
Escola Tècnica Superior d’Enginyeria Informàtica
Universitat Politècnica de València

Development of a mobile application for vertical
jump detection

MASTER’S DEGREE FINAL WORK

Master’s Degree in Computer Engineering

Author: Ismael Pérez Martín

Tutor: M. Carmen Juan Lizandra

Course 2020-2021

Abstract
This Master’s Degree final work consists of the development of an Android

application to detect a vertical jump through a video and show its data and
measurements. The system is intended to be used by people who want to record or
improve their vertical jumping ability or otherwise want to evaluate it from a health
point of view.

This purpose arises from the idea of improving current applications to analyze
vertical jump. The idea for improvement comes from the fact that none of the existing
applications, even the market leaders, present the possibility of detecting the jump
automatically. Thanks to this, the idea arose of creating an application that allows the
user to obtain the measurements of their vertical jump in a more automatic way, without
having to view a complete video to inform the application when the jump is made.

The first idea of this work is to carry out a research work on the tools and methods
to detect a vertical jump in a video. This investigation was carried out in this order: a
phase of analysis of the different tools for their detection, another phase of analysis of
the ways to detect the jump with the chosen tool, a phase of tests to verify that the pre-
established precision requirements are reached, and finally, an analysis of the results to
establish some guidelines for the performance of the vertical jump.

The results obtained from the research are that first, a vertical jump is detectable in
a video by analyzing contours and their movements in the Y axis of the frames, the best
position to detect it in a video is to stand sideways to the camera, and finally, the best
distance to stand from the camera to detect the jump is 120cm.

As the final result obtained, the user is offered a system to add videos of vertical jumps
through an Android application and that they are processed automatically without their
intervention. This processing is responsible for obtaining all the respective measurements
to the jump and showing them to the user in a simple way. Finally, a system is provided
to the user to view their history of validated jumps together with the measurements and
relevant aspects of each of the vertical jumps.

Key words: vertical jump, computer vision, Android, OpenCV, automatic detection

iii

Contents

Contents v
List of Figures vii
List of Tables viii

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Methodology . 3
1.4 Memory structure . 5

2 State of the art 7
2.1 Existing solutions . 10

2.1.1 Solutions using physical tools . 10
2.1.2 Solutions using video . 16

2.2 Critical analysis of the existing solutions . 18
2.2.1 Accelerometer . 18
2.2.2 Height measurement from video . 19
2.2.3 Timing using video . 19

2.3 Computer vision available technologies . 20
2.3.1 Amazon Recognition . 20
2.3.2 Azure Video Analyzer . 21
2.3.3 OpenCV . 22
2.3.4 SimpleCV . 23
2.3.5 TensorFlow . 24

2.4 Technological context . 25
2.4.1 OpenCV . 25
2.4.2 Python . 25
2.4.3 Kotlin . 26
2.4.4 Flask . 26
2.4.5 MongoDB . 27
2.4.6 Git . 27
2.4.7 Docker . 28

3 Proposal 31
3.1 Definition of the actors . 32

3.1.1 Unidentified user . 32
3.1.2 Identified user . 32

3.2 Analysis of requirements . 32
3.2.1 Functional requirements . 32
3.2.2 Non-functional requirements . 35
3.2.3 Business rules . 37
3.2.4 Information requirements . 37

3.3 Use cases . 38
3.4 Conceptual modeling . 40

v

vi CONTENTS

4 Proposed solution 41
4.1 Project plan . 41
4.2 Budget . 43

4.2.1 Infrastructure and tools budget . 43
4.2.2 Programmer budget . 44

4.3 System architecture . 44
4.3.1 Backend architecture . 45
4.3.2 Application architecture . 47

4.4 Detailed design . 48
4.4.1 Database design . 48
4.4.2 Vertical jump detector design . 50
4.4.3 Backend design . 50
4.4.4 Application design . 51
4.4.5 User interface flowchart design . 52

4.5 Development of the proposed solution . 53
4.5.1 Development of the vertical jump detection system 53
4.5.2 Development of the backend . 60
4.5.3 Development of the application . 62

5 Implantation 65
5.1 Deployment . 65

5.1.1 Database deployment . 65
5.1.2 Vertical jump detector deployment 68
5.1.3 Backend deployment . 72

6 Testing 73
6.1 Vertical jump detector . 73

6.1.1 Vertical jump detection parameter tests 73
6.1.2 Vertical jump distances tests . 79
6.1.3 Position tests . 83
6.1.4 Test cases setup . 83

7 Conclusions 89
7.1 Relationship of the work carried out with the studies completed 90

Bibliography 91

List of Figures

1.1 Waterfall methodology phases schema 4

2.1 Number of people using social media platforms, 2005 to 2019 7
2.2 Evolution of sports in the spanish population older than 15 years 8
2.3 Main reasons for practicing sports in the Spanish resident population . 9
2.4 Cristiano Ronaldo header challenge . 9
2.5 Wall mounted vertical jump measurement method 10
2.6 Vertec vertical jump measurement method 11
2.7 Mat vertical jump measurement method 11
2.8 Just Jump vertical jump measurement method 12
2.9 Force plate vertical jump measurement method 12
2.10 ChronoJump measurement kit . 13
2.11 Optoelectronic vertical jump measurement method - Take off 13
2.12 Optoelectronic vertical jump measurement method - Landing 14
2.13 Ground-Based Laser/Infrared Beams vertical jump measurement method 14
2.14 Brower vertical jump measurement method 15
2.15 Vert vertical jump device . 15
2.16 Jumpster app . 16
2.17 iPhone camera measure tool . 16
2.18 Vertical jump height measurement method from video 17
2.19 MyJump 2 app . 17
2.20 Whats My Vertical? app . 18
2.21 Amazon Rekognition tool . 20
2.22 Azure Video Analyzer tool . 21
2.23 OpenCV cars detection example . 22
2.24 SimpleCV ball tracking example . 23
2.25 Pymongo query schema . 27
2.26 GitFlow schema . 28
2.27 DockerHub project images . 29

3.1 Vertijump use case diagram . 39
3.2 Vertijump conceptual model . 40

4.1 Vertijump project Gantt diagram . 41
4.2 Vertijump State of the art Gantt diagram 42
4.3 Vertijump Vertical jump detection Gantt diagram 43
4.4 Vertijump Implementation Gantt diagram 43
4.5 REST API architecture . 45
4.6 Flask Blueprints architecture . 46
4.7 Kotlin Clean Architecture . 47
4.8 Database design diagram . 49
4.9 Vertical jump detector design diagram . 50
4.10 Backend design diagram . 51
4.11 Application UI layer design diagram . 52

vii

4.12 Applicacion domain layer design diagram 52
4.13 Application flowchart design . 53
4.14 Vertijump-detector repository . 54
4.15 OpenCV image transformations . 55
4.16 OpenCV contours detection . 55
4.17 OpenCV baselines and contours detection 58
4.18 VertiJump detector code structure . 60
4.19 Vertijump-backend repository . 61
4.20 Vertijump backend code structure . 62
4.21 Vertijump app code structure . 63
4.22 Vertijump app views . 64

5.1 MongoDB Replica set architecture . 66
5.2 Vertijump detector deployment diagram 69
5.3 Vertijump backend deployment diagram 72

6.1 Correlation graph of detected takeoff frame with real - Parameter tests . 75
6.2 Correlation graph of detected landing frame with real - Parameter tests 76
6.3 Correlation graph of detected time with real - Parameter tests 76
6.4 Correlation graph of detected height with real - Parameter tests 76
6.5 Comparison of detected jump frames with real - Parameter tests 76
6.6 Distance tests setup. 79
6.7 Correlation graph of detected takeoff frame with real - Distance tests . . 80
6.8 Correlation graph of detected landing frame with real - Distance tests . 80
6.9 Correlation graph of detected time with real - Distance tests 81
6.10 Correlation graph of detected height with real - Distance tests 81
6.11 Comparison of detected jump frames with real - Distance tests 81
6.12 Positions for position tests . 84
6.13 Correlation graph of detected takeoff frame with real - Distance tests . . 84
6.14 Correlation graph of detected landing frame with real - Distance tests . 85
6.15 Correlation graph of detected time with real - Distance tests 85
6.16 Correlation graph of detected height with real - Distance tests 85
6.17 Comparison of detected jump frames with real - Distance tests 85

List of Tables

3.1 Functional requirement RF-01 Sign up . 32
3.2 Functional requirement RF-02 Login . 33
3.3 Functional requirement RF-03 Visualize main menu 33
3.4 Functional requirement RF-04 Visualize vertical jumps 33
3.5 Functional requirement RF-05 Visualize vertical jump 33
3.6 Functional requirement RF-06 Add vertical jump 33
3.7 Functional requirement RF-07 Add video from gallery 34
3.8 Functional requirement RF-08 Trim video 34
3.9 Functional requirement RF-09 Detect vertical jump 34
3.10 Functional requirement RF-10 Validate vertical jump 34

viii

LIST OF TABLES ix

6.1 Test cases of parameter tests . 75
6.2 Descriptive values of the errors of test case 1 - Parameter tests 77
6.3 Descriptive values of the errors of test case 2 - Parameter tests 77
6.4 Descriptive values of the errors of test case 3 - Parameter tests 78
6.5 Descriptive values of the errors of test case 1 - Distance tests 82
6.6 Descriptive values of the errors of test case 2 - Distance tests 82
6.7 Descriptive values of the errors of test case 3 - Distance and Position tests 83
6.8 Descriptive values of the errors of test case 1 - Position tests 86
6.9 Descriptive values of the errors of test case 2 - Position tests 86

CHAPTER 1

Introduction

Jump monitoring devices are often high-cost devices that operate by pressure or laser
detection. To solve this problem, several applications for vertical jump analysis emerged,
which are positioned as market leaders but not with very good ratings or results. The
worst point of this kind of applications is the need for a manual selection of the takeoff
and landing moments of the jump in the video.

From this point arises the idea of offering the users a jump analysis option through
automatic take-off and landing detection. This idea provides a fundamental value to the
users since they only have to be in charge of recording their jumps with certain guidelines
and they will directly obtain the information in the application (height, time in the air,
power, etc).

Vertical jumping power is becoming increasingly important in terms of health and
sports performance, which is why it is oriented both to a market of athletes who do not
have the resources to afford professional equipment and to people who want to improve
their health by practicing jumps.

The most critical aspect of the project is to provide a good detection of the two critical
moments of the jump: takeoff and landing. This is the main differentiating aspect with
the competition so it must have an appropriate accuracy and performance that make the
product distinctive and attractive to the user.

This work covers the development of a vertical jump detection system that meets
the needs of the market and serves as a minimum viable product to evaluate if the idea
can be the basis of a business idea. This development is carried out in two main parts:
A preliminary investigation to evaluate the possibility of automatic detection, and if it
meets the necessary requirements, and a part of implementation of the idea to be able to
translate the minimum viable product.

1.1 Motivation

This chapter details and justifies the different aspects related to the project carried out.
These aspects encompass both personal motivations that justify aspects such as
technologies or programming languages, up to the interest in possible career
opportunities. All these reasons for carrying out this Master’s final project are detailed
below:

• Analyze and try to improve an existing idea.
The main aspect to achieve success with a product that people always think about
is to create a new idea, but with this project exists the possibility of analyzing a

1

2 Introduction

product created in advance, finding its weaknesses and strengths and trying to
create a product of better quality, offering something that may be of further benefit
to the user.

• Create a minimum viable product for a business idea.
As it is about analyzing and improving an existing product, this idea is the basis for
evaluating whether this idea is valid for a possible commercial application or not.

• Learn computer vision technologies.
Due to the improvement of these technologies such as OpenCV 1, their use is
much greater in the industry, opening both new research branches and new
professional opportunities, since there are even masters dedicated exclusively to
these technologies.

• Learn mobile application development.
Due to the high use of mobile devices in society, mobile applications are completely
necessary in order to offer the user a satisfactory experience when using a service.
This field also has many career opportunities and is a highly valued career option.

• Improve the knowledge of Python.
This programming language is one of the most useful and well-known, but during
studies it has been used in a very limited way in small projects. Using this
language on a larger scale as a master’s final project allows a more in-depth look at
its capabilities and possible uses.

• Learn how to create a scalable microservices framework from scratch.
By including the project with both backend and frontend, and having more weight
on the work in the backend, it is an opportunity to learn how to create scalable
microservices to be able to divide that workload.

• Apply the knowledge acquired about statistics.
Because this work requires an initial research phase, the results must be analyzed
using statistical methods and resources. This adds a greater value to the work since
it does not cover only the field of software development.

• Put into practice the knowledge learned.
Being a complex project without initial details, it is the opportunity to use the
different knowledge acquired during the studies to analyze, design and create a
system from its beginning to end.

The motivations detailed above explain the aspects that make this project of such
interest, establishing a starting point for the development of the objectives detailed below.

1.2 Objectives

The main objective of this work is to carry out an investigation about vertical jump
detection methods, in order to carry out an implementation of a minimum viable
product of an application that automatically detects vertical jumps, offering the data to
the user. In order to meet this main objective, the following sub-objectives must be met:

• Analyze the available computer vision tools by comparing their strengths and
weaknesses.

1OpenCV official webpage: https://opencv.org/

https://opencv.org/

1.3 Methodology 3

• Choose and learn about the most suitable computer vision tool for the project.

• Research about the best methods to detect a vertical jump in a video.

• Perform tests with the different methods, configurations and videos.

• Analyze the different detection methods results to obtain the one with the highest
precision and stability.

• Implement the chosen detection method as a microservice accessible by REST API.

• Develop the backend through REST API to provide the application with the
necessary methods for the detection of the vertical jump and use of the database.

• Configure the different environments to host the detection microservice, the
backend, the database and the storage of the videos.

• Deploy the different services replicated in a scalable way.

• Design and implement an Android application that uses the services deployed.

• Carry out real tests with the whole system deployed.

These objectives are responsible for guiding the entire process that will be carried out
during the development of the application. They are the basis for specifying the result to
be achieved and establish the starting point of the work to be done.

1.3 Methodology

The realization of this project comes from an already established idea with clear
objectives and with little flexibility, so a final version is expected and not several
versions with greater functionality. The project is more focused on offering a limited
functionality with high reliability, so an iterative development is not the best option. In
addition to this, the project has very different phases that depend on the previous one,
so it must be developed in an established order without skipping any phase and with a
low possibility of repetition of any phase.

Another point to keep in mind is that, because it has a research part, the development
depends on the final solution chosen and its implementation. Finally, for this project there
is only one person in charge of its development, so tasks or stages of its development
cannot be paralleled.

With all these reasons, the conclusion is reached that the best methodology to follow
for its development is a waterfall methodology 2. This methodology allows to initially
specify the final objectives and, following the phases in an orderly and consecutive
manner, to arrive at a final product that meets these requirements.

Waterfall development is a linear procedure that is mainly characterized by dividing
the development processes into successive phases of the project, as shown in figure 1.1.
Unlike iterative models, each phase of the project runs only once. The results of each of
the phases serve as a starting point for the next phase.

This model is widely used, especially for projects for public entities or large
corporations that seek a final result with very detailed specifications. The methodology

2Waterfall methodology deep specification: https://learn.marsdd.com/article/
product-development-the-waterfall-methodology-model-in-software-development/

https://learn.marsdd.com/article/product-development-the-waterfall-methodology-model-in-software-development/
https://learn.marsdd.com/article/product-development-the-waterfall-methodology-model-in-software-development/

4 Introduction

is often highly criticized due to its high cost in modifications. This is because these
modifications are usually required when seeing the final result of the process, in which
all the phases have already been passed, and it is necessary to go through each of them
again in order to implement or modify the required functionality. This can be due to
both customer requirements and errors found in an advanced phase of the project.

Figure 1.1: Waterfall methodology phases schema

In the development of this project, a final validation of a client is not necessary,
which reduces the risk of modifying functionalities, although it does not reduce the risk
of finding possible errors at an advanced stage. Having the requirements defined from a
project base also reduces this possibility, since the work has a final idea to present and
everything is focused on that result from the analysis phase.

After this phase, the design and implementation phase should be carried out, but
since this work also consists of a research part, this is slightly modified. Research on
methods and forms of detection of vertical jump requires tests to analyze their results,
so after the analysis phase there is a joint investigation, development and testing stage.
Thanks to doing this in a parallel and more or less cyclical way, it allows to automate
test processes to later evaluate new forms or detection methods in the future. This phase
is lengthened until a certain percentage of error is achieved, so its estimation is quite
difficult due to the lack of knowledge in this field, since there are no similar studies.

After completing the investigation by reaching the goal error percentage, the
consecutive phases of development and testing continue, mixing both phases in an
intermediate stage for a higher quality of the product, thus being able to resolve the
errors in a faster and more effective way.

1.4 Memory structure 5

1.4 Memory structure

This document consists of the following chapters:

1. Introduction, motivation and objectives: This chapter places a global context in
which the work is to be carried out, as well as the reason for its development and
its ultimate goal.

2. State of the art: This chapter captures the current technological situation regarding
the idea to be developed, analyzing the options already available in the market and
critiquing them.

3. Proposal: This chapter reflects the analysis of the system requirements together
with their use cases and conceptual models to establish which is the knowledge
and technological space of the project.

4. Proposed solution: This chapter shows the proposed solution, its development
phases, the details of its architecture and how the system will be implemented and
validated.

5. Implementation and tests: this chapter presents the system implementation stage,
the tests carried out and the results obtained from the tests.

