

Appl. Gen. Topol. 22, no. 2 (2021), 345-354 doi:10.4995/agt.2021.14809 © AGT, UPV, 2021

Sum connectedness in proximity spaces

BEENU SINGH^{*a*} AND DAVINDER SINGH^{*b*}

^a Department of Mathematics, University of Delhi, Delhi (India) - 110007. (singhbeenu47@gmail.com)
^b Department of Mathematics, Sri Aurobindo College (M), University of Delhi, Delhi (India) - 110017. (dstopology@gmail.com)

Communicated by P. Das

Abstract

The notion of sum δ -connected proximity spaces which contain the category of δ -connected and locally δ -connected spaces is defined. Several characterizations of it are substantiated. Weaker forms of sum δ -connectedness are also studied.

2010 MSC: 54E05; 54D05.

Keywords: sum δ -connected; δ -connected; δ -component; locally δ -connected.

1. INTRODUCTION

The notion of proximity was introduced by Efremovic [4, 5] as a natural generalization of metric spaces and topological groups. Smirnov [10, 11] and Naimpally [8, 9] did the most significant and extensive work in this area. In 2009, Bezhanishvili [1] defined zero-dimensional proximities and zero-dimensional compactifications.

Mrówka *et al.* [7] introduced the theory of δ -connectedness (or equiconnectedness) in proximity spaces. Consequently, Dimitrijević *et al.* [2, 3] defined local δ -connectedness, δ -component and the treelike proximity spaces. In 1978, Kohli [6] introduced the notion of sum connectedness in topological spaces.

We discuss sum δ -connectedness in proximity spaces in this paper. Some necessary definitions and the results which are used in further sections, are recalled in Section 2. In Section 3, sum δ -connectedness is defined and its relations with other kinds of connectedness are determined. Several characterizations of

it are established. It is shown that sum δ -connectedness is equivalent to local δ connectedness in a zero-dimensional proximity space. Further, the Stone-Čech compactification of a separated proximity space X is sum δ -connected if and only if X is sum δ -connected and it has finitely many δ -components. For a sum δ -connected proximity space to be sum connected, a sufficient condition is deduced. In the last section, weaker forms of sum δ -connectedness are defined. Finally, if a sum δ -connected space is δ -padded, then it is also locally δ -connected.

2. Preliminaries

Definition 2.1 ([9]). A binary relation δ on the power set $\mathcal{P}(X)$ of X is said to be a proximity on X, if the following axioms are satisfied for all P, Q, R in $\mathcal{P}(X)$:

(*i*) $(\phi, P) \notin \delta$;

(*ii*) If $P \cap Q \neq \phi$, then $(P, Q) \in \delta$;

- (*iii*) If $(P,Q) \in \delta$, then $(Q,P) \in \delta$;
- (*iv*) $(P, Q \cup R) \in \delta$ if and only if $(P, Q) \in \delta$ or $(P, R) \in \delta$;
- (v) If $(P,Q) \notin \delta$, then there exists a subset R of X such that $(P,R) \notin \delta$ and $(X \setminus R, Q) \notin \delta$.

The pair (X, δ) is called a proximity space.

Throughout this paper, we simply write proximity space (X, δ) as X whenever there is no confusion of the proximity δ .

Definition 2.2 ([8, 9]). A proximity space X is said to be separated if x = y whenever $(\{x\}, \{y\}) \in \delta$ for $x, y \in X$.

Proposition 2.3 ([9]). Let X be a proximity space and P be a subset of X. If P is δ -closed if and only if $x \in P$ whenever $(\{x\}, P) \in \delta$, then the collection of the complements of all δ -closed sets forms a topology \mathcal{T}_{δ} on X.

Proposition 2.4 ([9]). Let X be a proximity space. Then the closure C(P) of P with respect to \mathcal{T}_{δ} is given by $C(P) = \{x \in X : (\{x\}, P) \in \delta\}.$

Corollary 2.5 ([9]). Let X be a proximity space. Then $M \in \mathcal{T}_{\delta}$ if and only if $(\{x\}, X \setminus M) \notin \delta$ for every $x \in M$.

