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Abstract

The study of polarization singularities in complex fields has been booming in recent years.
In this Master Thesis, we study a non-separable paraxial vector field and the phase and po-
larization singularities that it can show. We discuss the relationship between a multisingular
initial field in each component (channel) and the polarization singularities. We describe
two kinds of polarization singularities: those of circular polarization (C points) and those
of linear polarization (L lines). We also classify the C points with a topological charge ±1
in several ways (according to their charge, their contour and the number of major axes that
will end up in it), and we define different phases for the case of singularities with a higher
topological charge. We use the theory of the scattering modes to perform the dynamical
evolution of the initial multisingular fields. We introduce a tool developed with the “Math-
ematica” software that allows one to perform this evolution and to visualise the phase and
polarization singularities along evolution. We discuss the dynamics of many initial condi-
tions, which allow us to illustrate the relationship between both kinds of singularities, and
also the merging or disintegration of phase singularities along evolution.
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Introduction

The method of analogies is a fruitful technique used in physics [1], and also in mathematics
[2]. In the history of physics, a prominent example is the analogy between acoustics and
optics, which ultimately led to many advancements in classical physics [3,4]. Also, the birth
and development of quantum physics are intimately related to its analogy to optics [5–9] .
The study of phase singularities in optics [10–12] also was born from an analogy between
these singularities in complex fields and dislocations in crystals [13–15]. A phase singularity
occurs in those positions where the intensity of the complex field is zero and the phase is
undetermined. Following circuits around these dark spots which are infinitely close to it,
the phase increase in integer multiples of 2π. But singularities do not only appear in light
beams. They also appear in other areas such as plasma physics [16], fluid physics [17] or
atmospheric studies [18]. However, it became increasingly popular in the field photonics
because complex waves can be encountered naturally. This led to the establishment of an
independent branch of physics called singular optics [19–21].

One of the most important milestones in this field was when, in 1992, Allen et al. [22]
showed that these phase singularities could also show an orbital angular momentum (OAM)
[23–25]. This was extended to the case in which the system presents a discrete rotational
symmetry [26], where the concept of orbital angular pseudo-momentum was introduced, even
in the non-linear case [27–29]. Furthermore, it was also observed that the zeros of the solu-
tions of the Helmholtz (2) equation create knots where the wave function vanishes (knotted
nothings) as it evolved in time. Then, the study of this phenomena is very important in
optical fields [30–33]. The field evolved including more and more concepts from topology,
and the term topological photonics refers nowadays to a vast field which relates vortex and
other topological properties [34, 35]. Interestingly, it has even been possible to go beyond
the spatial and temporal dimensions to include synthetic dimensions [36].

Optical fields and their similarities between superfluids, superconductors and Bose-Einstein
condensates have been studied [37–40]. Nowadays they are used for the study of solar
rays [41–43] and even in medicine [44]. Many results which involve non-linear and discrete
symmetry have been developed only for the scalar complex field case. The purpose of this
work is to study singularities of complex vectorial fields. In such a case, there exist two
kinds of singularities: (i) the aforementioned phase singularities and (ii) polarization singu-
larities [45–47]. Here, we will study both kinds of singularities and set the framework to
study (i) their dynamical evolution; (ii) phenomena associated to the presence of external
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fields giving rise to discrete symmetry (similarly to the scalar case); and (iii) the extension
to the non-linear case.

As we discused above, from a mathematical point of view these fields allow us to make a
broad study using: (i) Differential equations, due to the equations we will use to parametrize,
(ii) group theory, since we will use the groups SU(2) and SO(3) to be able to visualise and
understand the fields better and (iii) topology, more specifically the fundamental group. We
will use what is known in physics as the topological charge of a singularity.

In the scalar case we solve the paraxial diffraction equation

−ik0n
∂

∂z
φ+

1

2
∇2
tφ = 0, (1)

where k0 is the ratio of the time frequency of a wave (ω) to the speed of light (c); and n is the
ratio of the speed of light to the speed of propagation in the medium (v). The function φ can
be written with the usual coordinates φ(x, y, z) or with the complex φ(w, w̄, z) with w = x+iy
and w̄ = x− iy its complex conjugate. The equation (1) is a paraxial approximation of the
Helmholtz equation

∂2

∂z2
U +∇2

tU + k20n
2U = 0, (2)

where U(x, y, z) = φ(x, y, z)eik0nz.

In the case of a plane wave (E = Ue−iωt) we have that if U(x, y, z) = U0e
i~k·~x =

U0e
ikxxeikyyeikzz and we substitute it in eq. (2), we obtain

ω2 =
c2

n2
(k2x + k2y + k2z). (3)

Equation (2) is a specific case of the wave equation

∇2E − n2

c2
∂2

∂2
E = 0, (4)

with E(x, y, z, t) = U(x, y, z)e−iωt.

If kx + ky + kz is constant, then we obtain a plane and its stratifications where, for every λ,
we would have a maximum of the function, because we are considering a plane wave (see Fig.

