
Global pseudodifferential
operators in spaces of

ultradifferentiable functions

Author: Advisor:
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Summary

In this thesis we study pseudodifferential operators, which are integral opera-
tors of the form

f 7→
∫
Rd

( ∫
Rd
ei(x−y)·ξa(x, y, ξ)f(y)dy

)
dξ,

in the global class of ultradifferentiable functions of Beurling type Sω(Rd) as
introduced by Björck, when the weight function ω is given in the sense of
Braun, Meise, and Taylor.

We develop a symbolic calculus for these operators, treating also the change of
quantization, the existence of pseudodifferential parametrices and applications
to global wave front sets.

The thesis consists of four chapters. In Chapter 1 we introduce global symbols
and amplitudes and show that the corresponding pseudodifferential operators
are well defined and continuous in Sω(Rd). These results are extended in
Chapter 2 for arbitrary quantizations, which leads to the study of the trans-
pose of any quantization of a pseudodifferential operator, and the composition
of two different quantizations of pseudodifferential operators. In Chapter 3 we
develop the method of the parametrix, providing sufficient conditions for the
existence of left parametrices of a pseudodifferential operator, which motivates
in Chapter 4 the definition of a new global wave front set for ultradistribu-
tions in S ′ω(Rd) given in terms of Weyl quantizations. Then, we compare this
wave front set with the Gabor wave front set defined by the STFT and give
applications to the regularity of Weyl quantizations.
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Resumen

En esta tesis estudiamos operadores pseudodiferenciales, que son operadores
integrales de la forma

f 7→
∫
Rd

( ∫
Rd
ei(x−y)·ξa(x, y, ξ)f(y)dy

)
dξ,

en las clases globales de funciones ultradiferenciables de tipo Beurling Sω(Rd)
introducidas por Björck, cuando la función peso ω viene dada en el sentido de
Braun, Meise y Taylor.

Desarrollamos el cálculo simbólico para estos operadores, tratando además
el cambio de cuantización, la existencia de paramétrix pseudodiferencial y
aplicaciones al frente de ondas global.

La tesis consta de cuatro caṕıtulos. En el Caṕıtulo 1 introducimos los śımbolos
y amplitudes globales, y demostramos que los correspondientes operadores
pseudodiferenciales están bien definidos y son continuos en Sω(Rd). Estos re-
sultados son extendidos en el Caṕıtulo 2 para cuantizaciones arbitrarias, lo
que conduce al estudio del traspuesto de cualquier cuantización de un oper-
ador pseudodiferencial y a la composición de dos cuantizaciones distintas de
operadores pseudodiferenciales. En el Caṕıtulo 3, desarrollamos el método de
la paramétrix, dando condiciones suficientes para la existencia de paramétrix
por la izquierda de un operador pseudodiferencial, que motiva en el Caṕıtulo 4
la definición de un nuevo frente de ondas global para ultradistribuciones en
S ′ω(Rd) dada en términos de cuantizaciones de Weyl. Comparamos este frente
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de ondas con el frente de ondas de Gabor definido mediante la STFT y damos
aplicaciones a la regularidad de las cuantizaciones de Weyl.
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Resum

En aquesta tesi estudiem operadors pseudodiferencials, que són operadors in-
tegrals de la forma

f 7→
∫
Rd

( ∫
Rd
ei(x−y)·ξa(x, y, ξ)f(y)dy

)
dξ,

en les classes globals de funcions ultradiferenciables de tipus Beurling Sω(Rd)
introdüıdes per Björck, quan la funció pes ω ve donada en el sentit de Braun,
Meise i Taylor.

Desenvolupem el càlcul simbòlic per aquestos operadors, tractant, a més a
més, el canvi de quantització, l’existència de paramètrix pseudodiferencial i
aplicacions al front d’ones global.

La tesi consisteix de quatre caṕıtols. Al Caṕıtol 1 introdüım els śımbols i
amplituds globals, i demostrem que els corresponents operadors pseudodifer-
encials estan ben definits i són continus en Sω(Rd). Aquestos resultats són
estesos al Caṕıtol 2 per a quantitzacions arbitràries, que condueix a l’estudi
del transposat de qualsevol quantització d’un operador pseudodiferencial i a
la composició de dues quantitzacions distintes d’operadors pseudodiferencials.
Al Caṕıtol 3 desenvolupem el mètode de la paramètrix, donant condicions
suficients per a l’existència de paramètrix per l’esquerra d’un operador pseu-
dodiferencial donat, que motiva al Caṕıtol 4 la definició d’un nou front d’ones
global per a ultradistribucions en S ′ω(Rd) mitjançant quantitzacions de Weyl.
Comparem aquest front d’ones amb el front d’ones de Gabor definit mitjançant
la STFT i donem aplicacions a la regularitat de les quantitzacions de Weyl.
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Introduction

Pseudodifferential operators (Ψdo) are integral operators of the form

f 7→
∫
Rd
eix·ξp(x, ξ)f̂(ξ)dξ,

where x · ξ is the scalar product of the vectors x and ξ in Rd, f belongs

to a local or global class of functions, f̂ is its Fourier transform and p(x, ξ)
is another function, called symbol, that satisfies the necessary properties to
ensure that the operator is well defined and continuous when acting on the
class of functions. Sometimes we need to use amplitudes a(x, y, ξ) instead of
symbols to understand the operator that, in this case, is written as an iterated
integral given by

f 7→
∫
Rd

( ∫
Rd
ei(x−y)·ξa(x, y, ξ)f(y)dy

)
dξ.

Such operators generalize linear partial differential operators with variable
coefficients and appear, among in many other applications (like topology, dif-
ferential geometry, signal and image processing, etc.), initially when looking
for an approximate solution (parametrix) of a differential equation given by
an elliptic or hypoelliptic linear partial differential operator with variable co-
efficients. The local theory of pseudodifferential operators grew out of the
study of singular integral operators, and it was developed after the systematic
studies of Kohn and Nirenberg [48], and Hörmander [43], and others.

After that, the theory of Ψdo has been widely developed in local Gevrey
classes, which are spaces of (non-quasianalytic) ultradifferentiable functions

1



Introduction

in between real analytic and C∞ functions. The study of several problems in
general classes of ultradifferentiable functions has received a lot of attention
in the last 60 years. In the 80’s, several authors (Hashimoto, Matsuzawa and
Morimoto [41] and Iftimie [46]) gave different versions of Gevrey pseudodiffer-
ential operators of finite order, that is, given by symbols of moderate growth at
infinity. Boutet de Monvel had studied a certain class of operators of infinite
order, i.e. with symbols with exponential growth at infinity in some variables
(and hence more general for applications). In 1985, Zanghirati [65] gave sym-
bols of infinite order of Gevrey type; see the monograph Rodino [60] for an
excellent introduction to this topic. In all these cases the spaces of functions
considered are of Roumieu type (the topological structure of the spaces looks
like that of the space of real-analytic funtions). Motivated by these results,
Fernández, Galbis, and Jornet [33] developed a full theory of pseudodifferential
operators of infinite order in the variable ξ of the symbol (or amplitude) with
the corresponding symbolic calculus on classes of ultradifferentiable functions
of Beurling type (the topological structure looks like the one of the space of
all smooth functions) in the sense of Braun, Meise, and Taylor [20].

The classic theory of Ψdo, as well as all the mentioned works, is of local
type. That is, it is based on the study of the solutions of the operators in
a small enough neighbourhood of a given point. In [32] the authors give
sufficient conditions to construct parametrices, i.e. approximate inverses, of
the symbols introduced in [33]. The existence of a left parametrix for the
symbol gives hypoellipticity in the corresponding class of functions for the
Ψdo. Hence, the possible ultradistribution solutions of the operator when the
datum is an ultradifferentiable function are, in fact, as regular as the datum.

More recently, several authors have studied Ψdo and Fourier integral operators
of infinite order in spaces of Gelfand-Shilov type, which are global classes of
ultradifferentiable functions with estimates in terms of the derivatives or of the
Fourier transform of Gevrey type, see for instance [22, 23, 24, 27]. In a more
general setting, Prangoski [58] introduced Ψdo given by symbols of infinite
order in all the variables for ultradifferentiable classes defined in the sense of
Komatsu (with sequences), inspired by the classical global theory of Ψdo in
the Schwartz class that can be found in the book of Shubin [64]. Prangoski
uses some kind of entire functions with prescribed exponential growth, which
is crucial to understand the operators using integration by parts. Later, Cap-
piello, Pilipović, and Prangoski [25] gave sufficient conditions on the symbols
to construct parametrices for the operators in [58].

In the theory of partial differential equations, the wave front set locates the
singularities of a distribution and, at the same time, describes the directions
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of the high frequencies (in terms of the Fourier transform) responsible for
those singularities. In the classical context of Schwartz distributions theory,
it was originally defined by Hörmander [44]. In global classes of functions and
distributions, the concept of singular support does not make sense since we
need the information on the whole Rd. However, we can still define a global
wave front set to describe the micro-regularity of a distribution.

Very recently, Rodino and Wahlberg [61] recovered the concept of the C∞

global wave front set of [45] for the context of tempered distributions, showing
that it can be reformulated in terms of the short-time Fourier transform. It is
very natural to use methods of time-frequency analysis in connection with the
wave front set, as the wave front set treats simultaneously analysis of points
(the variables) and directions (the covariables). The authors prove also in [61]
that this wave front set can be described merely by a Gabor frame, i.e. with
the information of the decay of the Gabor coefficients in a sufficiently dense
lattice.

Boiti, Jornet, and Oliaro [14] presented the ultradifferentiable version of the
analytic wave front set found in [26, 45, 61] in the Beurling setting for ω-
ultradistributions, where ω is a subadditive weight function in the sense of [20],
showing that it can be described also in terms of Gabor frames, and applying
it to the study of global regularity of pseudodifferential operators of infinite
order.

The aim of this thesis is to introduce and study pseudodifferential operators
in classes of global ultradifferentiable functions of Beurling type Sω(Rd) (as
the ones defined by [8] in the sense of [20]), using tools and techniques from
time-frequency analysis and Fourier analysis, and to provide applications to
global wave front sets in this setting.

In Chapter 1, we introduce global pseudodifferential operators in Sω(Rd) by
means of oscillatory integrals for global amplitudes. It turns out that the ac-
tion of a pseudodifferential operator on a function in Sω(Rd) can be written as
an iterated integral, and we will show that this action is linear and continuous
from Sω(Rd) into Sω(Rd). Moreover, this operator will be extended linearly
and continuously to an operator from S ′ω(Rd) into S ′ω(Rd). We extend these
results for arbitrary quantizations in Chapter 2. Furthermore, we develop a
symbolic calculus, also valid for quantizations, necessary for the study of the
composition of two given pseudodifferential operators. Chapter 3 is devoted
to the construction of a suitable parametrix for the pseudodifferential oper-
ators considered. Finally, in Chapter 4 we define the analogous global wave
front set to the one given in [45, 61] for the ultradifferentiable setting using
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Weyl quantizations, completing the results started in [14]. Finally, we give
applications to the regularity of pseudodifferential operators.
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Chapter 0

Preliminaries

We detail the necessary preliminaries for the following chapters. In particular,
we introduce the notation on multi-indices we use.

Let N0 = N ∪ {0} = {0, 1, 2, . . .}. In the following α stands for (α1, . . . , αd) ∈
Nd0, a multi-index of dimension d. We denote the length of α by

|α| = α1 + · · ·+ αd.

For two multi-indices α and β, we denote β ≤ α for βj ≤ αj, j = 1, . . . , d.
Moreover,

α! = α1! · · ·αd!
and if β ≤ α, then (

α

β

)
=

α!

β!(α− β)!
.

For x = (x1, . . . , xd) ∈ Rd, we put

xα = xα1
1 · · ·x

αd
d ,

and if ξ = (ξ1, . . . , ξd) ∈ Rd, x · ξ is the scalar product, and is equal to x1ξ1 +
· · ·+ xdξd. We denote

〈x〉 = (1 + |x|2)1/2, x ∈ Rd,
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Chapter 0. Preliminaries

where |x| is the Euclidean norm of x. We write

∂α =
( ∂

∂x1

)α1

· · ·
( ∂

∂xd

)αd
,

and using the notation

Dxj = −i ∂
∂xj

, j = 1, . . . , d,

where i is the imaginary unit, we denote

Dα = Dα
x = Dα1

x1
· · ·Dαd

xd
.

The well-known inequalities collected in the next lemma will be frequently
used during the text.

Lemma 0.1. Let α, β ∈ Nd0, N ∈ N, and m,n, r ∈ N0. Then

(1)
∑
|α|=N

N !

α!
= dN . In particular,

∑
|α|=N

1 ≤ dN .

(2) α! ≤ |α|! ≤ d|α|α!

(3)
∑
β≤α

(
α

β

)
= 2|α|. In particular, if β ≤ α, then

(
α

β

)
≤ 2|α|.

(4)
∑

α1+···+αN=α

α!

α1! · · ·αN !
= N |α|, where α1, . . . , αN ∈ Nd0.

(5) (Vandermonde’s Identity).
r∑

k=0

(
m

k

)(
n

r − k

)
=

(
n+m

r

)
.

(6) If β ≤ α, then

(
α

β

)
≤
(
|α|
|β|

)
. In particular,

|β|!
β!
≤ |α|!

α!
.

(7) For all j ∈ N0, |{α ∈ Nd0 : |α| = j}| =
(
j + d− 1

d− 1

)
.

(8) The series
∑

α∈Nd0
e−|α| is convergent.
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0.1 Weight functions

Proof. (1)− (3) are standard properties of multi-indices (see for example [60,
(1.2.2)–(1.2.7)]). The proof of (4) follows proceeding as in (3). Formula (5) is
shown in [7, Identity 132], and with this, we can show (6). Formula (7) is [55,
(0.3.16)], and then, we obtain (8):

∑
α∈Nd0

e−|α| =
∞∑
j=0

∑
|α|=j

e−j =
∞∑
j=0

e−j
(
j + d− 1

d− 1

)
≤ 2d−1

∞∑
j=0

(2/e)j < +∞.

The following proof is taken from [28, Lemma 2.6.2].

Lemma 0.2 (Peetre’s inequality). For all t ∈ R and x, y ∈ Rd, we have

〈x〉t ≤
√

2
|t|
〈x− y〉|t|〈y〉t.

Proof. Since (|x| − |y|)2 ≥ 0, we have 2|x||y| ≤ |x|2 + |y|2. Then,

1 + |x+ y|2 ≤ 1 + (|x|+ |y|)2 ≤ 1 + 2|x|2 + 2|y|2 ≤ 2(1 + |x|2)(1 + |y|2),

and therefore 〈x+ y〉 ≤
√

2〈x〉〈y〉, x, y ∈ Rd. From this, we deduce the result
for t ≥ 0 if x+ y is replaced by x. For t < 0, replace x+ y by y.

0.1 Weight functions

In our setting, we work with weight functions as the ones defined by Braun,
Meise, and Taylor [20].

Definition 0.3. A non-quasianalytic weight function ω : [0,+∞[→ [0,+∞[
is a continuous and increasing function which satisfies:

(α) There exists L ≥ 1 such that ω(2t) ≤ L(ω(t) + 1), t ≥ 0;

(β)

∫ +∞

1

ω(t)

t2
dt < +∞;

(γ) log(t) = o(ω(t)) as t→∞;

(δ) ϕω : t 7→ ω(et) is convex.
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Chapter 0. Preliminaries

We extend the weight function to Cd in a radial way: ω(z) = ω(|z|), z ∈ Cd,
where |z| denotes the Euclidean norm in Cd.

Condition (α) is weaker than the subadditivity. Indeed, as in [20, Lemma
1.2], we have, for x, y ∈ Rd, where L ≥ 1 is the constant appearing in Defini-
tion 0.3(α),

ω(x+ y) ≤ ω(2 max{|x|, |y|}) ≤ Lω(max{|x|, |y|}) + L ≤ L(ω(x) + ω(y) + 1).
(0.1)

In [57, Proposition 1.1] it is proved that a weight function is (equivalent to) a
subadditive weight function if and only if satisfies

(α0) There exist C > 0, t0 > 0 : for all λ ≥ 1 ω(λt) ≤ λCω(t), t ≥ t0.

See [21, 31, 56, 57, 59] for results involving property (α0).

As a consequence of (0.1), since ω is an increasing function, we have

ω
(x+ y

2

)
≤ ω(max{|x|, |y|}) ≤ ω(x) + ω(y), x, y ∈ Rd. (0.2)

Moreover, since |(x, y)| ≤ |x|+ |y|, we also have

ω(x, y) ≤ ω(|x|+ |y|) ≤ Lω(x) + Lω(y) + L, x, y ∈ Rd, (0.3)

and we can see, for all x, y, ξ ∈ Rd,

ω(x, y, ξ) ≤ ω(
√

3 max{|x|, |y|, |ξ|}) ≤ Lω(x) + Lω(y) + Lω(ξ) + L. (0.4)

On the other hand, let q ∈ N0 be such that d ≤ 2q. Then, using q times
property (α),

ω(dx) ≤ Lqω((d/2q)x) + Lq + · · ·+ L ≤ Lqω(x) + Lq + · · ·+ L, x ∈ Rd.

Hence, for L′ := Lq + · · ·+ L ≥ 1, which depends on L and on d,

ω(x) ≤ ω(|x1|+ · · ·+ |xd|) ≤ ω(d|x|∞) ≤ L′ω(|x|∞) +L′ ≤ L′ω(x) +L′ (0.5)

for all x = (x1, . . . , xd) ∈ Rd, where |x|∞ is the supremum norm in Rd.

It is known that property (β) of the weight ω, called non-quasianalyticity
condition, implies ω(t) = o(t) when t→∞:

0 ≤ ω(t)

t
=

∫ +∞

t

ω(t)

s2
ds ≤

∫ +∞

t

ω(s)

s2
ds.

We consider now property (δ) of Definition 0.3 and introduce:
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0.1 Weight functions

Definition 0.4. Given ω a weight function, the Young conjugate ϕ∗ω : [0,∞[→
[0,∞[ of ϕω is defined by

ϕ∗ω(t) := sup
s≥0
{st− ϕω(s)}.

When the weight chosen is clear, we will write ϕω and ϕ∗ω simply ϕ and ϕ∗.
We will assume without loss of generality that ω|[0,1] ≡ 0, which gives some
useful properties (see [20]). In fact, ϕ∗(0) = 0, and because of the convexity
of ϕ∗, the function ϕ∗(t)/t is increasing and (ϕ∗)∗ = ϕ. Moreover, we have
by (0.1),

ω(〈x〉) ≤ ω(1 + |x|) ≤ Lω(x) + L, x ∈ Rd. (0.6)

Example 0.5. [20, Example 4.3] The following functions are, after a change
in some interval [0,M ], examples of weight functions:

(i) Gevrey weights: ω(t) = tp, 0 < p < 1.

(ii) ω(t) = (log(1 + t))
s
, s > 1.

(iii) ω(t) = tp (log(e+ t))
s
, 0 < p < 1, s 6= 0.

The following inequalities will be used throughout the next chapters. For their
proof, see [33, Lemma 1.4] and [15, Appendix A].

Lemma 0.6. For every λ > 0, k ∈ N, t ≥ 1,

tk ≤ eλϕ
∗( kλ )eλω(t); (0.7)

inf
j∈N0

t−jekϕ
∗( jk ) ≤ e−kω(t)+log(t); (0.8)

inf
j∈N0

t−2jekϕ
∗( 2j

k ) ≤ Ce−(k−1)ω(t), (0.9)

for some C > 0, independent of k ∈ N.

It is possible to improve (0.8) when that infimum is attained in a finite set as
this result shows (see [33, Lemma 1.5]):

Lemma 0.7. If k
N
ϕ∗
(
N
k

)
≤ log(t) ≤ k

N+1
ϕ∗
(
N+1
k

)
, then

t−Ne2kϕ∗( N2k ) ≤ e−kω(t)+log(t).
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Chapter 0. Preliminaries

By condition (α) in Definition 0.3, there exists L ≥ 1 such that ω(et) ≤
Lω(t) +L. By abuse of notation, L ≥ 1 will be this constant in the following.
Under this assumption we have the following results from [20]. For a detailed
proof of them we refer to [15, Appendix A] (cf. [42, Remark 2.8(c)]).

Lemma 0.8. (i) We have

λLkϕ∗
( x

λLk

)
+ kx ≤ λϕ∗

(x
λ

)
+ λ

k∑
j=1

Lj (0.10)

for every x ≥ 0, λ > 0 and k ∈ N.

(ii) For all s, t, λ > 0,

2λϕ∗
(s+ t

2λ

)
≤ λϕ∗

( s
λ

)
+ λϕ∗

( t
λ

)
≤ λϕ∗

(s+ t

λ

)
. (0.11)

(iii) For every λ > 0 and B > 0 there exists C > 0 such that

B|α|α! ≤ Ceλϕ
∗
(
|α|
λ

)
, α ∈ Nd0. (0.12)

Formula (0.12) can be improved by assuming a further condition on the weight
function ω:

Lemma 0.9. Let ω be a weight function such that ω(t) = o(ta), t → ∞, for
some 0 < a ≤ 1. Then, for every λ > 0 and B > 0 there exists C > 0 such
that

B|α|α! ≤ Ceaλϕ
∗
(
|α|
λ

)
, α ∈ Nd0.

When considering a suitable change of weights, the following result is useful
to estimate their Young conjugate. We observe that if ω ≤ σ, it is obvious
that ϕ∗σ ≤ ϕ∗ω.

Lemma 0.10. Let 0 < a ≤ 1 and let ω and σ be weight functions. Then:

(1) If ω(t1/a) = o(σ(t)) as t→∞, for all λ, µ > 0 there exists Cλ,µ > 0 such
that

λϕ∗σ

( j
λ

)
≤ Cλ,µ + aµϕ∗ω

( j
µ

)
, j ∈ N0.

(2) If ω(t1/a) = O(σ(t)) as t→∞, there is C > 0 so that for each λ > 0,

λϕ∗σ

( j
λ

)
≤ λ+ a

λ

C
ϕ∗ω

(jC
λ

)
, j ∈ N0.
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0.1 Weight functions

Proof. (1) By assumption, for all λ, µ > 0 there exists Cλ,µ > 0 such that

µω(t1/a) ≤ Cλ,µ + λσ(t), t ≥ 0.

Then, for j ∈ N0, since 0 < a ≤ 1,

λϕ∗σ

( j
λ

)
= sup

s≥0
{sj − λσ(es)}

≤ Cλ,µ + sup
s≥0
{sj − µω(es/a)}

≤ Cλ,µ + aµ sup
s≥0

{s
a

j

µ
− ω(es/a)

}
= Cλ,µ + aµ sup

t≥0

{
t
j

µ
− ω(et)

}
= Cλ,µ + aµϕ∗ω

( j
µ

)
.

(2) There exists C > 0 such that ω(t1/a) ≤ C + Cσ(t), so −σ(t) ≤ 1 −
C−1ω(t1/a) for all t ≥ 0. Therefore, for all λ > 0, j ∈ N0, we obtain

λϕ∗σ

( j
λ

)
= λ sup

s≥0

{
s
j

λ
− σ(es)

}
≤ λ+ a

λ

C
sup
s≥0

{s
a

jC

λ
− 1

a
ω(es/a)

}
≤ λ+ a

λ

C
sup
t≥0

{
t
jC

λ
− ω(et)

}
= λ+ a

λ

C
ϕ∗ω

(jC
λ

)
.

We write P (ξ, r) for the polydisc of center ξ = (ξ1, . . . , ξd) ∈ Cd and polyradius
r = (r1, . . . , rd), where rj > 0, j = 1, . . . , d. That is,

P (ξ, r) = {(z1, . . . , zd) ∈ Cd : |zj − ξj| < rj, j = 1, . . . , d}.

Also,
∂P (ξ, r) = {(z1, . . . , zd) ∈ Cd : |zj − ξj| = rj, j = 1, . . . , d}.

By Cauchy’s Integral Formula for the derivatives (see for instance [62, Chapter
1.3]), we obtain:

Proposition 0.11 (Cauchy’s inequalities). Let Ω ⊂ Cd be an open set, ξ ∈ Ω

and r = (r1, . . . , rd) ∈ Rd, rj > 0, j = 1, . . . , d so that P (ξ, r) ⊂ Ω. If
f : Ω→ C is continuous and partially holomorphic, then

|Dαf(ξ)| ≤ α!

rα
sup

z∈∂P (ξ,r)

|f(z)|, α ∈ Nd0, ξ ∈ Ω.

11



Chapter 0. Preliminaries

0.2 Spaces of ultradifferentiable functions

We introduce the spaces of ultradifferentiable functions in the sense of [20] in
terms of the Young conjugate.

Definition 0.12. Let ω be a weight function. For an open set Ω ⊂ Rd, we
denote

E(ω)(Ω) := {f ∈ C∞(Rd) : |f |K,λ < +∞, ∀K ⊂⊂ Ω, λ > 0},

and

E{ω}(Ω) := {f ∈ C∞(Rd) : ∀K ⊂⊂ Ω, ∃λ > 0 such that |f |K,λ < +∞},

where

|f |K,λ := sup
α∈Nd0

sup
x∈K
|Dαf(x)|e−λϕ

∗
(
|α|
λ

)
.

The first space is endowed with the Fréchet topology given by the sequence of
seminorms |f |Kn,n, where (Kn)n is any compact exhaustion of Ω, n ∈ N. This
is called the space of ω-ultradifferentiable functions of Beurling type in Ω. The
second space is called the space of ω-ultradifferentiable functions of Roumieu
type in Ω.

For a Gevrey weight ω(t) = tp, 0 < p < 1, the space E{ω}(Ω) is the Gevrey
class with exponent 1/p (see e.g. [60, Definition 1.4.1] for the definition of the
space).

We write ∗ for (ω) or {ω}. For a compact set K ⊂⊂ Ω, we denote by
D∗(K) := E∗(Ω)∩D(K) and we define the spaces of test functions of Beurling
and Roumieu type in Ω as

D∗(Ω) := lim−→
K⊂⊂Ω

D∗(K).

It is important to remark that these spaces are non-trivial if and only if condi-
tion (β) is satisfied (see [20, Corollary 2.6] and [8, Lemma 1.3.10]). For further
information on these spaces, see e.g. [20, Corollary 3.6, Proposition 3.9].

The elements in D′(ω)(Ω) are called ω-ultradistributions of Beurling type in

Ω, and D′{ω}(Ω) is the space of ω-ultradistributions of Roumieu type in Ω.

By [20, Proposition 3.9], D(ω)(Ω) ⊂ D{ω}(Ω) with dense and continuous in-
clusion, therefore we consider D′{ω}(Ω) as a subspace of D′(ω)(Ω). Moreover, if

12



0.2 Spaces of ultradifferentiable functions

σ(t) = o(ω(t)) as t→∞, then D{ω}(Ω) ⊂ D(σ)(Ω) with dense and continuous
inclusion.

For T ∈ D′∗(Ω), the support of T is defined by

supp(T ) := {x ∈ Ω : ∀U neighbourhood of x, ∃ϕ ∈ D∗(U) with 〈T, ϕ〉 6= 0}.

The space of ultradistributions with compact support of Beurling and Roumieu
type in Ω is denoted by E ′∗(Ω).

We deal with spaces of global ω-ultradifferentiable functions as the ones in-
troduced by Björck [8]. First, we recall the definition of Fourier transform of
f ∈ L1(Rd):

f̂(ξ) = Ff(ξ) :=

∫
Rd
e−ix·ξf(x)dx, ξ ∈ Rd,

with standard extensions to more general spaces of functions and distributions.
The partial Fourier transform of f ∈ L1(R2d) is defined by

Fy 7→ξf(x, ξ) :=

∫
Rd
e−iy·ξf(x, y)dy, x, ξ ∈ Rd.

Definition 0.13. Given a weight function ω, the space Sω(Rd) is the space of

all f ∈ L1(Rd) such that (f, f̂ ∈ C∞(Rd) and) for all λ > 0 and all multi-index
α ∈ Nd0,

sup
x∈Rd
|Dαf(x)|eλω(x) < +∞, sup

ξ∈Rd
|Dαf̂(ξ)|eλω(ξ) < +∞.

These estimates form a fundamental system of seminorms for Sω(Rd). It is a
Fréchet space endowed with the topology generated by the seminorms given in
Definition 0.13. By [8, Proposition 1.8.2], it is contained in the Schwartz class
S(Rd) and coincides with S(Rd) when ω(t) = log(1+ t). Moreover, the Fourier
transform is an automorphism in Sω(Rd) and the space Sω(R2d) is invariant
under partial Fourier transform (see [13, Remark 4.10]).

Remark 0.14. [8, Proposition 1.8.6, Theorem 1.8.7] For any weight func-
tion ω, we have D(ω)(Rd) ⊆ Sω(Rd) ⊆ E(ω)(Rd) with continuous inclusion and
D(ω)(Rd) is dense in Sω(Rd).

The space Sω(Rd) is nuclear for every weight function ω. See, for instance,
Boiti, Jornet, Oliaro, and Schindl [16, 17].

The following characterization will be useful throughout the thesis.
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Chapter 0. Preliminaries

Lemma 0.15. If f ∈ S(Rd), then f ∈ Sω(Rd) if and only if for all λ, µ > 0
there exists Cλ,µ > 0 such that

|Dαf(x)| ≤ Cλ,µeλϕ
∗
(
|α|
λ

)
e−µω(x), α ∈ Nd0, x ∈ Rd.

Proof. If f ∈ Sω(Rd), then by [13, Theorem 4.8(5)], we have that for all
λ, µ > 0 there exists Cλ,µ > 0 such that

sup
x∈Rd
|xβDαf(x)| ≤ Cλ,µeλϕ

∗
(
|α|
λ

)
eµϕ

∗
(
|β|
µ

)
, α, β ∈ Nd0. (0.13)

We fix β = (β1, . . . , βd) ∈ Nd0 and x = (x1, . . . , xd) ∈ Rd. We assume without
losing generality |x1| = |x|∞.

If |x1| ≤ 1, then |x| ≤
√
d, so for every µ > 0 we have Cµ = sup|x1|≤1 e

µω(x) > 0,
and therefore for all µ > 0,

|x1|β1+···+βd ≤ 1 ≤ Cµe−µω(x).

Since by (0.13) we have that for all λ > 0 there exists Cλ > 0 such that

|Dαf(x)| ≤ sup
x∈Rd
|Dαf(x)| ≤ Cλeλϕ

∗
(
|α|
λ

)
, α ∈ Nd0,

then,

|x1|β1+···+βd |Dαf(x)| ≤ 1 · |Dαf(x)| ≤ CλCµeλϕ
∗
(
|α|
λ

)
e−µω(x),

and the result follows for Cλ,µ := CλCµ > 0.

Now, we assume |x1| > 1. We have

|xβDαf(x)| = |x1|β1 · · · |xd|βd |Dαf(x)| ≤ |x1|β1+···+βd |Dαf(x)| = |xγDαf(x)|,
where γ = (β1 + · · ·+ βd, 0, . . . , 0) ∈ Nd0, satisfying |γ| = |β|. We use (0.13) for
α and γ. Then,

|x1|β1+···+βd |Dαf(x)| = |xγDαf(x)| ≤ Cλ,µeλϕ
∗
(
|α|
λ

)
e(µL′+1)ϕ∗

(
|γ|

µL′+1

)
,

where L′ ≥ 1 is the constant from (0.5). We take j := β1 + · · · + βd = |β| =
|γ| ∈ N0, and from (0.8) and (0.5), we get

|Dαf(x)| ≤ Cλ,µeλϕ
∗
(
|α|
λ

)
inf
j∈N0

|x1|−je(µL′+1)ϕ∗
(

j

µL′+1

)
≤ Cλ,µeλϕ

∗
(
|α|
λ

)
e−(µL′+1)ω(|x1|)+log |x1|

≤ C ′λ,µe
λϕ∗
(
|α|
λ

)
e−µL

′ω(|x1|) ≤ C ′λ,µeµL
′
eλϕ

∗
(
|α|
λ

)
e−µω(x),
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0.2 Spaces of ultradifferentiable functions

for some C ′λ,µ > 0.

On the other hand we have that, by (0.7), for all µ > 0, β ∈ Nd0,

|xβ| = |x1|β1 · · · |xd|βd ≤ 〈x〉|β| ≤ eµϕ
∗
(
|β|
µ

)
eµω(〈x〉).

Therefore, by (0.6) and hypothesis, for all λ, µ > 0 there exists Cλ,µ > 0 so
that

|xβDαf(x)| ≤ 〈x〉|β||Dαf(x)| ≤ Cλ,µeµLeλϕ
∗
(
|α|
λ

)
eµϕ

∗
(
|β|
µ

)
for all α, β ∈ Nd0 and x ∈ Rd. This completes the proof.

Given f ∈ Sω(Rd), for λ > 0 we denote

|f |λ := sup
α∈Nd0

sup
x∈Rd
|Dαf(x)|e−λϕ

∗
(
|α|
λ

)
eλω(x). (0.14)

By the proof of Lemma 0.15, {| · |λ}λ>0 is a fundamental system of seminorms
for Sω(Rd). In [13, Theorem 4.8] (see also [15, Theorem 2.5]), one can find
other equivalent system of seminorms of the space Sω(Rd).

Proposition 0.16. The space Sω(Rd)⊗ Sω(Rd) is dense in Sω(R2d).

Proof. Let f ∈ Sω(R2d). By the density of D(ω)(R2d) in Sω(R2d) (Remark 0.14),
for all ε, λ > 0 there exists ψ ∈ D(ω)(R2d) such that

sup
x∈R2d

|Dα(f(x)− ψ(x))|e−λϕ
∗
(
|α|
λ

)
eλω(x) < ε/2, α ∈ N2d

0 .

Let K1 and K2 be compact sets such that suppψ ⊆ K1 ×K2, and set

M := sup
x∈K1×K2

eω(x).

By [20, Theorem 8.1], for all ε, λ > 0 there exists χ ∈ D(ω)(K1) ⊗ D(ω)(K2)
satisfying

sup
x∈K1×K2

|Dα(ψ(x)− χ(x))|e−λϕ
∗
(
|α|
λ

)
<

ε

2Mλ
, α ∈ N2d

0 .

15



Chapter 0. Preliminaries

Therefore, for all α ∈ N2d
0 ,

sup
x∈R2d

|Dα(f(x)− χ(x))|e−λϕ
∗
(
|α|
λ

)
eλω(x)

≤ sup
x∈R2d

|Dα(f(x)− ψ(x))|e−λϕ
∗
(
|α|
λ

)
eλω(x)+

+ sup
x∈K1×K2

eλω(x) · sup
x∈K1×K2

|Dα(ψ(x)− χ(x))|e−λϕ
∗
(
|α|
λ

)
<
ε

2
+Mλ ε

2Mλ
= ε.

The dual space of Sω(Rd) is denoted by S ′ω(Rd), consisting of all the linear
and continuous mappings f : Sω(Rd)→ C. We say that an element of S ′ω(Rd)
is an ω-temperate ultradistribution. The space Sω(Rd) is dense in S ′ω(Rd).
Moreover, by Remark 0.14 we can identify E ′(ω)(Rd) as a subspace of S ′ω(Rd).

The Fourier transform of T ∈ S ′ω(Rd) is defined by

〈T̂ , ψ〉 = 〈T, ψ̂〉, ψ ∈ Sω(Rd).

0.3 Ultradifferential operators

We introduce the ultradifferential operators of (ω)-class (with constant coeffi-
cients). The notion of ultradifferential operator is used in structure theorems
for ultradistributions (see Braun [19], Langenbruch [51]). Let G ∈ H(Cd)
be an entire function satisfying log |G| = O(ω). For ϕ ∈ E(ω)(Rd), the map
TG : E(ω)(Rd)→ C given by

TG(ϕ) :=
∑
α∈Nd0

i|α|
DαG(0)

α!
Dαϕ(0), (0.15)

defines an ultradistribution in E ′(ω)(Rd), with support equal to {0}. The

ultradifferential operator of (ω)-class is defined as the convolution operator
G(D) : D′(ω)(Rd)→ D′(ω)(Rd), µ 7→ TG ∗ µ.

In [19, Theorem 7] it is shown the existence of entire functions with prescribed
exponential growth. The following theorem is taken from [51, Corollary 1.4].
We observe that condition (β) (non-quasianalyticity) is not necessary.
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0.3 Ultradifferential operators

Theorem 0.17. Let ω : [0,∞[→ [0,∞[ be a continuous and increasing func-
tion satisfying the conditions (α), (γ), and (δ) of Definition 0.3. Then there
exist an even entire function f ∈ H(C) and C1, C2, C3 > 0 such that

i) log |f(z)| ≤ ω(z) + C1, z ∈ C;

ii) log |f(z)| ≥ C2ω(z), for z ∈ U := {z ∈ C : | Im(z)| ≤ C3(|Re(z)|+ 1)}.

We prove the analogous result for several variables.

Theorem 0.18. Let ω satisfy the hypotheses of Theorem 0.17. Then there
are an entire function G ∈ H(Cd) and some constants C1, C2, C3, C4 > 0 such
that

i’) log |G(z)| ≤ ω(z) + C1, z ∈ Cd;

ii’) log |G(z)| ≥ C2ω(z)−C4, z ∈ Ũ := {z ∈ Cd : | Im(z)| ≤ C3(|Re(z)|+1)}.

Proof. By Theorem 0.17, there exist an even entire function f ∈ H(C) and
C1, C2, C3 > 0 such that

log |f(z)| ≤ ω(z) + C1, z ∈ C; (0.16)

log |f(z)| ≥ C2ω(z), z ∈ U := {z ∈ C : | Im(z)| ≤ C3(|Re(z)|+ 1)}. (0.17)

Since f is even,

f(z) =
∞∑
n=0

anz
2n, an ∈ C, n ∈ N0.

It follows by (0.17) that log |f(0)| ≥ 0, so a0 is not zero. Now, fix z =
(z1, . . . , zd) ∈ Cd \ {0} and put

w =
√
z2

1 + · · ·+ z2
d ∈ C.

We define

G(z) =
∞∑
n=0

an(z2
1 + · · ·+ z2

d)
n = f(w).

The function G is well defined and entire. We use (0.16) for w and we obtain

log |G(z)| = log |f(w)| ≤ ω(w) + C1.

17



Chapter 0. Preliminaries

This proves condition i′), since

ω(w) ≤ ω
(√
|z2

1 |+ · · ·+ |z2
d|
)

= ω(z).

To prove ii′), we first observe that for a small enough 0 < ε < 1, | Im(z)| <
ε|Re(z)| implies w ∈ U . Indeed, by the Cauchy–Schwarz inequality,

| Im(z2
1 + · · ·+ z2

d)| = 2
∣∣ d∑
j=1

Im(zj) Re(zj)
∣∣ < 2

√√√√ d∑
j=1

| Im(zj)|2
√√√√ d∑

j=1

|Re(zj)|2

= 2| Im(z)||Re(z)| < 2ε|Re(z)|2.
On the other hand,

|Re(z2
1 + · · ·+ z2

d)| =
d∑
j=1

(|Re(zj)|2 − | Im(zj)|2)

= |Re(z)|2 − | Im(z)|2 > |Re(z)|2(1− ε2).

Therefore,∣∣∣ Im(z2
1 + · · ·+ z2

d)

Re(z2
1 + · · ·+ z2

d)

∣∣∣ ≤ 2ε|Re(z)|2

|Re(z)|2(1− ε2)
=

2ε

1− ε2
= tan(α),

where α = arctan( 2ε
1−ε2 ). Hence, for ε small enough,∣∣∣ Im(w)

Re(w)

∣∣∣ =
∣∣∣ Im(

√
z2

1 + · · ·+ z2
d)

Re(
√
z2

1 + · · ·+ z2
d)

∣∣∣ ≤ tan
(α

2

)
,

where the right-hand side tends to 0 as ε→ 0. Therefore by (0.17) we have

log |G(z)| = log |f(w)| ≥ C2ω(w)

= C2ω
(∣∣∣√z2

1 + · · ·+ z2
d

∣∣∣) = C2ω
(√
|z2

1 + · · ·+ z2
d|
)

(0.18)

for all | Im(z)| < ε|Re(z)|.

Let q ∈ N0 so that 2q ≥
√
d. Since d|z2

1 + · · ·+ z2
d| ≥ |z2

1 |+ · · ·+ |z2
d|, using q

times condition (α) of Definition 0.3 we have from (0.18) (as L ≥ 1)

log |G(z)| ≥ C2ω
( 1√

d

√
|z2

1 |+ · · ·+ |z2
d|
)

≥ C2

Lq
ω
( 2q√

d
|z|
)
− C2q ≥

C2

Lq
ω(z)− C2q. (0.19)
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0.3 Ultradifferential operators

Now, from the continuity of G at 0 (notice that |G(0)| = |f(0)| ≥ 1), there
exists 0 < δ < 1 such that if |z| < δ, then

log |G(z)| ≥ C ′2ω(z)− C4 (0.20)

for some C ′2, C4 > 0. For the set Ũ = {z ∈ Cd : | Im(z)| ≤ C3(|Re(z)| + 1)},
we put C3 := δε/8 > 0 and we show that if z ∈ Ũ , then

log |G(z)| ≥ C̃2ω(z)− C̃4, (0.21)

for C̃2 := min{C2L
−q, C ′2} > 0 and C̃4 := max{C2q, C4} > 0. To this, we

distinguish two cases: if |Re(z)| ≤ δ/2, then

| Im(z)| ≤ C3(|Re(z)|+ 1) ≤ δε

8

(δ
2

+ 1
)
<
δ

4

(δ
2

+ 1
)

=
δ

2

(δ
4

+
1

2

)
<
δ

2
.

Therefore |z| ≤ |Re(z)|+ | Im(z)| < δ, and (0.20) is satisfied, and so is (0.21).
On the other hand, if |Re(z)| ≥ δ/2, then

| Im(z)| ≤ C3(|Re(z)|+ 1) =
δε

8
|Re(z)|+ δε

8

<
ε

2
|Re(z)|+ ε

2

δ

2
≤ ε|Re(z)|,

hence (0.19) holds, and also (0.21). The proof is complete.

In what follows, G ∈ H(Cd) is the entire function of Theorem 0.18.

Proposition 0.19. For the function q(ξ) := G(ξ)−1, ξ ∈ Rd, there exist
C,K,R > 0 such that

|Dαq(ξ)| ≤ Cα!R−|α|e−Kω(ξ), α ∈ Nd0, ξ ∈ Rd.

Proof. Let Ũ and C3 > 0 be the set and the constant appearing in condition
ii′) of Theorem 0.18. First we check that for the polyradius r = (R, . . . , R)

with 0 <
√
dR < C3, we have ∂P (ξ, r) ⊆ Ũ for all ξ = (ξ1, . . . , ξd) ∈ Rd.

Indeed, if z = (z1, . . . , zd) ∈ ∂P (ξ, r), we have

| Im(z)| ≤
√
d max

1≤j≤d
| Im(zj)| =

√
d max

1≤j≤d
| Im(zj − ξj)| ≤

√
d max

1≤j≤d
|zj − ξj|.

Then, by the choice of the polyradius r, we obtain

| Im(z)| ≤
√
dR < C3 ≤ C3(|Re(z)|+ 1),
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Chapter 0. Preliminaries

as we wanted.

We use Proposition 0.11, and by Theorem 0.18 there exist C2, C4 > 0 such
that

|Dαq(ξ)| ≤ α!

rα
sup

z∈∂P (ξ,r)

|q(z)| ≤ eC4
α!

rα
sup

z∈∂P (ξ,r)

e−C2ω(z) (0.22)

for all α ∈ Nd0, ξ ∈ Rd. We estimate the supremum on the right-hand side
of (0.22): it is clear that

− ω(z) ≤ −1

d
(ω(z1) + · · ·+ ω(zd)), z = (z1, . . . , zd) ∈ ∂P (ξ, r). (0.23)

Since |ξj|− |zj| ≤ |zj − ξj| = R < C3/
√
d for j = 1, . . . , d, we use formula (0.1)

to obtain

− ω(zj) ≤ −ω
(
|ξj| −

1√
d
C3

)
≤ − 1

L
ω(ξj) + ω

( 1√
d
C3

)
+ 1, j = 1, . . . , d.

(0.24)
By formula (0.5), we deduce, for that L′ ≥ 1,

ω(ξ) ≤ ω(
√
d|ξ|∞) ≤ L′ω(|ξ|∞) + L′ ≤ L′(ω(ξ1) + · · ·+ ω(ξd)) + L′.

Therefore,

− (ω(ξ1) + · · ·+ ω(ξd)) ≤ −
1

L′
ω(ξ) + 1. (0.25)

Thus, we obtain, by (0.23), (0.24) for all j = 1, . . . , d, and (0.25),

−C2ω(z) ≤ −C2

d
(ω(z1) + · · ·+ ω(zd))

≤ −C2

dL
(ω(ξ1) + · · ·+ ω(ξd)) + C2ω

( 1√
d
C3

)
+ C2

≤ − C2

dLL′
ω(ξ) +

C2

dL
+ C2ω

( 1√
d
C3

)
+ C2. (0.26)

Since rα = R|α|, the result follows by (0.22) for

K = C2/(dLL
′) > 0, C = eC4eC2/(dL)+C2ω(C3/

√
d)+C2 > 0.

The estimate in Proposition 0.19 can be adapted for any power of G for the
same constants.
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0.3 Ultradifferential operators

Corollary 0.20. For n ∈ N, let Gn denote the n-th power of G. Then, for
qn(ξ) := G−n(ξ), ξ ∈ Rd, it holds

|Dαqn(ξ)| ≤ Cnα!R−|α|e−nKω(ξ),

for the same constants C,K,R > 0 as in Proposition 0.19, for all α ∈ Nd0,
ξ ∈ Rd.

Proof. Let r be the same polyradius as in the proof of Proposition 0.19. Pro-
ceeding as in (0.22), we have

|Dαqn(ξ)| ≤ α!

rα
sup

z∈∂P (ξ,r)

|qn(z)| ≤ enC4
α!

rα
sup

z∈∂P (ξ,r)

e−nC2ω(z),

for all α ∈ Nd0, ξ ∈ Rd, where C2, C4 > 0 come from condition ii′) of Theo-
rem 0.18. From (0.26) we deduce the result.

As G(z) =
∑

α∈Nd0
aαz

α for some sequence {aα}α ⊆ C, for all z ∈ Cd, for

any n ∈ N we have Gn(z) =
∑

α∈Nd0
bαz

α for another sequence {bα}α ⊆ C,

for all z ∈ Cd. To complete this section, we find suitable estimates for such
sequences. We begin estimating the derivatives of G at the origin.

Lemma 0.21. There exists C > 0 depending on G, ω and d such that

|DαG(0)| ≤ α!eCe−Cϕ
∗
(
|α|
C

)
, α ∈ Nd0.

Proof. Let R > 0 be arbitrary and set r = (R, . . . , R) ∈ Rd. Take q ∈ N0

so that
√
d ≤ 2q. By Proposition 0.11 and by condition i′) of Theorem 0.18,

using q times condition (α) of the weight function, there exist C1 > 0 and
L := Lq + · · ·+ L > 0 such that for all α ∈ Nd0,

|DαG(0)| ≤ α!

rα
sup

z∈∂P (0,r)

|G(z)| ≤ α!

R|α|
eω(
√
dR)+C1 ≤ α!

R|α|
eLω(R)+L+C1 , (0.27)

for all R > 0. Since

inf
R>0
{R−|α|eLω(R)} =

(
sup
R>0
{R|α|e−Lω(R)}

)−1

≤
(

sup
s>0
{es|α|−Lϕ(s)}

)−1

=
(

sup
s>0
{eL(s(|α|/L)−ϕ(s))}

)−1
= e−Lϕ

∗
(
|α|
L

)
,

(0.28)

we obtain the claim for C := L+ C1 > 0.
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We now give the analogous estimate for Gn at the origin.

Corollary 0.22. Let n ∈ N. For the same C > 0 as in Lemma 0.21 it holds

|DαGn(0)| ≤ α!enCe−nCϕ
∗
(
|α|
nC

)
, α ∈ Nd0.

Proof. Again, for arbitrary R > 0 and r = (R, . . . , R) ∈ Rd, we obtain as in
formula (0.27), that for all α ∈ Nd0,

|DαGn(0)| ≤ α!

rα
sup

z∈∂P (0,r)

|Gn(z)| ≤ α!

R|α|
enLω(R)+nL+nC1

for all R > 0. As in (0.28),

inf
R>0
{R−|α|enLω(R)} ≤ (sup

s>0
{es|α|e−nLϕ(s)})−1

= exp
(
nL sup

s>0

{
s
|α|
nL
− ϕ(s)

})−1

= exp
(
nLϕ∗

( |α|
nL

))−1

.

Hence, the result follows.

Corollary 0.23. Let n ∈ N. If {aα} and {bα} are the sequences such that

G(z) =
∑
α∈Nd0

aαz
α, Gn(z) =

∑
α∈Nd0

bαz
α, z ∈ Cd,

then for C ≥ 1 as in Lemma 0.21,

|aα| ≤ eCe−Cϕ
∗
(
|α|
C

)
, α ∈ Nd0;

|bα| ≤ enCe−nCϕ
∗
(
|α|
nC

)
, α ∈ Nd0. (0.29)

Proof. It is enough to use Lemma 0.21 and Corollary 0.22 and take into ac-
count that for arbitrary α ∈ Nd0, |aα|α! ≤ |DαG(0)|, and |bα|α! ≤ |DαGn(0)|
for all n ∈ N.

We denote Ť (x) := T (−x). We define the convolution of T ∈ E ′(ω)(Rd) and

µ ∈ S ′ω(Rd) by (see [20, Definition 6.1])

〈T ∗ µ, φ〉 = 〈µ, Ť ∗ φ〉, φ ∈ Sω(Rd).
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0.3 Ultradifferential operators

Proposition 0.24. For an ultradifferential operator of (ω)-class G(D) we
have that

G(D) : Sω(Rd)→ Sω(Rd), G(D) : S ′ω(Rd)→ S ′ω(Rd)

are linear and continuous.

Proof. From [19], we deduce that for f ∈ Sω(Rd), the operator G(D) acts

(G(D)f)(x) :=
∑
α∈Nd0

(−i)|α|D
αG(0)

α!
Dαf(x).

Fix f ∈ Sω(Rd) and λ > 0. We have for all β ∈ Nd0,

|Dβ(G(D)f)(x)| ≤
∑
α∈Nd0

|DαG(0)|
α!

|Dα+βf(x)|.

By Lemma 0.21 there exists C > 0 such that

|DαG(0)| ≤ α!eCe−Cϕ
∗
(
|α|
C

)
, α ∈ Nd0.

Denoting |f |λ as in (0.14), since f ∈ Sω(Rd), we have for λ′ := max{λ,CL} > 0

|Dβ(G(D)f)(x)| ≤
∑
α∈Nd0

eCe−Cϕ
∗
(
|α|
C

)
|f |2λ′e2λ′ϕ∗

(
|α+β|
2λ′

)
e−2λ′ω(x).

By (0.10) and (0.11), we have

|Dβ(G(D)f)(x)| ≤
∑
α∈Nd0

eCeCLe−|α|e−CLϕ
∗
(
|α|
CL

)
|f |2λ′eCLϕ

∗
(
|α|
CL

)
eλϕ

∗
(
|β|
λ

)
e−λω(x)

= eC+CLeλϕ
∗
(
|β|
λ

)
e−λω(x)|f |2λ′

∑
α∈Nd0

e−|α|.

Then, from Lemma 0.1 there exists C ′ > 0 such that

|Dβ(G(D)f)(x)|e−λϕ
∗
(
|β|
λ

)
eλω(x) ≤ C ′|f |2λ′ .

Hence |G(D)f |λ ≤ C ′|f |2λ′ as we wanted.

This shows that G(−D) : Sω(Rd)→ Sω(Rd) is continuous and

G(−D)t : S ′ω(Rd)→ S ′ω(Rd)
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is also continuous. Therefore, for µ ∈ S ′ω(Rd), f ∈ Sω(Rd), we have (for the
second equality, see [36, Proposición 1.2.4])

〈G(−D)tµ, f〉 = 〈µ,G(−D)f〉 = 〈µ, ŤG ∗ f〉 = 〈TG ∗ µ, f〉 = 〈G(D)µ, f〉.

This shows the result.

0.4 Time-frequency analysis

Here we present some results regarding time-frequency analysis. Some meth-
ods of this theory will be used in Chapter 4. We denote the translation, the
modulation, and the phase-shift operators by

Txf(y) = f(y − x); Mξf(y) = eiy·ξf(y); Π(z)f(y) = eiy·ξf(y − x),

for all x, y, ξ ∈ Rd and z = (x, ξ).

One of the fundamental tools of this theory is the short-time Fourier transform.
We refer the reader to Gröchenig [38].

Definition 0.25. Let ψ ∈ Sω(Rd)\{0} be a window function. The short-time
Fourier transform of f ∈ S ′ω(Rd) is defined by

Vψf(z) := 〈f,Π(z)ψ〉 =

∫
Rd
f(y)ψ(y − x)e−iy·ξdy, z = (x, ξ) ∈ R2d.

We observe that the conjugate linear action of S ′ω(Rd) on Sω(Rd) is consistent
with the scalar product in L2(Rd), 〈·, ·〉L2(Rd). We can write the short-time
Fourier transform in terms of the Fourier transform:

Vψf(z) = f̂ · Txψ(ξ), z = (x, ξ) ∈ R2d, (0.30)

(see for example Gröchenig and Zimmermann [39]). The adjoint operator of
the short-time Fourier transform is defined as follows: for ψ ∈ L2(Rd), we
write Aψ : L2(R2d)→ L2(Rd) for the operator given by

AψF =

∫
R2d

F (z)Π(z)ψdz.