Using Proposition 2.4, a set F is δ -closed if C(F) = F. From Corollary 2.5, a set U is δ -open, if $(\{x\}, X \setminus U) \notin \delta$ for every $x \in U$.

Definition 2.6 ([9]). Let X be a proximity space and \mathcal{T} be a topology on X. Then δ is said to be compatible with \mathcal{T} if the generated topology \mathcal{T}_{δ} and \mathcal{T} are equal, that is, $\mathcal{T}_{\delta} = \mathcal{T}$.

Definition 2.7 ([9]). Let X be a proximity space. Then a subset N of X is said to be a δ -neighbourhood of $M \subset X$ if $(M, X \setminus N) \notin \delta$. It is denoted by $M \ll_{\delta} N$.

Definition 2.8 ([9]). Let (X, δ) and (Y, δ') be two proximity spaces. Then a map $f : (X, \delta) \longrightarrow (Y, \delta')$ is said to be δ -continuous (or *p*-continuous) if $(f(P), f(Q)) \in \delta'$ whenever $(P, Q) \in \delta$, for all $P, Q \subset X$.

Definition 2.9 ([7]). Let X be a proximity space. Then X is said to be δ -connected if every δ -continuous map from X to a discrete proximity space is constant.

Theorem 2.10 ([7]). Let X be a proximity space. Then the following statements are equivalent:

- (i) X is δ -connected.
- (ii) $(P, X \setminus P) \in \delta$ for each nonempty subset P with $P \neq X$.
- (iii) For every δ -continuous real-valued function f, the image f(X) is dense in some interval of R.
- (iv) If $X = P \cup Q$ and $(P, Q) \notin \delta$, then either $P = \phi$ or $Q = \phi$.

Definition 2.11 ([2]). Let X be a proximity space and $x \in X$. Then the δ -component of a point x is defined as the union of all δ -connected subsets of X containing x. It is denoted by $C_{\delta}(x)$.

Definition 2.12 ([2]). Let X be a proximity space and $x \in X$. Then the δ -quasi component of x is the equivalence class of x with respect to the equivalence relation \sim defined on X as " $x \sim y$ if and only if there do not exist the sets M, N such that $x \in M$ and $y \in N$ with $X = M \cup N$ and $(M, N) \notin \delta$ ".

Definition 2.13 ([2]). A proximity space X is called locally δ -connected if for every point x of X and for every δ -neighbourhood N of x, there exists some δ -connected δ -neighbourhood M of x such that $x \in M \subset N$.

Definition 2.14 ([12]). Let (X, δ) be a proximity space and $f : X \longrightarrow Y$ be a surjective map, where Y is any set. Then the quotient proximity on Y is the finest proximity such that the map f is δ -continuous. When Y has the quotient proximity, f is called δ -quotient map.

Proposition 2.15 ([12]). Let (X, δ) be a proximity space and $f: X \longrightarrow Y$ be a surjective map, where Y be any set. Then the quotient proximity δ' on Y is given by $P \ll_{\delta'} Q$ if and only if for each binary rational $s \in [0, 1]$, there is some $P_s \subseteq Y$ such that $P_0 = P$, $P_1 = Q$ and s < t implies $f^{-1}(P_s) \ll_{\delta} f^{-1}(P_t)$.

Proposition 2.16 ([12]). Let (X, δ) be a proximity space and $f: X \longrightarrow Y$ be a surjective map such that $f^{-1}(f(M)) = M$ for each δ -open set M of X, where Y be any set. Then the quotient proximity δ' on Y is given by $(P,Q) \in \delta'$ if and only if $(f^{-1}(P), f^{-1}(Q)) \in \delta$.

Definition 2.17 ([1]). A proximity space X is said to be zero-dimensional if the proximity δ satisfies the following axiom:

If $(P,Q) \notin \delta$, then there is a subset R of X such that $(R, X \setminus R) \notin \delta$, $(P,R) \notin \delta$ and $(X \setminus R, Q) \notin \delta$.

Definition 2.18 ([6]). A topological space X is said to be sum connected at $x \in X$, if there exists an open connected neighbourhood of x. If X is sum connected at each of its points, then X is called sum connected.