6. Conclusions: It is the last chapter dedicated to analyzing whether the objectives
have been achieved and presenting problems that may have arisen during
development, as well as presenting possible future work.

CHAPTER 2

State of the art

The development of mobile technologies has allowed a great advance in communication
technologies and, in turn, an increase in the appearance and use of social networks,
causing a large part of the population to be registered on this type of platform 1, as can
be seen in the figure 2.1, with a very big impact on young people.

Figure 2.1: Number of people using social media platforms, 2005 to 2019

This factor has caused that, in recent years, the images of the so-called "influencer" of
social networks have become popular. These influencers also have a great impact in the
world of sports, since there is a very large aspect that are fitness influencers. They show
through social networks their physique and training methods, showing how they have
obtained their results and motivating other people to achieve it. These people usually

1The rise of social media: https://ourworldindata.org/rise-of-social-media

7

https://ourworldindata.org/rise-of-social-media

8 State of the art

have an athletically developed physique, from elite athletes to bodybuilders, which
establishes a physical aspect that the rest of the population tries to achieve.

Along with these data, another important aspect to take into account in the increase
in the popularity of sport in Spain. The figure 2.2 shows the data collected in the Sports
Habits Surveys of the Ministry of Culture and Sport of Spain [1] [2].

Figure 2.2: Evolution of sports in the spanish population older than 15 years

If we contrast these data together with the graph of the evolution of social networks,
we observe that the increase in the practice of sport also occurs together with the increase
in the use of social networks. These data also make sense if it is observed that the main
reason for practicing sports is to be in shape, to look better physically, as shown in the
figure 2.3 obtained through the data from the aforementioned surveys.

Another aspect that social networks have expanded is the popularity of the feats of
some elite athletes, such as Cristiano Ronaldo’s header 2. Such is the repercussion that it
has even become a game as can be seen in figure 2.4. Elite athletes like the mentioned
Cristiano Ronaldo or Anthony Jerome "Spud" Webb winning a dunk contest being only
1.68m tall 3, show the public that a good vertical jump is related to being fit. This
relationship is demonstrated in studies such as the one carried out by Darmiento et al.
[3], which shows a correlation of vertical jump power with athletic performance, or the
one carried out by Kinet [4], which shows the correlation of vertical jump power with
squat power.

2Cristiano Ronaldo header video, slow motion analysis at 1:10 second: https://www.youtube.com/
watch?v=AunImole9HI

3Spud Webb wins 1986 NBA Slam Dunk Contest: https://www.youtube.com/watch?v=r1YRJvFvlgg

https://www.youtube.com/watch?v=AunImole9HI
https://www.youtube.com/watch?v=AunImole9HI
https://www.youtube.com/watch?v=r1YRJvFvlgg

9

Figure 2.3: Main reasons for practicing sports in the Spanish resident population

Figure 2.4: Cristiano Ronaldo header challenge

All these events and developments in the sport have also led to an increase in vertical
jump detection methods. This has evolved from more rudimentary methods such as
marking the height reached on a wall with the hand to laser and pressure devices for the
detection of the jump, which are collected in studies such as those carried out by Moir
[5] or like the webpage of Wood 4. These methods range from low price and moderate

4How to measure vertical jump: https://www.topendsports.com/testing/products/vertical-jump/
index.htm

https://www.topendsports.com/testing/products/vertical-jump/index.htm
https://www.topendsports.com/testing/products/vertical-jump/index.htm

10 State of the art

accuracy to thousands of dollar equipment such as laser detection or using two highly
sensitive pressure plates.

With the evolution of sport and mobile devices, this leads to the creation of solutions
to measure vertical jump on mobile devices. These solutions use aspects such as sensors
of the phone like the microphone as the final degree project carried out at this university
to obtain the height of the vertical jump through sound processing [6]. All these solutions
are detailed below, presenting their strengths and weaknesses with further analysis.

2.1 Existing solutions

In a very global way for this project, we can differentiate the existing solutions for the
detection and vertical jump analysis into two large blocks:

2.1.1. Solutions using physical tools

These are the most common and most used over time, ranging from simple push
mechanisms to complicated laser or pressure sensing systems. The methods discussed
in this subsection present a classification in terms of how to measure vertical jump.

Measuring Distance

These devices are based on devices placed on the wall that the user himself uses to mark
the height manually. All of these methods have two phases:

1. Raise the arm in a static position to obtain the base height from which the jump is
to be made.

2. Mark manually on the device the height reached jumping.

We can highlight the following methods:

• Wall mounted 5

A scale located on the wall in which the user marks with his hand how high he has
jumped.

Figure 2.5: Wall mounted vertical jump measurement method

5Details of wall mounted measurement method: https://www.topendsports.com/testing/products/
vertical-jump/wall-mounted.htm

https://www.topendsports.com/testing/products/vertical-jump/wall-mounted.htm
https://www.topendsports.com/testing/products/vertical-jump/wall-mounted.htm

2.1 Existing solutions 11

• Vertec 6

Consisting on horizontal vanes which are rotated out of the way by the hand to
indicate the height reached.

Figure 2.6: Vertec vertical jump measurement method

• Vertical jump mat 7

Consisting of a tape tied to a belt by means of which, after setting the
measurement to zero before the jump, when jumping the tape will mark the height
reached.

Figure 2.7: Mat vertical jump measurement method

6Details of Vertec measurement device: https://www.topendsports.com/testing/products/
vertical-jump/vertec.htm

7Details of mat measurement device: https://www.topendsports.com/testing/products/
vertical-jump/jumpmat.htm

https://www.topendsports.com/testing/products/vertical-jump/vertec.htm
https://www.topendsports.com/testing/products/vertical-jump/vertec.htm
https://www.topendsports.com/testing/products/vertical-jump/jumpmat.htm
https://www.topendsports.com/testing/products/vertical-jump/jumpmat.htm

12 State of the art

Ground sensor contact devices

These devices are based on sensors placed at the base of the jump by which they detect
the moment of jump and fall through changes in the pressure applied to the platform.
The two main stages detected are:

1. Takeoff
This is detected by the application and subsequent lack of pressure on the platform.

2. Landing
This is detected by applying pressure again after the jump moment.

We can highlight the following methods:

• Just Jump System 8

Consisting on a mat with hand-held battery that calculates vertical jump height by
measuring the time that the feet are not in contact with the mat. The jump height
appears directly on the plate display.

Figure 2.8: Just Jump vertical jump measurement method

• Force plate 9

Consisting on detect the jump height by the pressure exerted on one or two metal
plates. The jump results are displayed on a system connected to the plates.

Figure 2.9: Force plate vertical jump measurement method

8Just Jump System link with details: https://www.performbetter.com/Just-Jump-System_2
9Details of what is a force plate: https://www.hawkindynamics.com/blog/what-is-a-force-plate

https://www.performbetter.com/Just-Jump-System_2
https://www.hawkindynamics.com/blog/what-is-a-force-plate

2.1 Existing solutions 13

• ChronoJump 10

It consists of a computer tool for measurement, management and statistics of short-
term sports tests. It can be used to measure the jump in height thanks to its pressure
detectors.

Figure 2.10: ChronoJump measurement kit

Photoelectric Circuits (Laser/Infrared)

These devices base their operation on the detection of cuts in the light by laser or
infrared, thus detecting with these cuts in the light flow the movements of the user
when performing the high jump. We can highlight the following:

• Optoelectronic device 11

Consisting of a ground sensor for measuring the time the feet leave the floor, and
another sensor mounted at around waist height to measure the height reached in
the vertical jump.

Figure 2.11: Optoelectronic vertical jump measurement method - Take off

10ChronoJump official webpage: https://chronojump.org
11Details of optoelectronic devices: https://www.topendsports.com/testing/products/

vertical-jump/optoelectronic.htm

https://chronojump.org
https://www.topendsports.com/testing/products/vertical-jump/optoelectronic.htm
https://www.topendsports.com/testing/products/vertical-jump/optoelectronic.htm

14 State of the art

Figure 2.12: Optoelectronic vertical jump measurement method - Landing

• Ground-Based Laser/Infrared Beams 12

Consisting of a beam of light located at the base of the jump. Timing starts when
the light at ground level becomes unbroken, and finishes when the subject lands
and breaks the beam. With these data, the rest of the jump data is calculated. An
example of the use of this technology is for example G-Flight system 13. The jump
results are shown directly on the device display.

Figure 2.13: Ground-Based Laser/Infrared Beams vertical jump measurement method

• Brower measurement 14

Its installation is the same as the Wall mounted but in this case it consists of a
touchless device that automatically detects the height reached by hand as in Wall
mounted, but more precise.

12Details of laser detection devices: https://www.topendsports.com/testing/products/
vertical-jump/laser.htm

13G-Flight official webpage: https://strongbyscience.net/2017/12/01/g-flight/
14Details about Brower device: https://www.topendsports.com/testing/products/vertical-jump/

brower.htm

https://www.topendsports.com/testing/products/vertical-jump/laser.htm
https://www.topendsports.com/testing/products/vertical-jump/laser.htm
https://strongbyscience.net/2017/12/01/g-flight/
https://www.topendsports.com/testing/products/vertical-jump/brower.htm
https://www.topendsports.com/testing/products/vertical-jump/brower.htm

2.1 Existing solutions 15

Figure 2.14: Brower vertical jump measurement method

Accelerometer

An accelerometer is called any instrument designed to measure accelerations. Using this
sensor, some wearables are able to measure the height and power of the jump with the
help of the gyroscope on some occasions. The most notable options on the market are:

• Vert 15

This wearable placed on the user’s waist or in a garment adapted for the device.
This device measures by means of the accelerometer and the gyroscope the height
reached in the vertical jump.

Figure 2.15: Vert vertical jump device

15Vert official webpage: https://www.myvert.com/?lang=es

https://www.myvert.com/?lang=es

16 State of the art

• Accelerometer based applications
As in the previous case, these applications measure the height of the vertical jump
using the accelerometer and gyroscope of the mobile device itself. An example of
this is Jumpster 16, which through the accelerometer obtains the jump data while
keeping the device in your pocket.

Figure 2.16: Jumpster app

2.1.2. Solutions using video

These solutions are based on, by means of only a video of the vertical jump, being able to
extract the necessary data for the user, without any type of equipment as in the previous
cases. These options are based on analyzing a jump video by timing or using the device’s
own distance measurement tools that records the vertical jump. The two most prominent
options are the height measurement from video and the timing using video.

Height measurement from video

This methods consist of using the device’s measurement tools or calculating the distance
analyzing a video to extract the height manually.

• Using the device’s height measurement tools
Consisting of, using the device’s measurement tools, analyzing a video to extract
the height reached by the user at a specific moment in the video, the highest point.
An example of this is the distance meter that iPhones have on their camera17. Using
the frame where the greatest height is reached, this tool can be used to measure the
distance from the ground to the jumper’s feet.

Figure 2.17: iPhone camera measure tool

16Jumpster official webpage: https://skyhawkmedia.com/jumpster.html
17iPhone measurement tool details: https://support.apple.com/en-us/HT208924

https://skyhawkmedia.com/jumpster.html
https://support.apple.com/en-us/HT208924

2.1 Existing solutions 17

• Manually analyzing jump height
This method consists of manually calculating the distance from the camera to the
jump and once the jump is made, analyzing the height reached with the video and
the established parameters.

Figure 2.18: Vertical jump height measurement method from video

Timming using video

This is the option used by most of the mobile apps available for vertical jump height
measurement. It is based on, once the vertical jump has been recorded on video,
manually choosing the takeoff and landing moment of the jump. After having this data,
the application calculates the power and height of the jump using the time in the air.
The most relevant applications on the market that use this technique are listed below:

• MyJump 2 18

This is the leading application in both the Android and iOS market to measure
vertical jump through timing. Its interface allows the user to choose both moments
of the jump in a fairly intuitive way. After choosing the jump takeoff and landing
in the video, calculate the rest of the vertical jump parameters from the time in the
air. Its appeal is found in the amount of data provides to the user about his jumps.
Its creator Carlos Balsalobre 19 has several sports applications apart from MyJump
2 such as Runmatic or Nordics.

Figure 2.19: MyJump 2 app

18MyJump 2 app iOS https://apps.apple.com/es/app/my-jump-2/id1148617550 and Android https:
//play.google.com/store/apps/details?id=com.my.jump&hl=es&gl=US official websites

19Carlos Balsalobre official webpage: https://www.carlos-balsalobre.com/index.html

https://apps.apple.com/es/app/my-jump-2/id1148617550
https://play.google.com/store/apps/details?id=com.my.jump&hl=es&gl=US
https://play.google.com/store/apps/details?id=com.my.jump&hl=es&gl=US
https://www.carlos-balsalobre.com/index.html

18 State of the art

• Whats My Vertical? 20

This application for iOS is based on the same operation but with a slightly less
updated interface and with some different functions. It uses the same operation as
the previous application, after choosing the jump takeoff and landing in the video,
it calculates the rest of the vertical jump parameters from the time in the air. Its
appeal is found in functions such as calculating how much you have to jump to
make a mate based on your height and setting that goal.

Figure 2.20: Whats My Vertical? app

2.2 Critical analysis of the existing solutions

Because the solution to be developed is based on a mobile application, all solutions that
use physical devices, except those based on accelerometer detailed on the subsection
2.1.1, are discarded for analysis. The main aspect that makes it discarded is that the
solution to be developed seeks to be easy to use by any user at any time, without having
to take into account having a tool at hand to be able to measure the jump or spend large
sums of money as in the case of laser or pressure devices.

Another aspect to rule out these options is the existence of studies that validate the
precision of application-based solutions, such as the one carried out by Montalvo et al.
[7], in which it is concluded that they are a very good option to comparison of high cost
devices. Next, the analysis of the existing solutions is carried out, which use a mobile
device for detection as in this project.

2.2.1. Accelerometer

These methods are detailed in the 2.1.1 subsection. The accuracy of accelerometer-based
methods is high [8], which provides a strong point for these types of solutions.

• Vert
Its price of around 175$ is not the highest but it is not cheap for an average user, so
it is a negative point for this solution. Its ease of use is good as only one sensor
needs to be placed on the waist, but it must be well positioned to obtain good
application results. As for its precision, it is based on the precision of the device
and is high. The accelerometer analysis provides a fairly good level of detail.

20Whats My Vertical? app official website: https://apps.apple.com/us/app/whats-my-vertical/
id1237413241

https://apps.apple.com/us/app/whats-my-vertical/id1237413241
https://apps.apple.com/us/app/whats-my-vertical/id1237413241

2.2 Critical analysis of the existing solutions 19

Finally, in terms of the data presented and its quantity, they are sufficient and well
presented in their application. Its user interface is intuitive and up-to-date for the
user.

• Accelerometer based applications
This application is free for both Android and iOS, so it is a plus. As for its use,
it is enough to have the phone in your pocket and jump, so it is good in terms of
the devices to use and their use. Its accuracy is good but can be affected by the
movement of the phone in your pocket and it may vary from phone to phone by its
accelerometer. One drawback could be its user interface, which is outdated in some
examples like Jumpster and can be a negative point for the user. As for its data, it
is sufficient and well presented but its user interface is outdated and is not entirely
intuitive for the user.

2.2.2. Height measurement from video

These methods are detailed in the 2.1.2 subsection.

• Using the device’s height measurement tools
If you have a device that has these tools, the price is free but the device is required.
Only the mobile device and a video are needed, so it is a point in favor of the devices
to be used, but one more step is necessary analyzing the highest frame of the jump,
so its difficulty of use increases. As for its precision, again it resides in the precision
of the tool and it can vary depending on the background that the video frame has.
As for the data, only the height is obtained and the user must calculate the time so it
is neither sufficient nor well presented. The interface on the other hand is intuitive
since it is to select the ground and the highest point of the jump.

• Manually analyzing jump height
The price is a strong point since it is only necessary a fixed mobile device, a clear
bottom and calculate the distance to the jump from the phone. This in turn is good
since you don’t need a lot of devices. On the other hand, its difficulty of use
increases due to having to perform manual calculations to obtain the height. Its
precision may be low due to bad calculations by the user of the distances between
the mobile or some effect of the camera. As for the data provided, it is very poor
and its presentation is null since the user must calculate it, so these are negative
points of this solution.

2.2.3. Timing using video

These methods are detailed in the 2.1.2 subsection.

• MyJump 2
The cost of this application is low but not zero, around 15$, so it is not one of its
advantages. It stands out for only having to use a mobile device, but its use is
not the simplest either, since the user manually chooses the moment of takeoff and
landing from the vertical jump. As for its precision, it is based on the precision of the
user when choosing both moments of the jump. The phone also has an influence
since if you record at more fps the analysis of the moment will be easier. If both
moments of the jump have been chosen well, its precision is high since it has been
contrasted with pressure plate results in several studies [9] [10]. Finally, its amount

20 State of the art

of data and presentation are good since it uses a user interface with good usability
and intuitive, so the results of the jump are easily seen.

• Whats My Vertical?
This application is quite similar to the previous one but differs in that, first, its price
is considerably lower, almost zero, which is an advantage, but its user interface is
more obsolete. The usability is similar but it is less up-to-date despite having some
greater functionality than the previous one like the dunk calculator.

2.3 Computer vision available technologies

This section will detail the video processing tools currently available on the market.
Each of them will highlight their strengths that can be useful for this solution. The most
prominent technologies currently are detailed in the following subsections.

