable and subindex t : T̂ represent the
evolution from current time (t) to the estimated end of the cycle (T̂ )

where the ECMS block calculates the optimal torque split between the ICE
and the EM at every time-step. The CHW is a sliding distance window whose
size decides the frequency at which the µ is updated during the trip in order to
compensate the deviations in the SoC due to driving cycle estimation errors.
In the present work a 1 km CHW is used to avoid excessive computation cost.

7.3.3 Design of case study for method veri�cation and

validation

There are four di�erent energy management strategies tested in the simula-
tions and Hardware-in-the-loop test environment for the purpose of compari-
son. The following is a list of the considered EMSs.

• CD-CS: The standard, Charge Depleting - Charge Sustaining strategy.
For convenience, in CD-CS a low weighting factor µ is employed, from
the beginning of the driving cycle until the battery SoC reaches the
minimum value and then µ is increased or decreased online to keep the
SoC as constant as possible.

• Average Cycle Prediction (ACP) + ECMS (ACP + ECMS): The driving
cycle is not known in advance however, as the considered route has been
previously covered 50 times, the average vehicle speed at every point
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of the route (represented by black line in Figure 7.22) is used as an
estimation of the driving cycle to feed the power demand estimation
block in Figure 7.23, then calculate µ and apply the ECMS. The value
of µ is updated after a given space window (1 km) to make up for
deviations in the SoC.

• Markov Chain Process (MCP) + ECMS (MCP + ECMS): The driving
cycle is not known in advance and the method proposed in section 5.2
is used following all the steps in Figure 5.1. Several predicted vehicle
speed pro�les are presented by the gray lines in Figure 7.22.

• Optimal (Equivalent Consumption Minimisation Strategy): The driving
cycle is known in advance and an optimal weighting factor (µ) is applied
during the complete driving cycle to minimise fuel consumption with a
constraint in the minimum SoC.

In order to assess the performance of the proposed control strategy in a wide
set of scenarios, a simulation campaign using forward versions of the pow-
ertrain model presented in section chapter 3 was done. Then, a veri�cation
of the method suitability is done experimentally on the test cell described in
section section 6.1. A single driving cycle has been chosen to con�rm the
modelling results previously discussed. The simulation campaign consisted of
running the vehicle model with 4 EMSs on 50 di�erent driving cycles. On the
other hand the experimental study comprised of running 4 EMSs on a single
driving cycle.

7.3.4 Results

The scatter of the results with 4 EMSs (presented in the previous section) on
several driving cycles is presented in Figure 7.24. Even though the objective
of the control problem is to keep the SoC at 15% at the end of the mission, a
tolerance is ±5 was allowed during the study.

The dispersion of the fuel consumption for the similar value of the terminal
SoC for each strategy is presented in Figure 7.25. It can be noticed that the
MCP+ECMS strategy is nearest and CD-CS is farthest from the optimal;
hence proving the potential of the current intervention. The performance of
the CD-CS which does not take into account any prediction is inferior to the
other two prediction based methods (MCP and ACP).

The implementation of the above four strategies in Hardware-In-Loop
(HIL) setup was to further validate the results obtained from the simula-
tion study. Figure 7.26 shows the driving cycle (vehicle speed) in the top
plot, the evolution of µ and SoC with the tested strategies in the central
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Figure 7.24: Simulation based veri�cation of 50 di�erent driving cycles, ∗ are
the results with optimal EMS,© are the results with ACP + ECMS,4 are the
results with MCP + ECMS, � are the results with CD + CS

plots, and the accumulated fuel consumption in the bottom plot. One can
observe, how knowing the driving cycle in advance (Optimal) allows to choose
a constant weighting factor µ between fuel and battery energy that allows the
ECMS to obtain the minimum fuel consumption ful�lling with the constraint
in the minimum SoC of 0.15. Of course, the solution that minimises fuel
consumption leads to the minimum SoC when the vehicle reaches the destiny
and can be potentially recharged. On the opposite side, (CD−CS) leads to a
substantial fuel increase despite ful�lling with the SoC constraint. It is clear
that case-4 with the charge depleting - charge sustaining depletes the battery
too early providing noticeable fuel savings in the �rst part of the cycle (until
second 600) approximately but an excessive penalty in the last phase of the
cycle. Regarding ACP − ECMS, it can be observed how the �ltering due to
driving cycle averaging leads to a smooth estimated driving cycle with too
low dynamics, and this fact leads to a noticeable deviation from the optimal
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Figure 7.25: Spread in fuel consumption for similar level of terminal SoC for
50 driving cycles on the same route

(case 1) results despite it still improves the results with the CD-CS strategy,
which at some point shows that despite, the average driving cycle provides
some sort of description of the actual driving cycle. Finally, the proposed
strategy (MCP + ECMS) leads to the nearest results to the optimal solution
due to the better description of the driving cycle o�ered by the Markov based
driving cycle estimator.

As a summary, Figure 7.27 shows the Pareto front obtained on a driving
cycle applying constant µ with a priori knowledge of the cycle, and the rest
of EMS considered. Provided the same SoC at the end of the driving cycle,
the fuel consumption in CD−CS , ACP + ECMS and MCP + ECMS is 52%,
35% and 11% higher than the optimal as shown in Figure 7.28.

In Figure 7.29, the engine operating points are presented overlapping the
e�ciency map for the entire trip using four strategies. The black dots in
�gure represent the engine operating points in each scenario. The patches
mark the boundary of operating points for each scenario. Clearly, in the case
of optimal strategy the engine operates largely in the high e�ciency zone. In
MCP + ECMS the patch area is smaller in comparison with CD − CS and
ACP + ECMS
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Figure 7.26: Evolution of experimental results in the considered driving cycle
with strategies de�ned in cases 1 to 4.

7.3.5 Summary and conclusion

In a real driving mission the uncertainty in speed pro�les lead to subopti-
mal energy management strategy in the pHEV. A new method based on the
online speed prediction and adaptive ECMS is proposed to optimse the EMS
while keeping the battery SoC close to the target. The developed method uses
Markov based driving cycle prediction to adapt the µ based on the current
SoC and the vehicle position. The method is validated using a simulation
and an experiment based case study on a real-world driving mission. The
experiments were conducted on an engine test bench with the help of vehicle
model (Matlab/Simulink) in dSPACE environment. The developed method
is compared with the three SOA methods: The CD-CS (Heuristic Approach),
ACP+ ECMS (Online Approach) and ECMS (o�ine). The results from the
developed online method show signi�cant improvement in the fuel consump-
tion as compared to the Adaptive ECMS and the Charge depleting strategy.
As compared to the o�ine method, where the driving mission is known in ad-
vance the fuel consumption is 10% higher in the developed method. It is a step
towards an optimal online control of the complex HEV energy management
strategy. The proposed method can be extended to other HEV architectures
and in future can be tested on the real vehicle which is commuting regularly
between two destinations.
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Figure 7.28: Relative di�erence between fuel consumption compared to the
Case 1
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Figure 7.29: Engine Operating points overlapping the engine e�ciency map
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8.1 Optimisation based on Tra�c Light infor-

mation

8.1.1 Introduction and problem description

The intrinsic complexity of optimising the speed pro�le of a vehicle driven on
a route kept the researchers sceptical about the subject. Only until recently
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Figure 8.1: Scheme of the route analysed.

with the improvement in the computational capabilities, information avail-
ability through GPS, V2V and V2I have led to an increase in the research
activities. The complexity arises due to several uncertainties in real driving
conditions such as driver behaviour, tra�c light, tra�c situation, weather
etc. The section addresses the impact of tra�c light information availability
in terms of fuel consumption and emissions by means of comparing 3 di�erent
scenarios that a driver of a diesel light duty vehicle may face when trying to
cover a particular route of 1km with two tra�c lights in between. The �rst
scenario is that the driver does not know in advance the state of the tra�c
lights. The second scenario assumes that the driver knows the state of the
tra�c lights but has not modelling nor computation capabilities to solve the
associated Optimal Control problem. In the third scenario, the driver knows
in advance the state of the tra�c lights and also is able to solve the corre-
sponding Optimal Control problem that leads to fuel consumption or NOx

emissions minimisation. In the present study the vehicle speed trajectories
associated to the previously described 3 scenarios have been computed and
then tested in a Euro 5 Diesel vehicle installed in a chassis dynamometer
presented in section 6.3.

The problem addressed in the application is to cover a particular route in
less than a given time with minimum fuel consumption, or NOx emissions,
provided that several tra�c lights are within the route. In particular, the
route analysed is that of Figure 8.1, where l represents the route distance, l0
and L are the starting and ending points respectively, while lTLi represents
the position of tra�c light i. Any of the tra�c lights has its own period (TTLi)
and a time at red (tred,TLi). For the sake of simplicity, it is assumed that the
tra�c light goes directly from green to red (no orange lighting is considered).
The particular values of the previous variables employed in this study are
shown in Table 8.1
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Table 8.1: Route description.
Variable value

l0 0 m

L 1000 m

lTL1 250 m

lTL2 750 m

TTL1 90 s

TTL2 90 s

tred,TL1 30 s

tred,TL2 30 s

8.1.2 Design of case study for method veri�cation and

validation

In particular, the paper addresses the impact of tra�c light information avail-
ability in terms of fuel consumption and emissions by means of comparing 3
di�erent scenarios when a driver faces a route with tra�c lights. The �rst
scenario is that the driver does not know in advance the state of the tra�c
lights, so he applies a sensible strategy, i.e. keeping constant velocity from
the start to the end (if possible) to cover the distance in the required time.
Of course, depending on the state of the tra�c lights, the driver will need to
correct his strategy due to stops. One may expect that if the driver needs to
stop due to a tra�c light, and spend some time stopped, then the increase
in velocity needed to �nish the route in the desired time may involve a no-
ticeable penalty in terms of fuel consumption. The second scenario assumes
that the driver knows the state of the tra�c lights but has no modelling nor
computation capabilities to solve the associated optimal control problem. In
this case, a simple strategy is proposed and evaluated in the paper, which is
based on keeping velocity as constant as possible without having to stop in
a tra�c light. In the third scenario, the driver knows in advance the state
of tra�c lights and also has modelling and computation capabilities to solve
the corresponding Optimal Control problem that leads to fuel consumption or
NOx emissions minimisation. The study is carried out considering a particular
driving route of 1km with two tra�c lights in between. The comparison of the
performance of the previous strategies under di�erent scenarios will lead to
conclusions on the potential of the tra�c light information to improve the fuel
consumption and emissions of the vehicle. The current model does not take
into account the warm-up behaviour of the engine but could be done in future
with ease by including coolant temperature models. In any case, the current
optimization leads to a vehicle speed pro�le that consists in an aggressive ac-
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celeration, then almost steady velocity and �nally coasting, in this sense, the
current optimized pro�le will contribute to the warm-up during the �rst phase
of the cycle. If warm-up phase is included we expect that the optimization
strategy will be to accelerate even faster in order to warm the engine as fast
as possible.