Proposition 2.19 ([6]). Let X^* be the Stone-Čech compactification of a Tychonoff space X. Then X is sum connected and has finitely many components, if X^* is sum connected.

3. Sum δ -connectedness

Definition 3.1. A proximity space X is said to be sum δ -connected at $x \in X$ if there exists a δ -connected δ -open δ -neighbourhood of x. If X is sum δ -connected at each of its points, then it is said to be sum δ -connected.

Definition 3.2. Let $(X_i, \delta_i)_{i \in \mathcal{I}}$ be a family of proximity spaces, where \mathcal{I} is an index set. A proximity space (X, δ) is said to be a far proximity sum of $(X_i)_{i \in \mathcal{I}}$ if $X = \bigcup_{i \in \mathcal{I}} X_i$ and $(X_i, X_j) \notin \delta$ for all $i \neq j$ in \mathcal{I} with $\delta|_{X_i} = \delta_i$ for all $i \in \mathcal{I}$.

Note that a proximity space X is sum δ -connected if and only if each of its δ -component is δ -open. Therefore, every δ -connected proximity space is sum δ -connected.

Example 3.3.

- (i) Let X be any discrete proximity space with $|X| \ge 2$. Then X is sum δ -connected but not δ -connected.
- (*ii*) Let $X = (0, 1) \cup (2, 3)$ with usual subspace proximity of \mathbb{R} . Then X is sum δ -connected but not δ -connected.

Every sum connected proximity space is sum δ -connected. But, converse may not be true. However, in compact separated proximity spaces, the notion of sum connectedness and sum δ -connectedness coincides.

Example 3.4. The space \mathbb{Q} of rationals with the usual proximity is sum δ -connected. But, it is not sum connected.

Every locally δ -connected proximity space is sum δ -connected. Converse may not be true.

Example 3.5. Consider $T = \{(x, \sin \frac{1}{x}) : 0 < x \le 1\} \cup \{(0, y) : -1 \le y \le 1\}$ the closed Topologist's Sine curve with subspace proximity induced from \mathbb{R}^2 . Let X be the far proximity sum of two copies of T. Then X is sum δ -connected but it is neither δ -connected nor locally δ -connected.

Example 3.6. Let $X = \{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\}$ be a proximity space. Since each $\{\frac{1}{n}\}$ is δ -clopen in X, there does not exists any δ -connected δ -neighbourhood of 0 in X because every δ -neighbourhood of 0 contains infinitely many members of $X \setminus \{0\}$. Thus, X is not sum δ -connected at 0.

Thus, we have following relationship among several connectednesses in proximity space. $\begin{array}{ccc} \text{connected} & \Longrightarrow & \text{sum connected} & \Leftarrow & \text{locally connected} \\ & \downarrow & & \downarrow & & \downarrow \\ \delta - \text{connected} & \Longrightarrow & \text{sum } \delta - \text{connected} & \Leftarrow & \text{locally } \delta - \text{connected} \end{array}$

The following theorem gives some necessary and sufficient conditions for sum δ -connectedness.

Theorem 3.7. For a proximity space X, the following statements are equivalent:

- (i) X is sum δ -connected.
- (ii) For each $x \in X$ and each δ -clopen set U which contains x, there exists a δ -open δ -connected set W containing x such that $W \subset U$.
- (iii) δ -components of δ -clopen sets in X are δ -open in X.

Proof. $(i) \Longrightarrow (ii)$. Let $x \in X$ and U be a δ -clopen set such that $x \in U$. Let $C_{\delta}(x)$ be the δ -component of X containing x. By hypothesis, $C_{\delta}(x)$ is δ -open. So, $C_{\delta}(x) \cap U$ is δ -clopen. Therefore, $((C_{\delta}(x) \cap U), C_{\delta}(x) \setminus (C_{\delta}(x) \cap U)) \notin \delta$ as $C_{\delta}(x) \cap U \subset C_{\delta}(x) \subset X$. Also, since $C_{\delta}(x)$ is δ -connected, $C_{\delta}(x) \cap U = C_{\delta}(x)$. Hence, $C_{\delta}(x)$ is a δ -open δ -connected such that $C_{\delta}(x) \subset U$.