For all F ∈ L2(R2d) and g ∈ L2(Rd), we have

〈AψF, g〉 =

∫
R2d

F (z)〈Π(z)ψ, g〉dz =

∫
R2d

F (z)Vψg(z)dz = 〈F, Vψg〉 = 〈V ∗ψF, g〉.
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0.4 Time-frequency analysis

Hence, Aψ is the adjoint operator of Vψ : L2(Rd) → L2(R2d). Thus, for
ψ ∈ Sω(Rd) and F ∈ Sω(R2d), we define

V ∗ψF := AψF. (0.31)

It is known that V ∗ψ : Sω(R2d) → Sω(Rd) is continuous (see for example [14,
(2.21)]). Furthermore,

Lemma 0.26. If ψ ∈ Sω(Rd) \ {0}, then

Vψ : Sω(Rd)→ Sω(R2d), Vψ : S ′ω(Rd)→ S ′ω(R2d)

are continuous. Moreover, if u ∈ S ′ω(Rd), then there exist c, µ > 0 such that

|Vψu(z)| ≤ ceµω(z), z ∈ R2d.

Proof. See [14, Propositions 2.9 and 4.7]. For the second inequality, we refer
to [39, Theorem 2.4].

It follows from [39, Lemma 1.1] (see also [14, (2.25)]) that for all f ∈ S ′ω(Rd),
g ∈ Sω(Rd), (see [38, (3.17)] to understand the meaning of the integral)

〈V ∗ψVψf, g〉 =

∫
R2d

Vψf(z)〈Π(z)ψ, g〉dz = (2π)d ‖ψ‖2L2(Rd) 〈f, g〉. (0.32)

Therefore, we can show the following

Proposition 0.27. Let u ∈ S ′ω(Rd) and ψ, φ ∈ Sω(Rd), ψ 6= 0. Then,

|Vφu(z)| ≤ (2π)−d ‖ψ‖−2

L2(Rd) (|Vψu| ∗ |Vφψ|)(z), z ∈ R2d.

We recall from [39, Theorem 2.7] a characterization of Sω(Rd) in terms of the
short-time Fourier transform.

Theorem 0.28. Let ψ ∈ Sω(Rd) \ {0} be a window function, and let f ∈
S ′ω(Rd). The following assertions are equivalent:

(i) f ∈ Sω(Rd).

(ii) For all λ > 0, there exists Cλ > 0 such that |Vψf(z)| ≤ Cλe−λω(z), z ∈ Rd.

(iii) Vψf ∈ Sω(R2d).
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This provides also another equivalent system of seminorms for the space Sω(Rd)
(see e.g. [14, Proposition 2.10], cf. [15, Theorem 2.5(h)′]): for ψ ∈ Sω(Rd)\{0},

‖Vψf‖ω,λ :=
∥∥∥Vψf(z)eλω(z)

∥∥∥
L∞(R2d)

, λ > 0. (0.33)

The following results are well known in the Schwartz class S(Rd) (see for
example [38, Chapter 3] or Grubb [40]). A similar proof of them remains
valid for Sω(Rd). We recall the inversion formula for the Fourier transform in
Sω(Rd):

f(x) = (2π)−d
∫
Rd
eiy·xf̂(y)dy, f ∈ Sω(Rd). (0.34)

We will denote the inverse of the Fourier transform by

F−1(f)(x) = (2π)−d
∫
eiy·xf(y)dy, f ∈ Sω(Rd).

Lemma 0.29. If T ∈ S ′ω(Rd) and g ∈ Sω(Rd), then

ĝT = (2π)−d
(
ĝ ∗ T̂

)
, ĝ ∗ T = ĝ · T̂ .

Lemma 0.30. If f, g ∈ Sω(Rd) \ {0}, then

Vgf(x, ξ) = e−ix·ξVfg(−x,−ξ), x, ξ ∈ Rd.

Lemma 0.31. If ψ ∈ Sω(Rd) \ {0}, then

Myψ̂(η) = T̂−yψ(η), M̂yψ(η) = Tyψ̂(η), y, η ∈ Rd.

Lemma 0.32. If f ∈ S ′ω(Rd) and ψ ∈ Sω(Rd) \ {0}, then

Vψf(x, ξ) = (2π)−d
(
f̂ ∗M−xψ̂

)
(ξ) x, ξ ∈ Rd.

Proof. It is an immediate application of formula (0.30) and Lemmas 0.29
and 0.31.

This result is taken from [14, (4.31)].

Lemma 0.33. If u ∈ S ′ω(Rd) and ψ ∈ Sω(Rd) \ {0}, then for all γ ∈ Nd0,

Vψ(Dγu)(z) =
∑
β≤γ

(
γ

β

)
ξγ−βVDβψ(u)(z), z = (x, ξ) ∈ R2d.
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Proof. By definition, we have

Vψ(Dγu)(z) = 〈Dγu,Π(z)ψ〉 = 〈u,Dγ(Π(z)ψ)〉.

As

Dγ(Π(z)ψ(y)) = Dγ
y (eiy·ξψ(y − x)) =

∑
β≤γ

(
γ

β

)
ξγ−βeiy·ξDβ

yψ(y − x),

for all y ∈ Rd, we then obtain

Vψ(Dγu)(z) =
∑
β≤γ

(
γ

β

)
ξγ−β〈u, eiy·ξDβ

yψ(y − x)〉.

Therefore, we get the result since eiy·ξDβ
yψ(y−x) = Π(z)Dβψ and using again

the definition of short-time Fourier transform.

In Chapter 4, we will use the following

Definition 0.34. Let f ∈ Sω(R2d). The Wigner transform of f is

Wig(f)(x, ξ) =

∫
Rd
e−iy·ξf(x+ y/2, x− y/2)dy, x, ξ ∈ Rd.
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Chapter 1

Global pseudodifferential
operators

The local theory of pseudodifferential operators grew out of the study of sin-
gular integral operators, and developed after 1965 with the systematic studies
of Kohn-Nirenberg [48], Hörmander [43], and others. Since then, several au-
thors have studied pseudodifferential operators of finite or infinite order in
Gevrey classes in the local sense; we mention, for instance, [41, 65]. We refer
to Rodino [60] for an excellent introduction to this topic, and the references
therein.

Gevrey classes are spaces of (non-quasianalytic) ultradifferentiable functions
in between real analytic and C∞ functions. The study of several problems
in general classes of ultradifferentiable functions has received much attention
in the last 60 years. Here, we will work with ultradifferentiable functions as
defined by Braun, Meise and Taylor [20], which define the classes in terms
of the growth of the derivatives of the functions, or in terms of the growth of
their Fourier transform (see, for example, Komatsu [49] and Björck [8], or [20],
for two different points of view to define spaces of ultradifferentiable functions
and ultradistributions; and Bonet, Meise, and Melikhov [18] for a comparison
between the classes defined in [20, 49]).
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Chapter 1. Global pseudodifferential operators

In Fernández, Galbis, and Jornet [33], a full theory of pseudodifferential oper-
ators in the local sense is developed for ultradifferentiable classes of Beurling
type as in [20], and it is proved that the corresponding operators are ω-pseudo-
local, and the product of two operators is given in terms of a suitable symbolic
calculus. In [32, 34], the same authors construct a parametrix for such oper-
ators and study the action of the wave front set on them (see also Albanese,
Jornet, and Oliaro [2] for a different point of view). On the other hand, very
recently, Prangoski [58] studies pseudodifferential operators of global type and
infinite order for ultradifferentiable classes of Beurling and Roumieu type in
the sense of Komatsu, and later, in Cappiello, Pilipović, and Prangoski [25], a
parametrix is constructed for such operators. See [22, 23, 27, 55, 58] and the
references therein for more examples of pseudodifferential operators in global
classes (e.g., in Gelfand-Shilov classes).

The aim of this chapter is to study pseudodifferential operators of global type
and infinite order in all the variables in classes of ultradifferentiable functions of
Beurling type as introduced in [20]. Hence, the right setting is the class Sω(Rd)
as introduced by Björck [8]. We follow the lines of [58] and Shubin [64], but
from the point of view of [33], in such a way that our proofs simplify the ones
of [58]. Moreover, we clarify the role of some kind of entire functions [19, 51]
(see Section 0.3) that become crucial throughout the text.

It is worth mentioning that in the case when the weight function satisfies
(see [18, Corollary 16(3)]):

There exists H > 1 : 2ω(t) ≤ ω(Ht) +H, t > 0, (BMM)

the classes of ultradifferentiable functions defined by weights (as in [20]) and
the ones defined by sequences (as in [49]) coincide. In this situation, the
definition given by Prangoski for the Beurling case in [58, Definition 1] is
expected to be the same as our Definition 1.3. But, if the weight sequence
(Mp)p satisfies only condition (M2) of Komatsu, as it is assumed by [58], our
classes of amplitudes could differ in general from the ones given by Prangoski
(see [18, Example 17]). Hence, we are treating, even only in the Beurling
setting, different cases.

We first introduce our global symbols and global amplitudes following [58,
64] and define the corresponding pseudodifferential operators. We give in
Proposition 1.19 a characterization in terms of the kernel of an ω-regularizing
operator, which is a continuous linear operator R : S ′ω(Rd) → Sω(Rd). The
ω-regularizing operators are crucial to understand the symbolic calculus in
the next chapter and, thus, to construct parametrices for pseudodifferential
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operators (see Chapter 3). We also see in Example 1.21 that many operators
are pseudodifferential operators according to our definition.

The results of this chapter can be found in [6].

1.1 Symbols and amplitudes

We begin with the definitions of global symbol and global amplitude in our
context of spaces of global (non-quasianalytic) ultradifferentiable functions of
Beurling type, following Prangoski [58] and Shubin [64]. In the following,
m ∈ R and 0 < ρ ≤ 1.

Definition 1.1. A global symbol in GSm,ωρ is a function p(x, ξ) ∈ C∞(R2d)
such that for all λ > 0 there exists Cλ > 0 with

|Dα
xD

β
ξ p(x, ξ)| ≤ Cλ〈(x, ξ)〉−ρ|α+β|eλρϕ

∗
(
|α+β|
λ

)
emω(x,ξ),

for all α, β ∈ Nd0, x, ξ ∈ Rd.

The symbols of Definition 1.1 are called of infinite order due to the term
emω(x,ξ). For the corresponding definition of finite order, we adapt [64, Defini-
tion 23.1] (see also [33]):

Definition 1.2. A global symbol of finite order in Sm,ωρ is a function p(x, ξ) ∈
C∞(R2d) such that for all λ > 0 there exists Cλ > 0 with

|Dα
xD

β
ξ p(x, ξ)| ≤ Cλ〈(x, ξ)〉−ρ|α+β|eλρϕ

∗
(
|α+β|
λ

)
〈(x, ξ)〉m,

for all α, β ∈ Nd0, x, ξ ∈ Rd.

It follows from (0.7) that Sm,ωρ ⊆ GSm,ωρ .

Definition 1.3. A global amplitude in GAm,ω
ρ is a function a(x, y, ξ) ∈

C∞(R3d) such that for all λ > 0 there exists Cλ > 0 with

|Dα
xD

γ
yD

β
ξ a(x, y, ξ)| ≤ Cλ

( 〈x− y〉
〈(x, y, ξ)〉

)ρ|α+γ+β|
eλρϕ

∗
(
|α+γ+β|

λ

)
emω(x,y,ξ),

for all α, γ, β ∈ Nd0, x, y, ξ ∈ Rd.

Lemma 1.4. For every x, y, ξ ∈ Rd we have

〈x− y〉 ≤
√

2〈(x, y)〉 ≤
√

2〈(x, y, ξ)〉 ≤
√

6〈x− y〉〈(x, ξ)〉.
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Proof. Since (|x| − |y|)2 ≥ 0, we have 2|x||y| ≤ |x|2 + |y|2. By the Cauchy–
Schwarz inequality we obtain

1 + |x− y|2 = 1 + |x|2 − 2x · y + |y|2 ≤ 1 + |x|2 + 2|x||y|+ |y|2

≤ 1 + 2|x|2 + 2|y|2 < 2(1 + |x|2 + |y|2).

As |y|2 ≤ (|x− y|+ |x|)2 ≤ 2|x− y|2 + 2|x|2, we get

1 + |x|2 + |y|2 + |ξ|2 ≤ 1 + |x|2 + |ξ|2 + 2|x− y|2 + 2|x|2

≤ 3(1 + |x|2 + |x− y|2 + |ξ|2)

≤ 3(1 + |x− y|2)(1 + |x|2 + |ξ|2),

and the result then follows.

It is immediate to check:

Example 1.5. Let p(x, ξ) be a global symbol in GSm,ωρ . Then a1(x, y, ξ) :=

p(x, ξ) and a2(x, y, ξ) := p(y, ξ) are global amplitudes in GAmax{0,m},ω
ρ .

Proof. We need to estimate |Dα
xD

γ
yD

β
ξ a1(x, y, ξ)| for all α, γ, β ∈ Nd0, x, y, ξ ∈

Rd. We can assume γ = 0 because p(x, ξ) does not depend on the variable y.
Since p(x, ξ) ∈ GSm,ωρ , for all λ > 0 there exists Cλ = CλL > 0 such that

|Dα
xD

β
ξ a1(x, y, ξ)| ≤ Cλ〈(x, ξ)〉−ρ|α+β|eλLρϕ

∗
(
|α+β|
λL

)
emω(x,ξ),

for all α, β ∈ Nd0, x, y, ξ ∈ Rd. By Lemma 1.4 we obtain

〈(x, ξ)〉−ρ|α+β| ≤
√

3
ρ|α+β|( 〈x− y〉

〈(x, y, ξ)〉

)ρ|α+β|
.

As
√

3 ≤ e, we use formula (0.10) for k = 1 and get(
eλLϕ

∗
(
|α+β|
λL

)
e|α+β|

)ρ
≤ eλρϕ

∗
(
|α+β|
λ

)
eλLρ.

For m ≥ 0, it follows that mω(x, ξ) ≤ mω(x, y, ξ). So, for all λ > 0 there
exists C ′λ = Cλe

λLρ > 0 such that

|Dα
xD

β
ξ a1(x, y, ξ)| ≤ C ′λ

( 〈x− y〉
〈(x, y, ξ)〉

)ρ|α+β|
eλρϕ

∗
(
|α+β|
λ

)
emω(x,y,ξ),

for every α, β ∈ Nd0, x, y, ξ ∈ Rd. This shows a1 ∈ GAm,ω
ρ for m ≥ 0. An

analogous proof works to see that a2 ∈ GAm,ω
ρ . If m < 0 the result is also

clear.
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The following result can be seen as the reciprocal of Example 1.5.

Example 1.6. Let a(x, y, ξ) ∈ GAm,ω
ρ and p(x, ξ) := a(x, y, ξ)|y=x. Then

p ∈ GSmax{m,mL},ω
ρ .

Proof. Let p̃ ∈ N0 so that 2 ≤ eρp̃. By the chain rule, from Definition 1.3 we
have that for all λ > 0 there exists Cλ > 0 such that (as

∑(
α
α̃

)
= 2|α|)

|Dα
xD

β
ξ a(x, y, ξ)|y=x | ≤

∑
α̃≤α

(
α

α̃

)
|Dα̃

xD
α−α̃
y Dβ

ξ a(x, y, ξ)|y=x |

≤ Cλ〈(x, x, ξ)〉−ρ|α+β|eλL
p̃ρϕ∗

(
|α+β|
λLp̃

)
2|α|emω(x,x,ξ)

for all α, β ∈ Nd0, x, ξ ∈ Rd. By (0.10), we have

eλL
p̃ρϕ∗

(
|α+β|
λLp̃

)
2|α| ≤ eλρϕ

∗
(
|α+β|
λ

)
eλρ

∑p̃
j=1 L

j

.

From (0.4) it follows that

ω(x, ξ) ≤ ω(x, x, ξ) ≤ Lω(x, ξ) + L, x, ξ ∈ Rd.

The result holds since 〈(x, ξ)〉 ≤ 〈(x, x, ξ)〉.

Let m1,m2 ∈ R. It is clear that if p1 ∈ GSm1,ω
ρ and p2 ∈ GSm2,ω

ρ (respectively

a1 ∈ GAm1,ω
ρ and a2 ∈ GAm2,ω

ρ ), then p1p2 ∈ GSm1+m2,ω
ρ (respectively a1a2 ∈

GAm1+m2,ω
ρ ), and that if m1 ≤ m2, then GSm1,ω

ρ ⊆ GSm2,ω
ρ and GAm1,ω

ρ ⊆
GAm2,ω

ρ .

If ω2 ≤ ω1, as ϕ∗ω2
≥ ϕ∗ω1

and mω2 ≥ mω1 for m ≤ 0, it holds that GSm,ω1

ρ ⊆
GSm,ω2

ρ for m ≤ 0 (respectively, GAm,ω1

ρ ⊆ GAm,ω2

ρ for m ≤ 0). If m > 0, we
do not know if similar inclusions are true.

Moreover, if 0 < ρ ≤ ρ′ ≤ 1 we need to impose conditions on the weight
functions ω1 and ω2 in the following way:

Example 1.7. Let 0 < ρ2 ≤ ρ1 ≤ 1. If ω1 and ω2 are weight functions such
that

(1) ω2(tρ1/ρ2) = O(ω1(t)), as t → ∞, then there exists C > 0 such that for
m ≤ 0, GSm,ω1

ρ1
⊆ GSmC,ω2

ρ2
and GAm,ω1

ρ1
⊆ GAmC,ω2

ρ2
;
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Chapter 1. Global pseudodifferential operators

(2) ω2(tρ1/ρ2) = o(ω1(t)), as t → ∞, then, for m < 0, GSm,ω1

ρ1
⊆
⋂
k∈R GSk,ω2

ρ2

and GAm,ω1

ρ1
⊆
⋂
k∈R GAk,ω2

ρ2
.

Proof. (1) As ρ2 ≤ ρ1, by assumption there exists C > 0 such that ω2(t) ≤
ω2(tρ1/ρ2) ≤ Cω1(t) + C for all t ≥ 0. Thus

mω1(t) ≤ mC−1ω2(t)−m, t ≥ 0, (1.1)

for m ≤ 0. Moreover, we use Lemma 0.10(2) to get that there exists C ′ > 0
so that for all λ > 0, j ∈ N0,

λC ′ϕ∗ω1

( j

λC ′

)
≤ λC ′ + λ

ρ2

ρ1

ϕ∗ω2

( j
λ

)
. (1.2)

Since 〈(x, ξ)〉−ρ1|α+β| ≤ 〈(x, ξ)〉−ρ2|α+β| for all x, ξ ∈ Rd, the result follows for
symbols. Now, let a ∈ GAm,ω1

ρ1
. By Definition 1.3, for all λ > 0 there exists

Cλ = CλC′L > 0 such that

|Dα
xD

γ
yD

β
ξ a(x, y, ξ)| ≤ Cλ

( 〈x− y〉
〈(x, y, ξ)〉

)ρ1|α+γ+β|
eλC

′Lρ1ϕ
∗
ω1

(
|α+γ+β|
λC′L

)
emω1(x,y,ξ),

for all α, γ, β ∈ Nd0, x, y, ξ ∈ Rd. By Lemma 1.4, as 0 ≤ ρ1 − ρ2 < ρ1,( 〈x− y〉
〈(x, y, ξ)〉

)ρ1|α+γ+β|
≤
( 〈x− y〉
〈(x, y, ξ)〉

)ρ2|α+γ+β|√
2
ρ1|α+γ+β|

.

Since
√

2 ≤ e, from formula (0.10) for k = 1 and (1.2) we obtain(
eλC

′Lϕ∗ω1

(
|α+γ+β|
λC′L

)
e|α+γ+β|

)ρ1
≤ eλC

′ρ1ϕ
∗
ω1

(
|α+γ+β|
λC′

)
eλC

′Lρ1

≤ eλC
′Lρ1eλC

′ρ1eλρ2ϕ
∗
ω2

(
|α+γ+β|

λ

)
.

By (1.1) we obtain a ∈ GAmC−1,ω2

ρ2
.

(2) By the hypothesis, similarly as in (1.1) and (1.2), for −m > 0 and given
k > 0 there exists Ck,m > 0 such that kω2(t) ≤ −mω1(t) + Ck,m. Hence

mω1(t) ≤ −kω2(t) + Ck,m, t ≥ 0.

Moreover, by Lemma 0.10(1), for all λ > 0 there exists Cλ > 0 such that

λϕ∗ω1

( j
λ

)
≤ Cλ + λ

ρ2

ρ1

ϕ∗ω2

( j
λ

)
, j ∈ N0. (1.3)

As before, the result for symbols follows due to the arbitrariness of k > 0. For
amplitudes we replace (1.2) by (1.3) and proceed in the same way.
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1.2 Continuity of the operator

Now, take a weight function σ such that ω(t1/ρ) = o(σ(t)), t → ∞. We show
that if f ∈ D{σ}(R2d), then f ∈

⋂
m∈R GSm,ωρ . Indeed, there exist n,C > 0

such that

|Dα
xD

β
ξ f(x, ξ)| ≤ Ce 1

nϕ
∗
σ(n|α+β|), α, β ∈ Nd0, x, ξ ∈ Rd.

We take R ∈ N such that f(x, ξ) = 0 for 〈(x, ξ)〉 ≥ eR. By Lemma 0.10, we
get that for all λ > 0 there exists Cλ = CeCλLR,n > 0 such that

|Dα
xD

β
ξ f(x, ξ)| ≤ CλeλL

Rρϕ∗ω

(
|α+β|
λLR

)
, α, β ∈ Nd0, x, ξ ∈ Rd.

For 〈(x, ξ)〉 ≤ eR, we have by (0.10)

eλL
Rρϕ∗ω

(
|α+β|
λLR

)
≤ 〈(x, ξ)〉−ρ|α+β|

(
eR|α+β|eλL

Rϕ∗ω

(
|α+β|
λLR

))ρ(
e−λω(x,ξ)eλω(eR)

)
≤ 〈(x, ξ)〉−ρ|α+β|eλρϕ

∗
ω

(
|α+β|
λ

)
eλρ

∑R
j=1 L

j

e−λω(x,ξ)eλω(eR).

This shows the result. The same argument works to show that if f ∈ D(ω)(R2d),
then f ∈

⋂
m∈R GSm,ω1 . We will discuss similar inclusions in Example 1.21(b).

1.2 Continuity of the operator

We define pseudodifferential operators for global amplitudes as in Defini-
tion 1.3 using oscillatory integrals. Let χ ∈ Sω(R2d) with χ(0) = 1. We
consider, for n ∈ N, the double integral for arbitrary f ∈ Sω(Rd), x ∈ Rd,
given by

A 1
n ,χ

(f)(x) :=

∫∫
Rd×Rd

ei(x−y)·ξa(x, y, ξ)χ
( 1

n
(x, ξ)

)
f(y)dydξ. (1.4)

We prove that {A 1
n ,χ

(f)} converges for every f ∈ Sω(Rd) when n→∞. This

limit will define a linear and continuous operator A : Sω(Rd)→ Sω(Rd) given
by the iterated integral

A(f)(x) :=

∫
Rd

( ∫
Rd
ei(x−y)·ξa(x, y, ξ)f(y)dy

)
dξ, f ∈ Sω(Rd). (1.5)

Hence, the operator in (1.5) is independent of the choice of the test function
χ ∈ Sω(R2d) in (1.4).

We use a suitable integration by parts with an ultradifferential operator of
(ω)-class as in Section 0.3, which will be also useful for next chapters.
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Chapter 1. Global pseudodifferential operators

Lemma 1.8. Let G be the entire function of Theorem 0.18. For every n ∈ N,

ei(x−y)·ξ =
1

Gn(ξ)
Gn(−Dy)e

i(x−y)·ξ (1.6)

=
1

Gn(y − x)
Gn(−Dξ)e

i(x−y)·ξ (1.7)

=
1

Gn(y − x)
Gn(−Dξ)

( 1

Gn(ξ)
Gn(−Dy)e

i(x−y)·ξ
)
. (1.8)

Proof. Since Gn(D) =
∑

α∈Nd0
bαD

α, for some sequence {bα} ⊆ C, we have

(notice that ei(x−y)·ξ ∈ E(ω)(Rdy) for all x, ξ ∈ Rd)

Gn(−Dy)(e
i(x−y)·ξ) =

∑
α∈Nd0

bα(−Dy)
α(ei(x−y)·ξ)

=
∑
α∈Nd0

bα(−1)|α|(−i)|α|(−iξ)αei(x−y)·ξ = ei(x−y)·ξGn(ξ).

This shows (1.6). For (1.7), we can proceed similarly. A combination of (1.6)
and (1.7) yields (1.8).

Proposition 1.9. Let χ ∈ Sω(R2d). For every function f ∈ Sω(Rd), the
sequence {A 1

n ,χ
(f)}n∈N as in (1.4) is a Cauchy sequence in Sω(Rd).

Proof. According to the notation (0.14), for any f ∈ Sω(Rd) and λ > 0, we
need to show that

|(A1/k,χ −A1/l,χ)(f)|λ → 0 (1.9)

as l, k tend to infinity.

To this aim, we differentiate (A1/k,χ−A1/l,χ)(f) under the integral sign, using
Leibniz rule, as follows:

Dα
x

( ∫∫
Rd×Rd

ei(x−y)·ξa(x, y, ξ)
(
χ
(1

k
(x, ξ)

)
− χ

(1

l
(x, ξ)

))
f(y)dydξ

)
=

∑
α1+α2+α3=α

α!

α1!α2!α3!

∫∫
R2d

ei(x−y)·ξξα1Dα2
x a(x, y, ξ)×

×Dα3
x

(
χ
(1

k
(x, ξ)

)
− χ

(1

l
(x, ξ)

))
f(y)dydξ,

(1.10)

for all α ∈ Nd0 and x ∈ Rd. Taking into account the sequences in Corollary 0.23,
we make an integration by parts via formula (1.8) for a suitable power n ∈ N
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1.2 Continuity of the operator

(that we determine later) to obtain the following expression for the integrand
in (1.10):

ei(x−y)·ξ 1

Gn(ξ)
Gn(Dy)

( 1

Gn(y − x)
Gn(Dξ)

(
ξα1Dα2

x a(x, y, ξ)×

×Dα3
x

(
χ
(1

k
(x, ξ)

)
− χ

(1

l
(x, ξ)

))
f(y)

))
= ei(x−y)·ξ 1

Gn(ξ)
Gn(Dy)

( 1

Gn(y − x)

∑
η∈Nd0

bη
∑

η1+η2+η3=η, η1≤α1

η!

η1!η2!η3!
×

× α1!

(α1 − η1)!
(−i)|η1|ξα1−η1Dα2

x D
η2
ξ a(x, y, ξ)×

×Dα3
x D

η3
ξ

(
χ
(1

k
(x, ξ)

)
− χ

(1

l
(x, ξ)

))
f(y)

)
= ei(x−y)·ξ 1

Gn(ξ)

∑
ε,η∈Nd0

bεbη
∑

ε1+ε2+ε3=ε
η1+η2+η3=η, η1≤α1

ε!

ε1!ε2!ε3!

η!

η1!η2!η3!

α1!

(α1 − η1)!
×

× (−i)|η1|ξα1−η1Dε1
y

1

Gn(y − x)
Dα2
x D

ε2
y D

η2
ξ a(x, y, ξ)×

×Dα3
x D

η3
ξ

(
χ
(1

k
(x, ξ)

)
− χ

(1

l
(x, ξ)

))
Dε3
y f(y).

Hence, (1.10) is equal to∑
ε,η∈Nd0

bεbη
∑

α1+α2+α3=α
ε1+ε2+ε3=ε

η1+η2+η3=η, η1≤α1

α!

α1!α2!α3!

ε!

ε1!ε2!ε3!

η!

η1!η2!η3!

α1!

(α1 − η1)!
×

×
∫∫

R2d

ei(x−y)·ξ (−i)|η1|

Gn(ξ)
ξα1−η1Dε1

y

1

Gn(y − x)
Dα2
x D

ε2
y D

η2
ξ a(x, y, ξ)×

×Dα3
x D

η3
ξ

(
χ
(1

k
(x, ξ)

)
− χ

(1

l
(x, ξ)

))
Dε3
y f(y)dydξ.

Now we fix λ > 0 and we take s ≥ λ to be determined. Since f ∈ Sω(Rd), for
that s > 0 there exists Cs = CsL3 > 0 such that

|Dε3f(y)| ≤ CsesL
3ϕ∗
(
|ε3|
sL3

)
e−sL

3ω(y).
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Chapter 1. Global pseudodifferential operators

Moreover, by Definition 1.3 there exists C ′s = C ′4sL4 > 0 so that we obtain, by
Lemma 1.4 and (0.10),

|Dα2
x D

ε2
y D

η2
ξ a(x, y, ξ)| ≤ C ′s

( 〈x− y〉
〈(x, y, ξ)〉

)ρ|α2+ε2+η2|
e4sL4ρϕ∗

(
|α2+ε2+η2|

4sL4

)
emω(x,y,ξ)

≤ C ′s
√

2
|α2+ε2+η2|

e4sL4ϕ∗
(
|α2+ε2+η2|

4sL4

)
emω(x,y,ξ)

≤ C ′se4sL4

e4sL3ϕ∗
(
|α2+ε2+η2|

4sL3

)
emω(x,y,ξ). (1.11)

By formula (0.7) we have if |ξ| ≥ 1 (if |ξ| ≤ 1, then |ξ||α1−η1| ≤ 1)

|ξ||α1−η1| ≤ eλL
3ϕ∗
(
|α1−η1|
λL3

)
eλL

3ω(ξ).

On the other hand, by Corollary 0.23 there exists C1 > 0 depending only on
G so that

|bε| ≤ enC1e−nC1ϕ
∗
(
|ε|
nC1

)
, |bη| ≤ enC1e−nC1ϕ

∗
(
|η|
nC1

)
,

and from Corollary 0.20 there exist C2, C3, C4 > 0 that depend on G, ω, and
the dimension d such that, by formula (0.12)∣∣∣ 1

Gn(ξ)

∣∣∣ ≤ Cn
3 e
−nC2ω(ξ);∣∣∣Dε1

y

1

Gn(y − x)

∣∣∣ ≤ Cn
3 ε1!C

−|ε1|
4 e−nC2ω(y−x) ≤ Cn

3C
′′
s e

sL3ϕ∗
(
|ε1|
sL3

)
e−nC2ω(y−x),

for some constant C ′′s = C ′′sL3 > 0. The same formula (0.12) guarantees the
existence of C ′′′s = C ′′′sL3 > 0 satisfying

α1!

(α1 − η1)!
≤ 2|α1|η1! ≤ 2|α1|C ′′′s e

sL3ϕ∗
(
|η1|
sL3

)
.

We can assume m ≥ 0 without loss of generality. By (0.4) and (0.1),

ω(x, y, ξ) ≤ Lω(x) + Lω(y) + Lω(ξ) + L

≤ L2ω(y − x) + (L2 + L)ω(y) + Lω(ξ) + L2 + L. (1.12)
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1.2 Continuity of the operator

Therefore we obtain, with the previous estimates,

|Dα
x (A1/k,χ −A1/l,χ)(f)(x)|

≤ e2nC1

∑
ε,η∈Nd0

e−nC1ϕ
∗
(
|ε|
nC1

)
e−nC1ϕ

∗
(
|η|
nC1

) ∑
α1+α2+α3=α
ε1+ε2+ε3=ε

η1+η2+η3=η, η1≤α1

α!

α1!α2!α3!

ε!

ε1!ε2!ε3!
×

× η!

η1!η2!η3!
2|α1|C ′′′s e

sL3ϕ∗
(
|η1|
sL3

) ∫ ∣∣∣Dα3
x D

η3
ξ

(
χ
(1

k
(x, ξ)

)
− χ

(1

l
(x, ξ)

))∣∣∣×
×
( ∫

C2n
3 e−nC2ω(ξ)eλL

3ϕ∗
(
|α1|
λL3

)
eλL

3ω(ξ)C ′′s e
sL3ϕ∗

(
|ε1|
sL3

)
×

× e−nC2ω(y−x)C ′se
4sL4

e4sL3ϕ∗
(
|α2+ε2+η2|

4sL3

)
emL

2ω(y−x)em(L2+L)ω(y)×

× emLω(ξ)emL
2+mLCse

sL3ϕ∗
(
|ε3|
sL3

)
e−sL

3ω(y)dy
)
dξ.

We take n ∈ N0 so that

nC2 ≥ max{1 + λL3 +mL,mL2 + (λ+ L)L}.

Hence, in particular, we obtain

e(−nC2+mL+λL3)ω(ξ) ≤ e−ω(ξ).

Moreover, if we put s ≥ nC1 such that

sL3 ≥ m(L2 + L) + (λ+ L)L+ 1,

we have, by (0.1),

em(L2+L)ω(y)e−sL
3ω(y)e(mL2−nC2)ω(y−x) ≤ e−ω(y)e−(λ+L)Lω(y)e−(λ+L)Lω(y−x)

≤ e−ω(y)e(λ+L)Le−(λ+L)ω(x).

Now, we assume |α3 + η3| > 0. Then, there exists C ′′′′s = C ′′′′4sL3 > 0 such that,
by the triangular inequality,∣∣∣Dα3

x D
η3
ξ

(
χ
(1

k
(x, ξ)

)
− χ

(1

l
(x, ξ)

))∣∣∣
≤
((1

k

)|α3+η3|
+
(1

l

)|α3+η3|)
C ′′′′s e4sL3ϕ∗

(
|α3+η3|

4sL3

)
≤
(1

k
+

1

l

)
C ′′′′s e4sL3ϕ∗

(
|α3+η3|

4sL3

)
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Chapter 1. Global pseudodifferential operators

for |α3 + η3| > 0. On the other hand, by the mean value theorem there exists
ζ which lies in the line segment between 1

l
(x, ξ) and 1

k
(x, ξ) such that∣∣∣χ(1

k
(x, ξ)

)
− χ

(1

l
(x, ξ)

)∣∣∣ ≤ |∇χ(ζ)|
∣∣1
k
− 1

l

∣∣|(x, ξ)|.
It shows that, for some constant C ′′′′s > 0, as |(x, ξ)| ≤ 〈x〉〈ξ〉,∣∣∣Dα3

x D
η3
ξ

(
χ
(1

k
(x, ξ)

)
− χ

(1

l
(x, ξ)

))∣∣∣ ≤ C ′′′′s e4sL3ϕ∗
(
|α3+η3|+1

4sL3

)∣∣1
k

+
1

l

∣∣〈x〉〈ξ〉
for all α3, η3 ∈ Nd0. Since s ≥ λ, by (0.11) (and the fact that ϕ∗(t)/t is

increasing) we have 4sL3ϕ∗
( |α3+η3|+1

4sL3

)
≤ λϕ∗

(
1
λ

)
+2sL3ϕ∗

( |α3+η3|
2sL3

)
. Moreover,

by Lemma 0.8,

2|α1|esL
3ϕ∗
(
|η1|
sL3

)
eλL

3ϕ∗
(
|α1|
λL3

)
esL

3ϕ∗
(
|ε1|
sL3

)
e4sL3ϕ∗

(
|α2+ε2+η2|

4sL3

)
×

× esL
3ϕ∗
(
|ε3|
sL3

)
e2sL3ϕ∗

(
|α3+η3|

2sL3

)
≤ eλL

3

eλL
2ϕ∗
(
|α|
λL2

)
esL

3ϕ∗
(
|ε|
sL3

)
esL

3ϕ∗
(
|η|
sL3

)
.

Furthermore, we obtain, by Lemma 0.1(4) and (0.10),∑
α1+α2+α3=α
ε1+ε2+ε3=ε

η1+η2+η3=η, η1≤α1

α!

α1!α2!α3!

ε!

ε1!ε2!ε3!

η!

η1!η2!η3!
eλL

2ϕ∗
(
|α|
λL2

)
esL

3ϕ∗
(
|ε|
sL3

)
esL

3ϕ∗
(
|η|
sL3

)

≤ e2|α+ε+η|eλL
2ϕ∗
(
|α|
λL2

)
esL

3ϕ∗
(
|ε|
sL3

)
esL

3ϕ∗
(
|η|
sL3

)
≤ e(λ+2sL)(L+L2)eλϕ

∗
(
|α|
λ

)
esLϕ

∗
(
|ε|
sL

)
esLϕ

∗
(
|η|
sL

)
.

As the selection of n and s depends on λ, we write

Dλ = CsC
′
sC
′′
sC
′′′
s C

′′′′
s e4sL4

e(λ+2sL)(L+L2)emL
2+mL×

× e(λ+L)L+λL3

eλϕ
∗( 1
λ )C2n

3 e2nC1 > 0,

and hence,

|Dα
x (A1/k,χ −A1/l,χ)(f)(x)|

≤ Dλ

∣∣1
k

+
1

l

∣∣eλϕ∗( |α|λ ) ∑
ε,η∈Nd0

e−nC1ϕ
∗
(
|ε|
nC1

)
e−nC1ϕ

∗
(
|η|
nC1

)
×

× esLϕ
∗
(
|ε|
sL

)
esLϕ

∗
(
|η|
sL

)
〈x〉e−(λ+L)ω(x)

( ∫
e−ω(y)dy

)( ∫
〈ξ〉e−ω(ξ)dξ

)
.

(1.13)
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1.2 Continuity of the operator

We use (0.7) and (0.6) to obtain

〈x〉 ≤ eϕ
∗(1)eω(〈x〉) ≤ eϕ

∗(1)eLeLω(x).

Similarly,
〈ξ〉 ≤ e 1

2Lϕ
∗(2L)e

1
2Lω(〈ξ〉) ≤ e 1

2Lϕ
∗(2L)e

1
2 e

1
2ω(ξ),

and thus the integrals converge by condition (γ) of the weight ω. For the
convergence of the series, we treat the sum in ε (the other one will follow in
the same way). That is, we need to estimate∑

ε∈Nd0

e−nC1ϕ
∗
(
|ε|
nC1

)
esLϕ

∗
(
|ε|
sL

)
. (1.14)

We have by (0.10), as s ≥ nC1,

e−nC1ϕ
∗
(
|ε|
nC1

)
esLϕ

∗
(
|ε|
sL

)
= e−|ε|e−nC1ϕ

∗
(
|ε|
nC1

)
e|ε|+sLϕ

∗
(
|ε|
sL

)
≤ e−|ε|e−nC1ϕ

∗
(
|ε|
nC1

)
esLesϕ

∗
(
|ε|
s

)
≤ esLe−|ε|.

The series
∑

ε∈Nd0
e−|ε| is convergent (by Lemma 0.1(8)), and also (1.14). Hence,

from (1.13) we show that for all λ > 0 formula (1.9) holds and the result then
follows.

Lemma 1.10. Given a(x, y, ξ) ∈ GAm,ω
ρ and f ∈ Sω(Rd), for all λ > 0 there

exists Cλ > 0 such that for all x, ξ ∈ Rd,∣∣∣ ∫
Rd
ei(x−y)·ξa(x, y, ξ)f(y)dy

∣∣∣ ≤ Cλe−λω(ξ)emax{m,mL2}ω(x). (1.15)

Proof. As in Proposition 1.9, we integrate by parts in the integrand of the left-
hand side of (1.15) with formula (1.6) for a suitable n ∈ N to be determined.
We have

ei(x−y)·ξ 1

Gn(ξ)
Gn(Dy)(a(x, y, ξ)f(y))

= ei(x−y)·ξ 1

Gn(ξ)

∑
η∈Nd0

bη
∑

η1+η2=η

η!

η1!η2!
Dη1
y a(x, y, ξ)Dη2

y f(y),

and therefore∫
Rd
ei(x−y)·ξa(x, y, ξ)f(y)dy

=
∑
η∈Nd0

bη
∑

η1+η2=η

η!

η1!η2!

1

Gn(ξ)

∫
Rd
ei(x−y)·ξDη1

y a(x, y, ξ)Dη2
y f(y)dy.
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Chapter 1. Global pseudodifferential operators

We fix λ > 0 and we take s ≥ λ, to be determined. Similarly as in (1.11),
from Definition 1.3 for that s > 0 there exists Cs = CsL3 > 0 such that

|Dη1
y a(x, y, ξ)| ≤ Cs

( 〈x− y〉
〈(x, y, ξ)〉

)ρ|η1|
esL

3ρϕ∗
(
|η1|
sL3

)
emω(x,y,ξ)

≤ CsesL
3

esL
2ϕ∗
(
|η1|
sL2

)
emω(x,y,ξ).

Since f ∈ Sω(Rd) there exists C ′s = C ′sL2 > 0 such that

|Dη2
y f(y)| ≤ C ′se

sL2ϕ∗
(
|η2|
sL2

)
e−sL

2ω(y).

Again, by Corollaries 0.23 and 0.20 there are C1, C2, C3 > 0 such that

|bη| ≤ enC1e−nC1ϕ
∗
(
|η|
nC1

)
,

∣∣∣ 1

Gn(ξ)

∣∣∣ ≤ Cn
3 e
−nC2ω(ξ).

We then obtain that the left-hand side of (1.15) is estimated by

Cn
3 e

nC1e−nC2ω(ξ)CsC
′
se
sL3
( ∫

Rd
emω(x,y,ξ)e−sL

2ω(y)dy
)
×

×
∑
η∈Nd0

e−nC1ϕ
∗
(
|η|
nC1

) ∑
η1+η2=η

η!

η1!η2!
esL

2ϕ∗
(
|η1|
sL2

)
esL

2ϕ∗
(
|η2|
sL2

)
.

(1.16)

From (0.4), we have

ω(x) ≤ ω(x, y, ξ) ≤ Lω(x) + Lω(y) + Lω(ξ) + L.

We consider m ≥ 0. We take n ∈ N0 so that nC2 ≥ λ+mL. Then

e−nC2ω(ξ)emLω(ξ) ≤ e−λω(ξ).

Moreover, if we take s ≥ nC1 such that

sL2 ≥ 1 +mL,

we guarantee the convergence of the integral as e−sL
2ω(y)emLω(y) ≤ e−ω(y), by

condition (γ). On the other hand, it follows from Lemma 0.8 that∑
η1+η2=η

η!

η1!η2!
esL

2ϕ∗
(
|η1|
sL2

)
esL

2ϕ∗
(
|η2|
sL2

)
≤ esL

2

esLϕ
∗
(
|η|
sL

)
.

Since s ≥ nC1, the series depending on η in (1.16) is convergent as it is
proved in (1.14). Both n and s depend on λ > 0, therefore the estimate (1.15)
holds.
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1.2 Continuity of the operator

Lemma 1.11. For a(x, y, ξ) ∈ GAm,ω
ρ and χ ∈ Sω(R2d), we denote

K(x, y) :=

∫
Rd
ei(x−y)·ξa(x, y, ξ)χ(x, ξ)dξ.

We have

(a) K(x, y) ∈ Sω(R2d).

(b) The operator T : Sω(Rd)→ Sω(Rd) given by T (f)(x) =
∫
K(x, y)f(y)dy,

x ∈ Rd, is linear and continuous.

Proof. (a) Differentiating K(x, y) one obtains

Dα
xD

β
yK(x, y) =

∑
α1+α2+α3=α
β1+β2=β

α!

α1!α2!α3!

β!

β1!β2!
(−1)|β1|×

×
∫
Rd
ei(x−y)·ξξα1+β1Dα2

x D
β2
y a(x, y, ξ)Dα3

x χ(x, ξ)dξ,

(1.17)

for all α, β ∈ Nd0, x, y ∈ Rd. We integrate by parts via formula (1.7) for an
appropriate power n ∈ N. Then, the integrand in (1.17) is equal to

ei(x−y)·ξ 1

Gn(y − x)
Gn(Dξ)(ξ

α1+β1Dα2
x D

β2
y a(x, y, ξ)Dα3

x χ(x, ξ))

= ei(x−y)·ξ 1

Gn(y − x)

∑
η∈Nd0

bη
∑

η1+η2+η3=η, η1≤α1+β1

η!

η1!η2!η3!

(α1 + β1)!

(α1 + β1 − η1)!
×

× ξα1+β1−η1Dα2
x D

β2
y D

η2
ξ a(x, y, ξ)Dα3

x D
η3
ξ χ(x, ξ),

and this yields from (1.17) that Dα
xD

β
yK(x, y) is equal to

1

Gn(y − x)

∑
η∈Nd0

bη
∑

α1+α2+α3=α
β1+β2=β

η1+η2+η3=η, η1≤α1+β1

α!

α1!α2!α3!

β!

β1!β2!

η!

η1!η2!η3!

(α1 + β1)!

(α1 + β1 − η1)!
×

× (−1)|β1|
∫
Rd
ei(x−y)·ξξα1+β1−η1Dα2

x D
β2
y D

η2
ξ a(x, y, ξ)Dα3

x D
η3
ξ χ(x, ξ)dξ.

We fix λ > 0 and we take s ≥ λ. Since χ ∈ Sω(R2d), for that s > 0 there exists
Cs = C2sL3 > 0 so that

|Dα3
x D

η3
ξ χ(x, ξ)| ≤ Cse2sL3ϕ∗

(
|α3+η3|

2sL3

)
e−2sL3ω(x,ξ).
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Chapter 1. Global pseudodifferential operators

By Definition 1.3 there exists C ′s = C ′2sL4 > 0 such that (as in (1.11))

|Dα2
x D

β2
y D

η2
ξ a(x, y, ξ)| ≤ C ′s

( 〈x− y〉
〈(x, y, ξ)〉

)ρ|α2+β2+η2|
e2sL4ρϕ∗

(
|α2+β2+η2|

2sL4

)
emω(x,y,ξ)

≤ C ′se2sL4

e2sL3ϕ∗
(
|α2+β2+η2|

2sL3

)
emω(x,y,ξ).

Formula (0.7) gives (if |ξ| ≥ 1)

|ξ||α1+β1−η1| ≤ eλL
3ϕ∗
(
|α1+β1−η1|

λL3

)
eλL

3ω(ξ).

By (0.12) there exists C ′′s = C ′′sL3 > 0 so that

(α1 + β1)!

(α1 + β1 − η1)!
≤ 2|α1+β1|η1! ≤ 2|α1+β1|C ′′s e

sL3ϕ∗
(
|η1|
sL3

)
,

and by (0.10), we have

2|α1+β1|eλL
3ϕ∗
(
|α1+β1|
λL3

)
≤ eλL

2ϕ∗
(
|α1+β1|
λL2

)
eλL

3

.

On the other hand, by Corollaries 0.23 and 0.20 there are C1, C2, C3 > 0 such
that

|bη| ≤ enC1e−nC1ϕ
∗
(
|η|
nC1

)
,

∣∣∣ 1

Gn(y − x)

∣∣∣ ≤ Cn
3 e
−nC2ω(y−x).

Hence, we estimate |Dα
xD

β
yK(x, y)| by

CsC
′
sC
′′
s e

2sL4

eλL
3

Cn
3 e

nC1e−nC2ω(y−x)
( ∫

Rd
eλL

3ω(ξ)e−2sL3ω(x,ξ)emω(x,y,ξ)dξ
)
×

×
∑
η∈Nd0

e−nC1ϕ
∗
(
|η|
nC1

) ∑
α1+α2+α3=α
β1+β2=β

η1+η2+η3=η, η1≤α1+β1

α!

α1!α2!α3!

β!

β1!β2!

η!

η1!η2!η3!
×

× esL
3ϕ∗
(
|η1|
sL3

)
eλL

2ϕ∗
(
|α1+β1−η1|

λL2

)
e2sL3ϕ∗

(
|α2+β2+η2|

2sL3

)
e2sL3ϕ∗

(
|α3+η3|

2sL3

)
.

(1.18)

First of all we deduce from (0.3) and (0.1), for m ≥ 0 (if m < 0 the proof is
easier)

mω(x, y, ξ) ≤ mL(ω(x, ξ) + ω(y) + 1)

≤ mL(ω(x, ξ) + Lω(y − x) + Lω(x) + 1 + L). (1.19)

We take n ∈ N0 satisfying

nC2 ≥ mL2 + λL2.
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1.2 Continuity of the operator

Thus, by (0.1),

e−nC2ω(y−x)emL
2ω(y−x) ≤ e−λL

2ω(y−x) ≤ e−λLω(y)eλL
2ω(x)eλL

2

. (1.20)

Now, we take s ≥ nC1 so that

2sL3 ≥ 2(λL3 + λL+mL2) +mL.

Therefore,

e(−2sL3+mL)ω(x,ξ) ≤ e−2(λL3+λL+mL2)ω(x,ξ) ≤ e−(λL3+λ)ω(ξ)e−(λL2+λL+mL2)ω(x).
(1.21)

By (1.19), (1.20), and (1.21) we obtain, from (0.3),

e−nC2ω(y−x)eλL
3ω(ξ)e−2sL3ω(x,ξ)emω(x,y,ξ) ≤ e−λLω(y)e−λLω(x)e−λω(ξ)eλL

2

emL+mL2

≤ eλLe−λω(x,y)e−λω(ξ)eλL
2

emL+mL2

.

The integral converges by condition (γ) of the weight ω. On the other hand,
since s ≥ λ we obtain, by Lemma 0.8,

esL
3ϕ∗
(
|η1|
sL3

)
eλL

2ϕ∗
(
|α1+β1−η1|

λL2

)
e2sL3ϕ∗

(
|α2+β2+η2|

2sL3

)
e2sL3ϕ∗

(
|α3+η3|

2sL3

)
≤ eλL

2ϕ∗
(
|α+β|
λL2

)
esL

3ϕ∗
(
|η|
sL3

)
.

As ∑
α1+α2+α3=α
β1+β2=β

η1+η2+η3=η

α!

α1!α2!α3!

β!

β1!β2!

η!

η1!η2!η3!
= 3|α+η|2|β| ≤ e2|α+β+η|,

we use formula (0.10) to get

e2|α+β|eλL
2ϕ∗
(
|α+β|
λL2

)
e2|η|esL

3ϕ∗
(
|η|
sL3

)
≤ eλL

2+λLeλϕ
∗
(
|α+β|
λ

)
esL

3+sL2

esLϕ
∗
(
|η|
sL

)
.

The series depending on η in (1.18) converges as in (1.14). Since n and s
depend on λ > 0, there exists Cλ > 0 such that

|Dα
xD

β
yK(x, y)| ≤ Cλeλϕ

∗
(
|α+β|
λ

)
e−λω(x,y), α, β ∈ Nd0, x, y ∈ Rd.

(b) We note that for f ∈ Sω(Rd), as ϕ∗(0) = 0, we have, for any µ > 0,

sup
y∈Rd
|f(y)| ≤ sup

y∈Rd
|f(y)|eµω(y) ≤ sup

α∈Nd0
sup
y∈Rd
|Dαf(y)|e−µϕ

∗
(
|α|
µ

)
eµω(y) = |f |µ,
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Chapter 1. Global pseudodifferential operators

being | · |µ the seminorm in (0.14). Now, to prove that T is continuous, we
differentiate under the integral sign the function T (f), and by (a) we obtain
that for all λ > 0 there exists Cλ = C2λ > 0 such that

|DαT (f)(x)| ≤
∫
Rd
|Dα

xK(x, y)||f(y)|dy

≤ Cλe2λϕ∗
(
|α|
2λ

) ∫
Rd
e−2λω(x,y)|f(y)|dy

≤ Cλeλϕ
∗
(
|α|
λ

)
e−λω(x)|f |µ

∫
Rd
e−λω(y)dy

for all α ∈ Nd0, x ∈ Rd, and for any µ > 0. This gives the conclusion.

Lemma 1.12. Every global amplitude is an ω-temperate ultradistribution in
S ′ω(R3d).

Proof. Since a ∈ GAm,ω
ρ is a C∞(R3d) function, we have

〈a(x, y, ξ), f(x, y, ξ)〉 =

∫∫∫
a(x, y, ξ)f(x, y, ξ)dxdydξ, f ∈ Sω(R3d).

Again since a ∈ GAm,ω
ρ , there exists C > 0 such that

|〈a, f〉| ≤
∫∫∫

|a(x, y, ξ)||f(x, y, ξ)|dxdydξ

≤ C
∫∫∫

emω(x,y,ξ)|f(x, y, ξ)|dxdydξ

≤ C
( ∫∫∫

e−ω(x,y,ξ)dxdydξ
)

sup
x,y,ξ∈Rd

|f(x, y, ξ)|e(|m|+1)ω(x,y,ξ)

≤ C ′|f ||m|+1

for all f ∈ Sω(R3d), where C ′ = C
∫∫∫

e−ω(x,y,ξ)dxdydξ > 0 and |f ||m|+1 is as
in (0.14). Hence a ∈ S ′ω(R3d).

Since Sω(R2d) is nuclear, there exists a kernel KA for the pseudodifferential
operator A. If an amplitude a(x, y, ξ) belongs to Sω(R3d), then by Fubini’s
theorem,

〈KA(x, y), χ(x, y)〉 =

∫∫ ( ∫
ei(x−y)·ξa(x, y, ξ)dξ

)
χ(x, y)dxdy, χ ∈ Sω(R2d).
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1.2 Continuity of the operator

Then, the kernel KA is given formally, as in [64, (23.22)], by

KA(x, y) =

∫
ei(x−y)·ξa(x, y, ξ)dξ,

which defines an ultradistribution in S ′ω(R2d).

Moreover, we can also characterize the global symbols in Sω(R2d) in terms of
the kernel of the associated pseudodifferential operator (cf. [55, Proposition
1.2.1]):

Corollary 1.13. A global symbol a(x, ξ) belongs to Sω(R2d) if and only if

K(x, y) :=

∫
Rd
ei(x−y)·ξa(x, ξ)dξ

is in Sω(R2d).

Proof. As the function equivalent to 1 in R3d is a global amplitude in GA0,ω
ρ ,

the necessity follows by Lemma 1.11(a). On the other hand, when the kernel
belongs to Sω(R2d), a can be written as

a(x, ξ) = (2π)−dFy 7→ξK(x, x− y).

Indeed, by (0.34),

Fy 7→ξK(x, x− y) =

∫
Rd
e−iy·ξK(x, x− y)dy =

∫
Rd
e−iy·ξ

( ∫
Rd
eiy·ξa(x, ξ)dξ

)
dy

= (2π)d
∫
Rd
e−iy·ξF−1

ξ 7→ya(x, y)dy = (2π)da(x, ξ).

This shows the result since Sω(R2d) is invariant by partial Fourier transform
(see e.g. [13, Remark 4.10]).

Remark 1.14. If χ ∈ Sω(Rd) only depends on the variable ξ, we do not get
Lemma 1.11(a), but the following: K ∈ C∞(R2d), and for every λ > 0 there
exists Cλ > 0 such that

|Dα
xD

β
yK(x, y)| ≤ Cλeλϕ

∗
(
|α+β|
λ

)
emax{m,mL2}ω(y), α, β ∈ Nd0, x, y ∈ Rd.

