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Abstract: 

The concept of marginal land (ML) is dynamic and depends on various factors related to the environment, climate, scale, 
culture, and economic sector. The current methods for identifying ML are diverse, they employ multiple parameters and 
variables derived from land use and land cover, and mostly reflect specific management purposes. A methodological 
approach for the identification of marginal lands using remote sensing and ancillary data products and validated on samples 
from four European countries (i.e., Germany, Spain, Greece, and Poland) is presented in this paper. The methodology 
proposed combines land use and land cover data sets as excluding indicators (forest, croplands, protected areas, 
impervious areas, land-use change, water bodies, and permanent snow areas) and environmental constraints information 
as marginality indicators: (i) physical soil properties, in terms of slope gradient, erosion, soil depth, soil texture, percentage 
of coarse soil texture fragments, etc.; (ii) climatic factors e.g. aridity index; (iii) chemical soil properties, including soil pH, 
cation exchange capacity, contaminants, and toxicity, among others. This provides a common vision of marginality that 
integrates a multidisciplinary approach. To determine the ML, we first analyzed the excluding indicators used to delimit the 
areas with defined land use. Then, thresholds were determined for each marginality indicator through which the land 
productivity progressively decreases. Finally, the marginality indicator layers were combined in Google Earth Engine. The 
result was categorized into 3 levels of productivity of ML: high productivity, low productivity, and potentially unsuitable land. 
The results obtained indicate that the percentage of marginal land per country is 11.64% in Germany, 19.96% in Spain, 
18.76% in Greece, and 7.18% in Poland. The overall accuracies obtained per country were 60.61% for Germany, 88.87% 
for Spain, 71.52% for Greece, and 90.97% for Poland. 

Key words: land use, land cover, idle land, land degradation, GIS, remote sensing, Google Earth Engine 

Resumen:  

El concepto de tierra marginal (ML) es dinámico y depende de factores relacionados con el entorno, el clima, la escala, la 
cultura y la economía. los métodos actuales de identificación de ML son también diversos y están basados en múltiples 
parámetros y variables derivados del uso y cobertura del suelo reflejando, en su mayoría, fines de gestión específicos. En 
este artículo se presenta una propuesta metodológica para la identificación de tierras marginales mediante el uso de 
productos derivados de teledetección y datos auxiliares, validándose sobre muestras obtenidas en cuatro países 
europeos: Alemania, España, Grecia y Polonia. La metodología combina datos de usos y coberturas del suelo como 
indicadores excluyentes (bosque, tierras de cultivo, áreas protegidas, áreas impermeables, cambios de usos del suelo, 
cuerpos de agua y áreas de nieve permanente) e información ambiental como indicadores de marginalidad, esto es, (i) 
propiedades físicas del suelo como la pendiente, profundidad de suelo, erosión del suelo, textura, porcentaje de 
fragmentos de textura gruesa del suelo, etc.; (ii) factores climáticos como el índice de aridez; (iii) propiedades químicas 
del suelo como pH, capacidad de intercambio catiónico, contaminantes y toxicidad, entre otros, con el objetivo de abordar 
una visión común de la marginalidad que integre un enfoque multidisciplinar. Para obtener las coberturas de ML primero 
se analizaron los indicadores excluyentes para delimitar las áreas con un uso del suelo establecido. En segundo lugar, se 
determinaron los umbrales para cada indicador de marginalidad a través de los cuales el suelo se transforma, 
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disminuyendo progresivamente su aprovechamiento productivo. Finalmente, la superposición de las capas de indicadores 
de marginalidad se llevó a cabo con la herramienta Google Earth Engine. El resultado final se categorizó en 3 niveles de 
ML con diferente productividad: alta, baja y tierras potencialmente inadecuadas. Los resultados obtenidos indican que el 
porcentaje de tierras marginales sobre la extensión total de cada país analizado es de 11,64% en Alemania, 19,96% en 
España, 18,76% en Grecia y 7,18% en Polonia. La precisión global obtenida por país fue del 60,61% para Alemania, del 
88,87% para España, del 71,52% para Grecia y del 90,97% para Polonia. 

Palabras clave: uso de suelo, cobertura de suelo, tierra abandonada, degradación del suelo, SIG, teledetección, Google 
Earth Engine 

 

1. Introduction 

The concept of marginal land (ML) has evolved across 
time, location, discipline (Kang et al. 2013b) and 
management objectives. Traditionally, the term "marginal 
lands" has been used to refer, from a purely economic 
perspective, to those agricultural areas that have a limited 
production potential (Hollander 1895; Strijker 2005; Ciria 
et al. 2019). Later, its meaning changed to include areas 
with biophysical, climatic, and socioeconomic constraints 
(Eliasson et al. 2010; Elbersen et al. 2018; Gerwin et al. 
2018). In this regard, only in recent decades the concept 
of marginal land has been used to define abandoned 
lands physically inaccessible, with high environmental 
risk or providing fragile ecosystem services (Kang et al. 
2013a). 