2). If we consider ~k = (0, 0, kz), we have that U(x, y, z) = U0e
i~k~x = U0e

ikzz, so the function
φ(x, y, z) = U0, and if we consider the real part of U we will obtain a cosine (see Fig. 2)

In Fig. 3 we show a more realistic situation. In this case φ(x, y, z) is not constant and
only depends on z [φ(z)]. In this case λ(z) is also a function of z. We will say that φ(z)
depends smoothly on z or is a paraxial approximation if∣∣∣∣∂2φ∂z2

∣∣∣∣ << k0n

∣∣∣∣∂φ∂z
∣∣∣∣ , (5)
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λ

Figure 1: Plane wave with ky = 0 with maxima with a continuous line and minima with a
dashed line.

x

z

Re(U)

z

U0

−U0
λ

Figure 2: Plane wave with kx = ky = 0 propagating along the z-axis, and real part of the
same field with maximums (minimums) in U0 (−U0).

Re(U)

z

φ(z)

λ(z)

Figure 3: Real part of plane wave with kx = ky = 0 and being φ a function of z.

i.e. it is a negligible term. In this way we can transform the equation (2) into the equation

(1) because the term ∂2φ
∂z2 is cancelled.

It is easy to see that a solution of Equation (1) is proportional to eiF , where F is a real
function known as phase. Then the topological charge is defined as

N =
1

2π

∮
C

∇F (r)dr, (6)
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where C is a sufficiently small closed curve around the singularity, and N ∈ Z, in other
words, it is quantized.

In this work we are going to study the non-separable paraxial vector fields, and for this,
in chapter 1 we will see which equations we will use to model our field, place singularities
and evolve the vectorial field along the z direction. In this part we will follow the theory
introduced in [48]. In the second chapter we will see how to visualise our field in different
ways. We will also define the object of study of this work, the singularities. In chapter 3 we
will define the simplest type of singularities ways. We will also discuss how we can classify
them. In chapter 4 we will study singularities with higher topological loadings and how we
can extract information from them with the line integrals taken from [46]. And finally, in
chapter 5 we will see the results that the tool that we have created with all the previous
information gives us. We will offer some conclusions and outlook in chapter 6.
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Chapter 1

Scattering modes

1.1 Scattering modes

Let us first define how to mathematically parametrize a complex scalar field and their sin-
gularities following the formalism described in [48]. This aproach enables us to evolve the
fields along the z-direction and allows us to introduce the extension to the vectorial case.
We will solve the paraxial diffraction equation

−2ik0
∂φ

∂z
+∇2

tφ = 0, (1.1)

where the function φ : C×R→ C is the complex field, ∇t ≡ (∂/∂x, ∂/∂y) is the transverse
gradient operator and k0 is the light wavenumber, and it verifies the initial condition at z = 0

Φlp(r, θ, 0) = r|l|+2p exp(ilθ) exp

[
−k0r

2

2zR

]
, (1.2)

where zR is the Rayleigh length. We can rewrite eq.(1.2) in the complex variables w = x+ iy
and w̄ = x− iy as

Φlp(w, w̄, 0) = w|l||w|2p exp

[
−k0r

2

2zR

]
l ≥ 0,

Φlp(w, w̄, 0) = w̄|l||w|2p exp

[
−k0r

2

2zR

]
l < 0.

(1.3)

We now define the complex position operator ŵ and ˆ̄w and their respective momentum
operators p̂ = −i∂/∂w and ˆ̄p = −i∂/∂w̄, which commutations relation 1 are

[ŵ, p̂] = ŵp̂− p̂ŵ = −i

0︷ ︸︸ ︷
ŵ
∂

∂w
+i

∂

∂w
ŵ = i,

[ ˆ̄w, ˆ̄p] = ˆ̄w ˆ̄p− ˆ̄p ˆ̄w = −i

0︷ ︸︸ ︷
w̄
∂

∂w̄
+i

∂

∂w̄
ˆ̄w = i.

(1.4)

1The commutator function between two operators Â, B̂ is defined as [Â, B̂] = ÂB̂ − B̂Â

5



Thus, we can write the Hamiltonian associated with (1.1) as Ĥ = p̂ ˆ̄p, and the operator that
allows us to evolve along the z-direction Û(z) = exp[i(2z/k0)Ĥ], satisfying

[ŵ, Û(z)]
2

= −(2z/k0)ˆ̄pÛ(z),

[ŵ, Û(z)] = −(2z/k0)p̂Û(z).
(1.5)

Thus, using these commutation relations it is possible to obtain a solution of the equation
(1.1) for a initial initial vortex state at any given z. Such solution can be written as

Φlp(r, θ, z) = w|l|
(
izR
q(z)

)|l|+1(
2zzR
k0q(z)

)
F |l|p (γ(z)|w|2)r|l| exp(ilθ) exp

[
−ik0|w|

2

2q(z)

]
, (1.6)

for l ≥ 0, and

Φlp(r, θ, z) = w̄|l|
(
izR
q(z)

)|l|+1(
2zzR
k0q(z)

)
F |l|p (γ(z)|w|2)r|l| exp(ilθ) exp

[
−ik0|w|

2

2q(z)

]
, (1.7)

for l < 0, where q(z) = z + izR, γ(z) = (k0/2)zR[zq(z)]−1 and F
|l|
p are polynomials of pth

order knows as F-polynomials. These polynomials satisfy the recurrence relations

Fp+1(x) = (1− x)Fp(x)− (1− 2x)
dFp(x)

dx
− xd

2Fp(x)

dx2
, (1.8)

for p = 0, 1, 2, . . . where F0(x) = 1, and

F |l|+1
p (x) = F |l|p (x)− dF

|l|
p (x)

dx
, (1.9)

for |l| = 0, 1, 2, . . . where F 0
p (x) = Fp(x).