 $(ii) \Longrightarrow (iii)$. Let U be any δ -clopen set in X and C_{δ} be a δ -component of U. Then, by hypothesis, for each $x \in C_{\delta}$ there exists a δ -open δ -connected set W such that $x \in W \subset U$. Therefore, $W \subset C_{\delta}$ as C_{δ} is δ -component. Hence, C_{δ} is δ -open.

 $(iii) \Longrightarrow (i)$. Since X is δ -clopen, the result follows.

Proposition 3.8. Let Y be a dense proximity subspace of X and $x \in Y$. Then X is sum δ -connected at x if Y is sum δ -connected at x.

Proof. Let W be a δ -open δ -connected δ -neighbourhood of x in Y. Therefore, $W = U \cap Y$, where U is δ -open δ -neighbourhood of x in X. Thus, $W \subset U$ and $U \subset Cl_X(U) = Cl_X(W)$ as Y is dense in X. Note that $Cl_X(W)$ is δ -connected. Hence, U is δ -open δ -connected δ -neighbourhood of x in X.

Next example shows that the closure of sum δ -connected proximity space may not be sum δ -connected.

Example 3.9. Let $X = \{\frac{1}{n} : n \in \mathbb{N}\}$ be a proximity subspace of \mathbb{R} . Then each δ -component $\{\frac{1}{n}\}$ is δ -clopen in X. So, X is sum δ -connected. But, note that $Cl(X) = \{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\}$ is not sum δ -connected at 0 by Example 3.6.

Proposition 3.10. Let X be a sum δ -connected proximity space and f: $(X, \delta) \longrightarrow (Y, \delta^*)$ be a δ -quotient map such that $f^{-1}(f(U)) = U$ for each δ -open subset U of X. Then Y is sum δ -connected.

Proof. Let C_{δ} be any δ -component of Y and $y \in C_{\delta}$. We have to show that $(y, Y \setminus C_{\delta}) \notin \delta^*$. By definition of δ -quotient proximity δ^* , it suffices to show that $(f^{-1}(y), X \setminus f^{-1}(C_{\delta})) \notin \delta$. Let $x \in f^{-1}(y)$, then the δ -component C_x of x in X, be δ -open in X. Therefore, $(z, X \setminus C_x) \notin \delta$ for every $z \in C_x$. Since

f is δ -continuous, $f(C_x)$ is δ -connected. Thus, $y = f(x) \in f(C_x) \cap C_{\delta}$. So $f(C_x) \subseteq C_{\delta}$, which implies $C_x \subseteq f^{-1}(C_{\delta})$. Then, $(z, X \setminus f^{-1}(C_{\delta})) \notin \delta$ for every $z \in C_x$. In particular, $(f^{-1}(y), X \setminus f^{-1}(C_{\delta}) \notin \delta$.

Corollary 3.11. Let $f : (X, \delta) \longrightarrow (Y, \delta^*)$ be a δ -continuous, δ -closed, surjection such that $f^{-1}(f(U)) = U$ for each δ -open subset U of X. If X is sum δ -connected, then Y is also sum δ -connected.

Proposition 3.12. Every δ -continuous, δ -open image of a sum δ -connected proximity space is sum δ -connected.

Proof. Let $f: (X, \delta) \longrightarrow (Y, \delta')$ be a δ -continuous, δ -open, surjective map and X be sum δ -connected. Let C_{δ} be a δ -component of Y and $x \in f^{-1}(C_{\delta})$. Then there is a δ -component C_x in X containing x which is δ -open. Since f is δ -continuous and δ -open, $f(C_x) \subseteq C_{\delta}$ and $f(C_x)$ is δ -open. Therefore, $(f(x), Y \setminus f(C_x)) \notin \delta'$. Hence, $(f(x), Y \setminus C_{\delta}) \notin \delta'$.

Corollary 3.13. If the product of proximity spaces is sum δ -connected, then each of its factor is also sum δ -connected.

The product of sum δ -connected proximity spaces need not be sum δ -connected in general.