In addition, the definition has changed as a result of the 
dynamics of ML themselves. Under specific and transitory 
ML circumstances (e.g., policies, land regulations, 
economic incentives, land use benefits, market 
profitability), humans have claimed or abandoned these 
lands (Strijker 2005). These circumstantial dynamics 
have placed the ML in a transitional state of land 
resources, very sensitive to natural processes, economic 
impacts, and diverse management. The latter has 
generated the mentioned recent changes in the ML 
definition, as a consequence of the search of land to 
achieve a variety of management objectives, such as the 
increase the bioenergy crops (Ciria et al. 2019; Mellor et 
al. 2021), food production land (Zhang et al. 2018) or 
carbon sequestration through reforestation (Sauer et al. 
2012). 

Analogous to the ML definition, a single identification and 
classification method does not exist, and the available 
methods only reflect management goals. These methods 
range from approaches focused on physical 
characteristics (i.e., environmental factors) to purely 
socioeconomic factors. In general, biophysical constraints 
related to agricultural productivity or bioenergy are the 
most commonly used for the ML identification. For 
example, Cai et al. (2011) applied the Soil Rating for Plant 
Growth Index (SRPG) developed by the US Department 
of Agriculture, where they combined sixteen soil 
properties related to productivity, slope, soil temperature 
regimes, and moisture index. Using a multi-criteria 
decision approach based on Geographic Information 
Systems (GIS) and remote sensing, Zolekar & Bhagat 
(2015) combined data on land use/land cover (LULC), 
slope, soil depth, erosion, moisture, water holding 
capacity, texture, and availability of nutrient to study the 
land suitability for agriculture in hilly zones. A similar 
approach based on an indicator of suitability for 
agricultural activity was applied by Li et al. (2017) using 
eight indicators (slope, soil erosion, soil organic carbon, 
texture, pH, cation exchange capacity, soil depth, and 

drainage) in areas where LULC types, such as water 
bodies, protected areas, or human settlements had 
previously been excluded. The crop sustainability 
concern and economic focus were integrated into the ML 
identification by Gopalakrishnan et al. (2011). These 
authors identified ML based on soil health criteria 
(erosion, frequently flooded, poorly drained, steeply 
sloped, and low productivity), current land use (includes 
land categories such as idle and fallow), and 
environmental degradation criteria (contaminated land, 
contaminated water resources, and water-constrained 
areas). 

In Europe, Bertaglia et al. (2007) applied a slightly 
different approach, since they targeted areas for 
extensive grazing. The main difference was to consider 
LULC as an aggregate of biophysical constraints and 
socioeconomic trends. In Germany, Reger et al. (2007) 
used satellite data and historical information on land cover 
dynamics to detect the trend of cropland abandonment 
and, in addition, to identify ML. Ivanina et al. (2016) and 
Gerwin et al. (2018) in the Sustainable Exploitation of 
Biomass for Bioenergy on Land (Seemla) European 
project and Elbersen et al. (2018) in the European project 
Marginal Lands for Growing industrialists (Magic) have 
assessed and quantified the area of ML in Europe by 
applying biophysical criteria on agricultural and forest 
lands using GIS tools. These projects also considered 
socio-economic constraints to classify ML (accessibility, 
status of infrastructure, demographic parameters, and 
economic density (income/km2)). In this same bioenergy 
context, Ciria et al. (2019) applied a holistic approach for 
the identification of arable marginal lands under rainfed 
conditions in Spain, combining biophysical constraints 
with the economic performance of crops and other 
sustainability aspects. 

Most of these methodologies mainly employed soil 
analysis and agricultural production indicators for ML 
identification and, to a lesser degree, aspects of 
environmental quality and sustainability were considered. 
The criteria to define ML should cover the needs and 
constraints of each time and region, and integrate a 
multidisciplinary approach to reflect the synergy of 
multiple land functions, management objectives and 
ecosystem services. Consequently, a single index or 
criterion cannot fully satisfy these needs. This paper 
presents a methodological proposal for the identification, 
mapping and classification of ML without a defined 
management objective, combining the use of remote 
sensing derived products and ancillary data. 