8.1.3 Method description

Amongst the variables a�ecting the solution to a given optimisation problem,
one may �nd three that are specially relevant:

• The optimisation objective. In the case at hand, two di�erent objectives
are to be considered. First, the minimisation of the fuel consumption.
Then, the minimisation of the NOx emissions since it is the most critical
emission in Diesel powered vehicles and there is an increasing concern
about Diesel vehicle NOx emissions in urban areas. Note that a multi-
objective optimisation can be carried out considering a cost function
weighting both fuel and NOx emissions like in works addressing the
energy management of Diesel Hybrid Electric Vehicles [Simon et al. 2018,
Huo et al. 2018].

• The information availability. In this case, two opposite situations are
considered: the case where there is no information about the state of
the tra�c lights and the situation where the state of the tra�c lights is
a priori known.

• The computation burden. An online application of the strategy will
require an estimator for fuel consumption and emissions (model) and
a real time optimisation tool while generally, both have high computa-
tion. In this sense, two di�erent situations are considered: the situation
where there are no computation restrictions that allow the application
of Optimal Control techniques, in the case at hand Dynamic Program-
ming, and a sub-optimal solution with real time application. Note that
if tra�c disturbances are neglected, the vehicle speed trajectories can
be precomputed and applied according to the tra�c lights state.

Taking into account the previous aspects, 4 strategies are evaluated in the
present paper:

(i) Driver without tra�c light information (woTLI): In this situation, the
driver does not have information on the current and future state of the
tra�c lights. Taking into account that his objective is to cover the
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distance L within a time frame [0, T ], a sensible strategy is to try to set
a target velocity (vsp) such that:

vsp(t) =
L− l(t)
T − t (8.1)

Of course, depending on the state of the tra�c lights, the driver may
have to stop. According to item 8.1, from this point the objective ve-
locity vsp(t) will be increased to compensate for the stopped time.

(ii) Driver with tra�c light information (wTLI): It is rather intuitive that
keeping the velocity as constant as possible has a positive impact on
engine e�ciency, since the inertial term in the energy balance is min-
imised. It is also intuitive that stopping the vehicle in a tra�c light
should be avoided to minimise fuel consumption and emissions since on
one hand it involves a kinetic energy dissipation during breaking fol-
lowed by an energy expenditure to accelerate the vehicle again, and on
the other hand it will force a higher velocity after the tra�c light to
compensate for the time stopped. According to the above arguments,
a solution close to the optimum in the case without tra�c lights would
be to maintain a constant average speed that would take the vehicle to
the end of the trip at the desired time. For sure, the existence of tra�c
lights will often make this solution infeasible, but knowing when the
state of the tra�c lights changes can be used to consider a limited num-
ber of cases in which the vehicle speed is as constant as possible. In this
sense, the proposed strategy consists of considering a set of segments
with constant velocity, and then choose the combination with lower ve-
locity variations that does not incur in passing through a tra�c light in
red. The case at hand, with 2 tra�c lights, leads to the 9 trajectories
of constant velocity segments without crossing the tra�c lights in red
represented in Figure 8.2.

From an implementation point of view, the three following aspects should
be considered:

• This strategy is not optimal in terms of fuel consumption, nor NOx

emissions since the quantity to minimise is how the velocity is de-
viated from the constant velocity, provided some restrictions on
the vehicle position at di�erent times (i.e. the vehicle should pass
through the position of every tra�c light when its state is green).
The optimisation problem can be stated as:
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Figure 8.2: Scheme of the possible trajectories in the time-space plane that
are considered in strategy wTLI (in grey). The black thick lines represent
tra�c lights in red that can not be crossed, while the black dotted line shows
the optimal trajectory in the sense of equation 8.2

min
{∑j=n

j=1

(
vsp,j − L

T

)2}
s.t.

TLi (l = lTLi
) = green

(8.2)

Where n is the number of segments in the route (n − 1 is the
number of tra�c lights), vsp,j is the vehicle speed set point (the
decision variable) in the segment j, and TLi (l = lTLi

) is the state
of the tra�c light i when the vehicle passes through its position
lTLi

. According to the previous idea, this strategy does not require
a model for fuel nor NOx emissions since does not consider those
variables.

• Strategies woTLI and wTLI provide exactly the same result if
covering the distance at constant speed does not involve crossing a
tra�c light in red.

• Note that the calculation of the possible trajectories can be done
o�ine, so the computation cost on board is strongly reduced.

• Note that the number of constant speed segments (see Figure 8.2)
depends on the number of tra�c lights since the timing when they
change their state is used as a starting of ending point of the seg-
ment. Despite, in the case at hand, the number of cases to be
tested is small, its number rapidly increases with the number of
tra�c lights in the route according to the following sequence:

In order to consider many tra�c lights within the route a more
sophisticated optimization strategy than brute force, e.g. Dynamic
Programming, should be applied.
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Table 8.2: Number of cases (Nj) to consider in strategy wLTI depending on the

number of tra�c lights (j).
j 1 2 3 4 n

Nj 3 9 23 53 Nn−1 + 2(1 + Nn−1 −Nn−2)

(iii) Optimal speed pro�le to minimise fuel consumption with tra�c light
information (F opt): This strategy considers the application of Dynamic
Programming to the Optimal Control Problem of minimising fuel con-
sumption while covering the distance L in a limited time T , provided
that the vehicle cannot pass a Tra�c Light in red.

(iv) Optimal speed pro�le to NOx emissions with tra�c light information
(NOopt

x ): This strategy considers the application of Dynamic Program-
ming to the Optimal Control Problem of minimising NOx emissions
while covering the distanceL in a limited time T , provided that the
vehicle cannot pass a Tra�c Light in red.

The Table 8.3, summarises main characteristics of the evaluated strategies:

Table 8.3: Description of the assessed strategies.
Strategy Objective TrafficLightInformation RealTime

woTLI NO NO Yes

wTLI NO Yes Yes

F opt fuel Yes NO

NOopt
x NOx Yes NO

Note that strategies (iii) and (iv) require a model for the estimation of
fuel consumption and NOx emissions. Details regarding the optimisation per-
formed for those will be provided in following sections after describing the
model used.

Fuel consumption and NOx optimisation In the case of strategies (iii)
and (iv), the model previously described has been used to calculate the vehicle
speed sequence that minimises a given cost function (the fuel consumption or
NOx emissions respectively). In this sense, the associated Optimal Control
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Problem (OCP) can be expressed as:

min
{∫ L

0
h
v
dl
}

s.t.
dv
dl

= f
v

dt
dl

= 1
v

v(0) = 0

v(L) = 0

t(0) = 0

t(lTL1) = tgreen,TL1
t(lTL2) = tgreen,TL2
t(L) ≤ T

(8.3)

Where the function h represents the fuel consumption (Wf ) in the case of
strategy (iii) or the NOx emissions (WNOx) in case of strategy (iv). Function
f represents equation of vehicle dynamics and tgreen,TLj represents the time
range when the tra�c light j is green. From the OCP presented in Equa-
tion 8.3 one can observe that:

• While the typical domain for OCPs is time, in this case, space (l) has
been selected since it presents a more natural domain to include con-
straints related to tra�c lights whose position is constant. The same
approach is usually followed when constraints on the road gradient or
vehicle speed limits are to be considered [Hellström et al. 2010a]

• The problem de�ned inEquation 8.3 has 2 states (v and t) and only
one decision variable (upedal). In this sense, as the number of states
and control variables is small, the problem is specially well suited for
the application of Dynamic Programming (DP). In particular, the DP
solver used in this work is a Matlab based code presented in [Sundstrom
& Guzzella 2009].

8.1.4 Results

Independently on the availability of information concerning the state of the
tra�c lights, the starting time of the route with respect to the tra�c light
period, is a variable that is outside of control, at least this is the hypothesis
followed in this work. In addition, it is obvious that the performance of any
given strategy will strongly depend on the tra�c light timing, and therefore
on the instant of the tra�c light period in which the travel starts. According
to that, in the present work the timing of tra�c lights when the trip starts
is considered as a stochastic variable uniformly distributed between 0 and
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TTL (being TTL the period of the tra�c lights, in particular, 90 s according
to Table 8.1). Then, any arbitrary performance index h (in practise fuel
consumption or NOx emissions) of a given strategy will be evaluated in terms
of the expected value considering the average of the results obtained with
di�erent starting times (dT ) distributed along the complete tra�c light period.

