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Abstract

The ears have a unique character for each person. Due to this fact, the interest in determining its shape has

increased considerably in recent decades. Some applications where the ear landmarks detection is useful are:

Head-Related Transfer Function determination, 3D human head reconstruction and biometric applications. 

This  work  starts  from collection  A of  the  "In-the-wild"  Ear  Database,  which  contains  605 ear  images

containing annotations for 55-points. In order to compensate the limited size of the used database, several data

augmentation techniques can be used. The standard mechanisms used for augmentation are:  operations to rotate,

flip, change brightness, contrast, hue, saturation or channels. Thus, this work presents a comparison between 5

data  augmentation pipelines  based on the previously mentioned techniques  They are  used to  train multiple

models with same architecture for ear  landmarks detection.  The results  obtained after  the  training are  then

compared to see which data augmentation pipeline provides the best results 

In addition to comparing the 5 data augmentation pipelines, this work also proposes a new neural network

architecture, called ResNet-42, for detecting the ear landmarks. Moreover, a different loss function, namely the

Wing Loss, is used in contrast to the classical ones used so far for this task.



Resumen1

Las orejas tienen un carácter único para cada persona. Debido a este hecho, el interés por determinar su

forma ha aumentado considerablemente en las últimas décadas. Algunas aplicaciones en las que la detección de

puntos de referencia del oído es útil son: Determinación de la función de transferencia relacionada con la cabeza,

reconstrucción de la cabeza humana en 3D y aplicaciones biométricas.

Este trabajo parte de la colección A de la base de datos de oído "In-the-wild", que contiene 605 imágenes de

oído que contienen anotaciones para 55 puntos. Para compensar el tamaño limitado de la base de datos utilizada,

se pueden utilizar varias técnicas de aumento de datos. Los mecanismos estándar utilizados para el aumento son:

operaciones para rotar, voltear, cambiar brillo, contraste, tono, saturación o canales. Así, este trabajo presenta

una comparación entre 5 pipelines de aumento de datos basados en las técnicas mencionadas anteriormente.Se

utilizan para entrenar múltiples modelos con la misma arquitectura para la detección de puntos de referencia del

oído. Los resultados obtenidos después de la capacitación se comparan para ver qué canalización de aumento de

datos proporciona los mejores resultados.

Además de comparar las 5 canalizaciones de aumento de datos, este trabajo también propone una nueva

arquitectura de red neuronal, llamada ResNet-42, para detectar los puntos de referencia del oído. Además, se

utiliza una función de pérdida diferente, a saber, Wing Loss, en contraste con las clásicas utilizadas hasta ahora

para esta tarea.

1 The translation of the abstract was done using Google Translate. This is the solution I was able to find to satisfy that 
rule, which requires that the abstract must be written in Spanish and Valencian.
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1. Introduction

In the last decades, the ear has begun to rise increasingly the interest for several types of applications. It

holds a lot of information that can be used for different purposes. For example, the shape of the ear has an

extraordinary contribution in finding of Head-Related Transfer Function (HRTF) of a person. Small variations of

the pinna (outer part of the ear) can produce substantial changes in the HRTF [1]. Taking into consideration that

ear structure has a significant variation among the individuals, it has been recognized its utility in biometric

applications [2][3]. Also, based on a 2D wild (unconstrained) image, it has been proven that the 3D human head

can be reconstructed including the ears [4]. 

From an anatomical point of view, the ear can be delimited in three parts: the outer, middle, and inner ear

[5]. As can be seen in Figure 1.1 where the different parts are highlighted, the most accessible part of the ear is

the outer part. It defines the uniqueness of an individual's ear and it is particularly important in all types of

applications mentioned above. 

In the application of 3D human head reconstruction, detection of the crucial points is a key step to achieve

the 3D model. These points, named landmarks, are bordering the distinctive parts of the head. Based on the

facial landmarks, there are already available solutions for facial alignment [6][7] and coarse face reconstruction

[4][8][9]. Considering that the facial landmarks detection is a common topic and ear landmarks detection is less

approached, the current work is focusing on ear landmarks detection. 