Example 3.14. Let $X = \{0,1\}^{\omega}$ be infinite product of two point discrete proximity spaces. Then X is not discrete proximity space. Therefore, the δ -component $C_{\delta}(x)$ of x in X is $\{x\}$ itself, which is not δ -open. Hence, X is not sum δ -connected.

Theorem 3.15. Let (X, δ) be a product of proximity spaces $(X_i, \delta_i)_{i \in \mathcal{I}}$, where \mathcal{I} is an index set. Then $X = \prod_{i \in \mathcal{I}} X_i$ is sum δ -connected if and only if each X_i is sum δ -connected and all but finitely many X_i 's are δ -connected.

Proof. Let X be sum δ -connected. So, by Corollary 3.13, each X_i is sum δ -connected. Now, suppose that all but finitely many X_i 's are not δ -connected. Then any δ -component of X is not δ -open in X, which is a contradiction.

Conversely, assume that each X_i is sum δ -connected and all but finitely many X_i 's are δ -connected. Let C_{δ} be any δ -component of X and p_i be the i^{th} projection map. Then $p_i(C_{\delta})$ is δ -connected for each $i \in \mathcal{I}$. Therefore, $\prod_{i \in \mathcal{I}} p_i(C_{\delta})$ is also δ -connected. Thus, $C_{\delta} = \prod_{i \in \mathcal{I}} p_i(C_{\delta})$. For each $i \in \mathcal{I}$, suppose C_{δ_i} be the δ_i -component of X_i containing $p_i(C_{\delta})$. Put $C'_{\delta} = \prod_{i \in \mathcal{I}} C_{\delta_i}$. If $p_i(C_{\delta}) \subsetneq C_{\delta_i}$, then $C_{\delta} = C'_{\delta}$ as C_{δ} is δ -component of X. Thus, $p_i(C_{\delta}) = C_{\delta_i}$ for each $i \in \mathcal{I}$. Since all but finitely many X_i 's are δ -connected, $p_i(C_{\delta}) = C_{\delta_i} =$ X_i for all but finitely many $i \in \mathcal{I}$. Hence, C_{δ} is δ -open set in X.

Theorem 3.16. Every far proximity sum of sum δ -connected proximity spaces is sum δ -connected.

It can be easily shown that a δ -closed subspace of sum δ -connected proximity space need not be sum δ -connected.

Corollary 3.17. A proximity space X is locally δ -connected if and only if every δ -open subspace of X is sum δ -connected.

Theorem 3.18. Let X be a pseudocompact, separated, sum δ -connected proximity space. Then it has at most finitely many δ -components.

Proof. Suppose X has infinitely many δ -components. Since collection of δ -components of X is locally finite and each δ -component of X is δ -open, we have a locally finite collection of non-empty δ -open sets which is not finite, a contradiction.

Corollary 3.19. If X is compact sum δ -connected proximity space, then it has at most finitely many δ -components.

Corollary 3.20. If X is Lindelof (or separable) sum δ -connected proximity space, then it has at most countably many δ -components.

Theorem 3.21. Every separated, zero-dimensional, sum δ -connected proximity space is discrete.

Proof. Let X be any separated, zero-dimensional, sum δ -connected proximity space. Let S be a subset of X such that $x, y \in S$ with $x \neq y$. Therefore, $(\{x\}, \{y\}) \notin \delta$. Then, there exists $C \subset X$ such that $(C, X \setminus C) \notin \delta$, $(\{x\}, C) \notin \delta$ and $(X \setminus C, \{y\}) \notin \delta$. So, $(C, S \setminus C) \notin \delta$ which implies S is not δ -connected. Hence, every δ -component of X is singleton. As X is sum δ -connected, each singleton of X is δ -open.

Next theorem shows that in a zero-dimensional proximity space, local δ connectedness and sum δ -connectedness are equivalent.

Proposition 3.22. A zero-dimensional proximity space X is locally δ -connected if and only if it is sum δ -connected.