To point out the impact of tra�c light at the beginning of trip on the
vehicle trajectory, Figure 8.3 shows the vehicle trajectories at 6 di�erent tim-
ings (dT ) of the 90 seconds period. In any of the trajectory plots (space as a
function of time), the horizontal thick black lines represent the instants when
tra�c lights 1 and 2 remain red, the lines in grey scale represent the trajec-
tories followed by vehicles with strategies woTLI (in thick light grey line),
wTLI (black dotted line), F opt (grey thick line) and NOopt

x (in dark grey). It
can be observed how the driver without Tra�c Light information (woTLI)
starts the trip with the same constant velocity independently on the starting
time (dT ). In particular, he follows a constant velocity pro�le (without con-
sidering the acceleration and breaking phases at the beginning and end of the
trip) excepting cases dT = 0, dT = 60 and dT = 75 when the red state in any
of the tra�c lights forces the driver to stop. One may observe how in those
cases, the driver needs to increase the velocity after the vehicle stop in the
tra�c light to make up for the time lost. In particular, in the case of dT = 75,
despite increasing the vehicle velocity up to 50kmh (maximum allowed vehicle
speed) after the stop in the second tra�c light, the driver is not able to ful�l
the time constraint and needs more then 150s to cover the travel length.

In spite of the fact that the fuel consumption in the cases without stop
at the tra�c lights may be low, cases dT = 0, dT = 60 and dT = 75 (and
others around the same timing) where the vehicle needs to stop will harm the
expected fuel consumption of the vehicle.

Strategy wTLI coincides with woTLI when no breaking due to tra�c
lights is required. In cases when the woTLI strategy requires to stop the
vehicle in a tra�c light, the strategy wTLI corrects the velocity pro�le to
avoid hard breaking and subsequent acceleration.

Regarding the optimal strategies (F opt and NOopt
x ) results show that a

higher velocity at the �rst phases of the trip is preferable. The reason is that
a faster acceleration and velocity during the �rst phases of the test allows the
vehicle to coast at latter phases so there is not an associated fuel consumption
nor NOx emissions during those phases. Di�erences between F opt and NOopt

x

trajectories are due to the fact that high e�ciency areas in the engine do
not correspond with low NOx operating conditions. In fact, F opt trajectories
generally show more aggressive accelerations since the maximum e�ciency
area of the engine is placed at high loads, while the NOopt

x strategy shows
slower accelerations and velocities (see the slope of the trajectories plotted
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in Figure 8.3) because the minimum NOx emissions are obtained in the low
engine speed and load area (see Figure 3.7) where EGR is implemented. It
can also be observed how in some cases (e.g. dT=60) NOopt

x and specially
F opt trajectories lead to cover the distance in a time substantially lower than
the limit. In those cases, the particularities of the engine maps make more
e�cient (in fuel or in NOx) to spend more mechanical energy than strictly
necessary to make the engine work in a convenient operating condition.

The Figure 8.4 and Figure 8.5 show the experimental results obtained for
the case of dT = 0. In this particular case, if the woTLI results are observed
it can be noticed how the vehicle is not able to cover the complete distance
(L) with a constant speed (L/T ) since it �nds the second tra�c light in red
and needs to stop. Then, in after the second tra�c light the vehicle needs to
accelerate to a higher velocity to make up for the time lost. Note that this
acceleration is responsible for a considerable percentage of the NOx emitted
and also leads to a substantial increase in the fuel consumption. The results
with the wTLI strategy show a slower vehicle speed until the second tra�c
light that allows the vehicle to reach this point just when the tra�c light
turns into green. Of course, some acceleration is needed after this point to
recover the time lost due to a lower vehicle speed than necessary to cover the
distance in time T =150s but this acceleration is smaller than in previous
case, no substantial NOx or fuel increase is observed. Both optimal strategies
(F opt and NOopt

x ) involve a high acceleration at the beginning up to a velocity
level that allows to pass the �rst tra�c light just after getting green. It can
be noticed how the acceleration in the NOopt

x case is slightly lower to avoid
high loads where NOx production is high. After this point, the velocity is
again increased up to the maximum velocity in the cycle to allow the vehicle
pass through the second tra�c light before getting red, and then the vehicle
speed is slowly reduced to the end of the route. Note that in both cases the
vehicle needs less than 150s to cover the distance as this condition has been
included as a constraint for the optimisation problem. In particular, the F opt

case requires only 132s since the maximum e�ciency area of the engine is
placed at a higher load than that required to cover the distance in 150s.

Similarly, Figure 8.6 and Figure 8.7 show the experimental results ob-
tained for the case of dT = 45. In this particular situation, woTLI and
wTLI solutions are exactly the same since keeping a constant velocity dur-
ing the complete route of L/T does not involve crossing any tra�c light in
red. Optimal trajectories (F opt and NOopt

x ) are again based in a maximum
acceleration then cruising or coasting and �nally breaking pattern. In any
case, it can be observed how, as in this case the impact of the tra�c lights on
the woTLI and wTLI strategies is minimum, the di�erences in performance
between those strategies and the optimal ones (particularly in terms of fuel
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Figure 8.3: Vehicle trajectories at 6 di�erent tra�c light timings (dT ). Light
grey line: trajectory without tra�c light information (woTLI). Black dotted
line: trajectory with real time strategy and tra�c light information (wTLI).
Thick grey line: trajectory with Dynamic Programming optimisation for min-
imum fuel consumption (F opt). Dark grey line: trajectory with Dynamic
Programming optimisation for NOx emissions (NOopt

x )
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Figure 8.4: Experimental results (trajectories in upper plot, velocity pro�les
in second plot, fuel consumption in third plot and NOx emissions in bottom
plot) obtained for the case with dT =0s. Light grey line: trajectory without
tra�c light information (woTLI). Black dotted line: trajectory with real time
strategy and tra�c light information (wTLI). Thick grey line: trajectory with
Dynamic Programming optimisation for minimum fuel consumption (F opt).
Dark grey line: trajectory with Dynamic Programming optimisation for NOx

emissions (NOopt
x ).
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Figure 8.5: Accumulated fuel consumption (top plot) and NOx emissions
(bottom plot) obtained for the case with dT =0s.

consumption) is reduced.
The Figure 8.8 shows the average results obtained for the 6 di�erent dT

timings shown in Figure 8.3 as an estimation of the expected performance
of the vehicle in the considered route. In average, a driver trying to keep
a constant speed without tra�c light information (woTLI) will have a fuel
consumption of 5.9l/100km and produce 612g/km of NOx emissions. In-
cluding information about the state of the tra�c lights allows to reduce the
fuel consumption to 5.45l/100km (−7.6%) and NOx emissions to 533g/km

(−12.9%) despite not using any vehicle model nor fuel consumption or NOx

optimisation that may require high computation e�orts. As expected includ-
ing computation capabilities aimed to model the actual vehicle performance
and allowing its optimisation leads to an additional improvement in the con-
sidered performance index. In this sense, a fuel oriented optimisation will
lead to a fuel consumption of 5.18l/100km (−12.2%) and NOx emissions of
449g/km (−26.6%). If the objective is to minimise the NOx emissions, they
can be reduced up to 415g/km (−32.2%) at the expense of increasing fuel
consumption to 6.4l/100km (+8.5%).

8.1.5 Summary and conclusions

This section was aimed to assess the impact of tra�c light information avail-
ability in terms of fuel consumption and NOx emissions. In order to do that,
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Figure 8.6: Experimental results (trajectories in upper plot, velocity pro�les
in second plot, fuel consumption in third plot and NOx emissions in bottom
plot) obtained for the case with dT =45s.Light grey line: trajectory without
tra�c light information (woTLI). Black dotted line: trajectory with real time
strategy and tra�c light information (wTLI). Thick grey line: trajectory with
Dynamic Programming optimisation for minimum fuel consumption (F opt).
Dark grey line: trajectory with Dynamic Programming optimisation for NOx

emissions (NOopt
x ).
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Figure 8.7: Accumulated fuel consumption (top plot) and NOx emissions
(bottom plot) obtained for the case with dT =45s.

Figure 8.8: Average fuel consumption (f̂uel in top plot) and NOx emissions
(N̂Ox in bottom plot) for the six tra�c light timings dT tested (see �gure 8.3.
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a non-linear dynamic vehicle model is developed to evaluate the performance
of a vehicle in terms of fuel consumption and NOx emissions in a route with
di�erent scenarios of information about the state of the tra�c lights. In par-
ticular, three cases are studied: the case without information about the state
of the tra�c lights, a case where the state of the tra�c lights is known but
suboptimal strategies have to be used due to computation capabilities lim-
itations and �nally the case where the state of tra�c lights is known and
there are not computation limitations, so optimal control (DP) can be used.
Previous strategies have been used with fuel consumption and with NOx as
optimisation objectives to check the impact of the solution on both parame-
ters. The obtained trajectories have been evaluated experimentally in a chassis
dynamometer with a Euro5 Diesel light duty vehicle.

8.2 Online vehicle speed advisor

8.2.1 Introduction and problem description

In the same line that the last work, the target of the present study is to
explore the potential of speed pro�le optimisation in real driving conditions,
by assessing the suitability of an application which recommends the driver
the optimal vehicle speed sequence that minimises the fuel consumption for a
particular route. To this aim, there are three main aspects to consider:

• The route: The optimal vehicle speed pro�le is route-dependent. In a
�nal application, information about the route should be a priori available
to allow the optimal trajectory computation.

• Model and optimisation tool: In order to provide any advice to the
driver about the vehicle speed pro�le that minimises fuel consumption,
a model able to estimate in advance the impact of driver decisions and
particularly of the vehicle speed on fuel consumption is required. This
model in combination with an optimisation tool allows to compute the
optimal speed pro�le to be followed.