The solution can be found in [48], and in table 1.1 are tabulated the polynomials for the
degrees we are going to use in this work.

1.2 Vector case

Let us extend the provious theory to the vector case. The wave equation in the vector case
is similar to (4). It reads as

∇2 ~E +
n2

c2
∂2

∂t2
= 0, (1.10)

2If [A,B] = k, then [A, exp(λB)] = λk exp(λB)
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F 1
p (x)

F 1
0 (x) = 1
F 1
1 (x) = 2− x
F 1
2 (x) = 6− 6x+ x2

F 1
3 (x) = 24− 36x+ 12x2 − x3
F 1
4 (x) = 120− 240x+ 120x2 − 20x3 + x4

F 2
p (x)

F 2
0 (x) = 1
F 2
1 (x) = 3− x
F 2
2 (x) = 12− 8x+ x2

F 2
3 (x) = 60− 60x+ 15x2 − x3
F 2
4 (x) = 360− 480x+ 180x2 − 24x3 + x4

F 3
p (x)

F 3
0 (x) = 1
F 3
1 (x) = 4− x
F 3
2 (x) = 20− 10x+ x2

F 3
3 (x) = 120− 90x+ 18x2 − x3
F 3
4 (x) = 840− 840x+ 252x2 − 28x3 + x4

F 4
p (x)

F 4
0 (x) = 1
F 4
1 (x) = 5− x
F 4
2 (x) = 30− 12x+ x2

F 4
3 (x) = 210− 126x+ 21x2 − x3
F 4
4 (x) = 1680− 1344x+ 336x2 − 32x3 + x4

Table 1.1: Generalized F-polynomials for l = 1, 2, 3, 4 and p = 0, 1, 2, 3, 4

where ~E : R3 → C is a electric field. In this case we have one more condition given by
Maxwell’s equations. This equation binds the components through ~∇ · ~E = 0 because there
are no sources of the magnetic field and the medium is homogeneous. This bound can be
translated into ~k · ~E = 0.

If we consider ~k = (0, 0, kz) as before, by this bound we have that Ez(t) = 0, i.e., the
field propagates temporarily only in Ex and Ey. Therefore, at z = 0

~E(x, y, 0, t) = ~U0

1︷︸︸︷
eikzz e−iωt =

 U0x

U0y

0

 e−iωt. (1.11)

Similar to the scalar case, we consider the plane wave (kz = k0n, with k0 constant)
~U(x, y, z) = ~Φ(x, y, z)eik0nz which will now have 3 components. Then this function satisfies
the Helmholtz vector equation
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∂2

∂z2
~U +∇2

t
~U + k20n

2~U = 0, (1.12)

and considering that it is a paraxial approximation, we get the equations
−ik0n ∂

∂z
Φx + 1

2
∇2
tΦx = 0,

−ik0n ∂
∂z

Φy + 1
2
∇2
tΦy = 0,

−ik0n ∂
∂z

Φz + 1
2
∇2
tΦz = 0.

(1.13)

Now, contour equation becomes 0 = ∇ · ~E = ∂zφz + ∂+φ−+ ∂−φ+ (where φ± = φx±φy),
and taking into account the paraxial approximation

ik0nφz = −(∂+φ− + ∂−φ+) = −(∂xφx + ∂yφy). (1.14)

Therefore, it is enough to propagate it in φx and φy, and φz would be calculated using

them and equation (1.14), which is a consequence of the bound ~k · ~E = 0, so we will call it
bound condition.

Let us consider the moment operators in Cartesian coordinates (p̂x and p̂y), it is easy to

see that p̂ ˆ̄p = p̂2x + p̂2y, so we can write the operator Û(z) as

Û(z) = ei
p̂ ˆ̄p
2
z = ei

p̂2
x+p̂2

y
2

z. (1.15)

The operators p̂2x and p̂2y commute with each other, so they also commute with the operator

Û(z)

[Û(z), p̂2x] = [ei
p̂2
x+p̂2

y
2

z, p̂2x] =
iz

2
[p̂2x + p̂2y, p̂

2
x]Û(z) = 0, (1.16)

and analogously with the operator for y.

Thus, if we have that the initial equation is satisfied for z = 0, then we can apply the
operator Û(z) and it will be satisfied for all z ≥ 0.

ik0nφz(0) = −(∂xφx(0) + ∂yφy(0)),

ik0nU(z)φz(0) = −U(z)(ip̂xφx(0) + ip̂yφy(0)),

ik0nφz(z) = −i(U(z)p̂xφx(0) + U(z)p̂yφy(0)),

ik0nφz(z) = −i(p̂xU(z)φx(0) + p̂yU(z)φy(0)),

ik0nφz(z) = −i(p̂xφx(z) + p̂yφy(z)).