2.3.1. Amazon Recognition

Amazon Rekognition 21 is capable of processing both images and videos, detecting in
them faces, objects, movements, actions and even things like inappropriate content. It is
a very powerful tool that offers the user a wide menu of options, which makes it very
usable by almost any user.

Figure 2.21: Amazon Rekognition tool

Advantages

• Great support
Amazon provides its users with great support regarding the use of its tools, so it is
easy to contact Amazon support for any problem or doubt.

• Easy to use
The user interface is very usable and its menus are dedicated to users who are not
too expert, so anyone can use it.

21AmazonRekognition official website: https://aws.amazon.com/rekognition/

https://aws.amazon.com/rekognition/

2.3 Computer vision available technologies 21

• Very good facial recognition
Their facial recognition is a very prominent aspect in their opinions.

Disadvantages

• Expensive
The price of this tool is high, so an investment must be made for its use.

• Slower to reach ROI
This is due in part to its price, but the Return On Investment is slower than other
technologies to which it competes.

• Its high usability limits functionalities
Because it is aimed at all types of user, some more technical options are limited and
cannot be used by more expert users.

2.3.2. Azure Video Analyzer

Azure Video Analyzer 22, formerly known as Microsoft Video API, is a cloud-based API
with capabilities like tracking faces, detecting motion, or stabilizing a video. It enables
the creation of more personalized and intelligent applications by automatically
understanding and transforming video content.

Figure 2.22: Azure Video Analyzer tool

22Azure Video Analyzer official website: https://azure.microsoft.com/en-us/products/
video-analyzer/

https://azure.microsoft.com/en-us/products/video-analyzer/
https://azure.microsoft.com/en-us/products/video-analyzer/

22 State of the art

Advantages

• Better at meeting requirements
This tool offers some more specific functionalities that offer greater power to the
tool.

• Easy usable API
The way its API is implemented makes its use very easy and intuitive for the user.

Disadvantages

On the other hand, about its disadvantages it is important to highlight the following:

• Expensive
The price of this tool is high, so an investment must be made for its use.

• Slower to reach ROI
This is due in part to its price, but the Return On Investment is slower than other
technologies to which it competes.

• Some bugs
It is a tool still under development as azure itself indicates in the "preview" tag.
This means that it still has some bugs.

2.3.3. OpenCV

OpenCV is a library available for C, C++, Python, and Java and is compatible with
Windows, Linux, Mac OS, iOS, and Android for image and video processing with a
strong focus on real-time applications. It can take advantage of multi-core processing
and is enabled to take advantage of the hardware acceleration of the underlying
heterogeneous computing platform. It is one of the leading tools in terms of image and
video processing.

Figure 2.23: OpenCV cars detection example

Advantages

Regarding its advantages, we can highlight the following:

2.3 Computer vision available technologies 23

• Open Source
This means that its price is zero and that everyone can contribute to its continuous
development.

• Multiple Interfaces
This tool is available for several programming languages and platforms, being
equally fast in all of them since its original C / C ++ code is executed.

• Programming Functions Library
Its library offers a great multitude of functions to use all its capabilities, resulting in
an infinite combination of possibilities of use.

• Community
Being one of the most famous image and video processing tools, it has a large
community behind it with many examples and help in its forums.

Disadvantages

On the other hand, about its disadvantages it is important to highlight the following:

• Sometimes single-core use if not using C/C++
Some of its functions work in parallel but others cannot be configured unless a
language with multiprocessor management is used.

• Takes more time to show the processed result
As for its competitors, this tool takes more time to show the processing done to the
image or video

2.3.4. SimpleCV

SimpleCV 23 is an open source framework for creating computer vision applications, the
user can access various high-powered computer vision libraries such as OpenCV without
having to learn about all the technical aspects necessary to use such libraries.

Figure 2.24: SimpleCV ball tracking example

23SimpleCV official webpage: http://simplecv.org/

http://simplecv.org/

24 State of the art

Advantages

• Open Source
This means that its price is zero and that everyone can contribute to its continuous
development.

• Usability
This tool is dedicated to simplifying the technical aspects of frameworks such as
OpenCV, so its usability increases for users without that technical knowledge.

• Good support
This technology leads to greater support for the frameworks it uses, its own
support, which provides added value.

• Good documentation
Its documentation is very good and detailed, which helps to be able to use all its
capabilities

Disadvantages

• Its high usability limits functionalities
Because it is aimed at all types of user, some more technical options are limited and
cannot be used by more expert users.

• Only available for Python
Unlike some of the frameworks on which it is based, it is only available for this
programming language, which forces you to use Python to use this tool.

2.3.5. TensorFlow

TensorFlow, owned by Google, is one of the open-source machine learning platforms
with a great set of tools and libraries, available for various languages such as Python,
C ++, Java or Javascript. It is another of the leading tools in terms of image and video
processing 24. This technology is used mainly to develop computer vision applications
using machine learning. It allows to train models in a very simple way to be able to detect
from objects to movements.

Advantages

• Open Source
This means that its price is zero and that everyone can contribute to its continuous
development.

• Multiple Interfaces
This tool is available for several programming languages, which makes it possible
to transfer examples made in one language to another.

• Programming Functions Library
Its library offers a great multitude of functions to use all its capabilities, resulting in
an infinite combination of possibilities of use.

24TensorFlow object detection example: https://www.tensorflow.org/hub/tutorials/object_
detection

https://www.tensorflow.org/hub/tutorials/object_detection
https://www.tensorflow.org/hub/tutorials/object_detection

2.4 Technological context 25

• Community
Being one of the most famous image and video processing tools, it has a large
community behind it with many examples and help in its forums.

Disadvantages

• Consumes a very high amount of resources
This library is normally used together with CUDA to take advantage of parallel
computing capabilities, so the amount of resources it consumes rises very quickly.

• Needs a previous training of the model to be used
The model to recognize movements or objects needs a previous training of the
model, and that implies the need to have a large set of examples for the model,
something that is not available in the case of this project.

2.4 Technological context

This chapter analyzes the technologies to be used in the project, explaining their
advantages and disadvantages, the use they will have within the system and a
comparison with technologies similar to the one chosen.

2.4.1. OpenCV

The details of this open source computer vision library have been detailed previously
in the subsection 2.3.3. This library has been chosen to implement the processing and
detection of the vertical jump, detecting both its takeoff and landing moments. The main
reasons why it has been chosen over the rest of the options are:

1. Availability for various programming languages
My knowledge of Python is not extremely advanced, so being able to also find
examples in languages like Java or C in which I have more knowledge can be of
great help in expanding the base knowledge for developing the project.

2. Community
The wide community of this library makes examples available for many types of
situations and uses of the library, also making it possible to receive help from other
users with knowledge of OpenCV.

3. Open Source
This project is carried out without any external financing, so avoiding the costs of
large platforms such as Amazon or Microsoft is a point to consider.

4. Large number of functions in its library
This makes it possible that several different configurations can be tested to obtain
the one that best detects the vertical jump.

2.4.2. Python

Python is an interpreted programming language whose philosophy emphasizes the
readability of its code. It is a multi-paradigm programming language, since it partially
supports object-orientation, imperative programming and, to a lesser extent, functional

26 State of the art

programming. This programming language is used both for the development of the
vertical jump detection tool in a video, and for the development of the application’s
backend. The main reasons why this programming language has been chosen over
other options are:

1. Previous knowledge
Despite not being the programming language that I master the most, my knowledge
of this language is extensive and I feel comfortable developing with it.

2. Community
Being the most famous programming language right now 25, its community is one
of the largest. This provides added value when it comes to finding solutions to
specific language problems.

3. Available libraries
This language has an extensive repository of libraries that can be useful for any of
the steps in the development of the solution.

2.4.3. Kotlin

Kotlin is a statically typed programming language that runs on top of the Java virtual
machine and can also be compiled into JavaScript source code. It is a language oriented
to object-oriented programming, with the purpose of improving Java 26 but being
interoperable with this language. This programming language is used for Android
application design, as it is one of the official Android programming languages. The
main reasons for choosing this programming language are:

1. Similarity to Java
Due to the previous knowledge of Java, adapting to this language is very easy, in
addition, it offers the possibility of using Java code if some part of it is not possible
with Kotlin due to lack of knowledge.

2. Less code required than in Java
Since its purpose is to improve Java, many of Java’s tedious operations such as
constructors are already in place to save development time.

3. Popularity in the job market
Due to its popularity as a language, its popularity in terms of job offers has also
risen, so learning this language can open up future job opportunities.

2.4.4. Flask

Flask is a minimalist open source framework written in Python that allows you to create
web applications quickly and with a minimum number of lines of code 27. This
framework is used to create encapsulation of the backend web applications and the
vertical jump detector developed in Python, accessed through the REST API. Its
implementation allows creating web applications using an MVC pattern with very few
lines, having a large number of libraries to complement its operation. Its authentication
and cookie management is very simple and it also has a unit test system.

25PYPL GitHub: https://pypl.github.io/PYPL.html
26Advantages of Kotlin over Java: https://alignminds.com/advantages-kotlin-over-java/
27How to create a Flask app: https://flask.palletsprojects.com/en/2.0.x/quickstart/

https://pypl.github.io/PYPL.html
https://alignminds.com/advantages-kotlin-over-java/
https://flask.palletsprojects.com/en/2.0.x/quickstart/

2.4 Technological context 27

2.4.5. MongoDB

MongoDB 28 is one of the most popular non-relational database systems today. Its most
distinctive aspect is that, unlike relational databases, it stores data as Json documents in
key-value pairs. The main advantage of these databases is their flexibility to modify the
predefined schema. This allows new fields to be added or modified during development
without having to use a new database schema.

Another aspect to highlight is its scalability, since MongoDB parallelizes the serial
queries, it is very easy to create several instances that store the data in the same place.
This system is used to create and modify the database through its Python client, Pymongo
29, thus allowing to maintain the consistency of the application as can be seen in the figure
2.25.

Figure 2.25: Pymongo query schema

2.4.6. Git

Git is version control software designed by Linus Torvalds, with the efficiency, reliability
and compatibility of application versioning in mind when they have a large number of
source code files. Its main characteristics are:

• Focused on a non-linear development, being able to create branches (versions) of
the project.

• The management is distributed, each programmer has his copy in his local
repository.

• Repositories can be published using protocols such as HTTP, SSH or TCP / IP.

28What is MongoDB and how it works: https://www.mongodb.com/en/what-is-mongodb
29Pymongo use tutorial: https://pymongo.readthedocs.io/en/stable/tutorial.html

https://www.mongodb.com/en/what-is-mongodb
https://pymongo.readthedocs.io/en/stable/tutorial.html

28 State of the art

This version control system is used to manage all parts of the product 30, having a
repository for each of them: vertijump-detector, vertijump-backend, vertijump-db and
vertijump-app. The creation of branches for their proper development is done following
the GitFlow methodology 31, explained in figure 2.26.

Figure 2.26: GitFlow schema

Importantly, Git is version control, but GitHub 32 is used to host the repositories
named above. This web platform is the most used for managing repositories and
includes very interesting aspects such as CI/CD 33, management of pull requests with
code reviews or its own markdown language.

2.4.7. Docker

Docker is an open source project that automates the deployment of applications within
software containers, providing an additional layer of abstraction and application
virtualization automation across multiple operating systems. This tool is used to
encapsulate each part of the project 34, thus facilitating the possibility of deploying the
service in an autonomous, fast and secure way, since the deployment environment is
always the same. The images are created from a Dockerfile in which all the container
parameters are specified 35.

To make full use of this tool, Docker Compose is used 36, a Docker tool for running
multi-container Docker applications. This is done through an .yml file, in which the

30Why use a version control: https://www.git-tower.com/learn/git/ebook/en/desktop-gui/basics/
why-use-version-control/

31GitFlow workflow: https://www.atlassian.com/git/tutorials/comparing-workflows/
gitflow-workflow

32Why use GitHub: https://apiumhub.com/tech-blog-barcelona/using-github/
33GitHub CI/CD systems: https://docs.github.com/es/actions/guides/

about-continuous-integration
34Benefits of containerization: https://hentsu.com/docker-containers-top-7-benefits/
35Create Docker images with Dockerfile: https://docs.docker.com/engine/reference/builder/
36Why use Docker Compose https://www.enterprisedb.com/postgres-tutorials/

why-you-should-use-docker-compose

https://www.git-tower.com/learn/git/ebook/en/desktop-gui/basics/why-use-version-control/
https://www.git-tower.com/learn/git/ebook/en/desktop-gui/basics/why-use-version-control/
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://apiumhub.com/tech-blog-barcelona/using-github/
https://docs.github.com/es/actions/guides/about-continuous-integration
https://docs.github.com/es/actions/guides/about-continuous-integration
https://hentsu.com/docker-containers-top-7-benefits/
https://docs.docker.com/engine/reference/builder/
https://www.enterprisedb.com/postgres-tutorials/why-you-should-use-docker-compose
https://www.enterprisedb.com/postgres-tutorials/why-you-should-use-docker-compose

2.4 Technological context 29

services to be deployed are detailed and the tool allows us to deploy all of them in a
single command. This tool is highly used in CI / CD systems, by which automatic
Docker deployments can be scheduled when certain conditions are met. Another
important aspect is the ability to scale applications, allowing you to run multiple
instances of the same container and manage them through a load balancer.

Finally, in order to store these Docker images, the official Docker registry for image
management DockerHub is used as can be seen on the figure 2.27 . It offers possibilities
such as version control or tag of specific versions 37. In this registry the images of all the
created services are stored, together with the images of their load balancers for their later
deployment in a scalable way.

Figure 2.27: DockerHub project images

37Docker repositories management: https://docs.docker.com/docker-hub/repos/

https://docs.docker.com/docker-hub/repos/

CHAPTER 3

Proposal

The proposal for this project is to develop a minimum viable product of an automatic
vertical jump detection application. This application is called Vertijump.

As detailed in the chapter State of the art, there are several mobile applications
designed to obtain the data from a vertical jump. Some of these applications like the
detailed in the section 2.1.1 make use of external sensors such as the accelerometer,
having to carry the device during the jump, a factor that can affect the result if the
device is not properly fixed. These applications have a fast and quite precise operation,
as it has been possible to verify in several investigations mentioned previously, for
which they are not an objective to improve.

The other great part of applications like MyJump 2 or Whats My Vertical? detailed
in the section 2.1.2, are based on video timing. The user is in charge of, once the vertical
jump has been recorded, manually selecting in which frame of the video the takeoff is
made and in which the landing is made 1. After selecting these moments, they obtain the
time in the air of the vertical jump by calculating the difference between both moments.
The rest of the parameters are calculated in a fast way, since they are simple calculations
for a mobile device to have the time in the air.

Although the obtaining of results is fast, the part of selecting the moments of the jump
is somewhat tedious for the user, since it is based on observing a video frame by frame,
a process that can be very slow the more frames per second the video has. Another
negative factor in the case of MyJump 2 is the need to sometimes manually insert the
frames per second of the video 2, an aspect that an average user is likely not to know.

The aim of the proposal is to solve this problem, automatically detect the takeoff
moment and the landing moment of the vertical jump together with the frames per
second of the video, thus obtaining the user the data of the vertical jump automatically
without selecting the jump moments manually. Instead of viewing frame by frame, the
user will only have to trim the video by choosing the vertical jump part and all the jump
data will be obtained automatically when processing the video.

The rest of the functionalities are similar to the rest of the applications since the main
objective is to obtain that differentiating aspect compared to the rest of the competitors.
This application, being a minimum viable product, can serve as the basis for a future
evaluation of the viability of a company based on this product.

1Tutorial MyJump 2: https://www.youtube.com/watch?v=TnLT3IREioE
2Video of MyJump 2 insert frames per second requirement: https://www.youtube.com/watch?v=

nvsU2EtwPPI&t=204s

31

https://www.youtube.com/watch?v=TnLT3IREioE
https://www.youtube.com/watch?v=nvsU2EtwPPI&t=204s
https://www.youtube.com/watch?v=nvsU2EtwPPI&t=204s

32 Proposal

3.1 Definition of the actors

The actors are those involved in the interaction with the system. In order to continue
with the analysis of the system, it is necessary to define the actors that will use it. The
main actors are listed below.

3.1.1. Unidentified user

This actor has only the basic capabilities to perform the actions pertinent to registration
and login in the system.

3.1.2. Identified user

This actor, being already registered in the system, can use its full capabilities after logging
into the system in addition to the capabilities of the unregistered user.

3.2 Analysis of requirements

The requirements for a system are the description of what the system must do, the service
or services it provides, and the limitations on its operation.

The specification of the requirements must be precise and unambiguous since they
describe what the system must do in specific situations, its limitations and specifications
to meet quality requirements. These requirements are obtained through a requirements
elicitation techniques [11], which allows analyzing the needs of the system in an
appropriate way. After applying these techniques, the requirements obtained for the
system are detailed below.

3.2.1. Functional requirements

A functional requirement defines a function from a software system or its components.
A function is described as a set of inputs, behaviors, and outputs. These kinds of
requirements are the specific functionalities that a system is supposed to fulfill. The
functional requirements obtained for the system are detailed below.