2. Datasets and Methodology 

The study area was determined according to the location 
of the validation samples, which included different areas 
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throughout four European countries: Germany, Greece, 
Poland, and Spain. 

To identify and classify ML, several data sets were 
combined (Tables 1 and 2) in two phases (Fig. 1) 
(Georgiadis et al. 2021). In the first phase, binary 
exclusion factors (“Hard” constraints) based on LULC 
were analyzed in a top-down stepwise approach, 
excluding those areas with a given land use or belonging 
to land cover types excluded from the general definition 
of ML. These “Hard” factors were used to identify and map 
the ML in the four countries. 

In the second phase, the resulting potential ML were 
classified based on their marginality degree with variable 
thresholds (“Soft” constraints), including soil condition 
and biophysical factors, such as inherent properties of the 
soil or land, and climatic data as a transitory and 
restrictive property. Finally, three classes of ML were 
obtained according to their level of productivity: high, low 
and potentially unsuitable land. 

 

 

 

2.1. Hard constraints datasets 

The LULC selected in the bibliography review as 
excluding indicators to determine ML were: marshes, 
peatbogs, permanent snow-covered surfaces, water 
bodies, forest, croplands, impervious, protected areas 
and changed areas. Table 1 describes the datasets used 
to determine each LULC, their spatial resolution, the 
dates of each dataset and the sources in which they are 
described in detail. All datasets downloaded (Fig. 1.1) 
were free and open access. Products 1,3 and 4 were 
available on a global scale and the rest on a European 
scale. 

2.2. Soft constraints datasets 

A literature review, based on studies focused specifically 
on the methodological aspects of ML mapping, was 
carried out to determine the indicators that constitute the 
"Soft" constraints with non-thematic data (numerical 
data). In particular, those studies detailing soil, climate, 
terrain, sustainability, productivity and LULC constraints 
were considered. For each study, we registered the 
extent, minimum mapping unit (MMU), technology used, 
datasets, indicators used, the indicators thresholds and 
the ML classification scheme.

Table 1: Datasets used to determine the “Hard” constraints in ML identification. 

Hard Constraints Source Abbreviation Resolution Year Reference 

Marshes, Peatbogs, 
Permanent snow-
covered surfaces, 

Water bodies 

(1) Sentinel-2 Global Land Cover S2GLC 10 m 2017 (Malinowski et al. 2020) 

Forest (2) Copernicus High-Resolution Layer - 
Tree Cover Density 

HRL-TCD 20 m 2015 (European Environment 
Agency 2018) 

 (3) Global Forest Change - Tree Cover GFC-TC 30 m 2000 (Hansen et al. 2013) 

 (4) Global Forest Change - Loss GFC-LSS 30 m 2015 & 
2018 

(Hansen et al. 2013) 

Croplands (5) Sentinel-2 Global Land Cover S2GLC 10 m 2017 (Malinowski et al. 2020) 

 (6) CORINE Land Cover CORINE LC 25 ha 2018 (European Environment 
Agency 2019a) 

Impervious (7) Copernicus High-Resolution Layer – 
Imperviousness Density 

HRL–IMD 20 m 2017 (European Environment 
Agency 2018) 

 (8) CORINE Land Cover CORINE LC 25 ha 2018 (European Environment 
Agency 2019b) 

Protected Areas (9) EU Nationally designated protected 
areas inventory 

CDDA - 2018 (European Environment 
Agency 2019c) 

 (10) Natura2000 Network Natura2000 20 m 2018 (European Environment 
Agency 2019d) 

Changed Areas (11) Copernicus High-Resolution Layer - 
Tree Cover Density Change 

HRL-TCDC 20 m 2012-
2015 

(European Environment 
Agency 2018) 

 (12) Copernicus High-Resolution Layer - 
Impervious Classified Change 

HRL-IMCC 20 m 2012-
2015 

(European Environment 
Agency 2018) 

 (13) Corine Land Cover Change CORINE LC 
CHA 

25 ha 2012-
2018 

(European Environment 
Agency 2019b) 

In order to define the land marginality, the maximum and 
minimum thresholds for each indicator were determined 
(Fig. 1.7). These thresholds refer to the value ranges that 
could be reached by a particular indicator and were 
defined based on the examined literature. Each indicator 
was divided into 3 ranges: a) representing the best 
indicator values (score 10) and corresponding to suitable, 

fertile, or productive land; b) representing the average 
values of the indicator (score 5), related to low fertile land 
and low productivity; and c) representing the restrictive 
indicator values (score 1) for land that could potentially be 
unsuitable or incompatible with any activity or 
management. In the case that more than one threshold 
was found in the literature, the threshold was established 
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based on the maximum and minimum values for all 
Europe. During this phase, we ensured that each indicator 
had a data set available for the four countries to be 
analyzed. Consequently, when an indicator could not be 
matched to a dataset (conceptually and in units) for the 
four countries, the indicator was omitted. The thresholds 
selected for each indicator, as well as the reference of the 
document from which it was obtained, are shown in Table 
2. 