• Driver advisor: The computed optimal speed trajectory should be trans-
mitted to the driver that will follow it in the best way possible. In the
same way, the optimal speed trajectory should be continuously updated
to make up for the deviations of the actual driving speed from the op-
timal pro�le.

This application deals with minimisation of fuel consumption under real driv-
ing conditions using a vehicle speed advisor. The aim is to explore the po-
tential of speed pro�le optimisation in real driving conditions while assessing
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the suitability of an application which recommends the driver the optimal
vehicle speed sequence that minimises the fuel consumption on a particular
route. The speed advisor is based on solving the Optimal Control problem
of covering a particular route with minimum fuel consumption with a de�ned
time constraint. The approach presented was applied to and implemented on
a real passenger vehicle to obtain a trade-o� between fuel consumption and
travel time for several trips on the route. Experimental results are presented
with and without advisory, demonstrating that with speed advisor the results
approach the pareto front with lesser dispersion on the other hand without
advisory the dispersion is higher and largely above the Pareto front. In the
presented work, a particular route between two cities has been selected for the
optimisation. The route consists mainly on highway driving with presence of
speed limits and altitude variations but limited tra�c and no vehicle stops.
The route has been covered several times in order to identify an energy model
of the vehicle and characterize the route. Then, the optimal control problem
of covering the route with minimum fuel consumption in a given time has been
solved by DP for di�erent time constraints in order to assess the compromise
between fuel consumption and trip time. The optimal vehicle speed is passed
with a display to the driver as a reference to minimise fuel consumption. De-
spite the high computation cost and curse of dimensionality of DP, it allows
storing not only the optimal control between initial and �nal states, but the
optimal control sequence between any state contained in the feasible set and
the �nal one. This property is used in the present work to correct any devi-
ation from the optimal speed pro�le, due to non-considered disturbances or
lack of accuracy of the driver.

8.2.2 Method description

The aim of this work is to explore the potential of speed pro�le optimisation
in real driving conditions by means of a driving advisor application. In order
to provide advice to the driver, a sensible possibility is to compute what is
the velocity pro�le to minimize a given cost function and then provide this
information to the driver. Regarding the speed pro�le computation, the fuel
consumption is an intuitive cost function while the time spent during the
trip seems a sensible constraint. Other restrictions that should be taken into
account are the speed limits during the route or the limits of the vehicle and
the powertrain. In any case, a generic control problem consisting in �nding the
control policy to drive a dynamic system from a given initial state to a de�ned
�nal state with minimum cost and ful�lling a set of constraints �ts in the �eld
of Optimal Control. The formulation of an Optimal Control Problem (OCP)
considers a cost index and constraints expressed in terms of system states
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(x), system actuators (u), problem disturbances (w) and domain. Taking into
account that, in the case at hand, the route is a priori known, the slope and
speed limits (which are the problem disturbances) are space (s) dependent, it
seems more convenient to consider s as the problem domain. In this case, the
cost index can be de�ned as:

J =

∫ L

0

ṁf

v
ds (8.4)

where L is the route length and for the sake of readability, the dependence
of the fuel consumption on the actuator (up) has been omitted. The system,
i.e the vehicle model described in chapter 3 can be condensed in the generic
dynamic system:

ẋ = f(x, u, w, t) (8.5)

Where the dependence of the state (velocity) evolution on the state itself, the
control actions (in the case at hand u), disturbance (road slope) and time is
described. Therefore, the state evolution with the problem domain (space)
becomes:

dx

ds
=
f

v
(8.6)

Where the dependence of f on the system state, actions and disturbances has
been omitted for the sake of clarity.

The vehicle should cover the de�ned distance (L) within a given time (T ),
which leads to the following integral constraint:∫ L

0

1

v
ds ≤ T (8.7)

Road speed limits have to be respected which leads to the following path
constraint:

v(s) ≤ v̂(s) (8.8)

Limits on the engine (speed range and maximum power output) and brakes
(maximum braking force) are also considered. Finally, the initial speed is also
imposed. Despite the vehicle starts from rest a minimum vehicle speed is
imposed to avoid divisions by 0 in the model (boundary constraint):

v(0) = v (8.9)

Regarding �nal speed, no restrictions are imposed beyond the maximum speed
of the road.
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In the present case, to analyse the performance of the speed advisor, a
60 km daily commute route between two cities in Spain (A7 route between
Canals and Valencia) has been chosen. In this sense, Figure 8.9 shows the
evolution of road slope and maximum vehicle speed along the route. Both
variables have been considered in the optimisation problem as disturbance and
path constraint respectively. The route was covered daily (during consecutive
working days) with an instrumented vehicle to obtain a set of 45 tests. The
experiments where carried out between 6:00 am and 7:00 am to avoid the
rush hour and therefore tra�c jams that complicate the optimisation. The
occupancy in the road did not exceed 5% according to the measurements of
the tra�c agency (DGT). Despite tra�c conditions can be included in the
optimisation as vehicle speed constraints [Guardiola et al. 2019] if external
information about their state is available, this is not considered in the present
work.

Figure 8.9: Maximum vehicle speed and slope along the considered route.

Therefore, the OCP leading to the speed reference for the driver consists
in minimizing J (Equation 8.4) throughout a trajectory of length L and the
speed constraints and slope shown in Figure 8.9, ful�lling the constraints
Equation 8.7 to Equation 8.9.

Fuel consumption optimisation There are di�erent families of OC meth-
ods that can be applied to solve a problem like the one described in the previ-
ous section, DP is among the most used, specially if the number of states (in
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the case at hand 1) and actuators (also 1) remains low. The DP algorithm
is the numerical implementation of the Hamilton-Jacobi-Bellman equation
which is a su�cient condition for a global optimum in an OCP. The method
is based on the discretization of the domain (S) in N steps, and also the state
space (X) and control space (U) to build a set of possible trajectories between
the de�ned boundary conditions. Then, a cost to go function J such that:

J(xk, sk) = minu{L(X,U, sk) + J(xk+1, sk+1)} (8.10)

Where k = 0, ..., N − 1 and L is the cost in a given step (term inside the
integral in Equation 8.4), is calculated backwards in order to represent the
minimal cost to reach a suitable terminal state from any feasible state at
time-step k.

The model used in the present work has only one state (v) and one ac-
tuator (u), nevertheless, the time constraint represented by Equation 8.7 has
to be handled. Since the problem does not explicitly depend on time, the
time restriction can be addressed adding it to the cost function and using a
weighting factor (α) that balances between fuel consumption and time:

L′ = ṁf

v
+ α∆t (8.11)

where ∆t is the time needed to cover a step in the space discretization. Then,
the DP can be applied with only one state, but a shooting method should be
applied to �nd the proper value of α that allows to ful�l the integral constraint
in Equation 8.7. The alternative used in this work is to consider time as a
second state, in order to compute its evolution and assure that constraint in
Equation 8.7 is hold. In this last case, the number of states of the problem
increases to 2. Note that despite issues such as the curse of dimensionality, the
recursive nature of DP allows it to compute not only the optimal trajectory
but a set of optimal trajectories from any state in the feasible state space X
at any instant k. This feature is specially interesting to implement a close
loop advise on the driver that allows him to make up for any deviation from
the optimal trajectory due to disturbances not considered in the optimization
or due to the lack of accuracy in his driving when trying to follow the advised
trajectory. Of course, this is only possible if constraint in Equation 8.7 is
addressed by considering time as a state of the problem.

The Table 8.4 shows the settings used in the DP algorithm, and as an in-
dicative number of the computation burden, the simulation of one route takes
1 hour in a standard laptop (Intel(R) Core(TM) i7-8550U CPU @ 1.8GHz
and 8GB RAM).
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Table 8.4: Discretisation employed in the optimisation algorithm DP
Variable Range Element size

Distance (s) [0, 60]km 50m

Speed (v = x1) [30,120]km/h 1km/h

Time (t = x2) [0, T ] 2s

Brake/Throttle (u) [-10,100]% 2%

Vehicle speed advisor implementation The �rst result of the optimiza-
tion described in the previous section is the optimal sequence in the states
of the problem (particularly on the velocity) depending on the position of
the vehicle (v∗(s)). This information would be enough to minimise the fuel
consumption if the driver is able to perfectly follow it during the route. In
this case, a direct interpolation in the v∗(s) curve of the actual position of
the vehicle (sk) would be enough to display the actual and reference vehicle
speeds. However, it is not possible for a standard driver to perfectly follow a
prescribed speed pro�le due to both disturbances that may appear during the
route (e.g. tra�c) and the limited driver skills. Another important reason
to not perfectly follow the advised vehicle speed may be drivability. As these
criteria has not been taken into account in the optimization process the driver
may feel uncomfortable following the advised speed pro�le in any part of the
route. Note that any deviation from the optimal speed pro�le harms the op-
timality of the rest of the trip, if the driver continues following the advised
speed trajectory after a deviation, in the best case the time constraint will
not be ful�lled.

In this sense, some kind of feedback is necessary to keep optimality. To
this aim, instead of using the optimal trajectory from the DP, the optimal
control signal map (U∗) has been used, which speci�es the optimal control u∗

at each step k and at each state xk ∈ X. In the case at hand:

U∗ = u∗(sk, vk, tk) (8.12)

The optimal control signal map is combined with the vehicle model to
obtain an optimal speed map, which provides the optimal velocity in the next
step k + 1 and depending on the current state xk ∈ X to be used as a set
point for the driver:

vspk+1 = v∗k+1(sk, vk, tk) (8.13)

The Figure 8.10 shows a set of optimal speed maps at di�erent points of
the route. Depending on the position of the vehicle (s) there is a map showing
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what is the optimal velocity in the next step depending on the actual speed
and time. A feasible region can be identi�ed in any map, it is bounded by:

• Maximum speed depending on the speed constraint, which depends on
the vehicle position

• Maximum time: if the vehicle passes through this point in the route
latter than this maximum time, it will not be able to ful�l the time
constraint, even driving from this moment at the maximum allowed
speed.