Unregistered user

Code RF-01
Name Sign up
Dependencies
Description The application must allow the user to register in the system by

email, password and the remaining attributes of the user.
Importance High
Restrictions

Table 3.1: Functional requirement RF-01 Sign up

3.2 Analysis of requirements 33

Code RF-02
Name Login
Dependencies RF-01
Description The application must be accessible through an authenticated access

by email and password.
Importance High
Restrictions

Table 3.2: Functional requirement RF-02 Login

Registered user

Code RF-03
Name Visualize main menu
Dependencies RF-02
Description The application must allow the logged in user to visualize the main

menu.
Importance High
Restrictions

Table 3.3: Functional requirement RF-03 Visualize main menu

Code RF-04
Name Visualize vertical jumps
Dependencies RF-03
Description The application must allow the user to view a list of his vertical

jumps.
Importance Medium
Restrictions

Table 3.4: Functional requirement RF-04 Visualize vertical jumps

Code RF-05
Name Visualize vertical jump
Dependencies RF-04
Description The system must allow the user to see the details of a vertical jump

from his list of vertical jumps.
Importance Medium
Restrictions

Table 3.5: Functional requirement RF-05 Visualize vertical jump

Code RF-06
Name Add vertical jump
Dependencies RF-03
Description The system must allow the user to add a new vertical jump.
Importance High
Restrictions

Table 3.6: Functional requirement RF-06 Add vertical jump

34 Proposal

Code RF-07
Name Add video from gallery
Dependencies RF-06
Description The system should allow the user to add a video from the gallery.
Importance High
Restrictions

Table 3.7: Functional requirement RF-07 Add video from gallery

Code RF-08
Name Trim video
Dependencies RF-07
Description The system should allow the user to cut a selected video.
Importance High
Restrictions

Table 3.8: Functional requirement RF-08 Trim video

Code RF-09
Name Detect vertical jump
Dependencies RF-08
Description The system must allow the user to detect a vertical jump from a

video.
Importance High
Restrictions

Table 3.9: Functional requirement RF-09 Detect vertical jump

Code RF-10
Name Validate vertical jump
Dependencies RF-09
Description The system must allow the user to validate the results of a vertical

jump.
Importance High
Restrictions

Table 3.10: Functional requirement RF-10 Validate vertical jump

3.2 Analysis of requirements 35

3.2.2. Non-functional requirements

Non-functional requirements specify criteria that can be used to judge the operation of
a system rather than its specific behaviors. These requirements can be related to issues
such as efficiency, response speed, load supported or aspects such as technologies to use.
The non-functional requirements extracted from the system are detailed below.

Vertical jump detection algorithm

• NFR-01: The video of the vertical jump to be processed must last a maximum of 2
seconds

• NFR-02: The vertical jump detection algorithm should detect the jump more than
95% of the attempts.

• NFR-03: The vertical jump detection algorithm must have an average error in the
detection of the takeoff frame of less than 1 frame.

• NFR-04: The vertical jump detection algorithm must have an average error in the
detection of the landing frame of less than 2 frames.

• NFR-05: The vertical jump detection algorithm must have an average takeoff and
landing frame detection mean error of less than 1 frame.

• NFR-06: The vertical jump detection algorithm must have an average error in the
vertical jump duration in frames of less than 2 frames.

• NFR-07: The vertical jump detection algorithm must have an average error in the
vertical jump duration in frames of less than 25ms.

• NFR-08: The vertical jump detection algorithm must have a mean error in vertical
jump height less than 3cm.

• NFR-09: The vertical jump detection algorithm should take less than 5 seconds to
detect a vertical jump.

• NFR-10: The vertical jump detection algorithm must be implemented using
OpenCV as a computer vision tool.

• NFR-11: The vertical jump detection algorithm must be implemented in Python.

• NFR-12: The vertical jump detection algorithm should return the results in JSON
format.

• NFR-13: The data provided by the vertical jump detection algorithm after vertical
jump detection must be:

– Frames per second
– Takeoff frame
– Landing frame
– Time in air in frames
– Time in air in seconds
– Height reached in meters
– Peak power in W
– Pear force in N
– Initial velocity in meters/second

36 Proposal

Vertical jump detector service

• NFR-14: The vertical jump detector service must be implemented using a REST API
architecture.

• NFR-15: The vertical jump detector service must implement its REST API
architecture using Flask and Python.

• NFR-16: The vertical jump detector service must be replicated 5 times.

• NFR-17: The replicas of the vertical jump detector service must be handled by an
Nginx-based load balancer.

• NFR-18: The vertical jump detector service must implement JWT token
authentication.

• NFR-19: The vertical jump detector service must offer the ability to upload the
video to an AWS Bucket S3.

• NFR-20: The vertical jump detector service must be connected to a MongoDB base
using the PyMongo library.

• NFR-21: The replicas of the vertical jump detector service and its load balancer
must be deployed on an Amazon EC2 instance.

Backend service

• NFR-22: The backend service must be implemented using a REST API architecture.

• NFR-23: The backend service must implement its REST API architecture using
Flask and Python.

• NFR-24: The backend service must be replicated 2 times.

• NFR-25: The replicas of backend service must be handled by an Nginx-based load
balancer.

• NFR-26: The backend service must implement JWT token authentication.

• NFR-27: The backend service must be connected to a MongoDB base using the
PyMongo library.

• NFR-28: The replicas of the backend service and its load balancer must be deployed
on an Amazon EC2 instance.

Database

• NFR-29: The database must be implemented using MongoDB.

• NFR-30: The database controller must be replicated 2 times.

• NFR-31: The database controllers must be handled by an Nginx-based load
balancer.

3.2 Analysis of requirements 37

Android application

• NFR-32: The application must use the REST API created in the vertical jump
detection service and the backend service.

• NFR-33: The data sent by the application to the REST APIs of the vertical jump
detection service and the backend service will be sent in JSON format

• NFR-34: The lowest Android version that the application should be compatible
with will be Android Lollipop (5.0) SDK version 21.

• NFR-35: The aesthetics of the application will follow the Material Android Design
Guidelines.

• NFR-36: The application must use the Koin library to manage dependency
injection.

• NFR-37: The application must use the Retrofit2 library to manage REST API
requests and responses.

3.2.3. Business rules

Business rules are a specification of non-functional requirements that encompass
behaviors and rules that the system must follow to meet quality requirements. In this
system the following business rules have been extracted.

• BR-01: A vertical jump video is related to only one user.

• BR-02: A vertical jump is related to only one user.

• BR-03: A vertical jump is related to only one vertical jump video or none.

• BR-04: If the duration of a vertical jump video is longer than two seconds, it must
be trimmed before making the request for its detection.

• BR-05: A vertical jump must be validated by the user after its detection to be shown
to the user.

• BR-06: A vertical jump is related to only one vertical jump detector version.

• BR-07: If a video is successfully processed, must exist a vertical jump with that
Video ID.

3.2.4. Information requirements

These requirements are a variant of the non-functional requirements to specify the
information to be used in the system. The information requirements extracted for this
system are as follows.

• IR-01: For each user will be stored:

– User ID

– Name

– Surname

– Email

38 Proposal

– Age

– Height in cm

– Weight in kg

– Hashed password

– Salt

• IR-02: For each vertical jump will be stored:

– Vertical jump ID

– User ID

– Video ID

– Detector version ID

– Frames per second

– Takeoff frame

– Landing frame

– Time in air in frames

– Time in air in seconds

– Height reached in meters

– Peak power in W

– Pear force in N

– Initial velocity in meters/second

– Valid jump

• IR-03: For each vertical jump video will be stored:

– Video ID

– User ID

– Vertical jump video source

– Successfully processed

• IR-04: For each vertical jump detector version will be stored:

– Detector ID

– Name

– Description

3.3 Use cases

To complete the specification of the functional requirements made in subsection 3.2.1, we
proceed to carry out a diagram of cases of the system. This diagram focuses on explaining
the interaction of the entities that intervene in the system, which are normally:

• Actors: They represent the elements that interact with the system, from the users
themselves to external systems. These actors represent a role, not specific entities.

• Use cases: They are the functionalities of the system, the functional requirements.

3.3 Use cases 39

• Relationships: These represent relationships between actors and use cases or
between use cases among themselves.

• The software system: Represents the part from which the functional requirements
have been extracted.

Figure 3.1: Vertijump use case diagram

In the diagram in the figure 3.1, it can be seen that there are two roles in the actors in
the diagram, the identified user and the unidentified user. This division of roles shows
the possible actions to be taken before logging in and once the user session has started.
The use cases of this figure have been extracted from the requirements obtained
previously, organized in a way that shows the relationships between all of them.

As you can see, there is a list of use cases that include the previous one. This is because
they must be done in an order to be able to carry out the use case that encompasses all of
them, add a vertical jump and obtain their data.

In addition, the flow to follow is shown to be able to see the details of a vertical jump
since the use case that this action represents includes the use case to see vertical jumps,
so it is necessary to enter the list of vertical jumps first to be able to visualize a specific
vertical jump.

40 Proposal

3.4 Conceptual modeling

The components that represent the system to be created have been designed based on
all the aspects extracted from the analysis of the system. All these components of the
conceptual modeling phase are of vital importance for the design and the rest of the
stages.

The objective of this conceptual modeling is to show the main components of the
system and their relationships. This is done also starting from the information
requirements and the business rules of sections 3.2.4 and 3.2.3 respectively, illustrating it
in the diagram in figure 3.2.

Figure 3.2: Vertijump conceptual model

As can be seen in the diagram, the main component of the system is the vertical jump.
These have relationships with the rest of the components of the system of the conceptual
modeling stage. As the second most important component, the user stands out, since
he can have relationships both with vertical jumps and with videos. It can be seen that
vertical jumps always have an associated detector version. This allows that, if the jump
is not validated, the versions of the detector that are presenting these failures can be
obtained.

CHAPTER 4

Proposed solution

The basic ideas of the proposed solution have been detailed in the previous chapter, and
after this analysis, this chapter first deals with the management aspects carried out for
the detailed design of this project. This chapter is also identified with the design phase
of the cascade methodology, so aspects such as the architecture or the design of the
implementation of each of the parts of the system will be detailed in depth.

4.1 Project plan

The planning of the work of this project has been established according to the chosen
methodology, together with some changes that were detailed in section 1.3, due to the
requirement of a research and testing stage prior to the development of the rest of the
application systems.

Figure 4.1: Vertijump project Gantt diagram

As shown in figure 4.1, the project begins on Monday, April 5, 2021, the day on which
this idea is chosen and the work plan to be carried out begins. The project begins with the
adaptation of the templates for the final master’s thesis and the creation of the memory
structure, thus establishing a base from which to document the entire process.

41

42 Proposed solution

After this small set up, the first phase of the project begins, the analysis of the state of
the art. This research phase provides a basis for the rest of the project, so it is carried out
in a relaxed way using 28 days for its realization, analysis and documentation. It should
be noted that it is divided into two main parts as can be seen in the figure 4.2, on the one
hand the research on vertical jump measurement methodologies, and on the other hand
the research on computer vision tools, which took 18 and 8 days, respectively.

Figure 4.2: Vertijump State of the art Gantt diagram

Once this phase is finished, the analysis of the idea begins on May 13. This phase is
responsible for the elicitation of requirements and the formation of an idea of the
elements of the system and lasts for 6 days.

Then begins the phase that does not fit within the cascade development, the
development of the vertical jump detection system through video. This stage is a
process of investigation, trial and error to find a valid method to detect vertical jumps. It
is divided into several phases as can be seen in the figure 4.3, in which different forms of
detection are studied, ending all of these by finding a detection method that meets the
quality requirements of the system. This phase is the longest since 36 days have been
needed. It is the phase with the greatest error in the estimation due to the fact that a
problem was faced with zero knowledge of the technology and no previous studies
carried out.

The next phase is the design of the application, carried out during almost 2 weeks,
detailing the architecture and design in detail of both the backend and the application.

Once all these steps are completed, the implementation phase begins. It is one of
the longest lasting 23 days, due to its complexity despite not having an abundance of
functionalities as can be seen in the figure 4.4. This is due for example to using Kotlin
without any prior knowledge.

4.2 Budget 43

Figure 4.3: Vertijump Vertical jump detection Gantt diagram

Figure 4.4: Vertijump Implementation Gantt diagram

Finally, shorter phases are carried out for the tests, analysis of conclusions and the
review of the memory by the tutor and the developer of this project, ending on Monday,
September 13.

4.2 Budget

4.2.1. Infrastructure and tools budget

In carrying out this project, only one person was in charge of all the tasks, so the
expenditure on external personnel has been zero. The context in which it is developed is
a master’s project carried out by an unemployed student, which further reduces the
budget. This is one of the reasons that have led to the use of mostly open source tools at
no cost, avoiding expenses in technologies.

44 Proposed solution

Apart from this, student plans have been used from some applications such as GitHub
1 or GitKraken 2, which offer a free PRO plan to student staff for product development
without a commercial purpose.

Regarding the deployment of the system, it has been done with a free ASW account
3, which during the first year offers low-power resources at zero cost to learn how to use
its systems. All systems deployed in this work have been deployed using devices of this
free layer, so the cost of deployment has also been zero.

To avoid more expenses, any domain has been bought. Those provided automatically
by ASW have been used, although they are less attractive.

Finally, the APK of the application is available through a GitHub repository, so the
cost of its deployment is also zero due to not using a Google Play Developer account.

4.2.2. Programmer budget

After this analysis, the only cost that the project could have would be the hours used
for its development. If we obtain the average salary of a junior programmer in Spain 4,
we obtain a figure of € 18,953 gross per year for a 40-hour week, which gives a monthly
salary of € 1,579 per month in 12 payments.

If the price/hour that is being paid to the junior programmer is extracted, we obtain
a gross salary of € 9.86 per hour. The project has a total duration of 118 days and an
average of 3.5 hours worked per day have been carried out.

This gives a total of 117 days * 3.5 h/day * € 9.86/h = € 4,072.18 gross price of the
programmer salary.

4.3 System architecture

First, it is necessary to detail the general architecture that the system as a whole will use.
An architecture in which tasks are divided into two groups, the resource providers, or
servers, and the resource requesters, or clients.

As the world of software development progresses, these two parts are increasingly
divided, giving rise to two main programming strands:

• Backend: This refers to the programming part of the server where all the business
logic and access to persistence are located.

• Frontend: This part refers to the programming of the user interface that receives
and displays the information to the user.

This division of roles is normally implemented, and as it is in this case, through a
REST API architecture, in which the client (the application) requests data through HTTP
requests to the server API (backend and vertical jump detector), the server processes the
request, accesses the data persistence if necessary and returns the result through HTTP

1GitHub Student Developer Pack: https://education.github.com/pack
2GitKraken Student Developer Resources: https://www.gitkraken.com/student-resources
3AWS Free account capabilities: https://aws.amazon.com/free/?nc1=h_ls
4Spanish junior programmer average salary: https://es.indeed.com/career/programador-junior/

salaries

https://education.github.com/pack
https://www.gitkraken.com/student-resources
https://aws.amazon.com/free/?nc1=h_ls
https://es.indeed.com/career/programador-junior/salaries
https://es.indeed.com/career/programador-junior/salaries

4.3 System architecture 45

protocol as well as the request as can be seen in the figure 4.5. This architecture is the
most used both on webs and mobile devices due to it’s simplicity and scalability 5.

Figure 4.5: REST API architecture

4.3.1. Backend architecture

In this part of the project, because it is implemented using Python and Flask, a structure
based on Blueprints is used but with a slight difference, adding a layer for access to the
database and eliminating the part related to web pages, its design and its static
components.

This structure is the most recommended for developing large Flask projects 6,
dividing the code into modules which are in turn divided into layers. It is important to
note that when using Python, an important point for its architecture is to use a virtual
environment, which, as can be seen in figure 4.6, is also a part of the architecture. The
layers to highlight of this architecture are:

• Main layer: This layer is located at the root of the project or service. It is
responsible for hosting the rest of the layers and modules, along with hosting the
starting point of the application app.py. The setup.py file, the configuration file of
our Python application, is also located in this layer. If you want to add a library
dependencies file, this is the layer where it should be, specifically through the file
requirements.txt.

5What is and why use a REST API: https://www.pluralsight.com/blog/tutorials/
representational-state-transfer-tips

6How to structure large Flask applications: https://www.digitalocean.com/community/tutorials/
how-to-structure-large-flask-applications

https://www.pluralsight.com/blog/tutorials/representational-state-transfer-tips
https://www.pluralsight.com/blog/tutorials/representational-state-transfer-tips
https://www.digitalocean.com/community/tutorials/how-to-structure-large-flask-applications
https://www.digitalocean.com/community/tutorials/how-to-structure-large-flask-applications

46 Proposed solution

Figure 4.6: Flask Blueprints architecture

• Modules: Following this architecture, modularization should be encouraged in
order to have an orderly and scalable development. These modules in turn are
responsible for hosting common elements in all of them, such as models.py or
controller.py, which are detailed below. An example of this is seen in the module
module_one. It is at this level also where the python package initialization file,
__init__.py 7, should be added.

• Module files: This point is as extensive as the user wants, since files can be created
that go in all modules to manage specific aspects such as forms, through a forms.py
file. These files receive the same name in all modules and they perform the same
function in all modules. Some examples of common files for all modules are:

– controllers.py: This file is responsible for encapsulating the logic of the module.
It is in this file where the routing of the REST API calls that request resources
from this module is carried out. These calls normally use information from the
entities modeled in models.py, so this file is in charge of using the models.

– models.py: This file is in charge of encapsulating the classes that represent the
entities of the module. These classes typically represent domain entities that
may or may not be present in the database. It is in this file where the
connection to the database is made to interact with the system entities.