Proof. Necessity is obvious. For the sufficient part, let X be sum δ -connected. Let $x \in X$ and U be a δ -neighbourhood of x. Therefore, there exists $C \subset X$ such that $(C, X \setminus C) \notin \delta$, $(\{x\}, X \setminus C) \notin \delta$ and $(C, X \setminus U) \notin \delta$. Thus, C is δ -clopen and $x \in C \subset U$. So, by Theorem 3.7, there exists a δ -open δ -connected set W such that $x \in W \subset C \subset U$. Hence, X is locally δ -connected. \Box

Now, we find the relation of sum δ -connectedness of proximity space with its Stone-Čech compactification.

Theorem 3.23. Let (X^*, δ^*) be the Stone-Čech compactification of the separated proximity space (X, δ) . Then X^* is sum δ -connected if and only if X is sum δ -connected and has finitely many δ -components.

Proof. Let X^* be sum δ -connected. Then, by Corollary 3.19, it has finitely many δ -components. So, $X^* = \bigcup_{i=1}^n C^i_{\delta}$, where C^i_{δ} is a δ -component of X^* for each $1 \leq i \leq n$. Therefore, $X = \bigcup_{i=1}^n (C^i_{\delta} \cap X)$. As each $C^i_{\delta} \cap X$ is δ -open in X and $(C^i_{\delta} \cap X, C^j_{\delta} \cap X) \notin \delta$ by using hypothesis, it suffices to show that each $C^i_{\delta} \cap X$ is δ -connected. Let $C^i_{\delta} \cap X = P \cup Q$ with $(P, Q) \notin \delta^*$. Note that $Cl_{\delta^*}(C^i_{\delta}\cap X) = C^i_{\delta}$ because C^i_{δ} is δ -open in X^* and X is dense in X^* . Therefore, $C^i_{\delta} = Cl_{\delta^*}(C^i_{\delta}\cap X) = Cl_{\delta^*}(P) \cup Cl_{\delta^*}(Q)$ with $(Cl_{\delta^*}(P), Cl_{\delta^*}(Q)) \notin \delta^*$. Thus, C^i_{δ} is not δ -connected, a contradiction.

Conversely, assume X is sum δ -connected and has finitely many δ -components. Therefore, $X = \bigcup_{i=1}^{n} C_{\delta}^{i}$ where C_{δ}^{i} is a δ -component of X for each $1 \leq i \leq n$. Thus, $X^{*} = Cl_{\delta^{*}}(X) = \bigcup_{i=1}^{n} Cl_{\delta^{*}}(C_{\delta}^{i})$. Since, $(C_{\delta}^{i}, C_{\delta}^{j}) \notin \delta$ for $i \neq j$, $(Cl_{\delta^{*}}(C_{\delta}^{i}), Cl_{\delta^{*}}(C_{\delta}^{j})) \notin \delta^{*}$. Note that each $Cl_{\delta^{*}}(C_{\delta}^{i})$ is δ -connected in X^{*} . Thus, each $Cl_{\delta^{*}}(C_{\delta}^{i})$ is a δ -component in X^{*} . Since δ -components in X^{*} are finite, hence X^{*} is sum δ -connected. \Box

Corollary 3.24. If X is pseudocompact, separated and sum δ -connected proximity space, then it's Stone-Čech compactification X^* is also sum δ -connected.

Every sum connected proximity space is sum δ -connected. Following theorem gives the sufficient condition for a sum δ -connected proximity space to be sum connected.

Theorem 3.25. Let (X, \mathcal{T}) be a Tychonoff space. If X is sum δ -connected and has finitely many δ -components with respect to any proximity δ compatible with \mathcal{T} , then X is sum connected. Moreover, it has at most finitely many components.

Proof. Let S be the collection of all proximities which are compatible with \mathcal{T} . Let $\delta_0 = \sup S$, then δ_0 is also compatible with \mathcal{T} . Therefore, by hypothesis, X is sum δ -connected and has finitely many δ -components with respect to δ_0 . Since $\delta_0 = \sup S$, the compactification (X^*, δ^*) corresponding to δ_0 is Stone-Čech compactification. So, by Theorem 3.23, X^* is sum δ -connected. Thus, X^* is sum connected. By Proposition 2.19, X is sum connected and has finitely many components.

4. Weaker forms of sum δ -connectedness

In this section we give proximity versions of notions defined and considered in [6].