(1.17)

Hence the equations (1.13) and (1.14) are satisfied, so we can make a similar development
to the scalar case to solve it

φ+(0) = P+(ω, ω̄)φ00,
φ−(0) = P−(ω, ω̄)φ00,

}
(1.18)
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φz(0) =
i

k0n
(∂+φ− + ∂−φ+) = Pz(ω, ω̄)φ00(0). (1.19)

Therefore, we can replicate the already known method.
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Chapter 2

Polarization field

2.1 Polarization ellipses

In this section, we will introduce the peculiarities of the vectorial complex field, in constrast
to a scalar complex field. Particularly, we will introduce the concept of polarization singular-
ity. Let ~E be a complex vector wavefield. We can write it in cartesian or real and imaginary
components ~E(x, y) = (Ex, Ey) = p(x, y) + iq(x, y), where p, q ∈ R2.

We are going to consider a monochromatic wave. Then, its time dependence is given by
a phase factor exp(−iωt), where ω is the angular frequency associated with the field. The
part of interest to us is the real part of the wavefield, i.e

Re( ~E) = Re(| ~E|e−iθ) = p cos(θ) + q sin(θ), (2.1)

where θ = ωt. It is easy to see that Re( ~E) sweeps out an ellipse from its centre, as θ in-
creases. The orthogonal semiaxes of the ellipse are p0 and q0 (p0 ≥ q0) (see Fig. 2.1).

γ0

p0

q0

x

y

Figure 2.1: Right-handed ellipse with main axis p0 is at angle γ0 with the x-axis.
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When the ellipse rotates anticlockwise as θ increases then ~E is said to be right-handed
(RH); and, if it rotates clockwise, left-handed (LH). If ~E is RH, the cross product Im( ~E∗ ×
~E) = 2(p× q) is positive, and if E is LH, it is negative.

Let us define other coordinates with which we can more easily see if ~E is RH or LH. We
are going to use the polar coordinates, defined by

e+ =
1√
2

(
1
i

)
e− =

1√
2

(
1
−i

)
. (2.2)

Now, ~E may be rewritten as ~E = E+e+ + E−e−, where E+, E− are the right-handed
and left-handed circular components of ~E, and their phases are α+, α− respectively, and we
can define the topological charge (6) for each of the components as

N± =
1

2π

∮
C

∇α±(r)dr. (2.3)

Therefore, there is a special phase χ0 such that the real and imaginary parts of | ~E| exp(−iχ0)
are perpendicular. As can be seen in [45], we can write this phase as

χ0 =
1

2
arctan

2p · q
|p|2 − |q|2

=
1

2

Im(E+E−)

Re(E+E−)
=

1

2
arg(E+E−) =

α+ + α−

2
. (2.4)

In [49], Nye called χ0 the “phase of the vibration”. The orientation of the ellipse defines
the angle γ0 given by the x-axis and the main axis p0. And we can write it in terms of the
field in the same way as in the previous case

γ0 =
1

2
arctan

2(pxpy + qxqy)

p2x + q2x − p2y − q2y
=

1

2

Im(E+∗E−)

Re(E+∗E−)
=

1

2
arg(E+∗ ∗ E−) =

α− − α+

2
. (2.5)

The polarization matrix (Stoke matrix or coherence matrix) MS is a 2 × 2 hermitian
matrix defined by

(MS)ij = EiE
∗
j i, j = x, y.

The real part of the polarization matrix (M = Re(MS)) is a positive definite symmetric
matrix whose eigenvectors are in the directions of the axes of the ellipse p0, q0, and whose
eigenvalues are |p0|2 and |q0|2, respectively. The four components of the M concerning the
usual Pauli spin matrices 1 are known as the Stokes parameters S0, S1, S2, S3

M =

(
S0 + S1 S2 − iS3

S2 + iS3 S0 − S1

)
, (2.6)

1Pauli matrices are 2 by 2 hermitian unitary complex matrices which form a basis of the Lie algebra of
the special unitary group SU(2).
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and they are given by

S0 = |E+|2 + |E−|2 = |Ex|2 + |Ey|2,
S1 = 2Re(E+∗E−) = |Ex|2 − |Ey|2,
S2 = 2Im(E+∗E−) = 2Re(E∗xEy),

S3 = |E+|2 − |E−|2 = 2Im(E∗xEy),

(2.7)

where S0 represents the intensity of the field |E|, π|S3|/2 is the area of the polarization
ellipse and the sign of S3 gives the handedness of the ellipse, + for RH and - for LH.

Figure 2.2: Optical field with a C point at the origin with topological charge −2. The red
ellipses are RH elipses, the blue ones are LH elipses and the yellow ones have an excentric-
ity less than 10−2, i.e are near the L line which separates the southern hemisphere of the
Poinacare sphere (blue background) from the northern hemisphere (white background).

Another motivation for defining the parameters in this way is that they satisfy

S2
0 = S2

1 + S2
2 + S2

3 . (2.8)

Then we can normalize the parameters si = Si/S0, i = 1, 2, 3 and now, we have a vector in
the unit sphere S2 called (normalized) Stokes vector. This is a different way to study and
visualize the ellipse in each point on the field like a vector (or a point in the sphere).

Thus, the different states of polarization are parameterized by positions on the unit
sphere, called Poincaré sphere. We can parametrize all possible polarization ellipses by the
spherical polar angles δ and µ. The polar angle δ = arccos s3 indicates the eccentricity of
the ellipse, being 0 at the poles (circular polarization) and it increases gradually to 1 (linear
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polarization) on the equator. When it is in the northern hemisphere (S3 > 0), the handedness
is RH and in the southern (S3 < 0), it is LH. The azimuthal angle µ = 2γ0 = arctan s2/s1
indicates the orientation of the main axis of the ellipse (see Fig.2.3).