• Minimum time: if the vehicle passes through this point in the route
earlier than this minimum time, it will not be able to ful�l the time
constraint, even driving from this moment at the minimum speed used
in the optimization (30km/h). This limit does not have a practical
purpose.

In the feasible area of vspk+1 maps, it can be observed how for a given
position and velocity in the route, the advised velocity in the next time-step
increases with the time consumed.

Figure 8.10: Optimal vehicle speed set point for a given vehicle position, time
and current vehicle velocity.

As the current velocity, position and time consumed during the trip are
available in the vehicle, the developed application use them to interpolate
what is the optimal velocity during a moving window of 120 seconds and
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displays it to the driver. In order to do that, the system should estimate the
future positions of the vehicle by integrating the optimal velocity obtained in
a given time step. Algorithm 1 shows a simple version of the process used. In
the current work the algorithm is run every 5 seconds to update the optimal
speed pro�le. N and δt are arbitrary numbers, in the case at hand 120 and 1
respectively to de�ne a control horizon of 120 seconds.

8.2.3 Results

The Figure 8.11 shows a test carried out with the vehicle speed advisor. In
the �gure, one can observe how the optimal speed pro�le is strongly a�ected
by the road slope. The stretch between 3 and 15 kilometres shows the steepest
ups and downs, and the optimal speed pro�le consists on reducing speed uphill
and increase it downhill in order to take advantage of road gradient and also
to avoid exceeding the vehicle speed constraint. One can also observe how the
speed limits play a key role in the optimization since optimal vehicle speed is
limited by the maximum velocity in several parts of the cycle, namely during
the �rst 3 kilometres, then between 26 and 32 and �nally between 46 and 48.
During most part of the route, where ramps are not sti� the recommended
vehicle speed is almost constant.

A
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de

Figure 8.11: Upper plot: Road altitude during the route. Lower plot: Op-
timal vehicle speed pro�le for an average vehicle speed of 95 km/h from DP
optimisation (grey) and driver ability to follow it (black line).

Regarding the improvement in fuel consumption with the driving advisor,
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Figure 8.12 shows the trade-o� between fuel consumption and travel time with
(bullets) and without (circles) its use. The black line shows the theoretical
pareto front computed by dynamic programming and the grey dashed lines
the pareto front ±0.1L/100km. White circles show results obtained without
speed advisor. Black dots represent results obtained with the speed advisor.
Labels A and B point out two di�erent tests with the same time but without
and with the speed advisor respectively. The theoretical pareto front obtained
from simulation with di�erent time constraints is also shown (black line). It
can be observed how results with the speed advisor approach the pareto front,
on the contrary, results without any advisory have higher dispersion and are
placed, in general clearly above the pareto front. In addition, Figure 8.12
points out that the higher the time to cover the route, the larger the potential
of the speed advisor. The reason for that higher advisory potential, is that as
the time increases, the impact of the maximum velocity constraint decreases
so the space of feasible velocities is enlarged and accordingly the importance
of optimisation increases. It is intuitive that if the time constraint is set to
the minimum a�ordable value (in this particular route, 2000 seconds), the
optimal speed pro�le matches the maximum speed constraint, so there is no
room for optimisation.

[L
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00
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]

Figure 8.12: Trade-o� between fuel consumption and time spent to cover the
route.

The Figure 8.13 shows two routes taking the same time with (black) and
without (grey) speed advisor (labelled as B and A in Figure 8.12). Amongst
the set of driving cycles without speed advisor and same time than trip B,
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A has been chosen because it is the one with minimum fuel consumption, so
vehicle speed is kept almost constant during the trip and the positive e�ect
of the ramps at the beginning of the cycle has been considered by the driver.
Nevertheless, even in this case, there is a non-negligible improvement with the
speed optimisation (a fuel saving of 4% at the end of the cycle). The main
di�erences in the fuel consumption appear during the stretch with higher
height di�erences, pointing out the importance of taking into account the
road slope for the vehicle pro�le optimisation, and revealing that even small
deviations from the optimal vehicle speed pro�le can involve a substantial
penalty in fuel consumption.

Figure 8.13: Comparison between two routes with the same time (average
speed of 95km/h) with (black, B point in �gure 8.12) and without (grey, A
point in �gure 8.12 speed advisor. Upper plot: vehicle speed. Lower plot: fuel
consumption di�erence between the case without speed advisor and the case
with speed advisor (*)

8.2.4 Summary and conclusions

The discrepancy observed in the declared and real world emissions has resulted
in a strong trend of applications improving real driving emissions. One such
application is presented in this section which is the speed advisor in real
driving conditions. The application optimises the speed pro�le in real time
and recommends the driver the optimal speed sequence that minimises the
fuel consumption on a particular route. The real- time implementation of the
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application shows the possibility to stay very close to the Pareto front. This is
majorly possible because the developed application allows storing not only the
optimal control between the initial and the �nal states, but also the optimal
control sequence between any state contained in the feasible set and the �nal
one. This property is used as a feedback to correct any deviation from the
optimal speed pro�le, due to non-considered disturbances or lack of accuracy
of the driver. The study also points out a strong dependence of optimal speed
pro�le on road slope and vehicle speed constraint.

In particular, with the proposed application fuel consumption can be im-
proved up to 4% without any penalty in travel time. Given the increasing use
of information systems, which can lead to some degree of a priori knowledge
of the vehicle speed trajectory, the results presented a step forward in under-
standing the potential of online optimization methods in advising the driver
to save fuel in real driving conditions.
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9.1 Introduction and problem description

The EU6D emission regulation intends to bridge the gap between laboratory
tests and the real driving conditions by the introduction of RDE testing. It
requires the measurement of RDE as an additional type approval test in order
to take into account the in�uence of the road pro�le, ambient conditions and
tra�c situations. An important amendment was included in Commission reg-
ulation (EU) 2016/646, limiting the driving dynamics and hence avoiding the
biased testing of the vehicle. The emission measurement under real driving
conditions pose a major challenge for OEMs since the situational environmen-
tal conditions such as temperature, tra�c and the behaviour of the driver are
not reproducible. As to investigate in�uences of hardware and software on the
emission performance, constant or at least, reproducible conditions are neces-
sary. The challenges in meeting RDE requirements are most pressing in early
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development stages. This has created demand for alternative means of ensur-
ing product compliance early in the development process without the need for
costly on-vehicle testing, and the engine testing is an important solution to
understand e�ect of such uncertainties. In this work, a driving cycle generator
is developed to synthesize cycles meeting all the regulatory requirements of
the RDE testing. The generator is based on the transition probability matrix
obtained from each phase of the WLTP cycle. A single tuning parameter was
introduced in the cycle generation method to control the driving dynamics of
the output cycle. Using the tuning parameter several trips are generated with
dynamics ranging from soft to aggressive within the regulatory limits. Fi-
nally, a Direct Injection Compression Ignition (DICI) 1.5L engine with a SOA
after-treatment system was utilised to run the generated synthetic cycles to
measure cumulative NOx emissions for di�erent driving cycles.

EU6D Regulations To eliminate the di�erence between the declared and
real emissions of a vehicle, EU6D regulations for light duty vehicles comple-
ment the dynamometer based type approval procedure with on road emission
testing by means of portable emission measurement devices. To allow a pro-
gressive adaption of vehicle manufacturers to the new situation, the Confor-
mity Factors (CF) leading to the maximum emission limits for RDE will be
introduced in two phases. Temporarily CFNOx is 2.1 and from 2020, it will be
decreased to 1.5. Accordingly, not to exceed limits (NTE) for real drive NOx

emission has been �xed to:

NTENOx = CFNOx × EU6NOx (9.1)

where, EU6NOx represent the Euro 6 limit for NOx emissions, which is 0.08g/km.
For a trip to be quali�ed for RDE type approval, it is required to have

certain characteristics as listed in table 9.1 and it must also be within certain
boundary conditions as summarized in table 9.1.

An RDE trip must cover three phases: urban u, rural r and motorway m.
These phases are based on vehicle speed: a vehicle travelling up to 60km/h
will be considered to be operating in urban conditions; at 60 to 90 km/h in
rural and above 90km/h in motorway conditions. The trip is then binned (in
phases) for assessment of the dynamics in each phase. The RDE regulation as
in the document [201 2016], de�nes a lower and an upper boundary condition
for the driving dynamics in each phase. This is in order to ensure that the
vehicle is not driven in an excessively soft or aggressive style.

An excessively soft driving that would lead too low and non-realistic NOx

emissions is eliminated by lower boundary limits de�ned for Relative Positive
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Altitude 0 to 700 m (Ext: 700 to 1300 m)
cum. elevation 1200m/100km

Alt. di�erence <100 m between start and end
Ambient temp. Moderate: 0C to 30 C

(Ext: -7C-0C and 30C-35C)
Dynamics Max:v.apos

Min:RPA
Maximum speed 145 km/h(>100km/h for 5min)
Payload Maximum 90% of the max vehicle weight

Table 9.1: Regulatory requirements

Average Speeds Urban 15 to 40 km/h
Rural < 60 km/h

Motorway > 90 km/h
Distance Urban > 16 km

Rural > 16 km
Motorway > 16 km

Trip Composition Urban 29 % to 44%
Rural 23 % to 43%

Motorway 23 % to 43%
Total Trip Duration - 90min to 120 min

Stop % - 6-30% of urban

Table 9.2: Trip Characteristic Requirements
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Acceleration (RPA) as in equation 9.2, which is de�ned as the integral of vehi-
cle speed (v) multiplied with the time step and the positive acceleration(apos)
for all accelerations > 0.1m/s2, divided by the total distance of the cycle(d).