 
Figure 1: General methodological workflow for identification, 

mapping and classification of ML 

Furthermore, the “Soft” indicators were ranked according 
to the number of times that they were found in the 
literature (Fig. 1.9), as a way to analyze their importance. 
Once ranked, the Pairwise Comparison Matrix (PCM) of 
the ranks (Zolekar & Bhagat 2015) was calculated. 
Afterward, the normalized PCM was performed and a 
weight was obtained for each indicator (Fig. 1.11 and 
1.12). To normalize the values, each PCM value was 
divided by the sum of the values of its column, then the 
weights of each indicator (Table 2) were calculated using 
the average of the values in its row. These weights were 
scaled from 0 to 1 in ascending order to preserve the 
hierarchy according to their importance in the marginality, 
and their sum is equal to 1. 

2.3. Intermediate layer production 

The different data sets for identifying and classifying ML 
were processed independently. In regard to the “Hard” 
indicators, six workflows were performed to determine 
LULC where different datasets were combined to produce 
binary intermediate layers. 

1) The S2GLC product was selected to determine the 
land cover of marshes, peatbogs, permanent snow-
covered surfaces and water bodies. The S2GLC 
product consists of thirteen land cover classes 
(overall accuracy = 86%) and was developed using 
classification algorithms for the analysis of more than 
15,000 Sentinel-2 images (Malinowski et al. 2020). 

2) The Copernicus HRL-TCD 2015, GFC-TC 2000, and 
GFC-LSS 2015 and 2018 layers were combined to 
delimit the forest zones (defined as those areas with 
a tree cover higher than 30% and a minimum area of 
0.5 ha). All pixels that were selected as forest in 
2000, 2015, and 2018 were considered as forest land 
cover. 

3) To determine croplands, we selected S2GLC class 
73 (cultivated areas) and 75 (vineyards) and 
CORINE LC class 2 where agricultural areas are 
included (except 231 which represents pastures). 
Both datasets were reclassified into two classes 
representing croplands/non-cropland areas. Then, a 
fuzzy overlay was performed to identify all pixels 
considered as crops in both datasets. 

4) Impervious areas represent all sealed and 
constructed areas that are primarily covered by 
buildings or impermeable surfaces. To delimit 
impervious areas, CORINE LC class 1 (“Artificial 
areas”, except classes 131 (mineral extraction sites) 
and 132 (dumpsites)) and the Copernicus HRL-IMD 
product were used. In the latter, those areas with a 
threshold above 30% were defined as impervious. 
The final vector layer was converted to raster and 
both datasets were reclassified and combined in the 
same way that for croplands. 

5) Protected areas were delimited by merging 
Natura2000 and CDDA from the European 
Environment Agency. The final vector layer was 
converted to raster and both datasets were 
reclassified into two classes representing 
protected/non-protected areas.  

6) To incorporate the dynamic aspect of ML, changed 
areas were also included in the proposed 
methodology. Specifically, two main types of 
changes were considered: i) changes related to 
forest activities such as afforestation and 
reforestation and ii) changes in the urban fabric. The 
delineation of changes in forest areas was 
implemented using the Copernicus HRL-TCDC 
change product. This product shows real tree cover 
density (TCD) changes (%) between 2012 and 2015. 
To identify such changes in forest areas, a threshold 
of 50% was applied. This threshold ensured that the 
output included certain changes due to reforestation 
or deforestation and not sparse or random changes. 
On the other hand, changes in urban fabric and 
impervious areas were outlined using the classes 
“increased IMD” and “new cover” from the HRL–
IMCC 2012-2015 product and the CORINE LC CHA 
2012-2018 product. Specifically, we extracted class 
1 except classes 131 and 132. All intermediate layers 
were reclassified into two classes (changed/non-
changed areas) and finally a fuzzy overlay was 
performed to produce the final intermediate layer 
“changed”, representing all the occurred changes. In 
this case, the fuzzy overlay was performed to identify 
all pixels that were registered as changed in one of 
the three datasets. 
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.

Table 2: Summary of the “Soft” indicators used in the ML classification methodology. The indicators are grouped by data type: terrain 
and soil, sustainability, and productivity. "Threshold-based on" refers to the scientific publication from which the threshold was obtained. 