Figure 1.1. Ear structures



2. Related Work
To my knowledge, first approaches for the problem of ear landmarks detection in 2D images were proposed

by Zhou et al.  [10]. They applied many state-of-the-art statistical deformable models to perform ear landmark

localization. The authors focused mainly on various  Active Appearance Model (AAM) architectures, as they

proved  to  be  top  performers. They  also  created  a  public  database  (ITWE database)  which  contains  2663

annotated ear images. 

Other approaches involve the use of Deep Learning (DL) algorithms. Hansley et al.  [11] designed a two-

stage solution using two instances of a neural network which first combines the  convolution and max pooling

layers, and then a sequence of fully-connected layers is added. The architecture is shown in Table 2.1. According

to the authors “the first network is used to create an easier landmark detection scenario by reducing scale and

translation variations, and the second network is used to generate the 2D coordinates for landmarks”. The DL

models were trained using ITWE database. To handle the lack of training data, the authors proposed a data

augmentation pipeline which involve rotation, scaling and translation operations to extend the training dataset up

to 15500 images.

Besides the solutions mentioned above that directly target 2D ear landmarks detection,  Sun et al.  [12] has

proposed a system by which landmarks can be determined. Their solution predicts the pose and shape parameters

of  the  ear  and  uses  them to  reconstruct  the  3D ear  model.  As  can  be  seen  in  Figure  3.1,  the  end-to-end

architecture  of  the  system was trained  using the  real  images and the  generated synthetic  images based  on

reconstructed 3D ear models. The loss function used for training includes landmark loss which is responsible for

comparing  the  landmarks  of  the  original  image  with  the  landmarks  resulted  from synthesized  image.  The

predicted landmarks are manually extracted from the projected vertices of the 3D model. 

Table 2.1.Network architecture for landmark detection in ear images. It receives as input a gray scale image with
96×96 pixels and outputs a 110-dimensional vector representing 2D coordinates for 55 predefined landmarks.[11]



3. Objectives

The current study uses a new neural network architecture and a new loss function compared to those used so

far to detect ear landmarks. This work aims to make a comparison between different methods for enlarging the

training dataset using data augmentation techniques.

The proposed new architecture is based on the structure of the ResNet-50 model proposed in [22], the used

loss  function  [24]  is  designed  for  robust  landmarks  detection  using  CNN,  while  the  data  augmentation

techniques are inspired by those proposed in [11], [12], [15] and [16].

4. Dataset

To my knowledge, the only dataset that is published for ear landmarks detection problem is collection A

from ITWE database  [10]. This database consists of 2 sets of data that are addressed for different problems.

These  datasets  are  named  generic  Collection  A and  Collection  B.  Collection  A is  addressed  for  statistical

deformable model construction problems, while the other collection is used for ear verification and recognition

in unconstrained environments. 

Collection A was collected from Google Images using various ear tags. In this way, 605 ear images "in-the-

wild" (unconstrained environment) were collected and then were manually annotated with 55 landmark points.

As can be seen in  Figure 4.1, the convention for annotating the 55 ear landmarks is: ascending helix (0-3),

descending helix (4-7), helix (8-13), ear lobe (14-19), ascending inner helix (20-24), descending inner helix (25-

28), inner helix (29-34), tragus (35-38), canal (39), antitragus (40-42), concha (43-46), inferior crus (47-49) and

superior crus (50-54). After the annotation process, the images were randomly divided into two sets. The first is

Figure 3.1.Overview of end-to-end architecture of the system proposed by Sun et al. [12]



the training set, which contains 500 images, and the second is the testing set, which contains 105 images. For a

better understanding of what types of images are in these two datasets, some samples are presented in Figure 4.2

and Figure 4.3.

Figure 4.1. Convention for the annotation of ear landmarks: ascending helix
(0- 3), descending helix (4-7), helix (8-13), ear lobe (14-19), ascending inner
helix (20-24), descending inner helix (25-28), inner helix (29-34), tragus (35-
38), canal (39), antitragus (40-42), concha (43-46), inferior crus (47-49) and
superior crus (50-54). [10]

Figure 4.2. Two images from the ITWE-A training dataset



Collection B was generated using a HoG Support Vector Machine [13] ear detector trained on Collection A.