Indeed, |Dα
xD

β
yK(x, y)| is estimated as in (1.18), replacing e−2sL3ω(x,ξ) with

e−2sL3ω(ξ), and η3 is now zero. Using (0.4), it is enough to take n and s as in
the proof of Lemma 1.11(a) to obtain the estimate above.

However, under this weaker estimate on K, Lemma 1.11(b) is still true.
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Chapter 1. Global pseudodifferential operators

Theorem 1.15. The operator A : Sω(Rd) → Sω(Rd) given by (1.5) is well
defined, linear, and continuous.

Proof. We fix χ ∈ Sω(R2d) so that χ(0) = 1. For every f ∈ Sω(Rd), the
sequence {A1/n,χ(f)}n in (1.4) converges in Sω(Rd) by Proposition 1.9. More-
over, the operator A1/n,χ : Sω(Rd)→ Sω(Rd) is linear, and, by Lemma 1.11, is
well defined and continuous for every n ∈ N. We denote by Aχ the operator
given by the limit:

Aχ(f) := lim
n→∞

∫∫
Rd×Rd

ei(x−y)·ξa(x, y, ξ)f(y)χ
( 1

n
(x, ξ)

)
dydξ, f ∈ Sω(Rd).

By Proposition 1.9, this operator is well defined from Sω(Rd) to Sω(Rd).
Since Sω(Rd) is barrelled, the family {A1/n,χ}n is equicontinuous by Banach–
Steinhaus theorem. Then, for every seminorm p of Sω(Rd), there exist C > 0
and another seminorm q of Sω(Rd) such that p(A1/n,χ(f)) ≤ Cq(f) for all
f ∈ Sω(Rd). When taking the limit, we have

p(Aχ(f)) ≤ Cq(f), f ∈ Sω(Rd),

which yields that Aχ : Sω(Rd)→ Sω(Rd) is continuous.

We show formula (1.5). Indeed, by Lemma 1.10 we have, for each n ∈ N, that
for all λ > 0 there exists Cλ > 0 such that∣∣∣ ∫ ei(x−y)·ξa(x, y, ξ)f(y)χ

( 1

n
(x, ξ)

)
dy
∣∣∣ ≤ Cλe−λω(ξ)emax{m,mL2}ω(x) sup

η∈R2d

|χ(η)|,

which is integrable in ξ. Moreover,∫
ei(x−y)·ξa(x, y, ξ)f(y)χ

( 1

n
(x, ξ)

)
dy −→

∫
ei(x−y)·ξa(x, y, ξ)f(y)dy

pointwise on x, ξ ∈ Rd as n goes to infinity. An application of Lebesgue
theorem gives the conclusion.

Definition 1.16. The operator A in (1.5) is called global ω-pseudodifferential
operator associated to the amplitude a(x, y, ξ).

When we consider a global symbol a ∈ GSm,ωρ , its corresponding global ω-
pseudodifferential operator is given by

a(x,D)f(x) :=

∫
Rd
eix·ξa(x, ξ)f̂(ξ)dξ, f ∈ Sω(Rd), x ∈ Rd.
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1.2 Continuity of the operator

Remark 1.17. In the hypothesis of Proposition 1.9 we could have also used
χ(ξ) in Sω(Rd) instead of χ(x, ξ) ∈ Sω(R2d). Also, Theorem 1.15 holds true if
we consider χ(ξ) in Sω(Rd) with χ(0) = 1 instead of χ(x, ξ) ∈ Sω(R2d). Both
results follow in the same way.

The use of amplitudes permits to extend the operator to spaces of ultradis-
tributions in an easy way (by duality). The following result is similar to [33,
Theorem 2.5].

Proposition 1.18. The pseudodifferential operator A : Sω(Rd) → Sω(Rd)
extends to a linear and continuous operator Ã : S ′ω(Rd)→ S ′ω(Rd).

Proof. Given the amplitude a(x, y, ξ) ∈ GAm,ω
ρ , we denote

b(x, y, ξ) := a(y, x,−ξ),

also in GAm,ω
ρ . We denote by B its associated pseudodifferential operator.

The transpose operator of B defines a linear and continuous operator Ã :=
Bt : S ′ω(Rd)→ S ′ω(Rd) and we check that Ã|Sω(Rd) = A. We denote

(Bδφ)(x) =

∫∫
ei(x−y)·ξb(x, y, ξ)χ(δξ)φ(y)dydξ;

(Aδψ)(x) =

∫∫
ei(x−y)·ξa(x, y, ξ)χ(δξ)ψ(y)dydξ

for δ > 0, x ∈ Rd, and χ is a function in Sω(Rd) with χ(0) = 1. By Fubini’s
theorem we obtain (see [47, Teorema 1.2.5])∫

ψ(Bδφ) =

∫
(Aδψ)φ, ψ, φ ∈ Sω(Rd).

Proceeding as in the proof of Theorem 1.15 (see Remark 1.17), we obtain, by
Lebesgue theorem,∫

ψ(Bφ) =

∫
(Aψ)φ, ψ, φ ∈ Sω(Rd).

From the proof of Proposition 1.18 we obtain that, given a pseudodifferen-
tial operator A : Sω(Rd) → Sω(Rd) with amplitude a(x, y, ξ), the transpose
operator restricted to Sω(Rd), At|Sω(Rd) : Sω(Rd)→ Sω(Rd), is still a pseudod-
ifferential operator, with amplitude a(y, x,−ξ).

The following result clarifies the role operators with kernel in Sω(R2d) play.
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Chapter 1. Global pseudodifferential operators

Proposition 1.19. Let A : Sω(Rd)→ Sω(Rd) be a pseudodifferential operator.
The following assertions are equivalent:

(1) A has a linear and continuous extension Ã : S ′ω(Rd)→ Sω(Rd).

(2) There exists K ∈ Sω(R2d) such that

(Aϕ)(x) =

∫
Rd
K(x, y)ϕ(y)dy, ϕ ∈ Sω(Rd).

Proof. (1) ⇒ (2) We define K(x, y) := Ã(δy)(x) for x, y ∈ Rd, where δy :
Sω(Rd) → C, δy(f) = f(y) is the evaluation map (clearly, δy ∈ E ′(ω)(Rd) ⊆
S ′ω(Rd)). First, for fixed y0 ∈ Rd and ei ∈ Rd, an element of the canonical
basis for some 1 ≤ i ≤ d, we check

−∂yiδy0 = S ′ω(Rd)− lim
t→0

δy0+tei − δy0
t

.

Indeed, for f ∈ Sω(Rd),

lim
t→0

〈
f,
δy0+tei − δy0

t

〉
= lim

t→0

1

t
(f(y0 + tei)− f(y0)) = ∂yif(y0) = 〈f,−∂yiδy0〉.

From the continuity of Ã : S ′ω(Rd)→ Sω(Rd), we have

lim
t→0

〈
µ, Ã

(δy0+tei − δy0
t

)〉
= 〈µ, Ã(−∂yiδy0)〉, µ ∈ S ′ω(Rd).

In particular, for µ = δx0
, x0 ∈ Rd, we obtain that〈

δx0
, Ã
(δy0+tei − δy0

t

)〉
=

1

t
(Ã(δy0+tei)(x0)− Ã(δy0)(x0))

=
1

t
(K(x0, y0 + tei)−K(x0, y0))

tends to
〈δx0

, Ã(−∂yiδy0)〉 = Ã(−∂yiδy0)(x0)

when t→ 0. Given α ∈ Nd0 we easily have

∂αyK(x0, y0) = Ã((−1)|α|∂αy δy0)(x0),

by proceeding by induction on |α|. Hence, as Ã((−1)|α|∂αy δy0)(·) ∈ Sω(Rd),
we get that ∂βx∂

α
yK(x, y) exists (and is continuous) for all α, β ∈ Nd0, thus

K ∈ C∞(R2d).
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1.2 Continuity of the operator

To show that K ∈ Sω(R2d) we denote, for k ∈ N,

B :=
{

(−1)|α|∂αy δye
−kϕ∗

(
|α|
k

)
ekLω(y) : α ∈ Nd0, y ∈ Rd

}
,

which is (weakly) bounded in S ′ω(Rd). Indeed, for f ∈ Sω(Rd),

sup
α∈Nd0

sup
y∈Rd

∣∣∣〈f, (−1)|α|∂αy δye
−kϕ∗

(
|α|
k

)
ekLω(y)

〉∣∣∣
= sup

α∈Nd0
sup
y∈Rd
|Dαf(y)|e−kϕ

∗
(
|α|
k

)
ekLω(y) < +∞.

Hence B is bounded in Sω(Rd) (as Sω(Rd) is barrelled). Then, Ã(B) is bounded

in Sω(Rd) since Ã is continuous. Therefore, for the same k as before, we have

sup
α,β∈Nd0

sup
x,y∈Rd

|Dβ
xÃ((−1)|α|∂αy δy)(x)|e−kϕ

∗
(
|α|
k

)
ekLω(y)e−kϕ

∗
(
|β|
k

)
ekLω(x) < +∞.

Thus, by (0.3) and (0.11), we deduce

sup
α,β∈Nd0

sup
x,y∈Rd

|Dβ
xD

α
yK(x, y)|e−kϕ

∗
(
|α+β|
k

)
ekω(x,y) < +∞.

This shows K(x, y) ∈ Sω(R2d) since k ∈ N is arbitrary.

We finally check the formula in (2). We write µ :=
∫
ϕ(y)δydy ∈ S ′ω(Rd). For

any f ∈ Sω(Rd) we have 〈µ, f〉 = 〈
∫
ϕ(y)δydy, f〉 =

∫
ϕ(y)f(y)dy, which shows

µ = ϕ. Then, by the assumptions on Ã, we obtain

(Aϕ)(x) =
〈
δx, Ã

( ∫
ϕ(y)δydy

)〉
=
〈
δx,

∫
ϕ(y)Ã(δy)dy

〉
=

∫
Ã(δy)(x)ϕ(y)dy =

∫
K(x, y)ϕ(y)dy

for all x ∈ Rd.

(2) ⇒ (1) By Proposition 1.18, A admits a linear and continuous extension

Ã : S ′ω(Rd) → S ′ω(Rd). Since Sω(Rd) is dense in S ′ω(Rd), for u ∈ S ′ω(Rd) there
exists {un}n ⊆ Sω(Rd) that converges to u (in the topology of S ′ω(Rd)).

We claim that {Ã(un)}n is a Cauchy sequence in Sω(Rd). First, we observe
that, for all k > 0,

B :=
{
∂αxK(x, ·)e−kϕ

∗
(
|α|
k

)
ekω(x) : α ∈ Nd0, x ∈ Rd

}
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Chapter 1. Global pseudodifferential operators

is a bounded set in Sω(Rd). Indeed, by (0.11) we have, for all k > 0,

sup
α,β∈Nd0

sup
x,y∈Rd

|∂βy ∂αxK(x, y)|e−kϕ
∗
(
|α|
k

)
ekω(x)e−kϕ

∗
(
|β|
k

)
ekω(y)

≤ sup
α,β∈Nd0

sup
x,y∈Rd

|∂βy ∂αxK(x, y)|e−2kϕ∗
(
|α+β|

2k

)
e2kω(x,y),

which is finite since K ∈ Sω(R2d). Then, the polar set B◦ is a 0-neighbourhood
in S ′ω(Rd). Since {un}n is a Cauchy sequence in S ′ω(Rd), given ε > 0 and k > 0
there exists n0 ∈ N such that if n, l ≥ n0, then un − ul ∈ εB◦; that is,

|〈(un − ul)(·), ∂αxK(x, ·)〉|e−kϕ
∗
(
|α|
k

)
ekω(x) ≤ ε.

On the other hand, we differentiate under the integral sign and we get

∂αx (Ãun − Ãul)(x) =

∫
(un − ul)(y)∂αxK(x, y)dy.

Thus,

sup
α∈Nd0

sup
x∈Rd
|∂αx (Ãun − Ãul)(x)|e−kϕ

∗
(
|α|
k

)
ekω(x)

= sup
α∈Nd0

sup
x∈Rd

∣∣∣ ∫ (un − ul)(y)∂αxK(x, y)dy
∣∣∣e−kϕ∗( |α|k )ekω(x) ≤ ε,

and the claim is shown.

Since Sω(Rd) is Fréchet, the sequence {Ã(un)}n converges to some f ∈ Sω(Rd).
By the uniqueness of the limit, Ã(u) = f ∈ Sω(Rd), as un → u in S ′ω(Rd). This

shows that Ã(S ′ω(Rd)) ⊆ Sω(Rd). An application of the closed graph theorem

shows that Ã : S ′ω(Rd)→ Sω(Rd) is continuous.

Definition 1.20. A pseudodifferential operator A : Sω(Rd)→ Sω(Rd) satisfy-
ing (1) or (2) of Proposition 1.19 is called ω-regularizing.

Example 1.21. (a) Particular cases of weight functions give already known
definitions of symbol classes and pseudodifferential operators as in [33, Exam-
ple 2.11]. For example, when ω(t) = log(1 + t), for which Sω(Rd) = S(Rd), it
is known (see for instance [47, Ejemplo 1.3.1]) that ϕ∗ω(t) is either 0 (for t ≤ 1)
or +∞ (for t > 1). In this case, we have that a ∈ GAm,ω

ρ if and only if for all

α, β, γ ∈ Nd0 there exists C > 0 such that

|Dα
xD

γ
yD

β
ξ a(x, y, ξ)| ≤ C〈x− y〉ρ|α+γ+β|〈(x, y, ξ)〉m−ρ|α+γ+β|, x, y, ξ ∈ Rd.
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1.2 Continuity of the operator

This characterization coincides with [64, Definition 23.3] for m′ = 0 (see [33,
Example 2.11(1)] for a symbol in the sense of Grigis and Sjöstrand [37]).

In the same way, if we consider a Gevrey weight (ω(t) = tp for some 0 < p < 1),
then for all n ∈ N there exist An, Bn > 0 such that (see [47, Ejemplo 1.3.2])

An(α!)1/p
( 1

np

)|α|/p
≤ enϕ

∗
ω

(
|α|
n

)
≤ Bn(α!)1/p

( 2d

np

)|α|/p
, α ∈ Nd0.

Therefore, if a ∈ GAm,ω
ρ , for all n ∈ N there exists Cn′ > 0, where we denote

n′ = 2d
pn1/ρ > 0, such that

|Dα
xD

γ
yD

β
ξ a(x, y, ξ)|

≤ Cn′
( 〈x− y〉
〈(x, y, ξ)〉

)ρ|α+γ+β|
en
′ρϕ∗
(
|α+γ+β|

n′

)
emω(x,y,ξ)

≤ Cn′
( 〈x− y〉
〈(x, y, ξ)〉

)ρ|α+γ+β|
Bρ
n′(α!γ!β!)ρ/pn|α+γ+β|/pem|(x,y,ξ)|

p

for all α, γ, β ∈ Nd0, x, y, ξ ∈ Rd. Conversely, given n ∈ N take n′ = (np)−ρ > 0.
Then, there exist C ′n′ , C

′′
n′ > 0 so that

|Dα
xD

γ
yD

β
ξ a(x, y, ξ)|

≤ C ′n′
( 〈x− y〉
〈(x, y, ξ)〉

)ρ|α+γ+β|
(α!γ!β!)ρ/p(n′)|α+γ+β|/pem|(x,y,ξ)|

p

≤ C ′′n′
( 〈x− y〉
〈(x, y, ξ)〉

)ρ|α+γ+β|
enρϕ

∗
(
|α+γ+β|

n

)
emω(x,y,ξ),

for each α, γ, β ∈ Nd0, x, y, ξ ∈ Rd. Then, this definition of amplitude could be
compared with Cappiello [23, Definition 2.1] (see also Rodino [60]), which is
the corresponding definition for the Gevrey class (of Roumieu type).

(b) Given a weight function ω, for 0 < ρ ≤ 1, take another weight function σ
satisfying ω(t(1+ρ)/ρ) = O(σ(t)) as t→∞. We show that

Sσ(R2d) ⊆
⋂
m∈R

GSm,ωρ ⊆ Sω(R2d).

Indeed, if p(x, ξ) ∈ Sσ(R2d), then for all λ,m > 0 there is Cλ,m = Cλ,(λ+m)L > 0
with (we use (0.6), but we do not know if σ(1) = 0)

|Dα
xD

β
ξ p(x, ξ)| ≤ Cλ,me

λϕ∗σ

(
|α+β|
λ

)
e−(λ+m)Lσ(x,ξ)

≤ Cλ,me(λ+m)L(1+σ(1))eλϕ
∗
σ

(
|α+β|
λ

)
e−(λ+m)σ(〈(x,ξ)〉)
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Chapter 1. Global pseudodifferential operators

for all α, β ∈ Nd0, x, ξ ∈ Rd. For all λ > 0, formula (0.7) yields

eλϕ
∗
σ

(
|α+β|
λ

)
e−(λ+m)σ(〈(x,ξ)〉) ≤ eλ(1+ρ)ϕ∗σ

(
|α+β|
λ

)
e−λρϕ

∗
σ

(
|α+β|
λ

)
e−(λρ+m)σ(〈(x,ξ)〉)

≤ eλ(1+ρ)ϕ∗σ

(
|α+β|
λ

)
〈(x, ξ)〉−ρ|α+β|e−mσ(〈(x,ξ)〉).

By hypothesis there is C > 0 such that ω(t) ≤ Cσ(t) + C ≤ Cσ(〈t〉) + C, for
all t ≥ 0. Moreover, from Lemma 0.10(2), we obtain

λ(1 + ρ)ϕ∗σ

( j
λ

)
≤ λ+

λ

C
ρϕ∗ω

(jC
λ

)
, j ∈ N0.

Thus, we have p ∈ GS−m/C,ωρ . Due to the arbitrariness of m > 0, we get the
first inclusion. The second inclusion is immediate.

The weight functions ω(t) = logs(1+t), t ≥ 0, with s ≥ 1, satisfy ω(t(1+ρ)/ρ) =
O(ω(t)) as t→∞. Hence, for ω(t) = logs(1 + t),⋂

m∈R
GSm,ωρ = Sω(R2d). (1.22)

In fact, for all t ≥ 0, we have

ω(t(1+ρ)/ρ) = logs(1 + t(1+ρ)/ρ) ≤ logs((1 + t)(1+ρ)/ρ)

≤
(1 + ρ

ρ

)s
logs(1 + t) =

(1 + ρ

ρ

)s
ω(t).

So, the identity (1.22) follows from the previous arguments.

(c) We consider now an ultradifferential operator of (ω)-class in the sense of
Komatsu [49] of type

G(x,D) :=
∑
γ∈Nd0

aγ(x)Dγ ,

where aγ is a C∞(Rd) function satisfying that there exist 0 < ρ ≤ 1 and n ∈ N
such that for all λ > 0, there exists Cλ > 0, with

sup
x∈Rd
|Dαaγ(x)| ≤ Cλeλρϕ

∗
(
|α|
λ

)
e−nϕ

∗
(
|α+γ|
n

)
, α, γ ∈ Nd0.

We want to show that p(x, ξ) := (2π)−d
∑

γ∈Nd0
aγ(x)ξγ is a global symbol as

in Definition 1.1. First, we need to check that p(x, ξ) defines a series that
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1.2 Continuity of the operator

converges uniformly in x ∈ Rd (and pointwise in ξ ∈ Rd). To this, we fix
x ∈ Rd and we have that there exists Cn > 0 such that (by Lemma 0.1(7))

|p(x, ξ)| ≤
∑
γ∈Nd0

|aγ(x)||ξ||γ|

≤
∑
γ∈Nd0

Cne
−nϕ∗

(
|γ|
n

)
|ξ||γ| ≤

∞∑
k=0

Cne
−nϕ∗( kn )|ξ|k

∑
|γ|=k

1

≤ Cn
∞∑
k=0

e−nϕ
∗( kn )|ξ|k2k+d−1 = 2d−1Cn

∞∑
k=0

e−nϕ
∗( kn )(2|ξ|)k.

We use formula (0.7) to obtain

|p(x, ξ)| ≤ 2d−1Cn

∞∑
k=0

(1

2

)k
e−nϕ

∗( kn )(4〈ξ〉)k ≤ 2d−1Cne
nω(4〈ξ〉)

∞∑
k=0

(1

2

)k
.

Now, for γ ∈ Nd0 we estimate the derivatives of aγ(x)ξγ for all x, ξ ∈ Rd as
follows: there are 0 < ρ ≤ 1 and n ∈ N such that for all λ > 0 there is Cλ > 0
such that, by (0.11), we have for all α, β ∈ Nd0, β ≤ γ,

|Dα
xD

β
ξ (aγ(x)ξγ)| ≤ Cλeλρϕ

∗
(
|α|
λ

)
e−nϕ

∗
(
|α+γ|
n

)
γ!

(γ − β)!
|ξ||γ−β|

≤ Cλeλρϕ
∗
(
|α|
λ

)
e−nϕ

∗
(
|α|
n

)
e−nϕ

∗
(
|γ|
n

)
2|γ|β!〈(x, ξ)〉|γ|−ρ|β|.

We use Lemma 0.9 (under the assumption ω(t) = o(tρ) as t→∞) to get that

there exists C ′λ > 0 such that β! ≤ C ′λe
λρϕ∗

(
|β|
λ

)
. From Lemma 0.1 and (0.7)

we have

|Dα
xD

β
ξ (aγ(x)ξγ)| ≤ Cλeλρϕ

∗
(
|α|
λ

)
e−nϕ

∗
(
|α|
n

)
e−nϕ

∗
(
|γ|
n

)
2|γ|×

× C ′λe
λρϕ∗

(
|β|
λ

)
〈(x, ξ)〉−ρ|β|enL

2ϕ∗
(
|γ|
nL2

)
enL

2ω(〈(x,ξ)〉).

We use (0.10) to get

e−nϕ
∗
(
|γ|
n

)
2|γ|enL

2ϕ∗
(
|γ|
nL2

)
≤
( 2

e2

)|γ|
enL+nL2

≤ e−|γ|enL+nL2

.

Again, by (0.7) it follows that

e−nϕ
∗
(
|α|
n

)
≤ 〈(x, ξ)〉−|α|enω(〈(x,ξ)〉) ≤ 〈(x, ξ)〉−ρ|α|enω(〈(x,ξ)〉).
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Chapter 1. Global pseudodifferential operators

Hence, for C ′′λ = CλC
′
λe
nL+nL2

> 0,

|Dα
xD

β
ξ p(x, ξ)| ≤ C ′′λe

λρϕ∗
(
|α+β|
λ

)
〈(x, ξ)〉−ρ|α+β|en(1+L2)ω(〈(x,ξ)〉)

∑
γ∈Nd0

e−|γ|.

The series converges by Lemma 0.1(8). Then, by (0.6) we obtain, for m =
nL(1 + L2) > 0, that p ∈ GSm,ωρ .

We take f ∈ Sω(Rd). Then, by formula (0.34) it follows that

G(x,D)f(x) =
∑
γ∈Nd0

aγ(x)Dγf(x) = (2π)−d
∑
γ∈Nd0

aγ(x)

∫
eix·ξξγ f̂(ξ)dξ.

The latter series is convergent. Indeed, there exists Cn > 0 such that by
Lemma 0.1∑

γ∈Nd0

|aγ(x)|
∫
|ξ||γ||f̂(ξ)|dξ ≤

∞∑
k=0

Cne
−nϕ∗( kn )

∫
|ξ|k|f̂(ξ)|2d+k−1dξ

= 2d−1Cn

∞∑
k=0

(1

2

)k
e−nϕ

∗( kn )

∫
(4|ξ|)k|f̂(ξ)|dξ.

From (0.7) and (0.6), we obtain that (4|ξ|)ke−nϕ∗( kn ) ≤ enω(4〈ξ〉) ≤ em
′ω(ξ)em

′
,

for some m′ > 0. Thus,∑
γ∈Nd0

|aγ(x)|
∫
|ξ||γ||f̂(ξ)|dξ ≤ Cnem

′
( ∞∑
k=0

(1

2

)k) ∫
em
′ω(ξ)|f̂(ξ)|dξ,

which shows that the series converges, since f ∈ Sω(Rd). Therefore, by the
Lebesgue theorem it follows that

G(x,D)f(x) =

∫
eix·ξ

(
(2π)−d

∑
γ∈Nd0

aγ(x)ξγ
)
f̂(ξ)dξ =

∫
eix·ξp(x, ξ)f̂(ξ)dξ

= P (x,D)f(x).

Notice that since the constant n ∈ N is fixed, the coefficients aγ satisfy a
similar estimate as in (0.29) in Corollary 0.23 for the ultradifferential operator
of (ω)-class Gn(D) with constant coefficients.

(d) As a consequence of (c), we can easily study some linear partial differential
operators with variable coefficients which are examples of pseudodifferential
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1.2 Continuity of the operator

operators. We consider

P (x,D) :=
∑
|γ|≤m

aγ(x)Dγ ,

for some m ∈ N, where aγ ∈ C∞(Rd), satisfying that there exist 0 < ρ ≤ 1
and n ∈ N such that for all λ > 0 there is Cλ > 0 with

sup
x∈Rd
|Dαaγ(x)| ≤ Cλeλρϕ

∗
(
|α|
λ

)
e−nϕ

∗
(
|α|
n

)
, α ∈ Nd0.

Therefore, if p(x, ξ) := (2π)−d
∑
|γ|≤m aγ(x)ξγ , then by (c) we have that p ∈

GSm
′,ω

ρ for m′ = nL(1 + L2) > 0.

On the other hand, for a linear partial differential operator with polynomial
coefficients, we have that

p(x, ξ) :=
∑

|η|≤n,|γ|≤m

cη,γx
ηξγ ,

where cη,γ ∈ C, is a global symbol of finite order in Sn+m,ω
ρ in the sense of

Definition 1.2, where ω(t) = o(tρ) as t→∞. In fact, there exists C > 0 such
that

|Dα
xD

β
ξ p(x, ξ)| ≤ C

∑
|η|≤n,|γ|≤m

η!

(η − α)!
|x||η−α| γ!

(γ − β)!
|ξ||γ−β|,

for all α ≤ η, β ≤ γ. From Lemma 0.9 we have, since ω(t) = o(tρ) as t→∞,

η!

(η − α)!

γ!

(γ − β)!
≤ 2|η+γ|α!β! ≤ 2n+meλρϕ

∗
(
|α+β|
λ

)
.

We have

|x||η−α||ξ||γ−β| ≤ 〈(x, ξ)〉|η+γ|−|α+β| ≤ 〈(x, ξ)〉n+m−ρ|α+β|.

Hence, for all λ > 0 there exists Cλ,n,m > 0 such that

|Dα
xD

β
ξ p(x, ξ)| ≤ Cλ,n,m〈(x, ξ)〉−ρ|α+β|eλρϕ

∗
(
|α+β|
λ

)
〈(x, ξ)〉n+m,

for all α, β ∈ Nd0, x, ξ ∈ Rd. This shows that p ∈ Sn+m,ω
ρ , and also, by (0.7) we

have p ∈ GSn+m,ω
ρ .
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Chapter 1. Global pseudodifferential operators

(e) An ultradifferential operator of (ω)-class with constant coefficients is a
global symbol if ω(t) = o(tρ), t → ∞, for some 0 < ρ ≤ 1. In fact, let G be
an entire function in Cd such that log |G(z)| = O(ω(z)) as |z| → ∞ (see (i′)
of Theorem 0.18). We show that G, restricted to R2d, is a global symbol in
GSm,ωρ for some m > 0.

Indeed, for x, ξ ∈ Rd we consider the polydisk P ((x, ξ), r) whose polyradius is
r :=

(
〈(x, ξ)〉ρ, . . . , 〈(x, ξ)〉ρ

)
. By Proposition 0.11,

|Dα
xD

β
ξG(x, ξ)| ≤ α!β!

rα+β
sup

(y,t)∈∂P ((x,ξ),r)

{|G(y, t)|}, α, β ∈ Nd0, x, ξ ∈ Rd.

By assumption there exists C > 0 such that |G(z)| ≤ CeCω(z), z ∈ Cd. We

see that if (y, t) ∈ ∂P ((x, ξ), r), then |(y, t)− (x, ξ)| =
√
d〈(x, ξ)〉ρ, so |(y, t)| ≤

|(y, t)− (x, ξ)|+ |(x, ξ)| ≤ (1 +
√
d)〈(x, ξ)〉. As rα+β = 〈(x, ξ)〉ρ|α+β|, we have

|Dα
xD

β
ξG(x, ξ)| ≤ α!β!〈(x, ξ)〉−ρ|α+β|CeCω((1+

√
d)〈(x,ξ)〉),

for all α, β ∈ Nd0, x, ξ ∈ Rd. From property (α) of ω, there is m > 0 satisfying

Cω((1 +
√
d)〈(x, ξ)〉) ≤ mω(x, ξ) +m.

Finally, from Lemma 0.9, for all λ > 0 there exists Cλ > 0 so that

α!β! ≤ Cλeλρϕ
∗
(
|α+β|
λ

)
,

and hence

|Dα
xD

β
ξG(x, ξ)| ≤ CCλem〈(x, ξ)〉−ρ|α+β|eλρϕ

∗
(
|α+β|
λ

)
emω(x,ξ),

for all α, β ∈ Nd0, x, ξ ∈ Rd, which shows G ∈ GSm,ωρ .
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Chapter 2

Quantizations for
pseudodifferential operators

In the present chapter we deal with the change of quantization in the class
of global pseudodifferential operators introduced in Chapter 1. The symbols
are of infinite order with exponential growth in all the variables (see Defini-
tion 1.1), in contrast to the approach of [33, 65], who treat pseudodifferential
operators of infinite order in the local sense and infinite order only in the
last variable, for classes of ultradifferentiable functions of Beurling type in the
sense of [20] and for Gevrey classes. In [33], the composition of two operators
is given in terms of a suitable symbolic calculus.

As we mention at the beginning, one of the main goals of this chapter is to
extend the results in Chapter 1 by adapting them for a valid change of quan-
tization for these symbols (see Definition 2.25). Namely, we follow the ideas
for the change of quantization within the framework of global symbol classes
of Shubin [64, §23]. In [58] it is considered the change of quantization and its
corresponding symbolic calculus for classes in the sense of Komatsu [49], also
in the Roumieu setting. However, our classes of symbols (and amplitudes)
might not coincide with the ones defined in [58] even only in the Beurling
setting, as mentioned in the introduction of Chapter 1.
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Chapter 2. Quantizations for pseudodifferential operators

We develop the symbolic calculus and we state some previous results needed
to compose two pseudodifferential operators. In this setting, to study the
composition of two pseudodifferential operators, we need to show first the
good behaviour (in terms of its estimates) of the kernel of a pseudodifferential
operator outside a strip around the diagonal in Theorem 2.20. Thus, we
improve [55, Theorem 6.3.3] and [58, Proposition 5], where similar estimates
for Gevrey classes or classes of ultradifferentiable functions in the sense of
Komatsu [49] are obtained only in the complement of a conical neighbourhood
of the diagonal. This investigation leads to the construction of parametrices
for pseudodifferential operators in Chapter 3.

The results of this chapter are contained in [4, 6].

2.1 Symbolic calculus

Definition 2.1. We define FGSm,ωρ as the set of all formal sums
∑

j∈N0
aj(x, ξ)

such that aj(x, ξ) ∈ C∞(R2d) and there is R ≥ 1 such that for every n ∈ N
there exists Cn > 0 with

|Dα
xD

β
ξ aj(x, ξ)| ≤ Cn〈(x, ξ)〉−ρ(|α+β|+j)enρϕ

∗
(
|α+β|+j

n

)
emω(x,ξ), (2.1)

for each j ∈ N0, α, β ∈ Nd0 and log
( 〈(x,ξ)〉

R

)
≥ n

j
ϕ∗
(
j
n

)
.

In Definition 2.1 we assume that a0(x, ξ) satisfies the estimate (2.1) for all

log
( 〈(x,ξ)〉

R

)
≥ 0, i.e. for 〈(x, ξ)〉 ≥ R.

Let a be a global symbol in GSm,ωρ . The formal series
∑

j∈N0
aj defined by

a0 := a, aj = 0 for j ∈ N, belongs to FGSm,ωρ ; as a result, we may regard a
global symbol as this formal sum

∑
j∈N0

aj.

Definition 2.2. Two formal sums
∑
aj and

∑
bj in FGSm,ωρ are called equiv-

alent, denoted by
∑
aj ∼

∑
bj, if there is R ≥ 1 such that for every n ∈ N

there exist Cn > 0 and Nn ∈ N with∣∣∣Dα
xD

β
ξ

∑
j<N

(aj − bj)
∣∣∣ ≤ Cn〈(x, ξ)〉−ρ(|α+β|+N)enρϕ

∗
(
|α+β|+N

n

)
emω(x,ξ), (2.2)

for all N ≥ Nn, α, β ∈ Nd0, and log
( 〈(x,ξ)〉

R

)
≥ n

N
ϕ∗
(
N
n

)
.

We understand that a global symbol a ∈ GSm,ωρ regarded as a formal sum
satisfies a ∼ 0 if there exists R ≥ 1 such that for all n ∈ N there are Cn > 0
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2.1 Symbolic calculus

and Nn ∈ N so that |Dα
xD

β
ξ a(x, ξ)| is estimated by the right-hand side of (2.2)

for all N ≥ Nn, α, β ∈ Nd0, and log
( 〈(x,ξ)〉

R

)
≥ n

N
ϕ∗
(
N
n

)
.

Now, we investigate the class of pseudodifferential operators for which their
symbol is equivalent to zero. In fact, this gives a sufficient condition for a
pseudodifferential operator to be ω-regularizing (see Definition 1.20) in terms
of formal sums.

Proposition 2.3. If A is a pseudodifferential operator associated to a symbol
a(x, ξ) equivalent to zero in FGSm,ωρ , then A is ω-regularizing.

Proof. It is enough to show that a ∈ Sω(R2d) since operators with symbols
in Sω(R2d) have kernels in Sω(R2d) (Corollary 1.13), and these operators are
ω-regularizing by Proposition 1.19. By assumption, there exists R ≥ 1 such
that for all n ∈ N there exist Cn > 0 and Nn ∈ N so that, by (0.11),

|Dα
xD

β
ξ a(x, ξ)| ≤ Cn〈(x, ξ)〉−ρ(|α+β|+N)e4nρϕ∗

(
|α+β|+N

4n

)
emω(x,ξ)

≤ Cn〈(x, ξ)〉−ρNe2nρϕ∗
(
N
2n

)
e2nρϕ∗

(
|α+β|

2n

)
emω(x,ξ)

≤ Cn
(〈(x, ξ)〉

R

)−ρN
e2nρϕ∗

(
N
2n

)
enϕ

∗
(
|α+β|
n

)
emω(x,ξ)

for all N ≥ Nn, α, β ∈ Nd0, and log
( 〈(x,ξ)〉

R

)
≥ 4n

N
ϕ∗
(
N
4n

)
. From Definition 0.3(α)

there exists 0 < ε < 1 depending on R and on the weight ω such that

ω
(〈(x, ξ)〉

R

)
≥ εω(〈(x, ξ)〉)− 1

ε
, x, ξ ∈ Rd.

By formulas (0.7) and (0.6), we have

log
(〈(x, ξ)〉

R

)
≤ ϕ∗(1) + ω(〈(x, ξ)〉) ≤ ϕ∗(1) + L+ Lω(x, ξ),

for all x, ξ ∈ Rd. We take N ≥ Nn depending on R ≥ 1 and on x, ξ ∈ Rd such
that (4n

N
ϕ∗
(N

4n

)
≤
) n
N
ϕ∗
(N
n

)
≤ log

(〈(x, ξ)〉
R

)
≤ n

N + 1
ϕ∗
(N + 1

n

)
.

Then, we use Lemma 0.7 to obtain((〈(x, ξ)〉
R

)−N
e2nϕ∗

(
N
2n

))ρ
≤
(
e−nω

(
〈(x,ξ)〉
R

)(〈(x, ξ)〉
R

))ρ
≤ e−nερω(〈(x,ξ)〉)e

nρ
ε e(ϕ∗(1)+L)ρeLρω(x,ξ)

≤ e
nρ
ε e(ϕ∗(1)+L)ρe(−nερ+Lρ)ω(x,ξ).
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Chapter 2. Quantizations for pseudodifferential operators

Thus

|Dα
xD

β
ξ a(x, ξ)| ≤ Cne

nρ
ε e(ϕ∗(1)+L)ρenϕ

∗
(
|α+β|
n

)
e(−nερ+Lρ+m)ω(x,ξ).

Hence the result follows choosing n large enough.

The reciprocal of Proposition 2.3 is also true for weight functions of the form
ω(t) = logs(1+ t) for s ≥ 1. Although we do not consider the case s = 1 in our
setting, the same argument works too. We first need a lemma, which holds
for every weight function ω.

Lemma 2.4. If a ∈
⋂
m∈R GSm,ωρ , then a ∼ 0 in

⋂
m∈R FGSm,ωρ .

Proof. Fix m ∈ R. By assumption, for all n ∈ N there exists Cn > 0 (which
depends on m) such that

|Dα
xD

β
ξ a(x, ξ)| ≤ Cn〈(x, ξ)〉−ρ|α+β|enρϕ

∗
(
|α+β|
n

)
e(−nL+m)ω(x,ξ)

for all α, β ∈ Nd0 and x, ξ ∈ Rd. From (0.6) it follows that

−nLω(x, ξ) ≤ −nρω(〈(x, ξ)〉) + nL.

Moreover, from (0.7) we get

〈(x, ξ)〉ρNe−nρω(〈(x,ξ)〉) ≤ enρϕ
∗(Nn ),

and therefore by (0.11), we have that for all n ∈ N there exists C ′n > 0 so that

|Dα
xD

β
ξ a(x, ξ)| ≤ C ′n〈(x, ξ)〉−ρ(|α+β|+N)enρϕ

∗
(
|α+β|+N

n

)
emω(x,ξ),

for all N ∈ N0, α, β ∈ Nd0, and x, ξ ∈ Rd. As the argument does not depend
on the choice of m ∈ R, it holds that a ∼ 0 in FGSm,ωρ for all m ∈ R.

Proposition 2.5. Let ω(t) = logs(1 + t) for s ≥ 1. If A is an ω-regularizing
operator with symbol a, then a ∼ 0 in FGSm,ωρ for all m ∈ R.

Proof. Since A is ω-regularizing, the symbol a belongs to Sω(R2d) by Proposi-
tion 1.19 and Corollary 1.13. For ω(t) = logs(1+t), s ≥ 1, by Example 1.21(b)
we have Sω(R2d) ⊆

⋂
m∈R GSm,ωρ . Hence, Lemma 2.4 gives the conclusion.
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2.1 Symbolic calculus

Now, we proceed to construct a symbol from an arbitrary formal sum (follow-
ing the lines of [33, Theorem 3.7]). To do so, we need some kind of partition
of unity. Here, we cannot use the estimates as in [33, Lemma 3.6] due to
some technical issues. Instead, we consider the usual estimates for ultradif-
ferentiable functions. This is because of the fact that our symbols are defined
in the whole Rd for each variable. This is not very restrictive as pointed out
in [33, Remark 1.7(1)].

Given a weight function ω, we consider another weight function σ such that
ω(t1/ρ) = O(σ(t)), t→∞. Let Φ ∈ D(σ)(R2d) be such that

|Φ| ≤ 1, Φ(t) = 1 if |t| ≤ 2, Φ(t) = 0 if |t| ≥ 3. (2.3)

Let (jn)n be an increasing sequence of natural numbers such that jn/n → ∞
as n→∞. For each jn ≤ j < jn+1, we define

Ψj,n(x, ξ) := 1− Φ
( 1

An,j
(x, ξ)

)
, An,j = Re

n
j ϕ
∗
ω( jn ), (2.4)

for some R ≥ 1, and all x, ξ ∈ Rd. Notice that An,j →∞ as j →∞. If (x, ξ) is
in the support of Ψj,n, by (2.3), we have

∣∣ 1
An,j

(x, ξ)
∣∣ > 2. So, if Ψj,n(x, ξ) 6= 0,

〈(x, ξ)〉 > 2An,j. (2.5)

For the estimate of the derivatives of the function Ψj,n, let C > 0 be as in
Lemma 0.10(2). By such lemma, for all k ∈ N there exists Ck = CkL2C > 0
such that

|Dα
xD

β
ξΨj,n(x, ξ)| =

∣∣∣Dα
xD

β
ξΦ
( 1

An,j
(x, ξ)

)∣∣∣A−|α+β|
n,j

≤ CkekL
2Cϕ∗σ

(
|α+β|
kL2C

)
A
−ρ|α+β|
n,j

≤ CkekL
2CekL

2ρϕ∗ω

(
|α+β|
kL2

)
A
−ρ|α+β|
n,j , (2.6)

for all α, β ∈ Nd0 and x, ξ ∈ Rd. The points in the support of any derivative of
Ψj,n satisfy 2 ≤

∣∣ 1
An,j

(x, ξ)
∣∣ ≤ 3. Thus

2An,j ≤ 〈(x, ξ)〉 ≤
√

10An,j ≤ e2An,j. (2.7)

From (2.6) we obtain using (2.7) and (0.10) that for all k ∈ N there exists

C ′k = Cke
kL2Ce(kL+kL2)ρ > 0 such that

|Dα
xD

β
ξΨj,n(x, ξ)| ≤ C ′k〈(x, ξ)〉−ρ|α+β|ekρϕ

∗
ω

(
|α+β|
k

)
,
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Chapter 2. Quantizations for pseudodifferential operators

for each α, β ∈ Nd0 and x, ξ ∈ Rd. Hence, Ψj,n ∈ GS0,ω
ρ .

With the properties of Ψj,n in (2.4), we are in a position to show the following
fundamental result. The proof follows the lines of [33, Theorem 3.7].

Theorem 2.6. Let
∑
aj be a formal sum in FGSm,ωρ . Then, there exists a

global symbol a ∈ GSm,ωρ such that a ∼
∑
aj.

Proof. For the functions Ψj,n defined in (2.4), it follows, by (2.7), that for
(x, ξ) in the support of their derivatives we have

(e2R)−ρj ≤ 〈(x, ξ)〉−ρjenρϕ
∗( jn ) ≤ (2R)−ρj, (2.8)

for some R ≥ 1. We check that for all n ∈ N there exists Cn > 0 such that

|Dα
xD

β
ξ (Ψj,n(x, ξ)aj(x, ξ))|

≤ Cn(2R)−ρj〈(x, ξ)〉−ρ|α+β|enρϕ
∗
(
|α+β|
n

)
emω(x,ξ),

(2.9)

for all j ∈ N0, α, β ∈ Nd0, and log
( 〈(x,ξ)〉

2R

)
≥ n

j
ϕ∗
(
j
n

)
. This will ensure that

Ψj,naj ∈ GSm,ωρ since log
( 〈(x,ξ)〉

2R

)
≤ n

j
ϕ∗
(
j
n

)
implies Ψj,n = 0. Choose p̃ ∈ N0 so

that 2 ≤ eρp̃. Since
∑
aj ∈ FGSm,ωρ , for all n ∈ N there exists C ′n = C ′2nLp̃ > 0

such that

|Dα
xD

β
ξ aj(x, ξ)| ≤ C ′n〈(x, ξ)〉−ρ(|α+β|+j)e2nLp̃ρϕ∗

(
|α+β|+j

2nLp̃

)
emω(x,ξ),

for all j ∈ N0, α, β ∈ Nd0, and log
( 〈(x,ξ)〉

2R

)
≥ n

j
ϕ∗
(
j
n

)(
≥ 2nLp̃

j
ϕ∗
(

j
2nLp̃

))
. More-

over, since Ψj,n ∈ GS0,ω
ρ there exists C ′′n = C ′′2nLp̃ > 0 with

|Dα
xD

β
ξΨj,n(x, ξ)| ≤ C ′′n〈(x, ξ)〉−ρ|α+β|e2nLp̃ρϕ∗

(
|α+β|
2nLp̃

)
,

for all α, β ∈ Nd0 and x, ξ ∈ Rd. Then, by Leibniz rule and Lemma 0.8 (with

the choice of p̃ ∈ N0), we have (since
∑

α̃≤α; β̃≤β
(
α
α̃

)(β
β̃

)
= 2|α+β|)

|Dα
xD

β
ξ (Ψj,n(x, ξ)aj(x, ξ))|

≤
∑

α̃≤α; β̃≤β

(
α

α̃

)(
β

β̃

)
|Dα−α̃

x Dβ−β̃
ξ Ψj,n(x, ξ)||Dα̃

xD
β̃
ξ aj(x, ξ)|

≤ C ′nC ′′n〈(x, ξ)〉−ρ(|α+β|+j)e2nLp̃ρϕ∗
(
|α+β|+j

2nLp̃

)
emω(x,ξ)2|α+β| (2.10)

≤ C ′nC ′′ne2nρ
∑p̃
s=1 L

s

〈(x, ξ)〉−ρ(|α+β|+j)enρϕ
∗
(
|α+β|
n

)
enρϕ

∗( jn )emω(x,ξ),
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for all j ∈ N0, α, β ∈ Nd0, and log
( 〈(x,ξ)〉

2R

)
≥ n

j
ϕ∗
(
j
n

)(
≥ 2nLp̃

j
ϕ∗
(

j
2nLp̃

))
. Then,

from formula (2.8) we obtain (2.9).

Let (Cn)n be the sequence of constants appearing in (2.9), and let (jn)n be the
sequence that defines Ψj,n in (2.4). By induction, we can take such sequence
(jn)n so that j1 := 1, jn < jn+1, jn/n→∞, and

Cn+1

∞∑
j=jn+1

(2R)−ρj ≤ 1

2
Cn

jn+1−1∑
j=jn

(2R)−ρj.

We check that

Cn := Cn

jn+1−1∑
j=jn

(2R)−ρj (2.11)

satisfies Cn+1 ≤ 1
2
Cn. Indeed,

Cn+1 ≤ Cn+1

∞∑
j=jn+1

(2R)−ρj ≤ 1

2
Cn

jn+1−1∑
j=jn

(2R)−ρj =
1

2
Cn.

We prove that

a(x, ξ) := a0(x, ξ) +
∞∑
n=1

jn+1−1∑
j=jn

Ψj,n(x, ξ)aj(x, ξ) (2.12)

is a global symbol in GSm,ωρ . First of all, we observe that a defines a locally

finite sum: as jn/n → ∞, for fixed x, ξ ∈ Rd there exists n ∈ N such that
|(x, ξ)| ≤ 2An,j for all j ≥ jn, thus Ψj,n = 0 for all j ≥ jn. Hence a is
well defined, and a C∞ function. By (2.9) we have, for the same sequence of
constants (Ck)k > 0 (according to the definition of Ck > 0 in (2.11)),∣∣∣Dα

xD
β
ξ

( ∞∑
k=n

jk+1−1∑
j=jk

Ψj,k(x, ξ)aj(x, ξ)
)∣∣∣

≤
∞∑
k=n

jk+1−1∑
j=jk

|Dα
xD

β
ξ (Ψj,k(x, ξ)aj(x, ξ))|

≤ 〈(x, ξ)〉−ρ|α+β|emω(x,ξ)
∞∑
k=n

Cke
kρϕ∗

(
|α+β|
k

) jk+1−1∑
j=jk

(2R)−ρj

≤ 〈(x, ξ)〉−ρ|α+β|enρϕ
∗
(
|α+β|
n

)
emω(x,ξ)

∞∑
k=n

Ck,
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for all α, β ∈ Nd0, log
( 〈(x,ξ)〉

2R

)
≥ n

j
ϕ∗
(
j
n

)(
≥ 2kLp̃

j
ϕ∗
(

j
2kLp̃

))
. We recall that if

log
( 〈(x,ξ)〉

2R

)
≤ n

j
ϕ∗
(
j
n

)
, then Ψj,n = 0. As

∑∞
k=nCk is a constant depending on

n and

a−
∞∑
k=n

jk+1−1∑
j=jk

Ψj,kaj = a0 +
n−1∑
k=1

jk+1−1∑
j=jk

Ψj,kaj

is a finite sum of symbols, we obtain a ∈ GSm,ωρ .

We claim that a ∼
∑
aj. By Definition 2.2, it is enough to show the estimate

in (2.2) for N ≥ njn. We consider log
( 〈(x,ξ)〉√

10R

)
≥ n

N
ϕ∗
(
N
n

)
. For arbitrary j ∈ N

there exists k ∈ N such that jk ≤ j < jk+1. If k < n, then j ≤ jn, and we have

log
(〈(x, ξ)〉√

10R

)
≥ n

N
ϕ∗
(N
n

)
≥ 1

jn
ϕ∗(jn) ≥ k

j
ϕ∗
( j
k

)
.

Therefore, by (2.3), Ψj,k ≡ 1. If k ≥ n and N > j we similarly obtain Ψj,k ≡ 1,
as

log
(〈(x, ξ)〉√

10R

)
≥ n

N
ϕ∗
(N
n

)
≥ k

j
ϕ∗
( j
k

)
.

Hence, we only deal with the case k ≥ n and j ≥ N . Following the proof
of (2.9) (see (2.10)) we obtain that, for the same sequence (Ck)k > 0,

|Dα
xD

β
ξ (Ψj,k(x, ξ)aj(x, ξ))|

≤ Ck〈(x, ξ)〉−ρ(|α+β|+N)ekρϕ
∗
(
|α+β|+N

k

)
〈(x, ξ)〉−ρ(j−N)ekρϕ

∗
(
j−N
k

)
emω(x,ξ)

≤ Ck〈(x, ξ)〉−ρ(|α+β|+N)ekρϕ
∗
(
|α+β|+N

k

)
(2R)−ρ(j−N)emω(x,ξ), (2.13)

for all N ≥ njn, α, β ∈ Nd0 and log
( 〈(x,ξ)〉√

10R

)
≥ n

j
ϕ∗
(
j
n

)
. Since k ≥ n and j ≥ N ,

∣∣∣Dα
xD

β
ξ (a−

∑
j<N

aj)
∣∣∣ ≤ ∣∣∣Dα

xD
β
ξ

( ∞∑
k=1

jk+1−1∑
j=jk

Ψj,kaj −
N−1∑
j=1

aj
)∣∣∣

≤
∣∣∣Dα

xD
β
ξ

(∑
k≥n

jk+1−1∑
j=jk j≥N

Ψj,kaj
)∣∣∣

≤
∑
k≥n

jk+1−1∑
j=jk j≥N

|Dα
xD

β
ξ (Ψj,kaj)|,
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and, by (2.13), we obtain∣∣∣Dα
xD

β
ξ (a−

∑
j<N

aj)
∣∣∣

≤ (2R)ρN〈(x, ξ)〉−ρ(|α+β|+N)emω(x,ξ)
∑
k≥n

Cke
kρϕ∗

(
|α+β|+N

k

) jk+1−1∑
j=jk j≥N

(2R)−ρj

≤ (2R)ρN〈(x, ξ)〉−ρ(|α+β|+N)enρϕ
∗
(
|α+β|+N

n

)
emω(x,ξ)

∑
k≥n

Ck. (2.14)

This gives the result since
∑

k≥nCk is a constant that depends on n.

In short, for every n ∈ N we write, for jn ≤ j < jn+1,

Ψj := Ψj,n, Ψ0 = 1. (2.15)

In what follows, τ stands for a real number. Let k ∈ N0 be the smallest natural
number satisfying

|τ |+ |1− τ | ≤ 2k. (2.16)

Proceeding as in Lemma 1.4, it is easy to check:

Lemma 2.7. For every x, y, ξ ∈ Rd and τ ∈ R,

〈(x, y, ξ)〉 ≤
√

6〈τ〉〈x− y〉〈((1− τ)x+ τy, ξ)〉.

Proof. We have

|y|2 ≤ (|x|+ |x− y|)2 ≤ 2|x|2 + 2|x− y|2,
|x|2 ≤ (|x− τ(x− y)|+ |τ(x− y)|)2 ≤ 2|x− τ(x− y)|2 + 2|τ(x− y)|2.

Then,

|x|2 + |y|2 ≤ 3|x|2 + 2|x− y|2

≤ 6|x− τ(x− y)|2 + 6|τ |2|x− y|2 + 2|x− y|2

≤ 6|(1− τ)x+ τy|2 + 6(1 + |τ |2)|x− y|2.

Therefore, it is easy to see that

1 + |x|2 + |y|2 + |ξ|2

(1 + |x− y|2)(1 + |(1− τ)x+ τy|2 + |ξ|2)
≤ 6(1 + |τ |2).

67



Chapter 2. Quantizations for pseudodifferential operators

Given m ∈ R we denote for k ∈ N0 as in (2.16),

m′ = mLk. (2.17)

We observe that m′ = m if and only if 0 ≤ τ ≤ 1.

The next result generalizes Example 1.5.

Lemma 2.8. If b(x, ξ) ∈ GSm,ωρ and τ ∈ R, then

a(x, y, ξ) := b((1− τ)x+ τy, ξ)

is a global amplitude in GAmax{0,m′},ω
ρ .

Proof. We take p̃ ∈ N such that max{|1− τ |, |τ |, (
√

6〈τ〉)ρ} ≤ eρp̃. By assump-
tion, for all λ > 0 there exists Cλ > 0 such that

|Dα
xD

γ
yD

β
ξ a(x, y, ξ)| ≤ |1− τ ||α||τ ||γ|Cλ〈((1− τ)x+ τy, ξ)〉−ρ|α+γ+β|×

× eλL
2p̃ρϕ∗

(
|α+γ+β|
λL2p̃

)
emω((1−τ)x+τy,ξ)

for all α, γ, β ∈ Nd0, x, y, ξ ∈ Rd. We use Lemma 2.7 to get

〈((1− τ)x+ τy, ξ)〉−ρ|α+γ+β| ≤ (
√

6〈τ〉)ρ|α+γ+β|
( 〈x− y〉
〈(x, y, ξ)〉

)ρ|α+γ+β|
.

The choice of p̃ ∈ N gives |1 − τ ||α||τ ||γ|(
√

6〈τ〉)ρ|α+γ+β| ≤ e2ρp̃|α+γ+β|. Then,
by (0.10), we get[

e2p̃|α+γ+β|eλL
2p̃ϕ∗

(
|α+γ+β|
λL2p̃

)]ρ ≤ eλρϕ∗( |α+γ+β|
λ

)
eλρ

∑2p̃
j=1 L

j

.