RPAk =

∑
j[dt · (v.apos)j,k]∑

i di,k
(9.2)

where i=1 to Nk; j=1 to Mk; k = {u,r,m}, RPAk is the relative positive
acceleration for u, r and m phases, dt is the time step equal to 1 second, Mk

the sample number with positive acceleration in each phase and Nk is the
total sample number in each phase.

An excessively aggressive driving will be eliminated by upper boundary
limits de�ned for the 95th percentile of the product between actual vehi-
cle speed and positive acceleration(> 0.1 m/s2) for each phase, denoted as
(v.apos)k_95.

The upper and lower boundary limits are de�ned as in equations 9.3, any
of these condition makes a trip invalid. Where, v̄k is the average velocity in a
phase.

for v̄k < 74.6 [km/h]; if (v · apos)k_95 > (0.136.v̄k + 14.44)

or

for v̄k > 74.6 [km/h]; if (v · apos)k_95 > (0.0742 · v̄k + 18.966)

or

for v̄k < 94.05 [km/h]; if RPAk < (−0.0016 · v̄k + 0.1755)

or

for v̄k > 94.05 [km/h]; if RPAk < 0.025

(9.3)

9.2 Method description

In the current study, the synthesis procedure uses Markov chain due to its rel-
ative simplicity in representing an unknown system. The basis of the Markov
approach was described in chapter 5. The process of cycle synthesis in this
application is di�erent than the one described in chapter 5 in following ways:

• There are only three TPMs associated with each phase (urban, rural
and motorway) of the WLTC and not for each kilometre of a real-world
route.

• There is an additional �lter to eliminate driving cycles which do not
qualify according to the trip characterstics of the RDE regulated cycles.



161

0 10
0

5

10

15

0 10 20
0

10

20

0 20
0

10

20

30

0

0.5

1
Pb[-]

Figure 9.1: Speed transition probabilities from current speed vi to vi+ in the
urban, rural and motorway phase

• There is an additional tuning parameter for varying the driving aggres-
siveness.

In line with the driving cycle tool, the vehicle speed is the only system state
(xn = vn) and its sequence in each phase of the WLTC is used to build the
Transition Probability Matrices. For practical reasons, the data is discretised
in steps of 1 km/h in velocity. The process of cycle synthesis is summarised
as:

Step 1 : The transition probability matrices (TPMk), where k represents
the cycle phase, is extracted from the WLTC as shown in �gure 9.1. In
particular, the probabilities are assumed to be equal to the event frequency
during a given WLTC phase. In this way, statistical properties of each phase
of WLTC are retained, for example the low motorway driving dynamics and
the speed range (0 to 120 km/h) are conserved during the synthesis itself.

It can be noted, that the distance between the zero probability entries and
the main diagonal in �gure 9.2 is an indicator of the cycle aggressiveness. In
fact, this distance is a measure of the attainable acceleration since it provides
a boundary on the di�erence between the current vehicle speed and the vehicle
speed at next time step. This property is used to tune the cycle aggressiveness
during the synthesis. The width of the non-zero values near the main diagonal
of the TPM control the aggressiveness of the driving cycle as shown in �gure
9.2 for the urban phase of the driving cycle.

Step 2 : The inputs to the generator are initial vehicle velocity (v0), to-
tal time (T) and cumulative probability matrix (denoted by CPFi,k) derived
from phase-wise TPMk extracted in Step 1. The generator randomly allots
a time for each phase, such that

∑
k=u,r,m tk = T and ful�lling with composi-

tion requirements in table 2. Then the synthesis of each phase is dealt with
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Figure 9.2: Speed transition probabilities from current speed vi to vi+ in the
urban phase, with normal and high aggressiveness

separately. The corresponding CPFi,k is used to randomly generate velocity
for the next time step. Later the three phases are merged to form the entire
cycle. It must be noted that in each phase the TPM are time independent.

Step 3 : Finally, the trip is validated for the statistical requirements of
RDE regulations mentioned in table 9.1 in a for-loop and the quali�ed trips
are retained for the analysis. The driving dynamics of each phase of the
driving cycle must adhere to the boundaries in equation 9.5. The dynamics are
graphically represented in �gure 9.3 where the asterix represent the generated
driving cycle and the line representing the upper limit in terms of the product
of speed and positive acceleration the line representing the lower limit in terms
of the relative positive acceleration (RPA).

The proposed method is able to synthesize driving cycles fast (0.26 s in
a standard computer) and within the regulatory trip characteristics. A few
driving cycles are shown in �gure 9.4. The characteristics of a driving cycle
can be classi�ed according to several criteria, such as the speed trajectory,
the operating modes (idling, cruising,...), the vehicle mass, the temperature,
the altitude or the altitude gain. Most of them are covered by the RDE
regulation in [201 2016], and amongst them, the driving dynamics (sequence
of vehicle speed and acceleration) play a key role, also presented by author in
[Ericsson 2001]. The sequence of vehicle speeds and acceleration is unique for a
given driving cycle, but their dynamics can be captured by a set of parameters
as shown by Ericsson in [Ericsson 2001], the regulation also considers two
of them (RPA and (v.apos)). The proposed method assures that the set of
driving cycles generated keep the dynamic parameters so despite di�erences in
the sequence of vehicle speed, the driving cycle dynamics will be comparable.
Moreover, the method is able to include aggressiveness in the synthesis process,
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Figure 9.3: High and low dynamic boundaries; Synthetic trips within RDE
protocol, ◦ is soft, ∗ are standard, � is aggressive compared to WLTP dy-
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Figure 9.4: Set of synthesised cycles
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and it is therefore widely applicable to study the impact of dynamics on
emissions and fuel consumption. These cycles are run in an engine test bench
facility, as explained in the following section, for assessing the impact of driving
dynamics on NOx emissions. To obtain realistic engine operating conditions
from the vehicle speed pro�les, a validated vehicle backward model based on
longitudinal vehicle dynamics was used. The obtained trajectories of engine
speed and torque are run on the following engine test setup.

9.3 Results

The objective of the experimental study is to measure the dispersion of NOx

emissions for a set of 20 driving cycles with aggressiveness ranging from low
to high . A DICI engine was used to run the engine speed and torque pro-
�les representative of the synthetic driving cycles. The instantaneous NOx

emission was measured for all the cycles. In �gure 9.5, the evolution of ac-
cumulated NOx emission is plotted for three driving cycles with aggressive
intensities from low to high.

In �gure 9.6, the engine perspective shows that the main di�erence in the
frequency of engine operations is in the low and high engine speed and load
conditions. The engine operation is spread over the bigger area in the aggres-
sive cycle and the cumulative NOx emissions are also high for this vehicle.

The dispersion of NOx emission for the 20 driving cycles is presented in
�gure 9.7. The normal distribution curve is �tted for the sake of readability.
This �gure also shows the distribution of NOx emissions for WLTC (run 10
times) in order to highlight the e�ect of measurement inconsistencies.

The dispersion in �gure 9.7 can be used to infer the following:

• Before the catalyst, relative di�erence in the spread of the bell curve
is 100%. In terms of the range, the spread is 0.3 g/km for the given
vehicle. After the SCR, the relative di�erence is 60% and the range is
0.09g/km, which is in the range of Euro 6 NOx limits, i.e. 0.08 g/km.

• For the synthetic cycles, minimum and maximum NOx emissions are
equal to 0.115 g/km and 0.06 g/km respectively. It must be noted that
the minimum NOx produced is for the least aggressive cycle and the
maximum is for the most aggressive cycle. Indicating that, the tests
closer to the lower dynamic limit in the RDE regulation could produce
NOx emissions even lower than the regulation limits.

• It can be inferred, that by using the after-treatment system, not only
the absolute NOx emission reduces but also the range of dispersion due
to cycle dynamics is also curbed.
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Figure 9.7: Dispersion in measured NOx emissions for 20 synthetic cycles
before and after catalyst
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• For the WLTC, relative dispersion and the range in NOx emission is less
than 5% and 0.02g/km respectively before the catalyst and the relative
dispersion and range is less than 2% and 0.002g/km after the catalyst.
It can be inferred that the dispersion plotted in the �gure are relatively
less in�uenced by the measurement inconsistencies.

In present the trend of emissions due to dynamics, two variables- (v · apos_95)avg
and (RPAk)avg are de�ned as an average of trip dynamics in equations 9.4 and
9.5.

(v · apos_95)avg =

∑3
k=1[(v · apos)k_95.tk]∑3

k=1[tk]
(9.4)

(RPAk)avg =

∑3
k=1[(RPA)k.tk]∑3

k=1[tk]
(9.5)

For all the drive cycles the average trip driving dynamics and NOx emissions
have been clustered in �gure 9.8. The results show that the driving dynamics
play a key role on NOx emissions; the aggressive cycles tend to have higher
NOx emissions. However, there are other parameters that also a�ect NOx and
are outside the scope of the present study, i.e. one may think that two driv-
ing cycles, despite completely equal in the velocity sequence will go through
di�erent areas in the engine map if there are di�erences in the gear selected,
so there will be di�erences on NOx emissions.

Finally, the phase wise NOx emissions are plotted in �gure.9.9, the urban
driving is seen to have maximum contribution in the overall NOx emissions.
In the urban phase, the relative di�erence obtained after catalyst is about
30% and the range is approximately 0.13 g/km, which is considerably high,
considering exclusive limits on NOx emissions in urban phase in EU6D norms.
The regulation already demands 50% driving to be done by Type Approval
Authority, which reduces the risk of biased driving style. this can be improved
by demanding 50% driving by TAA in each phase of the trip especially in
urban phase.