Figure 2.3: Poincaré sphere with ellipses in different positions

2.2 Polarization singularities

With all this knowledge, let us discuss about the points where the polarization ellipse “is no
longer an ellipse”: it becomes a circle (C points) or a straight line (L lines) (see Fig. 2.2).

2.2.1 C points

The points where the polarization is circular (either RH or LH) are known as C points,
the most important type of polarization singularities. In a paraxial vector field, these C
singularities have codimension 2, that is why it usually occurs in points.

There are different ways of considering these points:

• There will be a circumference when the real and imaginary vectors p, q are of equal
length and orthogonal. It is equivalent to

|p|2 − |q|2 = 0 (equal length),
2(p · q) = 0 (orthogonal).

(2.9)
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These equations are equivalent to the fact that the rectifying phase χ0 (2.4) is undefined
at the C point.

• Another way is to find the points where the Stokes parameters S1, S2 vanish. The
points on the Poincaré sphere where the polarization is circular are the north and
south poles where S1 = S2 = 0 and S3 = ±S0 by (2.8). The C point is RH if S3 = S0,
and LH if S3 = S0. The azimuthal µ (and orientation angle γ0) is singular at the poles
of the Poincaré sphere (there is no unicity in the axes of a ellipse). The singularity of
γ0 is different from that χ0, although the two singularities always occur together.

• When the real symmetric matrix M is degenerate (combining the previous point and
the definition (2.6)). The structure of these matrices around the singularity is called a
diabolical point because the two eigenvalues locally have a double cone structure (dia-
bolo). In [47], they use this to define the C-points of a real function f as degeneracies
of its hessian matrix H = fab(a, b,= x, y)

• Finally, we can consider the circular components E+, E−, the simplest and possibly
most instructive way of viewing C points. We have a RH circular polarization where
E− = 0 and a LH circular polarization where E+ = 0. Then, the phases α−, α+ are
singular at the respective C points. This implies for (2.4) and (2.5), rectifying angle
χ0 and the ellipse orientation γ0 are undefined at a C point.

2.2.2 L lines

Another type of singularity is the places where the ellipse turns into a line, that is, the
places with linear polarization where the Stokes parameter S3 = 0. The location where this
happens has codimension 1, what is called L lines. L lines separate regions of RH and LH
polarization and on these lines, the handedness of the ellipse is not defined. In terms of
circular components, this implies that |E+| = |E−| on an L line.

In contrast to the rich topological structure of the C points, there is no characteristic
structure around an L line where generically S3 passes through zero smoothly, and the phases
change smoothly along the singular line. That is the reason why we are going to study only
the C points in this paper.
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Chapter 3

Classification of the simplest regular
points

Now, we will discuss the topology structure around the simplest regular points and how we
can classify the C points in terms of the ellipse surrounding them.

We have seen in the previous chapter that the phase γ0 is singular in the C points, this
implies that the line integral on a loop L around a C point

ΦC =

∮
L
∇γ0 dR =

1

2

∮
L
(∇α− −∇α+) dR = πNC , (3.1)

where NC ∈ Z as in (6).
The number NC/2 is known as the topological index of the C point. There is a simpler

way to calculate the sign of the index knowing that it is the same as the sign of the function
(3.1)

DI = S1xS2y − S1yS2x. (3.2)

In this chapter, we will work with the number NC only, more precisely, the C points with
topological index ±1/2.

So far, we can classify the simplest C points in four types, according to the handedness
(RH or LH) and index (±1/2)

3.1 Contour classification

We can classify the C point in elliptic or hyperbolic depending on whether the contour lines
of the eigenvalues of M (2.6) around the singularity are ellipses or hyperbolas.

In [50], the function DC determines the classification in terms of the Stokes parameters

DC = (S1xS2y − S1yS2x)
2 − (S1xS0y − S1yS0x)

2 − (S0xS2y − S0yS2x)
2. (3.3)

When DC < 0, the point is hyperbolic, and elliptic if DC > 0.
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To the best of our knowledge, it is not clear if there is a straightforward physical inter-
pretation of this classification for C points.

3.2 Line classification

Let us remember that the C points are singularities of the orientation angle γ0, which define
the inclination of the main axis of the polarization ellipse with respect to the x-axis, i.e, it
gives us an undirected line at each point.

The configuration of these lines is the key to classify the C points. Line fields can be
classified depending on two things:

• If a line turns around the singularity anticlockwise (+) or not (-); that is, the sign of
the index of the singularity, before returning to the same point.

• The number of straight lines that end on C points. In the simplest case that we study
in this chapter, this number is 1 or 3, but we will see later that it may be changed.

Therefore, for index -1/2 the number of straight lines is always 3 and the singularity is
called a star. And for index +1/2, it may be 1 or 3, and the singularity is called lemon or
monstar respectively [45] (see Fig.3.1).

(a) Star (b) Lemon (c) Monstar

Figure 3.1: Types of C-points and the pattern that make the semi-major axes of ellipses
around them.