Finally, since ω is radial and increasing, using k times condition (α) of Defi-
nition 0.3, we conclude for m ≥ 0

emω((1−τ)x+τy,ξ) ≤ emω(2k(x,y,ξ)) ≤ em
′ω(x,y,ξ)emL

k+mLk−1+···+mL. (2.18)

Since Ψj as in (2.15) is a global symbol in GS0,ω
ρ , it follows that

Corollary 2.9. Let Ψj(x, ξ) be as in (2.15). Then Ψj((1−τ)x+τy, ξ) ∈ GA0,ω
ρ

for all τ ∈ R. Moreover, for all λ > 0 there exists Cλ > 0 such that

|Dα
xD

γ
yD

β
ξΨj((1− τ)x+ τy, ξ)| ≤ Cλ〈((1− τ)x+ τy, ξ)〉−ρ|α+γ+β|eλρϕ

∗
(
|α+γ+β|

λ

)
for all α, γ, β ∈ Nd0 and x, y, ξ ∈ Rd.
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Lemma 2.10. Let a(x, y, ξ) be an amplitude in GAm,ω
ρ and let A be the asso-

ciated pseudodifferential operator. For each f ∈ Sω(Rd), we have

A(f) =
∞∑
j=0

Aj(f) in Sω(Rd),

where Aj is the pseudodifferential operator defined by the amplitude

(Ψj −Ψj+1)((1− τ)x+ τy, ξ)a(x, y, ξ), j ∈ N0.

Proof. By Corollary 2.9, (Ψj − Ψj+1)((1 − τ)x + τy, ξ)a(x, y, ξ) ∈ GAm,ω
ρ for

jn ≤ j < jn+1. Since An,N+1 →∞ as N →∞, for each f ∈ Sω(Rd) we have
∞∑
j=0

Aj(f)(x)

=
∞∑
j=0

∫∫
ei(x−y)·ξ(Ψj −Ψj+1)((1− τ)x+ τy, ξ)a(x, y, ξ)f(y)dydξ

= lim
N→∞

∫∫
ei(x−y)·ξ(1−ΨN+1((1− τ)x+ τy, ξ)

)
a(x, y, ξ)f(y)dydξ.

We show that this limit is, for all τ ∈ R, equal to A in L(Sω(Rd),S ′ω(Rd)). We
recall that

(1−ΨN+1)((1− τ)x+ τy, ξ) = Φ
(((1− τ)x+ τy, ξ)

An,N+1

)
and Φ(0) = 1, being Φ ∈ D(σ)(R2d) the function in (2.3) with ω(t1/ρ) =
O(σ(t)), t → ∞. Since Sω(Rd) is Fréchet-Montel, it is enough that for each
f, g ∈ Sω(Rd),∫∫∫

ei(x−y)·ξ
(

Φ
((1− τ)x+ τy, ξ

k

)
−1
)
a(x, y, ξ)f(y)g(x)dydξdx→ 0 (2.19)

as k → ∞. We integrate by parts with formula (1.6) for some power s ∈ N
determined later of the ultradifferential operator G(D). Then, the integrand
in the left-hand side of (2.19) equals

ei(x−y)·ξ 1

Gs(ξ)
Gs(Dy)

{(
Φ
((1− τ)x+ τy, ξ

k

)
− 1
)
a(x, y, ξ)f(y)g(x)

}
= ei(x−y)·ξ 1

Gs(ξ)

∑
η∈Nd0

bη
∑

η1+η2+η3=η

η!

η1!η2!η3!
×

×
(τ
k

)|η1|
Dη1
y

(
Φ
((1− τ)x+ τy, ξ

k

)
− 1
)
Dη2
y a(x, y, ξ)Dη3

y f(y)g(x).
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Therefore, the integral in (2.19) is equal to∑
η∈Nd0

bη
∑

η1+η2+η3=η

η!

η1!η2!η3!

(τ
k

)|η1| ∫∫∫
ei(x−y)·ξ 1

Gs(ξ)
×

×Dη1
y

(
Φ
((1− τ)x+ τy, ξ

k

)
− 1
)
Dη2
y a(x, y, ξ)Dη3

y f(y)g(x)dydξdx.

From Corollaries 0.23 and 0.20 there are C1, C2, C3 > 0 (depending only on
G) such that for all η ∈ Nd0 and ξ ∈ Rd

|bη| ≤ esC1e−sC1ϕ
∗
(
|η|
sC1

)
,

∣∣∣ 1

Gs(ξ)

∣∣∣ ≤ Cs
3e
−sC2ω(ξ).

It follows from Lemma 1.4 (and (0.10)) that for all λ > 0 there exists Cλ > 0
such that

|Dη2
y a(x, y, ξ)| ≤ CλeλL

3ϕ∗
(
|η2|
λL3

)
emω(x,y,ξ).

Since f, g ∈ Sω(Rd), there exist C ′λ,m, Cm > 0 such that

|Dη3
y f(y)| ≤ C ′λ,me

λL3ϕ∗
(
|η3|
λL3

)
e−(mL+1)ω(y);

|g(x)| ≤ Cme−(mL+1)ω(x).

Now, for η1 = 0 we have that Φ ≡ 1 if |((1 − τ)x + τy, ξ)| ≤ 2k, and for

|η1| > 0 it follows that Dη1
y

(
Φ
(

(1−τ)x+τy,ξ

k

)
− 1

)
= Dη1

y Φ
(

(1−τ)x+τy,ξ

k

)
is zero

for |((1−τ)x+τy, ξ)| ≤ 2k; therefore we assume that |((1−τ)x+τy, ξ)| > 2k.
We then have

1 ≤ 1

2k
|((1− τ)x+ τy, ξ)| ≤ 1

k
(|1− τ |+ |τ |)(|x|+ 1)(|y|+ 1)(|ξ|+ 1).

As Φ ∈ D(σ)(R2d) ⊆ D(ω)(R2d), by (0.10), there exists C ′′λ > 0 such that

|τ ||η1|
∣∣∣Dη1

y

(
Φ
((1− τ)x+ τy, ξ

k

)
− 1
)∣∣∣ ≤ C ′′λeλL3ϕ∗

(
|η1|
λL3

)
, η1 ∈ Nd0.

For m ≥ 0 (if m < 0, then mω(x, y, ξ) < 0), formula (0.4) gives

mω(x, y, ξ) ≤ mLω(x) +mLω(y) +mLω(ξ) +mL.

If s ∈ N satisfies sC2 ≥ mL + 1, we get e(−sC2+mL)ω(ξ) ≤ e−ω(ξ) and therefore
the integrals in (2.19) are convergent by condition (γ) of Definition 0.3. On
the other hand, from Lemma 0.8, since

∑ η!
η1!η2!η3!

= 3|η| ≤ e2|η|, we have∑
η1+η2+η3=η

η!

η1!η2!η3!
eλL

3ϕ∗
(
|η1|
λL3

)
eλL

3ϕ∗
(
|η2|
λL3

)
eλL

3ϕ∗
(
|η3|
λL3

)
≤ eλLϕ

∗
(
|η|
λL

)
eλL

2+λL3

.
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Now, the series ∑
η∈Nd0

e−sC1ϕ
∗
(
|η|
sC1

)
eλLϕ

∗
(
|η|
λL

)
converges provided λ > sC1 (see (1.14)). Thus, there exists C > 0 such that∣∣∣ ∫∫∫ ei(x−y)·ξ

(
Φ
((1− τ)x+ τy, ξ

k

)
−1
)
a(x, y, ξ)f(y)g(x)dydξdx

∣∣∣ ≤ C 1

k
→ 0,

and hence (2.19) is satisfied, which proves the result.

Lemma 2.11. Let
∑
pj be a formal sum in FGSm,ωρ . Let (Cn)n and (C ′n)n be

the sequences of constants that appear in Definition 2.1 and in Corollary 2.9.
Assume that the sequence (jn)n in the proof of Theorem 2.6 satisfies in addition

n

j
ϕ∗
( j
n

)
≥ max{n, log(C2nLp̃+1), log(C ′nLp̃+1)} for jn ≤ j < jn+1,

where p̃ ∈ N is so that 3〈τ〉 ≤ ep̃. For

p(x, ξ) :=
∞∑
j=0

Ψj(x, ξ)pj(x, ξ),

its corresponding pseudodifferential operator P is, in L(Sω(Rd),S ′ω(Rd)), the
limit of the sequence of operators

SN,τ : Sω(Rd)→ Sω(Rd), N ∈ N,

where each SN,τ , N ∈ N, denotes a pseudodifferential operator with amplitude

N∑
j=0

(Ψj −Ψj+1)((1− τ)x+ τy, ξ)
j∑
l=0

pl((1− τ)x+ τy, ξ)

in GAmax{0,m′},ω
ρ , where m′ is as in (2.17).

Proof. For each j ∈ N0, we check that

((Ψj −Ψj+1)
j∑
l=0

pl)((1− τ)x+ τy, ξ) =
j∑
l=0

((Ψj −Ψj+1)pl)((1− τ)x+ τy, ξ)

is a global amplitude in GAmax{0,m′},ω
ρ . We choose p̃1 ∈ N so that

max{2, 2|1− τ |, 2|τ |, (
√

6〈τ〉)ρ} ≤ eρp̃1 .
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From (2.7) we assume (since 0 ≤ l ≤ j)

(A2nL2p̃1 ,l ≤)2An,j ≤ 〈((1− τ)x+ τy, ξ)〉 ≤
√

10An,j.

By Definition 2.1 and the first part of Corollary 2.9, for all n ∈ N we have for
the sequences as in the statement of the lemma,

|Dα
xD

γ
yD

β
ξ ((Ψj −Ψj+1)pl)((1− τ)x+ τy, ξ)|

≤
∑

α̃≤α;γ̃≤γ;β̃≤β

(
α

α̃

)(
γ

γ̃

)(
β

β̃

)
|Dα̃

xD
γ̃
yD

β̃
ξ (Ψj −Ψj+1)((1− τ)x+ τy, ξ)|×

× |Dα−α̃
x Dγ−γ̃

y Dβ−β̃
ξ pl((1− τ)x+ τy, ξ)|

≤
∑

α̃≤α;γ̃≤γ;β̃≤β

(
α

α̃

)(
γ

γ̃

)(
β

β̃

)
|1− τ ||α̃||τ ||γ̃|C ′nL2p̃1×

×
( 〈x− y〉
〈(x, y, ξ)〉

)ρ|α̃+γ̃+β̃|
e
nL2p̃1ρϕ∗

(
|α̃+γ̃+β̃|
nL2p̃1

)
|1− τ ||α−α̃||τ ||γ−γ̃|C2nL2p̃1×

× 〈((1− τ)x+ τy, ξ)〉−ρ(|α−α̃+γ−γ̃+β−β̃|+l)×

× e2nL2p̃1ρϕ∗
(
|α−α̃+γ−γ̃+β−β̃|+l

2nL2p̃1

)
emω((1−τ)x+τy,ξ).

We first notice that, since (2R)−ρl ≤ 1, by (0.11),

〈((1− τ)x+ τy, ξ)〉−ρle2nL2p̃1ρϕ∗
(
|α−α̃+γ−γ̃+β−β̃|+l

2nL2p̃1

)
≤ enL

2p̃1ρϕ∗
(
|α−α̃+γ−γ̃+β−β̃|

nL2p̃1

)
.

By Lemma 2.7, we deduce

〈((1− τ)x+ τy, ξ)〉−ρ|α−α̃+γ−γ̃+β−β̃|

≤ (
√

6〈τ〉)ρ|α+γ+β|
( 〈x− y〉
〈(x, y, ξ)〉

)ρ|α−α̃+γ−γ̃+β−β̃|
.

Then, from Lemma 0.8, since
∑(

α
α̃

)(
γ
γ̃

)(β
β̃

)
= 2|α+γ+β|, we have by the choice

of p̃1 ∈ N,

(
√

6〈τ〉)ρ|α+γ+β||1− τ ||α||τ ||γ|
∑

α̃≤α;γ̃≤γ;β̃≤β

(
α

α̃

)(
γ

γ̃

)(
β

β̃

)
×

× enL
2p̃1ρϕ∗

(
|α̃+γ̃+β̃|
nL2p̃1

)
e
nL2p̃1ρϕ∗

(
|α−α̃+γ−γ̃+β−β̃|

nL2p̃1

)
≤ (
√

6〈τ〉)ρ|α+γ+β|(2|1− τ |)|α|(2|τ |)|γ|2|β|enL
2p̃1ρϕ∗

(
|α+γ+β|
nL2p̃1

)
≤ enρϕ

∗
(
|α+γ+β|

n

)
enρ

∑2p̃1
t=1 L

t

.
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2.1 Symbolic calculus

By (2.18), we obtain that
∑j

l=0(Ψj − Ψj+1)pl ∈ GAmax{0,m′},ω
ρ . Hence, the

function
N∑
j=0

(Ψj −Ψj+1)
( j∑
l=0

pl
)

=
N∑
j=0

Ψjpj −ΨN+1

N∑
l=0

pl

is a global amplitude in GAmax{0,m′},ω
ρ .

Now, we prove that SN,τ converges to the operator P in L(Sω(Rd),S ′ω(Rd))
when N → ∞. Since Sω(Rd) is a Fréchet-Montel space, it is enough to show
that, for all f, g ∈ Sω(Rd),

〈(SN,τ − P )f, g〉 → 0, as N →∞.

Since P and SN,τ , N ∈ N, act continuously from Sω(Rd) into Sω(Rd), we have

〈(SN,τ − P )f, g〉 =

∫
(SN,τ − P )f(x)g(x)dx

=

∫ ( ∫∫
ei(x−y)·ξ

({ N∑
j=0

Ψjpj −ΨN+1

N∑
l=0

pl
}
− p
)
f(y)dydξ

)
g(x)dx,

for every f, g ∈ Sω(Rd), where Ψj,ΨN+1, pj, pl, and p are evaluated at ((1 −
τ)x+ τy, ξ). We prove that, for each f, g ∈ Sω(Rd),

a)

∫ ( ∫∫
ei(x−y)·ξ

( ∞∑
j=N+1

Ψjpj
)
f(y)dydξ

)
g(x)dx, and

b)

∫ ( ∫∫
ei(x−y)·ξ

(
ΨN+1

N∑
l=0

pl
)
f(y)dydξ

)
g(x)dx

tend to zero when N →∞.

Let us show that a) goes to zero. We integrate by parts with formula (1.6) for
some s ∈ N determined later. The integrand in a) equals

ei(x−y)·ξ 1

Gs(ξ)
Gs(Dy)

( ∞∑
j=N+1

Ψj · pj · f(y)
)

= ei(x−y)·ξ 1

Gs(ξ)

∑
η∈Nd0

bη
∑

η1+η2+η3=η

η!

η1!η2!η3!

∞∑
j=N+1

τ |η1+η2|Dη1
y ΨjD

η2
y pjD

η3
y f(y).
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Hence, we reformulate a) by∫ ( ∫ 1

Gs(ξ)

∑
η∈Nd0

bη
∑

η1+η2+η3=η

η!

η1!η2!η3!
τ |η1+η2|×

×
( ∫

ei(x−y)·ξ
∞∑

j=N+1

Dη1
y ΨjD

η2
y pjD

η3
y f(y)dy

)
dξ
)
g(x)dx.

(2.20)

When Ψj 6= 0, and jn ≤ j < jn+1, we have log
( 〈((1−τ)x+τy,ξ)〉

2R

)
≥ n

j
ϕ∗
(
j
n

)
by (2.5). By Corollary 2.9, for each n ∈ N we have (for C ′n = C ′nLp̃+1 > 0 as in
the statement of the lemma),

|Dη1
y Ψj((1− τ)x+ τy, ξ)| ≤ C ′ne

nLp̃+1ϕ∗
(
|η1|

nLp̃+1

)
.

Moreover, for that n ∈ N, we have from Definition 2.1, by (0.11), (we denote
Cn = C2nLp̃+1 > 0),

|Dη2
y pj((1− τ)x+ τy, ξ)|

≤ Cne2nLp̃+1ρϕ∗
(
|η2|+j
2nLp̃+1

)
〈((1− τ)x+ τy, ξ)〉−ρ(|η2|+j)emω((1−τ)x+τy,ξ)

≤ CnenL
p̃+1ϕ∗

(
|η2|

nLp̃+1

)
enL

p̃+1ρϕ∗
(

j

nLp̃+1

)
〈((1− τ)x+ τy, ξ)〉−ρjemω((1−τ)x+τy,ξ)

≤ CnenL
p̃+1ϕ∗

(
|η2|

nLp̃+1

)
(2R)−ρjemω((1−τ)x+τy,ξ).

We may assume that m ≥ 0 (otherwise, the proof is simpler). Property (γ) of
ω yields that there exists C > 0 such that 〈t〉 ≤ Ceω(〈t〉), t ∈ Rd. By (0.6), we
obtain, according to the support of Ψj (see (2.5)),

emω((1−τ)x+τy,ξ) ≤ e(m+3)ω(〈((1−τ)x+τy,ξ)〉)e−3ω(〈((1−τ)x+τy,ξ)〉)

≤ e(m+3)Lω((1−τ)x+τy,ξ)e(m+3)LC3〈((1− τ)x+ τy, ξ)〉−3

≤ e(m+3)Lω((1−τ)x+τy,ξ)e(m+3)LC3e−3nj ϕ
∗( jn ).

Moreover, by (2.18) (where k ∈ N0 is as in (2.16)) and (0.4)

e(m+3)Lω((1−τ)x+τy,ξ) ≤ e(m+3)Lk+1ω(x,y,ξ)e(m+3)Lk+1+···+(m+3)L2

≤ e(m+3)Lk+2(ω(x)+ω(y)+ω(ξ))e(m+3)Lk+2+···+(m+3)L2

.

Take 0 < sC1 ≤ ` < n. Since f, g ∈ Sω(Rd) there exist C ′′` > 0 (depending on
`,m, τ) and D > 0 (depending on m, τ) such that

|Dη3
y f(y)| ≤ C ′′` e

`Lp̃+1ϕ∗
(
|η3|
`Lp̃+1

)
e−((m+3)Lk+2+1)ω(y);

|g(x)| ≤ De−((m+3)Lk+2+1)ω(x).
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From Lemmas 0.8 and 0.1, we have by the choice of p̃ ∈ N∑
η1+η2+η3=η

η!

η1!η2!η3!
|τ ||η1+η2|enL

p̃+1ϕ∗
(
|η1|

nLp̃+1

)
enL

p̃+1ϕ∗
(
|η2|

nLp̃+1

)
e`L

p̃+1ϕ∗
(
|η3|
`Lp̃+1

)
≤ 〈τ〉|η|e`L

p̃+1ϕ∗
(
|η|

`Lp̃+1

) ∑
η1+η2+η3=η

η!

η1!η2!η3!

≤ e`Lϕ
∗
(
|η|
`L

)
e`L

∑p̃
r=1 L

r

.

By Corollaries 0.23 and 0.20, there exist C1, C2, C3 > 0 such that

|bη| ≤ esC1e−sC1ϕ
∗
(
|η|
sC1

)
,

∣∣∣ 1

Gs(ξ)

∣∣∣ ≤ Cs
3e
−sC2ω(ξ).

We then estimate the modulus of (2.20) by∫ ( ∫
Cs

3e
−sC2ω(ξ)

∑
η∈Nd0

esC1e−sC1ϕ
∗
(
|η|
sC1

)( ∫ ∞∑
j=N+1

CnC
′
ne
`Lϕ∗

(
|η|
`L

)
e`L

∑p̃
r=1 L

r

×

× (2R)−ρjC3e(m+3)Lk+2+···+(m+3)L2

e(m+3)Le(m+3)Lk+2(ω(x)+ω(y)+ω(ξ))×

× e−3nj ϕ
∗( jn )C ′′` e

−((m+3)Lk+2+1)ω(y)dy
)
dξ
)
De−((m+3)Lk+2+1)ω(x)dx.

Since ` ≥ sC1, the series depending on η ∈ Nd0 converges (as in (1.14)). Notice
that the constant depending on n ∈ N is CnC

′
n. Take s ∈ N0 such that

sC2 ≥ (m + 3)Lk+2 + 1. This yields, for jl ≤ N + 1 < jl+1, the following
estimate for the modulus of a):

E`
( ∫

e−ω(x)dx
)( ∫

e−ω(y)dy
)( ∫

e−ω(ξ)dξ
)( ∞∑

n=l

jn+1−1∑
j=jn

CnC
′
n

(2R)ρje3nj ϕ
∗( jn )

)
,

where E` > 0 is a constant depending on `. The convergence of the integrals
is guaranteed by property (γ) of the weight function. By assumption we have
3n
j
ϕ∗
(
j
n

)
≥ log(C2nLp̃+1) + log(C ′nLp̃+1) + n. This proves a).

For the integral in b), we proceed in a similar way: we consider the same
integration by parts (1.6) as in the previous case, for some s ∈ N determined
later. Then, the integrand is equal to

ei(x−y)·ξ 1

Gs(ξ)
Gs(Dy)

(
ΨN+1

N∑
l=0

pl · f(y)
)

=
ei(x−y)·ξ

Gs(ξ)

∑
η∈Nd0

bη
∑

η1+η2+η3=η

η!

η1!η2!η3!
τ |η1+η2|Dη1

y ΨN+1

( N∑
l=0

Dη2
y pl

)
Dη3
y f(y).
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We claim that∫ ( ∫ 1

Gs(ξ)

∑
η∈Nd0

bη
∑

η1+η2+η3=η

η!

η1!η2!η3!
τ |η1+η2|×

×
( ∫

ei(x−y)·ξDη1
y ΨN+1

( N∑
l=0

Dη2
y pl

)
Dη3
y f(y)dy

)
dξ
)
g(x)dx

converges to zero as N → ∞. Given N ∈ N, we take n ∈ N such that
jn ≤ N + 1 < jn+1. If ΨN+1((1− τ)x+ τy, ξ) 6= 0, then log

( 〈((1−τ)x+τy,ξ)〉
2R

)
≥

n
N+1

ϕ∗
(
N+1
n

)
. Put 0 < sC1 ≤ ` < n, where C1 > 0 is the constant from

Corollary 0.23. Similarly as before, for the same constants Cn = C2nLp̃+1 > 0
and C ′n = CnLp̃+1 > 0 we have this estimate for the modulus of b):∫ ( ∫

Cs
3e
−sC2ω(ξ)

∑
η∈Nd0

esC1e−sC1ϕ
∗
(
|η|
sC1

)( ∫
CnC

′
ne
`Lϕ∗

(
|η|
`L

)
e`L

∑p̃
r=1 L

r

×

×
( N∑
l=0

(2R)−ρl
)
C3e(m+3)(Lk+2+···+L2+L)e(m+3)Lk+2(ω(x)+ω(y)+ω(ξ))×

× e−3 n
N+1ϕ

∗
(
N+1
n

)
C ′′` e

−((m+3)Lk+2+1)ω(y)dy
)
dξ
)
De−((m+3)Lk+2+1)ω(x)dx.

The same s ∈ N as before guarantees the convergence of the integrals and of
the series on η ∈ Nd0. The proof of b) now follows by the selection of (jn) and
because the series

∑∞
l=0(2R)−ρl is convergent.

2.2 Properties of formal sums

Example 2.12. Let a(x, y, ξ) be an amplitude in GAm,ω
ρ and let

pj(x, ξ) :=
∑
|β+γ|=j

1

β!γ!
τ |β|(1− τ)|γ|∂β+γ

ξ (−Dx)
βDγ

ya(x, y, ξ) |y=x .

Then, the formal series
∑
pj belongs to FGSmax{m,mL},ω

ρ for all τ ∈ R.

Proof. We want to estimate |Dα
xD

ε
ξpj(x, ξ)| for all j ∈ N0, α, ε ∈ Nd0 and

log
( 〈(x,ξ)〉

R

)
≥ n

j
ϕ∗
(
j
n

)
, for some R ≥ 1. We consider p̃ ∈ N0 so that 2 ≤ eρp̃.

Since a ∈ GAm,ω
ρ , by the chain rule we have that for all n ∈ N there exists
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Cn = C2nLp̃ > 0 such that (for |β + γ| = j)∣∣Dα
xD

ε
ξ[∂

β+γ
ξ (−Dx)

βDγ
ya(x, y, ξ) |y=x]

∣∣
≤
∑
α̃≤α

(
α

α̃

)∣∣Dα̃
xD

α−α̃
y Dε

ξ[∂
β+γ
ξ (−Dx)

βDγ
ya(x, y, ξ) |y=x]

∣∣
≤ Cnemω(x,x,ξ)〈(x, x, ξ)〉−ρ(|α+ε|+2j)e2nLp̃ρϕ∗

(
|α+ε|+2j

2nLp̃

) ∑
α̃≤α

(
α

α̃

)
.

By formula (0.11), we have e2nLp̃ρϕ∗
(
|α+ε|+2j

2nLp̃

)
≤ enL

p̃ρϕ∗
(
|α+ε|+j
nLp̃

)
enρϕ

∗( jn ). Fur-

thermore, log
( 〈(x,ξ)〉

R

)
≥ n

j
ϕ∗
(
j
n

)
implies enρϕ

∗( jn ) ≤ 〈(x, ξ)〉ρj. Since
∑(

α
α̃

)
=

2|α|, from the choice of p̃ ∈ N0, we have, by (0.10),

2|α|enL
p̃ρϕ∗

(
|α+ε|+j
nLp̃

)
≤ enρϕ

∗
(
|α+ε|+j

n

)
enρ

∑p̃
s=1 L

s

.

From (0.3) we have that ω(x, ξ) ≤ ω(x, x, ξ) ≤ Lω(x, ξ) + L. Thus, we obtain∣∣Dα
xD

ε
ξ[∂

β+γ
ξ (−Dx)

βDγ
ya(x, y, ξ) |y=x]

∣∣
≤ Cnenρ

∑p̃
s=1 L

s

〈(x, ξ)〉−ρ(|α+ε|+j)enρϕ
∗
(
|α+ε|+j

n

)
emax{0,mL}emax{m,mL}ω(x,ξ).

Finally, by Lemma 0.1(2), (1), we have

∑
|β+γ|=j

|τ ||β||1− τ ||γ|

β!γ!
≤

j∑
|β|=0

d|β||τ ||β|

|β|!

j∑
|γ|=0

d|γ||1− τ ||γ|

|γ|!

≤
( j∑
k=0

(d|τ |)k

k!

∑
|β|=k

1
)( j∑

l=0

(d|1− τ |)l

l!

∑
|γ|=l

1
)

≤
j∑

k=0

(d2|τ |)k

k!

j∑
l=0

(d2|1− τ |)l

l!
≤ ed

2|τ |ed
2|1−τ |.

Then, we obtain the result.

Proposition 2.13. Let
∑
pj ∈ FGSm,ωρ be a formal sum. Then

∑
qj given by

qj(x, ξ) :=
∑
|α|+h=j

1

α!
(1− 2τ)|α|∂αξD

α
x (ph(x,−ξ))

is a formal sum in FGSm,ωρ .
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Proof. By assumption, there is R ≥ 1 such that for all n ∈ N there exists
Cn = C2n > 0 satisfying (using (0.11))

|Dγ
xD

β
ξ qj(x, ξ)|

≤
∑
|α|+h=j

1

α!
|1− 2τ ||α||Dα+γ

x Dα+β
ξ ph(x,−ξ)|

≤ Cnemω(x,ξ)
∑
|α|+h=j

1

α!
|1− 2τ ||α|〈(x, ξ)〉−ρ(|2α+γ+β|+h)e2nρϕ∗

(
|2α+γ+β|+h

2n

)
≤ Cnemω(x,ξ)〈(x, ξ)〉−ρ(|γ+β|+j)enρϕ

∗
(
|γ+β|+j

n

)
×

×
∑
|α|+h=j

1

α!
|1− 2τ ||α|〈(x, ξ)〉−ρ|α|enρϕ

∗
(
|α|
n

)
,

for every j ∈ N, γ, β ∈ Nd0, and log
( 〈(x,ξ)〉

R

)
≥ 2n

j
ϕ∗
(
j

2n

)
. We take log

( 〈(x,ξ)〉
R

)
≥

n
j
ϕ∗
(
j
n

)(
≥ 2n

j
ϕ∗
(
j

2n

))
. In particular, as |α| ≤ j, we obtain enρϕ

∗
(
|α|
n

)
≤

〈(x, ξ)〉ρ|α|. Finally, using Lemma 0.1, we have

∑
|α|+h=j

1

α!
|1− 2τ ||α| ≤

j∑
|α|=0

d|α||1− 2τ ||α|

|α|!
≤

j∑
k=0

(d|1− 2τ |)k

k!

∑
|α|=k

1 ≤ ed
2|1−2τ |,

which gives the conclusion.

Definition 2.14. Let
∑
pj ∈ FGSm,ωρ . We define (

∑
pj)

t as the formal sum∑
qj in FGSm,ωρ given in Proposition 2.13.

Proposition 2.15. Let
∑
pj ∈ FGSm1,ω

ρ and
∑
qj ∈ FGSm2,ω

ρ . The formal
sum

∑
rj given by

rj(x, ξ) :=
∑

|β+γ|+k+h=j

(−1)|β|

β!γ!
τ |β|(1− τ)|γ|(∂γξD

β
xph(x, ξ))(∂βξD

γ
xqk(x, ξ))

belongs to FGSm1+m2,ω
ρ .
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Proof. Let p̃ ∈ N0 satisfy 2 ≤ eρp̃. By assumption, there is R ≥ 1 such that
for all n ∈ N there exists Cn = C2nLp̃ > 0 with

|Dα
xD

ε
ξrj(x, ξ)|

≤
∑

|β+γ|+k+h=j

1

β!γ!
|τ ||β||1− τ ||γ||Dα

xD
ε
ξ(∂

γ
ξD

β
xph(x, ξ) · ∂βξDγ

xqk(x, ξ))|

≤
∑

|β+γ|+k+h=j

1

β!γ!
|τ ||β||1− τ ||γ|×

×
∑

α̃≤α;ε̃≤ε

(
α

α̃

)(
ε

ε̃

)
|Dα̃+β

x Dε̃+γ
ξ ph(x, ξ)||Dα−α̃+γ

x Dε−ε̃+β
ξ qk(x, ξ)|

≤ Cne(m1+m2)ω(x,ξ)〈(x, ξ)〉−ρ(|α+ε|+j)
∑

|β+γ|+k+h=j

|τ ||β||1− τ ||γ|

β!γ!
〈(x, ξ)〉−ρ|β+γ|×

×
∑

α̃≤α;ε̃≤ε

(
α

α̃

)(
ε

ε̃

)
e2nLp̃ρϕ∗

(
|α̃+ε̃+β+γ|+h

2nLp̃

)
e2nLp̃ρϕ∗

(
|α−α̃+ε−ε̃+β+γ|+k

2nLp̃

)
for all j ∈ N0, α, ε ∈ Nd0, and log

( 〈(x,ξ)〉
R

)
≥ 2nLp̃

j
ϕ∗
(

j
2nLp̃

)
. By Lemma 0.8, we

have

e2nLp̃ρϕ∗
(
|α̃+ε̃+β+γ|+h

2nLp̃

)
e2nLp̃ρϕ∗

(
|α−α̃+ε−ε̃+β+γ|+k

2nLp̃

)
≤ enL

p̃ρϕ∗
(
|α+ε|+j
nLp̃

)
enρϕ

∗
(
|β+γ|
n

)
.

Then, as
∑(

α
α̃

)(
ε
ε̃

)
= 2|α+ε|, it follows by (0.10) and the choice of p̃ ∈ N0, that

enL
p̃ρϕ∗

(
|α+ε|+j
nLp̃

)
2|α+ε| ≤ enρϕ

∗
(
|α+ε|+j

n

)
enρ

∑p̃
s=1 L

s

.

On the other hand, if we take log
( 〈(x,ξ)〉

R

)
≥ n

j
ϕ∗
(
j
n

)(
≥ 2nLp̃

j
ϕ∗
(

j
2nLp̃

))
, this

implies log
( 〈(x,ξ)〉

R

)
≥ n
|β+γ|ϕ

∗( |β+γ|
n

)
for |β + γ| > 0, and therefore as in the

proof of Example 2.12 we have∑
|β+γ|+k+h=j

1

β!γ!
|τ ||β||1− τ ||γ|〈(x, ξ)〉−ρ|β+γ|enρϕ

∗
(
|β+γ|
n

)

≤
( j∑
|β|=0

|τ ||β|

β!

)( j∑
|γ|=0

|1− τ ||γ|

γ!

)
≤ ed

2|τ |ed
2|1−τ |.

This completes the proof.

Definition 2.16. Let
∑
pj ∈ FGSm1,ω

ρ and
∑
qj ∈ FGSm2,ω

ρ . We define

(
∑
pj) ◦ (

∑
qj) as the formal sum

∑
rj in FGSm1+m2,ω

ρ given by Proposi-
tion 2.15.
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The following result is taken from [65, Proposition 2.19]. See for example [47,
Proposición 2.2.8] for a detailed proof.

Proposition 2.17. Let
∑
pj and

∑
qj be formal sums in FGSm1,ω

ρ and in
FGSm2,ω

ρ . If
∑
pj ∼

∑
p′j and

∑
qj ∼

∑
q′j for some formal sums

∑
p′j,

∑
q′j,

then (
∑
pj) ◦ (

∑
qj) ∼ (

∑
p′j) ◦ (

∑
q′j).

2.3 Behaviour of the kernel of a pseudodifferential operator

To study the transposition and composition of operators, we need to analyse
the behaviour of the kernel of a pseudodifferential operator. We will show,
similarly to the local case, that the kernel satisfies the estimates of a function
in Sω(R2d), but outside a strip around the diagonal.

For r > 0, we denote

∆r := {(x, y) ∈ R2d : |x− y| < r}.

We begin with a lemma.

Lemma 2.18. Given r > 0, there exists χ ∈ C∞(R2d) satisfying 0 ≤ χ ≤ 1,
χ(x, y) = 1 if (x, y) ∈ R2d \∆r and χ(x, y) = 0 if (x, y) ∈ ∆r/2 such that for
all λ > 0 there exists Cλ > 0 with

|Dα
xD

β
yχ(x, y)| ≤ Cλeλϕ

∗
(
|α+β|
λ

)
, α, β ∈ Nd0, x, y ∈ Rd.

Proof. Let ψ ∈ D(ω)(Rd) such that 0 ≤ ψ ≤ 1, ψ(ξ) = 1 if |ξ| < r/2 and
ψ(ξ) = 0 if |ξ| ≥ r. Set φ := 1 − ψ. Then, it is enough to take χ(x, y) :=
φ(x− y), x, y ∈ Rd.

Leibniz rule yields

Lemma 2.19. If χ is the function in Lemma 2.18, then χf and (1 − χ)f
belong to Sω(R2d) for all f ∈ Sω(R2d).

This result is crucial for the proof of Theorem 2.24. It is an improvement
of [55, Theorem 6.3.3] and [58, Proposition 5] (see the introduction to this
chapter). See [33, Theorem 2.17] for the corresponding result in the local
case.
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Theorem 2.20. Let a ∈ GAm,ω
ρ and r > 0. The formal kernel

K(x, y) :=

∫
Rd
ei(x−y)·ξa(x, y, ξ)dξ

satisfies

1. K(x, y) ∈ C∞(R2d \∆r).

2. For every λ > 0 there exists Cλ > 0 (depending on r > 0) such that

|Dα
xD

γ
yK(x, y)| ≤ Cλeλϕ

∗
(
|α+γ|
λ

)
e−λω(x,y), α, γ ∈ Nd0, (x, y) ∈ R2d \∆r.

Proof. Let σ be a weight function satisfying ω(t1/ρ) = O(σ(t)) as t→∞. We
consider Ψ ∈ D(σ)(R2d) with 0 ≤ Ψ ≤ 1, Ψ(t) = 1 if 〈t〉 ≤ 2 and Ψ(t) = 0 if
〈t〉 ≥ 3. We denote by An the operator associated to the kernel

Kn(x, y) =

∫
Rd
ei(x−y)·ξa(x, y, ξ)Ψ(2−n(x, ξ))dξ.

We show thatKn → K in S ′ω(R2d). By Lemma 1.11 we have thatKn ∈ Sω(R2d)
for all n ∈ N. On the other hand, for the pseudodifferential operator associated
to a, denoted by A, we have 〈K,ϕ ⊗ χ〉 = 〈Aχ,ϕ〉 for all ϕ, χ ∈ Sω(Rd).
Furthermore, since An → A in L(Sω(Rd),Sω(Rd)) by Theorem 1.15, we have

〈K,ϕ⊗ χ〉 = lim
n→∞
〈Anχ, ϕ〉 = lim

n→∞

∫∫
Kn(x, y)χ(y)ϕ(x)dydx,

and this shows Kn → K in σ(S ′ω(R2d),Sω(R2d)) since Sω(Rd) ⊗ Sω(Rd) is
dense in Sω(R2d) (Proposition 0.16). The family {Kn}n is equicontinuous as
Sω(R2d) is barrelled, hence the convergence Kn → K is also for the topology
of precompact convergence. Since Sω(R2d) is Montel, Kn → K converges in
the bounded sets of Sω(R2d).

On the other hand, there exists c0 > 0 such that |x− y|∞ ≥ c0 for all (x, y) ∈
R2d \ ∆r. We assume that given (x, y) ∈ R2d \ ∆r, |x − y|∞ = |xl − yl|, for
some 1 ≤ l ≤ d. We have, by Leibniz rule,

Dα
xD

γ
y (Kn(x, y)−Kn+1(x, y))

=
∑

α1+α2+α3=α
γ1+γ2=γ

α!

α1!α2!α3!

γ!

γ1!γ2!
(−1)|γ1|

∫
Rd
ei(x−y)·ξξα1+γ1×

×Dα2
x D

γ2
y a(x, y, ξ)Dα3

x

(
Ψ(2−n(x, ξ))−Ψ(2−(n+1)(x, ξ))

)
dξ,
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for all α, γ ∈ Nd0, x, y ∈ Rd. Following [33, Theorem 2.17], we integrate by
parts N times, N ∈ N0, and we obtain

Dα
xD

γ
y (Kn(x, y)−Kn+1(x, y))

=
∑

α1+α2+α3=α
γ1+γ2=γ

α!

α1!α2!α3!

γ!

γ1!γ2!

(−1)N+|γ1|

|xl − yl|N

∫
Rd
ei(x−y)·ξ×

×DN
ξl

(
ξα1+γ1Dα2

x D
γ2
y a(x, y, ξ)Dα3

x

(
Ψ(2−n(x, ξ))−Ψ(2−(n+1)(x, ξ))

))
dξ

=
∑

α1+α2+α3=α
γ1+γ2=γ

α!

α1!α2!α3!

γ!

γ1!γ2!

(−1)N+|γ1|

|xl − yl|N
∑

N1+N2+N3=N
N1≤(α1+γ1)l

N !

N1!N2!N3!
×

× ((α1 + γ1)l)!

((α1 + γ1)l −N1)!

∫
Rd
ei(x−y)·ξξα1+γ1−N1elDα2

x D
γ2
y D

N2

ξl
a(x, y, ξ)×

×Dα3
x D

N3

ξl

(
Ψ(2−n(x, ξ))−Ψ(2−(n+1)(x, ξ))

)
dξ.

Now, we integrate by parts via some power of the ultradifferential operator
Gs(D), where s ∈ N will be determined later, with formula (1.7). The inte-
grand above is then equal to

ei(x−y)·ξ 1

Gs(y − x)
Gs(Dξ)

{
ξα1+γ1−N1elDα2

x D
γ2
y D

N2

ξl
a(x, y, ξ)×

×Dα3
x D

N3

ξl

(
Ψ(2−n(x, ξ))−Ψ(2−(n+1)(x, ξ))

)}
= ei(x−y)·ξ 1

Gs(y − x)

∑
η∈Nd0

bη
∑

η1+η2+η3=η
η1≤α1+γ1−N1el

η!

η1!η2!η3!
×

× (α1 + γ1 −N1el)!

(α1 + γ1 −N1el − η1)!
ξα1+γ1−N1el−η1Dα2

x D
γ2
y D

N2el+η2
ξ a(x, y, ξ)×

×Dα3
x D

N3el+η3
ξ

(
Ψ(2−n(x, ξ))−Ψ(2−(n+1)(x, ξ))

)
.
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Thus we obtain

|Dα
xD

γ
y (Kn(x, y)−Kn+1(x, y))|

≤
∑

α1+α2+α3=α
γ1+γ2=γ

α!

α1!α2!α3!

γ!

γ1!γ2!

1

|xl − yl|N
∑

N1+N2+N3=N
N1≤(α1+γ1)l

N !

N1!N2!N3!
×

× ((α1 + γ1)l)!

((α1 + γ1)l −N1)!

∑
η∈Nd0

|bη|
∑

η1+η2+η3=η
η1≤α1+γ1−N1el

η!

η1!η2!η3!

(α1 + γ1 −N1el)!

(α1 + γ1 −N1el − η1)!
×

×
∣∣∣ 1

Gs(y − x)

∣∣∣ ∫
Rd
|ξα1+γ1−N1el−η1 ||Dα2

x D
γ2
y D

N2el+η2
ξ a(x, y, ξ)|×

× |Dα3
x D

N3el+η3
ξ

(
Ψ(2−n(x, ξ))−Ψ(2−(n+1)(x, ξ))

)
|dξ.

By Corollaries 0.23 and 0.20, there exist C1, C2, C3 > 0 such that

|bη| ≤ esC1e−sC1ϕ
∗
(
|η|
sC1

)
,

∣∣∣ 1

Gs(y − x)

∣∣∣ ≤ Cs
3e
−sC2ω(y−x).

We set A > 1 such that A2 = d+ 1
c20

, and we take p̃ ∈ N so that max{
√

2A, 6} ≤
eρp̃. We fix λ > 0, and we take µ > λ. Since a ∈ GAm,ω

ρ there exists
Cµ = C4µL2p̃+3 > 0 with

|Dα2
x D

γ2
y D

N2el+η2
ξ a(x, y, ξ)|

≤ Cµ
( 〈x− y〉
〈(x, y, ξ)〉

)ρ(|α2+γ2+η2|+N2)

e
4µL2p̃+3ρϕ∗

(
|α2+γ2+η2|+N2

4µL2p̃+3

)
emω(x,y,ξ),

for each α2, γ2, η2 ∈ Nd0, N2 ∈ N0, and x, y, ξ ∈ Rd. We see that Ψ(2−n(x, ξ))−
Ψ(2−(n+1)(x, ξ)) is supported in

Bn := {(x, ξ) ∈ R2d : 2n ≤ 〈(x, ξ)〉 ≤ 6 · 2n}.

Hence, there exists C ′µ = C ′4µL3p̃+3 > 0 such that, by (0.10) (and recalling the

choice of p̃ ∈ N),∣∣Dα3
x D

N3el+η3
ξ

(
Ψ(2−n(x, ξ))−Ψ(2−(n+1)(x, ξ))

)∣∣
≤ 2C ′µe

4µL3p̃+3ρϕ∗
(
|α3+η3|+N3

4µL3p̃+3

)( 1

2n

)|α3+η3|+N3

≤ 2C ′µe
4µL3p̃+3ρϕ∗

(
|α3+η3|+N3

4µL3p̃+3

)
6|α3+η3|+N3〈(x, ξ)〉−|α3+η3|−N3

≤ 2C ′µe
4µL2p̃+3ρ

∑p̃
t=1 L

t

e
4µL2p̃+3ρϕ∗

(
|α3+η3|+N3

4µL2p̃+3

)
〈(x, ξ)〉−ρN3 ,
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for all (x, ξ) ∈ Bn. Now (0.7) yields

|ξ||α1+γ1|−N1−|η1| ≤ 〈(x, ξ)〉|α1+γ1|−N1 ≤ eλL
4ϕ∗
(
|α1+γ1|
λL4

)
eλL

4ω(〈(x,ξ)〉)〈(x, ξ)〉−ρN1 .

Since |xl − yl| ≥ c0, we have

〈x− y〉2 ≤ 1 + d|xl − yl|2 ≤
1

c2
0

|xl − yl|2 + d|xl − yl|2 = A2|xl − yl|2.

So 〈x− y〉N ≤ AN |xl − yl|N , N ∈ N. Therefore, by Lemma 1.4,( 〈x− y〉
〈(x, y, ξ)〉

)ρ(|α2+γ2+η2|+N2) 1

|xl − yl|N
≤
√

2
|α2+γ2+η2|( 〈x− y〉

〈(x, y, ξ)〉

)ρN2 1

|xl − yl|N

≤
√

2
|α2+γ2+η2|〈(x, ξ)〉−ρN2

〈x− y〉N

|xl − yl|N

≤ (
√

2A)|α2+γ2+η2|+N〈(x, ξ)〉−ρN2 .

Let C > 0 be the constant in Lemma 0.10(2). By formula (0.12) and using
Lemma 0.10(2) we obtain, for some C ′′µ > 0,

(α1 + γ1 −N1el)!

(α1 + γ1 −N1el − η1)!

((α1 + γ1)l)!

((α1 + γ1)l −N1)!

≤ 2|α1+γ1|−N12(α1+γ1)lη1!N1!

≤ 4|α1+γ1|C ′′µe
µL3ϕ∗

(
|η1|
µL3

)
e
µL2p̃Cϕ∗σ

(
N1

µL2p̃C

)
≤ 4|α1+γ1|C ′′µe

µL2p̃Ce
µL3ϕ∗

(
|η1|
µL3

)
e
µL2p̃ρϕ∗

(
N1

µL2p̃

)
.

Writing |α2 +γ2 +η2|+N = N1 +(|α2 +γ2 +η2|+N2)+N3, we use Lemma 0.8
(as µ > λ) as follows:

4|α1+γ1|eλL
4ϕ∗
(
|α1+γ1|
λL4

)
e
µL3ϕ∗

(
|η1|
µL3

)
(
√

2A)|α2+γ2+η2|+Ne
µL2p̃ρϕ∗

(
N1

µL2p̃

)
×

× e4µL2p̃+3ρϕ∗
(
|α2+γ2+η2|+N2

4µL2p̃+3

)
e

4µL2p̃+3ρϕ∗
(
|α3+η3|+N3

4µL2p̃+3

)
≤ eλL

3+λL4

eλL
2ϕ∗
(
|α1+γ1|
λL2

)
e
µL3ϕ∗

(
|η1|
µL3

)
eµL

p̃ρ
∑p̃
t=1 L

p̃
(
e4µLp̃+3ρ

∑p̃
t=1 L

p̃
)2

×

× eµL
p̃ρϕ∗

(
N1

µLp̃

)
e

4µLp̃+3ρϕ∗
(
|α2+γ2+η2|+N2

4µLp̃+3

)
e

4µLp̃+3ρϕ∗
(
|α3+η3|+N3

4µLp̃+3

)
≤ eλL

3+λL4

e(8L3+1)µLp̃ρ
∑p̃
t=1 L

t

eλL
2ϕ∗
(
|α+γ|
λL2

)
e
µL3ϕ∗

(
|η|
µL3

)
e
µLp̃ρϕ∗

(
N

µLp̃

)
.
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2.3 Behaviour of the kernel of a pseudodifferential operator

Then, there exists

Cλ,µ,s = esC1Cs
3Cµ2C ′µe

4µL2p̃+3ρ
∑p̃
t=1 L

t

C ′′µe
µL2p̃Ce(8L3+1)µLp̃ρ

∑p̃
t=1 L

t

eλL
3+λL4

> 0

such that, by Lemma 0.1,

|Dα
xD

γ
y (Kn(x, y)−Kn+1(x, y))|

≤ Cλ,µ,s3|α|2|γ|eλL
2ϕ∗
(
|α+γ|
λL2

)( ∑
η∈Nd0

e−sC1ϕ
∗
(
|η|
sC1

)
e
µL3ϕ∗

(
|η|
µL3

)
3|η|
)
×

× e−sC2ω(y−x)

∫
Rd
eλL

4ω(〈(x,ξ)〉)emω(x,y,ξ)〈(x, ξ)〉−ρN3Ne
µLp̃ρϕ∗

(
N

µLp̃

)
dξ

(2.21)

for all N ∈ N0. So from (0.8) we obtain using (0.10) and (0.7) that there exists
C ′ > 0 with (since (x, ξ) ∈ Bn)

inf
N∈N0

〈(x, ξ)〉−ρN3Ne
µLp̃ρϕ∗

(
N

µLp̃

)
≤ eµρ

∑p̃
t=1 L

t

inf
N∈N0

〈(x, ξ)〉−ρNeµρϕ
∗(Nµ )

≤ eµρ
∑p̃
t=1 L

t

e−µρω(〈(x,ξ)〉)+ρ log(〈(x,ξ)〉)

≤ C ′eµρ
∑p̃
t=1 L

t

e−(µ−1)ρω(〈(x,ξ)〉)

≤ C ′eµρ
∑p̃
t=1 L

t

e−(µ−2)ρω(〈(x,ξ)〉)e−ρω(2n).

We put s ∈ N such that
sC2 ≥ (λ+m)L2.

Then by (0.1) we have

e−sC2ω(y−x) ≤ esC2ω(x)e−(λ+m)Lω(y)esC2 .

From (0.4), ω(x, y, ξ) ≤ Lω(〈(x, ξ)〉) + Lω(y) + L. We take µ ≥ sC1 large
enough satisfying

(µ− 2)ρ ≥ λL4 +mL+ 2λL+ sC2.

Therefore, the series depending on η ∈ Nd0 in (2.21) converges by (0.10), pro-
ceeding as in (1.14), and we see that

e(λL4+mL−(µ−2)ρ)ω(〈(x,ξ)〉)esC2ω(x) ≤ e−2λLω(〈(x,ξ)〉) ≤ e−λLω(x)e−λLω(ξ).

The integral in (2.21) then converges. On the other hand, from (0.10) we have
that

3|α|2|γ|eλL
2ϕ∗
(
|α+γ|
λL2

)
≤ eλϕ

∗
(
|α+γ|
λ

)
eλL+λL2

.
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By (0.3), −λLω(x)−λLω(y) ≤ −λω(x, y)+λL, hence we get that for all λ > 0
there exists Cλ > 0 such that

|Dα
xD

γ
y (Kn(x, y)−Kn+1(x, y))| ≤ Cλeλϕ

∗
(
|α+γ|
λ

)
e−λω(x,y)e−ρω(2n)

for all α, γ ∈ Nd0, (x, y) /∈ ∆r.

By Lemma 2.18, take χ such that χ ≡ 0 in ∆r and χ ≡ 1 in R2d \∆2r. Since
{χKn} is a Cauchy sequence in Sω(R2d), there exists T ∈ Sω(R2d) such that
χKn → T in Sω(R2d). We notice that T = χK in S ′ω(R2d), since Kn → K in
S ′ω(R2d). Therefore we have that for all λ > 0 there exists C ′λ > 0 such that

|Dα
xD

γ
yK(x, y)| = |Dα

xD
γ
yT (x, y)| ≤ C ′λe

λϕ∗
(
|α+γ|
λ

)
e−λω(x,y), (2.22)

for all α, γ ∈ Nd0, (x, y) /∈ ∆2r. This completes the proof.

We observe that the constant C ′λ > 0 in (2.22) grows as r → 0. Indeed, if r
tends to zero, then c0 tends to zero, too. Therefore, the constant A > 1 tends
to infinity, and also the constant p̃ ∈ N. Hence Cλ,µ,s > 0 grows, and so the
constant in (2.22).

Now, we prove that an operator given by an amplitude can be decomposed as
the sum of (any quantization) of an operator given by a global symbol and an
ω-regularizing operator. But first, we need some preparation. The following
result is proved in [33, Lemma 3.11].

Lemma 2.21. Let m ≥ n and 1
e
e
m
j ϕ
∗( jm ) ≤ t ≤ enj ϕ

∗( jn ) for t > 0. Then

enϕ
∗( jn ) ≥ e(n−1)ω(t)e2nϕ∗( j

2n ),

for j large enough.

Lemma 2.22. Let τ ∈ R and let k ∈ N0 as in (2.16). Then,

ω(x, y) ≤ L2ω((1− τ)x+ τy) + Lk+2ω(y − x) +
k+2∑
t=1

Lt, x, y ∈ Rd.

Proof. We denote v = (1−τ)x+τy and w = x−y. By the triangular inequality,
|x| ≤ |v|+ |τ ||w| and |y| ≤ |v|+ |1−τ ||w|. Then, as |(x, y)| ≤

√
2 max{|x|, |y|},
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2.3 Behaviour of the kernel of a pseudodifferential operator

by formula (0.1) we obtain

ω(x, y) ≤ ω(
√

2(|v|+ (|1− τ |+ |τ |)|w|))
≤ Lω(|v|+ (|1− τ |+ |τ |)|w|) + L

≤ L2ω(v) + L2ω(2k|w|) + L2 + L

≤ L2ω(v) + Lk+2ω(w) +
k+2∑
t=1

Lt.

Lemma 2.23. For all τ ∈ R there exists C = 2 max{(1− τ)2, τ 2} ≥ 1/2 such
that

|v|2 ≤ C(|v + tτw|2 + |v − t(1− τ)w|2), v, w ∈ Rd, t ∈ R.

Proof. If x = v+ tτw and y = v− t(1− τ)w, obviously v = (1− τ)x+ τy. So,
we need to find C > 0 such that

|(1− τ)x+ τy|2 ≤ C(|x|2 + |y|2).

Since 2|τ ||1− τ ||x||y| ≤ (1− τ)2|x|2 + τ 2|y|2, we have

|(1− τ)x+ τy|2 ≤ (1− τ)2|x|2 + τ 2|y|2 + 2|1− τ ||τ ||x||y|
≤ 2(1− τ)2|x|2 + 2τ 2|y|2

≤ 2 max{(1− τ)2, τ 2}(|x|2 + |y|2).