Zhou et al.  [10] manually collected 2058 images of 231 people from VGG database  [14]. The images were

chosen to include visible or partially occluded ears, with variations in angle, lighting, resolution, and aging.

Using the ear detector mentioned above, the ear bounding boxes from this collection were generated. A sample

from collection B, that also includes the corresponding bounding box is presented in Figure 4.4.

Considering the specific particularities of these two collections and the nature of the problem which this

project addresses, it is easy to see that collection A from the ITWE database is suitable for further use as a

dataset. Since the dataset is divided into training set and test set, it is also necessary to redistribute the images to

have a validation set. So, as a result of this redistribution of image, the training set contains 480 images, the

validation set only 35 images, while the testing set has 90 images. All three datasets will be used for future

experiments.

Figure 4.3. Two images from the ITWE-A testing dataset

Figure 4.4. Two images from the ITWE-B dataset



5. Data Augmentation

The extremly small size of the database is a challenge for training a neural network. To compensate for this

shortcoming, image processing techniques are done to expand and diversify the training dataset. As mentioned in

section  Related Work, Hansley et al.  [11] augmented the images using various mechanisms such as: rotating

them between -45° and 45°, random scaling them up to 20% of the original ear size in both axes and random

translation images up to 20% of the original ear size in each axis. Finally, as a result of these image processing,

the size of the training set reached 15500 images. Sun et al.  [12] also augmented the images by rotating them

between -60° and 60°, thus reaching a dataset having 6000 images in total. 

In addition to the rotation technique used in  [11] and  [12], other image augmentation techniques such as

flipping, resizing and photometric distortions are worth considering. These were successfully used both by the

authors of SSD: Single Shot MultiBox Detector [15] and by Pierluigi Ferrari in his SSD Keras implementation

[16]. The photometric distortions used include randomly changing the brightness, contrast, saturation, or hue of

the images and swapping the channels. 

In  the  following,  all  these  image augmentation techniques  will  be  presented.  In  addition,  the  cropping

process that is used to extract the ear region from images will be detailed. At the end, the order in which these

techniques are applied will be shown.

5.1. Rotation

Rotation is a technique that helps easily to increase the number of training images. Rotating an image and

then using it to train a neural network helps the network to better generalize the task it performs.

Rotating an image will also change the final size of the image. This can be easily seen in Table 2.1, where

each image was rotated randomly with an angle between -70° and 70°.



5.2. Flipping

Flipping technique rearranges the pixels while protects the features of the original image. An image can be

flipped horizontally or/and vertically. In horizontal flip, the flipping will be on vertical axis, while in vertical flip

the flipping will be on horizontal axis. 

Table 5.2 presents a comparison between original images and their flipped version. The result of a vertical

flip can be seen on the first row of the table, while the horizontal flipping operation is exemplified on third and

fourth rows. Finally, on the second row is shown the result after applying both flipping methods.

Table 5.1. Comparison between the original images and their randomly rotated versions with angles 
between -70° and 70°.



5.3. Resizing
Since not all images are the same size, it is necessary to apply a resize operation to bring them all to the

same size. Resizing can be done by different interpolation methods. The ones chosen for this study are:

• nearest-neighbor interpolation 

• bilinear interpolation 

• area interpolation 

• bicubic interpolation 

• Lanczos interpolation 

Table  5.3 shows  the  results  of  resizing  an  image  from 50x50  to  100x100  using  all  the  interpolations

mentioned above. 

Table  5.2.  Comparison  between  the  original  images  and  their
flipped versions.