Definition 4.1. Let X be a proximity space which contains a point x. Then X is called :

- (i) weakly sum δ -connected at x if there exists a δ -connected δ -neighbourhood of x.
- (*ii*) quasi sum δ -connected at x if the δ -quasi component which contains x is a δ -neighbourhood of x.
- (*iii*) δ -padded at x if for every δ -neighbourhood W of x there exist δ -open sets U and V such that $x \in U \subseteq Cl_{\delta}(U) \subseteq V \subseteq W$ and $V \setminus Cl_{\delta}(U)$ has at most finitely many δ -components.

If a proximity space X is weakly sum δ -connected (or quasi sum δ -connected) at each of its points, then the space X is called weakly sum δ -connected (or quasi sum δ -connected). For a proximity space X,

sum δ -connected \Rightarrow weakly sum δ -connected \Rightarrow quasi sum δ -connected

Example 4.2. In \mathbb{R}^2 , let B_n be the infinite broom containing all the closed line segments joining the point $(\frac{1}{n}, 0)$ to the points $\{(\frac{1}{n+1}, \frac{1}{m}) : m = n, n+1, \cdots\}$, where $n = 1, 2, \cdots$. Let $B = \bigcup_{n=1}^{\infty} B_n$ and $A = \{(x, 0) : 0 \le x \le 2\} \cup \{(y, \frac{1}{n}) : 1 \le y \le 2 \text{ and } n = 1, 2, \cdots\}$. Let $X = A \cup B$. Then note that X is compact. Therefore, connectedness is equivalent to δ -connectedness. Hence, X is weak sum δ -connected but not sum δ -connected at (0, 0).

Lemma 4.3. Every δ -open δ -quasi component is a δ -component.

Proof. Let U be a δ -open δ -quasi component of proximity space X and $x \in U$. Let V be the δ -component of x. Then $V \subset U$. Let $y \in U \setminus V$. So, $x \sim y$. Since V is δ -closed in X and $V \subset U$, V is δ -closed in U. So, $U \setminus V$ is δ -open in U. As U is δ -open in X, $U \setminus V$ is δ -open in X. Therefore, $(U \setminus V, X \setminus (U \setminus V)) \notin \delta$. Thus, $X = (U \setminus V) \cup (X \setminus (U \setminus V))$ with $(U \setminus V, X \setminus (U \setminus V)) \notin \delta$. Hence, $x \nsim y$ which is a contradiction.

Proposition 4.4. For a given proximity space X, the following statements are comparable:

- (i) X is quasi sum δ -connected.
- (ii) X is weakly sum δ -connected.
- (iii) X is sum δ -connected.
- (iv) δ -components of X are δ -open.
- (v) δ -quasi components of X are δ -open.

Proof. By Lemma 4.3, δ -open δ -quasi component is a δ -component. Therefore the statements (iv) and (v) are equivalent. The equivalence of (iv) with (i), (ii), (iii) follows from the fact that a set is δ -open if and only if it is a δ -neighbourhood of each of its points.

Corollary 4.5. A proximity space X is sum δ -connected if and only if it is the far proximity sum of its δ -components (δ -quasi components).

Corollary 4.6. Let X be a sum δ -connected proximity space. Then the map f on X is δ -continuous if and only if it is δ -continuous on each of its δ -component.

Corollary 4.7. Every locally δ -connected proximity space is the far proximity sum of its δ -components (δ -quasi components).

Corollary 4.8. If X is sum δ -connected proximity space and $U \subset X$, then U is a δ -component if and only if it is δ -quasi component. In particular, If Y is a locally δ -connected proximity space and $X \subset Y$ is δ -open, then $U \subset X$ is δ -component if and only if it is δ -quasi component.

Proof. By Proposition 4.4 (*iv*), δ -components and δ -quasi components coincide in sum δ -connected proximity space. The last statement of corollary from the fact that every locally δ -connected proximity space is sum δ -connected;

and every δ -open subset of a locally δ -connected proximity space is locally δ -connected.

As in Example 3.5, sum δ -connected proximity space may not be locally δ connected. But, if sum δ -connected proximity space is δ -padded, then it is also locally δ -connected.