Theorem 2.24. Let a(x, y, ξ) be an amplitude in GAm,ω
ρ with associated pseu-

dodifferential operator A. Then, for any τ ∈ R, we can write A as

A = P +R,

where R is an ω-regularizing operator and P is the pseudodifferential operator
given by

Pu(x) =

∫∫
ei(x−y)·ξp((1− τ)x+ τy, ξ)u(y)dydξ, u ∈ Sω(Rd),

being p ∈ GSmax{m,mL},ω
ρ . Moreover, we have

p(x, ξ) ∼
∞∑
j=0

∑
|β+γ|=j

1

β!γ!
τ |β|(1− τ)|γ|∂β+γ

ξ (−Dx)
βDγ

y a(x, y, ξ)|y=x .
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Proof. We consider the sequence (jn)n as in the proof of Theorem 2.6, with
the extra assumption (see Third step below):

n

j
ϕ∗
( j
n

)
≥ max{n, log(C4nLp̃+3), log(D4nLp̃+3)} for jn ≤ j < jn+1,

where (Cn)n and (Dn)n are the sequences of constants of Definition 1.3 and
Corollary 2.9, and p̃ ∈ N0 is such that max{|1− τ |, 2|τ |} ≤ ep̃.

Put

pj(x, ξ) :=
∑
|β+γ|=j

1

β!γ!
τ |β|(1− τ)|γ|∂β+γ

ξ (−Dx)
βDγ

y a(x, y, ξ)|y=x .

By Example 2.12,
∑
pj ∈ FGSmax{m,mL},ω

ρ . Now, we write

p(x, ξ) :=
∞∑
j=0

Ψj(x, ξ)pj(x, ξ),

where (Ψj)j is the sequence in (2.15). By Theorem 2.6, we have that p(x, ξ) ∈
GSmax{m,mL},ω

ρ and p ∼
∑
pj. By Lemma 2.8 and Theorem 1.15, the operator

P as in the statement of the theorem is continuous. Moreover, by Lemma 2.11,
it is the limit of SN,τ in L(Sω(Rd),S ′ω(Rd)), where SN,τ is the pseudodifferential

operator with amplitude
∑N

j=0(Ψj−Ψj+1)((1−τ)x+τy, ξ)(
∑j

l=0 pl((1−τ)x+

τy, ξ)) in GAmax{0,m′L},ω
ρ , m′ as in (2.17). That is, for u ∈ Sω(Rd), we have

Pu(x) = lim
N→∞

∫∫
ei(x−y)·ξ( N∑

j=0

(Ψj −Ψj+1)((1− τ)x+ τy, ξ)×

×
j∑
l=0

pl((1− τ)x+ τy, ξ)
)
u(y)dydξ.

On the other hand, from Lemma 2.10, A =
∑∞

N=0AN , where AN is the pseu-
dodifferential operator with amplitude (ΨN −ΨN+1)((1− τ)x+ τy, ξ)a(x, y, ξ)

in GAm,ω
ρ ⊆ GAmax{0,m′L},ω

ρ . That is, for u ∈ Sω(Rd),

Au(x) = Sω(Rd)−
∞∑
N=0

∫∫
ei(x−y)·ξ(ΨN −ΨN+1)((1− τ)x+ τy, ξ)×

× a(x, y, ξ)u(y)dydξ.
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2.3 Behaviour of the kernel of a pseudodifferential operator

Hence, A−P is written as the series
∑∞

N=0 PN,τ , where each PN,τ corresponds
to the pseudodifferential operator associated to the amplitude, which belongs

to GAmax{0,m′L},ω
ρ , given by

aN,τ (x, y, ξ) = (ΨN−ΨN+1)((1−τ)x+τy, ξ)
(
a(x, y, ξ)−

N∑
j=0

pj((1−τ)x+τy, ξ)
)
.

Our purpose is to show that the kernel K of A− P given by

K(x, y) :=
∞∑
N=0

KN(x, y) =
∞∑
N=0

∫
Rd
ei(x−y)·ξaN,τ (x, y, ξ)dξ

belongs to Sω(R2d). To this, take r > 0 and let χ(x, y) be as in Lemma 2.18
satisfying χ ≡ 1 for (x, y) ∈ R2d \ ∆2r and χ ≡ 0 if (x, y) ∈ ∆r. As aN,τ ∈
GAmax{0,m′L},ω

ρ , we have that K satisfies the estimate in Theorem 2.20, and

by Lemma 2.19 it follows that χK ∈ Sω(R2d). Thus, we want to show that
(1− χ)K ∈ Sω(R2d).

Now, we follow the lines of [64, Theorem 23.2] (see also the scheme of the
proof of [33, Theorem 3.13]). Given x, y ∈ Rd, we consider

v = (1− τ)x+ τy; w = x− y.

We proceed similarly as in [33, Theorem 3.13]. The Taylor series of a(x, y, ξ) =
a(v + τw, v − (1− τ)w, ξ) at w = 0 is, for N ≥ 1,

a(x, y, ξ) =
N∑

|β+γ|=0

(−1)|γ|

β!γ!
τ |β|(1− τ)|γ|(x− y)β+γ

(
∂βx∂

γ
ya
)
(v, v, ξ)+

+
∑

|β+γ|=N+1

(−1)|γ|

β!γ!
τ |β|(1− τ)|γ|ωβγ(x, y, ξ)(x− y)β+γ ,

where

ωβγ(x, y, ξ) := (N +1)

∫ 1

0

(
∂βx∂

γ
ya
)
(v+ tτw, v− (1−τ)tw, ξ)(1− t)Ndt. (2.23)

Note that the expression
(
∂βx∂

γ
ya
)
(v, v, ξ) means that in ∂βx∂

γ
ya(x, y, ξ), it is

necessary to take v = (1− τ)x+ τy instead of x and y. Then, for N ≥ 1, we
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have ∫
ei(x−y)·ξ(ΨN −ΨN+1)(v, ξ)a(x, y, ξ)dξ

=

∫
ei(x−y)·ξ(ΨN −ΨN+1)(v, ξ)×

×
( N∑
|β+γ|=0

(−1)|γ|

β!γ!
τ |β|(1− τ)|γ|(x− y)β+γ

(
∂βx∂

γ
ya
)
(v, v, ξ)

)
dξ+

+

∫
ei(x−y)·ξ(ΨN −ΨN+1)(v, ξ)×

×
( ∑
|β+γ|=N+1

(−1)|γ|

β!γ!
τ |β|(1− τ)|γ|ωβγ(x, y, ξ)(x− y)β+γ

)
dξ.

Since (x− y)β+γei(x−y)·ξ = Dβ+γ
ξ ei(x−y)·ξ, we integrate by parts to obtain∫

ei(x−y)·ξ(ΨN −ΨN+1)(v, ξ)a(x, y, ξ)dξ

=

∫
ei(x−y)·ξ(ΨN −ΨN+1)(v, ξ)a(v, v, ξ)dξ+

+
N∑

|β+γ|=1

∑
α≤β+γ

(β + γ)!

α!(β + γ − α)!

1

β!γ!

∫
ei(x−y)·ξτ |β|(1− τ)|γ|(−1)|γ|×

×Dα
ξ (ΨN −ΨN+1)(v, ξ)

(
∂βx∂

γ
yD

β+γ−α
ξ a

)
(v, v, ξ)dξ+

+
∑

|β+γ|=N+1

∑
α≤β+γ

(β + γ)!

α!(β + γ − α)!

1

β!γ!

∫
ei(x−y)·ξτ |β|(1− τ)|γ|(−1)|γ|×

×Dα
ξ (ΨN −ΨN+1)(v, ξ)Dβ+γ−α

ξ ωβγ(x, y, ξ)dξ.
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Thus,

KN(x, y)

=

∫
ei(x−y)·ξ(ΨN −ΨN+1)(v, ξ)

(
a(x, y, ξ)−

N∑
j=0

pj(v, ξ)
)
dξ

=

∫
ei(x−y)·ξ(ΨN −ΨN+1)(v, ξ)

(
a(v, v, ξ)− p0(v, ξ)

)
dξ+

+
N∑
j=1

( ∑
|β+γ|=j

∑
α≤β+γ

(β + γ)!

β!γ!

1

α!(β + γ − α)!
×

×
∫
ei(x−y)·ξτ |β|(1− τ)|γ|(−1)|γ|Dα

ξ (ΨN −ΨN+1)(v, ξ)×

×
(
∂βx∂

γ
yD

β+γ−α
ξ a

)
(v, v, ξ)dξ −

∫
ei(x−y)·ξ(ΨN −ΨN+1)(v, ξ)pj(v, ξ)dξ

)
+

+
∑

|β+γ|=N+1

∑
α≤β+γ

(β + γ)!

β!γ!

1

α!(β + γ − α)!

∫
ei(x−y)·ξτ |β|(1− τ)|γ|(−1)|γ|×

×Dα
ξ (ΨN −ΨN+1)(v, ξ)Dβ+γ−α

ξ ωβγ(x, y, ξ)dξ.

Look at the three addends above. According to the change of variables we have
made, we see that p0(v, ξ) = a(v, v, ξ), and hence, the first integral is equal to
0. On the other hand, when α = 0, the first part of the second addend equals∑
|β+γ|=j

(−1)|γ|

β!γ!

∫
ei(x−y)·ξτ |β|(1−τ)|γ|(ΨN−ΨN+1)(v, ξ)

(
∂βx∂

γ
yD

β+γ
ξ a

)
(v, v, ξ)dξ,

and by the definition of pj, we see that the second part coincides with:∫
ei(x−y)·ξ(ΨN −ΨN+1)(v, ξ)pj(v, ξ)dξ

=
∑
|β+γ|=j

1

β!γ!

∫
ei(x−y)·ξτ |β|(1− τ)|γ|(−1)|γ|×

× (ΨN −ΨN+1)(v, ξ)
(
∂βx∂

γ
yD

β+γ
ξ a

)
(v, v, ξ)dξ.

Hence, we have obtained that KN(x, y) =
∑N
|β+γ|=1A

N
βγ +QN , being

ANβγ(x, y) :=
∑

06=α≤β+γ

(β + γ)!

β!γ!

1

α!(β + γ − α)!

∫
ei(x−y)·ξτ |β|(1− τ)|γ|(−1)|γ|×

×Dα
ξ (ΨN −ΨN+1)(v, ξ)

(
∂βx∂

γ
yD

β+γ−α
ξ a

)
(v, v, ξ)dξ,
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and

QN(x, y) :=
∑

|β+γ|=N+1

∑
α≤β+γ

(β + γ)!

β!γ!

1

α!(β + γ − α)!
τ |β|(1− τ)|γ|(−1)|γ|×

×
∫
ei(x−y)·ξDα

ξ (ΨN −ΨN+1)(v, ξ)Dβ+γ−α
ξ ωβγ(x, y, ξ)dξ.

So
∑N

r=1Kr(x, y) =
∑N

r=1

∑r
|β+γ|=1A

r
βγ +

∑N
r=1Qr. Since

∑N
r=1

∑r
|β+γ|=1 =∑N

|β+γ|=1

∑N
r=|β+γ|, we obtain

N∑
r=1

r∑
|β+γ|=1

Arβγ(x, y)

=
N∑

|β+γ|=1

N∑
r=|β+γ|

∑
06=α≤β+γ

(β + γ)!

β!γ!

1

α!(β + γ − α)!

∫
ei(x−y)·ξτ |β|(1− τ)|γ|×

× (−1)|γ|Dα
ξ (Ψr −Ψr+1)(v, ξ)

(
∂βx∂

γ
yD

β+γ−α
ξ a

)
(v, v, ξ)dξ

=
N∑

|β+γ|=1

∑
06=α≤β+γ

(β + γ)!

β!γ!

1

α!(β + γ − α)!

∫
ei(x−y)·ξτ |β|(1− τ)|γ|(−1)|γ|×

×Dα
ξ (Ψ|β+γ| −ΨN+1)(v, ξ)

(
∂βx∂

γ
yD

β+γ−α
ξ a

)
(v, v, ξ)dξ.

Therefore,
∑N

r=1

∑r
|β+γ|=1A

r
βγ =

∑N
j=1 Ij −WN , with

Ij(x, y) :=
∑
|β+γ|=j

∑
06=α≤β+γ

(β + γ)!

β!γ!

1

α!(β + γ − α)!

∫
ei(x−y)·ξτ |β|(1− τ)|γ|×

× (−1)|γ|Dα
ξ Ψj(v, ξ)

(
∂βx∂

γ
yD

β+γ−α
ξ a

)
(v, v, ξ)dξ,

and

WN(x, y) :=
N∑

|β+γ|=1

∑
06=α≤β+γ

(β + γ)!

β!γ!

1

α!(β + γ − α)!

∫
ei(x−y)·ξτ |β|(1− τ)|γ|×

× (−1)|γ|Dα
ξ ΨN+1(v, ξ)

(
∂βx∂

γ
yD

β+γ−α
ξ a

)
(v, v, ξ)dξ.

Thus, we can write the partial sums of the kernel by

N∑
j=0

Kj = K0 +
N∑
j=1

Ij +
N∑
j=1

Qj −WN ,
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where

Ij(x, y) :=
∑
|β+γ|=j

∑
06=α≤β+γ

(β + γ)!

β!γ!

1

α!(β + γ − α)!

∫
ei(x−y)·ξτ |β|×

× (1− τ)|γ|(−1)|γ|Dα
ξ Ψj(v, ξ)

(
∂βx∂

γ
yD

β+γ−α
ξ a

)
(v, v, ξ)dξ;

Qj(x, y) :=
∑

|β+γ|=j+1

∑
α≤β+γ

(β + γ)!

β!γ!

1

α!(β + γ − α)!
τ |β|(1− τ)|γ|(−1)|γ|×

×
∫
ei(x−y)·ξDα

ξ (Ψj −Ψj+1)(v, ξ)Dβ+γ−α
ξ ωβγ(x, y, ξ)dξ;

ωβγ(x, y, ξ) := (j + 1)

∫ 1

0

(
∂βx∂

γ
ya
)
(v + tτw, v − (1− τ)tw, ξ)(1− t)jdt;

WN(x, y) :=
N∑

|β+γ|=1

∑
06=α≤β+γ

(β + γ)!

β!γ!

1

α!(β + γ − α)!

∫
ei(x−y)·ξτ |β|×

× (1− τ)|γ|(−1)|γ|Dα
ξ ΨN+1(v, ξ)

(
∂βx∂

γ
yD

β+γ−α
ξ a

)
(v, v, ξ)dξ.

It is easy to see that K0 ∈ Sω(R2d). Indeed, we have

K0(x, y) =

∫
ei(x−y)·ξ(1−Ψ1)((1− τ)x+ τy, ξ)(a(x, y, ξ)− a(x, x, ξ))dξ.

Since 1−Ψ1 ∈ Sω(R2d), following the proof of Lemma 1.11 (with an integration
by parts with formula (1.7)), for all λ > 0 there exists Cλ > 0 such that (k is
as in (2.16))

|Dα
xD

β
ξK0(x, y)| ≤ Cλeλϕ

∗
(
|α+β|
λ

)
e−λL

2ω((1−τ)x+τy)e−λL
k+2ω(y−x),

for all α, β ∈ Nd0, x, y ∈ Rd. An application of Lemma 2.22 gives the result.
Therefore, by Lemma 2.19, (1 − χ)K0 ∈ Sω(R2d). In what follows, we only
treat the case m ≥ 0 (the other case is easier and follows in the same way).

First step. To show that
∑∞

j=1 Ij(x, y) ∈ Sω(R2d), we compute Dθ
xD

ε
yIj(x, y)

for θ, ε ∈ Nd0:

Dθ
xD

ε
yIj(x, y)

=
∑
|β+γ|=j

∑
06=α≤β+γ

(β + γ)!

β!γ!

1

α!(β + γ − α)!

∑
θ1+θ2+θ3=θ
ε1+ε2+ε3=ε

θ!

θ1!θ2!θ3!

ε!

ε1!ε2!ε3!
×

× (−1)|γ+ε1|τ |β+ε2|(1− τ)|γ+θ2|
∫
ei(x−y)·ξξθ1+ε1×

×Dθ2
x D

ε2
y D

α
ξ Ψj(v, ξ)D

θ3
x D

ε3
y

(
∂βx∂

γ
yD

β+γ−α
ξ a

)
(v, v, ξ)dξ.
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An integration by parts with formula (1.7) (for some power s ∈ N, determined
later) yields

ei(x−y)·ξ 1

Gs(y − x)
Gs(Dξ)

{
ξθ1+ε1Dθ2

x D
ε2
y D

α
ξ Ψj(v, ξ)×

×Dθ3
x D

ε3
y (∂βx∂

γ
yD

β+γ−α
ξ a)(v, v, ξ)

}
= ei(x−y)·ξ 1

Gs(y − x)

∑
η∈Nd0

bη
∑

η1+η2+η3=η

η!

η1!η2!η3!

(θ1 + ε1)!

(θ1 + ε1 − η1)!
ξθ1+ε1−η1×

×Dθ2
x D

ε2
y D

α+η2
ξ Ψj(v, ξ)D

θ3
x D

ε3
y (∂βx∂

γ
yD

β+γ−α+η3
ξ a)(v, v, ξ).

Therefore,

Dθ
xD

ε
yIj(x, y) =

∑
|β+γ|=j

∑
06=α≤β+γ

(β + γ)!

β!γ!

1

α!(β + γ − α)!

1

Gs(y − x)

∑
η∈Nd0

bη×

×
∑

θ1+θ2+θ3=θ
ε1+ε2+ε3=ε
η1+η2+η3=η

(−1)|γ+ε1| θ!

θ1!θ2!θ3!

ε!

ε1!ε2!ε3!

η!

η1!η2!η3!
×

× (θ1 + ε1)!

(θ1 + ε1 − η1)!
τ |β+ε2|(1− τ)|γ+θ2|

∫
ei(x−y)·ξξθ1+ε1−η1×

×Dθ2
x D

ε2
y D

α+η2
ξ Ψj(v, ξ)D

θ3
x D

ε3
y

(
∂βx∂

γ
yD

β+γ−α+η3
ξ a

)
(v, v, ξ)dξ.

Fix λ > 0 and take n ≥ λ to be determined later. Fix p̃ ∈ N such that
max{2, 2|1 − τ |, 2|τ |} ≤ eρp̃ and q ∈ N such that 2q ≥ 3R. Write ñ ≥ n
satisfying

ñ ≥ max
{
nLp̃, λLp̃+2, nL3,

Lq

ρ
(λLp̃+2 +mL+ 1) + 1

}
.

By Definition 1.3 and Corollary 2.9, for that ñ there exist Cñ, Dñ > 0 such
that for each v, ξ ∈ Rd we have by the chain rule

|Dθ3
x D

ε3
y (∂βx∂

γ
yD

β+γ−α+η3
ξ a)(v, v, ξ)|

≤ Cñ〈(v, ξ)〉−ρ|2β+2γ−α+θ3+ε3+η3|(2 max{|1− τ |, |τ |})|θ3+ε3|×

× e8ñρϕ∗
(
|2β+2γ−α+θ3+ε3+η3|

8ñ

)
emω(v,v,ξ);

|Dθ2
x D

ε2
y D

α+η2
ξ Ψj(v, ξ)| ≤ Dñ〈(v, ξ)〉−ρ|α+θ2+ε2+η2|e8ñρϕ∗

(
|α+θ2+ε2+η2|

8ñ

)
.

Since |β + γ| = j, we obtain

〈(v, ξ)〉−ρ|2β+2γ−α+θ3+ε3+η3|〈(v, ξ)〉−ρ|α+θ2+ε2+η2| ≤
(
〈(v, ξ)〉−j

)2ρ
,
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and as in (0.4), mω(v, v, ξ) ≤ mω(
√

2 max{|v|, |ξ|}) ≤ mLω(v)+mLω(ξ)+mL.
By (0.7) we have (if |ξ| ≥ 1)

|ξ||θ1+ε1−η1| ≤ eλL
p̃+2ϕ∗

(
|θ1+ε1−η1|
λLp̃+2

)
eλL

p̃+2ω(ξ).

By the choice of p̃ ∈ N and from (0.12), there exists Eλ > 0 such that

(2 max{|1− τ |, |τ |})|θ3+ε3||τ ||β+ε2||1− τ ||γ+θ2| (β + γ)!

β!γ!

(θ1 + ε1)!

(θ1 + ε1 − η1)!

≤ eρp̃|2β+2γ|eρp̃|θ+ε|Eλe
λLp̃+2ϕ∗

(
|η1|

λLp̃+2

)
.

By Lemma 0.8 and the selection of ñ (recall that |β + γ| = j), we deduce

eλL
p̃+2ϕ∗

(
|η1|

λLp̃+2

)
eλL

p̃+2ϕ∗
(
|θ1+ε1−η1|
λLp̃+2

)
e8ñρϕ∗

(
|α+θ2+ε2+η2|

8ñ

)
e8ñρϕ∗

(
|2β+2γ−α+θ3+ε3+η3|

8ñ

)
≤ eλL

p̃+2ϕ∗
(
|θ1+ε1|
λLp̃+2

)
e8ñρϕ∗

(
|2β+2γ+θ2+θ3+ε2+ε3+η2+η3|

8ñ

)
≤ eλL

p̃+2ϕ∗
(
|θ1+ε1|
λLp̃+2

)
e4ñρϕ∗

(
|2β+2γ|

4ñ

)
e4ñρϕ∗

(
|θ2+θ3+ε2+ε3+η2+η3|

4ñ

)
≤ eλL

p̃+2ϕ∗
(
|θ1+ε1|
λLp̃+2

)(
e2ñϕ∗

(
j
2ñ

))2ρ
eλL

p̃+2ϕ∗
(
|θ2+θ3+ε2+ε3|

λLp̃+2

)
eñϕ

∗
(
|η2+η3|

ñ

)
≤ eλL

p̃+2ϕ∗
(
|θ+ε|
λLp̃+2

)(
e2ñϕ∗

(
j
2ñ

))2ρ
enL

3ϕ∗
(
|η|
nL3

)
.

Moreover, since
∑

θ1+θ2+θ3=θ
ε1+ε2+ε3=ε

θ!
θ1!θ2!θ3!

ε!
ε1!ε2!ε3!

≤ e2|θ+ε|, we obtain by (0.10),

eλL
p̃+2ϕ∗

(
|θ+ε|
λLp̃+2

)
eρp̃|θ+ε|

∑
θ1+θ2+θ3=θ
ε1+ε2+ε3=ε

θ!

θ1!θ2!θ3!

ε!

ε1!ε2!ε3!
≤ eλϕ

∗
(
|θ+ε|
λ

)
eλ

∑p̃+2
p=1 L

p

.

From Corollaries 0.23 and 0.20 there are C1, C2, C3 > 0 such that

|bη| ≤ esC1e−sC1ϕ
∗
(
|η|
sC1

)
,

∣∣∣ 1

Gs(y − x)

∣∣∣ ≤ Cs
3e
−sC2ω(y−x).

On the other hand, we recall that if the derivatives of Ψj(v, ξ) do not vanish,
then we can assume 2Añ,j ≤ |(v, ξ)| ≤ 3Añ,j (see (2.4)). So, in particular,

1

e
e
ñ
j ϕ
∗( j
ñ

) ≤ 2

3
e
ñ
j ϕ
∗( j
ñ

) ≤ |(v, ξ)|
3R

≤ e ñj ϕ
∗( j
ñ

).

By Lemma 2.21, we then have, for j ∈ N large enough,(
e2ñϕ∗( j

2ñ
)
)2ρ ≤ (e−(ñ−1)ω(

(v,ξ)
3R )
)2ρ(

eñϕ
∗( j
ñ

)
)2ρ
. (2.24)
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Now, using q times property (α) of Definition 0.3 (where q is such that 2q ≥
3R), we have

ω
( 1

3R
(v, ξ)

)
≥ 1

Lq
ω
( 2q

3R
(v, ξ)

)
− 1

Lq−1
− 1

Lq−2
− · · · − 1 ≥ 1

Lq
ω(v, ξ)− q.

Therefore, since 2ω(v, ξ) ≥ ω(v) + ω(ξ), we obtain(
e−(ñ−1)ω(

(v,ξ)
3R )
)2ρ ≤ (e− ñ−1

Lq ω(v,ξ)
)2ρ
eq(ñ−1)2ρ

≤
(
e−

ñ−1
2Lq ω(v)

)2ρ(
e−

ñ−1
2Lq ω(ξ)

)2ρ
eq(ñ−1)2ρ, (2.25)

and we get (since
∑

η1+η2+η3=η
η!

η1!η2!η3!
= 3|η|) that |Dθ

xD
ε
yIj(x, y)| is less than

or equal to∑
|β+γ|=j

∑
06=α≤β+γ

eρp̃|2β+2γ| 1

α!(β + γ − α)!
eλϕ

∗
(
|θ+ε|
λ

)
eλ

∑p̃+2
p=1 L

p

esC1×

×
( ∑
η∈Nd0

e−sC1ϕ
∗
(
|η|
sC1

)
enL

3ϕ∗
(
|η|
nL3

)
3|η|
)
EλC

s
3e
−sC2ω(y−x)×

×
∫
eλL

p̃+2ω(ξ)Dn(〈(v, ξ)〉−j)2ρCne
mLω(v)emLω(ξ)emL×

×
(
eñϕ

∗( j
ñ

)
)2ρ(

e−
ñ−1
2Lq ω(v)

)2ρ(
e−

ñ−1
2Lq ω(ξ)

)2ρ
eq(ñ−1)2ρdξ.

By the choice of ñ, since ñ ≥ Lq

ρ
(λLp̃+2 +mL+ 1) + 1, we have

e−
ñ−1
Lq ρω(ξ)eλL

p̃+2ω(ξ)emLω(ξ) ≤ e−ω(ξ),

which ensures the convergence of the integral in ξ which defines Dθ
xD

ε
yIj(x, y).

Furthermore, since ñ ≥ Lq

ρ
(λL2 +mL) + 1, we see that

e−
ñ−1
Lq ρω(v)emLω(v) ≤ e−λL

2ω(v).

Then, according to Lemma 2.22, it is enough to take s ∈ N such that

sC2 ≥ λLk+2

where k ∈ N0 is as in (2.16), in order to obtain

e−λL
2ω(v)e−sC2ω(y−x) ≤ e−λω(x,y)eλ

∑k+2
t=1 L

t

.

For the convergence of the series depending on η ∈ Nd0, it is enough to assume
that n ≥ sC1 (see (1.14)). Since ñ ≥ nLp̃, using formula (0.10) we obtain
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(since |β + γ| = j)

(
〈(v, ξ)〉−j

)2ρ(
ep̃j
)2ρ(

enL
p̃ϕ∗
(

j

nLp̃

))2ρ ≤ (〈(v, ξ)〉−j)2ρ(enϕ∗( jn )
)2ρ
e2nρ

∑p̃
t=1 L

t

≤ ((2R)−j)2ρe2nρ
∑p̃
t=1 L

t

.

Finally, the convergence of the series (by Lemma 0.1(8))

∞∑
j=1

∑
|β+γ|=j

∑
06=α≤β+γ

1

α!(β + γ − α)!
((2R)−j)2ρ ≤

∞∑
j=1

2j

(2R)2jρ

∑
|β+γ|=j

1

(β + γ)!

≤
∞∑
j=1

(2d)j

(2R)2jρ

∑
|β+γ|=j

1

|β + γ|!
≤
∞∑
j=1

1

j!

(2d2)j

(2R)2ρj

shows that
∑∞

j=1 Ij ∈ Sω(R2d) and by Lemma 2.19, (1−χ)
∑∞

j=1 Ij ∈ Sω(R2d).

Second step. Since supp (1− χ) ⊆ ∆2r, it is enough to estimate |Dθ
xD

ε
yQj(x, y)|

for θ, ε ∈ Nd0, (x, y) ∈ ∆2r. We have

Dθ
xD

ε
yQj(x, y)

=
∑

|β+γ|=j+1

∑
α≤β+γ

(β + γ)!

β!γ!

1

α!(β + γ − α)!

∑
θ1+θ2+θ3=θ
ε1+ε2+ε3=ε

θ!

θ1!θ2!θ3!

ε!

ε1!ε2!ε3!
×

× (−1)|γ+ε1|τ |β+ε2|(1− τ)|γ+θ2|
∫
ei(x−y)·ξξθ1+ε1×

×Dθ2
x D

ε2
y D

α
ξ (Ψj −Ψj+1)(v, ξ)Dθ3

x D
ε3
y (Dβ+γ−α

ξ ωβγ)(x, y, ξ)dξ,

where ωβγ(x, y, ξ) is defined in (2.23). As in the first step, we use integration by
parts given by formula (1.7) for a suitable power of G(D), Gs(D), determined
later. The integrand above then equals

ei(x−y)·ξ 1

Gs(y − x)
Gs(Dξ)

{
ξθ1+ε1Dθ2

x D
ε2
y D

α
ξ (Ψj −Ψj+1)(v, ξ)×

×Dθ3
x D

ε3
y (Dβ+γ−α

ξ ωβγ)(x, y, ξ)
}

= ei(x−y)·ξ 1

Gs(y − x)

∑
η∈Nd0

bη
∑

η1+η2+η3=η

η!

η1!η2!η3!

(θ1 + ε1)!

(θ1 + ε1 − η1)!
ξθ1+ε1−η1×

×Dθ2
x D

ε2
y D

α+η2
ξ (Ψj −Ψj+1)(v, ξ)Dθ3

x D
ε3
y (Dβ+γ−α+η3

ξ ωβγ)(x, y, ξ).

97



Chapter 2. Quantizations for pseudodifferential operators

Thus, we obtain

Dθ
xD

ε
yQj(x, y)

=
∑

|β+γ|=j+1

∑
α≤β+γ

(β + γ)!

β!γ!

1

α!(β + γ − α)!

1

Gs(y − x)

∑
η∈Nd0

bη×

×
∑

θ1+θ2+θ3=θ
ε1+ε2+ε3=ε
η1+η2+η3=η

θ!

θ1!θ2!θ3!

ε!

ε1!ε2!ε3!

η!

η1!η2!η3!

(θ1 + ε1)!

(θ1 + ε1 − η1)!
(−1)|γ+ε1|τ |β+ε2|×

× (1− τ)|γ+θ2|
∫
ei(x−y)·ξξθ1+ε1−η1Dθ2

x D
ε2
y D

α+η2
ξ (Ψj −Ψj+1)(v, ξ)×

×Dθ3
x D

ε3
y (Dβ+γ−α+η3

ξ ωβγ)(x, y, ξ)dξ.

We estimate the derivatives of ωβγ . Since v + tτw = (1− τ + tτ)x+ τ(1− t)y
and v − (1− τ)tw = (1− τ)(1− t)x+ (τ + t− τt)y, we have, by (2.23),

Dθ3
x D

ε3
y (Dβ+γ−α+η3

ξ ωβγ)(x, y, ξ)

= (j + 1)

∫ 1

0

(1− t)j
∑
θ̃3≤θ3
ε̃3≤ε3

(
θ3

θ̃3

)(
ε3
ε̃3

)
×

× |1− τ + tτ ||θ̃3|(|1− τ ||1− t|)|θ3−θ̃3|(|τ ||1− t|)|ε̃3||τ + t− tτ ||ε3−ε̃3|×

×Dθ̃3
x D

ε̃3
y D

θ3−θ̃3
x Dε3−ε̃3

y ∂βx∂
γ
yD

β+γ−α+η3
ξ a(v + tτw, v − (1− τ)tw, ξ)dt.

We take in this step p̃ ∈ N0 such that ρp̃ ≥ 1 and

max{2(1 + |τ |), (1 + 2r)ρ} ≤ eρp̃.

Then,

|1− τ + tτ ||θ̃3|(|1− τ ||1− t|)|θ3−θ̃3|(|τ ||1− t|)|ε̃3||τ + t− tτ ||ε3−ε̃3|

≤ (2(1 + |τ |))|θ3+ε3| ≤ eρp̃|θ3+ε3|.

Moreover, since (x, y) ∈ ∆2r, we have

〈(v + tτw)− (v − (1− τ)tw)〉 = 〈t(x− y)〉 < 1 + 2r ≤ ep̃.
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On the other hand, by Lemma 2.23, there exists C = 2 max{(1−τ)2, τ 2} ≥ 1/2
such that

〈(v + tτw, v − t(1− τ)w, ξ)〉2 = 1 + |v + tτw|2 + |v − t(1− τ)w|2 + |ξ|2

≥ 1 +
1

C
|v|2 + |ξ|2

≥ 1

2C
〈(v, ξ)〉2.

Hence, we have

〈(v + tτw, v − t(1− τ)w, ξ)〉 ≥ 1√
2 max{|1− τ |, |τ |}

〈(v, ξ)〉 ≥ 1

e1+p̃
〈(v, ξ)〉.

Now, if k ∈ N0 is as in (2.16), then, by (0.1),

emω(v+tτw,v−t(1−τ)w,ξ) ≤ emLω(2(|v|+(|1−τ |+|τ |)|w|))emLω(ξ)emL

≤ emL
2ω(|v|+2k|w|)emLω(ξ)emL

2+mL

≤ emL
3ω(v)emL

k+3ω(w)emLω(ξ)emL
k+3+···+mL.

We take ñ ≥ n such that (q ∈ N0 is such that 2q ≥ 3R as in the first step)

ñ ≥ max
{Lq
ρ

(mL3 + λL2) + 1,
Lq

ρ
(1 +mL+ λLp̃+2) + 1

}
.

Then, by Definition 1.3, using appropriately (0.10) (and Lemma 0.1) we have
that there exists Cñ > 0 so that for each θ3, ε3, η3 ∈ Nd0, α ≤ β + γ ∈ Nd0 and
x, y, ξ ∈ Rd, by the chain rule

|Dθ3
x D

ε3
y (Dβ+γ−α+η3

ξ ωβγ)(x, y, ξ)|

≤ (j + 1)

∫ 1

0

|1− t|jeρ(2p̃)|θ3+ε3|Cñ
eρ(p̃+(1+p̃))|2β+2γ−α+θ3+ε3+η3|

〈(v, ξ)〉ρ|2β+2γ−α+θ3+ε3+η3|
×

× e16ñL5p̃+4ρϕ∗
(
|2β+2γ−α+θ3+ε3+η3|

16ñL5p̃+4

)
emL

3ω(v)emL
k+3ω(w)emLω(ξ)emL

k+3+···+mLdt

≤ Cñe16ñLp̃+3ρ
∑4p̃+1
p=1 LpemL

k+3+···+mL(j + 1)〈(v, ξ)〉−ρ|2β+2γ−α|×

× e16ñLp̃+3ρϕ∗
(
|2β+2γ−α+θ3+ε3+η3|

16ñLp̃+3

)
emL

3ω(v)emL
k+3ω(w)emLω(ξ)

∫ 1

0

|1− t|jdt.

Now, we proceed similarly as in the first step to obtain an estimate for
|Dθ

xD
ε
yQj(x, y)|: By Corollary 2.9, there exists Dñ > 0 such that for each
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Chapter 2. Quantizations for pseudodifferential operators

θ2, ε2, η2, α ∈ Nd0 and v, ξ ∈ Rd,

|Dθ2
x D

ε2
y D

α+η2
ξ (Ψj −Ψj+1)(v, ξ)|

≤ Dñ〈(v, ξ)〉−ρ|α+θ2+ε2+η2|e16ñLp̃+3ρϕ∗
(
|α+θ2+ε2+η2|

16ñLp̃+3

)
.

Since |β + γ| = j + 1, we obtain

〈(v, ξ)〉−ρ|α+θ2+ε2+η2|〈(v, ξ)〉−ρ|2β+2γ−α| ≤
(
〈(v, ξ)〉−j

)2ρ
.

By (0.7), we have (if |ξ| ≥ 1)

|ξ||θ1+ε1−η1| ≤ eλL
p̃+2ϕ∗

(
|θ1+ε1−η1|
λLp̃+2

)
eλL

p̃+2ω(ξ),

and from (0.12), for λ > 0 there is Eλ > 0 such that

(β + γ)!

β!γ!

(θ1 + ε1)!

(θ1 + ε1 − η1)!
|τ ||β+ε2||1− τ ||γ+θ2|

≤ eρp̃|2β+2γ+θ1+θ2+ε1+ε2|Eλe
λLp̃+2ϕ∗

(
|η1|

λLp̃+2

)
.

By Lemma 0.8, it is easy to check that

eρp̃|2β+2γ+θ2+ε2|eρp̃|θ1+ε1|eλL
p̃+2ϕ∗

(
|η1|

λLp̃+2

)
eλL

p̃+2ϕ∗
(
|θ1+ε1−η1|
λLp̃+2

)
×

× e16ñLp̃+3ρϕ∗
(
|α+θ2+ε2+η2|

16ñLp̃+3

)
e16ñLp̃+3ρϕ∗

(
|2β+2γ−α+θ3+ε3+η3|

16ñLp̃+3

)
≤ eλL

2 ∑p̃
p=1 L

p

e16ñL3ρ
∑p̃
p=1 L

p

eλL
2ϕ∗
(
|θ+ε|
λL2

)
enL

3ϕ∗
(
|η|
nL3

)
×

×
(
e2ñϕ∗( j

2ñ
)
)2ρ(

e2ñϕ∗( 1
2ñ

)
)2ρ

,

and also,

eλL
2ϕ∗
(
|θ+ε|
λL2

)
enL

3ϕ∗
(
|η|
nL3

)
e2|θ+ε+η| ≤ eλϕ

∗
(
|θ+ε|
λ

)
enLϕ

∗
(
|η|
nL

)
eλL

2+λLenL
3+nL2

.

By (2.24) and (2.25), we obtain(
e2ñϕ∗( j

2ñ
)
)2ρ

≤
(
eñϕ

∗( j
ñ

)
)2ρ(

e−
ñ−1
2Lq ω(v)

)2ρ(
e−

ñ−1
2Lq ω(ξ)

)2ρ
eq(ñ−1)2ρ.

From Corollaries 0.23 and 0.20 there are C1, C2, C3 > 0 such that for all η ∈ Nd0
and x, y ∈ Rd,

|bη| ≤ esC1e−sC1ϕ
∗
(
|η|
sC1

)
,

∣∣∣ 1

Gs(y − x)

∣∣∣ ≤ Cs
3e
−sC2ω(y−x).
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2.3 Behaviour of the kernel of a pseudodifferential operator

For the constant C ′ñ > 0, which is equal to

CñDñe
16ñLp̃+3ρ

∑4p̃+1
p=1 Lpe16ñL3ρ

∑p̃
p=1 L

p

(j + 1)enL
3+nL2

eq(ñ−1)2ρ
(
e2ñϕ∗( 1

2ñ
)
)2ρ

×

× EλeλL
2 ∑p̃

p=1 L
p

eλL
2+λLemL

k+3+···+mLesC1Cs
3

( ∫ 1

0

|1− t|jdt
)
,

we can estimate |Dθ
xD

ε
yQj(x, y)| by

C ′ñe
λϕ∗
(
|θ+ε|
λ

)( ∑
η∈Nd0

e−sC1ϕ
∗
(
|η|
sC1

)
enLϕ

∗
(
|η|
nL

))
emL

3ω(v)e−
ñ−1
Lq ρω(v)emL

k+3ω(w)×

× e−sC2ω(y−x)
∑

|β+γ|=j+1

∑
α≤β+γ

1

α!(β + γ − α)!
×

×
∫

(〈(v, ξ)〉−j)2ρ
(
eñϕ

∗( j
ñ

)
)2ρ

e(mL+λLp̃+2− ñ−1
Lq ρ)ω(ξ)dξ.

Take s ∈ N with
sC2 ≥ mLk+3 + λLk+2.

Then, as ñ ≥ Lq

ρ
(mL3 + λL2) + 1, we have, by Lemma 2.22,

e(− ñ−1
Lq ρ+mL

3)ω(v)e(−sC2+mLk+3)ω(w) ≤ e−λω(x,y)eλ
∑k+2
p=1 L

p

.

Since ñ ≥ Lq

ρ
(1 + mL + λLp̃+2) + 1, the integral depending on ξ converges.

Taking n ≥ sC1, the series depending on η converges (as in (1.14)).

As the series, by Lemma 0.1,
∞∑
j=1

∑
|β+γ|=j+1

∑
α≤β+γ

1

α!(β + γ − α)!
≤
∞∑
j=1

∑
|β+γ|=j+1

1

(β + γ)!
2|β+γ|

≤
∞∑
j=1

(2d)j+1

(j + 1)!

∑
|β+γ|=j+1

1 ≤
∞∑
j=1

(2d2)j+1

(j + 1)!

converges, we can proceed as in the first step and obtain that (1−χ)
∑∞

j=1Qj ∈
Sω(R2d).

Third step. Let TN : Sω(Rd)→ Sω(Rd) be the operator with kernel WN . Since

A − P =
∑∞

N=0 PN,τ converges in L(Sω(Rd),S ′ω(Rd)), it follows that (TN)
converges to an operator T : Sω(Rd)→ Sω(Rd) in L(Sω(Rd),S ′ω(Rd)). Indeed,
we have shown that

lim
N→∞

WN = K0 +
∞∑
j=1

Ij +
∞∑
j=1

Qj −K

101



Chapter 2. Quantizations for pseudodifferential operators

converges in Sω(R2d) as N → ∞, hence in S ′ω(R2d). By the kernel’s theorem,
TN converges to some operator T in L(Sω(Rd),S ′ω(Rd)).

We show that T = 0 in L(Sω(Rd),S ′ω(Rd)). To this aim, we fix N ∈ N, jn ≤
N+1 < jn+1, and we denote aN := Re

n
N+1ϕ

∗
(
N+1
n

)
. According to the support of

the derivatives of ΨN+1, we can assume that 2aN ≤ 〈((1−τ)x+τy, ξ)〉 ≤ 3aN .
For f, g ∈ Sω(Rd), we have

〈TNf, g〉 =

∫
TNf(x)g(x)dx =

∫ ( ∫
WN(x, y)f(y)dy

)
g(x)dx.

For fixed N ∈ N, we show that Fubini’s theorem can be used in this integral.
In fact, for all λ > 0 there exists Cλ > 0 such that

|Dα
ξ ΨN+1(v, ξ)(∂βx∂

γ
yD

β+γ−α
ξ a)(v, v, ξ)f(y)g(x)| (2.26)

≤ Cλeϕ
∗(|α|)eϕ

∗(|2β+2γ−α|)emω(v,v,ξ)e−λω(y)e−λω(x).

Since 2aN ≤ 〈((1 − τ)x + τy, ξ)〉 ≤ 3aN , in particular we have |ξ| ≤ 3aN and
therefore 1 ≤ e−ω(ξ)eω(3aN ). Moreover, by (0.4) and (2.18) (where k and m′

are as in (2.16) and (2.17)),

mω(v, v, ξ) ≤ mLω(v) +mLω(ξ) +mL

≤ m′Lω(x, y) +mLω(3aN) +mLk+1 + · · ·+mL.

Taking λ > m′L2 + 1 we use (0.3) to get

em
′Lω(x,y)e−λω(y)e−λω(x) ≤ e−ω(x)e−ω(y)em

′L2

,

and then we obtain that (2.26) is estimated by a function in L1(R3d
x,y,ξ). There-

fore, we can use Fubini’s theorem in

〈TNf, g〉 =

∫ ( ∫ N∑
|β+γ|=1

∑
06=α≤β+γ

(β + γ)!

β!γ!

1

α!(β + γ − α)!
×

×
{∫

ei(x−y)·ξτ |β|(1− τ)|γ|(−1)|γ|Dα
ξ ΨN+1(v, ξ)×

×
(
∂βx∂

γ
yD

β+γ−α
ξ a

)
(v, v, ξ)dξ

}
f(y)dy

)
g(x)dx,
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2.3 Behaviour of the kernel of a pseudodifferential operator

and integrating by parts in the integrand with formula (1.6) for a suitable
power s ∈ N to be determined, we have

ei(x−y)·ξ 1

Gs(ξ)
Gs(Dy)

{
Dα
ξ ΨN+1(v, ξ)

(
∂βx∂

γ
yD

β+γ−α
ξ a

)
(v, v, ξ)f(y)

}
= ei(x−y)·ξ 1

Gs(ξ)

∑
η∈Nd0

bη
∑

η1+η2+η3=η

η!

η1!η2!η3!
τ |η1|Dη1

y D
α
ξ ΨN+1(v, ξ)×

×Dη2
y

(
∂βx∂

γ
yD

β+γ−α
ξ a

)
(v, v, ξ)Dη3

y f(y).

Thus,

〈TNf, g〉 =
N∑

|β+γ|=1

∑
06=α≤β+γ

(β + γ)!

β!γ!

1

α!(β + γ − α)!

∑
η∈Nd0

bη
∑

η1+η2+η3=η

η!

η1!η2!η3!
×

× τ |η1+β|(1− τ)|γ|(−1)|γ|
∫∫

ei(x−y)·ξ 1

Gs(ξ)

∫
Dη1
y D

α
ξ ΨN+1(v, ξ)×

×Dη2
y

(
∂βx∂

γ
yD

β+γ−α
ξ a

)
(v, v, ξ)Dη3

y f(y)g(x)dydξdx.

To estimate |〈TNf, g〉|, let p̃ ∈ N0 be such that max{|1 − τ |, 2|τ |} ≤ ep̃. By
Definition 1.3 and Corollary 2.9, for all n ∈ N there exist Cn = C4nLp̃+3 > 0,
Dn = D4nLp̃+3 > 0 such that by the chain rule

|Dη2
y (∂βx∂

γ
yD

β+γ−α
ξ a)(v, v, ξ)|

≤ Cn〈(v, ξ)〉−ρ|2β+2γ+η2−α|(2|τ |)|η2|e4nLp̃+3ρϕ∗
(
|2β+2γ+η2−α|

4nLp̃+3

)
emω(v,v,ξ)

and

|Dη1
y D

α
ξ ΨN+1(v, ξ)| ≤ Dn〈(v, ξ)〉−ρ|η1+α|e4nLp̃+3ρϕ∗

(
|η1+α|
4nLp̃+3

)
.

From the choice of p̃ ∈ N0,

(2|τ |)|η2||τ ||η1+β||1− τ ||γ| ≤ ep̃|η1+η2+β+γ|.

We take 0 < ` < n. Since f, g ∈ Sω(Rd), there exist E` > 0 (depending on
`, τ,m) and E′ > 0 (depending on τ,m) such that (where k is as in (2.16))

|Dη3
y f(y)| ≤ E`e`L

3ϕ∗
(
|η3|
`L3

)
e−((mL+L)Lk+1+1)ω(y);

|g(x)| ≤ E′e−((mL+L)Lk+1+1)ω(x).

By Lemma 0.8 we have

e4nLp̃+3ρϕ∗
(
|η1+α|
4nLp̃+3

)
e4nLp̃+3ρϕ∗

(
|2β+2γ+η2−α|

4nLp̃+3

)
≤ e`L

p̃+3ϕ∗
(
|η1+η2|
`Lp̃+3

)
e2nρϕ∗

(
|β+γ|
n

)
,
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Chapter 2. Quantizations for pseudodifferential operators

and (as
∑

η1+η2+η3=η
η!

η1!η2!η3!
= 3|η| ≤ e2|η|)

∑
η1+η2+η3=η

η!

η1!η2!η3!

(
ep̃|η1+η2|e`L

p̃+3ϕ∗
(
|η1+η2|
`Lp̃+3

))
e`L

3ϕ∗
(
|η3|
`L3

)
≤ e`L

∑p̃+2
t=1 L

t

e`Lϕ
∗
(
|η|
`L

)
.

On the other hand, since 2aN ≤ 〈(v, ξ)〉 and 1 ≤ |β + γ| ≤ N < N + 1, we use
that ϕ∗(x)/x is increasing to get

〈(v, ξ)〉−ρ|η1+α|〈(v, ξ)〉−ρ|2β+2γ+η2−α| ≤ 〈(v, ξ)〉−ρ|2β+2γ|

≤ (2R)−2ρ|β+γ|e−2nρϕ∗
(
|β+γ|
n

)
.

From Corollaries 0.23 and 0.20 there are C1, C2, C3 > 0 such that for all η ∈ Nd0,
ξ ∈ Rd,

|bη| ≤ esC1e−sC1ϕ
∗
(
|η|
sC1

)
,

∣∣∣ 1

Gs(ξ)

∣∣∣ ≤ Cs
3e
−sC2ω(ξ).

Hence, we can estimate |〈TNf, g〉| by (since (β+γ)!

β!γ!
≤ e|β+γ|)

N∑
|β+γ|=1

∑
06=α≤β+γ

( ep̃+1

(2R)2ρ

)|β+γ| 1

α!(β + γ − α)!
esC1×

×
( ∑
η∈Nd0

e`Lϕ
∗
(
|η|
`L

)
e−sC1ϕ

∗
(
|η|
sC1

))
e`L

∑p̃+2
t=1 L

t

∫ ( ∫
Cs

3e
−sC2ω(ξ)×

×
( ∫

CnDnE`E
′emω(v,v,ξ)e−((mL+L)Lk+1+1)(ω(y)+ω(x))dy

)
dξ
)
dx.

We take ` ≥ sC1 to guarantee that the series on η is convergent (see (1.14)).
We recall that the only factor that depends on n is CnDn. We see that if
sC2 ≥ (mL+ L)Lk+1 + 1, then there exists Ck > 0 such that

emω(v,v,ξ)e−((mL+L)Lk+1+1)ω(y)e−((mL+L)Lk+1+1)ω(x)e−sC2ω(ξ)

≤ Cke−ω(〈(v,ξ)〉)e−ω(x)e−ω(y)e−ω(ξ).
(2.27)

In fact, by (0.3), (0.6), and (2.18),

emω(v,v,ξ)eω(〈(v,ξ)〉) ≤ e(mL+L)ω(v,ξ)emL+L

≤ e(mL+L)Lkω(x,y,ξ)e(mL+L)Lk+···+(mL+L)L+mL+L.
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2.3 Behaviour of the kernel of a pseudodifferential operator

Therefore, by (0.4), we obtain (2.27), as

emω(v,v,ξ)eω(〈(v,ξ)〉)eω(x)eω(y)eω(ξ)

≤ e((mL+L)Lk+1+1)(ω(x)+ω(y)+ω(ξ))e(mL+L)Lk+1+···+(mL+L).

So, we have ∫∫∫
2aN≤〈(v,ξ)〉≤3aN

e−ω(〈(v,ξ)〉)e−ω(x)−ω(y)−ω(ξ)dydξdx

≤ e−ω(2aN )

∫∫∫
R3d

e−ω(x)−ω(y)−ω(ξ)dydξdx.

By property (γ) of Definition 0.3, there exists C > 0 such that 3 log(t) ≤
ω(t) + C, t ≥ 0. Thus,

e−ω(2aN ) ≤ (2aN)−3eC .

By the choice of the sequence (jn)n, we have

enCnDn ≤ a3
N .

Hence, there exists C ′ > 0 such that, similarly as in the previous steps,

|〈TNf, g〉| ≤ C ′
N∑

|β+γ|=1

∑
0 6=α≤β+γ

( ep̃+1

(2R)2ρ

)|β+γ| 1

α!(β + γ − α)!

CnDn

a3
N

≤ C ′

en

N∑
l=1

1

l!

(d2ep̃+1

(2R)2ρ

)l
.

Since the series converges for R ≥ 1 large enough (which may depend on τ),
and since n → ∞ when N → ∞, we show that |〈TNf, g〉| tends to zero when
N →∞. It proves that the sequence (TN) converges to the operator T = 0 in
L(Sω(Rd),S ′ω(Rd)), as we wanted.

Following [64, (23.39)], given an amplitude a(x, y, ξ) ∈ GAm,ω
ρ and τ ∈ R,

there exists a symbol pτ defined by

pτ (v, ξ) := Fw 7→ξKA(v + τw, v − (1− τ)w),

where KA is the kernel of the operator A given by the amplitude a. This
symbol is called τ -symbol of the pseudodifferential operator A. We write p for
the 0-symbol and, when τ = 1/2, we write pw for the Weyl symbol. It is unique
by the uniqueness of the kernel of A. Moreover, we have (see [64, (23.38)])

KA(x, y) = (2π)−dF−1
ξ 7→x−ypτ ((1− τ)x+ τy, ξ).
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Chapter 2. Quantizations for pseudodifferential operators

Definition 2.25. The pseudodifferential operator Pτ associated to the symbol
pτ is called τ -quantization of the operator and satisfies

A = Pτ .

When τ = 1/2, P1/2 is called Weyl quantization and it is denoted by

Pw = pw(x,D).

Thus, by Theorem 2.24, we have

pτ (x, ξ) ∼
∞∑
j=0

∑
|β+γ|=j

1

β!γ!
τ |β|(1− τ)|γ|∂β+γ

ξ (−Dx)
βDγ

y a(x, y, ξ)|y=x . (2.28)

Example 2.26. Let p ∈ GSm,ωρ . Then, we define a(x, y, ξ) := (2π)−dp
(
x+y

2
, ξ
)
,

which belongs to GAmax{0,m},ω
ρ by Lemma 2.8. Therefore,

Au(x) =

∫∫
ei(x−y)·ξ(2π)−dp

(x+ y

2
, ξ
)
u(y)dydξ, u ∈ Sω(Rd).

On the other hand, by definition of p1/2, we have, by (0.34),

p1/2

(x+ y

2
, ξ
)

= Fw 7→ξKA(x, y) = Fw 7→ξ
( ∫

ei(x−y)·ξ(2π)−dp
(x+ y

2
, ξ
)
dξ
)

= Fw 7→ξF−1
ξ 7→wp

(x+ y

2
, ξ
)

= p
(x+ y

2
, ξ
)
.

So, in this case, the Weyl symbol coincides with the original global symbol p.

Given b ∈ GSm,ωρ , we denote here and below the Weyl quantization bw(x,D)
by

bw(x,D)u = (2π)−d
∫
R2d

ei(x−s)·ξb
(x+ s

2
, ξ
)
u(s)dsdξ, x ∈ Rd. (2.29)

As a consequence of formula (2.28) and Theorem 2.24, we can describe the
precise relation between different quantizations for a given global symbol in
terms of equivalence of formal sums as the following result shows (see [64,
Theorem 23.3]).