– forms.py: This class encapsulates the necessary forms in this module for the
calls of the controllers that need it. This file does not communicate with any
other of the aforementioned, it only provides forms to the module.

This breakdown can go as far as the user wants, since it is possible in turn to create
specializations of a file such as the controllers file, creating different controllers and
routing the requests to them from the main controllers file. This structure helps a

7What is init.py: https://careerkarma.com/blog/what-is-init-py/

https://careerkarma.com/blog/what-is-init-py/

4.3 System architecture 47

very high modularization that provides the system with much greater clarity and
ease of maintenance.

4.3.2. Application architecture

For this part of the system, because it is developed in Kotlin, the chosen architecture is
Clean Architecture 8. This architecture allows the code to be separated into modules or
layers as can be seen in the figure 4.7. These layers have restrictions to communicate with
other layers, thus maintaining a single communication flow in the application. The layers
that make up this architecture are detailed below:

Figure 4.7: Kotlin Clean Architecture

• Presentation: This layer includes everything related to the views and graphic
elements of the application and the actions that the user can perform on them. To
implement this layer an MVVM pattern (model, view, view model) is used, it is
very similar to MVC (model, view, controller). This model is made up of the
following elements:

– The model, as in MVC, represents the data layer and the business logic.

– The view presents the information to the user and reacts to changes in the
model, similar to an active MVC pattern.

– The view model is an intermediary actor between the model and the view and
contains all the presentation logic.

The view in MVC depends on the model and the controller to get data or modify
it. If there is a change in the view that implies a change in the model you need to
access the controller and if there is new data, it depends on the model to display
it. In the case of MVVM, the view only depends on the view model to get data or
modify it, also no one has to tell it to update the data as the controller would in
passive MVC, as it is observing changes in the model directly.

The model in MVC can have too many responsibilities like getting the data from
data sources, informing the controller about changes to that data, and preparing
it for display in the view. In MVVM the model is completely decoupled from the
view and only contains information, never actions to manipulate it.

In MVC it is not very clear which part should be in charge of the presentation logic
since the model should only send data to view and, on the other hand, bringing this

8Android Kotlin Clean Architecture: https://proandroiddev.com/
android-clean-architecture-kotlin-flow-hilt-simplest-way-415d7e0f41b

https://proandroiddev.com/android-clean-architecture-kotlin-flow-hilt-simplest-way-415d7e0f41b
https://proandroiddev.com/android-clean-architecture-kotlin-flow-hilt-simplest-way-415d7e0f41b

48 Proposed solution

logic to view would complicate some tests. At MVVM, this responsibility is very
clear and falls into the hands of the sight model.

It should also be clarified that in the programming of this mobile application a
single Activity is used as a coordinator of views and its function is only to configure
and display them, that is, each view is a Fragment and they are managed by the
MainActivity. Each Fragment has its own view model with its logic encapsulated in
it. This layer only communicates with the Use Cases layer.

• Use cases: It includes all the logic necessary to execute the previously defined use
cases. This layer receives the actions that the user can trigger. These can be active
actions (the user clicks a button) or implicit actions (the application navigates to a
screen). From this point on, all other necessary actions can be executed on a child
thread, allowing avoid interface blocking. This layer only relates to the Data layer.

• Domain: It contains the definition of the business rules in the form of interfaces to
be able to execute the actions of the use cases received from the Use Cases layer.

• Data: It corresponds to the implementation of the business rules previously defined
in the Domain layer. Most of the logic is simply the request and data persistence.
This layer only relates to the Repository layer.

• Repository: Defines the application’s communication with data sources by
implementing a repository pattern. For a given request, it is able to decide where
to find the information, whether locally, such as the mobile database, or remotely,
such as the REST API service. This layer only relates to the Local and Remote
layers.

• Local: It implements all communication management with the database and CRUD
operations to be able to save and retrieve data from the mobile device database.

• Remote: It implements all the management of the connection with the REST API
to obtain and send the necessary data. Both the Local layer and the Remote layer
implement the DAO pattern to access the data, the Local layer accesses the
database and the Remote layer to the REST API, the DAO pattern proposes to fully
encapsulate the logic to access the data, in this way, the DAO provides the
necessary methods to insert, update, delete and consult the information.

4.4 Detailed design

This chapter details the design made to carry out the project, complying with all the
specifications and requirements detailed in the previous chapters. The design made here
establishes the points to follow for further development and implementation. During the
following sections, the design aspects of each of the parties involved in the project are
detailed in parts.

4.4.1. Database design

Like the rest of the parts of the project, it is necessary to make a final design of the
database that the developed system will use. This system is the scheme to follow in the
subsequent creation of the real database of the system, which is represented in the figure
4.8.

This database is non-relational, so the established associations do not correspond to
relationships such as foreign keys in non-relational databases. Each table represents a

4.4 Detailed design 49

collection and the relationships between the tables are the keys that each one of the
documents in the collections stores in order to be able to reference documents from
other collections. Lastly, the primary keys represent the MongoDB ObjectIds, not a usual
primary key.

The data types that appear in the collections are not the actual ones either, because the
modeling tool does not support non-relational databases such as MongoDB. The varchar
data type refers to a String type, while the varbynary(1) type has been used to represent a
Boolean type.

Figure 4.8: Database design diagram

As detailed in the analysis stage, the collection with the greatest importance is jump,
since it has relationships with all the remaining collections. This makes sense since the
system revolves around detection of jumps. Some of the jump fields could be calculated
instead of stored, but this offers a speed advantage when it comes to testing and faster
error or detection reports.

Regarding the attributes that require clarification, it is important to comment on two
of them:

• Valid from jump: This attribute refers to an acceptance by the user of the jump
results. The detection algorithm has not been tested in a full-scale test environment,
so if the user determines that these results are invalid, the result is saved as invalid
for further error analysis.

• Successfully processed from video: A video may return an error in its processing,
from the non-detection of jump (due to its absence or due to a malfunction of the

50 Proposed solution

detection) or because the video may be corrupted. This argument also serves for
further investigation of detection or processing errors of the developed detector.

4.4.2. Vertical jump detector design

Although this part of the system could be treated together with the rest of the backend, it
deserves to be treated separately from the rest since first, it is an autonomous component
of the backend and second, its design entails the implementation of the vertical jump
detection by computer vision, so its logic is not limited only to interacting with entities
of a system and with the frontend.

Figure 4.9: Vertical jump detector design diagram

As can be seen in figure 4.9, following the architecture detailed previously, the
existence of a separate module is necessary to manage the detection of the vertical jump.
This module has, like the rest of them, a router for processing requests, which redirects
to the jump_analyzer class. This class, through the rest of its detection_scripts package, is
in charge of first detecting the takeoff and jump moments of the video by means of
jump_moments_detector, and second of calculating all the jump parameters using the
logic implemented in jump_parameters_calculator. Both files use the constants present in
jump_detection_constants to perform their tasks.

After this, the rest of the modules follow the structure set by the architecture but
without having controllers, since this module is only designed to receive processing
requests. The reason why the models are present is because after processing it interacts
with some entities of the system to be able to save the analysis data in the database.

Finally, there are some comments about the mod_storage module. Video processing
requires logic to be temporarily stored, logic implemented by tmpfilescontroller. In
addition to this, the videos are stored in an Amazon S3 instance, so a controller has been
created that encapsulates the logic of connections and interaction with the services of
the S3 bucket. All of these controllers are managed by the main controller in the
mod_storage package.

4.4.3. Backend design

The backend developed apart from the vertical jump detector does not present unusual
or very abundant logic because there is not a very large amount of services to provide to
the application. This makes the design follow the architecture almost to the letter, only

4.4 Detailed design 51

adding a utils module for the use of the modules that have common logic. Examples of
this can be, for example, extracting the id of a user from its token, an implementation
carried out by the auth module but which is made available to everyone from utils with
another set of common functions.

Figure 4.10: Backend design diagram

As can be seen in figure 4.10, the login and registration is implemented through the
authentication module mod _auth. This module, following the architecture pattern, has a
controller to route requests to authorization resources and a model to manage and detail
the entities with which this module interacts.

Finally, there is the mod _jump module through which requests to jump-type
resources are managed, and it manages the interaction with these entities through the
models created in this module.

4.4.4. Application design

Contrary to the simplicity in the design of the backend, the design of Android
applications is totally the opposite in terms of quantity of elements. Following the Clean
Architecture, the same concept spans a diversity of layers in order to isolate the logic
belonging to each one of them. For modularity it is a very strong point, but this results
in a huge number of diagrams, so only two of the layers of the architecture are going to
be shown.

The first of the detailed layers is the UI layer, one of the outermost layers of the
architecture. As can be seen in figure 4.11, modules have been created for each of the
elements of the graphical interface. Each of these elements has a Fragment 9, which
represent a reusable part of the user interface and are executed in the FragmentActivity.
After this, it can be seen that most also have a ViewAction, a ViewModel and a ViewState.
These are the elements of the MVVM architecture, so the implementation of this
architecture is demonstrated here. The mission of each of these elements is detailed in
the subsection 4.3.2.

9What is a Fragment? https://developer.android.com/guide/fragments

https://developer.android.com/guide/fragments

52 Proposed solution

Figure 4.11: Application UI layer design diagram

Figure 4.12: Applicacion domain layer design diagram

The second layer to be detailed is a simpler one, the domain layer, presented in figure
4.12. In this layer we can see how the elements of related layers are encapsulated, such
as the repository layer or the use cases layer, layer with which it is connected through
the business rules implemented in each of the elements of these modules. In this case we
cannot find anything outside the architecture either, so the modularity is maximum and
the names of the elements are repeated for each of the layers, isolating their operation.

4.4.5. User interface flowchart design

An important aspect to design is the flow that the user interface will follow with user
interaction. This marks several business rules to be followed by the application, since it
is detailing the actions allowed by the user in terms of navigation through the system.
This navigation is detailed in the flowchart illustrated in figure 4.13.

This flow is detailed from the analysis stage, specifically the functional requirements
detailed in subsection 3.2.1. It can be seen that there are several functional requirements
that have a requirement as a dependency, so it can be interpreted as a previous step for
the realization of the use case. Following these dependency flows leads to the flowchart
detailed in this subsection.

4.5 Development of the proposed solution 53

Figure 4.13: Application flowchart design

An important aspect to highlight is that, after signing up, it is necessary to log in. This
behavior tends to vary a lot between other systems, but this time it is necessary to log in
as any other user after registering. Another important aspect is that after validating a
jump, you return to the main menu. This allows the user to reuse any of the system’s
capabilities automatically after jump processing.

4.5 Development of the proposed solution

In this section, the process of developing the solution proposed during this chapter and
analyzed in the previous ones is detailed in parts, and in a way that does not lose focus
on the details.

4.5.1. Development of the vertical jump detection system

In terms of complexity of development, this part of the project is the most complicated
and with less clarity in terms of the duration of its development and the quality that
could be expected from the result obtained. This is because more than a conventional
development process, it is a research process about a topic that nothing was found on the
networks or scientific articles.

This high complexity, together with the ignorance of the field of computer vision,
made the granularity of the tasks very small in order to establish a knowledge base and
review well each step that is taken, since a failure in this phase can lead to going down a
wrong path that does not lead to any solution, as has happened at some time in
development.

Project creation and version control

The first thing that is done is the creation of a project in GutHub to store the different
versions that are carried out in order to find a solution to the detection. This particular
project is called VertiJump-detector, as can be seen in the figure 4.14.

After creating the develop branch of the project, a Markdown document is added to
record the specifications of each version developed. Apart from this, specific branches

54 Proposed solution

are created for testing specific methods. Being a single user, code conflicts are very rare,
but it is a way to leave a trace of the development and to be able to go back if a version
does not work as expected.

Figure 4.14: Vertijump-detector repository

Contours detection algorithm

The first step to be able to detect an object in a video is to be able to detect moving
objects in the video, which is translated into contour detection in a video. OpenCV is very
famous for the typical tutorials for detecting cars or people in motion, so it is possible to
perform an analysis of these algorithms. After an analysis of the algorithms, the steps
carried out for the detection of contours are:

1. An OpenCV video capture is created with the path to the video to be processed or
to the camera from which the images are extracted.
cap = cv2.VideoCapture (source)

2. The first two frames of the video are extracted and a loop is started that lasts as long
as there are frames to be read from the video grabber.
ret, frame1 = cap.read()
ret, frame2 = cap.read()

3. An absolute difference between the two frames extracted at the beginning of the
process is calculated using an OpenCV function to subtract the pixels from two
frames.
cv2.absdiff (frame1, frame2)

4. The difference of the two frames is transformed to a grayscale.
cv2.cvtColor (frame, cv2.COLOR_BGR2GRAY)

5. A Gaussian blur is applied to the grayscale image. This step differs greatly from
one tutorial to another, since the choice of the kernel and the number of iterations
of the dithering is up to the user, although it is a parameter that can make a total
difference.
cv2.GaussianBlur (frame, (7, 7), 5)

6. Thresholding is applied to the blurred image. This step makes pixels greater than a
threshold set to their maximum value and those below a threshold to be set to their
minimum value. Doing this on a grayscale image causes the image to go completely
to absolute black and white. In this case, the user also decides from what value to
apply the threshold, a value that together with the choice of blur can be key.
cv2.threshold (blur, 20, 255, cv2.THRESH_BINARY)

7. A dilation is applied to the previous image. This transformation simply expands
the edges highlighted with the previous processes more, making a contour with
thinner parts more uniform.
cv2.dilate (frame, None, iterations = 2)

8. Finally, after these transformations, a processed image is obtained to which the
OpenCV function is applied to obtain the contours in its image.
cv2.findContours (frame, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

4.5 Development of the proposed solution 55

After analyzing the steps that are applied to transform the frame, in figure 4.15 you
can see each of the transformations applied to the image from its original version to the
dilated version with the borders of the moving object marked.

Once the image contours have been obtained, they are iterated over and, after passing
an area filter to verify that they have a minimum area, a square is drawn around each of
the detected contours, thus marking all of them on the original image as can be seen in
the figure 4.16. These squares are drawn using the OpenCV function cv2.rectangle, which
needs the points of the upper right corner of the outline, their height and their width.
These parameters are in turn extracted by another OpenCV function, specifically with
the cv2.boundingRect(contour) function.

Figure 4.15: OpenCV image transformations

Figure 4.16: OpenCV contours detection

56 Proposed solution

Tracking-based vertical jump detection

The first idea that comes to mind when trying to detect a jump is to track the feet of the
subject to observe their movement and to be able to detect when the jump has been
made quite accurately. This is a good idea based on good tracking performance, good
contour processing, and accurate foot detection. The development of this solution
presents problems from the first moment, in particular these are the most prominent:

• Foot detection: OpenCV has many libraries for the recognition of objects or faces,
but these usually need a training model for the detection. There are models
trained for faces, hands, gestures but not a model for feet with shoes in performing
a vertical jump.

• Tracking the object: Even avoiding the problem of detecting the feet by manually
selecting the area to be tracked, as it is a changing object, the tracker has a very low
precision. Your feet move a lot during a vertical jump, even if you try to keep your
foot as still as possible. To try to solve this problem, different types of trackers 10

can be used since OpenCV has a considerable number of options, but many of them
have very slow processing or sacrifice precision to obtain a faster result.

• Jerky movements of the tracker: This is a reason derived from the second problem,
but when trying to evaluate sudden movements of an object (moment of takeoff and
landing), that the tracker moves abruptly 11 and not with a smooth tracking makes
it very difficult, not being able to consider which movement is a jump and which is
not.

After testing with different types of tracker implementations and, after analyzing
their problems at the time of detection, this option is discarded in order to obtain an
accurate result in the detection of vertical jump.

Contours baseline based vertical jump detection

After observing that the trackers are not a viable option, the option is proposed of saving
the baselines of the detected contours and filtering them in some way to only obtain it
when the contour may belong to a foot. This is another valid hypothesis, but for it to be
proven, several requirements must be established for the video to be processed:

• Distance to the camera: In order to establish frames of which contour can be a
foot and which cannot, it is necessary that the jumps be made at a similar distance
in all the tests. This requirement opens the possibility of establishing a minimum
and maximum area in which an average foot would enter, establishing a margin
of error for those people who present a foot size greater or less than the average.
By establishing a range from 1m to 1m 25cm, a large stride of an average person, a
distance is established that allows this requirement to be applied.

• Duration of the video: This requirement is given because most people do not have
someone to record them jumping, but rather they leave the phone supported and
they perform the jump in front of the camera. This behavior causes the user to walk
in front of the camera to get to the place of the jump, a behavior that can confuse

10Analysis of OpenCV trackers: https://www.pyimagesearch.com/2018/07/30/
opencv-object-tracking/

11Object tracking problems with OpenCV: https://ehsangazar.com/
object-tracking-with-opencv-fd18ccdd7369

https://www.pyimagesearch.com/2018/07/30/opencv-object-tracking/
https://www.pyimagesearch.com/2018/07/30/opencv-object-tracking/
https://ehsangazar.com/object-tracking-with-opencv-fd18ccdd7369
https://ehsangazar.com/object-tracking-with-opencv-fd18ccdd7369

4.5 Development of the proposed solution 57

the algorithm, since it is intended to detect baselines, contour lines detected as low
as possible in the recording frame. Shortening the video to 2 seconds eliminates this
phase of hopping in front of the camera, along with the subsequent phase of going
back to the recording device.