9.4 Summary and conclusion

A real driving cycle generator based on the velocity transition probability
matrix obtained from the WLTC is developed. The method is found to be
consistent and fast in producing the synthetic driving cycles. The driving
dynamics are varied using a single tuning parameter within the regulatory
limits. A vehicle model was used to obtain the engine speed and torque
pro�le which were used to run on the engine test bench. The instantaneous
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NOx emission were measured and analysed. With the existing vehicle and
within the RDE cycle characteristic protocols, a signi�cant spread in the NOx

emissions was observed. The analysis of the results obtained in the tests (all of
them complying with RDE restrictions in terms of driving dynamics) point out
a noticeable 60% relative dispersion in the NOx emissions downstream of the
catalyst. Considering that this dispersion arises solely due to cycle dynamics,
the dispersion is signi�cantly high. Increase in the share of urban driving and
driving aggressiveness is shown to increase the total NOx emissions. Phase-
wise distribution of NOx emission shows that the driving in urban phase is
the bottleneck in emission control because the dispersion during this phase is
found to be the maximum. Therefore, the existing dynamic boundary limits
may not be enough to estimate real driving emissions, especially during the
urban phase. The NOx emitted for the entire cycles is in the lower range
and therefore the regulatory dynamic boundaries are appropriate for the NOx

estimation for the given vehicle. However, the dispersion indicates that even
if the vehicle stays well within the boundaries, the NOx emissions declared in
an experiment may be a conjecture and fails to predict the real drive emissions
for several trips within the protocol, especially during the urban phase.

The obtained dispersion is solely due to the variation in trip characteris-
tics within the EU6D protocols, that is, even if the bell curve were to move
leftwards, any method to account for the dispersion during engine calibration
will remain a major challenge. But for real driving conditions, estimation
of driving style and adaptive calibration, proposed in this thesis is a sought
after solution to obtain close to optimal engine controls while staying within
the regulatory limits. Moreover, it is necessary to address the dispersion in
NOx emissions due to trip dynamics in the future regulations. Wider spread
compared to the well-de�ned drive cycles, like NEDC/WLTC seems unavoid-
able even with RDE regulations. Consideration of dispersion during the type
approval will de�nitely reduce the di�erence between declared emissions and
real drive emissions. Without which, the new RDE regulations may under-
mine its own objective which is to eliminate the gap between declared and
real emissions.

The contribution of the proposed method lies not only in the fact that it
synthesises driving cycles as stochastic process and is capable of tuning the
driving dynamics based on RDE regulations, but it also presents the range of
dispersion possible in NOx emissions solely due to the driving dynamics. The
methodology followed in the present work could be an essential step in future
engine developments, where testing the engine prototypes on the entire range
of driving dynamics in the engine test bench facility could provide interesting
insights about the expected NOx emissions in RDE testing. Consideration of
the dispersion during the vehicle development is indispensable. To achieve
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the RDE objective, on one hand, the manufacturer must develop their vehicle
calibration for the worse case scenario while on the other hand the regulators
must include it during type approval testing. Therefore, during the devel-
opment phase of any vehicle the presented cycle synthesis tool accompanied
by an engine test bench facility would be very useful tool to have a sense of
required engine calibration in order to reduce the risk of failure during the
Type approval.

The EU6D regulation which mandates the vehicle to pass emission norms
individually in urban phase is an appropriate control and an additional control
over urban driving style will de�nitely improve the con�dence in the estimation
of real driving emissions. The regulation already demands 50% driving to be
done by TAA to reduce the risk of biased driving style, can be improved by
demanding 50% driving by TAA in each phase of the trip.
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In this chapter, there are two sections: the �rst section summarises im-
portant conclusion that can be drawn from the thesis. In the second section,
potential future directions in this line of research are outlined, along with the
potential challenges that would need to be tackled in each of them.

10.1 Summary of the presented results

In this thesis, the automotive control methods are investigated for reducing
the vehicle emissions in real driving condition. In general, the automotive
control problem was tackled using the optimal control theory by de�ning an
objective function (to be minimised) and a set of constraints related to the
system and the environment. The three tools that were often used to per-
form the speci�c task of larger applications are developed using state-of the
art techniques. In chapter 3, the backward vehicle modelling technique based
on the quasi steady approach was described. This chapter introduced the
modelling of vehicle longitudinal dynamics and then the most relevant pow-
ertrain components of a conventional vehicle and a hybrid electric vehicle.
The engine and the motor models were data driven and therefore their util-
ity was limited to the speci�c goal or application. In chapter 4, the state-of
the-art optimal control methods which were used in the thesis were presented.
The dynamic programming was derived from the Bellmans principle and an
example was presented to calculate the optimal vehicle speed pro�le in real
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driving condition. The limitation of the dynamic programming in real time
due its exponential complexity to the number of states lead to the utilisation
of the PMP in the control applications. As an implication of the Pontrya-
gin's principle, the optimal solution to the problem of minimizing the total
fuel consumption over a driving cycle must also minimize the instantaneous
equivalent fuel consumption, was de�ned using the opportune equivalence fac-
tors in ECMS. The chapter 5, presented a driving cycle prediction tool using
the Markov chain principle. Design of driving cycle generator was illustrated
with the help of an example. Later in chapter 6, all the experimental setups
which were used during the thesis were presented. The rapid prototyping us-
ing the dSpace microautobox or the PXI allowed to test the control strategies
on test benches and on a vehicle. Using the tools described in chapter 3,
chapter 4 and chapter 5, few applications were developed and presented in
the following chapters.

In general two approaches were investigated in this thesis. The �rst ap-
proach was to optimise the powertrain control in real driving condition. For
which, chapter 7present a novel adaptive control of diesel engine to minimise
fuel consumption with constrained NOx emissions on a real driving mission.
MC based driving cycle prediction method is able to capture important driv-
ing characteristics in real-time. The experimental campaign shows that, if the
driving aggressiveness of the predicted cycle is greater than or equal to the
actual cycle the controller is able to meet the target NOx emissions. However,
underestimating the aggressiveness leads to excessive emissions. In another
application in chapter 7, a calibration method was presented, which included
a single tuning parameter to trade-o� between, fuel consumption, NOx emis-
sions and drivability of the engine. The additional degree of freedom give
�exibility to the calibration engineer, while optimality is guaranteed at all
times. This tuning parameter was used to obtain a time-varying calibration
of the diesel engine for NRTC to improve the engine performance and driv-
ability. The comparison of the �xed and variable calibration strategies showed
that, with variable strategy the NOx emissions can be reduced upto 3% while
maintaining similar levels of fuel consumption and drivability. The last sec-
tion in chapter 7 was regarding the optimal control of the HEV powertrain.
It presented a new method based on the online speed prediction and adaptive
ECMS to optimse the EMS while tracking the battery SoC close to the target.
The method was validated using a simulation and an experiment based case
study on a real driving mission. The developed method was compared with
three SOA methods: The ECMS (optimal and o�ine approach), ACP+ECMS
(online approach) and the CD-CS (online approach). The results from the de-
veloped online method show signi�cant improvement in the fuel consumption
compared to the other online methods. in comparison to the o�ine method,
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where the driving mission is known in advance the fuel consumption is 10%
higher in the developed method.

The second approach was to optimise the speed pro�les of the vehicle
based on the available data from the infrastructure. The controllability (either
passive or active control) is limited in real-time for such an application. The
limitation is due to the amount of information (I2V or V2V) that is required
to be processed in real time. For this in chapter 8, an application was aimed
to assess the impact of tra�c light information availability in terms of fuel
consumption and NOx emissions. An e�cient management of vehicle speed
is a key factor for fuel and NOx minimisation. Tra�c light information is
essential for vehicle speed management, even if suboptimal strategies are used,
substantial reductions in terms of both fuel consumption (7%) and emissions
(12%) may be obtained. One may note that this level of reduction is, by
far, higher to what can be attained with online optimisation of the engine
control itself. Another application in chapter 8 was regarding optimal speed
advisory in real driving mission. The application optimises the speed pro�le in
real-time and recommends the driver optimal speed sequence that minimises
the fuel consumption on a particular route. The real-time implementation of
the application shows the possibility to stay very close to the Pareto front
obtained by trading o� travel time and fuel consumption. In particular 4%
reduction in fuel consumption was recorded for the same travel time using the
developed application.

Finally, in chapter 9, a real driving cycle generator based on the velocity
TPM obtained from the WLTC was presented. A single tuning parameter was
used to vary the cycle dynamics within the EU6D regulatory limits. A vehicle
model was used to obtain the engine speed and torque pro�le which were then
run on the engine installed in a SOA engine test bench. The instantaneous
NOx emission were measured and analysed. With the existing vehicle and
within the RDE cycle characteristic protocols, a noticeable 60% relative dis-
persion in the NOx emissions downstream of the catalyst was recorded. The
assessments highlight the importance of considering this dispersion during the
engine calibration to succeed in TA process.

10.2 Future directions

Include more states to the quasi-steady engine model The power-
train control performance rely heavily upon the engine model. In the work,
quasi steady engine model was used as described in chapter 3. These mod-
els were based on interpolated maps depending on only a few states. With
complexity of these models increasing linearly with the number of states, this
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thesis limited them to two for focusing on the controller development. How-
ever, more states can be easily integrated in the current engine models at the
cost of implementation complexity in the rapid prototyping controller (due to
limited memory). A straightforward research direction would be to explore
new methods for engine modelling such as neural network.