"Source" refers to the repository from which the data was freely downloaded. ”Rank” refers to the position in which each indicator 
appeared in the bibliographic ranking. “Weight” refers to the weights obtained in the normalized PCM. “Score” refers to the value given 
to each of the thresholds in order to categorize them according to their marginality. The data sets with two weights were the indicators 

with information for Topsoil (T) and Subsoil (S) and they were treated as independent indicators. 

Type Rank Layer name Thresholds Threshold-based on Source Weight Score 

Terrain and 
Soil 

1 Slope (%) [15 - 40] (Gopalakrishnan et 
al. 2011) 

(EuropeEnvironme
nt Agency 2017) 

0.17 10 
[40 - 65] 5 
[65 - 90] 1 

1 Depth Available to 
Roots (cm) 

[100 – 66.7] (Ciria et al. 2019) European Soil Data 
Centre (ESDAC), 

esdac.jrc.ec.europa
.eu, European 

Commission, Joint 
Research Centre 

0.17 10 
[66.7 – 33.3] 5 

[33.3 – 0] 1 
3 Coarse fragments (T/S) 

(%) 
[10 - 15] (Ciria et al. 2019) 0.03 10 
[15 - 20] 0.03 5 

2 Texture (T/S) (%) [30 - 53.3] (Elbersen et al. 
2018) 

0.045 10 
[53.3 - 76.7] 0.045 5 
[76.7 - 100] 1 

6 Clay (T/S) (%) [50 - 58.7] (Eliasson et al. 
2010) 

0.015 10 
[58.7 - 67.3] 0.015 5 
[67.3 - 76] 1 

6 Sand (T/S) (%) [60 - 70] (Eliasson et al. 
2010) 

0.015 10 
[70 - 80] 0.015 5 
[80 - 90] 1 

4 Total Available Water 
(T/S) (mm) 

[100 – 50] (Zolekar & Bhagat 
2015) 

0.02 10 
[50 – 0] 0.02 5 

Sustainability 2 Soil Acidity [pH>8, pH<6] (Ciria et al. 2019) 0.09 10 
[pH>8.5, 
pH<5.25] 

5 

[pH>9, 
pH<4.5] 

1 

3 Soil Erosion (t/ha/year) [10 – 55.3] (Eurostat 2020) 0.06 10 
[55.3 – 67.3] 5 
[67.3- 325] 1 

4 Flooding (%) [50 - 66.7] (Gopalakrishnan et 
al. 2011) 

(Pekel et al. 2016) 0.04 10 
[66.7 - 83.3] 5 
[83.3 - 100] 1 

5 Socidity (%) [6 - 36.7] (Eliasson et al. 
2010) 

(Batjes 2016) 0.03 10 
[36.7 - 67.4] 5 
[67.4 - 98] 1 

6 Toxicity Contamination 
(cg/kg) 

[1– 3] (Gopalakrishnan et 
al. 2011; Ivanina et 

al. 2016) 

0.03 10 
[3 – 10] 5 

[10 – 23.5] 1 
9 Natural Toxicity (g/kg) [150 - 328] (Eliasson et al. 

2010) 
0.02 10 

[328 - 506] 5 
[506 – 684] 1 

2 
Dryness 

(Aridy Index) 

[0.5 – 0.34] (Ivanina et al. 2016; 
Elbersen et al. 2018) 

(Abatzoglou et al. 
2018) 

0.02 10 
[0.34 – 0.18] 5 

[0.18 – 0] 1 
Productivity 6 Caption Exchange 

Capacity (cmol(+)/kg) 
[22.2 - 18.9]  - (ISRIC-World Soil 

Information 2020) 
0.03 10 

[18.9 - 15.6] 5 
[15.6 - 12.3] 1 

3 Soil Organic Matter 
(T/S) (%) 

[OM < 1%, 
OM ≥ 20%] 

(Elbersen et al. 
2018; Ciria et al. 