• Background of the video: Since a foot is no longer being sought, but rather a
contour that falls within the norms of being a foot, it is necessary that no more
movements are occurring in the background. This is fixed by placing the
restriction of recording the video looking towards a wall, thus eliminating any
movement from the bottom that could affect the detection of the vertical jump.

Once the conditions for video recording have been established, the baseline detection
process the video as follows:

1. The detected contours are filtered according to a minimum area percentage and a
maximum area percentage. If it is not within this range, that contour is not used for
subsequent steps. Both percentage limits are set in a detector constants file so that
they can be changed and further tested.

2. If the contour has a baseline less than the lowest saved plus an error range, the Y
coordinate of the baseline of the rectangle surrounding that contour is set as a new
baseline. The error range is also stored in a detector constants file to be able to carry
out tests with different error margins.

3. If the contour baseline is not less than the current one plus the error range, it is
checked if it is within this range. If said contour is within the range of the current
baseline, the index of the current frame is added to the list of frames with contours
detected in the detection range of the current baseline.

4. After going through all the frames and having saved all the possible baselines, the
baselines are filtered as to whether their lists of frames with contours detected in
their range are valid or not. To evaluate whether a list of frames is valid or not,
minimum and maximum values of the duration of a vertical jump are also used,
the minimum being a value well below the average and the maximum a little
higher than the world record. This filtering is performed first, calculating the
difference between each pair of consecutive detected frames and then filtering
these differences with the previously established range. Here’s an example:

• Minimum jump frames duration: 12.

• Maximum jump frames duration: 70.

• List of frames with contours in the baseline range detected: [13, 15, 16, 45, 46,
47, 50, 52].

• List of differences for each pair of frames: [2, 1, 29, 1, 3, 2].

• Filtered list of differences in the valid range: [29].

5. Once the differences are filtered, it is enough to find the index of the last difference
of the filtered list in the list of differences and with that index, the index of the
frames between which there is that difference.

This process is performed for all detected baselines, so in the end there is only one
set of baselines that have jump candidates. In this case, the last valid baseline detected
is chosen, since being such a short duration of the video it is difficult for an event of that
duration to occur after landing the jump.

58 Proposed solution

Figure 4.17: OpenCV baselines and contours detection

During the investigation and testing stage, all these lines are marked in the original
image as can be seen in figure 4.17. Specifically, each line represents the following:

• Green lines: Contours detected.

• Yellow line: Current baseline.

• White lines: Upper and lower margin of the baseline contour detection range.

After having detected the vertical jump, the only thing that the detector has to return
to the system when executing is a tuple of the take-off frame and the landing frame of the
vertical jump.

Calculation of the attributes of a vertical jump

Once the take-off and landing frames and the jump video are available, the rest of the
jump parameters are calculated. These parameters are all calculated based on the time
in the air of the vertical jump. The parameters and their calculation method are detailed
below:

• Time in the air in frames: Simply subtract the landing frame minus the take-off
frame.

4.5 Development of the proposed solution 59

• Time in the air in seconds: For this attribute it is necessary to consult the video
again to obtain its frames per second. There is an OpenCV function available for
this, specifically through the cap.get(cv2.CAP_PROP_FPS) function. Once the
frames per second are available, it is enough to divide the air time in frames
between the frames per second.

• Initial speed: Knowing that this movement is a projectile motion, and having the
time in the air in seconds, the initial speed of the jump can be calculated using the
formula t = 2 ∗ Vo/g, where Vo is the initial speed of the jump and g the force of
gravity (9.81m/s2).

• Height reached: Taking the data of the initial speed and the force of gravity, the
maximum height can be calculated using the formula Hmax = Vo2/(2 ∗ g).

• Peak power: The maximum power is the one exerted at the moment of the jump,
but to calculate this power, as there are no pressure plates, two different formulas
are used and the average value between the two is calculated. These formulas are
Harman, which has good results crossing it with formulas like Lewis’s formula
[12], and Johnson & Bahamonde [13]. The first uses only the user’s weight and the
second also uses height, so an average of both is returned.

• Peak force: By having the maximum power and speed in that instance, the
maximum force is calculated as the Pmax/Vo, the speed of this moment being the
initial speed.

Service development

After already having the vertical jump detection algorithm and a function that calculates
all the parameters of the jump after the tuple returned by the detection algorithm, the
detection algorithm is encapsulated so that it can be used by means of a REST API. This
is done following the design made previously, creating the classes corresponding to the
design and implementing those services.

A notable part of this service is the communication with an AWS S3 Bucket. The
connection with this service has been implemented through the Python boto3 library
12, which through credentials and a URL allows you to access a library of functions to
manage that storage space from Python. The connection established through this library
is detailed in the code snippet 4.1.

1 S3_BUCKET_NAME = " verti jump −jumpvideos "
2

3 s3 = boto3 . resource (
4 service_name= ’ s3 ’ ,
5 region_name= ’ us−east −2 ’ ,
6 aws_access_key_id= ’AKIA3FW6Q2BZ6UT5EK ’ ,
7 aws_secret_access_key= ’qsOGPjZr21VGXuyTvx5QAScpxvVbk8WsnzSnP ’
8)

Code Listing 4.1: S3 Bucket connection parameters

It is important to highlight that the uploading of the videos to this platform has been
implemented as an asynchronous process through the multiprocessing library. This is
due to the fact that the upload of the file is a blocking operation and it is only delaying
the waiting time, because the analysis or any other part of the code needs the result,

12Introduction to Pyhon’s Boto3 library: https://towardsdatascience.com/
introduction-to-pythons-boto3-c5ac2a86bb63

https://towardsdatascience.com/introduction-to-pythons-boto3-c5ac2a86bb63
https://towardsdatascience.com/introduction-to-pythons-boto3-c5ac2a86bb63

60 Proposed solution

only the instruction to delete the video from the temporary folder. The creation of the
non-blocking process for the video upload is shown in the code snippet 4.2.

1 p = Process (t a r g e t =asyncUploadVideoToS3 , args =(
2 f i l e _ s o u r c e , f i l e _ b u c k e t _ s o u r c e ,))
3 p . s t a r t ()

Code Listing 4.2: Python Process creation - S3 upload file

Figure 4.18: VertiJump detector code structure

After these explanations, in the figure 4.18 it is possible to see how the organization
of the project remains following the detailed design and the structure marked by the
architecture.

4.5.2. Development of the backend

This part of the project is much smaller and implements a very simple logic,
authentication service and queries about system entities, without any type of processing
or function outside of what is established in the basic architecture and its design in
detail.

Project creation and version control

To develop this project, a new repository has been created, specifically the Vertijump-
backend repository, as can be seen in the figure 4.19. Being a pure development part,
the versions are managed through GitFlow, creating branches for the new features and
merging to develop and later to master when tested.

4.5 Development of the proposed solution 61

Figure 4.19: Vertijump-backend repository

Development of the modules

The development has been done following the backend architecture tutorial itself. After
the creation of an authorization module, a token authentication has been implemented,
specifically using JWT. Thanks to this tool, a security layer is added to the backend, since
without the token and its automated verification, which can be seen in the code snippet
4.3, it is not possible to access more resources than the login or registration. To add even
more security, the password is kept encrypted, also creating the logic to compare a plain
text password with an encrypted one on a specific user.

1 @app . route ("/user/jumps " , methods =["GET"])
2 @jwt_required ()
3 def getUserJumps () :
4 re turn jump . obtainJumpsFromUser (request)

Code Listing 4.3: Python Flask JWT required - User jumps request

After the creation of the authentication module, the jump and user modules are
created to implement their requests and their models, as can be seen in the code snippet
4.4.

1 c l a s s User (Document) :
2 name : S t r i n g F i e l d (required=True)
3 surname : S t r i n g F i e l d (required=True)
4 email = EmailFie ld (unique=True , required=True)
5 password = BinaryFie ld (required=True)
6 born_date = DateTimeField (d e f a u l t =datetime . utcnow)
7 weight = F l o a t F i e l d ()
8 height = I n t F i e l d ()
9

10 def _ _ i n i t _ _ (s e l f , name , surname , email , password , born_date , weight ,
height) :

11 s e l f . name = name
12 s e l f . surname = surname
13 s e l f . email = email
14 s e l f . born_date = born_date
15 s e l f . weight = weight
16 s e l f . height = height
17

18 s e l f . password = hash_password (password)
19

20 def get_ id (s e l f) :
21 re turn s e l f . _id
22

23 @staticmethod
24 def check_password (password_hash , password) :
25 re turn check_password_hash (password_hash , password)

Code Listing 4.4: Python User class

The rest of the system has continued to be completed according to the proposed
design and architecture, so after completing its development, the code structure shown
in figure 4.20 is obtained. A notable aspect in this development is the use of the

62 Proposed solution

PyMongo library 13 to the connection to the database. It is the same library as in the
previous case since it is the official MongoDB for Python.

Figure 4.20: Vertijump backend code structure

4.5.3. Development of the application

This last part of the project is one of the largest in the system, due to its number of layers
and resource consumption by the Android Studio IDE 14. Development has been very
slow due to late builds of the project.

Project creation and version control

The project has been created in Android Studio from an example of authentication in
Android made with Kotlin. To control its development, a repository has also been created
on GitHub, specifically called Vertijump-app.

Development of the modules

Like the backend, the development of the application has been mostly a follow-up of the
architecture and the design in detail carried out, which is represented in the packages
structure of the project, as can be seen in the figure 4.21. The main development aspect
that should be highlighted is the use of the FFmpeg library for Kotlin 15, which has
made it possible to implement the clipping to the video of the jump directly in the
application for processing. After this, other challenges may be the implementation of
token authentication and waiting for the jump results through a loading screen.

13How to use PyMongo: https://www.bmc.com/blogs/mongodb-pymongo/
14Android Studio system requirements: https://www.kindacode.com/article/

android-studio-system-requirements/
15FFmpeg GitHub repository: https://github.com/fourtalk/ffmpeg-android-kotlin

https://www.bmc.com/blogs/mongodb-pymongo/
https://www.kindacode.com/article/android-studio-system-requirements/
https://www.kindacode.com/article/android-studio-system-requirements/
https://github.com/fourtalk/ffmpeg-android-kotlin

4.5 Development of the proposed solution 63

Figure 4.21: Vertijump app code structure

Development of the views

Views are the first aspect to build in the application. Its design has been carried out based
on the need of the user cases and the Android Material Design Guidelines 16 have been
followed, which can be seen in figure 4.22. These views have been implemented using
Fragments, which are presented using the Coordinator Layout.

16Material Design Guidelines official webpage: https://material.io/design/guidelines-overview

https://material.io/design/guidelines-overview

64 Proposed solution

Figure 4.22: Vertijump app views

CHAPTER 5

Implantation

One of the purposes of this project is to test the idea as a minimum viable product of a
business idea, so it is necessary to be able to use the solution in a real test environment.
Deployment in a real environment as if it were a production environment and testing
against this environment provide feedback on the product for further evaluation as a
business idea. This chapter details the aspects related to the deployment and
environment of the system and the tests carried out against it, together with the results
obtained, with their subsequent evaluation.

5.1 Deployment

The project has been divided into several parts during its development favoring a
development based on components. This characteristic of the project also makes it
necessary to deploy each service independently in order to maintain modularity. If
everything were in the same place and an error occurred, the system would stop
working instantly. The following subsections detail the measures that have been taken
for the correct deployment of each part, its maintenance, its deployment architecture
and the measures implemented to make each service have maximum availability within
the available resources.

5.1.1. Database deployment

The database is hosted on a dedicated server that can be accessed by systems running on
any other instance. As mentioned above, the chosen database system is MongoDB.

One of the main advantages of using MongoDB is that you already have a system to
replicate the database 1 and have multiple instances of them that are organized
automatically, specifically using the Replica set capability of MongoDB, which structure
can be seen in the figure 5.1. Through this it is possible to configure several MongoDB
servers as a set of replicas, defining the role of each one so that the system can manage
itself. This offers benefits such as high availability, database replication, and database
scalability. This is a system intended to run with multiple nodes, but it is possible to
isolate each of the nodes in a container and run the entire system in a single instance.

1Replication MongoDB manual: https://docs.mongodb.com/manual/replication/

65

https://docs.mongodb.com/manual/replication/

66 Implantation

Figure 5.1: MongoDB Replica set architecture

Containerization

Thanks to using MongoDB, isolating the database manager in a container is much easier
since you do not need a relational schema to start the database, it is simply necessary to
run an instance of the official MongoDB image. Apart from this, there are a few things to
keep in mind in order to run MongoDB in a container:

• Mount a local volume for storage: When a container is removed, all of its local
volumes are removed along with it. To prevent this, a directory on the local
machine must be mounted as the mongo data storage directory, which is located in
the /data/db path.

• Edit the binded IP: By default in MongoDB only access to the manager is enabled
from localhost, so access from other IP addresses must be enabled, which is done
through the –bind _ip_all parameter.

• Expose the port: By default all container ports are closed to the outside, so it is
necessary to bind the port we want from the container to an external port of the
machine, so that it can be used from outside.

This is the necessary configuration to be able to deploy a MongoDB server without
replicas. If this information is reflected in a Dockerfile, a result like the code snippet 5.1.

5.1 Deployment 67

1 version : "3.8"
2 s e r v i c e s :
3 mongodb:
4 image : mongo
5 container_name : mongodb
6 environment:
7 - PUID=1000
8 - PGID=1000
9 volumes:

10 - /home/ data / db:/data/db
11 ports :
12 - 27017 :27017
13 r e s t a r t : unless −stopped
14 entrypoint : ["/usr/bin/mongod" , "--bind_ip_all"]

Code Listing 5.1: MongoDB node docker-compose.yml

Using these steps it is possible to deploy an instance, but the goal is to deploy a
replicated instance system using Docker. You need to create the configuration file to
deploy the mirror system. This document is in charge of collecting which MongoDB
instances are part of the replica system and establishing the role of each node, as can be
seen in code fragment 5.2.

1 docker −compose up −d
2 docker exec − i t localmongo1 mongo
3

4 r s . i n i t i a t e (
5 {
6 _id : ’ r s0 ’ ,
7 members : [
8 { _id : 0 , host : "mongo1 :27017 " } ,
9 { _id : 1 , host : "mongo2 :27017 " } ,

10 { _id : 2 , host : "mongo3 :27017 " , arb i terOnly : t rue }
11]
12 }
13)
14

15 e x i t

Code Listing 5.2: MongoDB Replica set config file docker.sh

As a second part of deploying the replica set, it is necessary to save the necessary
configuration in the main node to be able to access the rest of the replicas and establish a
connection. For this, a file with the configuration is created which will be added to the
main node in its deployment using docker-compose, setting it as a command to be
executed once the container is started. This can be seen in code fragment 5.3 on line 8.

Finally, it is necessary to configure the docker-compose with the names of the
MongoDB nodes and copy the necessary configurations for its deployment. The
configuration is similar to the code snippet 5.3 but with all the details of each of the
nodes. In the case of this project, 1 primary node, a secondary node and an arbiterOnly
node are used 2. This provides two nodes for query processing and one node for
maintaining a replica of the database only, which adds enormous redundancy to the
system’s data set.

2MongoDB Replica set Docker deployment example: https://gist.github.com/harveyconnor/
518e088bad23a273cae6ba7fc4643549

https://gist.github.com/harveyconnor/518e088bad23a273cae6ba7fc4643549
https://gist.github.com/harveyconnor/518e088bad23a273cae6ba7fc4643549

68 Implantation

1 mongo−setup :
2 container_name : mongo−setup
3 image: mongo
4 r e s t a r t : on− f a i l u r e
5 networks:
6 default :
7 volumes:
8 - . / s c r i p t s :/ s c r i p t s
9 entrypoint : ["/scripts/setup.sh"] # Make sure this file

exists (see below for the setup.sh)
10 depends_on:
11 - mongo1
12 - mongo2
13 - . . .
14

15 mongo1:
16 hostname: mongo1
17 container_name : localmongo1
18 image: mongo
19 expose:
20 - 27017
21 ports :
22 - 27017 :27017
23 r e s t a r t : always
24 entrypoint : ["/usr/bin/mongod" , "--bind_ip_all" , "--replSet"

, "rs0" , "--journal" , "--dbpath" , "/data/db" , "--
enableMajorityReadConcern" , "false"]

25 volumes:
26 - /mongo/ data1 / db:/data/db
27 - /mongo/ data1 / configdb :/data/configdb
28 mongo2:
29 . . .

Code Listing 5.3: MongoDB node docker-compose.yml

5.1.2. Vertical jump detector deployment

This part of the project has been treated as a separate component throughout the project,
which is why it must be deployed autonomously from the rest of the system
components. The main reason to isolate it is due to its processing time. Processing a
video frame by frame is not something trivial or fast, so if this functionality were
implemented in conjunction with the rest of the backend, when deploying everything
together, the loading times would be just as slow for the entire system, no matter how
many replicas were deployed.

Another point is that if this part is the one that consumes the most resources, and
replica escalation is established according to consumption, for example, as many login as
video processors would be deployed, when login is a quick and simple process that does
not need the same level of scalability as this part of the system.

5.1 Deployment 69

Deployment diagram

As can be seen in figure 5.2, for this service it has been decided to deploy 5 replicas in an
AWS EC2 instance, all of them managed by a load balancer which will expose its interface
to access the vertijump-detector service. All services are isolated in a container offering
the same capacities each.