Theorem 2.27. If aτ1(x, ξ) and aτ2(x, ξ) are the τ1 and τ2-symbol of the same
pseudodifferential operator A, then

aτ2(x, ξ) ∼
∞∑
j=0

∑
|α|=j

1

α!
(τ1 − τ2)|α|∂αξD

α
xaτ1(x, ξ).
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Proof. By the comments below Theorem 2.24, the pseudodifferential operator
A is determined via the τ1-symbol aτ1((1 − τ1)x + τ1y, ξ). We denote e =
(1, . . . , 1) ∈ Nd0 and use the fact that

(x+ y)α =
∑

β+γ=α

α!

β!γ!
xβyγ , α ∈ Nd0, x, y ∈ Rd.

By formula (2.28), the τ2-symbol of A has the following asymptotic expansion:

aτ2(x, ξ)

∼
∞∑
j=0

∑
|β+γ|=j

(−1)|β|

β!γ!
τ
|β|
2 (1− τ2)|γ|∂β+γ

ξ Dβ
xD

γ
y (aτ1((1− τ1)x+ τ1y, ξ)

∣∣
y=x

)

=
∞∑
j=0

∑
|α|=j

( ∑
β+γ=α

1

β!γ!
(−τ2(1− τ1))|β|((1− τ2)τ1)|γ|

)
∂αξD

α
xaτ1(x, ξ)

=
∞∑
j=0

∑
|α|=j

1

α!
(−τ2(1− τ1) + (1− τ2)τ1)|α|∂αξD

α
xaτ1(x, ξ)

=
∞∑
j=0

∑
|α|=j

1

α!
(τ1 − τ2)|α|∂αξD

α
xaτ1(x, ξ).

2.4 The transposition and composition of operators

Given a symbol a(x, ξ), let A be the pseudodifferential operator associated to
the amplitude a((1− τ)x+ τy, ξ). By Proposition 1.18 (see [33, Theorem 2.5])
we obtain that the transpose At is associated to the amplitude a((1 − τ)y +
τx,−ξ). Hence, if aτ (x, ξ) is the τ -symbol of A, then the (1− τ)-symbol of At

is given by

at1−τ ((1− τ)x+ τy, ξ) := aτ ((1− τ)y + τx,−ξ). (2.30)

This formula is equivalent to atτ (τx + (1 − τ)y, ξ) = a1−τ (τy + (1 − τ)x,−ξ).
As a consequence of (2.30), when y = x we have atτ (x, ξ) = a1−τ (x,−ξ). On
the other hand, for τ = 0, at1(y,−ξ) coincides with a0(x, ξ), and for τ = 1/2,
we have atw

(
x+y

2
, ξ
)

= aw
(
x+y

2
,−ξ

)
.

By Theorem 2.24, the transpose of a pseudodifferential operator (restricted
to Sω(Rd)) can be described, modulus an ω-regularizing operator, by another
pseudodifferential operator with a precise relation between their τ -symbols:

107



Chapter 2. Quantizations for pseudodifferential operators

Theorem 2.28. Let A be the pseudodifferential operator with τ -symbol aτ (x, ξ)
in GSm,ωρ . Then its transpose restricted to Sω(Rd) can be decomposed as
At = P + R, where R is an ω-regularizing operator and P is the pseudod-
ifferential operator associated to the symbol given by

p(x, ξ) ∼ atτ (x, ξ) :=
∞∑
j=0

∑
|α|=j

1

α!
(1− 2τ)|α|∂αξD

α
xaτ (x,−ξ).

Proof. First, by Proposition 2.13 it follows that the formal sum above belongs
to FGSm,ωρ . By assumption we have that At has the (1− τ)-symbol at1−τ (x, ξ)
given by formula (2.30) with y = x. Moreover, from Theorem 2.27, the τ -
symbol of At satisfies

atτ (x, ξ) ∼
∞∑
j=0

∑
|α|=j

1

α!
(1− 2τ)|α|∂αξD

α
xa

t
1−τ (x, ξ)

=
∞∑
j=0

∑
|α|=j

1

α!
(1− 2τ)|α|∂αξD

α
xaτ (x,−ξ).

In what follows, we deal with the composition of two pseudodifferential opera-
tors given by arbitrary quantizations. In fact, given such quantizations of two
pseudodifferential operators, we can describe the formal sum of the τ -symbol
of the resulting composition:

Theorem 2.29. Let aτ1(x, ξ) ∈ GSm1,ω
ρ be the τ1-symbol of A and bτ2(x, ξ) ∈

GSm2,ω
ρ be the τ2-symbol of B. The τ -symbol cτ (x, ξ) ∈ GSm1+m2,ω

ρ of A ◦ B
has the asymptotic expansion

∞∑
j=0

∑
|α+β−α1−α2|=j

α+β=γ+δ

cαβγδα1α2
∂γξD

α
xaτ1(x, ξ) · ∂δξDβ

xbτ2(x, ξ), (2.31)

where the coefficients cαβγδα1α2
equal

(2π)d

γ!δ!

∞∑
k,l=0

∑
|α1|=k
|α2|=l

(−1)|α−α1+α2|

(
α+ β − α1 − α2

α− α1

)(
γ

α1

)(
δ

α2

)
×

× τ |α−α1|(1− τ)|β−α2|τ
|α1|
1 (1− τ2)|α2|.
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Proof. We first assume τ1 = 0 and τ2 = 1. Then, for u ∈ Sω(Rd),

(A ◦B)u(x) =

∫
eix·ξa0(x, ξ)B̂u(ξ)dξ, x ∈ Rd.

We see that Bu(x) = Î(−x), where I(ξ) =
∫
e−iy·ξb1(y, ξ)u(y)dy. Indeed,

Î(−x) =

∫
eix·ξI(ξ)dξ

=

∫
eix·ξ

∫
e−iy·ξb1(y, ξ)u(y)dydξ

=

∫ ( ∫
ei(x−y)·ξb1(y, ξ)u(y)dy

)
dξ = Bu(x).

Hence, by (0.34), B̂u(ξ) = (2π)dI(ξ) and

(A ◦B)u(x) =

∫∫
ei(x−y)·ξc(x, y, ξ)u(y)dydξ, x ∈ Rd,

where c(x, y, ξ) = (2π)da0(x, ξ)b1(y, ξ) is an amplitude in GAm1+m2,ω
ρ . By

formula (2.28) (see Theorem 2.24), the τ -symbol cτ (x, ξ) has the asymptotic
expansion:

(2π)d
∞∑
j=0

∑
|β+γ|=j

(−1)|β|

β!γ!
τ |β|(1− τ)|γ|∂β+γ

ξ Dβ
xD

γ
y

(
a0(x, ξ)b1(y, ξ)

)∣∣
y=x

(2.32)

= (2π)d
∞∑
j=0

∑
|β+γ|=j
δ+ε=β+γ

(−1)|β|(β + γ)!

δ!ε!β!γ!
τ |β|(1− τ)|γ|∂δξD

β
xa0(x, ξ) · ∂εξDγ

xb1(x, ξ).

(2.33)

Now, we treat the general case, by making use of (2.33). By Theorem 2.27,
we have

a0(x, ξ) ∼
∞∑
j1=0

∑
|α1|=j1

1

α1!
τ
|α1|
1 ∂α1

ξ D
α1
x aτ1(x, ξ);

b1(x, ξ) ∼
∞∑
j2=0

∑
|α2|=j2

(−1)|α2|

α2!
(1− τ2)|α2|∂α2

ξ D
α2
x bτ2(x, ξ),
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Chapter 2. Quantizations for pseudodifferential operators

so we reformulate (2.33) as

cτ (x, ξ) ∼ (2π)d
∞∑
j=0

∑
|β+γ|=j
δ+ε=β+γ

(−1)|β|(β + γ)!

δ!ε!β!γ!
τ |β|(1− τ)|γ|×

× ∂δξDβ
x

( ∞∑
j1=0

∑
|α1|=j1

1

α1!
τ
|α1|
1 ∂α1

ξ D
α1
x aτ1(x, ξ)

)
×

× ∂εξDγ
x

( ∞∑
j2=0

∑
|α2|=j2

(−1)|α2|

α2!
(1− τ2)|α2|∂α2

ξ D
α2
x bτ2(x, ξ)

)
.

By the change of variables γ′ = α1 + δ, α′ = α1 + β, δ′ = α2 + ε, β′ = α2 + γ,
it follows that

cτ (x, ξ) ∼ (2π)d
∞∑
j=0

∑
|α′+β′−α1−α2|=j
α′+β′=δ′+γ′

1

γ′!δ′!
∂γ
′

ξ D
α′

x aτ1(x, ξ)∂
δ′

ξ D
β′

x bτ2(x, ξ)×

×
∞∑

k,l=0

∑
|α1|=k
|α2|=l

(−1)|α
′−α1+α2| (α

′ + β′ − α1 − α2)!

(α′ − α1)!(β′ − α2)!

γ′!

α1!(γ′ − α1)!
×

× δ′!

α2!(δ′ − α2)!
τ |α
′−α1|(1− τ)|β

′−α2|τ
|α1|
1 (1− τ2)|α2|,

which concludes the proof.

The coefficients appearing in (2.31), which depend on the quantizations, are
sometimes simplified. For instance, when τ1 = τ2 = τ . As an immediate
consequence we obtain [64, Problem 23.2] adapted to our context. First, we
need a lemma (see [9, Theorem 5.5]).

Lemma 2.30. For all β, γ, ε ∈ Nd0 such that ε ≤ β + γ, it holds

(β + γ)!

(β + γ − ε)!ε!
1

β!γ!
=

∑
0≤δ≤β

β−ε≤δ≤β−ε+γ

1

(β − δ)!(β − ε+ γ − δ)!δ!(δ − β + ε)!
.

Example 2.31. Given two pseudodifferential operators A,B : Sω(Rd) →
Sω(Rd), the τ -symbol of the composition operator C = A ◦B is given by

cτ (x, ξ) ∼ (2π)d
∞∑
j=0

∑
|β+γ|=j

(−1)|β|

β!γ!
τ |β|(1− τ)|γ|(∂γξD

β
xaτ (x, ξ))(∂

β
ξD

γ
xbτ (x, ξ)).
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2.4 The transposition and composition of operators

Proof. Formula (2.33) states that cτ (x, ξ) is equivalent to (since δ = β+γ− ε)

cτ (x, ξ) ∼ (2π)d
∞∑
j=0

∑
|β+γ|=j

(−1)|β|τ |β|(1− τ)|γ|
∑
ε≤β+γ

(β + γ)!

(β + γ − ε)!ε!
1

β!γ!
×

× ∂β+γ−ε
ξ Dβ

xa0(x, ξ) · ∂εξDγ
xb1(x, ξ).

Moreover, by Lemma 2.30,

cτ (x, ξ) ∼ (2π)d
∞∑
j=0

∑
|β+γ|=j

(−1)|β|τ |β|(1− τ)|γ|×

×
∑
ε≤β+γ

∑
0≤δ≤β

β−ε≤δ≤β−ε+γ

1

(β − δ)!(β − ε+ γ − δ)!δ!(δ − β + ε)!
×

× ∂β+γ−ε
ξ Dβ

xa0(x, ξ) · ∂εξDγ
xb1(x, ξ).

We put µ = β − δ, ν = β − ε+ γ − δ, and θ = δ − β + ε. Therefore,

cτ (x, ξ) ∼ (2π)d
∞∑
j=0

∑
|ν+θ+µ+δ|=j

(−1)|µ+δ|

µ!ν!δ!θ!
τ |µ+δ|(1− τ)|ν+θ|×

× ∂ν+δ
ξ Dµ+δ

x a0(x, ξ) · ∂µ+θ
ξ Dν+θ

x b1(x, ξ),

and taking j = j1 + j2 + j3, j1, j2, j3 ∈ N0, we have that cτ (x, ξ) is equivalent
to

(2π)d
∞∑
j1=0

∑
|ν+µ|=j1

(−1)|µ|

µ!ν!
τ |µ|(1− τ)|ν|×

× ∂νξDµ
x

( ∞∑
j2=0

∑
|δ|=j2

(−1)|δ|

δ!
τ |δ|∂δξD

δ
xa0(x, ξ)

)
×

× ∂µξDν
x

( ∞∑
j3=0

∑
|θ|=j3

1

θ!
(1− τ)|θ|∂θξD

θ
xb1(x, ξ)

)
.

We get the result since Theorem 2.27 gives

aτ (x, ξ) ∼
∞∑
k=0

∑
|δ|=k

(−1)|δ|

δ!
τ |δ|∂δξD

δ
xa0(x, ξ);

bτ (x, ξ) ∼
∞∑
k=0

∑
|θ|=k

1

θ!
(1− τ)|θ|∂θξD

θ
xb1(x, ξ).
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Chapter 2. Quantizations for pseudodifferential operators

Corollary 2.32. Given two pseudodifferential operators A,B : Sω(Rd) →
Sω(Rd), the Weyl symbol of the composition operator C = A ◦B is given by

cw(x, ξ) ∼ (2π)d
∞∑
j=0

∑
|β+γ|=j

(−1)|β|

γ!β!
2−|β+γ|(∂γξD

β
xaw(x, ξ))(∂βξD

γ
xbw(x, ξ)).

In particular, we obtain [6, Theorem 5.7].

Corollary 2.33. Let A,B : Sω(Rd) → Sω(Rd) be two pseudodifferential op-
erators with global symbols a(x, ξ) ∈ GSm1,ω

ρ and b(x, ξ) ∈ GSm2,ω
ρ . Then, the

global symbol c(x, ξ) ∈ GSm1+m2,ω
ρ associated to C = A ◦B : Sω(Rd)→ Sω(Rd)

satisfies

c(x, ξ) ∼ (2π)d(a(x, ξ) ◦ b(x, ξ)) = (2π)d
∞∑
j=0

∑
|γ|=j

1

γ!
(∂γξ a(x, ξ))(Dγ

xb(x, ξ)).

We finally show [64, Problem 23.1]:

Example 2.34. The global symbol p(x, ξ) of a pseudodifferential operator P
can be expressed in terms of P via the formula

p(x, ξ) = (2π)−de−ix·ξP (ei(·)·ξ)(x).

Proof. By Theorem 2.28, we deduce that if P is the pseudodifferential operator
given by the symbol p(x, ξ), the transpose operator is given by the amplitude
p(y,−ξ) (see (2.30)). So, for f ∈ Sω(Rd) we have

(P tf)(x) =

∫
eix·ξ

( ∫
e−iy·ξp(y,−ξ)f(y)dy

)
dξ.

By an integration by parts with the ultradifferential operator Gn(D), for n ∈
N0 large enough, with the formula (similar to (1.6))

e−iy·ξ =
1

Gn(ξ)
Gn(−Dy)e

−iy·ξ,

one can show that

I(ξ) =

∫
e−iy·ξp(y,−ξ)f(y)dy, f ∈ Sω(Rd)

112



2.4 The transposition and composition of operators

belongs to L1(Rd). In fact, the integration by parts yields

e−iy·ξ
1

Gn(ξ)
Gn(Dy){p(y,−ξ)f(y)}

= e−iy·ξ
1

Gn(ξ)

∑
η∈Nd0

bη
∑

η1+η2=η

η!

η1!η2!
Dη1
y p(y,−ξ)Dη2

y f(y).

Therefore,

I(ξ) =
1

Gn(ξ)

∑
η∈Nd0

bη
∑

η1+η2=η

η!

η1!η2!

∫
e−iy·ξDη1

y p(y,−ξ)Dη2
y f(y)dy.

From Corollaries 0.23 and 0.20 there are C1, C2, C3 > 0 (depending only on
G) such that for all η ∈ Nd0 and ξ ∈ Rd

|bη| ≤ enC1e−nC1ϕ
∗
(
|η|
nC1

)
,

∣∣∣ 1

Gn(ξ)

∣∣∣ ≤ Cn
3 e
−nC2ω(ξ).

Assume m ≥ 0 without losing generality. For all λ > 0, there exist Cλ > 0
(see (1.11)) and Dλ > 0 such that for all η1, η2 ∈ Nd0 and y, ξ ∈ Rd,

|Dη1
y p(y,−ξ)| ≤ Cλe

λL2ϕ∗
(
|η1|
λL2

)
emω(y,−ξ);

|Dη2
y f(y)| ≤ Dλe

λL2ϕ∗
(
|η2|
λL2

)
e−(mL+1)ω(y).

Therefore,

|I(ξ)| ≤ enC1Cn
3 e
−nC2ω(ξ)

∑
η∈Nd0

e−nC1ϕ
∗
(
|η|
nC1

) ∑
η1+η2=η

η!

η1!η2!
×

× CλDλe
λL2ϕ∗

(
|η1|
λL2

)
eλL

2ϕ∗
(
|η2|
λL2

) ∫
emω(y,−ξ)e−(mL+1)ω(y)dy.

(2.34)

We take n ∈ N0 such that nC2 ≥ mL+ 1. In particular, by (0.3),

e−nC2ω(ξ)emω(y,−ξ)e−(mL+1)ω(y) ≤ e−ω(ξ)e−ω(y)emL.

This implies the convergence of the integral in (2.34). On the other hand, by
Lemma 0.8 ∑

η1+η2=η

η!

η1!η2!
eλL

2ϕ∗
(
|η1|
λL2

)
eλL

2ϕ∗
(
|η2|
λL2

)
≤ eλLϕ

∗
(
|η|
λL

)
eλL

2

,
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Chapter 2. Quantizations for pseudodifferential operators

so it is enough to fix λ ≥ nC1 to obtain that the series depending on η ∈ Nd0
in (2.34) converges (see (1.14)). Hence, there exists C ′ > 0 that depends on
λ > 0 such that |I(ξ)| ≤ C ′e−ω(ξ), ξ ∈ Rd.

Thus we have Î(−x) = (P tf)(x) ∈ Sω(Rd). Hence Î ∈ Sω(Rd). Therefore, as
eix·ξ ∈ E(ω)(R2d) ⊆ S ′ω(R2d), for f ∈ Sω(Rd), we have by (0.34)

〈P (eix·ξ), f〉 = 〈eix·ξ, P tf〉 =

∫
eix·ξ Î(−x)dx

= (2π)dI(−ξ) = (2π)d
∫
eix·ξp(x, ξ)f(x)dx.

This shows the result.
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Parametrices

The notion of hypoellipticity comes from the problem of determining whether
a distribution solution to the partial differential equation Pu = f , where
f is a smooth function, is a classical solution or not. The authors in [33]
provide adequate conditions for the construction of a (left) parametrix for their
symbols, which guarantee the hypoellipticity in the desired class in [32]. For
the operators defined in [58], the corresponding construction of parametrices
is done in [25].

We develop the method of the parametrix for the class of operators introduced
in Chapter 1. That is, we obtain sufficient conditions for the symbol of a
pseudodifferential operator to have a parametrix and, in particular, to be
ω-regular in the sense of Shubin [64]; see the definition of ω-regularity at the
beginning of Section 3.1 and Corollary 3.4. Given a pseudodifferential operator
P , we say that another pseudodifferential operator Q is a left parametrix for
P if

Q ◦ P = I +R,

where I is the identity operator and R is an ω-regularizing operator.

The conditions imposed to symbols to construct parametrices motivate the
definition of a wave front set given in terms of Weyl quantizations for S ′ω(Rd)
in Chapter 4, called Weyl wave front set.
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We also give examples of symbols with prescribed exponential growth which
satisfy the conditions to admit a parametrix. However, we need to take weight
functions ω bounded from above by the Gevrey weight function σ(t) = t1/2.

Finally, inspired by Boggiatto, Buzano, and Rodino [9], we show that some
type of symbols, which in addition satisfies the sufficient conditions of the
existence of parametrices, called ω-hypoelliptic symbols, are still ω-hypoelliptic
under a change of quantization. Moreover, we compare the notions of ω-
regularity and ω-hypoellipticity following the ideas of [13].

The following results appear in [4].

3.1 Global regularity

We say that a pseudodifferential operator P : S ′ω(Rd)→ S ′ω(Rd) is ω-regular if
given u ∈ S ′ω(Rd) such that Pu ∈ Sω(Rd), then we have u ∈ Sω(Rd). See [13] for
a study of ω-regularity of linear partial differential operators with polynomial
coefficients using quadratic transformations (cf. [53] for the non-isotropic case).

In this section, we provide a sufficient condition for global ω-regularity of a
pseudodifferential operator. We use the method of the parametrix. The proof
is based on [50, 65]. The result will follow the lines of [2, 32] (cf. [25]). The
following estimate is proved in [11, Proposition 2.1].

Lemma 3.1. Let ω be a subadditive weight function. For all λ > 0 and
j, k ∈ N0, we have

eλϕ
∗
ω( jλ )

j!

eλϕ
∗
ω( kλ )

k!
≤ eλϕ

∗
ω( j+kλ )

(j + k)!
.

The following result is obvious and the proof is elementary (see Section 2.2).

Lemma 3.2. If
∑
aj ∈ FGSm1,ω

ρ and b(x, ξ) ∈ GSm2,ω
ρ , then

∑
aj(x, ξ)b(x, ξ)

is a formal sum in FGSm1+m2,ω
ρ .

Theorem 3.3. Let ω be a weight function and let σ be a subadditive weight
function with ω(t1/ρ) = o(σ(t)) as t → ∞. Let p(x, ξ) ∈ GS|m|,ωρ be such that,
for some R ≥ 1:

(i) There exists c > 0 such that |p(x, ξ)| ≥ ce−|m|ω(x,ξ) for 〈(x, ξ)〉 ≥ R;

(ii) There exist C > 0 and n ∈ N such that

|Dα
xD

β
ξ p(x, ξ)| ≤ C |α+β|〈(x, ξ)〉−ρ|α+β|e

1
nϕ
∗
σ(n|α|)e

1
nϕ
∗
σ(n|β|)|p(x, ξ)|,
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3.1 Global regularity

for α, β ∈ Nd0, 〈(x, ξ)〉 ≥ R.

Then, there exists q(x, ξ) ∈ GS|m|,ωρ such that q ◦ p ∼ 1 in FGS|m|,ωρ .

Proof. We set

q0(x, ξ) :=
1

p(x, ξ)
, 〈(x, ξ)〉 ≥ R.

We show by induction on |α+ β| ∈ N0 that there exists C1 > 0 such that

|Dα
xD

β
ξ q0(x, ξ)| ≤ C |α+β|

1 〈(x, ξ)〉−ρ|α+β|e
1
nϕ
∗
σ(n|α|)e

1
nϕ
∗
σ(n|β|)|q0(x, ξ)|, (3.1)

for all α, β ∈ Nd0, 〈(x, ξ)〉 ≥ R. Indeed, the inequality is true for α = β = 0. By

induction we assume the inequality (3.1) holds for all (α̃, β̃) < (α, β). Since
p(x, ξ)q0(x, ξ) = 1, we have

p(x, ξ)Dα
xD

β
ξ q0(x, ξ)

= −
∑

0 6=(α̃,β̃)≤(α,β)

α!

α̃!(α− α̃)!

β!

β̃!(β − β̃)!
Dα̃
xD

β̃
ξ p(x, ξ)D

α−α̃
x Dβ−β̃

ξ q0(x, ξ).

Therefore, by condition (ii) and by the inductive hypothesis, we obtain

|p(x, ξ)Dα
xD

β
ξ q0(x, ξ)| ≤

∑
06=(α̃,β̃)≤(α,β)

α!

α̃!(α− α̃)!

β!

β̃!(β − β̃)!
C |α̃+β̃|〈(x, ξ)〉−ρ|α̃+β̃|×

× e 1
nϕ
∗
σ(n|α̃|)e

1
nϕ
∗
σ(n|β̃|)|p(x, ξ)|C |α−α̃+β−β̃|

1 ×

× 〈(x, ξ)〉−ρ|α−α̃+β−β̃|e
1
nϕ
∗
σ(n|α−α̃|)e

1
nϕ
∗
σ(n|β−β̃|)|q0(x, ξ)|.

As α!
α̃!(α−α̃)!

β!

β̃!(β−β̃)!
≤ |α|!
|α̃|!|α−α̃|!

|β|!
|β̃|!|β−β̃|!

(Lemma 0.1), we get, by Lemma 3.1,

|α|!e
1
nϕ
∗
σ(n|α̃|)

|α̃|!
e

1
nϕ
∗
σ(n|α−α̃|)

|α− α̃|!
|β|!e

1
nϕ
∗
σ(n|β̃|)

|β̃|!
e

1
nϕ
∗
σ(n|β−β̃|)

|β − β̃|!
≤ e 1

nϕ
∗
σ(n|α|)e

1
nϕ
∗
σ(n|β|).

Thus,

|Dα
xD

β
ξ q0(x, ξ)|

≤ C |α+β|
1 〈(x, ξ)〉−ρ|α+β|e

1
nϕ
∗
σ(n|α|)e

1
nϕ
∗
σ(n|β|)|q0(x, ξ)|

∑
06=(α̃,β̃)≤(α,β)

( C
C1

)|α̃+β̃|
.
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We take C1 > 0 large enough so that

∞∑
k=1

(dC
C1

)k
< 1.

With this, we obtain, by Lemma 0.1(1),

∑
06=(α̃,β̃)≤(α,β)

( C
C1

)|α̃+β̃|
≤
|α+β|∑
k=1

∑
|η|=k

( C
C1

)k
≤
|α+β|∑
k=1

(dC
C1

)k
< 1,

which completes the proof of (3.1). Without losing generality, assume that
C < C1.

We define recursively, for j ∈ N,

qj(x, ξ) := −q0(x, ξ)
∑

0<|γ|≤j

1

γ!
(∂γξ qj−|γ|(x, ξ))(D

γ
xp(x, ξ)).

We claim that there exist constants C2, C3 > 0 with C1 < C2 < C3 such that

|Dα
xD

β
ξ qj(x, ξ)| ≤ C

|α+β|
2 Cj

3〈(x, ξ)〉−ρ(|α+β|+2j)e
1
nϕ
∗
σ(n(|α+β|+2j))e|m|ω(x,ξ), (3.2)

for all α, β ∈ Nd0, 〈(x, ξ)〉 ≥ R. We proceed by induction on j ∈ N0. If j = 0,
then formula (3.1) implies formula (3.2) since |q0(x, ξ)| ≤ (1/c)e|m|ω(x,ξ) for
〈(x, ξ)〉 ≥ R (by condition (i)). Now, fix j ∈ N. By induction, we assume
that (3.2) holds for all 0 ≤ ` < j for some constants C2, C3 > 0 large enough
satisfying C3 > C2 > C1 to be determined. The derivatives of qj(x, ξ) are
estimated by

|Dα
xD

β
ξ qj(x, ξ)| ≤

∑
α1+α2+α3=α
β1+β2+β3=β

α!

α1!α2!α3!

β!

β1!β2!β3!
|Dα1

x D
β1

ξ q0(x, ξ)|×

×
∑

0<|γ|≤j

1

γ!
|Dα2

x D
β2+γ
ξ qj−|γ|(x, ξ)||Dα3+γ

x Dβ3

ξ p(x, ξ)|.
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By (3.1), (3.2), and condition (ii), we have

|Dα
xD

β
ξ qj(x, ξ)|

≤
∑

α1+α2+α3=α
β1+β2+β3=β

α!

α1!α2!α3!

β!

β1!β2!β3!
C
|α1+β1|
1 〈(x, ξ)〉−ρ|α1+β1|e

1
nϕ
∗
σ(n|α1|)×

× e 1
nϕ
∗
σ(n|β1|)|q0(x, ξ)|

∑
0<|γ|≤j

1

γ!
C
|α2+β2+γ|
2 C

j−|γ|
3 ×

× 〈(x, ξ)〉−ρ(|α2+β2+γ|+2(j−|γ|))e
1
nϕ
∗
σ(n(|α2+β2+γ|+2(j−|γ|)))e|m|ω(x,ξ)×

× C |α3+γ+β3|〈(x, ξ)〉−ρ|α3+γ+β3|e
1
nϕ
∗
σ(n|α3+γ|)e

1
nϕ
∗
σ(n|β3|)|p(x, ξ)|

= 〈(x, ξ)〉−ρ(|α+β|+2j)e|m|ω(x,ξ)
∑

α1+α2+α3=α
β1+β2+β3=β

α!

α1!α2!α3!

β!

β1!β2!β3!
C
|α1+β1|
1 ×

× e 1
nϕ
∗
σ(n|α1|)e

1
nϕ
∗
σ(n|β1|)

∑
0<|γ|≤j

1

γ!
C
|α2+β2+γ|
2 C

j−|γ|
3 ×

× e 1
nϕ
∗
σ(n(|α2+β2|+2j−|γ|))C |α3+γ+β3|e

1
nϕ
∗
σ(n|α3+γ|)e

1
nϕ
∗
σ(n|β3|).

(3.3)

We multiply and divide on the right-hand side of (3.3) by

(|α2 + β2|+ 2j − |γ|)!|α3 + γ|!|β3|!

Then, as
α!

α1!α2!α3!

β!

β1!β2!β3!
≤ |α|!
|α1|!|α2|!|α3|!

|β|!
|β1|!|β2|!|β3|!

,

we have, by Lemma 3.1,

e
1
nϕ
∗
σ(n|α1|)

|α1|!
e

1
nϕ
∗
σ(n|β1|)

|β1|!
e

1
nϕ
∗
σ(n(|α2+β2|+2j−|γ|))

(|α2 + β2|+ 2j − |γ|)!
e

1
nϕ
∗
σ(n|α3+γ|)

|α3 + γ|!
e

1
nϕ
∗
σ(n|β3|)

|β3|!

≤ 1

(|α+ β|+ 2j)!
e

1
nϕ
∗
σ(n(|α+β|+2j)).

We check that

|α|!
|α2|!|α3|!

|β|!
|β2|!|β3|!

|α3 + γ|!|β3|!
(|α2 + β2|+ 2j − |γ|)!

(|α+ β|+ 2j)!
≤ 2|α1+α3|2|β1+β3|. (3.4)
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Chapter 3. Parametrices

Indeed, we multiply and divide by (|α1 +α3|+ |β1 +β3|+ |γ|)! on the left-hand
side of (3.4), which is therefore estimated by

|α|!
|α2|!|α3|!

|β|!
|β2|!|β3|!

|α3 + γ|!|β3|!
(|α1 + α3|+ |β1 + β3|+ |γ|)!

1( |α+β|+2j
|α2+β2|+2j−|γ|

)
≤ |α|!
|α2|!|α3|!

|β|!
|β2|!|β3|!

1

|α1|!|β1|!
1( |α+β|+2j

|α2+β2|+2j−|γ|

) .
As we have, for α = α1 + α2 + α3,

|α|!
|α1|!|α2|!|α3|!

=
|α1 + α3|!
|α1|!|α3|!

(
|α|
|α2|

)
≤ 2|α1+α3|

(
|α|
|α2|

)
,

(and similarly for β = β1 +β2 +β3), we deduce formula (3.4) by an application
of Lemma 0.1(5):(

|α|
|α2|

)(
|β|
|β2|

)
≤
(
|α+ β|
|α2 + β2|

)
≤
(

|α+ β|+ 2j

|α2 + β2|+ 2j − |γ|

)
.

We then have from (3.3),

|Dα
xD

β
ξ qj(x, ξ)| ≤ 〈(x, ξ)〉−ρ(|α+β|+2j)e

1
nϕ
∗
σ(n(|α+β|+2j))e|m|ω(x,ξ)×

×
∑

α1+α2+α3=α
β1+β2+β3=β

2|α1+α3|2|β1+β3|C
|α1+β1|
1 C

|α2+β2|
2 ×

× Cj
3C
|α3+β3|

∑
0<|γ|≤j

1

γ!
C
|γ|
2 C

−|γ|
3 C |γ|.

Since C < C1, we have

C
|α+β|
2 Cj

3

∑
α1+α2+α3=α
β1+β2+β3=β

(2C1

C2

)|α1+β1|(2C

C2

)|α3+β3|

≤ C |α+β|
2 Cj

3

∑
α1+α2+α3=α
β1+β2+β3=β

(2C1

C2

)|α1+α3+β1+β3|
≤ C |α+β|

2 Cj
3

|α+β|∑
k=0

∑
|η|=k

(2C1

C2

)k
.

Thus, we take, according to Lemma 0.1(1), C2 > 0 large enough so that

∞∑
k=0

(2dC1

C2

)k
< 2.
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3.1 Global regularity

Now, the remaining sum is estimated, using Lemma 0.1, by

∑
0<|γ|≤j

1

γ!

(CC2

C3

)|γ|
≤

j∑
k=1

dk

k!

(CC2

C3

)k ∑
|γ|=k

1 ≤
j∑

k=1

(d2)k

k!

(CC2

C3

)k
.

Hence, taking C3 > 0 large enough so that

∞∑
k=1

1

k!

(d2CC2

C3

)k
< 1/2,

we prove (3.2). By Lemma 0.10(1), for all λ > 0 there exists Cλ > 0 such that
for each j ∈ N0,

|Dα
xD

β
ξ qj(x, ξ)| ≤ CλC

|α+β|
2 Cj

3〈(x, ξ)〉−ρ(|α+β|+2j)eλρϕ
∗
ω

(
|α+β|+2j

λ

)
e|m|ω(x,ξ)

for all α, β ∈ Nd0, 〈(x, ξ)〉 ≥ R, and the estimate (2.1) in Definition 2.1 hence
follows.

We extend qj to the whole R2d for all j ∈ N0 in the following way: we take
φ ∈ D(σ)(R2d), supported in {(x, ξ) ∈ R2d : 〈(x, ξ)〉 ≤ 2R} and φ ≡ 1 in
{(x, ξ) ∈ R2d : 〈(x, ξ)〉 ≤ R}. Hence for all j ∈ N0, q̃j := qj(1− φ) ∈ C∞(R2d)
satisfies that q̃j = qj in 〈(x, ξ)〉 > 2R and vanishes if 〈(x, ξ)〉 ≤ R. Since

1−φ ∈ GS0,ω
ρ , by Lemma 3.2, we have

∑
q̃j ∈ FGS|m|,ωρ . By abuse of notation

we write
∑
qj for the formal sum

∑
q̃j.

We show
∑
qj ◦ p ∼ 1. We denote

∑
rj =

∑
qj ◦ p as in Proposition 2.15 for

τ = 0. In fact, if j ∈ N, we have

qj(x, ξ)p(x, ξ) = −
∑

0<|γ|≤j

1

γ!
(∂γξ qj−|γ|(x, ξ))(D

γ
xp(x, ξ))

= −rj(x, ξ) + qj(x, ξ)p(x, ξ).

Hence rj(x, ξ) = 0 for all j ∈ N. Moreover, r0(x, ξ) = q0(x, ξ)p(x, ξ) = 1 if
〈(x, ξ)〉 ≥ 2R. Therefore

∑
qj ◦ p ∼ 1. Finally, by Theorem 2.6 there exists

q ∈ GS|m|,ωρ such that q ∼
∑
qj. So, by Proposition 2.17 we have q ◦ p ∼ 1 as

we wanted.

Corollary 3.4. Let ω and σ be as in Theorem 3.3. If p satisfies the hypotheses
in Theorem 3.3, then its corresponding pseudodifferential operator P is ω-
regular.
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Chapter 3. Parametrices

Proof. By Theorem 3.3, there exists a pseudodifferential operator Q such that
Q ◦ P = I + R, where I is the identity operator, and R is an ω-regularizing
operator. Then, for every u ∈ S ′ω(Rd) we have

u = Q(Pu)−Ru.

Therefore, if Pu ∈ Sω(Rd), we have u ∈ Sω(Rd).

By Theorem 2.24, we observe that if P is ω-regular, then Pτ is ω-regular, for
all τ ∈ R.

Given two global symbols a and b, we write a#b for the Weyl product of
a and b, that is, the symbol corresponding to the composition of the Weyl
quantizations of a and b:

(a#b)w(x,D) = aw(x,D)bw(x,D).

We observe that the Weyl product of a and b has the following asymptotic
expansion (cf. Corollary 2.32):

(a#b)(x, ξ) ∼
∞∑
j=0

∑
|β+γ|=j

(−1)|β|

γ!β!
2−|β+γ|∂γξD

β
xa(x, ξ)∂βξD

γ
xb(x, ξ). (3.5)

Let p ∈ GS|m|,ωρ be as in Theorem 3.3. Then, there exists q ∈ GS|m|,ωρ such that
the associated pseudodifferential operators P and Q satisfy Q ◦ P = I + R,
where I is the identity operator, and R is an ω-regularizing operator. Hence,
by Theorem 2.24, we can write the pseudodifferential operator associated to
the amplitude p

(
x+y

2
, ξ
)
, Pw(x,D), by P+R′, for some ω-regularizing operator

R′, and also for q
(
x+y

2
, ξ
)
, namely Qw(x,D) = Q+R′′, for some ω-regularizing

operator R′′. Thus, using Proposition 1.18,

Qw(x,D) ◦ Pw(x,D) = (Q+R′′) ◦ (P +R′)

= Q ◦ P +R′′ ◦ P +Q ◦R′ +R′′ ◦R′ = I +R′′′,

for some ω-regularizing operator R′′′. Therefore, we have

Corollary 3.5. Let p ∈ GS|m|,ωρ satisfy the hypotheses in Theorem 3.3. Then,

there exists q ∈ GS|m|,ωρ such that q#p ∼ 1.
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3.2 Example

3.2 Example

Now, we construct a global symbol p(x, ξ) with prescribed exponential growth
in all the variables satisfying the conditions in Theorem 3.3 for Gevrey weights
ω(t) = ta, 0 < a < 1. It is inspired by [3, Capitolo 4].

We start by considering

f(t) = et
b

, 0 ≤ b < 1/2, t ≥ 1. (3.6)

First, we show that, for all n ∈ N,

f (n)(t) =
(
a0,nt

nb−n + a1,nt
(n−1)b−n + a2,nt

(n−2)b−n + · · ·+ an−1,nt
b−n
)
et
b

=
a0,n + a1,nt

−b + a2,nt
−2b + · · ·+ an−1,nt

−(n−1)b

tn(1−b) et
b

,

where

a0,n = bn, n ≥ 1;

ak,n = ak,n−1b+ ak−1,n−1

(
(n− k)b− (n− 1)

)
, 1 ≤ k ≤ n− 2, n ≥ 3;

an−1,n = b(b− 1)(b− 2) · · · (b− n+ 1), n ≥ 2,

and
|ak,n| ≤ (b+ 1)nnk, 0 ≤ k ≤ n− 1. (3.7)

It is clear that if b = 0, then f(t) = e. Therefore, its derivatives are always
zero, hence we consider b > 0. We proceed by induction on n ∈ N. If n = 1,
then f ′(t) = btb−1et

b

= a0,1t
b−1et

b

, and the result is clearly true. If we assume
that f fulfils the statement for n ∈ N, then we have that f (n+1)(t) = (f (n))′(t)
is equal to(
a0,nt

nb−n + a1,nt
(n−1)b−n + a2,nt

(n−2)b−n + · · ·+ an−1,nt
b−n
)
et
b

btb−1+

+
(
a0,n(nb− n)tnb−(n+1) + a1,n((n− 1)b− n)t(n−1)b−(n+1)+

+ a2,n((n− 2)b− n)t(n−2)b−(n+1) + · · ·+ an−1,n(b− n)tb−(n+1)
)
et
b

=
(
a0,nbt

(n+1)b−(n+1) +
(
a1,nb+ a0,n(nb− n)

)
tnb−(n+1)+

+
(
a2,nb+ a1,n((n− 1)b− n)

)
t(n−1)b−(n+1) + · · ·+ an−1,n(b− n)tb−(n+1)

)
et
b

.
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Chapter 3. Parametrices

We write

a0,n+1 := a0,nb = bnb = bn+1,

ak,n+1 := ak,nb+ ak−1,n((n+ 1− k)b− n), 1 ≤ k ≤ n− 1,

an,n+1 := an−1,n(b− n) = b(b− 1) · · · (b− n+ 1)(b− n).

Now, we estimate |ak,n+1|, 0 ≤ k ≤ n. If k = 0, formula (3.7) is true by
definition of a0,n+1. For 1 ≤ k ≤ n− 1, since b < 1/2, we have∣∣n+ 1− k

n
b− 1

∣∣ ≤ 1.

Then, using the induction hypothesis, we have

|ak,n+1| ≤ |ak,n|b+ |ak−1,n||(n+ 1− k)b− n|
≤ (b+ 1)nnkb+ (b+ 1)nnk−1|(n+ 1− k)b− n|

= (b+ 1)nnk
(
b+

∣∣n+ 1− k
n

b− 1
∣∣) ≤ (b+ 1)n+1(n+ 1)k.

Finally, if k = n, as 0 < b < 1/2, we obtain

|an,n+1| = |b||b− 1||b− 2| · · · |b− n+ 1|
= b(1− b)(2− b) · · · (n− 1− b) ≤ b · 1 · 2 · · · · (n− 1) = (n− 1)!b.

It is straightforward to check by induction that, for all n ∈ N,

(n− 1)!b ≤ (b+ 1)nnn−1.

Indeed, if n = 1, the formula yields b ≤ b+ 1. If n > 1, then

n!b = n(n− 1)!b ≤ (b+ 1)nnn ≤ (b+ 1)n+1(n+ 1)n.

This shows the estimates in (3.7).

Now, let

g(t) = emt
b

, 0 ≤ b < 1/2, m ∈ R, t ≥ 1. (3.8)

For all n ∈ N, we have that g(n)(t) is equal to

a0,nm
n + a1,nm

n−1t−b + a2,nm
n−2t−2b + · · ·+ an−1,nmt

−(n−1)b

tn(1−b) emt
b

. (3.9)

We also show

|g(n)(t)| ≤ (1 + |m|)n ((b+ 1)e)nn!

tn(1−b) e|m|t
b

. (3.10)
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Indeed, for b = 0, the function g(t) is reduced to a constant, and this case is
excluded from the general case. Moreover, as g(t) = f(m1/bt), formula (3.9)
is satisfied. To check (3.10), from the estimates of the coefficients of the
derivatives for f , we have, for t ≥ 1,

|g(n)(t)| ≤
( |a0,n|(1 + |m|)n + |a1,n|(1 + |m|)n−1 + |a2,n|(1 + |m|)n−2

tn(1−b) + · · ·+

+
|an−1,n|(1 + |m|)

tn(1−b)

)
emt

b

≤ (1 + |m|)n |a0,n|+ |a1,n|+ |a2,n|+ · · ·+ |an−1,n|
tn(1−b) emt

b

≤ (1 + |m|)n (b+ 1)n(1 + n+ n2 + · · ·+ nn−1)

tn(1−b) emt
b

≤ (1 + |m|)n (b+ 1)nnn

tn(1−b) emt
b

.

Since nn ≤ enn! for every n ∈ N we obtain (3.10) for all n ∈ N, t ≥ 1 and
m ∈ R.

Now, writing the function g in (3.8) as

g(t) = emt
a/2

, 0 ≤ a < 1, m ∈ R, t ≥ 1,

and setting
u(z) = 〈z〉2 = 1 + |z|2, z ∈ R2d,

we define

p(z) := g(u(z)) = em〈z〉
a

, 0 ≤ a < 1, m ∈ R, z ∈ R2d. (3.11)

We investigate the behaviour of its derivatives. We again omit the case a = 0,
because it is trivial.

We use Faà di Bruno formula for several variables (see for example [52, Page
234]):

Dαp(z) =
∑

0≤k≤|α|

g(k)(u(z))α!
∑
∗

∏
|β|>0

1

cβ!

(Dβu(z)

β!

)cβ
, (3.12)

for all α ∈ N2d
0 and z ∈ R2d, where the sum

∑
∗ runs over all cβ ∈ N0 such

that
∑
|β|>0 cβ = k and

∑
|β|>0 βcβ = α. The derivatives of u are always zero,

except when β = ej or β = 2ej, where ej ∈ N2d
0 is the canonical basis for

1 ≤ j ≤ 2d. For these cases, we have

Deju(z) = 2zj; D2eju(z) = 2, z = (z1, . . . , z2d) ∈ R2d, j = 1, . . . , 2d.
(3.13)
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Therefore, we obtain

∏
|β|>0

1

cβ!

∣∣∣Dβu(z)

β!

∣∣∣cβ =
2d∏
j=1

1

cej !

1

c2ej !
|2zj|cej .

Moreover, we have

k =
∑
|β|>0

cβ =
2d∑
j=1

(cej + c2ej ) ∈ N0;

α = (α1, . . . , α2d) =
∑
|β|>0

βcβ = (ce1 + 2c2e1 , . . . , ce2d + 2c2e2d) ∈ N2d
0 .

Thus,
∑2d

j=1 cej = 2k − |α| ≤ |α|, and therefore

2d∏
j=1

|2zj|cej ≤ (2〈z〉)2k−|α| ≤ 2|α|〈z〉2k−|α|. (3.14)

Then, by (3.10), we obtain, from (3.12),

|Dαp(z)| ≤ 2|α|
∑

0≤k≤|α|

(1 + |m|)k ((a/2 + 1)e)kk!

〈z〉2k(1−a/2)
em〈z〉

a

× α!〈z〉2k−|α|
∑
∗

2d∏
j=1

1

cej !

1

c2ej !

≤ 2|α|(1 + |m|)|α|((a/2 + 1)e)|α|α!〈z〉−(1−a)|α|em〈z〉
a

×

×
∑

0≤k≤|α|

k!
∑
∗

2d∏
j=1

1

cej !

1

c2ej !
.

Finally we have, by Lemma 0.1(4),

∑
∗

k!
2d∏
j=1

1

cej !

1

c2ej !
=

∑
ce1 ,...ce2d ,c2e1 ,...,c2e2d∈N0:∑2d

l=1(cel+c2el )=k,
cej+2c2ej=αj , 1≤j≤2d

k!

ce1 ! · · · ce2d !c2e1 ! · · · c2e2d !

≤
∑
cj∈N0:∑2d

l=1(cel+c2el )=k

k!

ce1 ! · · · ce2d !c2e1 ! · · · c2e2d !
= (4d)k ≤ (4d)|α|.
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Since
∑

0≤k≤|α| 1 ≤ |α|+ 1 ≤ 2|α|, we obtain that there exists

C = 16d(1 + |m|)(a/2 + 1)e > 0

such that for all α ∈ N2d
0 and z ∈ R2d,

|Dαp(z)| ≤ C |α|α!〈z〉−(1−a)|α||p(z)|. (3.15)

Now, we want to show that p, similarly as in (3.11), that is,

p(x, ξ) := e|m|〈(x,ξ)〉
a

, 0 < a < 1, x, ξ ∈ Rd,

is a global symbol in GS|m|,ωρ for ω(t) = ta and ρ := 1− a, and it satisfies the
sufficient conditions imposed in Theorem 3.3. Indeed, it is trivial to check that
condition (i) of Theorem 3.3 holds. On the other hand, by (3.15), we have

|Dα
xD

β
ξ p(x, ξ)| ≤ C |α+β|α!β!〈(x, ξ)〉−ρ|α+β|e|m|ω(x,ξ), α, β ∈ Nd0, x, ξ ∈ Rd.

Take σ as in Theorem 3.3, and then use (0.12) to get that, for some D > 0,

α!β! ≤ Deϕ
∗
σ(|α|)eϕ

∗
σ(|β|).

This shows that condition (ii) is verified. To show that p is a global symbol

in GS|m|,ωρ it is enough to use Lemma 0.9.

We observe that to use Lemma 0.9, we need to assume that, as a = 1 − ρ,
ω(t1/ρ) = t(1−ρ)/ρ = o(t) as t→∞. So,

1− ρ
ρ

< 1.

Hence, 1/2 < ρ ≤ 1.

3.3 Global hypoellipticity

Definition 3.6. We say that p ∈ GSm,ωρ is an ω-hypoelliptic symbol in the
class HGSm,m0;ω

ρ if there exist R ≥ 1 and a Gevrey weight function σ (i.e.

σ(t) = ta for some 0 < a < 1) satisfying ω(t1/ρ) = o(σ(t)) as t→∞ such that

(i) There exist c > 0 such that cem0ω(x,ξ) ≤ |p(x, ξ)| for 〈(x, ξ)〉 ≥ R.
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(ii) There exist C > 0, n ∈ N such that

|Dα
xD

β
ξ p(x, ξ)| ≤ C |α+β|〈(x, ξ)〉−ρ|α+β|e

1
nϕ
∗
σ(n|α|)e

1
nϕ
∗
σ(n|β|)|p(x, ξ)|,

for 〈(x, ξ)〉 ≥ R, α, β ∈ Nd0.

It follows that if p ∈ HGSm,m0;ω
ρ , then there exist c, C > 0 such that

cem0ω(x,ξ) ≤ |p(x, ξ)| ≤ Cemω(x,ξ), for |(x, ξ)| large enough. (3.16)

Therefore, for such p, with m0 ≥ −|m|, we obtain the thesis in Theorem 3.3.
Then, any pseudodifferential operator defined by an ω-hypoelliptic symbol as
in Definition 3.6 (with m0 ≥ −|m|) is also ω-regular in the sense of Theo-
rem 3.3. On the other hand, the twisted Laplacian in R2

L =
(
Dx −

1

2
y
)2

+
(
Dy −

1

2
x
)2

is an example of an ω-regular operator for every weight function ω [13, Exam-
ple 5.4], but not ω-hypoelliptic [13, Remark 5.5] since the symbol (ξ− y/2)2 +
(η+x/2)2 of L fails to satisfy condition (i) of Definition 3.6, as it vanishes for
ξ = y/2, η = −x/2.

In Theorem 3.14 below we show that Definition 3.6 is independent on the quan-
tization τ for the case m0 = m. Hence, we extend [9, Proposition 8.4] showing
that ω-hypoelliptic symbol classes are invariant by a change of quantization.

In Example 2.12, we have seen that the formal sum considered may change
the order m given by the amplitude a ∈ GAm,ω

ρ . For this reason, here we
develop a symbolic calculus for global mixed classes very similar to the one in
Section 2.1, which keeps this order. The symbols are defined as:

Definition 3.7. We say that p ∈ G̃S
m,ω

ρ if p ∈ C∞(R2d) and there exists a

Gevrey weight function σ satisfying ω(t1/ρ) = o(σ(t)) as t→∞ such that for
all λ > 0 there is Cλ > 0 with

|Dα
xD

β
ξ p(x, ξ)| ≤ Cλ〈(x, ξ)〉−ρ|α+β|eλϕ

∗
σ

(
|α+β|
λ

)
emω(x,ξ), α, β ∈ Nd0, x, ξ ∈ Rd.

We remark that Definitions 3.6 and 3.7 are independent of the weight σ, since if
σ1 and σ2 are Gevrey weight functions satisfying ω(t1/ρ) = o(σj(t)) as t→∞,
j = 1, 2, the Gevrey weight function

σ(t) := max{σ1(t), σ2(t)}, for t > 1
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3.3 Global hypoellipticity

(hence ϕ∗σ ≥ max{ϕ∗σ1
, ϕ∗σ2
}) satisfies ω(t1/ρ) = o(σ(t)) as t → ∞. On the

other hand, by Lemma 0.10(1) it follows that G̃S
m,ω

ρ ⊆ GSm,ωρ .

Lemma 3.8. Let p ∈ G̃S
m,ω

ρ . We have p ∈ HGSm,m;ω
ρ if and only if there exist

R ≥ 1 and c > 0 such that |p(x, ξ)| ≥ cemω(x,ξ) for 〈(x, ξ)〉 ≥ R.

Proof. It is enough to see that if p satisfies that estimate from below, then

p ∈ HGSm,m;ω
ρ . Since p ∈ G̃S

m,ω

ρ there exists C > 0 such that, for some

Gevrey weight σ with ω(t1/ρ) = o(σ(t)) as t→∞,

|Dα
xD

β
ξ p(x, ξ)| ≤ C〈(x, ξ)〉−ρ|α+β|eϕ

∗
σ(|α+β|)emω(x,ξ), (3.17)

for all α, β ∈ Nd0 and x, ξ ∈ Rd, which in particular yields

cemω(x,ξ) ≤ |p(x, ξ)| ≤ Cemω(x,ξ), 〈(x, ξ)〉 ≥ R. (3.18)

This shows condition (i) of Definition 3.6. To see that condition (ii) of Defi-
nition 3.6 holds, we have from (3.17), using (3.18) and (0.11),

|Dα
xD

β
ξ p(x, ξ)| ≤

C

c
〈(x, ξ)〉−ρ|α+β|e

1
2ϕ
∗
σ(2|α|)e

1
2ϕ
∗
σ(2|β|)|p(x, ξ)|,

for all α, β ∈ Nd0, 〈(x, ξ)〉 ≥ R. Since p ∈ G̃S
m,ω

ρ ⊆ GSm,ωρ we get p ∈ HGSm,m;ω
ρ .

For the corresponding definitions of amplitude and formal sums, we consider
similar mixed conditions.

Definition 3.9. An amplitude a(x, y, ξ) ∈ C∞(R3d) belongs to G̃A
m,ω

ρ if there

exists a Gevrey weight function σ satisfying ω(t1/ρ) = o(σ(t)) as t → ∞ such
that for all λ > 0 there is Cλ > 0 with

|Dα
xD

γ
yD

β
ξ a(x, y, ξ)| ≤ Cλ

( 〈x− y〉
〈(x, y, ξ)〉

)ρ|α+γ+β|
eλϕ

∗
σ

(
|α+γ+β|

λ

)
emω(x,ξ),

for all α, γ, β ∈ Nd0, and x, y, ξ ∈ Rd.

Definition 3.10. A formal sum
∑
aj is in F̃GS

m,ω

ρ if aj ∈ C∞(R2d) and there

exist R ≥ 1 and a Gevrey weight function σ satisfying ω(t1/ρ) = o(σ(t)) as
t→∞ such that for all n ∈ N there exists Cn > 0 such that

|Dα
xD

β
ξ aj(x, ξ)| ≤ Cn〈(x, ξ)〉−ρ(|α+β|+j)enϕ

∗
σ

(
|α+β|+j

n

)
emω(x,ξ),

for each j ∈ N0, α, β ∈ Nd0, log
( 〈(x,ξ)〉

R

)
≥ n

j
ϕ∗ω
(
j
n

)
.
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Definition 3.11. We say that
∑
aj and

∑
bj in F̃GS

m,ω

ρ are equivalent, de-
noted by

∑
aj ∼

∑
bj, if there exist R ≥ 1 and a Gevrey weight function σ

satisfying ω(t1/ρ) = o(σ(t)) as t→∞ such that for all n ∈ N there are Cn > 0
and Nn ∈ N such that∣∣Dα

xD
β
ξ

∑
j<N

(aj − bj)
∣∣ ≤ Cn〈(x, ξ)〉−ρ(|α+β|+N)enϕ

∗
σ

(
|α+β|+N

n

)
emω(x,ξ),

for all N ≥ Nn, α, β ∈ Nd0, log
( 〈(x,ξ)〉

R

)
≥ n

N
ϕ∗ω
(
N
n

)
.