Table 5.3. Comparison between original images and their resized versions using different interpolation methods:

(a) Original image (50x50) ; (b) Resize using the nearest neighbor interpolation (100x100).; (c) Resize using the

bilinear interpolation (100x100).; (d) Resize using the area interpolation (100x100).; (e) Resize using the 

bicubic interpolation (100x100).; (f) Resize using the Lanczos interpolation (100x100). [17]

(a) (b) (c) (d) (e) (f)

5.4. Photometric Distortions

As it was already mentioned in the beginning of this chapter the photometric distortions that are used for

augmentation of the training images are:

• randomly changing the brightness 

• randomly changing the contrast

• randomly changing the saturation 

• randomly changing the hue

• swapping the channels 

5.4.1. Brightness

Changing the brightness leads to a darker or lighter image compared to the original one. This technique

allows the neural network to be more robust to variations in illumination levels. To use this technique, the image

needs to be in RGB or BGR format. 

Table  5.4 shows a  comparison  between the  original  images  and their  variants  resulted  from randomly

changing the brightness. 



5.4.2. Contrast

Contrast is the difference in luminance or color aspects that can make an object more distinguishable or not.

Changing the contrast  of the images is a good approach to make the model less sensitive to differences in

intensity. To use this technique, the image needs to be in RGB or BGR format. 

Table  5.5 shows a  comparison between the  original  images  and their  versions  resulted from randomly

changing the contrast. 

Table 5.4. Comparison between the original images and their versions resulting 
from randomly changing the brightness.



5.4.3. Saturation

“Saturation can be thought of as the ‘amount’ of color in an image”  [18]. To change the saturation of an

image, is necessary to change the color space in which the image is stored in HSV format. 

Table  5.6 shows a  comparison between the  original  images  and their  versions  resulted from randomly

changing the saturation. 

Table 5.5. Comparison between the original images and their versions 
resulting from randomly changing the contrast.



5.4.4. Hue

“Hue can be thought of as the ‘shade’ of the colors in an image” [18]. To change the hue of an image, it is

necessary to change the color space in which the image is stored in HSV format.

Table  5.7 shows a  comparison between the  original  images  and their  versions  resulted from randomly

changing the hue.

Table  5.6. Comparison between the original images and their versions
resulting from randomly changing the saturation. 



5.4.5. Channels swap

The channel swap is a technique that involves exchanging the channels of an image. For a RGB image, the

swap (2 1 0) would involve swapping the red and blue channels, keeping the green channel unchanged. 

Table  5.8 shows a  comparison between the  original  images  and their  versions  resulted from randomly

swapping the channels. 

Table 5.7. Comparison between the original images and their versions 
resulting from randomly changing the hue.



5.5. Cropping

The current work focuses on detecting ear landmarks. Ear detection is not the subject of this study, so it is

necessary to extract the region of the ear from the original image. This step is performed using the ear landmarks

provided by the ITWE-A dataset. Initially, the minimum and maximum values on the x and y axis are identified.

Then, based on the height and width of the region where the ear is located, the identified values are adjusted to

also include an adjacent region of the ear. Once the region is successfully identified, the cropping operation

follows, which has the role of preserving only the interest portion of the image. 

Table  5.8.  Comparison  between  the  original  images  and  their  versions
resulting from randomly swapping the channels. 



5.6. Data Augmentation Pipeline

Starting from the data augmentation pipelines proposed in [11], [12] and [16] in this work, 5 other pipelines

are proposed to see if other augmentation techniques can help to improve the performance of the neural networks

in the problem of ear landmarks detection. Before going and analyzing them we will define the photometric

distortion pipeline, which is a sub-pipeline common to all 5 main pipelines. 

The main pipelines are generic named:

• Data Augmentation 1

• Data Augmentation 2

• Data Augmentation 3

• Data Augmentation 4

• Data Augmentation 5

5.6.1. Photometric Distortion Pipeline

As can be seen in Figure 5.1, this sub-pipeline has 2 branches. When an image is provided, one of them is

randomly selected to augment the image. Each branch has 50% chances of being chosen. Both options share the

same types of operations, but the order of performing the operations is different.

The first operation that must be considered regardless of the chosen branch is to convert the image into a 3

channels image. To be able to apply techniques such as random brightness, contrast,  hue or saturation, it is

necessary to change the type of data, in which the image is stored, in float32. Conversion operations from RGB

to HSV and vice versa require that the data type be uint8. Each of the following operations: random brightness,

random contrast, random hue, random saturation, and random swapping channels techniques has a 50% chance

of being applied to the image provided to them at the input. Thus, the image at the exit of this sub-pipeline has a

chance of 3.125% not to suffer any change, excluding the 3-channel image conversion operation. 