There is a similar value to (3.2) whose sign gives the number of straight lines. We are
going to define an equivalent expression to that of [50]. We want the places where the γ0
is constant when we move away from the singularity. To simplify calculations, the C point
translated to the origin, then we expand S1, S2 in γ0 = arctan(S2/S1)/2 to first order with
polar coordinates R and angle θ = arctan(y/x). We can rewrite this expression into a
polynomial equation with t = tan θ

S2yt
3 + (S2x + 2S1y)t2 + (2S1x − S2y)t− S2x = 0. (3.4)

The solutions of (3.4) give the lines ending at the singularity. In order to determine the
number of lines, we observe the discriminant of the polynomial is

DL = ((2S1y + S2x)
2 − 3S2y(2S1x − S2y)) · ((2S1x − S2y)

2 + 3S2x(2S1y + S2x))

− (2S1xS1y + S1xS2x − S1yS2y + 4S2xS2y)
2.

(3.5)
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If DL > 0 there are 3 real roots, and if DL < 0, only one. In the case that DL = 0 we
have no conclusive criteria.
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Chapter 4

Phases of the field

We have seen how to classify the simplest singularities with index ±1/2. Now we will define
some values that give us information about the singularity regardless of its index. Analogous
to (3.1), we can define the dynamical phase ND [46] because χ0 is also singular at the C
points

ΦD =

∮
L
∇χ0 dR =

1

2

∮
L
(∇α+ +∇α−) dR = πND, (4.1)

where ND ∈ Z as (3.1) and (6), and it is known as the topological number. It is easy to check
that the parity between ND and NC is the same because

ND

2
=
N+ +N−

2

NC

2
=
N− −N+

2
, (4.2)

then
NC mod 2 = ND mod 2 =⇒ ΦC mod 2π = ΦD mod 2π. (4.3)

We can also obtain the total phase increment from the circular basis

Φ =

∮
E∗(̇∇)E

|E|2
dR =

∮
|E+|2∇α+ + |E−|2∇α−

|E+|2 + |E−|2
dR. (4.4)

Generally, this phase is not quantized, i.e, there is no integer N such that Φ = 2πN . We
can define another phase as the difference between the total phase (4.4) and the dynamical
phase (4.1)

ΦG = Φ− ΦD =
1

2

∮
|E+|2 − |E−|2

|E+|2 + |E−|2
(∇α+ −∇α−)dR. (4.5)

This phase is known as the geometric phase, and it is associated with the evolution of the
polarization along the contour [51–53]. It is also known as the Pancharatnam-Berry (PB)
phase, which is an important phase in optical and quantum fields [52–54].

We can think of the contour as a closed curve in the 2D polarization field, or as a closed
curve on the Poincaré sphere. Let us recall how we had defined in section 2 the polar angle
and the azimuthal angle

21



cos δ = s3 =
|E+|2 − |E−|2

|E+|2 + |E−|2
µ = arctan

s2
s1

= arg(E+∗E−) = α− − α+. (4.6)

Therefore, we can rewrite the geometric phase (4.5) as

ΦG = −1

2

∮
cos δdµ =

1

2
Σequat. (4.7)

This equality indicates that ΦG is numerically equal to half of the spherical area Σequat

swept by the shortest geodesic line connecting the point on the contour and the equator
of the Poincaré sphere. When the angle µ increases (decreases) the area of the northern
hemisphere is counted as negative (positive), while the area of the southern hemisphere is
counted with the opposite signs the area of the southern hemisphere is the opposite.

If the contour of the integral on the sphere does not enclose the poles, the area swept
by the geodesic is equal to the oriented area enclosed by the contour. Nevertheless, each
time the contour encloses the s3 axis, the area Σequat differs from the area enclosed by ∓2π
(depending on the direction in which the contour rotates). Then, the geometric phase makes
a jump of ±π when the contour crosses a pole.

Note that the topological number NC (3.1) counts the C-points enclosed by the contour
in the real space, which is equal to the number of times that the contour crosses the poles
on the Poincaré sphere

ΦG =
1

2
Σ± ∓ πNC , (4.8)

where Σ∓ is the oriented area on the sphere enclosed by the contour. In this case, the ±
hyper index denotes the area above and below the contours including the north and south
poles, respectively.

The PB phase can be defined differently in a way which is more convenient in some
practical cases as we just use the corresponding closed area

Φ̄±G = ΦG ± ΦC =
1

2

∮
(±1− cos θ)dφ =

1

2
Σ±. (4.9)

Now, the Φ̄+
G phase is continuous when the Poincaré-sphere contour crosses the north poles

and makes a 2π jump when it crosses the south pole, and the opposite for Φ̄−G.
Considering definitions (4.5) and (4.9) and taking into account (4.3) it follows that

Φ̄+
G mod 2π = Φ̄−G mod 2π = Φ mod 2π. (4.10)
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Chapter 5

Results

In this chapter we will look at some types of fields with singularities and classify them using
our tool and the previous theory. We have coded in Mathematica complex initial fields for
the vectorial equations and evolved them following the theory in [48]. We check for every
moment of evolution that the condition on the two components is fulfilled, which is otherwise
straightforward. We use the evolved fields to construct fields with phase singularities in one
channel (E+ or E−) or both. In this way we can study how their phases change separately
as well as in the polarization field. In turn, these fields can be made to evolve along z to see
if there is any change in the singularities and which ones. This toolbox can also be used to
calculate the values DI (3.2), DC (3.3) and DL(3.5) to classify the singularities with charge
±1; and the integrals φC (3.1), φD (4.1), φ (4.4), φG (4.5) and φ±G (4.9) varying the radius
of the integral curve, or leaving it fixed and varying the field evolving it by z.