2019) 

European Soil Data 
Centre (ESDAC), 

esdac.jrc.ec.europa
.eu, European 

Commission, Joint 
Research Centre 

0.03 10 

[OM < 0.75%, 
OM ≥ 30%] 

0.03 5 

7 Productivity Grasslands [6-4] - 0.02 10 
[4-2] 5 
[2-0] 1 

Productivity Forests [3-2] - 0.02 10 
[2-1] 5 
[1-0] 1 

 

A single workflow was followed to obtain the "Soft" 
indicators' intermediate layers. First, the raster values 
were reclassified according to the thresholds described in 
Table 2, where layers with two or three values (scores) 
were obtained. Then, the pixel values were multiplied by 
the weight calculated from the PCM. Finally, we obtained 

raster layers with 3 values representing the 3 ranges of 
marginality. The indicators "Coarse fragments", "Texture", 
"Clay", "Sand", “Total Available Water”, and “Soil organic 
matter” information from Topsoil (T) and Subsoil (S) were 
available and processed as independent indicators. T and 
S layers, were processed independently since they 
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originally formed and developed differently, even their 
characteristics could have been influenced by land use 
(Hiederer 2013). There were two exceptions in the 
preprocessing of the "Soft" indicators, involving the 
preparation of a dataset before applying the described 
workflow: (1) the soil indicator “Texture” was obtained by 
applying the equation proposed by Elbersen et al. (2018) 
where the silty texture is added to twice the clayey texture, 
and silt (T/S) layers were downloaded from ESDAC; and 
(2) the Aridity Index (AI), which relates accumulated 
precipitation (mm) and reference evapotranspiration 
(Penman 1948), the high-resolution monthly dataset 
"Terraclima" for 2018 (Abatzoglou et al. 2018) available 
from Google Earth Engine (GEE) was used. To obtain a 
single value per pixel and year, the twelve images of 2018 
were filtered, then the precipitation and 
evapotranspiration bands were selected, followed by the 
division between the precipitation and evapotranspiration 
bands. Finally, the yearly mean value was calculated for 
every pixel. 

All intermediate layers were resampled using the nearest 
neighbor method to a pixel size of 10 x 10 meters, which 
is the spatial resolution of the highest resolution product 
(S2GLC), used as a base-map in the next steps. In 
addition, all layers were projected to the horizontal 
coordinate system European Terrestrial Reference 
System 1989 (ETRS89) using Lambert Azimuthal Equal-
Area projection (LAEA). 

2.4. Potential ML identification 

The potential ML were identified and mapped by 
combining all the "Hard" intermediate layers, which 
include LULC types that cannot be ML, with the S2GLC 
base-map. In particular, raster layers were 
mathematically combined and new values were assigned 
to the output layer. In this process, we co-registered every 
layer so that the output raster cells were aligned with 
raster cells of the S2CLC base-map. The final layer was 
a binary raster file, based on the S2GLC base-map, 
including all remaining classes that are potentially ML. 

To properly assess the classification of ML and non-
marginal lands (nonML), experts from the four countries 
with previous knowledge of land use, landscape, terrain, 
and general knowledge of the countries included in the 
study, provided polygons of reference ML and nonML 
areas. On the reference polygons, stratified random 
sampling of points with a sample size of 1 pt./ha was 
carried out. The classification accuracy was quantified by 
country through the confusion matrix by contrasting the 
reference values with the classification results. The 
performance of the classification was also measured with 
other indexes including the overall accuracy, Kappa 
index, recall (%) and F-measure (%). Recall corresponds 
with the fraction of ML validation samples classified as 
positive, among the total number of positive ML. While F-
measure is the harmonic mean of the model’s precision 
and recall (Carbonell-Rivera et al. 2020). 

2.5. ML classification 

To classify the potential ML, the intermediate raster layers 
of the "Soft" indicators were overlaid in GEE, with special 
attention to the pixel alignment of the different layers. The 
last step in the ML mapping was the reclassification of the 
product resulting from the weighted superposition of the 

"Soft" indicators into three ML productivity categories: 
high, low and potentially unsuitable land. For this purpose, 
the minimum (MLm) and maximum (MLM) values obtained 
by the marginality layer were calculated. Then, the range 
of values was divided into three intervals using three 
different approaches to establish the upper and lower 
limits of each category: 

a) Equal magnitude. The class interval was set by 
dividing the range of values into 3 equal parts. 

b) 25th-75th percentiles. The 25th and 75th percentiles 
were calculated to establish them as class limits. The 
interval [MLm, P25th) represented “potentially 
unsuitable land” category, [P25th, P75th) was the “low 
productivity ML” category, and [P75th, MLM) was the 
“high productivity ML” category. 

c) 33rd-66th percentiles. The 33rd and 66th percentiles 
were calculated to establish them as class limits. The 
interval [MLm, P33rd) characterized “potentially 
unsuitable land” category, [P33rd, P66th) was the “low 
productivity ML” category, and [P66th, MLM) was the 
“high productivity ML” category. 