Figure 5.2: Vertijump detector deployment diagram

Containerization

In order to deploy the containers with the service, it is necessary to create the respective
Dockerfiles for both vertijump-detector and its load balancer. As can be seen in the code
fragment 5.4, in order to isolate this component it is necessary to use a custom Docker
image with Python3 and OpenCV installed by default. This is a necessary aspect since
this is the image itself that has been in charge of installing all the dependencies of the
OpenCV library, and you only have to worry about the rest of the libraries through the
component’s requirements.txt file, as can be seen on the line 15 of the code snippet. Finally,
it is important to note that the service is exposed on port 5000, important data for the load
balancer.

After detailing how to containerize the vertijump-detector service, it is necessary to
create an image for the load balancer. As can be seen in the code snippet 5.5, the image to
be created takes an Nginx image as a base and adds a custom configuration file to it. This
file, as can be seen in the code snippet 5.5, is in charge of filtering the traffic that receives
through port 80 to port 5000 of one of the servers that it has added as a load balancer.

70 Implantation

1 # Base image
2 FROM j j a n z i c / docker−python3−opencv
3

4 # Metadata information
5 LABEL maintainer="ismaelprzm@gmail.com"
6 LABEL version="1.0"
7

8 # Create working directory
9 RUN mkdir −p / opt / app

10

11 # Stablish working directory
12 WORKDIR / opt / app
13

14 # Install requeriments dependencies
15 COPY requirements . t x t .
16 RUN . / opt / venv / bin / a c t i v a t e && pip i n s t a l l −r requirements . t x t
17

18 # Copy application
19 COPY . .
20

21 # Install app
22 RUN pip i n s t a l l −e .
23

24 # Expose app port
25 EXPOSE 5000
26

27 # Init app when init server
28 CMD python app . py

Code Listing 5.4: Vertijump detector Dockerfile

1 # using Nginx base image
2 FROM nginx
3

4 # delete nginx default .conf file
5 RUN rm / e t c / nginx / conf . d / default . conf
6

7 # add the .conf file we have created
8 COPY nginx . conf / e t c / nginx / nginx . conf

Code Listing 5.5: Vertijump detector load balancer Dockerfile

These images are stored in the official Docker registry, DockerHub. This registry
allows that, after having created an image with the dependencies and configuration
necessary to run our service, it is likely to upload the image to the registry to be able to
use it elsewhere by accessing the registry.

5.1 Deployment 71

1 events { }
2

3 # Define which s e r v e r s to inc lude in the load balancing scheme .
4

5 http {
6 upstream nginx {
7 server nginx ;
8 server server_vert i jump −d e t e c t o r _ 1 : 5 0 0 0 ;
9 server server_vert i jump −d e t e c t o r _ 2 : 5 0 0 0 ;

10 . . .
11 }
12 cl ient_max_body_size 100M;
13

14

15 # This server accepts a l l t r a f f i c to port 80 and passes i t to the upstream .
16

17 server {
18 l i s t e n 8 0 ;
19 server_name nginx . com ;
20 l o c a t i o n / {
21 proxy_pass ht tp :// nginx ;
22 }
23 }
24 }

Code Listing 5.6: Vertijump detector load balancer nginx config file

Deployment of replicas and load balancer

Once the images of the vertical jump detection service and the specific load balancer
for this service are already available, it is only necessary to specify how many replicas
Docker should deploy of each of the two services and put the appropriate names to the
configuration file of Nginx used, as can be seen in code fragment 5.7. This allows us
to access the service through a load balancer that will decide which of the 5 replicas
responds to the request, usually through a Round Robin algorithm.

1 version : ’3.8’
2 s e r v i c e s :
3 vertijump −d e t e c t o r :
4 image: ismpere/verti jump − d e t e c t o r
5 deploy:
6 r e p l i c a s : 5
7 ports :
8 - "5000"
9 volumes:

10 - / opt / app
11 nginx:
12 image: ismpere/verti jump −detec tor −load −balancer
13 container_name : nginx
14 ports :
15 - 80:80
16 depends_on:
17 - vertijump −d e t e c t o r

Code Listing 5.7: Vertijump detector docker-compose file

72 Implantation

5.1.3. Backend deployment

As it is the same as in the case of the vertical jump detector of an application made with
Python, it is the same configuration making the following modifications:

• Use a Python image as a base for the new image: In the previous case, due to the
dependency on OpenCV and its installation difficulty, a more specific image was
used to create the base image of the service, as can be seen in the code fragment 5.4.
Unlike that case, this service only needs an official Pyhon image, so only the image
field would have to be modified.

• Decrease the number of replicas to 3: This service consumes fewer resources than
the previous one, so with 3 replicas deployed it is more than enough.

• Edit the nginx configuration file: To be able to create the image of the balancer
as in the previous case, you only have to edit in the code snippet 5.6 the name of
the services that the load balancer routes, since now it is the backend, not from
vertijump-detector.

With these steps, all the previous documents are reusable for the deployment of this
service in the AWS EC2 instance dedicated to hosting this service.

Deployment diagram

After applying the aforementioned modifications, the deployment diagram for this
service is shown in figure 5.3. There are 3 replicas of the service deployed in
independent containers and managed by a load balancer, which exposes its port 80 to
access the backend service.

Figure 5.3: Vertijump backend deployment diagram

CHAPTER 6

Testing

This chapter details the tests carried out to verify the correct operation of the developed
system. It should be noted that there are two very different parts to this chapter: the jump
detector tests and the complete system tests.

6.1 Vertical jump detector

This section will expose all the tests done to check if the vertical jump detector meets the
precision requirements set out in subsection 3.2.2. This part of the project has been
developed from a more investigative perspective, founding a pass for the tests,
establishing hypotheses and contrasting the information to verify or not those
hypotheses.

Each test section has an established hypothesis to be tested, so the tests that this
subsection contains will be evaluated from a specific criterion, always trying to contrast
the hypothesis. It is important to rule out that it is not a research process as such, since it
has not been a development as such, but a hybrid between both models to try to get the
best of each one.

6.1.1. Vertical jump detection parameter tests

In this section the tests are focused on testing different settings of the parameters that
have been established to detect vertical jumps.

Modifiable parameters

The following are the two types of parameters that can be modified for these detection
tests:

• Constants used in detection: These parameters are decimal values that represent a
limit or margin of error. Specifically, these values are those mentioned below:

– Minimum area percentage to detect movement: This is a decimal value that
represents the minimum percentage that a detected contour must occupy
within the frame to be processed in order to be considered as a valid contour.
The value of this parameter is based on the percentage that occupies a foot
placed sideways to the camera at a distance of 1m 10cm, a big step of a 1.75m
tall person.

73

74 Testing

– Percentage of margin of error of the baseline: This is a decimal value that
represents the percentage that includes the margin of error of the baseline,
both up and down the baseline (Y axis). The value of this parameter is based
on the minimum jump of an average person and the range of motion of one
foot while positioning to perform a vertical jump.

– Minimum time in air: This is a decimal value that represents the minimum
time in the air that a person has to be to be considered a valid vertical jump.
This value is based on the least effort jump that an average person can make
by subtracting a margin of error.

– Maximum time in air: This is a decimal value that represents the maximum air
time that a jump can take to be considered valid. The value of this parameter
is based on the world record for vertical jump, set by Watch Josh at 47.1’or
1.19634m 1.

• Frame processing parameters: These parameters refer to values used in the
transformations applied to the video frames in the preprocessing. Changing these
conditions can result in a very different image and a detection result unrelated to
those tested with other settings. Specifically, the following values can be modified:

– Gaussian blur: This is a transformation commonly used to soften an image
and reduce image noise. In turn, two parameters can be modified from this
transformation:

* Kernel: It is the kernel used in each of the blurring of the image.

* Iterations: Number of iterations of the blur with the specified kernel.

– Threshold: It is a transformation that creates an image with two bits of color
from a certain threshold. The modifiable parameters of this transformation
are:

* Threshold: Value from which the division of the color bits is made.

* Maximum value: Maximum color value to be set if the threshold is
exceeded.

* Threshold type.

– Dilate: This transformation stretches the edges of the image outlines. It is a
transformation commonly used to smooth outlines and fill any gaps in open
outlines. The modifiable values of this transformation are:

* Kernel: Kernel used in each of the image dilatations.

* Iterations: Number of iterations of dilation to perform with that kernel.

Test resources

For these tests there are 45 videos of 2 seconds duration in which a vertical jump is made.
In these tests, 11 different subjects have been included, some of them jumping in up to 5
different positions and at 3 different distances.

Hypothesis

Test case 1 will present the best results as it is using the base values calculated for the
detector.

1Vertical jump world record video: https://www.youtube.com/watch?v=lgkCxnSHV7w

https://www.youtube.com/watch?v=lgkCxnSHV7w

6.1 Vertical jump detector 75

Test cases

The test configurations chosen for these tests are detailed below:

Test case ID 1 2 2
Min frame
area Percentage
to detect movement

0.002 0.00175 0.002

Margin error
percentage
baseline

0.025 0.0225 0.025

Min jump
time in air

0.25 0.25 0.25

Max jump
time in air

1.25 1.25 1.25

Gaussian
blur kernel

7x7 7x7 7x7

Gaussian
blur
iterations

5 5 7

Threshold
value

20 20 30

Threshold
maximum
value

255 255 255

Threshold
type

BINARY BINARY BINARY

Dilate
kernel

None None None

Dilate
iterations

0 0 2

Table 6.1: Test cases of parameter tests

Results

Figure 6.1: Correlation graph of detected takeoff frame with real - Parameter tests

76 Testing

Figure 6.2: Correlation graph of detected landing frame with real - Parameter tests

Figure 6.3: Correlation graph of detected time with real - Parameter tests

Figure 6.4: Correlation graph of detected height with real - Parameter tests

Figure 6.5: Comparison of detected jump frames with real - Parameter tests

6.1 Vertical jump detector 77

Parameter
Tafeoff
frame
error

Landing
frame
error

Time in
air error

Height
error

Mean 0.555 1.355 0.0188 0.0229
Median 1 1 0.0169 0.0199
Mode 1 1 0 0
Standard
desviation

0.5398 0.6718 0.0179 0.0235

Variance 0.2914 0.4514 0.0003 0.0005
Min 0 0 0 0
Max 2 4 0.0846 0.1210
Amplitude 2 4 0.0846 0.1210
Standard
mean error

0.0814 0.1013 0.0027 0.0035

Q 25% 0 1 0 0
Q 50% 1 1 0.0169 0.0199
Q 75% 1 2 0.0338 0.0407
Failed tests 0 / 45

Table 6.2: Descriptive values of the errors of test case 1 - Parameter tests

Parameter
Tafeoff
frame
error

Landing
frame
error

Time in
air error

Height
error

Mean 0.5227 1.2727 0.0165 0.0203
Median 0.5 1 0.0169 0.0196
Mode 0 1 0 0
Standard
desviation

0.5430 0.6523 0.0171 0.0230

Variance 0.2949 0.4261 0.0003 0.0005
Min 0 0 0 0
Max 2 4 0.0846 0.1210
Amplitude 2 4 0.0846 0.1210
Standard
mean error

0.0828 0.0994 0.0026 0.0035

Q 25% 0 1 0 0
Q 50% 0.5 1 0.0169 0.0196
Q 75% 1 2 0.0169 0.0228
Failed tests 1 / 45

Table 6.3: Descriptive values of the errors of test case 2 - Parameter tests

78 Testing

Parameter
Tafeoff
frame
error

Landing
frame
error

Time in
air error

Height
error

Mean 1.8 3.0444 0.024 0.0309
Median 0.5 1 0.0169 0.0199
Mode 0 1 0 0
Standard
desviation

6.3477 9.0356 0.0463 0.0702

Variance 40.2933 81.6424 0.0021 0.0005
Min 0 0 0 0
Max 34 50 0.2706 0.4491
Amplitude 34 50 0.2706 0.4491
Standard
mean error

0.9569 1.3622 0.0069 0.0106

Q 25% 0 1 0 0
Q 50% 0 1 0.0169 0.0199
Q 75% 1 2 0.0169 0.0222
Failed tests 0 / 45

Table 6.4: Descriptive values of the errors of test case 3 - Parameter tests

Analysis

Discussing about the detection of the takeoff frame, as we can see in the figure 6.1, the
test case that achieves a greater correlation between the real data and those obtained is
the case of test 2, although the Pearson coefficient of the test case 1 is almost the same as
in test case 2. If the data in tables 6.2, 6.3 and 6.4 are also observed, it can be observed
that the lowest mean error in the detection of the take-off frame is as in the previous case
the case of test 2. An aspect that is also remarkable is the awfull detection error of test
case 3 that can be observed in the figure 6.5.

Regarding the detection of the landing frame, observing figure 6.2, something similar
happens as with the take-off frame, but this time with a much smaller difference in the
Pearson coefficient. The test case that achieves a greater correlation between the real data
and those obtained is the test case 2. If the data in tables 6.2, 6.3 and 6.4 are observed
again, it is easy to see that the lower mean error in the detection of the landing frame is as
in the previous case the test case number 2, this time with a greater margin of gain than
in the previous case. A remarkable aspect again is the awful detection error of test case 3
that can be observed in figure 6.5.

Analyzing figure 6.3, as expected by the results of the two previous variables, if the
time in the air detected is analyzed, the test case with the highest correlation coefficient
is the case of test 2. If we also look at the tables 6.2, 6.3 and 6.4 are also observed as is the
case of the test with the lowest mean error of all. Finally, again it is seen that the mean
error of test case 3 is considerably worse than the other two test cases.

Finally, analyzing the variable height reached by means of figure 6.4, and as a
consequence of the other 3 variables, test case 2 is once again the one with the highest
percentage of correlation. If tables 6.2, 6.3 and 6.4 are analyzed, we obtain as data that
test case 2 presents the lowest mean error for this variable.

A relevant aspect is that the option that provides the best results, the case of test 2, is
the only one that has failed in the detection of a jump, since for example in the case of

6.1 Vertical jump detector 79

test 3 it can be observed that there is a data that comes out of the average but has come
to detect something.

Conclusion

Test case 2 provides a slight improvement in the percentage of detected error, but it is the
only algorithm that has failed in detection, so in this case test case 1 is chosen as the best
option by prioritizing robustness by above precision. The hypothesis is fulfilled.

6.1.2. Vertical jump distances tests

In this section the tests are focused on evaluating the accuracy of the vertical jump
detection by performing the jump at several different distances from the camera.

Test cases setup

To carry out the tests at different distances, several different jump points have been
established at certain measurements. Both the position of the camera and the different
jump points are marked on the ground as can be seen in figure 6.6. This setup has been
made to record a total of 3 jumps, one at each distance, to be able to evaluate from what
distance vertical jump is better detected. These distances have been chosen taking into
account the measurement of a step of a person of average height, around 1.70m tall. As
for the camera, it is a mobile device located on a stand to keep the phone vertically
recording.

Figure 6.6: Distance tests setup.

After the results of the first tests, the configuration of the detection and processing
parameters are those established by test case number one, the test case selected as the
best detection option.

80 Testing

Test resources

To carry out these tests, a total of 11 vertical jumps are available for each of the 3 distances
to be tested, which gives a total of 33 tests.

Hypothesis

Test case number 2 has the highest detection, since it is the minimum distance in which
the feet are seen during the video plus a margin of error, and it is the reference distance
for the other two tests.

Test cases

The test cases in this case are very easy to define, they are the 3 distances marked on the
ground with three blue X, as can be seen in the figure 6.6. One aspect to keep in mind is
that when performing the tests, users should try to land as close to the starting position
as possible, in order to assess the distance more specifically. They are specifically located
at the following distances:

• Test case 1: 110cm

• Test case 2: 120cm

• Test case 3: 130cm

Results

Figure 6.7: Correlation graph of detected takeoff frame with real - Distance tests

Figure 6.8: Correlation graph of detected landing frame with real - Distance tests

6.1 Vertical jump detector 81

Figure 6.9: Correlation graph of detected time with real - Distance tests

Figure 6.10: Correlation graph of detected height with real - Distance tests

Figure 6.11: Comparison of detected jump frames with real - Distance tests

Analysis

Regarding the analysis on the detection of the takeoff frame, it can be seen in figure 6.5
that the Pearson correlation coefficient is higher in the case test 3. This information is
contrasted with the 6.5, 6.6 and 6.7 tables. The tables are the opposite of what would be
expected, since the test case 3 has the worst mean error, the best being that of the test case
2. The correlation of the test case 3 agrees with its standard error of the mean, but the test
case 2 has a very similar standard error of the mean, so in this case it is the test case 2 that
obtains the best results overall.

Regarding the detection of the landing frame, after viewing figure 6.6, it is extracted
that the test case 1 is the one with the best correlation, but by very little compared to the
test case 3. After this, observing the tables mentioned, it is concluded that the mean
error of the test case 2 is the best by far, although it presents a fairly high variance
compared to the other case tests. In this case, the test case 2 is the one with the best
result.