5.6.2. Data Augmentation 1

First pipeline starts with applying the photometric distortion sub-pipeline described in the previous section.

Then, with equal probability, either the random flip horizontal operation or the random flip vertical operation can

be chosen. The image provided to the block that performs vertical or horizontal flipping has a 50% chance of

being flipped. The next technique applied is random rotation. With 70% chance, the image can be rotated with an

angle between -70° and 70°. Finally, the ear region is cropped from the image and it is resized to 224x224 using

one of the 5 interpolation methods described in section Resizing. All these steps are illustrated in Figure 5.3.

Figure 5.1. Photometric Distortion Pipeline



5.6.3. Data Augmentation 2

The second pipeline applies photometric distortion to the input image. Then with a 70% chance it rotates the

image with a random angle between -45° and 45°. Finally the ear region is cropped and resized to 224x224.  The

pipeline is shown in Figure 5.2. 

5.6.4. Data Augmentation 3
The third pipeline is like the second one with the same structure shown in Figure 5.2. The only difference is

the range of rotation angles that can be applied to an image. So, in this case, the rotation is done at a random

angle between -70° and 70°. 

5.6.5. Data Augmentation 4
Data Augmentation 4 is the particular case of Data Augmentation 1 in which only random flip horizontal is

applied. This can be easily seen by comparing  Figure 5.4 with  Figure 5.3.  The chances of applying random

horizontal  flipping or random rotation remain the same. Even the range of  choice of rotation angle  is  still

unchanged. 

Figure 5.3. Data Augmentation 1 Figure 5.2: Data Augmentation 2



5.6.6. Data Augmentation 5
Data Augmentation 5 shares almost the same pipeline as Data Augmentation 4. The only difference is that

this pipeline performs random flip vertical while Data Augmentation 4 performs random flip horizontal. This can

be easily seen by comparing Figure 5.5 with Figure 5.4.  

5.6.7. Comparison between pipelines

Now that all 5 main data augmentation pipelines have been presented, the next step is to illustrate what kind

of images can be generated with their help. Table 6.1 provides a comparison between the proposed pipelines and

the region of the ear cropped from the original image. All images have a size of 224x224. As can be seen from

the table at the end of the augmentation process, regardless of the chosen pipeline, it is unlikely that the image

will remain unchanged. Depending on the augmentation chain chosen, the output images can be more or less

varied.

Figure 5.4: Data 
Augmentation 4

Figure  5.5:  Data
Augmentation 5



6. Neural Network

Neural networks have proven useful in detecting ear landmarks. CNN used in [11] and ResNet-18 used in

[12] achieved satisfactory results in the tasks they had to perform. Thus, starting from the previous architectures,

this  work  proposes  an  architecture,  hereinafter  referred  to  as  ResNet-42,  which  uses  the  residual  learning

framework [19] and is intended for ear landmarks detection problem. Before going into the structural details of

the network,  the types of blocks used in  it  will  be  presented.  It  should also be noted that  the TensorFlow

framework is used. 

6.1. Identity block

The identity block has a connection which skips over 3 layers. Its structure can be seen in Figure 6.1. The

upper  path,  called  shortcut  path,  skips  the  lower  path,  called the  main path.  The shortcut  path creates  the

conditions to be easier to learn an identity function. This means that more identity blocks can be used in a

network with minor risk of harming the training set performance. Another detail that must be mentioned is that

the entrance and the exit have the same dimension.

Table 6.1: Comparison between data augmentation pipelines: (a) Ear region from original images; (b) Resulted 
images from Data Augmentation 1; (c) Resulted images from Data Augmentation 2; (d) Resulted images from Data 
Augmentation 3; (e) Resulted images from Data Augmentation 4; (f) Resulted images from Data Augmentation 5;



6.2. Convolutional block

The convolutional block is similar to Identity block, the difference between them is the presence of Error:

Reference source not found and Error: Reference source not found on the short path. These layers are used to

resize the input to match up the desired output size. The structure of the block is shown in Figure 6.2. 