3. Results and Discussion 

The percentage of ML per country was higher in 
Mediterranean countries. In particular, Spain was the 
country where most ML were identified (Fig. 2), with 
20.0% (100,983 km2), followed by Greece with 18.8% 
(24,770 km2). In addition to a climate characterized by a 
prolonged summer drought, these countries also have an 
abrupt and varied topography that restricts the use of 
some lands for agriculture and forests production. In 
contrast, the countries where fewer ML were identified 
were Germany, with 11.6% (41,606 km2), and Poland, 
with 7.2% (22,442 km2), both countries have a relief 
dominated by flatlands and a continuous rainfall regime 
throughout the year, facilitate agriculture and forest 
(natural or plantations). 

 
Figure 2: Percentage of area identified as ML per country. 

From the Gerwin et al. (2018) study in the Seelman 
project, only the results from Greece and Germany were 
available, and they identified 14.6% ML and 9.4% ML per 
country, respectively. This differed from our results by 
4.16% for Greece and 2.24% for Germany. This is mainly 
due to their indicators and thresholds choice as they 
adjusted them to the site requirements of certain forest 
species, in order to find ML for biomass production and 
bioenergy purposes. The results were also compared with 
those obtained by Elbersen et al. (2018) in the Magic 
project for all European countries. Elbersen et al. (2018) 
found percentages of ML areas per country similar to our 
results (Greece 23.108 km2 (17.5%), Germany 33.896 
km2 (9.5%), and Poland 27.372 km2 (8.8%)). However, 
for Spain they found 167.680 km2 (33.1%). These 
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differences could be due to the use of land irrigation 
indicators in the project. This fact, in addition to the 
desertification of some transitional areas could explain 
this increase in the area of ML by 13.2%. 

The distribution of the potential marginal lands can be 
observed in Figure 3a In the case of Spain, the presence 
of ML was distributed throughout the territory, and there 
was a tendency for marginal lands to increase around the 
mountain ranges. These areas, if not covered by forest or 
under protection, had no clear land use and were covered 
by grassland, herbaceous vegetation, moorland, 
heathland, sclerophyllous vegetation, marshes and, to a 
lesser extent, natural material surface (i.e., bare rock, 
hard pan, mineral fragments, bare soils and natural 
deposits). The results for Greece were similar to Spain, 
with a dispersion of ML throughout the country but mostly 

clustered in the mountainous ranges or in vegetation 
areas without protection, generally covered by 
herbaceous and sclerophyllous vegetation. In Greece, 
also noteworthy was the number of ML identified on the 
islands, mainly along rocky coastal shores. In the case of 
Germany, a generalized absence was observed in the 
central and flat part of the country, concentrating the ML 
around the mountainous region located in the south, 
dominated by rocky surfaces, and in the northwest of the 
country, where several river valleys are located, and 
moorland and heathland covers are predominant. Poland 
was the country with the least area identified as ML, being 
scattered throughout the country and with no remarkable 
clusters. This could be due to the fact that ML in Poland 
are related to unmanaged areas mainly covered by 
herbaceous vegetation without a defined land use.

 
Figure 3: Graphical representation of the potential ML identification (a) and the ML classification for the three categorization approaches 

(b = Equal magnitude, c = 25th-75th percentiles, and d = 33rd-66th percentiles). The countries represented from top to bottom are 
Germany, Greece, Poland, and Spain. 

Table 3 shows the confusion matrix of the identification of 
ML organized by country. The best accuracy was 

achieved in Poland, with an overall accuracy of 90.97%, 
then in Spain with 82.87%. In both cases, the 
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concordance measured with the kappa index was above 
0.6, and the overall quality of the classification 
(ML/nonML) measured with the F-scores was above 80%. 
For Germany, the overall accuracy was the lowest with 
60.61% and a very poor concordance of 0.04. The error 
in Germany was due to the validation sample selection, 
since most of the ML samples were taken in protected 
areas with marginal characteristics (identified by the state 
of the soil and the present vegetation). 

Table 3: Confusion matrices, global precision, F-score, and 
Kappa index by country for ML identification. 