Include more states in the driving cycle predictor for improved accu-

racy The global objective of this investigation was to minimise the driving
uncertainties in real driving conditions for calculating the optimal actuations.
The driving cycle prediction tool developed in this thesis was based on the
MC principle. The states included in the TPM were vehicle velocity and
position. Even though the cycle predictions were able to capture the main
characteristics of driving such as aggressiveness, the model can be enhanced
with 'time' as an additional state in the TPM. This would further improve
the capability of the model to capture the tra�c intensities in urban driving
conditions. This can be realised by modelling the tra�c �ow on an urban
street using experimental data and tools such as SUMO. Such a model is ca-
pable of providing velocity speed pro�les as a function of time and position
and with this information three dimensional (current velocity, time, position)
TPMs can be easily formulated. Finally, the speed prediction process can also
include the current information of other vehicles in the route.

Include ATS temperature as an additional state in the control prob-

lem to capture cold state problems in HEV During the development
of online EMS of HEV, the only state considered was battery SoC however,
there are other parameters that in�uence the performance of the HEV con-
troller in real driving conditions. For instance, by including the thermal model
of the after-treatment system, the temperature of the ATS can be included as
an additional state. The new cost function will also include another co-state
related to the vehicle emissions addressing the cold start problem of diesel
engine based HEV.

Explore combined powertrain and ADAS optimisation In this the-
sis, online optimal control methods for powertrain and ADAS were explored
separately. Applications and case studies were used to demonstrate the capa-
bilities of both the approaches. In future, application can be developed with
combined optimisation of powertrain and ADAS with the same objective. For
example, the driver is advised of speed based on tra�c situation to minimise
the fuel consumption and maintain the terminal SoC while the EMS adap-
tively controls the torque-split torwards the same objective. As the basis for
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online control of HEV was speed prediction, a speed advisory would further
reduce the uncertainty arising due to the driver.
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Appendix A

Appendix Example

A.1 Algorithm for Bisection method

Algorithm 2 Calculate Optimal µ∗s
j ← 1 TOL ← tolerance MaxItr ← Maximum number of iterations

saj ← a sbj ← b µ∗s,j ← b SoCa ← f(
−→
Test,
−−→ωest, a) SoCb ← f(

−→
Test,
−−→ωest, b)

while abs(SoCc − SoCdyn
target) > TOL || j > MaxItr do

sc← (saj+sbj)

2

SoCc ← f(
−→
Test,
−−→ωest, sc)

if SoCa,j < SoCdyn
target & SoCc < SoCdyn

target then

saj+1 ← sc

sbj+1 ← sbj
else {SoCa,j < SoCdyn

target & SoCc > SoCdyn
target}

saj+1 ← saj
sbj+1 ← sc

µ∗s,j ← sc

j ← j + 1

µ∗s ← µ∗s(end)
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Online Control of Automotive Systems for Improved

Real-World Performance

Abstract: The need of improving the real-world fuel consumption and emis-
sion of automotive applications is the basis of this thesis. To this end, two
verticals are explored: First is the online control of the powertrain systems. In
state-of-the-art Optimal Control techniques (such as Dyanmic Programming,
Pontryagins Minimum Principle, etc...) are extensively used to formulate the
optimal control laws. These laws are stored in the production ECUs in the
form of feedforward calibration maps. The unaccounted uncertainities re-
lated to the real-world during the powertrain calibration result in suboptimal
operations of the powertrain in actual driving. Therefore, adaptive control
methods are proposed in this work which, optimise the energy management
of the conventional and the HEV powertrain control on real driving mission.
The second vertical is regarding the vehicle speed control (popularly known as
Eco-Driving in the literature) methods in real driving condition. In particular,
speed advisory systems are proposed for real time application on a vehicle.
The control methods developed for each application are described in details
with their veri�cation and validation on the designed case studies. Apart from
the developed control methods, there are three tools that were developed and
used at various stages of this thesis: A vehicle model, A driving cycle pre-
diction tool and optimal control methods (dynamic programming, PMP and
ECMS). Depending on the application, the developed methods were imple-
mented on the Hardware-In-Loop Internal Combustion Engine testing setup
or on a real vehicle. The results show signi�cant improvements in the perfor-
mance of the powertrain in terms of fuel economy and emissions in comparison
to the state-of-the-art methods.

Keywords: Optimal Control, Model based control, Hybrid Electric Ve-
hicle, Energy Management Strategy, Adaptive control, Calibration Smooth-
ing, Real Driving Emissions, Eco-Driving, Vehicle speed Optimisation
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Control de sistemas propulsivos de automoción para la

mejorara del rendimiento en condiciones reales de

conducción

Resumen: La necesidad de mejorar el consumo de combustible y las emi-
siones de los sistemas propulsivos de automoción en condiciones reales de
conducción es la base de esta tesis. Para ello, se exploran dos ejes: En primer
lugar, el control de los sistemas de propulsión. El estado del arte de control en
los sistemas propulsivos de automoción se basa en gran medida en el uso de
técnicas de optimización que buscan las leyes de control que minimizan una
función de coste en un conjunto de condiciones de operación de�nidas a priori.
Estas leyes se almacenan en las ECUs de producción en forma de mapas de
calibración de los diferentes actuadores del motor. Las incertidumbres asoci-
adas al conjunto limitado de condiciones en el proceso de calibración dan lugar
a un funcionamiento subóptimo del sistema de propulsión en condiciones de
conducción real. Por lo tanto, en este trabajo se proponen métodos de control
adaptativo que optimicen la gestión de la planta propulsiva a las condiciones
esperadas de funcionamiento para un usuario y un caso determinado en lu-
gar de a un conjunto genérico de condiciones. El segundo eje se re�ere a
optimizar, en lugar de los parámetros de control del sistema propulsivo, la
demanda de potencia de este, introduciendo al propio conductor en el bucle
de control, sugiriéndole las acciones a tomar. En particular, este segundo
eje se re�ere al control de la velocidad del vehículo (conocido popularmente
como Eco-Driving en la literatura) en condiciones reales de conducción. Se
proponen sistemas de aviso en tiempo real al conductor acerca de la veloci-
dad óptima para minimizar el consumo del vehículo. Los métodos de control
desarrollados para cada aplicación se describen en detalle en la tesis y se mues-
tran ensayos experimentales de validación en los casos de estudio diseñados.
Ambos ejes representan un problema de control óptimo, de�nido por un sis-
tema dinámico, unas restricciones a cumplir y un coste a minimizar, en este
sentido las herramientas desarrolladas en la tesis son comunes a los dos ejes:
Un modelo de vehículo, una herramienta de predicción del ciclo de conducción
y métodos de control óptimo (Programación Dinámica, Principio Mínimo de
Pontryagin y Estrategia de Consumo Equivalente Mínimo). Dependiendo de
la aplicación, los métodos desarrollados se implementaron en varios entornos
experimentales: un motor térmico en sala de ensayos simulando el resto del
vehículo, incluyendo el resto del sistema de propulsión híbrido y en un ve-
hículo real. Los resultados muestran mejoras signi�cativas en el rendimiento
del sistema de propulsión en términos de ahorro de combustible y emisiones
en comparación con los métodos empleados en el estado del arte actual.
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Control de sistemes propulsius d'automoció per a la

millorara del rendiment en condicions reals de conducció

Resum: La necessitat de millorar el consum de combustible i les emissions
dels sistemes propulsius d'automoció en condicions reals de conducció és la
base d'aquesta tesi. Per a això, s'exploren dos eixos: En primer lloc, el control
dels sistemes de propulsió. L'estat de l'art de control en els sistemes propulsius
d'automoció es basa en gran manera en l'ús de tècniques d'optimització que
busquen les lleis de control que minimitzen una funció de cost en un conjunt
de condicions d'operació de�nides a priori. Aquestes lleis s'emmagatzemen
en les Ecus de producció en forma de mapes de calibratge dels diferents ac-
tuadors del motor. Les incerteses associades al conjunt limitat de condicions
en el procés de calibratge donen lloc a un funcionament subòptim del sistema
de propulsió en condicions de conducció real. Per tant, en aquest treball es
proposen mètodes de control adaptatiu que optimitzen la gestió de la planta
propulsiva a les condicions esperades de funcionament per a un usuari i un
cas determinat en lloc d'un conjunt genèric de condicions. El segon eix es
refereix a optimitzar, en lloc dels paràmetres de control del sistema propulsiu,
la demanda de potència d'aquest, introduint al propi conductor en el bucle
de control, suggerint-li les accions a prendre. En particular, aquest segon eix
es refereix al control de la velocitat del vehicle (conegut popularment com
Eco-*Driving en la literatura) en condicions reals de conducció. Es proposen
sistemes d'avís en temps real al conductor sobre la velocitat òptima per a
minimitzar el consum del vehicle. Els mètodes de control desenvolupats per
a cada aplicació es descriuen detalladament en la tesi i es mostren assajos
experimentals de validació en els casos d'estudi dissenyats. Tots dos eixos
representen un problema de control òptim, de�nit per un sistema dinàmic,
unes restriccions a complir i un cost a minimitzar, en aquest sentit les eines
desenvolupades en la tesi són comunes als dos eixos: Un model de vehicle,
una eina de predicció del cicle de conducció i mètodes de control òptim (Pro-
gramació Dinàmica, Principi Mínim de *Pontryagin i Estratègia de Consum
Equivalent Mínim). Depenent de l'aplicació, els mètodes desenvolupats es
van implementar en diversos entorns experimentals: un motor tèrmic en sala
d'assajos simulant la resta del vehicle, incloent la resta del sistema de propul-
sió híbrid i en un vehicle real. Els resultats mostren millores signi�catives
en el rendiment del sistema de propulsió en termes d'estalvi de combustible i
emissions en comparació amb els mètodes emprats en l'estat de l'art actual.
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