Proposition 4.9. Let X be a sum δ -connected proximity space and $x \in X$. If X is δ -padded at x, then it is locally δ -connected at x.

Proof. Let N be a δ -open δ -neighbourhood of x. As X is sum δ -connected, suppose that N is contained in δ -component C_{δ} . Since X is δ -padded at x, there are δ -open δ -neighbourhoods W and V of x such that $Cl_{\delta}(W) \subseteq V \subseteq N$ with $V \setminus Cl_{\delta}(W)$ has only finitely many δ -components $C_{\delta}^1, C_{\delta}^2, \cdots, C_{\delta}^n$. Now for each $i, 1 \leq i \leq n$, there exist a δ -quasi component Q^i_{δ} such that $C^i_{\delta} \subseteq Q^i_{\delta}$. We show that each $v \in V$ is in some Q_{δ}^{i} . If there is some $v \in V$ such that $v \notin Q_{\delta}^{i}$ for each $1 \leq i \leq n$, then for each i we have $V = (V \setminus Q_{\delta}^i) \cup Q_{\delta}^i$ with $(V \setminus Q_{\delta}^i, Q_{\delta}^i) \notin \delta$. Let $W_i = V \setminus Q_{\delta}^i$ for each $1 \leq i \leq n$ and $M = \bigcap_i W_i$. Since $(V \setminus Q_{\delta}^i, Q_{\delta}^i) \notin \delta$ for each $1 \leq i \leq n$, $(M, Q^i_{\delta}) \notin \delta$. Note that $C_{\delta} \setminus M = \bigcup_i C_{\delta} \setminus W_i$ and for each i, $C_{\delta} \setminus W_i = (C_{\delta} \setminus V) \cup Q_{\delta}^i$. As V is δ -open in C_{δ} , $(V, C_{\delta} \setminus V) \notin \delta$ which implies $(M, C_{\delta} \setminus V) \notin \delta$. Thus, $(M, (C_{\delta} \setminus V) \cup Q_{\delta}^{i}) \notin \delta$, that is, $(M, C_{\delta} \setminus W_{i}) \notin \delta$ for each *i*. Therefore, $(M, C_{\delta} \setminus M) \notin \delta$. Therefore, C_{δ} is not δ -connected, a contradiction. Thus, each $v \in V$ is in some Q^i_{δ} . Therefore, V has only finitely many δ -quasi components and each of them is δ -open. Thus, each δ -quasi component is a δ -component. Hence, δ -component of x in V is δ -connected δ -open neighbourhood of x contained in N. \square

References

- G. Bezhanishvili, Zero-dimensional proximities and zero-dimensional compactifications, Topology Appl. 156 (2009), 1496–1504.
- [2] R. Dimitrijević and Lj. Kočinac, On connectedness of proximity spaces, Matem. Vesnik 39 (1987), 27–35.
- [3] R. Dimitrijević and Lj. Kočinac, On treelike proximity spaces, Matem. Vesnik 39, no. 3 (1987), 257–261.
- [4] V. A. Efremovic, Infinitesimal spaces, Dokl. Akad. Nauk SSSR 76 (1951), 341–343 (in Russian).
- [5] V. A. Efremovic, The geometry of proximity I, Mat. Sb. 31 (1952), 189-200 (in Russian).
- [6] J. K. Kohli, A class of spaces containing all connected and all locally connected spaces, Math. Nachr. 82 (1978), 121–129.
- [7] S. G. Mrówka and W. J. Pervin, On uniform connectedness, Proc. Amer. Math. Soc. 15 (1964), 446–449.
- [8] S. Naimpally, Proximity Approach to Problems in Topology and Analysis, Oldenbourg Verlag, München, 2009.
- [9] S. Naimpally and B. D. Warrack, Proximity Spaces, Cambridge Univ. Press, 1970.
- [10] Y. M. Smirnov, On completeness of proximity spaces I, Amer. Math. Soc. Trans. 38 (1964), 37–73.
- [11] Y. M. Smirnov, On proximity spaces, Amer. Math. Soc. Trans. 38 (1964), 5–35.
- [12] S. Willard, General Topology, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1970.