Germany ML nonML Total Recall 
(%) 

Overall 
Accuracy 

ML 317 8,436 8,753 90.06 0.61 

nonML 35 12,477 12,512 59.66  

Total 352 20,913 21,265   

F-Score 
(%) 

61.64     

Kappa 0.04     

      

Greece ML nonML Total Recall 
(%) 

Overall 
Accuracy 

ML 5,902 1,691 7,593 73.89 0.72 

nonML 2,086 3,583 5,669 67.94  

Total 7,988 5,274 13,262   

F-Score 
(%) 

70.69     

Kappa 0.41     

      

Poland ML nonML Total Recall 
(%) 

Overall 
Accuracy 

ML 292 24 316 54.17 0.91 

nonML 247 2,439 2,686 99.03  

Total 539 2,463 3,002   

F-Score 
(%) 

83.43     

Kappa 0.63     

      

Spain ML nonML Total Recall 
(%) 

Overall 
Accuracy 

ML 1,396 406 1,802 84.66 0.83 

nonML 253 1,793 2,046 81.54  

Total 1,649 2,199 3,848   

F-Score 
(%) 

80.90     

Kappa 0.65     

Figure 4 shows a map representing the numerical 
gradient of the "Soft" constraints for a detail area in Spain. 
In the classified layer, a minimum value of 0.12 (high 
marginality) and a maximum value of 6.86 (low 
marginality) were obtained, whereas the maximum 
theoretical value with respect to the sum of all the "Soft" 
indicators was 9.98. This shows that all zones identified 

as marginal with "Hard" layers were assigned a value 
obtained from some "soft" constraint, as no area obtained 
the theoretical minimum of zero. The values obtained as 
a result of the sum of all soft constraints and the three 
classification approaches with their respective value 
ranges are shown in Table 4. 

 
Figure 4: Representation of the gradient obtained in the 

application of all the "Soft" constraints on an area of 
Guadalajara (Spain). White areas represent nonML. 

Table 4: Methods to subdivide the ML types. 

Method Equal 
Magnitude 

25th-75th 
percentiles 

33rd-66th 
percentiles 

Max. Min. P25 P75 P33 P66 

Value 6.86 0.12 1.39 2.89 1.58 2.52 

 Thresholds 

High 
productivity 

ML 

6.86 4.62 6.86 2.89 6.86 2.52 

Low 
productivity 

ML 

4.62 2.37 2.89 1.39 2.52 1.58 

Potentially 
unsuitable 

land 

2.37 0.12 1.39 0.12 1.58 0.12 

Figure 3b-d shows the result of mapping the three 
categories of ML in terms of productivity using the three 
different classification approaches for the four countries. 
There is no optimal methodology to classify these three 
types of ML. According to the final use or application of 
the map, different thresholds should be defined, since 
there is no definition that clearly limits the 3 classes. 
These classifications give us a vision of the limitations and 
opportunities of the territory. 

4. Conclusions 

The definition of marginal land is ambiguous and does not 
have a spatial representation or a spectral response 
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directly measurable using remote sensing data. ML are 
mainly marginal due to their exclusion from management 
for not being operationally effective or productive for 
agriculture, or for not having a minimum soil depth, or 
have extreme chemical-toxic soil values, all these are 
factors that block forest growth. The identification 
methodology presented in this paper quantified areas with 
undefined or non-specific LULC and with a clear potential 
to be considered ML. From the area covered in this study, 
Mediterranean countries, with more extreme 
temperatures and rainfall regimes, and prolonged 
drought, present more extension corresponding to 
potential marginal areas than central-northern European 
countries. 

In the classification methodology, the qualitative physical 
functions of soil, soil restrictions, landscape and 
productivity have been evaluated. In addition, a value was 
assigned to each ML patch, representing the marginality 
level attending to the soft constraints or factors 
considered in the study. The interspecific differences 
between countries indicate that, in order to improve the 
classification and provide applicability to the method, it 
would be convenient to adjust the thresholds of the 
indicators for each biogeographic zone. 
 

Processing the information in GEE improved greatly the 
time performance and computer processing capacity, in 
addition to the direct availability of several data sets in the 
cloud. 

For future work, it is recommended to include social and 
economic factors that influence the consideration of ML 

(i.e., demographic parameters, level of industrialization of 
the country, per capita income, agrarian policies, forest 
policies, distance to roads). Socio-economic factors can 
provide information about why an area of land has 
become marginal over time and location. Besides, 
understanding the socio-economic characteristics of an 
area can be a key factor in the successful management 
of the activities to be implemented on the ML. On the 
other hand, it would be desirable to include in future 
classification methodologies constraints that identify the 
ecosystem services of the land (i.e., flora and fauna 
protection, hydrological balance, prevention of exotic 
plants invasion, erosion control, prevention of 
eutrophication). In this context, all areas identified as 
marginal cannot be used for productive purposes in terms 
of their environmental impacts on biodiversity, water 
resources and landscape. Nevertheless, mapping the 
location of potentially marginal lands can help to identify 
areas with irreversible erosion risk, land degradation, 
promote biodiversity in isolated populations and 
contribute to climate change mitigation with sustainable 
reforestation actions. 
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