6.3. ResNet-42 architecture

Figure 7.1 shows in detail the architecture of ResNet-42. The abbreviation ID BLOCK means Identity block

and ID BLOCK x5 means that there are 5 Identity blocks stacked together. 

The present neural network architecture is based on the structure of ResNet-50 model proposed in  [20].

Besides the fact that the model proposed in this work is shallower compared to ResNet-50, it uses more often the

Error: Reference source not found which helps to increase the performance. The total number of parameters of

the model is 12,897,262 of which 12,866,670 are trainable

Figure 6.1.  Identity block [20]

Figure 6.2. Convolutional block [20]



7. Implementation details 

7.1. Training

The first step in being able to train a neural network is to create it. The model, ResNet-42, is created to

accept 224x224x3 (height, width, channels) images at its input. After its creation, it is necessary to choose an

optimizer and a loss function for the training. The optimizer used is Adam [21], and the loss function is Wing

Loss [22]. They will be presented in more details in the sections Adam optimizer and Wing Loss.  

The next step is  to set  the mini-batch size to 32. This is a hyper-parameter that  defines the number of

samples to be processed before updating the internal trainable parameters of the model. This hyper-parameter is

also used in generating augmented input images. The input images are augmented before each iteration, thus

allowing the expansion of the training dataset at the time of training. This way of image augmentation allows to

constantly create various input images for the model. 

Other 2 hyper-parameters worth mentioning are the learning rate and the number of steps per epoch. The

learning rate is a hyper-parameter that controls how much the model weights can be updated based on the result

of the estimated loss function. This parameter is variable throughout the training epochs. In the first 3 epochs the

learning rate has a value of 0.001, in the next 3 it has a value of 0.0001, between 6 and 15 epoch it has 0.00001,

and after  that  its  value  becomes  0.000001.  The  number  of  steps  chosen per  epoch is  100.  This  parameter

specifies how many updates of the model weights are made before considering that a training epoch has ended.

7.2. Wing Loss

Wing loss [22] is a loss function designed for robust facial landmarks detection using CNN. It has designed

to pay more attention to the samples with small or medium range errors, not only for the samples with large

range errors. The mathematical relation that describes this function is:

(7.1)

Figure 7.1. ResNet-42 architecture



where x is the difference between the predicted value and the true value, the positive parameter w defines the

boundary between the linear part and the nonlinear part, the parameter  ϵ limits the curvature of the nonlinear

region  and  C is  a  constant  that  eases  a  smoother  transition  between linear  and  nonlinear  parts.  C can  be

calculated using the following formula: 

C=w−w ln (1+w / ϵ) (7.2)

The influence of small errors is enhanced using a natural logarithmic function, which introduces a non-

linearity when such errors occur. This type of function helps to restore the balance between the influence of

errors of varied sizes. However, for situations where there are large errors, the L1 function is used, which helps

to quickly reduce them. According to authors, the Wing loss function should behave “for small errors as a log

function with an offset, and for larger errors as L1”. 

7.3. Adam optimizer

Adam is an optimization algorithm that has been designed specifically for training deep neural networks.

“The name Adam is derived from adaptive moment estimation”  [21].  It  is a combination of RMSprop and

Stochastic Gradient Descent (SGD) with momentum [23]. The algorithm of this optimizer is as follows: 

V dW=0 , SdW=0

On iteration t:

V dW
t =β 1⋅V dW

t−1+(1−β 1)⋅dW

Figure 7.2: Visual interpretation of Wing loss with variation of parameters w and
ϵ [22]



SdW
t =β 2⋅SdW

t−1+(1−β 2)⋅dW
2

V dW
corrected=V dW /(1−β 1)

SdW
corrected=V dW /(1−β 2)

W t=W t−1−α⋅
V dW
corrected

SdW
corrected+ε

,

where dW represent the calculated gradients, V dW is the first momentum exponentially average used in SGD

with momentum, SdW  is the second momentum exponentially average used in RMSprop, β 1 ,β 2 are hyper-

parameters that determine the number of significant values that are averaged, V dW
corrected  is V dW  after bias

correction,  SdW
corrected  is  SdW  after  bias correction,  alpha is  learning rate, ε  is  a constant  to prevent

possible convergence errors and W represents the weights of the model.