Treating the airtime error, if you look at figure 6.9, you can see that the test case 3 is the
one with the best correlation, something that did not seem very intuitive after the data

82 Testing

Parameter
Tafeoff
frame
error

Landing
frame
error

Time in
air error

Height
error

Mean 0.5454 1.2727 0.0185 0.0220
Median 0.0 1 0.0169 0.0192
Mode 0 1 0 0
Standard
desviation

0.6555 0.4454 0.0168 0.0210

Variance 0.4297 0.1983 0.0003 0.0004
Min 0 1 0 0
Max 2 2 0.0507 0.0642
Amplitude 2 1 0.0507 0.0642
Standard
mean error

0.2073 0.1408 0.0053 0.0066

Q 25% 0 1 0 0
Q 50% 0 1 0.0169 0.0193
Q 75% 1 1.5 0.0338 0.0393
Failed tests 0 / 11

Table 6.5: Descriptive values of the errors of test case 1 - Distance tests

Parameter
Tafeoff
frame
error

Landing
frame
error

Time in
air error

Height
error

Mean 0.4545 1.0909 0.0169 0.0205
Median 0.0 1 0.0169 0.0207
Mode 0 1 0 0
Standard
desviation

0.4979 0.6680 0.0102 0.0136

Variance 0.2479 0.4462 0.0001 0.0001
Min 0 0 0 0
Max 1 2 0.0339 0.0449
Amplitude 1 2 0.0339 0.0449
Standard
mean error

0.1574 0.2112 0.0032 0.0043

Q 25% 0 1 0.0169 0.0154
Q 50% 0 1 0.0169 0.0206
Q 75% 1 1.5 0.0169 0.0224
Failed tests 0 / 11

Table 6.6: Descriptive values of the errors of test case 2 - Distance tests

6.1 Vertical jump detector 83

Parameter
Tafeoff
frame
error

Landing
frame
error

Time in
air error

Height
error

Mean 0.7272 1.3636 0.0138 0.0164
Median 1 1 0.0169 0.0193
Mode 1 1 0 0
Standard
desviation

0.4453 0.4810 0.0141 0.0169

Variance 0.1983 0.2314 0.0002 0.00028
Min 0 1 0 0
Max 1 2 0.0508 0.0602
Amplitude 1 1 0.0508 0.0602
Standard
mean error

0.1408 0.1521 0.0045 0.0053

Q 25% 0.5 1 0 0
Q 50% 1 1 0.0169 0.0193
Q 75% 1 2 0.0169 0.0214
Failed tests 0 / 11

Table 6.7: Descriptive values of the errors of test case 3 - Distance and Position tests

from the previous arguments. Adding the information present in the tables mentioned,
it is observed that the test case 3 has a much better mean error despite having a slightly
higher variance than the test case 2. In this case, it is the test case 3 that presents better
results.

Treating the data presented in figure 6.10 about the error of the height reached, the
test case 3 has a higher correlation index. Finally, regarding the data presented in figure
6.11, it does not clarify much which of the three test cases has a better performance, since
at first glance it seems that it is the first but we have verified with its descriptive values
that it does not have the best results. If the aforementioned tables are contrasted, the
mean error is much lower, so test case 3 is the one with the best performance in detecting
the jump height.

Conclusion

The case test 3 is the one that offers the best result. This may be due to the fact that being
a little further away the contours to be drawn are clearer and it does not detect as much
movement. The hypothesis is not fulfilled.

6.1.3. Position tests

In this section, the tests focus on checking in which position the user should take to better
detect a vertical jump.

6.1.4. Test cases setup

As can be seen in figure 6.12, to carry out these tests, three different positions have been
established in which the user must position himself to perform the vertical jumps:

• Facing the camera

84 Testing

• With the back to the camera

• Putting the camera aside, no matter which

Figure 6.12: Positions for position tests

Test resources

To carry out these tests, a total of 6 jumps are available for the first case test, 6 jumps for
the second and 11 jumps for the third, which makes a total of 23 vertical jumps available
to obtain the results.

Hypothesis

The test case number 3, performing the vertical jump leaving aside the camera, is the one
that should provide the best result feet take off and landing is better visualized and there
is more contour to detect.

Results

Figure 6.13: Correlation graph of detected takeoff frame with real - Distance tests

6.1 Vertical jump detector 85

Figure 6.14: Correlation graph of detected landing frame with real - Distance tests

Figure 6.15: Correlation graph of detected time with real - Distance tests

Figure 6.16: Correlation graph of detected height with real - Distance tests

Figure 6.17: Comparison of detected jump frames with real - Distance tests

86 Testing

Parameter
Tafeoff
frame
error

Landing
frame
error

Time in
air error

Height
error

Mean 0.6666 1.5 0.0197 0.0229
Median 1 1.5 0.0169 0.0211
Mode 1 1 0 0
Standard
desviation

0.4714 0.5 0.0205 0.0230

Variance 0.2222 0.25 0.0004 0.0005
Min 0 1 0 0
Max 1 2 0.0507 0.0516
Amplitude 1 1 0.0507 0.0516
Standard
mean error

0.2108 0.2236 0.0091 0.0103

Q 25% 0.5 1 0 0
Q 50% 1 1.5 0.0169 0.0211
Q 75% 1 2 0.0338 0.0429
Failed tests 0 / 6

Table 6.8: Descriptive values of the errors of test case 1 - Position tests

Parameter
Tafeoff
frame
error

Landing
frame
error

Time in
air error

Height
error

Mean 0.3333 1.8333 0.0310 0.0407
Median 0 1.5 0.0253 0.0303
Mode 0 1 0 0
Standard
desviation

0.4714 1.0671 0.0266 0.0389

Variance 0.2222 1.1388 0.0007 0.0015
Min 0 1 0 0
Max 1 4 0.0846 0.1210
Amplitude 1 3 0.0846 0.1210
Standard
mean error

0.2108 0.4773 0.0119 0.0174

Q 25% 0 1 0.0169 0.0185
Q 50% 0 1.5 0.0254 0.0303
Q 75% 0.5 2 0.0338 0.0423
Failed tests 0 / 6

Table 6.9: Descriptive values of the errors of test case 2 - Position tests

Analysis

Regarding the take-off frame, observing figure 6.13 and tables 6.8, 6.9 and table 6.7 of the
previous tests, since they are the same results, it is observed that the 3 test cases have
a very good correlation coefficient, but case test two obtains the best mean error with a
difference to the rest of the test cases. On the part of the landing frame, with the help of
figure 6.14, the high correlation coefficient of the 3 case tests is checked again, but it is the
third that presents a better mean error in detection by far.

6.1 Vertical jump detector 87

About the time in the air, as shown in the figure 6.15 the first two tests have very little
correlation, but on the other hand, the mean of the second is not bad, but finally the third
test case has the best mean error of the time in air. Finally, after viewing figure 6.16, a case
similar to air time is seen, with little correlation in the first two test cases but higher in
the third and with a better mean error. This makes the case 3 test the best in all respects.
Figure 6.17 has not been very useful on this occasion, since having few tests in the first
two tests, the graph is a bit poor and without much to highlight against the third.

Conclusion

Despite presenting some good detection results by jumping from the front or back to the
camera, having a larger surface area to detect when facing the camera makes detection
more accurate in this way. The hypothesis has been fulfilled.

CHAPTER 7

Conclusions

In this work, an application consisting of a vertical jump detection system has been
developed, reaching the detection and precision objectives. I have learned to integrate
totally different systems with each other with technologies that sometimes require more
than technological knowledge. This has led to a much more in-depth study of the
design, architectures, and communication patterns such as REST APIs.

I have learned to implement a real system using systems prepared for production
environments, facing problems such as in which country to host an application or how
much redundancy to maintain, which have been critical aspects of the system. I have
also learned how to containerize applications to deploy them in a scalable way using
docker-compose and AWS, using that knowledge in system deployment.

A small-scale investigation has been completed while its result has been integrated
with a real system. This has contributed to improve my knowledge in the processes
of documentation, testing and validation of a hypothesis, the possibility of detecting a
vertical jump in a video. Through tests to validate this hypothesis, it has been obtained
that the best position to detect a vertical jump is to perform the jump standing sideways
to the camera at a distance of 120cm. Developing this work I have acquired knowledge of
computer vision, a field that has often had more to do with mathematical transformations
than with a library function, which opens up more job opportunities.

I have expanded my knowledge of Android, developing a complete application that
connects to a server via REST API and interacts with the data and the user. For this
reason, I have learned tools such as video processing through FFmpeg or libraries for
REST API requests such as Retrofit2. Finally, due to this point I have acquired a wide
knowledge base about Kotlin, learning to use it for Android programming, taking all its
advantages over Java.

Having a multi-component system, it has been a problem to be able to switch from
one technology to another at the beginning. This has helped me outperform myself and
I have improved my ability to adapt to new development technologies much faster than
before. Since this project began at a university in Poland and ended in Valencia, I have
found that the approach to a work of this type is totally different depending on the
institution or the country, a fact that improves my ability to adapt to change, both in
terms of both cultural and technological.

Finally, due to the dimensions of this work, I have had to learn to manage my work
by myself, which was a problem at first, but now I know my limits and I know how to
manage and organize my time much better. Due to these problems I want to continue
developing in the field of project management.

89

90 Conclusions

7.1 Relationship of the work carried out with the studies
completed

Aspects of the studies completed that have been relevant to carry out this project are
detailed below:

• IT Governance, Management and IT Project Planning and Management: The
knowledge acquired in these subjects has been the basis for managing a
development as long as a master’s thesis.

• Configuration and Optimisation of Computing Systems: All the scalable
deployment part and maintaining high availability is thanks to this subject in
which I was taught a very firm base of these technologies and work philosophy.

• Computer Networks and Security: Aspects learned in this subject, such as port and
subnet management, have been key to solving problems that arose in development,
such as accessing remote elements in an authenticated way with a private network.

• Audit, Quality and Management of Information Systems: The bases on design
patterns and always betting on a clean and orderly code has made development
much easier and more legible over time.

• High-Performance Computing: Image processing is something that requires a lot
of resources and being able to have learned a base of parallelism has allowed me to
experiment with tools such as TensorFlow and thus be able to assess more options
for development.

• Distributed Applications and Services: This course has laid the foundations of
my knowledge in distributed applications and component-based development,
knowledge which is applied at work by dividing the detector into a scalable
component.

Bibliography

[1] Department General of Statistics and Studies - Ministry of
Education, Culture and Sport of Spain. Survey of sporting
habits in Spain 2015 - Synthesis of results. https://www.
culturaydeporte.gob.es/dam/jcr:eb913bf1-a897-403b-b056-49b42582ff37/
survey-of-sporting-habits-in-spain-2015-synthesis-of-results.pdf.
February, 2016. Last access on 15/05/2021.

[2] Department General of Statistics and Studies - Ministry of
Education, Culture and Sport of Spain. Survey of sporting
habits in Spain 2020 - Synthesis of results. https://www.
culturaydeporte.gob.es/dam/jcr:56643289-95f4-4242-891d-859815f84c9d/
encuesta-de-habitos-deportivos-2020-sintesis-de-resultados.pdf. June,
2021. Last access on 15/05/2021.

[3] Darmiento, A., Galpin, A.J., Brown, L.E. Vertical Jump and Power. Strength
and Conditioning Journal, 34(6):34-42 doi: 10.1519/SSC.0b013e3182752b25, December,
2012.

[4] López-Segovia, M., Marques, M.C., Van den Tillaar, R., González-Badillo, J.J.
Relationships Between Vertical Jump and Full Squat Power Outputs With Sprint
Times in U21 Soccer Players. Journal of Human Kinetics, 30:135-144 doi:
10.2478/v10078-011-0081-2, December, 2011.

[5] Moir, G.L. Three Different Methods of Calculating Vertical Jump Height from Force
Platform Data in Men and Women. Measurement in Physical Education and Exercise
Science, 12(4):207-218 doi: 10.1080/10913670802349766, October, 2008.

[6] Espert Bosch, M.C. Estimación de la altura en el test de salto vertical mediante
técnicas de procesado de sonido. TFG. Universidad Politécnica de Valencia. https:
//riunet.upv.es/bitstream/handle/10251/124623/Espert%20-%20Estimaci%
C3%B3n%20de%20la%20altura%20en%20el%20test%20de%20salto%20vertical%
20mediante%20t%C3%A9cnicas%20de%20procesado%20de%20s....pdf?sequence=1.
February, 2019. Last access on 25/05/2021.

[7] Montalvo, S., Dorgo, S., Tune, C., Sapien, C., Gonzalez, M., Sanchez, J. Validity of
Vertical Jump Measuring Devices. International Journal of Exercise Science, 2(10):69,
February, 2018.

[8] Cabarkapa, D., Fry, A.C., Hermes, M.J. Accuracy of an Experimental Accelerometer
for Assessing Countermovement Vertical Jump Height. Sports Innovation Journal,
2:45–55 doi: 10.18060/24831, 2021.

[9] Bogataj, Š., Pajek, M., Andrašić, S., Trajković, N. Concurrent Validity and Reliability
of My Jump 2 App for Measuring Vertical Jump Height in Recreationally Active
Adults. Sports Performance and Health, 10(11):3805 doi: 10.3390/app10113805, 2020.

91

https://www.culturaydeporte.gob.es/dam/jcr:eb913bf1-a897-403b-b056-49b42582ff37/survey-of-sporting-habits-in-spain-2015-synthesis-of-results.pdf
https://www.culturaydeporte.gob.es/dam/jcr:eb913bf1-a897-403b-b056-49b42582ff37/survey-of-sporting-habits-in-spain-2015-synthesis-of-results.pdf
https://www.culturaydeporte.gob.es/dam/jcr:eb913bf1-a897-403b-b056-49b42582ff37/survey-of-sporting-habits-in-spain-2015-synthesis-of-results.pdf
https://www.culturaydeporte.gob.es/dam/jcr:56643289-95f4-4242-891d-859815f84c9d/encuesta-de-habitos-deportivos-2020-sintesis-de-resultados.pdf
https://www.culturaydeporte.gob.es/dam/jcr:56643289-95f4-4242-891d-859815f84c9d/encuesta-de-habitos-deportivos-2020-sintesis-de-resultados.pdf
https://www.culturaydeporte.gob.es/dam/jcr:56643289-95f4-4242-891d-859815f84c9d/encuesta-de-habitos-deportivos-2020-sintesis-de-resultados.pdf
https://riunet.upv.es/bitstream/handle/10251/124623/Espert%20-%20Estimaci%C3%B3n%20de%20la%20altura%20en%20el%20test%20de%20salto%20vertical%20mediante%20t%C3%A9cnicas%20de%20procesado%20de%20s....pdf?sequence=1
https://riunet.upv.es/bitstream/handle/10251/124623/Espert%20-%20Estimaci%C3%B3n%20de%20la%20altura%20en%20el%20test%20de%20salto%20vertical%20mediante%20t%C3%A9cnicas%20de%20procesado%20de%20s....pdf?sequence=1
https://riunet.upv.es/bitstream/handle/10251/124623/Espert%20-%20Estimaci%C3%B3n%20de%20la%20altura%20en%20el%20test%20de%20salto%20vertical%20mediante%20t%C3%A9cnicas%20de%20procesado%20de%20s....pdf?sequence=1
https://riunet.upv.es/bitstream/handle/10251/124623/Espert%20-%20Estimaci%C3%B3n%20de%20la%20altura%20en%20el%20test%20de%20salto%20vertical%20mediante%20t%C3%A9cnicas%20de%20procesado%20de%20s....pdf?sequence=1

92 BIBLIOGRAPHY

[10] Balsalobre-Fernández, C., Glaister, M., Lockey, R.A. The validity and reliability of
an iPhone app for measuring vertical jump performance. Measurement in Physical
Education and Exercise Science, 33(15):1574-1579 doi: 10.1080/02640414.2014.996184,
January, 2015.

[11] Goguen, J.A., Linde, C. Techniques for requirements elicitation. Proceedings
of the IEEE International Symposium on Requirements Engineering, 152-164 doi:
10.1109/ISRE.1993.324822, 1993.

[12] Sayers, S.P., Harackiewicz, D.V., Harman, E.A., Frykman, P. N., Rosenstein, M.T.
Cross-validation of three jump power equations. Medicine & Science in Sports &
Exercise, 31(4):572-577 doi: 10.1097/00005768-199904000-00013, April, 1999.

[13] Johnson, D.L., Bahamonde, R. Power Output Estimate in University Athletes.
Journal of Strength and Conditioning Research, 10(3):161-166 doi: 10.1.1.599.753, 1996.

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Methodology
	Memory structure

	State of the art
	Existing solutions
	Solutions using physical tools
	Solutions using video

	Critical analysis of the existing solutions
	Accelerometer
	Height measurement from video
	Timing using video

	Computer vision available technologies
	Amazon Recognition
	Azure Video Analyzer
	OpenCV
	SimpleCV
	TensorFlow

	Technological context
	OpenCV
	Python
	Kotlin
	Flask
	MongoDB
	Git
	Docker

	Proposal
	Definition of the actors
	Unidentified user
	Identified user

	Analysis of requirements
	Functional requirements
	Non-functional requirements
	Business rules
	Information requirements

	Use cases
	Conceptual modeling

	Proposed solution
	Project plan
	Budget
	Infrastructure and tools budget
	Programmer budget

	System architecture
	Backend architecture
	Application architecture

	Detailed design
	Database design
	Vertical jump detector design
	Backend design
	Application design
	User interface flowchart design

	Development of the proposed solution
	Development of the vertical jump detection system
	Development of the backend
	Development of the application

	Implantation
	Deployment
	Database deployment
	Vertical jump detector deployment
	Backend deployment

	Testing
	Vertical jump detector
	Vertical jump detection parameter tests
	Vertical jump distances tests
	Position tests
	Test cases setup

	Conclusions
	Relationship of the work carried out with the studies completed

	Bibliography