Again by Lemma 0.10(1), we have that G̃A
m,ω

ρ ⊆ GAm,ω
ρ if m ≥ 0, and

F̃GS
m,ω

ρ ⊆ FGSm,ωρ for m ∈ R. These new definitions permit to keep the

same order m ≥ 0 for some results in Chapter 2. For instance, if a ∈ G̃A
m,ω

ρ ,

then the formal sum in Example 2.12 belongs to F̃GS
m,ω

ρ , m ≥ 0.

Furthermore, it can be shown that the function Ψj defined in (2.15) (see

also (2.4)) belongs to G̃S
0,ω

ρ . Hence, all the symbolic calculus studied in Sec-
tion 2.1 can be reproduced in the same way, with the difference that we now
preserve the order m. In fact, we have

Theorem 3.12. Let a(x, y, ξ) be an amplitude in G̃A
m,ω

ρ with m ≥ 0, and let
A be its associated pseudodifferential operator A. Then, for any τ ∈ R, we can
write A as

A = P +R,

where R is an ω-regularizing operator and P is the operator given by

Pu(x) =

∫∫
ei(x−y)·ξp((1− τ)x+ τy, ξ)u(y)dydξ, u ∈ Sω(Rd),

being p ∈ G̃S
m,ω

ρ . Moreover,

p(x, ξ) ∼
∞∑
j=0

∑
|β+γ|=j

1

β!γ!
τ |β|(1− τ)|γ|∂β+γ

ξ (−Dx)
βDγ

y a(x, y, ξ)|y=x .

In this case, we can also proceed as in [64] (see after Theorem 2.24), to obtain
pτ such that its associated pseudodifferential operator Pτ is equal to A. It is
called the τ -symbol of the pseudodifferential operator associated to the ampli-

tude a ∈ G̃A
m,ω

ρ . We also obtain the relation between two given τ -symbols (cf.
Theorem 2.27).

130



3.3 Global hypoellipticity

Theorem 3.13. If aτ1 , aτ2 ∈ G̃S
m,ω

ρ are the τ1-symbol and the τ2-symbol of a

pseudodifferential operator A, then, in F̃GS
m,ω

ρ ,

aτ2(x, ξ) ∼
∞∑
j=0

∑
|α|=j

1

α!
(τ1 − τ2)|α|∂αξD

α
xaτ1(x, ξ).

Now, we show that if a global symbol with mixed conditions satisfies (3.16)
for some quantization, then so any quantization.

Theorem 3.14. Let aτ1 ∈ G̃S
m,ω

ρ for some τ1 ∈ R. If aτ1 ∈ HGSm,m;ω
ρ , then

aτ2 ∈ HGSm,m;ω
ρ for all τ2 ∈ R.

Proof. By Theorem 3.12 we have that aτ2 ∈ G̃S
m,ω

ρ . Then, by Lemma 3.8, it
is enough to find R ≥ 1 and c > 0 such that

|aτ2(x, ξ)| ≥ cemω(x,ξ), for 〈(x, ξ)〉 ≥ R. (3.19)

From Lemma 3.8, we obtain by assumption that there are R1 ≥ 1 and D1 > 0
such that

|aτ1(x, ξ)| ≥ D1e
mω(x,ξ), for 〈(x, ξ)〉 ≥ R1. (3.20)

From Theorem 3.13 we have (see Definition 3.11; by simplicity we assume
Nn = 1, n ∈ N) that there exist R2 ≥ 1 and a Gevrey weight function σ1

satisfying ω(t1/ρ) = o(σ1(t)) for t→∞ such that for some C1 > 0, N1 ∈ N,∣∣∣aτ2(x, ξ)−∑
j<N

∑
|α|=j

1

α!
(τ1−τ2)|α|∂αξD

α
xaτ1(x, ξ)

∣∣∣ ≤ C1〈(x, ξ)〉−ρNeϕ
∗
σ1

(N)emω(x,ξ),

for all N ≥ N1 and log
( 〈(x,ξ)〉

R2

)
≥ 1

N
ϕ∗ω(N). From Lemma 0.10(1), there exists

A1 > 0 so that ϕ∗σ1
(N) ≤ A1 + ρϕ∗ω(N) for all N ∈ N. Therefore, for some

R3 ≥ R2 determined later,∣∣∣aτ2(x, ξ)−∑
j<N

∑
|α|=j

1

α!
(τ1−τ2)|α|∂αξD

α
xaτ1(x, ξ)

∣∣∣ ≤ C1e
A1R−ρN3 emω(x,ξ), (3.21)

for all N ≥ N1 and log
( 〈(x,ξ)〉

R3

)
≥ 1

N
ϕ∗ω(N).
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Now, we fix N := N1 ∈ N. We have

|aτ2(x, ξ)| ≥
∣∣∣N−1∑
j=0

∑
|α|=j

1

α!
(τ1 − τ2)|α|∂αξD

α
xaτ1(x, ξ)

∣∣∣−
−
∣∣∣aτ2(x, ξ)−∑

j<N

∑
|α|=j

1

α!
(τ1 − τ2)|α|∂αξD

α
xaτ1(x, ξ)

∣∣∣.
We show that∣∣∣N−1∑

j=0

∑
|α|=j

1

α!
(τ1 − τ2)|α|∂αξD

α
xaτ1(x, ξ)

∣∣∣ ≥ D1

2
emω(x,ξ), (3.22)

for 〈(x, ξ)〉 large enough. For N = 1, formula (3.22) holds by (3.20) for
〈(x, ξ)〉 ≥ R1. Hence, we assume N > 1. We first estimate∣∣∣N−1∑

j=1

∑
|α|=j

1

α!
(τ1 − τ2)|α|∂αξD

α
xaτ1(x, ξ)

∣∣∣.
As aτ1(x, ξ) ∈ G̃S

m,ω

ρ , there exists a Gevrey weight function σ2 satisfying

ω(t1/ρ) = o(σ2(t)) for t→∞ such that, for some C2 > 0 we have

|Dα
xD

α
ξ aτ1(x, ξ)| ≤ C2〈(x, ξ)〉−ρ(2|α|)eϕ

∗
σ2

(2|α|)emω(x,ξ)

≤ C2〈(x, ξ)〉−ρeϕ
∗
σ2

(2(N−1))emω(x,ξ),

for all x, ξ ∈ Rd and 1 ≤ |α| ≤ N − 1. Again by Lemma 0.10(1), there exists
A2 > 0 such that ϕ∗σ2

(2(N − 1)) ≤ A2 + ρϕ∗ω(2(N − 1)). For R4 ≥ 1 to be
determined, satisfying

log
(〈(x, ξ)〉

R4

)
≥ ϕ∗ω(2(N − 1)),

we have

|Dα
xD

α
ξ aτ1(x, ξ)| ≤ C2e

A2〈(x, ξ)〉−ρeρϕ
∗
ω(2(N−1))emω(x,ξ)

≤ C2e
A2(R4)−ρemω(x,ξ),

for all 〈(x, ξ)〉 ≥ R4e
ϕ∗ω(2(N−1)) and all 1 ≤ |α| ≤ N − 1. On the other hand,

by Lemma 0.1 we get

N−1∑
j=1

∑
|α|=j

|τ1 − τ2||α|

α!
≤

N−1∑
j=1

(d|τ1 − τ2|)j

j!

∑
|α|=j

1 ≤ ed
2|τ1−τ2|,
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and then we obtain∣∣∣N−1∑
j=1

∑
|α|=j

1

α!
(τ1 − τ2)|α|∂αξD

α
xaτ1(x, ξ)

∣∣∣ ≤ C2e
A2(R4)−ρed

2|τ1−τ2|emω(x,ξ), (3.23)

for all 〈(x, ξ)〉 ≥ R4e
ϕ∗ω(2(N−1)). Hence, we take R4 ≥ 1 such that

(R4)ρ ≥ 2

D1

C2e
A2ed

2|τ1−τ2|.

From formulas (3.23) and (3.20) we then obtain

∣∣∣N−1∑
j=0

∑
|α|=j

1

α!
(τ1 − τ2)|α|∂αξD

α
xaτ1(x, ξ)

∣∣∣
≥ D1e

mω(x,ξ) − C2e
A2(R4)−ρed

2|τ1−τ2|emω(x,ξ) ≥ D1

2
emω(x,ξ),

and we show (3.22) for 〈(x, ξ)〉 ≥ max{R1, R4e
ϕ∗ω(2(N−1))}. Finally, put R3 ≥ 1

such that

RρN
3 ≥ 4

D1

C1e
A1 .

Thus, for
R := max{R1, R4e

ϕ∗ω(2(N−1)), R3e
1
N ϕ
∗
ω(N)}

we obtain by (3.22) and (3.21)

|aτ2(x, ξ)| ≥
D1

2
emω(x,ξ) − C1e

A1R−ρN3 emω(x,ξ) ≥ D1

4
emω(x,ξ),

for 〈(x, ξ)〉 ≥ R. Hence, we get, for c := D1/4 > 0, the inequality in (3.19)
and the proof is complete.
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Chapter 4

The Weyl wave front set

In the theory of partial differential equations, the wave front set locates the
singularities of a distribution and, at the same time, describes the directions
of the high frequencies (in terms of the Fourier transform) responsible for
those singularities. In the classical context of Schwartz distributions theory,
it was originally defined by Hörmander [44]. There is a lot of literature on
wave front sets for the study of the regularity of linear partial differential
operators in spaces of distributions or ultradistributions in a local sense; see
for instance [1, 2, 10, 12, 34, 60, 61] and the references therein.

In global classes of functions and distributions (like the Schwartz class S(Rd)
and its dual) the concept of singular support does not make sense, since we
require the information on the whole Rd. However, we can still define a global
wave front set to describe the micro-regularity of a distribution. In fact,
Hörmander [45] introduced two different types of global wave front set ad-
dressed to the study of quadratic hyperbolic operators: the C∞ wave front
set, in the Beurling setting, for temperate distributions u ∈ S ′(Rd) using Weyl
quantizations, and the analytic wave front set, in the Roumieu setting, for ul-
tradistributions of Gelfand-Shilov type. Unfortunately, these global versions
of wave front set have been almost ignored in the literature. Very recently,
Rodino and Wahlberg [61] recover the concept of C∞ wave front set of [45]
and show that it can be reformulated in terms of the short-time Fourier trans-
form. Moreover, in [61] the authors also show that the original wave front set
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Chapter 4. The Weyl wave front set

coincides with the Beurling version of the analytic wave front set introduced
by Hörmander. On the other hand, Nakamura [54] introduced the homoge-
neous wave front set for the study of propagation of micro-singularities for
Schrödinger equations, and it turns out to be equal to the wave front set [63].
Cappiello and Schulz [26] recovered the analytic wave front set of [45] and stud-
ied some cases not treated by Hörmander for Gelfand-Shilov ultradistributions
of Gevrey type.

In Boiti, Jornet, and Oliaro [14], the authors introduce the ultradifferentiable
version of the analytic wave front set found in [26, 39, 61] in the Beurling
setting for S ′ω(Rd)-ultradistributions and apply it to the study of the global
regularity of (pseudo)differential operators of infinite order (in [61] the authors
cannot treat operators of infinite order, since they consider symbols with poly-
nomial growth only). However, the question if the latter wave front set can
also be described in terms of Weyl quantizations, as in [45, 61], remained open
in the ultradifferentiable setting.

The purpose of this last chapter is twofold: on the one hand, to define the Weyl
wave front set, in accordance with the conditions in Theorem 3.3, and study
when it coincides with the continuous version of the wave front set defined
in [14] for the ultradifferentiable setting; on the other hand, to provide some
applications of this wave front set to the regularity of pseudodifferential oper-
ators of Chapter 1.

The chapter is organised as follows: In Section 4.1, we recover the definition
of wave front set of [14] (Definition 4.1) defined with the short-time Fourier
transform and extend the inclusion in [14, Theorem 4.13] to any differential
operator with variable coefficients for this wave front set. Later, we analyse
the kernel of some operators given by Weyl quantizations for symbols as in
Definition 1.1 to show that the wave front set of the action of the Weyl operator
on a distribution in S ′ω(Rd) is in the conic support of the corresponding symbol.
In Section 4.2 we introduce a new wave front set called the Weyl wave front
set, and see that it can be characterized in terms of symbols of order zero.
Then, we compare the wave front set given in Definition 4.1 with the Weyl
wave front set. It is crucial the inclusion mentioned above about the conic
support. We need also here to impose that our weight functions be smaller
than some Gevrey weight (see Remark 4.20). Unfortunately, we could not
circumvent this restriction, since we use similar techniques as in [61]. Finally,
in Section 4.3 we study the regularity of Weyl quantizations with respect to
the Weyl wave front set. For instance, for a suitable weight function ω, any
0 < ρ ≤ 1 and a symbol a(x, ξ) as in Definition 1.1, we are able to prove that,
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see Theorem 4.31,

WFωρ (aw(x,D)u) ⊂WFωρ (u) ∩ conesupp(a)

⊂WFωρ (u) ⊂WFωρ (aw(x,D)u) ∪ char(a),

for all u ∈ S ′ω(Rd), where aw(x,D)u is the action of the Weyl quantization
for the symbol a on u, conesupp(a) is the conic support of a(x, ξ) (see Defini-
tion 4.2), char(a) is the characteristic set of a(x, ξ) (the set of points which are
characteristic for a(x, ξ); see Definition 4.11), and WFωρ (u) is the Weyl wave
front set of u.

This chapter is based on the preprint [5].

4.1 The ω-wave front set

We first introduce the global wave front set defined in [14] for ultradistributions
in S ′ω(Rd), given in terms of the decay of the short-time Fourier transform, in
conical sets.

Definition 4.1. Let u ∈ S ′ω(Rd) and ψ ∈ Sω(Rd) \ {0}. We say that z0 ∈
R2d \ {0} is not in the ω-wave front set WF′ω(u) of u if there exists an open
conic set Γ ⊆ R2d \ {0}, z0 ∈ Γ, such that

sup
z∈Γ

eλω(z)|Vψu(z)| <∞, λ > 0.

The wave front set WF′ω(u) is a closed set in R2d \ {0}.

We recall the following definition from [61, Definition 2.1], introduced in [45].

Definition 4.2. Let u ∈ S ′ω(R2d). The conic support of u, conesupp (u), is the
set of all z ∈ R2d \ {0} such that every conic open set Γ ⊆ R2d \ {0} containing
z satisfies that

suppu ∩ Γ is not a compact set in R2d.

The conic support of u is also a closed set in R2d \ {0}.

An elementary result is

Lemma 4.3. We have

WF′ω(u) = WF′ω(u+ v), u ∈ S ′ω(Rd), v ∈ Sω(Rd).
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Proof. Fix 0 6= ψ ∈ Sω(Rd). Let 0 6= z0 /∈WF′ω(u). Then there exists an open
conic set Γ ⊆ R2d \ {0} containing z0 such that

sup
z∈Γ

eλω(z)|Vψu(z)| <∞, λ > 0.

Since v ∈ Sω(Rd), by Theorem 0.28 we obtain that for all λ > 0 there exists
Cλ > 0 such that

eλω(z)|Vψv(z)| ≤ Cλ, z ∈ R2d.

Therefore, as |Vψ(u+ v)(z)| ≤ |Vψu(z)|+ |Vψv(z)|, we have

sup
z∈Γ

eλω(z)|Vψ(u+ v)(z)| <∞, λ > 0.

Hence z0 /∈WF′ω(u+ v).

For the other inclusion, we have

WF′ω(u) = WF′ω(u+ v − v) ⊆WF′ω(u+ v).

In [14, Theorem 4.13], the authors show that a differential operator with poly-
nomial coefficients, namely, for some m ∈ N, an operator of the form

A(x,D) =
∑

|α+β|≤m

cαβx
αDβ

x ,

where cαβ ∈ C, satisfies

WF′ω(A(x,D)u) ⊆WF′ω(u), u ∈ S ′ω(Rd).

Here, we extend this inclusion for linear partial differential operators of the
form

P (x,D) =
∑
|γ|≤m

aγ(x)Dγ , (4.1)

for some m ∈ N, where aγ ∈ Sω(Rd). We recall that, in general, a function in
Sω(R2d) might not be a global symbol in the class GSm,ωρ for some 0 < ρ ≤ 1
and m ∈ R. Hence, (4.1) is not necessarily an operator with symbol in GSm,ωρ .
We have shown in Example 1.21(b) that for ω(t) = logs(1 + t), s ≥ 1, t ≥ 0,
the corresponding space Sω(R2d) equals

⋂
m∈R GSm,ωρ (see (1.22)).
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The ω-wave front set WF′ω(u) is independent of the window function ψ. We
need the following lemma, which is a refinement of [14, Proposition 3.2] for
bounded sets. Throughout this chapter, let S2d−1 denote the unit sphere in
R2d.

Lemma 4.4. Let u ∈ S ′ω(Rd), ψ ∈ Sω(Rd) \ {0}, and z0 ∈ R2d \ {0}. If there
exists an open conic set Γ ⊆ R2d \ {0} containing z0 such that

sup
z∈Γ

eλω(z)|Vψu(z)| <∞, λ > 0,

then, for any bounded set B of Sω(Rd) \ {0} and for any open conic set Γ′ ⊆
R2d \ {0} containing z0 and such that Γ′ ∩ S2d−1 ⊆ Γ, we have

sup
φ∈B

sup
z∈Γ′

eλω(z)|Vφu(z)| <∞, λ > 0.

Proof. By Proposition 0.27, for any ψ, φ ∈ Sω(Rd) \ {0}, we have

|Vφu(z)| ≤ (2π)−d ‖ψ‖−2

L2(Rd) (|Vψu| ∗ |Vφψ|)(z), z ∈ R2d.

By Lemma 0.30,

|Vφψ(z′)| = |Vψφ(−z′)| = |Vψφ(−z′)|, z′ ∈ R2d.

Then,

(|Vψu| ∗ |Vφψ|)(z) =

∫
R2d

|Vψu(z − z′)||Vφψ(z′)|dz′

=

∫
R2d

|Vψu(z − z′)||Vψφ(−z′)|dz′.

For ε > 0, we denote for all z ∈ R2d,

I1(z) :=

∫
〈z′〉≤ε〈z〉

|Vψu(z − z′)||Vψφ(−z′)|dz′,

I2(z) :=

∫
〈z′〉>ε〈z〉

|Vψu(z − z′)||Vψφ(−z′)|dz′.

We take an open conic set Γ′ such that z0 ∈ Γ′ and Γ′ ∩ S2d−1 ⊆ Γ. Choose
ε > 0 sufficiently small (see, for instance, [14, (3.25)]) so that

z ∈ Γ′, |z| ≥ 1, 〈z′〉 ≤ ε〈z〉, then z − z′ ∈ Γ.
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For a bounded set B in Sω(Rd)\{0}, since Vψ : Sω(Rd)→ Sω(R2d) is continuous
(by Lemma 0.26), the set Vψ(B) is bounded in Sω(R2d). Thus for all µ > 0
there exists Cµ > 0 such that

sup
φ∈B
|Vψφ(−z′)|eµω(−z′) ≤ Cµ, z′ ∈ R2d.

To estimate I1, we use the estimate for |Vψu| in Γ as follows: for all λ > 0
there exists Cλ > 0 such that, using (0.1),

I1(z) ≤ Cλ
∫
〈z′〉≤ε〈z〉

e−λLω(z−z′)|Vψφ(−z′)|dz′

≤ CλeλLe−λω(z)

∫
R2d

|Vψφ(−z′)|eλLω(z′)dz′

= Cλe
λLe−λω(z)

∫
R2d

(
|Vψφ(−z′)|e(λL+1)ω(−z′))e−ω(z′)dz′

≤ C ′λe−λω(z),

for some constant C ′λ > 0, for all z ∈ Γ′, |z| ≥ 1, and all φ ∈ B. Note that∫
e−ω(z′)dz converges by property (γ) of the weight ω.

On the other hand, by Lemma 0.26, Vψu is continuous and there are constants
c, µ > 0 such that

|Vψu(z)| ≤ ceµω(z), z ∈ R2d.

Let q ∈ N0 be such that ε−1 < 2q. Then, for 〈z′〉 > ε〈z〉, as ω is increasing, we
get by condition (α) and (0.6),

ω(z) ≤ ω(ε−1〈z′〉) ≤ ω(2q〈z′〉) ≤ Lq+1ω(z′) + Lq+1 + · · ·+ L.

Then, we have

−Lq+1ω(z′) ≤ −ω(z) + (Lq+1 + · · ·+ L), for 〈z′〉 > ε〈z〉.

140



4.1 The ω-wave front set

Therefore, for all λ > 0 and all φ ∈ B, we have (again by (0.1))

I2(z) ≤ c
∫
〈z′〉>ε〈z〉

eµω(z−z′)|Vψφ(−z′)|dz′

≤ ceµLeµLω(z)

∫
〈z′〉>ε〈z〉

eµLω(−z′)|Vψφ(−z′)|dz′

= ceµLeµLω(z)

∫
〈z′〉>ε〈z〉

e−(λ+µL)Lq+1ω(z′)×

×
(
|Vψφ(−z′)|e((λ+µL)Lq+1+µL+1)ω(−z′))e−ω(z′)dz′

≤ ceµLe(λ+µL)(Lq+1+···+L)e−λω(z)×

×
∫
R2d

(
|Vψφ(−z′)|e((λ+µL)Lq+1+µL+1)ω(−z′))e−ω(z′)dz′.

Hence for all λ > 0 there exists C ′′λ > 0 such that

I2(z) ≤ C ′′λe−λω(z), z ∈ R2d.

This finishes the proof.

Theorem 4.5. If P (x,D) is as in (4.1), then

WF′ω(P (x,D)u) ⊆WF′ω(u), u ∈ S ′ω(Rd). (4.2)

Proof. Let 0 6= ψ ∈ Sω(Rd) be a window function. From the linearity of the
short-time Fourier transform, by Lemmas 0.32 and 0.29, we have

Vψ(P (x,D)u)(x, ξ) =
∑
|γ|≤m

Vψ(aγ ·Dγu)(x, ξ)

= (2π)−d
∑
|γ|≤m

(
̂aγ ·Dγu ∗M−xψ̂

)
(ξ)

= (2π)−2d
∑
|γ|≤m

((
âγ ∗ D̂γu

)
∗M−xψ̂

)
(ξ)

= (2π)−2d
∑
|γ|≤m

(
D̂γu ∗

(
âγ ∗M−xψ̂

))
(ξ) (4.3)
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for all (x, ξ) ∈ R2d. We see that for all t ∈ Rd,(
âγ ∗M−xψ̂

)
(t) =

∫
âγ(t− s)ei(−x)·sψ̂(s)ds

= ei(−x)·t
∫
eix·(t−s)âγ(t− s)ψ̂(s)ds

= M−x
(
Mxâγ ∗ ψ̂

)
(t).

Now, we define φx,γ ∈ Sω(Rd) \ {0} depending on x ∈ Rd and γ ∈ Nd0 with
|γ| ≤ m such that

φ̂x,γ := Mxâγ ∗ ψ̂. (4.4)

Then, by (4.3) and using Lemmas 0.32 and 0.33, we have

Vψ(P (x,D)u)(x, ξ) = (2π)−2d
∑
|γ|≤m

(
D̂γu ∗M−x

(
Mxâγ ∗ ψ̂

))
(ξ)

= (2π)−2d
∑
|γ|≤m

(
D̂γu ∗M−xφ̂x,γ

)
(ξ)

= (2π)−d
∑
|γ|≤m

Vφx,γ (Dγu)(x, ξ)

= (2π)−d
∑
|γ|≤m

∑
β≤γ

(
γ

β

)
ξγ−βVDβφx,γ (u)(x, ξ). (4.5)

We show that the set

B :=
{
Mxâγ ∗ ψ̂ : x ∈ Rd, γ ∈ Nd0 : |γ| ≤ m

}
(4.6)

is bounded in Sω(Rd). For all λ > 0, we have by (0.1) and the Young inequality,∣∣eλω(y)
(
Mxâγ ∗ ψ̂

)
(y)
∣∣ =

∣∣∣ ∫ eλω(y)Mxâγ(s)ψ̂(y − s)ds
∣∣∣

=
∣∣∣ ∫ eλω(y)eix·sâγ(s)ψ̂(y − s)ds

∣∣∣
≤ eλL

∫
eλLω(s)|âγ(s)|eλLω(y−s)|ψ̂(y − s)|ds

≤ eλL max
|γ|≤m

∥∥∥eλLω(·)âγ(·)
∥∥∥
L1(Rd)

∥∥∥eλLω(·)ψ̂(·)
∥∥∥
L∞(Rd)

.

(4.7)
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On the other hand, by Lemmas 0.31 and 0.29 we have

Mxâγ ∗ ψ̂ = T̂−xaγ ∗ ψ̂ = (2π)d ̂(T−xaγ · ψ),

so its Fourier transform satisfies, from (0.34),

(
̂

Mxâγ ∗ ψ̂)(η) = (2π)d
̂

( ̂T−xaγ · ψ)(η) = (2π)2d(T−xaγ · ψ)(−η), η ∈ Rd.

Thus, for all λ > 0,∣∣eλω(η)(
̂

Mxâγ ∗ ψ̂)(η)
∣∣ = (2π)2d|eλω(η)T−xaγ(−η)ψ(−η)|

= (2π)2d|aγ(x− η)eλω(−η)ψ(−η)|

≤ (2π)2d max
|γ|≤m

‖aγ(·)‖
L∞(Rd)

∥∥∥eλω(·)ψ(·)
∥∥∥
L∞(Rd)

. (4.8)

Formulas (4.7) and (4.8) show that the set given in (4.6) is bounded in Sω(Rd)
by [13, Theorem 4.8(3)].

Since the Fourier transform is an isomorphism in Sω(Rd) (hence the inverse
Fourier transform is continuous), the set

F−1(B) =
{
φ : φ̂ = f, for some f ∈ B

}
is bounded in Sω(Rd), and therefore

B′ :=
{
φ : φ̂ = f, for some f ∈ B

}
is also a bounded set in Sω(Rd). We observe that the function φx,γ taken
in (4.4) belongs to B′. We check that

B′′ :=
{
Dβφ : φ ∈ B′, β ∈ Nd0 : |β| ≤ m

}
is bounded in Sω(Rd). Let φ ∈ B′ and let λ > 0. For |φ|λ as in (0.14), we
obtain for all β ∈ Nd0 with |β| ≤ m, by (0.11),

|Dβφ|λ = sup
α∈Nd0

sup
x∈Rd
|Dα+βφ(x)|e−λϕ

∗
(
|α|
λ

)
eλω(x)

= eλϕ
∗
(
|β|
λ

)
sup
α∈Nd0

sup
x∈Rd
|Dα+βφ(x)|e−λϕ

∗
(
|α|
λ

)
e−λϕ

∗
(
|β|
λ

)
eλω(x)

≤ eλϕ
∗
(
|β|
λ

)
sup
α∈Nd0

sup
x∈Rd
|Dα+βφ(x)|e−2λϕ∗

(
|α+β|

2λ

)
eλω(x)

≤ eλϕ
∗
(
|β|
λ

)
sup
δ∈Nd0

sup
x∈Rd
|Dδφ(x)|e−2λϕ∗

(
|δ|
2λ

)
e2λω(x) = eλϕ

∗
(
|β|
λ

)
|φ|2λ.
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Since eλϕ
∗
(
|β|
λ

)
≤ eλϕ∗(mλ ) and φ ∈ B′, we get

sup
|β|≤m

sup
φ∈B
|Dβφ|λ < +∞

as we wanted.

We show (4.2). To this aim, we denote z = (x, ξ) ∈ R2d and we assume
that 0 6= z0 /∈ WF′ω(u). Then, there exists Γ ⊆ R2d \ {0} an open conic set
containing z0 such that

sup
z∈Γ

eλω(z)|Vψu(z)| <∞, λ > 0.

By Lemma 4.4, for any open conic set Γ′ containing z0 with Γ′ ∩ S2d−1 ⊆ Γ,
we have

sup
β,γ∈Nd0 : β≤γ, |γ|≤m

x∈Rd

sup
z∈Γ′

eλω(z)|VDβφx,γ (u)(z)| <∞, λ > 0. (4.9)

By (4.5), for all λ > 0,

eλω(z)|Vψ(P (x,D)u)(z)|

≤ (2π)−d
∑
|γ|≤m

∑
β≤γ

(
γ

β

)
|ξγ−β|e−Lω(z)e(λ+L)ω(z)|VDβφx,γ (u)(z)|.

(4.10)

Since |γ − β| ≤ |γ| ≤ m, we have, by (0.7) and (0.6), that

|ξγ−β| ≤ 〈z〉m ≤ eϕ
∗(m)eω(〈z〉) ≤ eϕ

∗(m)eLω(z)+L, z = (x, ξ) ∈ R2d.

Therefore
sup

(x,ξ)∈R2d

|ξγ−β|e−Lω(x,ξ) <∞, β ≤ γ, |γ| ≤ m.

Taking the supremum in (4.10) in z ∈ Γ′, we obtain by (4.9)

sup
z∈Γ′

eλω(z)|Vψ(P (x,D)u)(z)| <∞, λ > 0.

Hence z0 /∈WF′ω(P (x,D)u) and the proof is complete.

Now, we deal with the Weyl quantization bw(x,D) in (2.29). Since Sω(R2d) is
nuclear, there exists K ∈ S ′ω(R4d) such that the operator

Vψb
w(x,D)V ∗ψ : Sω(R2d)→ S ′ω(R2d)
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satisfies

Vψ(bw(x,D)V ∗ψF )(y′, η′) = (2π)d
∫
R2d

K(y′, η′, y, η)F (y, η)dydη,

for all F ∈ Sω(R2d), in the sense that

〈Vψbw(x,D)V ∗ψF,G〉 = (2π)d〈K(y′, η′, y, η), G(y′, η′)F (y, η)〉,

for all G ∈ Sω(R2d). For u ∈ Sω(Rd) and ψ ∈ Sω(Rd) with ‖ψ‖L2(Rd) = 1,

we have Vψu ∈ Sω(R2d) by Theorem 0.28. For F = Vψu we have by (0.32)
(see [14]),

Vψ(bw(x,D)u)(y′, η′) =

∫
R2d

K(y′, η′, y, η)Vψu(y, η)dydη, (y′, η′) ∈ R2d.

(4.11)
We analyse the operator (4.11):

Theorem 4.6. Let b ∈ GSm,ωρ and ψ ∈ Sω(Rd) such that ‖ψ‖L2(Rd) = 1. If

u ∈ Sω(Rd) in (4.11), then we have

K(y′, η′, y, η)

= (2π)−2d

∫
R2d

(∫
Rd
eix·(ξ−η

′)eis·(η−ξ)b
(x+ s

2
, ξ
)
ψ(x− y′)ψ(s− y)ds

)
dξdx,

(4.12)

for all (y′, η′, y, η) ∈ R4d, where K is as in (4.11).

Proof. We consider V ∗ψ : Sω(R2d) → Sω(Rd) as in (0.31). By the definition of

V ∗ψF , F ∈ Sω(R2d), we have for all (y′, η′) ∈ R2d,

Vψ(bw(x,D)V ∗ψF )(y′, η′)

=

∫
Rd
e−ix·η

′
ψ(x− y′)bw(x,D)V ∗ψF (x)dx

= (2π)−d
∫
Rd

∫
R2d

e−ix·η
′
ψ(x− y′)ei(x−s)·ξb

(x+ s

2
, ξ
)
V ∗ψF (s)dsdξdx

= (2π)−d
∫
Rd

∫
R2d

∫
R2d

e−ix·η
′
ψ(x− y′)ei(x−s)·ξb

(x+ s

2
, ξ
)
×

× F (y, η)eis·ηψ(s− y)dydηdsdξdx.

We can assume without losing generality that m ≥ 0. To show the result,
we need to apply Fubini’s theorem, first to the variables y, η, s. To this, we
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estimate the modulus of the integrand above: since ψ ∈ Sω(Rd), b ∈ GSm,ωρ ,

and F ∈ Sω(R2d), there are C,Cm > 0 and for all λ1, λ2 > 0 there exist
Cλ1

, Cλ2
> 0 satisfying, from formulas (0.2), (0.3), and (0.1),∣∣∣ψ(x− y′)b
(x+ s

2
, ξ
)
F (y, η)ψ(s− y)

∣∣∣
≤ CCmemω( x+s2 ,ξ)Cλ1

e−λ1ω(y,η)Cλ2
e−λ2ω(s−y)

≤ Cλ1,λ2
emLω(x)emLω(s)emLω(ξ)emLe−(λ1/2)(ω(y)+ω(η))e−(λ2/L)ω(s)eλ2ω(y)eλ2 ,

for Cλ1,λ2
= CCmCλ1

Cλ2
> 0, where the last function belongs to L1(R3d

y,η,s) if
we choose λ2 > mL2 (then, the integral depending on s converges by property
(γ) of the weight) and λ1 > 2λ2 (then, the integrals depending on y and η
converge by property (γ)). Thus, by Fubini’s theorem,

Vψ(bw(x,D)V ∗ψF )(y′, η′) = (2π)−d
∫
Rd

∫
Rd

∫
R2d

eix·ξF (y, η)ψ(x− y′)e−ix·η
′
×

×
( ∫

Rd
eis·(η−ξ)b

(x+ s

2
, ξ
)
ψ(s− y)ds

)
dydηdξdx.

(4.13)

Now, we want to use Fubini’s theorem in dydηdξdx. To that aim, we need
some preparation for

I(y, η, ξ, x) :=

∫
Rd
eis·(η−ξ)b

(x+ s

2
, ξ
)
ψ(s− y)ds. (4.14)

As b ∈ GSm,ωρ and ψ ∈ Sω(Rd), there is C > 0 and for all λ > 0 there exists
Cλ > 0 with (by (0.3), (0.2), and (0.1))∣∣∣b(x+ s

2
, ξ
)
ψ(s− y)

∣∣∣ ≤ Cemω( x+s2 ,ξ)Cλe
−λω(s−y)

≤ CCλemLω(x)emLω(s)emLω(ξ)emLe−(λ/L)ω(s)eλω(y)eλ,

which belongs to L1(Rds) if λ > mL2.

We assume |η− ξ|∞ := max1≤h≤d |ηh− ξh| = |ηj − ξj| ≥ 1, for some 1 ≤ j ≤ d.
Let s = (s1, . . . , sd) ∈ Rd. For any N ∈ N0, we integrate by parts in (4.14)
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with the variable sj as follows:

|I| =
∣∣∣ ∫

Rd

1

(ηj − ξj)N
(DN

sj
eis·(η−ξ))b

(x+ s

2
, ξ
)
ψ(s− y)ds

∣∣∣
=
∣∣∣ ∫

Rd

(−1)N

(ηj − ξj)N
eis·(η−ξ)DN

sj

(
b
(x+ s

2
, ξ
)
ψ(s− y)

)
ds
∣∣∣

≤ 1

|ηj − ξj|N
N∑
k=0

(
N

k

)∫
Rd

∣∣∣DN−k
sj

b
(x+ s

2
, ξ
)∣∣∣|Dk

sj
ψ(s− y)|ds.

We observe that |η − ξ| ≤
√
d|η − ξ|∞ =

√
d|ηj − ξj|. We put p ∈ N so

that 2
√
d ≤ ep, and since b ∈ GSm,ωρ and ψ ∈ Sω(Rd), we obtain that for

all n ∈ N there exist Cn, C
′
n > 0 such that, by (0.11), (0.2), and (0.1) (since∑N

k=0

(
N
k

)
= 2N),

|I| ≤ (
√
d)N

|η − ξ|N
N∑
k=0

(
N

k

)∫
Rd
Cn
〈(x+ s

2
, ξ
)〉−ρ(N−k)

×

× e(n+1)Lpρϕ∗
(

N−k
(n+1)Lp

)
emω( x+s2 ,ξ)C ′ne

(n+1)Lpϕ∗
(

k
(n+1)Lp

)
e−(mL2+L)ω(s−y)ds

≤ CnC ′n
(
√
d)N

|η − ξ|N
e(n+1)Lpϕ∗

(
N

(n+1)Lp

) N∑
k=0

(
N

k

)∫
Rd
emω( x+s2 ,ξ)e−(mL2+L)ω(s−y)ds

≤ CnC ′n
(2
√
d)N

|η − ξ|N
e(n+1)Lpϕ∗

(
N

(n+1)Lp

)
×

×
∫
Rd
emLω(x)+mLω(s)+mLω(ξ)emLe−((mL2+L)/L)ω(s)+(mL2+L)ω(y)emL

2+Lds.

By the choice of p ∈ N, we have by (0.10),

|I| ≤ CnC ′nemLemL
2+Le(n+1)

∑p
j=1 L

j

|η − ξ|−Ne(n+1)ϕ∗
(

N
n+1

)
×

× emLω(x)emLω(ξ)e(mL2+L)ω(y)

∫
Rd
e−ω(s)ds.

The last integral is convergent by property (γ) of Definition 0.3. Take the
infimum on N ∈ N0, and then use (0.8) to obtain that for each n ∈ N there
exists C ′′n > 0 such that, by (0.7) and (0.1),

|I| ≤ C ′′ne−(n+1)ω(η−ξ)+log |η−ξ|emLω(x)emLω(ξ)e(mL2+L)ω(y)

≤ C ′′neϕ
∗(1)e−nω(η−ξ)emLω(x)emLω(ξ)e(mL2+L)ω(y)

≤ C ′′neϕ
∗(1)ene(mL−n/L)ω(ξ)enω(η)emLω(x)e(mL2+L)ω(y).
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Thus, since F ∈ Sω(R2d) and ψ ∈ Sω(Rd), for all x, y, y′, η, ξ ∈ Rd satisfying
|η− ξ|∞ ≥ 1, we have that for all λ, λ1, λ2 > 0 there are Cλ, Cλ1

, Cλ2
> 0 with

(by (0.1)),

|F (y, η)ψ(x− y′)I|
≤ Cλ1

e−λ1ω(y,η)Cλ2
e−λ2ω(x−y′)Cλe

(mL−λ/L)ω(ξ)eλω(η)emLω(x)e(mL2+L)ω(y)

≤ Cλ1
e−(λ1/2)ω(y)e−(λ1/2)ω(η)Cλ2

e−(λ2/L)ω(x)eλ2ω(y′)eλ2×
× Cλe(mL−λ/L)ω(ξ)eλω(η)emLω(x)e(mL2+L)ω(y)

= Cλ,λ1,λ2
e(mL2+L−λ1/2)ω(y)e(λ−λ1/2)ω(η)e(mL−λ/L)ω(ξ)e(mL−λ2/L)ω(x)eλ2ω(y′),

(4.15)

where Cλ,λ1,λ2
= Cλ1

Cλ2
Cλe

λ2 > 0. We observe that (4.15) is estimated by a
function in L1(R4d

y,η,ξ,x) if λ > mL2 (the integral in dξ converges), λ2 > mL2

(the integral in dx converges), and λ1 > max{2(mL2 + L), 2λ} (the integrals
in dy and dη converge).

On the other hand, if |η− ξ|∞ ≤ 1, then |ξ|− |η| ≤ |η− ξ| ≤
√
d|η− ξ|∞ ≤

√
d,

so |ξ| ≤ |η|+
√
d. Hence by (0.1),

ω(ξ) ≤ ω(|η|+
√
d) ≤ Lω(η) + Lω(

√
d) + L. (4.16)

Then, as F ∈ Sω(R2d), ψ ∈ Sω(Rd) and b ∈ GSm,ωρ , there exists C > 0 and for
all λ, λ1, λ2 > 0 there exist Cλ, Cλ1

, Cλ2
> 0 satisfying∣∣∣F (y, η)ψ(x− y′)b

(x+ s

2
, ξ
)
ψ(s− y)

∣∣∣
≤ Cλe−λω(y,η)Cλ1

e−λ1ω(x−y′)Cemω( x+s2 ,ξ)Cλ2
e−λ2ω(s−y)

≤ Cλe−(λ/2)ω(y)e−(λ/2)ω(η)Cλ1
e−(λ1/L)ω(x)eλ1ω(y′)eλ1×

× CemLω(x)emLω(s)e(mL+1)ω(ξ)e−ω(ξ)emLCλ2
e−(λ2/L)ω(s)eλ2ω(y)eλ2 .

Then, for all x, y, y′, η, ξ ∈ Rd satisfying |η − ξ|∞ ≤ 1, by (4.16), we get for

Cλ,λ1,λ2
= CCλCλ1

Cλ2
eλ1eλ2emLe(mL+1)(Lω(

√
d)+L) > 0,∣∣∣F (y, η)ψ(x− y′)b

(x+ s

2
, ξ
)
ψ(s− y)

∣∣∣
≤ Cλ,λ1,λ2

e(mL−λ2/L)ω(s)e(λ2−λ/2)ω(y)×
× e(mL2+L−λ/2)ω(η)e−ω(ξ)e(mL−λ1/L)ω(x)eλ1ω(y′),

(4.17)

which is estimated by a function in L1(R5d
s,y,η,ξ,x) if λ2 > mL2 (the integral

depending on s converges), λ > max{2λ2, 2mL
2+2L} (the integrals depending
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on y and η converge), and λ1 > mL2 (the integral depending on x converges).
From (4.15) and (4.17), we can use Fubini’s theorem in (4.13) in dydηdξdx:

Vψ(bw(x,D)V ∗ψF )(y′, η′)

= (2π)−d
∫
R2d

( ∫
R3d

eix·(ξ−η
′)eis·(η−ξ)b

(x+ s

2
, ξ
)
ψ(x− y′)ψ(s− y)dsdξdx

)
×

× F (y, η)dydη.

For u ∈ Sω(Rd), put F = Vψu. From (0.32), since ‖ψ‖L2(Rd) = 1,

V ∗ψF = V ∗ψVψu = (2π)du.

Hence

Vψ(bw(x,D)u)(y′, η′) =

∫
R2d

K(y′, η′, y, η)Vψu(y, η)dydη,

for all (y′, η′) ∈ R2d, where the kernel K(y′, η′, y, η) is as in (4.12).

Under the assumptions in Theorem 4.6, we estimate the kernel (4.12) as in [14,
Proposition 4.4], for our classes of global symbols.

Theorem 4.7. Let b ∈ GSm,ωρ and ψ ∈ Sω(Rd) with ‖ψ‖L2(Rd) = 1. If u ∈
Sω(Rd) and K(y′, η′, y, η) is as in (4.12), then for all λ > 0 there exist Cλ, µλ >
0 such that

|K(y′, η′, y, η)| ≤ Cλe−λω(y−y′)e−λω(η−η′)eµλω(η′)emax{0,mL2}(ω(y′)+ω(y)) (4.18)

for all (y′, η′, y, η) ∈ R4d.

Moreover, if b(z) = 0 for z ∈ Γ \ B(0, R) for an open conic set Γ ⊆ R2d \ {0}
and for some R > 0, then for every open conic set Γ′ ⊆ R2d \ {0} such that
Γ′ ∩ S2d−1 ⊆ Γ (where S2d−1 denotes the unit sphere in R2d) we have that for
all λ > 0 there exists Cλ > 0 such that

|K(y′, η′, y, η)| ≤ Cλe−λω(y−y′)e−λω(η−η′)e−2λω(y′)e−2λω(η′) (4.19)

for all (y′, η′) ∈ Γ′, (y, η) ∈ R2d.

Proof. We assume without losing generality that m > 0. We make the change
of variables in the kernel (4.12)

x′ = x− y′, s′ = s− y.
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Chapter 4. The Weyl wave front set

By abuse of notation, we write x and s for x′ and s′. By Theorem 4.6, we have

K(y′, η′, y, η) = (2π)−2d

∫
R3d

ei(x+y′)·(ξ−η′)+i(s+y)·(η−ξ)×

× b
(x+ y′ + s+ y

2
, ξ
)
ψ(x)ψ(s)dsdxdξ

= (2π)−2de−iy
′·η′+iy·η

∫
R3d

eis·(η−ξ)eix·(ξ−η
′)eiξ·(y

′−y)×

× b
(x+ y′ + s+ y

2
, ξ
)
ψ(x)ψ(s)dsdxdξ.

(4.20)

Take `, h ∈ N, k ∈ N0. For the powers of the ultradifferential operator G(D),
G`(D) and Gh(D), we use (1.7), and we obtain

ei(s·(η−ξ)+x·(ξ−η
′)+ξ·(y′−y))

=
1

G`(ξ − η)
G`(−Ds)

[
ei(s·(η−ξ)+x·(ξ−η

′)+ξ·(y′−y))
]

=
1

G`(ξ − η)Gh(η′ − ξ)
G`(−Ds)e

is·(η−ξ)Gh(−Dx)
[
ei(x·(ξ−η

′)+ξ·(y′−y))
]

=
1

G`(ξ − η)Gh(η′ − ξ)〈y − y′〉2k
×

×G`(−Ds)e
is·(η−ξ)Gh(−Dx)e

ix·(ξ−η′)(1−∆ξ)
keiξ·(y

′−y),

where ∆ξ denotes the Laplacian in the variable ξ. We use this formula
into (4.20) and then integrate by parts to write

|K(y′, η′, y, η)| = (2π)−2d〈y−y′〉−2k
∣∣∣∫

R3d

eiξ·(y
′−y)λ`,h,k(y

′, η′, y, η, s, x, ξ)dsdxdξ
∣∣∣

(4.21)
with

λ`,h,k(y
′, η′, y, η, s, x, ξ) = (1−∆ξ)

k[G−`(ξ − η)G−h(η′ − ξ)eix·(ξ−η
′)eis·(η−ξ)×

×Gh(Dx)G
`(Ds)

{
b
(x+ y′ + s+ y

2
, ξ
)
ψ(x)ψ(s)

}]
.

Since ψ ∈ Sω(Rd) and b ∈ GSm,ωρ , it clearly follows that we can integrate by
parts in ds and dx. To check if we can integrate by parts in dξ, we estimate
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4.1 The ω-wave front set

|λ`,h,k| by a function in L1(R2d
s,x). Indeed, for ξ = (ξ1, . . . , ξd) ∈ Rd,

|λ`,h,k| = |(1 +D2
ξ1

+ · · ·+D2
ξd

)k[G−`(ξ − η)G−h(η′ − ξ)eix·(ξ−η
′)eis·(η−ξ)×

×Gh(Dx)G
`(Ds)

{
b
(x+ y′ + s+ y

2
, ξ
)
ψ(x)ψ(s)

}]∣∣∣
≤

∑
j1+···+jd+jd+1=k

∣∣∣ k!

j1! · · · jd!jd+1!
D2j1
ξ1
· · ·D2jd

ξd
[G−`(ξ − η)G−h(η′ − ξ)×

× eix·(ξ−η
′)eis·(η−ξ)Gh(Dx)G

`(Ds)
{
b
(x+ y′ + s+ y

2
, ξ
)
ψ(x)ψ(s)

}]∣∣∣
=

k∑
j′=0

(
k

j′

) ∑
j1+···+jd=k−j′

(k − j′)!
j1! · · · jd!

∣∣D2j1
ξ1
· · ·D2jd

ξd
[G−`(ξ − η)G−h(η′ − ξ)×

× eix·(ξ−η
′)eis·(η−ξ)Gh(Dx)G

`(Ds)
{
b
(x+ y′ + s+ y

2
, ξ
)
ψ(x)ψ(s)

}]∣∣∣.
Then, for j = (j1, . . . , jd) ∈ Nd0, we have D2j1

ξ1
· · ·D2jd

ξd
= D2j

ξ . So, by Leibniz
rule,

|λ`,h,k| ≤
k∑

j′=0

(
k

j′

) ∑
|j|=k−j′

(k − j′)!
j1! · · · jd!

∑
σ1+···+σ5=2j

(2j)!

σ1! · · ·σ5!
×

× |Dσ1

ξ G
−`(ξ − η)||Dσ2

ξ G
−h(η′ − ξ)||Dσ3

ξ e
ix·(ξ−η′)||Dσ4

ξ e
is·(η−ξ)|×

×
∣∣∣Dσ5

ξ G
h(Dx)G

`(Ds)
{
b
(x+ y′ + s+ y

2
, ξ
)
ψ(x)ψ(s)

}∣∣∣
≤

k∑
j′=0

(
k

j′

) ∑
|j|=k−j′

(2(k − j′))!
(2j1)! · · · (2jd)!

∑
σ1+···+σ5=2j

(2j1)! · · · (2jd)!
σ1! · · ·σ5!

×

× |Dσ1

ξ G
−`(ξ − η)||Dσ2

ξ G
−h(η′ − ξ)||x||σ3||s||σ4|×

×
∣∣∣Dσ5

ξ G
h(Dx)G

`(Ds)
{
b
(x+ y′ + s+ y

2
, ξ
)
ψ(x)ψ(s)

}∣∣∣
≤

k∑
j′=0

(
k

j′

) ∑
|σ1+···+σ5|=2(k−j′)

(2(k − j′))!
σ1! · · ·σ5!

×

× |Dσ1

ξ G
−`(ξ − η)||Dσ2

ξ G
−h(η′ − ξ)||x||σ3||s||σ4|×

×
∣∣∣Dσ5

ξ G
h(Dx)G

`(Ds)
{
b
(x+ y′ + s+ y

2
, ξ
)
ψ(x)ψ(s)

}∣∣∣.
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Chapter 4. The Weyl wave front set

We take M ∈ N0 to be determined later. By Corollary 0.20 and (0.12), we
deduce that there exist C1, C3, CM > 0 such that

|Dσ1

ξ G
−`(ξ − η)| ≤ C`

1CMe
(M+1)L2ϕ∗

(
|σ1|

(M+1)L2

)
e−`C3ω(ξ−η);

|Dσ2

ξ G
−h(η′ − ξ)| ≤ Ch

1CMe
(M+1)L2ϕ∗

(
|σ2|

(M+1)L2

)
e−hC3ω(η′−ξ).

By (0.7), we have

|x||σ3| ≤ e(M+1)L2ϕ∗
(

|σ3|
(M+1)L2

)
e(M+1)L2ω(x);

|s||σ4| ≤ e(M+1)L2ϕ∗
(

|σ4|
(M+1)L2

)
e(M+1)L2ω(s).

Now, by Corollary 0.23, there exists C4 > 0 such that∣∣∣Dσ5

ξ G
h(Dx)G

`(Ds)
{
b
(x+ y′ + s+ y

2
, ξ
)
ψ(x)ψ(s)

}∣∣∣
≤
∑
δ,τ∈Nd0

ehC4e−hC4ϕ
∗
(
|δ|
hC4

)
e`C4e−`C4ϕ

∗
(
|τ|
`C4

) ∑
δ1+δ2=δ
τ1+τ2=τ

δ!

δ1!δ2!

τ !

τ1!τ2!
×

×
∣∣∣Dδ1

x D
τ1
s D

σ5

ξ b
(x+ y′ + s+ y

2
, ξ
)∣∣∣|Dδ2

x ψ(x)||Dτ2
s ψ(s)|.

As b ∈ GSm,ωρ , there exists C ′M > 0 such that∣∣∣Dδ1
x D

τ1
s D

σ5

ξ b
(x+ y′ + s+ y

2
, ξ
)∣∣∣ ≤ C ′Me4(M+1)L2ρϕ∗

(
|δ1+τ1+σ5|
4(M+1)L2

)
emω( x+y

′+s+y
2 ,ξ).

From (0.3) and property (α) we have

emω( x+y
′+s+y
2 ,ξ) ≤ emLω( x+y

′+s+y
2 )emLω(ξ)emL

≤ emLω(2 max{|x|,|y′|,|s|,|y|})emLω(ξ)emL

≤ emL
2ω(x)emL

2ω(y′)emL
2ω(s)emL

2ω(y)emLω(ξ)emL
2+mL.

By (0.11) we deduce (since ϕ∗(x)/x is increasing)

e
4(M+1)L2ρϕ∗

(
|δ1+τ1+σ5|
4(M+1)L2

)
≤ eML2ϕ∗

(
|δ1|
ML2

)
eML2ϕ∗

(
|τ1|
ML2

)
e

(M+1)L2ϕ∗
(

|σ5|
(M+1)L2

)
.

Then, as |σ1 + · · ·+ σ5| = 2(k − j′) ≤ 2k,

e
(M+1)L2ϕ∗

(
|σ1|

(M+1)L2

)
· · · e(M+1)L2ϕ∗

(
|σ5|

(M+1)L2

)
≤ e(M+1)L2ϕ∗

(
2k

(M+1)L2

)
.
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4.1 The ω-wave front set

Since ψ ∈ Sω(Rd), for all µ > 0 there exists CM,µ > 0 such that

|Dδ2
x ψ(x)||Dτ2

s ψ(s)| ≤ CM,µe
ML2ϕ∗

(
|δ2|
ML2

)
e−µω(x)eML2ϕ∗

(
|τ2|
ML2

)
e−µω(s).

Therefore, by Lemma 0.8,∑
δ1+δ2=δ
τ1+τ2=τ

δ!

δ1!δ2!

τ !

τ1!τ2!
eML2ϕ∗

(
|δ1|
ML2

)
eML2ϕ∗

(
|δ2|
ML2

)
eML2ϕ∗

(
|τ1|
ML2

)
eML2ϕ∗

(
|τ2|
ML2

)

≤ 2|δ+τ |eML2ϕ∗
(
|δ|
ML2

)
eML2ϕ∗

(
|τ|
ML2

)
≤ eMLϕ∗

(
|δ|
ML

)
eMLϕ∗

(
|τ|
ML

)
e2ML2

.

On the other hand, by Lemma 0.1,

k∑
j′=0

(
k

j′

) ∑
|σ1+···+σ5|=2(k−j′)

(2(k − j′))!
σ1! · · ·σ5!

=
k∑

j′=0

(
k

j′

)
52(k−j′) = 52k

(
1 +

1

52

)k
= (26)k < (e2)2k,

so by (0.10),

(e2)2ke
(M+1)L2ϕ∗

(
2k

(M+1)L2

)
≤ e(M+1)L2+(M+1)Le(M+1)ϕ∗

(
2k
M+1

)
.