5.1 Static fields

First we will look at the simplest singularities with NC = ±1. To do this we will use the
scattering modes from chapter 1 to leave an real field without singularity in one component
and a complex field with a singularity with N = 1 1 in the other (see Fig. 5.1).

In the field with charge 1 we can see how the phase increases to 2π, jumping to the left of
the singularity and leaving it with an undefined phase. In this way we can create four types
of polarization fields depending on the sign of the charge and whether it is in N+ or N−.

N+ = +1→ NC = −1, N+ = −1→ NC = 1,
N− = +1→ NC = 1, N− = −1→ NC = −1.

(5.1)

As we can observe in Figures 5.2 and 5.3 , using the classification of chapter 3, we obtain
lemon singularities when NC = 1 and star when NC = −1. Moreover, they are of the elliptic
type since the function S0 has a minimum at (0,0), so S0x and S0y are null. Therefore, in
the equation (3.3) we only have the first squared term which is clearly positive, so they are

1For negative topological charges it would be similar except that instead of increasing, the phase decreases.
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Figure 5.1: Argument of scalar complex fields. (a) Field without any phase singularity. (b)
Field with a phase singularity at the origin.

Figure 5.2: Fields with LH singularities of charge +1 on (a) and -1 on (b), and below tables
giving information on handedness, topological charge, coordinates of the singularity and the
classifications according to lines and contour.

always elliptic singularities (because of the way we have constructed them).

We can also add singularities with a large topological charge in each of the channels to
see how the polarization field changes. In these cases the pattern that emerges from the
polarization field depends on the value of NC , but not on the handedness of the singularities,
for example in figure 5.5 it does not matter whether N+ = 4 or N− = −4 (in both cases
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(a) (b)

Figure 5.3: Fields with LH singularities of charge +1 on (a) and -1 on (b), and below tables
giving information about handedness, topological charge, coordinates of the singularity and
the classifications according to lines and contour.

NC = −4). Therefore we will not differentiate between RH and LH. Thus, the different
patterns that form the semi-major axes of the ellipses when |NC | = 2, 3 and 4 are in figures
5.6, 5.7 and 5.8.

We have seen that the major axes of the ellipses around the circumference create different
patterns depending on the value of NC (3.1). So far, we have only created polarization
singularities putting all the topological charge in one of the two channels (either in N+ or
in N−) and leaving the other empty, but we can make combinations. The only restriction
is that |N+| 6= |N−|, otherwise the value of S3 (2.7) would cancel out and we would have
linear singularities in the whole field.

Thus we can see that the aforementioned pattern only depends on the value of NC , but
the value of ND can vary, which will have repercussions mainly on the eccentricity of the
ellipses which will have an impact on the phases mentioned in chapter 4(see Fig.5.9, 5.10 and
5.11). The total charge on the circumferences becomes negative, we can see that the only
continuous phase is φ−G, and the only one that varies depending on the value of ND (4.1) is
the total phase φ (4.4), which is why we define the other type of phases.
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Figure 5.4: Argument of scalar complex fields. Fields with a phase singularities with charge
2 (a), with charge 3 (b) and with charge 4 (c).

Figure 5.5: Singularity of different handedness with NC = −4, but with the same pattern of
semi-major axes.
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(a) (b)

Figure 5.6: Polarization fields with a LH C-point with NC = 2 in (a) and NC = −2 in (b).

(a) (b)

Figure 5.7: Polarization fields with a LH C-point with NC = 3 in (a) and NC = −3 in (b).

(a) (b)

Figure 5.8: Polarization fields with a LH C-point with NC = 4 in (a) and NC = −4 in (b).
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(a) (b)

Figure 5.9: (a) Complex field with a singularity with NC = −4 and ND = −4(N− = −4
and N+ = 0) and (b) value of the phases over circumferences centred at i and of radius R =
0.35, 0.75, 1.15 and 1.55.

(a) (b)

Figure 5.10: (a) Complex field with a singularity with NC = −4 and ND = −2(N− = −3
and N+ = +1) and (b) value of the phases over circumferences centred at i and of radius R
= 0.35, 0.75, 1.15 and 1.55.

(a) (b)

Figure 5.11: (a) Complex field with a singularity with NC = −4 and ND = −6(N− = −5
and N+ = −1) and (b) value of the phases over circumferences centred at i and of radius R
= 0.35, 0.75, 1.15 and 1.55.
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5.2 Fields in evolution

The main reason for using the scattering modes seen in chapter 1 is that they allow us to
be able to evolve the fields and how the singularities evolve or if and how they interact with
each other.

In the case where we have an isolated singularity (regardless of its topological charge), it
will not be able to interact with anything and its field will be significantly affected.

To see more dynamic fields, we first go to two separate singularities to see how they
interact. We will put them in the three possible ways: (i) the two singularities in the
same channel and with the same sign in the topological charge (see Fig. 5.12); (ii) the
two singularities in the same channel and with opposite sign (see Fig. 5.13); and (iii) one
singularity in each channel (see Fig. 5.14).