According to the authors, the advantages of using this optimization algorithm are:

• straightforward to implement

• requires little memory

• computationally efficient

• invariant to rescaling of gradients

• appropriate for large datasets and/or high dimensional parameter spaces

• appropriate for a wide range of non-convex optimization problems 

• hyper-parameters require little or no tuning

• does not require a stationary objective function

The values of the hyper-parameters used for the experiments are:

• β 1=0.9

• β 2=0.999

• ε=1e-08

7.4. Evaluation

For the evaluation, the current work uses the same approach in  [10] and  [11]. The evaluation is done by

computing  the cumulative error  distribution curves.  The error  is  determined using  point-to-point  Euclidean

distance normalized by the ear’s bounding box. The mathematical relation is: 

error= 1
N∑

n=1

N ‖xn−yn‖2
d

, (7.3)



where  N represent  the 55 ear  landmarks,  x is  the ground truth landmarks for a given ear,  y represents  the

corresponding predictions, and d is the diagonal of the ground truth of the bounding box. The ear bounding box

is generated using the cropping operation descried in section Cropping and then the cropped region is resized to

224x224  using  the  methods  described  in  section  Resizing.  This  sequence  of  operations  leads  to  the  same

bounding box dimensions for all images. This means that d is a constant equal to 224⋅√2 .

8. Results

In this section all the proposed data pipelines and the resulted models are analyzed. For the evaluation of the

models, the cumulative error distribution curves are plotted. Also, for each data pipeline the following results are

presented: a plot of model loss on training and validation datasets and a table containing 36 images with the

results of the predictions of the best model on a subset of the testing dataset.

8.1.  Data augmentation 1 - Results

As can be seen in Figure 8.1, the neural network seems to have reached a saturation of the loss value after 6

epochs of training. Continuing training will not lead to further improvement in the value of the loss.

Figure 8.1: Training and validation learning curves resulted using Data Augmentation 1



Once the training is completed, the next step is the evaluation. To see how many epochs of training help to

improve performance,  the  cumulative error distributions  of the  model  for different  epochs of training were

calculated.  The criterion of choosing the epochs for which the model was evaluated is: the value of the loss

calculated on the validation dataset must be less than the minimum value up to that moment. The evaluation

results are presented in Figure 8.2.  

Both Figure 8.1 and Figure 8.2 lead to the same conclusion, namely that once a relatively constant value of

the loss function is obtained, the performance of the model seems to be capped. In these conditions, it was

chosen to be designated the best model for this pipeline, the version saved with the most training epochs.

8.2. Data augmentation 2 - Results
Figure 8.3 reveals that model seems to reach to a saturated loss value after 13 epochs of training. Continuing

training does not result in any major improvement in the value of the loss.

Figure  8.2:  Cumulative  error  distribution  calculated  on  55  landmarks  on  the  testing  dataset  using  neural
networks trained on Data Augmentation 1



As explained in  Data augmentation 1 - Results, the curves of the cumulative distribution errors of the model

for different training stages are displayed. Thus, the result of the evaluation can be seen in Figure 8.4.

Figure 8.3: Training and validation learning curves resulted using Data Augmentation 2



Figure 8.3 and  Figure 8.4 lead to the same conclusion as described in section   Data augmentation 1 -

Results. In these conditions, it was chosen to be designated the best model for this pipeline, the version saved

with the most training epochs.

8.3. Data augmentation 3 - Results

Figure 8.5 shows that model seems to reach to a saturated value for the loss after 7 epochs of training.

Continuing training does not result in any major improvement in the value of the loss.

Figure  8.4:  Cumulative  error  distribution  calculated  on  55  landmarks  on  the  testing  dataset  using  neural
networks trained on Data Augmentation 2



As explained in  Data augmentation 1 - Results, the curves of the cumulative distribution errors of the model

for different training stages are displayed. Thus, the result of the evaluation can be seen in Figure 8.6.