If we put two singularities with the same handedness and with the same sign in the
topological charge, then the singularities will not interact with each other while evolving in
z, as we can see in figure 5.12. On the other hand, looking at the figure 5.13, if the sign
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Figure 5.12: (a), (b) and (c) are the argument of the E− component at z = 0, 4 and 6
respectively. (d), (e) and (f) are the polarization field with two singularities with topological
charge with same sign at z = 0, 4 and 6 respectively.
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of the topological charge is opposite, then the singularities will act as a particle-antiparticle
pair attracting and destroying each other.

-2 -1 0 1 2

-2

-1

0

1

2

-2.61

-2.03

-1.45

-0.87

-0.29

0.29

0.87

1.45

2.03

2.61

(a)

-2 -1 0 1 2

-2

-1

0

1

2

-2.61

-2.03

-1.45

-0.87

-0.29

0.29

0.87

1.45

2.03

2.61

(b)

-2 -1 0 1 2

-2

-1

0

1

2

-2.61

-2.03

-1.45

-0.87

-0.29

0.29

0.87

1.45

2.03

2.61

(c)
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Figure 5.13: (a), (b) and (c) are the argument of the E+ component at z = 0, 4 and 6
respectively. (d), (e) and (f) are the polarization field with two singularities with topological
charge with different sign at z = 0, 4 and 6 respectively.

However, when the singularities are each one with a handedness in figure 5.14, they will
not interact with each other in any way, no matter what charges they have, but they will
change the field around them.

In this way we can create an initial configuration with singularities of different types and
with different charges in the field to see how they evolve and interact with each other (see
Fig. 5.15). And, finally, if we are interested in a particular area, we are also able to make a
fixed loop at that location in the field and evolve the field in z to see how the phases change
in that loop (see Fig. 5.16).
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Figure 5.14: Polarization field with two singularities with different handedness at z = 0, 5, 10.

Figure 5.15: Evolution of a polarization field with two singularities of NC = +1 at −1+i√
2

and
−1−i√

2
, and one with NC = −2 at 1 for z = 0, 1, 1.5, 2.
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(a)

(b) (c)

Figure 5.16: (a) Initial field configuration with a loop at (0.2,0.5) of radius 0.9. (b) Phases
φC and φD changing along z between 0 and 2. (c) Phases φ, φG, φ−G and φ−G changing along
z between 0 and 2.
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Chapter 6

Conclusions

In this Master Thesis we studied the non-separable paraxial complex vector fields which
model the propagation of an optical fields in an axially symmetric system, such as an optical
fiber. For this we first detailed the mathematical formalism which describes the propagation
of light in a fiber in the case of monochromatic beams, paraxial approximation and fixed
polarization. The key differential equation describing this case is known as the Paraxial
wave equation describing the propagation of the scalar optical field. We described briefly
the dynamical evolution of multisingular initial beams within this formalism, a problem that
can be solved analytically, introducing a set of polynomials which help solve the problem
with a handleable recipe. This technique is reminiscent of other ways of solving parabolic or
other Partial differential equations using appropriate sets of functions.

We then considered a generalization of this system, where polarization is not fixed. This
means that instead of considering the scalar case we considered the vectorial case. We derived
the partial differential equations describing this case, which now are a set of two equations
for two of the components of the field plus a bound condition which permits to obtain the
third component. The initial condition we considered showed one or many singularities in
at least one of the components. We also discussed a second kind of singularities which only
appear in the vectorial case, the polarization singularities. We discussed how to define their
charge and how to represent and classify them.

With this theory at hand we developed a code in mathematica able to generate any mul-
tisingular condition in each component, perform its dynamical evolution and represent both
the phase and polarization singularities. We then performed a systematic study of the rela-
tionship between the initial phase singularities and the associated polarization singularities
and how they evolve dynamically. We found merging and disintegration of singularities with
high charge and its relationship with the polarization singularities.

Thus we discussed the different patterns that emerge from the static fields and that
how we can generate them in different ways, with the consequences that this has on the
corresponding phase field. We also were able to simulate the dynamics of the fields along
z to see how the singularities interact; destroying each other when they are in the same
channel and have topological charge of opposite signs, and ignoring each other in the other
cases. And finally to be able to study the different phases with respect to a fixed loop as the
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field evolves.
In summary we have designed a tool that allows one to make analyze phase and po-

larization singularities in vectorial optical fields. Since these singularities appear in other
fields, this tool is also useful for other systems, e.g. vortices two component Bose-Einstein
condensates. As an outlook, we plan to use it to study systems with discrete symmetries,
such as photonic crystal fibers [55], where the discrete symmetry introduces some constraints
in the solutions and evolution of multisingular initial beams [56]. A second line of research
will be to consider time or z dependent structures with discrete symmetries (i.e. a exter-
nal potential in the case of Bose-Einstein condensate where evolution occurs in time, and a
twisted photonic crystal fibers [57]. This directly will draw the results built with the tool
presented in this Master Thesis to the edge of the current research in topological photon-
ics [37]. Finally, this tool can easily be extended to the non-linear case, where the dynamics
of singularities is very different than i the linear case, often hindering the merging of the
singularities, and introducing a repulsion among singularities of the same sign, similarly as
charge particles [58, 59].
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