Figure 8.5: Training and validation learning curves resulted using Data Augmentation 3



Figure 8.5 and  Figure 8.6 lead to the same conclusion as described in section   Data augmentation 1 -

Results. In these conditions, it was chosen to be designated the best model for this pipeline, the version saved

with the most training epochs.

8.4. Data augmentation 4 - Results

Figure 8.7 reveals that the saturation in the loss values is reached after 12 epochs of training. Continuing

training will not result any major improvement in the value of the loss.

Figure  8.6:  Cumulative  error  distribution  calculated  on  55  landmarks  on  the  testing  dataset  using  neural
networks trained on Data Augmentation 3



As explained in  Data augmentation 1 - Results, the curves of the cumulative distribution errors of the model

for different training stages are displayed. Thus, the result of the evaluation can be seen in  Figure 8.8.

Figure 8.7: Training and validation learning curves resulted using Data Augmentation 4

Figure  8.8:  Cumulative  error  distribution  calculated  on  55  landmarks  on  the  testing  dataset  using  neural
networks trained on Data Augmentation 4



Figure 8.7 and  Figure 8.8 lead to the same conclusion as described in section   Data augmentation 1 -

Results. In these conditions, it was chosen to be designated the best model for this pipeline, the version saved

with the most training epochs. 

8.5. Data augmentation 5 - Results

Figure 8.9 shows that, in this case, the model reaches the saturation of the loss value after 7 epochs of

training. Continuing training does not have any major improvement in the value of the loss.

As explained in  Data augmentation 1 - Results, the curves of the cumulative distribution errors of the model

for different training stages are displayed. Thus, the result of the evaluation can be seen in Figure 8.10.

Figure 8.9: Training and validation learning curves resulted using Data Augmentation 5



Figure 8.9 and  Figure 8.10 lead to the same conclusion as described in section   Data augmentation 1 -

Results. In these conditions, it was chosen to be designated the best model for this pipeline, the version saved

with the most training epochs.

9. Conclusion

Now that  the  results  of  the  trained  models  using  different  augmentation  pipelines  have  been  analyzed

separately and the best model for each pipeline has been chosen, the next step is to make a comparison between

them. For a more accurate comparison, the evaluation results will be used. 

Figure  9.1 summarizes  the  results  for  all  the  pipelines.  As it  can be easily  seen,  the  best  results  were

obtained using the Data Augmentation 2 pipeline. The second best model is the one that was trained using the

Data Augmentation 3 pipeline. Table 2 provides a visual comparison between the ground truth and performances

of the evaluated models. 

Figure  8.10: Cumulative error distribution calculated on 55 landmarks on the testing dataset  using neural

networks trained on Data Augmentation  55



Figure 9.1:  Cumulative error distribution calculated on 55 landmarks on the testing dataset using the
best neural networks trained on each data augmentation pipeline



Increasing  the  training  dataset  by  flipping  the  images  horizontally  or  vertically  does  not  improve  the

performance of the model. Also, enlarging the dataset with a bigger rotation range does not lead to better results.

Given the size of the available training dataset and the current architecture of the neural network, it can be

concluded that a less aggressive augmentation pipeline produces better results.

To clearly underline the obtained performances, Table 9.2 presents a visual interpretation for different error

values. The ground truth is plotted in the images using red points, while the blue points are the predicted points.

An error of 0.018 converted to pixels is approximately 5.7 pixels. This means that for case (a) in the Table 9.2,

the distance between the predicted and the real points is on average 5.7 pixels. On the other hand, the image (f)

has on average an error of 110.87 pixels between the points.

Table 9.1: Comparison between ground truth and predictions of the models trained using different data
augmentation pipelines: (a) Ground Truth;  (b) Data Augmentation 1;   (c) Data Augmentation 2;  (d)
Data Augmentation 3;  (e) Data Augmentation 4;  (f) Data Augmentation 5;



Table 9.2: Visual interpretation of errors: (a) error=0.018; (b) error=0.073; (c) error=0.15; (d) 
error=0.22; (e) error=0.29; (f) error=0.35
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