For any `, h ∈ N, take M ∈ N such that

M ≥ C4 max{`, h}.

Then, the series∑
δ,τ∈Nd0

eMLϕ∗
(
|δ|
ML

)
−hC4ϕ

∗
(
|δ|
hC4

)
eMLϕ∗

(
|τ|
ML

)
−`C4ϕ

∗
(
|τ|
`C4

)
converges (see (1.14)). Thus, for all µ > 0, there exists C ′M,µ > 0 such that
(for M ≥ C4 max{`, h})

|λ`,h,k| ≤ C ′M,µe
(M+1)ϕ∗

(
2k
M+1

)
(C1e

C4)`+he−`C3ω(ξ−η)e−hC3ω(η′−ξ)×

× e((M+1)L2+mL2−µ)(ω(x)+ω(s))emL
2ω(y′)emL

2ω(y)emLω(ξ).
(4.22)

We choose
µ > (M + 1)L2 +mL2.
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Therefore |λ`,h,k| is estimated by a function in L1(R2d
s,x) for all k ∈ N0. Fur-

thermore, since by (0.1),

e−`C3ω(ξ−η)e−hC3ω(η′−ξ) ≤ e−`C3/Lω(η)e(`C3−hC3/L)ω(ξ)ehC3ω(η′)e(`+h)C3 , (4.23)

given ` ∈ N, we take
h > `L+mL2/C3.

Hence, the estimate of |λ`,h,k| in (4.22) is in L1(R3d
s,x,ξ), and therefore we can

integrate by parts in dξ.

From (4.23), again by (0.1) we have

e−`C3/Lω(η)ehC3ω(η′) ≤ e−`C3/L
2ω(η−η′)e(`C3/L+hC3)ω(η′)e`C3/L.

Then, from (4.21), there exists CM,`,h,µ > 0 such that, by the estimates (4.22)
and (4.23),

|K(y′, η′, y, η)| ≤ CM,`,h,µ〈y − y′〉−2ke(M+1)ϕ∗
(

2k
M+1

)
×

× emL
2(ω(y)+ω(y′))e−`C3/L

2ω(η−η′)e(`C3/L+hC3)ω(η′)×

×
∫
R3d

e((M+1)L2+mL2−µ)(ω(x)+ω(s))e(mL+`C3−hC3/L)ω(ξ)dsdxdξ

for all k ∈ N0. Now, we take the infimum on k, and by (0.9) we obtain, for
some C ′M,`,h,µ > 0, that |K(y′, η′, y, η)| is less than or equal to

C ′M,`,h,µe
−Mω(〈y−y′〉)emL

2(ω(y)+ω(y′))e−`C3/L
2ω(η−η′)e(`C3/L+hC3)ω(η′)×

×
∫
R3d

e((M+1)L2+mL2−µ)(ω(x)+ω(s))e(mL+`C3−hC3/L)ω(ξ)dsdxdξ.
(4.24)

Given ` ∈ N, by the same selection as before (h > `L + mL2/C3 and µ >
(M + 1)L3 + mL2), the integrals are convergent. Therefore, for every λ > 0
there exist Cλ, µλ > 0 such that

|K(y′, η′, y, η)| ≤ Cλe−λω(y−y′)e−λω(η−η′)eµλω(η′)emL
2(ω(y)+ω(y′))

for all (y′, η′, y, η) ∈ R4d. This shows formula (4.18). Notice that if in (4.24),
we additionally take M ≥ C4 max{`, h} satisfying M ≥ `+mL3, then by (0.1),

e−Mω(〈y−y′〉) ≤ e−`ω(y−y′)e−mL
2ω(y)+mL3ω(y′)+mL3

.

Hence, for all λ > 0, there exist Cλ, µλ > 0 such that

|K(y′, η′, y, η)| ≤ Cλe−λω(y−y′)e−λω(η−η′)eµλω(η′)e(mL2+mL3)ω(y′). (4.25)

154



4.1 The ω-wave front set

For the second part, we follow closely the proof of [61, Proposition 3.7].
By (4.22), taking the infimum on k ∈ N0 and using (0.9) and (0.1), we find
C ′′M,`,h,k > 0 such that |K(y′, η′, y, η)| is estimated by

C ′′M,`,h,µe
−Mω(〈y−y′〉)emL

3ω(y−y′)e(mL2+mL3)ω(y′)×

×
∫
R3d

e−`C3ω(ξ−η)e−hC3ω(η′−ξ)e((M+1)L2+mL2−µ)(ω(x)+ω(s))emLω(ξ)dsdxdξ

(4.26)

for all (y′, η′, y, η) ∈ R4d. Now, assume b(z) = 0, z ∈ Γ \B(0, R). We set

Dy′,y :=
{

(x, s, ξ) ∈ R3d :
(x+ y′ + s+ y

2
, ξ
)
∈ (R2d \ Γ) ∪B(0, R)

}
.

Let Γ′ be an open conic subset of Γ such that Γ′ ∩ S2d−1 ⊆ Γ. We want to
estimate |K(y′, η′, y, η)| for all (y′, η′) ∈ Γ′, (y, η) ∈ R2d. Similarly as in [61,
(3.19)], there exists ε > 0 such that

∣∣∣ (y′, η′)

|(y′, η′)|
−

(x+y′+s+y
2

, ξ)

|(y′, η′)|

∣∣∣ ≥ ε,
for all (y′, η′) ∈ Γ′, |(y′, η′)| ≥ 2R, (x, s, ξ) ∈ Dy′,y, (y, η) ∈ R2d. Then, by (0.3)
and (0.1),

eω(ε(y′,η′)) ≤ eω( y
′−x−s−y

2 ,η′−ξ)

≤ eω(max{|y−y′|,|x+s|},η′−ξ)

≤ eLω(max{|y−y′|,|x+s|})eLω(η′−ξ)eL

≤ eLω(y−y′)+L2ω(x)+L2ω(s)eLω(η′−ξ)eL
2+L.

Thus, for that ε > 0, there exist Cε, Lε > 0 such that

e
1
2ω(y′)e

1
2ω(η′) ≤ eω(y′,η′) ≤ CεeLε(ω(y−y′)+ω(x)+ω(s)+ω(η′−ξ)).

Hence there are C ′ε, L
′
ε > 0 such that

e−ω(η′−ξ) ≤ C ′εe−L
′
εω(y′)−L′εω(η′)eω(y−y′)+ω(x)+ω(s). (4.27)

Now, we put
h = Hh′ = (H − 1)h′ + h′,
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for some H > 1 and h′ > 0 to be determined later. Therefore, by (4.27)
and (0.1),

e−hC3ω(η′−ξ) = e−(H−1)h′C3ω(η′−ξ)e−h
′C3ω(η′−ξ)

≤ (C ′ε)
(H−1)h′C3e−(H−1)h′C3L

′
εω(y′)e−(H−1)h′C3L

′
εω(η′)×

× e(H−1)h′C3(ω(y−y′)+ω(x)+ω(s))e−(h′C3/L)ω(ξ)eh
′C3ω(η′)eh

′C3 .

Again by (0.1),

e−`C3ω(ξ−η) ≤ e−(`C3/L)ω(η−η′)e`C3ω(η′−ξ)e`C3

≤ e−(`C3/L)ω(η−η′)e`C3Lω(η′)e`C3Lω(ξ)e`C3+`C3L.

Hence, by (4.26) there exists C ′′′M,`,h,µ > 0 such that |K(y′, η′, y, η)| is less than
or equal to

C ′′′M,`,h,µe
−Mω(〈y−y′〉)e((H−1)h′C3+mL3)ω(y−y′)e(−(H−1)h′C3L

′
ε+mL

2+mL3)ω(y′)×
× e−(`C3/L)ω(η−η′)e(−(H−1)h′C3L

′
ε+h

′C3+`C3L)ω(η′)×

×
∫
R3d

e((M+1)L2+mL2+(H−1)h′C3−µ)(ω(x)+ω(s))e(−h′C3/L+`C3L+mL)ω(ξ)dsdxdξ.

Given ` ∈ N arbitrary, we denote λ = `C3/L > 0. We take h′ > 0 such that

(−h′C3/L+ `C3L+mL)ω(ξ) ≤ −ω(ξ),

and then H > 1 with

(−(H − 1)h′C3L
′
ε +mL2 +mL3)ω(y′) ≤ −2λω(y′);

(−(H − 1)h′C3L
′
ε + h′C3 + `C3L)ω(η′) ≤ −2λω(η′).

Now, for M ∈ N (which satisfies M ≥ C4 max{`,Hh′}) satisfying

−Mω(〈y − y′〉) + ((H − 1)h′C3 +mL3)ω(y − y′) ≤ −λω(y − y′),

and finally for µ > 0 large enough so that

((M + 1)L2 +mL2 + (H − 1)h′C3 − µ)(ω(x) + ω(s)) ≤ −(ω(x) + ω(s)),

then the integrals are convergent by property (γ) of the weight function, and
hence (4.19) is satisfied for all (y′, η′) ∈ Γ′, |(y′, η′)| ≥ 2R and (y, η) ∈ R2d. The
proof for |(y′, η′)| ≤ 2R is immediate by (4.25). This completes the proof.

We now show, as in [14, Corollary 4.9], the corresponding extension of (4.11)
for ultradistributions.
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4.1 The ω-wave front set

Corollary 4.8. Let b ∈ GSm,ωρ , ψ ∈ Sω(Rd) with ‖ψ‖L2(Rd) = 1, and K as

in (4.12). If u ∈ S ′ω(Rd), then

Vψ(bw(x,D)u)(y′, η′) =

∫
R2d

K(y′, η′, y, η)Vψu(y, η)dydη, (y, η′) ∈ R2d.

Proof. Since Vψ operates on S ′ω(Rd), by Lemma 2.8 and Proposition 1.18,
Vψb

w(x,D) can be extended continuously to S ′ω(Rd). Since Sω(Rd) is dense in
S ′ω(Rd), for u ∈ S ′ω(Rd) we can take a sequence {un} in Sω(Rd) such that un →
u in the topology of S ′ω(Rd) (see for example [30, Lemma 14.7, Page 189]).
By (4.11) and by the continuity of Vψb

w : S ′ω(Rd)→ S ′ω(R2d) (Lemma 0.26),∫
R2d

K(y′, η′, y, η)Vψun(y, η)dydη → Vψ(bw(x,D)u)(y′, η′),

in the topology of S ′ω(R2d).

We claim∫
R2d

K(y′, η′, y, η)Vψun(y, η)dydη →
∫
R2d

K(y′, η′, y, η)Vψu(y, η)dydη (4.28)

in S ′ω(R2d). First, it follows from [39, Theorem 2.4] that Vψun(y, η) converges
pointwise to Vψu(y, η) for all (y, η) ∈ R2d. As {un} is bounded in S ′ω(Rd), we
have that {un}n∈N is equicontinuous in S ′ω(Rd). Then, there exists C > 0 and
a seminorm q on Sω(Rd) such that

|〈un, f〉| ≤ Cq(f), f ∈ Sω(Rd).

Hence, from [39, Theorem 2.4], by (0.33) there exist C̃, λ̃ > 0 independent of
z ∈ R2d and n ∈ N such that (fixing f ∈ Sω(Rd))

|Vψun(z)| ≤ C̃eλ̃ω(z).

Therefore, by (4.18), we have that for all λ > 0 there exist Cλ, µλ > 0 such
that

|K(y′, η′, y, η)||Vψun(y, η)|

≤ Cλe−λLω(y−y′)e−λLω(η−η′)eµλω(η′)emax{0,mL2}(ω(y)+ω(y′))C̃eλ̃ω(y,η).

By (0.1) and (0.3), there exists C ′λ > 0 such that, for each n ∈ N,

|K(y′, η′, y, η)||Vψun(y, η)|

≤ C ′λe(−λ+max{0,mL2}+λ̃L)ω(y)e(−λ+λ̃L)ω(η)e(λL+max{0,mL2})ω(y′)e(λL+µλ)ω(η′).
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Taking λ > max{0,mL2} + λ̃L, we have that |K(y′, η′, y, η)||Vψun(y, η)| is
dominated by a function in L1(R2d

y,η) and therefore by the Lebesgue theorem
we obtain (4.28) pointwise. This clearly implies, again by Lebesgue theorem,
the convergence in (4.28) in S ′ω(R2d). By the uniqueness of the limit the result
follows.

We prove [14, Proposition 4.11] for the Weyl quantization. In that result, ω
was assumed to be subadditive.

Proposition 4.9. Let ω be a weight function and b ∈ GSm,ωρ for some m ∈ R,
0 < ρ ≤ 1. Then,

WF′ω(bw(x,D)u) ⊂ conesupp (b), u ∈ S ′ω(Rd).

Proof. Let ψ ∈ Sω(Rd) with ‖ψ‖L2(Rd) = 1 and let 0 6= z0 /∈ conesupp (b).

Then, there exists an open conic set Γ ⊆ R2d \ {0}, z0 ∈ Γ, such that b(z) = 0

for all z ∈ Γ \ B(0, R) for some R > 0. Thus, from Theorem 4.7, for all open
conic set Γ′ ⊆ R2d \ {0} such that Γ′ ∩ S2d−1 ⊆ Γ, we have that K(y′, η′, y, η)
as in (4.12) satisfies (4.19) for all (y′, η′) ∈ Γ′ and (y, η) ∈ R2d. Moreover, by
Lemma 0.26 there are c, µ > 0 such that for all λ > 0 there exists Cλ > 0 with

|Vψ(bw(x,D)u)(y′, η′)| ≤
∫
R2d

|K(y′, η′, y, η)||Vψu(y, η)|dydη

≤
∫
R2d

Cλe
−(λ+µL)Lω(y−y′)e−(λ+µL)Lω(η−η′)×

× e−2(λ+µL)Lω(y′)e−2(λ+µL)Lω(η′)ceµω(y,η)dydη

for all (y′, η′) ∈ Γ′. From (0.1), it follows

e−(λ+µL)Lω(y−y′)e−2(λ+µL)Lω(y′) ≤ e−(λ+µL)ω(y)e−λLω(y′)e(λ+µL)L,

and respectively for η, η′. From (0.3),

eµω(y,η) ≤ eµLω(y)eµLω(η)eµL.

Therefore, again by (0.3),

|Vψ(bw(x,D)u)(y′, η′)|

≤ cCλe2(λ+µL)LeµLe−λLω(y′)e−λLω(η′)

∫
R2d

e−λω(y)e−λω(η)dydη

≤ cCλe2(λ+µL)LeµLeλLe−λω(y′,η′)

∫
R2d

e−λω(y)e−λω(η)dydη,
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for all (y′, η′) ∈ Γ′. As the integral converges, we have that for all λ > 0, there
exists C ′λ > 0 such that

sup
z∈Γ′

eλω(z)|Vψ(bw(x,D)u)(z)| ≤ C ′λ.

Hence, z0 /∈WF′ω(bw(x,D)u) by Definition 4.1 as we wanted.

Corollary 4.10. Let b be a global symbol in GSm,ωρ with compact support.
Then, its Weyl quantization bw(x,D) is ω-regularizing (in the sense of Defi-
nition 1.20).

Proof. Since the support of b is compact, it follows that conesupp (b) = ∅,
hence by Proposition 4.9 we have WF′ω(bw(x,D)u) = ∅, u ∈ S ′ω(Rd). From [14,
Proposition 3.18] we obtain that bw(x,D)u ∈ Sω(Rd) for all u ∈ S ′ω(Rd).

4.2 The Weyl wave front set

In this section we introduce a new global wave front set given in terms of
the Weyl quantization in the ultradifferentiable setting, similarly to the one
introduced by Hörmander [45, Definition 2.1] in the classical setting. Some
restrictions on the weight functions will be necessary, since the definition of
wave front set is based on the construction of the parametrix of Chapter 3.

Definition 4.11. Let a ∈ GSm,ωρ . We say that z0 ∈ R2d \ {0} is non-

characteristic for a if there exist a Gevrey weight function σ with ω(t1/ρ) =
o(σ(t)) as t → ∞, C1, C2 > 0, n ∈ N, R ≥ 1, and an open conic set
Γ ⊂ R2d \ {0} with z0 ∈ Γ such that

|a(z)| ≥ C1e
mω(z), and (4.29)

|Dαa(z)| ≤ C |α|2 〈z〉−ρ|α|e
1
nϕ
∗
σ(n|α|)|a(z)|, (4.30)

for all α ∈ N2d
0 and z ∈ Γ, |z| ≥ R.

Given a ∈ GSm,ωρ we define the characteristic set of a, denoted by char(a), to

be the complement in R2d of the set of non-characteristic points for a in the
sense of Definition 4.11. We have, for all a ∈ GSm,ωρ ,

conesupp(a) ∪ char(a) = R2d \ {0}.

In fact, we take 0 6= z0 /∈ conesupp(a) ∪ char(a). Then, there exist open conic
sets Γ,Γ′ ⊆ R2d \ {0}, z0 ∈ Γ∩Γ′, such that a(z) = 0 for all z ∈ Γ, |z| ≥ R for
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Chapter 4. The Weyl wave front set

some R > 0, and |a(z)| ≥ C1e
mω(z) for all z ∈ Γ′, |z| ≥ R′ for some C1, R

′ > 0.
Therefore, there exists λ > 0 large enough such that

0 = |a(λz0)| ≥ C1e
mω(λz0) > 0,

which is a contradiction.

Definition 4.12. Let ω be a weight function, 0 < ρ ≤ 1 and u ∈ S ′ω(Rd).
We say that z ∈ R2d \ {0} is not in the Weyl wave front set WFωρ (u) of u

if there exist m ∈ R and a ∈ GSm,ωρ such that aw(x,D)u ∈ Sω(Rd) and z is
non-characteristic for a.

We show that the global symbol in Definition 4.12, similarly as in [61, Propo-
sition 2.7], can be taken without loss of generality of order zero. To this, we
notice that there exist weight functions as in Definition 0.3 that cannot be
dominated by any subadditive function that satisfies property (β) ([35]). This
motivates the following definition.

Definition 4.13. Fix 0 < ρ ≤ 1. A weight function ω is called ρ-regular if for
all m ∈ R there exists a ∈ GSm,ωρ such that for some Gevrey weight function

σ with ω(t1/ρ) = o(σ(t)) as t→∞, the inequalities (4.29) and (4.30) hold for
all z ∈ R2d with |z| ≥ R, for some R ≥ 1.

Example 4.14. The Gevrey weight functions ω(t) = ta, 0 < a < 1/2, are
(1− a)-regular.

Proof. For m ∈ R, let p be as in (3.11). Clearly, p satisfies (4.29) for all
z ∈ R2d. By (3.15), using Lemma 0.9 (as ω(t) = o(t1−a) as t → ∞) we have
that p ∈ GSm,ωρ for ρ = 1− a. Again by (3.15), using formula (0.12) for some

Gevrey weight function σ such that ω(t1/ρ) = o(σ(t)) as t→∞, we find C > 0
such that for all α ∈ N2d

0 , z ∈ R2d,

|Dαp(z)| ≤ C |α|α!〈z〉−(1−a)|α||p(z)| ≤ C |α|〈z〉−ρ|α|eϕ
∗
σ(|α|)|p(z)|,

and this shows (4.30).

Example 4.15. The weight ω(t) = log(1 + t) is ρ-regular, for all 0 < ρ ≤ 1.

Proof. Fix 0 < ρ ≤ 1. For m ∈ R, let p(z) := 〈z〉m, z ∈ R2d. It satisfies (4.29):
we have log(1 + |z|) ≥ log(〈z〉) ≥ log(1 + |z|)− 1 for all z ∈ R2d. Thus,

|p(z)| = em log(〈z〉) ≥ emin{0,−m}emω(z).
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4.2 The Weyl wave front set

Now, we write p as the composition p(z) = g(u(z)), z ∈ R2d, where

g(t) = tm/2, m ∈ R, t ≥ 1;

u(z) = 〈z〉2 = 1 + z2
1 + · · ·+ z2

2d, z = (z1, . . . , z2d) ∈ R2d.

We want to use Faà di Bruno formula (3.12). First, we observe that

|g(k)(t)| ≤
∣∣m

2

∣∣∣∣m
2
− 1
∣∣ · · · ∣∣m

2
− k + 1

∣∣|t|m/2−k,
for all k ∈ N0. Therefore,

|g(k)(u(z))| ≤
∣∣m

2

∣∣∣∣m
2
− 1
∣∣ · · · ∣∣m

2
− k + 1

∣∣〈z〉m−2k

=
∣∣m

2

∣∣∣∣m
2
− 1
∣∣ · · · ∣∣m

2
− k + 1

∣∣〈z〉−2kp(z).

On the other hand, the derivatives of u are given in (3.13). Hence, using (3.14),
we get, by (3.12),

|Dαp(z)| ≤
∑

0≤k≤|α|

∣∣m
2

∣∣∣∣m
2
− 1
∣∣ · · · ∣∣m

2
− k + 1

∣∣〈z〉−2kp(z)α!×

×
∑
∗

2|α|〈z〉2k−|α|
2d∏
j=1

1

cej !

1

c2ej !

for all α ∈ N2d
0 , z ∈ R2d, where

∑
∗ is the sum of all cβ ∈ N0 such that∑

|β|>0 cβ = k and
∑
|β|>0 βcβ = α. Proceeding as in Section 3.2 there exists

C > 0 such that for all α ∈ N2d
0 , z ∈ R2d we have

|Dαp(z)| ≤ C |α|α!〈z〉−|α|p(z) ≤ C |α|α!〈z〉−ρ|α|p(z).

Since ω(t) = log(1 + t) = o(tρ) as t → ∞, we use Lemma 0.9 to obtain
p ∈ GSm,ωρ . By (0.12), choosing any Gevrey weight function σ we obtain (4.30)

since ω(t1/ρ) = o(σ(t)) as t→∞.

We observe that, for ω(t) = log(1 + t), the class of symbols GSm,ω1 coincides
with [61, Definition 2.2]. However, Definition 4.11 might not be [61, Definition
2.4], as condition (4.30) is not required in the latter definition.

The following lemma is taken from [34, Lemma 4]. The weight function must
satisfy property (β).
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Chapter 4. The Weyl wave front set

Lemma 4.16. Given a weight function σ and two cones Γ,Γ′ ⊆ R2d \ {0}
such that Γ′ ∩ S2d−1 ⊆ Γ, there exists χ ∈ C∞(R2d) such that 0 ≤ χ ≤ 1,
suppχ ⊆ Γ, χ(z) = 1 for z ∈ Γ′ with |z| ≥ 1 and for every k ∈ N there is
Ck > 0 such that

|Dαχ(z)| ≤ Ck〈z〉−|α|ekϕ
∗
σ

(
|α|
k

)
, α ∈ N2d

0 , z ∈ R2d.

Moreover, if ω satisfies ω(t1/ρ) = o(σ(t)) as t→∞, for some 0 < ρ ≤ 1, then
χ ∈ GS0,ω

ρ .

Proof. To see the last assertion, it is enough to use Lemma 0.10(1).

Proposition 4.17. Let ω be a ρ-regular weight function, for some 0 < ρ ≤ 1,
u ∈ S ′ω(Rd), and 0 6= z0 /∈ WFωρ (u). There exist b ∈ GS0,ω

ρ and an open conic

set Γ ⊂ R2d \ {0} such that z0 ∈ Γ, 0 ≤ b ≤ 1, b(z) = 1 for z ∈ Γ with |z| ≥ 1
and bw(x,D)u ∈ Sω(Rd).

Proof. Since 0 6= z0 /∈ WFωρ (u), there exist m ∈ R and a ∈ GSm,ωρ such that

aw(x,D)u ∈ Sω(Rd), a Gevrey weight function σ such that ω(t1/ρ) = o(σ(t))
as t→∞, C1, C2 > 0, n ∈ N, R ≥ 1, and an open conic set Γ ⊂ R2d \ {0} such
that z0 ∈ Γ, and a satisfies (4.29) and (4.30) for all z ∈ Γ, |z| ≥ R. We can
take C2 ≥ 1.

We have, by (3.5),

(a#a)(x, ξ) ∼
∞∑
j=0

aj(x, ξ) =
∞∑
j=0

∑
|β+γ|=j

(−1)|β|

γ!β!
2−|β+γ|∂γξD

β
xa(x, ξ)∂βξD

γ
xa(x, ξ).

By Proposition 2.15, it follows that
∑
aj ∈ FGS2m,ω

ρ . We use formula (2.14)

(with N = 1) to obtain that, for some C > 0,

|(a#a)(z)| ≥ |a(z)|2 − |(a− a0)(z)| ≥ C2
1e

2mω(z) − C〈z〉−ρe2mω(z), (4.31)

for all z ∈ Γ, |z| ≥ R. Thus, for z ∈ Γ, 〈z〉 ≥ max{R, (2C/C2
1 )1/ρ}, we have

|(a#a)(z)| ≥ C2
1

2
e2mω(z).

On the other hand, by (2.12),

(a#a)(x, ξ) = |a(x, ξ)|2 +
∞∑
k=1

jk+1−1∑
j=jk

Ψj,k(x, ξ)aj(x, ξ),
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4.2 The Weyl wave front set

where (Ψj,k) is defined in (2.4) (see the proof of Theorem 2.6 for the conditions
on the sequence (jk)). For all j ∈ N, we have by Leibniz rule

|Dα
xD

ε
ξaj(x, ξ)|

≤
∑
|β+γ|=j

1

γ!β!
2−|β+γ|

∑
α̃≤α
ε̃≤ε

(
α

α̃

)(
ε

ε̃

)
|Dα−α̃+β

x Dε−ε̃+γ
ξ a(x, ξ)||Dα̃+γ

x Dε̃+β
ξ a(x, ξ)|

≤
∑
|β+γ|=j

1

γ!β!
2−|β+γ|

∑
α̃≤α
ε̃≤ε

(
α

α̃

)(
ε

ε̃

)
C
|α+ε+2γ+2β|
2 〈(x, ξ)〉−ρ|α+ε+2γ+2β|×

× e 1
nϕ
∗
σ(n|α−α̃+ε−ε̃+β+γ|)e

1
nϕ
∗
σ(n|α̃+ε̃+β+γ|)|a(x, ξ)||a(x, ξ)|,

for all α, ε ∈ Nd0, (x, ξ) ∈ Γ, |(x, ξ)| ≥ R. Then, proceeding as in Example 2.12,
the derivatives of aj are estimated, for all j ∈ N, by

e2d2(2C2)|α+ε|
(C2

2

2

)j
〈(x, ξ)〉−ρ(|α+ε|+2j)e

1
nϕ
∗
σ(n(|α+ε|+2j))|a(x, ξ)||a(x, ξ)|,

for all α, ε ∈ Nd0, (x, ξ) ∈ Γ, |(x, ξ)| ≥ R. We have that, by (0.11) and
Lemma 0.10(1), for all k ∈ N there exists Ck > 0 such that

e
1
nϕ
∗
σ(n(|α+ε|+2j)) ≤ e 1

2nϕ
∗
σ(2n|α+ε|)e

1
2nϕ

∗
σ(2n(2j)) ≤ e 1

2nϕ
∗
σ(2n|α+ε|)Cke

kρϕ∗ω( 2j
k ).

Therefore, when estimating

|Dα
xD

ε
ξ(a− a0)(x, ξ)| ≤

∞∑
k=1

jk+1−1∑
j=jk

|Dα
xD

ε
ξ(Ψj,kaj)(x, ξ)|,

we can obtain by the definition of Ψj,k in (2.4) (see also (2.7)) and taking
by induction the sequence (jk) as in the proof of Theorem 2.6 the following
estimate: there exist C ′ > 0 and C3 > 0 (which depends on C2 > 0) such that
for all α, ε ∈ Nd0 and (x, ξ) ∈ Γ, |(x, ξ)| ≥ R,

|Dα
xD

ε
ξ(a− a0)(x, ξ)| ≤ C ′C |α+ε|

3 〈(x, ξ)〉−ρ|α+ε|e
1
2nϕ

∗
σ(2n|α+ε|)|a(x, ξ)||a(x, ξ)|.

Hence, we can assume that a ∈ GSm,ωρ can be written as a′ + a′′, where
a′ ∈ GSm,ωρ , a′ ≥ 0 and satisfies, for probably another R ≥ 1,

a′(z) ≥ C1e
mω(z), z ∈ Γ, |z| ≥ R, (4.32)

and (4.30), and a′′ satisfies (see (4.31))

|a′′(z)| ≤ C〈z〉−ρemω(z), z ∈ Γ, |z| ≥ R. (4.33)
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Since ω is a ρ-regular weight function, there exist a global symbol a0 in GSm,ωρ

and a Gevrey weight function σ′ such that formulas (4.29) and (4.30) are
satisfied for a0, for some C ′1, C

′
2 > 0, n′ ∈ N, for all z ∈ R2d with |z| ≥ R′, for

some R′ ≥ 1. Then, for the Gevrey weight function

min{σ(t), σ′(t)}, t ≥ 1,

the global symbols a and a0 in GSm,ωρ satisfy (4.29), (4.30) for min{C1, C
′
1} > 0,

max{C2, C
′
2} ≥ 1, max{n, n′} ∈ N, and max{R,R′} ≥ 1. By abuse of notation,

we denote this Gevrey weight function by σ, and the constants by C1, C2 > 0,
n ∈ N, and R ≥ 1. Proceeding as before, we can decompose a0 = a′0 + a′′0 ,
where a′0 ∈ GSm,ωρ , a′0 ≥ 0, satisfying for R ≥ 1 large enough,

a′0(z) ≥ C1e
mω(z), |z| ≥ R, (4.34)

and a′′0 satisfies, for some C ′ > 0,

|a′′0(z)| ≤ C ′〈z〉−ρemω(z), |z| ≥ R. (4.35)

Let Γ′,Γ′′ ⊂ R2d\{0} be open conic sets such that z0 ∈ Γ′′, Γ′′ ∩ S2d−1 ⊂ Γ′ and
Γ′ ∩ S2d−1 ⊂ Γ. For the weight function σ, let χ and b be as in Lemma 4.16 for
Γ, Γ′, and Γ′, Γ′′. Therefore b ∈ GS0,ω

ρ , 0 ≤ b ≤ 1, supp b ⊆ Γ′, and b(z) = 1
for z ∈ Γ′′ with |z| ≥ 1.

Now, we set
b0(z) := χ(z)a(z) + (1− χ(z))a0(z).

Since χ ∈ GS0,ω
ρ and a, a0 ∈ GSm,ωρ , we have b0 ∈ GSm,ωρ . As χ(z) = 0 for all

z /∈ Γ, we obtain (since a0 satisfies (4.29) for all |z| ≥ R),

|b0(z)| = |a0(z)| ≥ C1e
mω(z), z /∈ Γ, |z| ≥ R.

On the other hand, since a′, a′0 ≥ 0 and 0 ≤ χ ≤ 1, we have from (4.32)
and (4.34), where C > 0 is as in (4.33) and C ′ > 0 is as in (4.35),

|b0(z)| = |χ(z)a′(z) + χ(z)a′′(z) + (1− χ(z))a′0(z) + (1− χ(z))a′′0(z)|
≥ χ(z)a′(z) + (1− χ(z))a′0(z)− χ(z)|a′′(z)| − (1− χ)(z)|a′′0(z)|
≥ C1e

mω(z) − (C + C ′)〈z〉−ρemω(z)

≥ C1

2
emω(z), z ∈ Γ, 〈z〉 ≥ max{R, (2(C + C ′)/C1)1/ρ}.

Hence, we obtain

|b0(z)| ≥ C1

2
emω(z) ≥ C1

2
e−|m|ω(z), 〈z〉 ≥ max{R, (2(C + C ′)/C1)1/ρ},

(4.36)
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and we have condition (i) of Theorem 3.3 for b0.

Since χ is as in Lemma 4.16, there exists C > 0 such that, for the previous
n ∈ N,

|Dαχ(z)| ≤ C〈z〉−|α|eϕ
∗
σ(|α|) ≤ C〈z〉−ρ|α|e 1

nϕ
∗
σ(n|α|),

for all α ∈ N2d
0 , z ∈ R2d. The same estimate is also valid for 1 − χ (probably

with a change of the constant C > 0) for all α ∈ N2d
0 and z ∈ R2d. Therefore,

since a, a0 satisfy (4.30) for the same C2 ≥ 1, n ∈ N and in Γ \ B(0, R), by
Leibniz rule we have for all α ∈ N2d

0 and z ∈ Γ, |z| ≥ R,

|Dαb0(z)| ≤
∑
β≤α

(
α

β

)
(|Dβχ(z)||Dα−βa(z)|+ |Dβ(1− χ)(z)||Dα−βa0(z)|)

≤
∑
β≤α

(
α

β

)
C〈z〉−ρ|β|e 1

nϕ
∗
σ(n|β|)×

× C |α−β|2 〈z〉−ρ|α−β|e 1
nϕ
∗
σ(n|α−β|)(|a(z)|+ |a0(z)|).

Since a, a0 ∈ GSm,ωρ , there exists C ′ > 0 such that, using (0.11), (since∑
β≤α

(
α
β

)
= 2|α|),

|Dαb0(z)| ≤ C(2C2)|α|〈z〉−ρ|α|e 1
nϕ
∗
σ(n|α|)2C ′emω(z).

Take D = 2C2 max{1, 4CC ′/C1} > 0. Then, from (4.36) we obtain

|Dαb0(z)| ≤ D|α|〈z〉−ρ|α|e 1
nϕ
∗
σ(n|α|)C1

2
emω(z)

≤ D|α|〈z〉−ρ|α|e 1
nϕ
∗
σ(n|α|)|b0(z)|

for all α ∈ N2d
0 and z ∈ Γ with |z| large enough. On the other hand, if z /∈ Γ,

then by construction b0(z) = a0(z), thus, since a0 satisfies (4.30) for C2 > 0
and n ∈ N,

|Dαb0(z)| = |Dαa0(z)| ≤ C |α|2 〈z〉−ρ|α|e
1
nϕ
∗
σ(n|α|)|a0(z)|

≤ D|α|〈z〉−ρ|α|e 1
nϕ
∗
σ(n|α|)|b0(z)|,

for all α ∈ N2d
0 and z /∈ Γ, |z| ≥ R. Hence, b0 satisfies condition (ii) of

Theorem 3.3 for all z ∈ R2d with |z| large enough.

We deduce from Corollary 3.5 (see also Theorem 3.3) that there exists c ∈
GS|m|,ωρ such that

c#b0 = 1 + s,
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for some s ∈ Sω(R2d). Therefore,

b = b#c#b0 − b#s
= b#c#(b0 − a) + b#c#a− b#s.

So, we obtain

bw(x,D)u = bw(x,D)cw(x,D)(b0 − a)w(x,D)u+

+ bw(x,D)cw(x,D)aw(x,D)u− bw(x,D)sw(x,D)u.
(4.37)

We claim that bw(x,D)u ∈ Sω(Rd). Since b(z) = 0 for all z /∈ Γ′ and

b0 − a = χa+ (1− χ)a0 − a = (1− χ)(a0 − a)

vanishes for z ∈ Γ′, |z| ≥ 1 (because χ(z) = 1) we deduce that

E := supp (b) ∩ supp (b0 − a)

is a compact set. This implies

b#c#(b0 − a) ∈ Sω(R2d).

Indeed, let χ̃ ∈ D(ω)(R2d), with χ̃ = 1 on E. Then, b#c#(b0−a) has the same
asymptotic expansion of b#c#(χ̃(b0 − a)). Then, by Proposition 2.3,

bw(x,D)cw(x,D)(b0 − a)w(x,D) = bw(x,D)cw(x,D)(χ̃(b0 − a))w(x,D) +R,
(4.38)

for an ω-regularizing operator R. Since b0 − a ∈ GSm,ωρ , we use Lemma 2.8,

and then, as χ̃ ∈ D(ω)(R2d), we can reproduce Lemma 1.11(a). Therefore by
Proposition 1.19,

(χ̃(b0 − a))w(x,D)u ∈ Sω(Rd), u ∈ S ′ω(Rd).

The continuity of the Weyl operator yields

cw(x,D)(χ̃(b0 − a))w(x,D)u ∈ Sω(Rd), u ∈ S ′ω(Rd),

and

bw(x,D)cw(x,D)(χ̃(b0 − a))w(x,D)u ∈ Sω(Rd), u ∈ S ′ω(Rd).

Hence, by (4.38)

bw(x,D)cw(x,D)(b0 − a)w(x,D)u ∈ Sω(Rd), u ∈ S ′ω(Rd).
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4.2 The Weyl wave front set

By assumption, aw(x,D)u ∈ Sω(Rd), so as before we deduce

bw(x,D)cw(x,D)aw(x,D)u ∈ Sω(Rd), u ∈ S ′ω(Rd).

Furthermore, since s ∈ Sω(R2d), we have

bw(x,D)sw(x,D)u ∈ Sω(Rd), u ∈ S ′ω(Rd).

Hence, by (4.37) we obtain that bw(x,D)u ∈ Sω(Rd) for all u ∈ S ′ω(Rd) and
the proof is complete.

Now, for certain weight functions ω, we want to compare the global wave
front sets appearing in Definitions 4.1 and 4.12 for every ultradistribution u
in S ′ω(Rd). In fact, for weight functions as in Definition 4.13 we have

Theorem 4.18. Let ω be a ρ-regular weight function, for some 0 < ρ ≤ 1.
Then,

WF′ω(u) ⊂WFωρ (u), u ∈ S ′ω(Rd).

Proof. Let 0 6= z0 /∈ WFωρ (u). By Proposition 4.17, there exist b ∈ GS0,ω
ρ and

an open conic set Γ ⊂ R2d \{0} such that z0 ∈ Γ, 0 ≤ b ≤ 1, b(z) = 1 for z ∈ Γ

with |z| ≥ 1 and bw(x,D)u ∈ Sω(Rd). Put b̃ := 1 − b. We have b̃ ∈ GS0,ω
ρ ,

b̃(z) = 0 for z ∈ Γ with |z| ≥ 1, so in particular z0 /∈ conesupp (b̃). Since
bw(x,D)u ∈ Sω(Rd) we obtain, by Lemma 4.3 and Proposition 4.9,

WF′ω(u) = WF′ω(bw(x,D)u+ b̃w(x,D)u) = WF′ω(b̃w(x,D)u) ⊂ conesupp (b̃).

Hence z0 /∈WF′ω(u).

Theorem 4.19. Let ω be a weight function. If for some 0 < ρ ≤ 1,

ω(t1/ρ) = o(σ(t)) and σ(t1+ρ/2) = O(γ(t)) as t→∞, (4.39)

for some Gevrey weight function σ and some weight function γ, then

WFωρ (u) ⊂WF′ω(u), u ∈ S ′ω(Rd).

Remark 4.20. The assumption (4.39) in Theorem 4.19 implies

ω(t(2+ρ)/(2ρ)) = o(γ(t)), t→∞,

for some weight function γ. For ω(t) = ta, a = 1 − ρ, this condition implies
(as γ(t) = o(t) as t→∞)

a
2 + ρ

2ρ
= a

3− a
2(1− a)

< 1,
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or, equivalently,

0 < a <
5−
√

17

2
,

−3 +
√

17

2
< ρ < 1.

Proof of Theorem 4.19. Take

ψ(z) = e−|z|
2/2, z ∈ R2d,

which belongs to Sω(R2d), for all weight function ω (by the estimates in Defini-
tion 0.13). As in [61, Theorem 4.2], the Wigner transform of ψ (Definition 0.34)
is

Wig (ψ)(z) = (4π)d/2e−|z|
2

, z ∈ R2d.

Let 0 6= z0 /∈WF′ω(u). Then, there exists an open conic set Γ ⊆ R2d \{0} such
that z0 ∈ Γ and

sup
z∈Γ

eλω(z)|Vψu(z)| <∞, λ > 0. (4.40)

Take Γ′ ⊆ R2d \ {0} an open conic set such that z0 ∈ Γ′ and Γ′ ∩ S2d−1 ⊆ Γ.
For the weight function γ, by Lemma 4.16 there exists b ∈ GS0,γ

1 such that
0 ≤ b ≤ 1, supp (b) ⊆ Γ, and b(z) = 1 for z ∈ Γ′, |z| ≥ 1.

We define
a := b ∗Wig (ψ).

To estimate the derivatives of a, we use the fact that b ∈ GS0,γ
1 , Lemma 0.2

and (0.10) to obtain that for all λ > 0 there exists Cλ > 0 such that

|Dαa(z)| ≤
∫
R2d

|Dα
z b(z − w)|Wig(ψ)(w)dw

≤
∫
R2d

Cλ〈z − w〉−|α|eλLϕ
∗
γ

(
|α|
λL

)
(4π)d/2e−|w|

2

dw

≤
∫
R2d

Cλ〈z − w〉−ρ|α|eλLϕ
∗
γ

(
|α|
λL

)
(4π)d/2e−|w|

2

dw

≤ Cλ(4π)d/2〈z〉−ρ|α|
(√

2
ρ|α|

eλLϕ
∗
γ

(
|α|
λL

)) ∫
R2d

〈w〉ρ|α|e−|w|
2

dw

≤ Cλ(4π)d/2〈z〉−ρ|α|eλLeλϕ
∗
γ

(
|α|
λ

) ∫
R2d

(〈w〉2)|α|(ρ/2)e−|w|
2

dw (4.41)

for all α ∈ N2d
0 and z ∈ R2d. Then, by (0.7),∫

R2d

(〈w〉2)|α|(ρ/2)e−|w|
2

dw ≤ eλ(ρ/2)ϕ∗γ

(
|α|
λ

) ∫
R2d

eλ(ρ/2)γ(〈w〉2)e−|w|
2

dw.
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4.2 The Weyl wave front set

In particular, as γ(t) = o(t), t→∞, there exists Dλ > 0 such that

λ(ρ/2)γ(〈w〉2) ≤ 1

2
|w|2 +Dλ, w ∈ R2d,

and then the integral is convergent. So, from (4.41), using Lemma 0.10(1) (see
Remark 4.20) we obtain that for all λ > 0 there exists C ′λ > 0 such that

|Dαa(z)| ≤ C ′λ〈z〉−ρ|α|e
λ(1+ρ/2)ϕ∗γ

(
|α|
λ

)
(4.42)

≤ C ′′λ〈z〉−ρ|α|e
λρϕ∗ω

(
|α|
λ

)
,

for some constant C ′′λ > 0 depending on λ > 0. This shows a ∈ GS0,ω
ρ .

Let Γ′′ ⊆ Γ′ be another open conic set such that z0 ∈ Γ′′ and Γ′′ ∩ S2d−1 ⊆ Γ′.
Then, there exists δ > 0 (see [14, (3.25)]) such that z − w/t ∈ Γ′ for z ∈ Γ′′

with |z| = 1, |w| ≤ δ, and t ≥ 1. Since |z − w| ≥ |z| − δ ≥ 1 holds if |w| ≤ δ
and |z| ≥ 1+δ, we have for z ∈ Γ′′, |z| ≥ 1+δ, (as b(z) = 1 for z ∈ Γ′, |z| ≥ 1)

|a(z)| =
∫
R2d

b(z − w) Wig(ψ)(w)dw

≥
∫
{|w|≤δ}

b
(
|z|
( z
|z|
− w

|z|

))
Wig(ψ)(w)dw

=

∫
{|w|≤δ}

Wig(ψ)(w)dw =: C∗ > 0.

Hence (4.29) is satisfied for m = 0. Moreover, as σ(t1+ρ/2) = O(γ(t)), t→∞,
we use Lemma 0.10(2) to obtain, by (4.42), that there exist C ′ > 0 and n ∈ N
such that for α ∈ N2d

0 and z ∈ Γ′′, |z| ≥ 1 + δ,

|Dαa(z)| ≤ C ′〈z〉−ρ|α|e 1
nϕ
∗
σ(n|α|) ≤ C ′

C∗
〈z〉−ρ|α|e 1

nϕ
∗
σ(n|α|)|a(z)|,

so (4.30) is satisfied, too. Thus z0 is non-characteristic for a.

It only remains to show that aw(x,D)u ∈ Sω(Rd). We recall that the Weyl
operator aw(x,D) can be written as (see for instance [29, (6), (3)])

aw(x,D)u(x) =

∫
R2d

b(z)Vψu(z)Π(z)ψ(x)dz, x ∈ Rd. (4.43)
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Since supp (b) ⊆ Γ and 0 ≤ b ≤ 1, given α ∈ Nd0 we have by (4.43), for
z = (t, ξ) ∈ R2d,

|Dαaw(x,D)u(x)| ≤
∫

Γ

|Vψu(t, ξ)||Dα
x (eix·ξψ(x− t))|dtdξ

≤
∑
β≤α

(
α

β

)∫
Γ

|Vψu(t, ξ)||ξ||β||Dα−β
x ψ(x− t)|dtdξ.

From (4.40), (0.7) and since ψ ∈ Sω(Rd), for all λ > 0 there exist Cλ, C
′
λ > 0

(different from the previous ones) such that (assuming |ξ| ≥ 1)

|Dαaw(x,D)u(x)| ≤
∑
β≤α

(
α

β

)∫
Γ

Cλe
−2(λL+1)ω(t,ξ)eλLϕ

∗
ω

(
|β|
λL

)
eλLω(ξ)×

× C ′λe
λLϕ∗ω

(
|α−β|
λL

)
e−λLω(x−t)dtdξ.

By (0.1),

−2(λL+ 1)ω(t, ξ) ≤ −(λL+ 1)(ω(t) + ω(ξ))

≤ −(ω(t) + ω(ξ))− λLω(ξ) + λLω(x− t)− λω(x) + λL.

So, we have

−2(λL+ 1)ω(t, ξ) + λLω(ξ)− λLω(x− t) ≤ −(ω(t) + ω(ξ))− λω(x) + λL,

and therefore

|Dαaw(x,D)u(x)| ≤ CλC ′λeλLe−λω(x)
∑
β≤α

(
α

β

)
eλLϕ

∗
ω

(
|β|
λL

)
eλLϕ

∗
ω

(
|α−β|
λL

)
×

×
∫
R2d

e−ω(t)−ω(ξ)dtdξ.

By Lemma 0.8,
∑

β≤α
(
α
β

)
eλLϕ

∗
ω

(
|β|
λL

)
eλLϕ

∗
ω

(
|α−β|
λL

)
≤ eλϕ

∗
ω

(
|α|
λ

)
eλL, and we get

aw(x,D)u ∈ Sω(Rd). Then, z0 /∈WFωρ (u).

Corollary 4.21. Let ω be a ρ-regular weight function for some 0 < ρ ≤ 1 that
satisfies (4.39) for two weight functions σ and γ as in Theorem 4.19. Then,

WFωρ (u) = WF′ω(u), u ∈ S ′ω(Rd).

Proposition 4.22. Let w ∈ R2d. Under the hypotheses of Corollary 4.21, we
have

WFωρ (Π(w)u) = WFωρ (u), u ∈ S ′ω(Rd).
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Proof. It follows from [14, Proposition 3.19].

Example 4.23. Let (−3 +
√

17)/2 < ρ < 1 and let a = 1−ρ. Then, for every
b, c > 0 such that

1− ρ
ρ

< b <
2

2 + ρ
and b

2 + ρ

2
< c < 1,

the weight functions ω(t) = ta, σ(t) = tb and γ(t) = tc satisfy the hypotheses
of Corollary 4.21 (see Remark 4.20).

4.3 Regularity of Weyl quantizations

In this section we study the regularity of Weyl quantizations with the Weyl
wave front set with symbols in the class GSm,ωρ .

Lemma 4.24. Let ω be a ρ-regular weight function for some 0 < ρ ≤ 1 and
u ∈ S ′ω(Rd). Then WFωρ (u) is empty if and only if u ∈ Sω(Rd).

Proof. Let us first assume that u ∈ Sω(Rd). Taking a ≡ 1 ∈ GS0,ω
ρ we have

that z is non-characteristic for a for every z ∈ R2d \ {0}, and aw(x,D)u = u ∈
Sω(Rd), so WFωρ (u) is empty.

On the other hand, if WFωρ (u) is empty, then from Theorem 4.18 we have

that WF′ω(u) is empty, and then from [14, Proposition 3.18] we obtain u ∈
Sω(Rd).

Proposition 4.25. Let ω be a ρ-regular weight function for some 0 < ρ ≤ 1
and let m ∈ R. For a global symbol a ∈ GSm,ωρ , we have

WFωρ (u) ⊂WFωρ (aw(x,D)u) ∪ char(a), u ∈ S ′ω(Rd).

Proof. Let 0 6= z0 /∈WFωρ (aw(x,D)u) ∪ char(a). By Proposition 4.17 we have

that there exist b ∈ GS0,ω
ρ and an open conic set Γ ⊂ R2d \ {0} containing z0

such that 0 ≤ b ≤ 1, b(z) = 1 for z ∈ Γ, |z| ≥ 1, and

bw(x,D)aw(x,D)u ∈ Sω(Rd), u ∈ S ′ω(Rd). (4.44)

The Weyl product b#a of the composition bw(x,D)aw(x,D) has an asymptotic
expansion

∑
cj(x, ξ) as in formula (3.5). Then, by Theorem 2.6 there exists
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Chapter 4. The Weyl wave front set

c ∈ GSm,ωρ such that c ∼
∑
cj and, from (2.12),

c(x, ξ) = b(x, ξ)a(x, ξ) +
∞∑
n=1

jn+1−1∑
j=jn

Ψj,n(x, ξ)cj(x, ξ), (4.45)

where (Ψj,n) is defined in (2.4) (see the proof of Theorem 2.6 for the conditions
on the sequence (jn)). From the properties of b, we have

c(z) = a(z) z ∈ Γ, |z| ≥ 1. (4.46)

Now, since z0 /∈ char(a) there exists an open conic set Γ′ ⊂ R2d \{0} such that
a satisfies (4.29) and (4.30) for all α ∈ N2d

0 , z ∈ Γ′, |z| ≥ 1. Thus, from (4.46)
we have that z0 is non-characteristic for c (in probably another open conic set
Γ′′ satisfying Γ′′ ∩ S2d−1 ⊆ Γ ∩ Γ′). Finally, by construction we have

bw(x,D)aw(x,D)u = cw(x,D)u+Ru, u ∈ S ′ω(Rd), (4.47)

where R is an ω-regularizing operator. Then, using (4.44) we obtain that
cw(x,D)u ∈ Sω(Rd) and therefore z0 /∈WFωρ (u).

Lemma 4.26. Let ω be a ρ-regular weight function for some 0 < ρ ≤ 1. We
have

WFωρ (u) = WFωρ (u+ v), u ∈ S ′ω(Rd), v ∈ Sω(Rd).

Proof. Let 0 6= z0 /∈WFωρ (u). Then there exists a symbol a ∈ GSm,ωρ for some

m ∈ R such that z0 is non-characteristic for a and aw(x,D)u ∈ Sω(Rd). Since
v ∈ Sω(Rd) we have by Lemma 2.8 and Theorem 1.15 that aw(x,D)(u+ v) ∈
Sω(Rd), and therefore z0 /∈WFωρ (u+ v). We then obtain

WFωρ (u+ v) ⊂WFωρ (u).

Proceeding in the same way, we get

WFωρ (u) = WFωρ (u+ v − v) ⊂WFωρ (u+ v),

and the proof is complete.

Proposition 4.27. Let ω be a ρ-regular weight function for some 0 < ρ ≤ 1.
Let m ∈ R and a ∈ GSm,ωρ . Then

WFωρ (aw(x,D)u) ⊂ conesupp(a), u ∈ S ′ω(Rd).
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Proof. Let 0 6= z0 /∈ conesupp(a). Then, there exists an open conic set Γ ⊂
R2d \ {0} containing z0 such that a(z) = 0 for every z ∈ Γ with |z| ≥ R, for
some R > 0. We take an open conic set Γ′ ⊂ R2d\{0} such that Γ′ ∩ S2d−1 ⊆ Γ
and z0 ∈ Γ′, and then consider b ∈ GS0,ω

ρ the function in Lemma 4.16. Since
b(z) = 1 for z ∈ Γ′, |z| ≥ 1, it is clear that b(z) satisfies (4.29) and (4.30), so
z0 is non-characteristic for b. As in the proof of Proposition 4.25, the Weyl
product of the composition bw(x,D)aw(x,D) has an asymptotic expansion∑
cj as in (3.5). By Theorem 2.6 there exists c ∈ GSm,ωρ such that c ∼

∑
cj

satisfying (4.47) for some ω-regularizing operator R. Since supp (b) ⊆ Γ and
a(z) = 0 for all z ∈ Γ with |z| ≥ R, we have that supp (a) ∩ supp (b) is
compact. Therefore supp (c) is also compact and by Corollary 4.10, cw(x,D)
is ω-regularizing. Then, for every u ∈ S ′ω(Rd) we have

bw(x,D)aw(x,D)u ∈ Sω(Rd),

and hence z0 /∈WFωρ (aw(x,D)u).

Remark 4.28. We observe that, under the hypotheses in Corollary 4.21, we
obtain Lemmas 4.24, 4.26 and Proposition 4.27 as an immediate application
of [14, Proposition 3.18], Lemma 4.3, and Proposition 4.9.

However, in the proofs above the hypotheses in Corollary 4.21 were not neces-
sary.

Proposition 4.29. Let ω be a ρ-regular weight function for some 0 < ρ ≤ 1.
Let m ∈ R and a ∈ GSm,ωρ . Then,

WFωρ (aw(x,D)u) ⊂WFωρ (u), u ∈ S ′ω(Rd).

Proof. Take 0 6= z0 /∈WFωρ (u). By Proposition 4.17, there exist b ∈ GS0,ω
ρ and

an open conic set Γ containing z0 such that b(z) = 1 for z ∈ Γ, |z| ≥ 1 and

bw(x,D)u ∈ Sω(Rd). Set b̃ = 1− b ∈ GS0,ω
ρ . We have

aw(x,D)u = aw(x,D)b̃w(x,D)u+aw(x,D)bw(x,D)u, u ∈ S ′ω(Rd). (4.48)

By the continuity of the Weyl operator, aw(x,D)bw(x,D)u ∈ Sω(Rd). On the
other hand, proceeding as in the proof of Proposition 4.25 for the operator
aw(x,D)b̃w(x,D), there exists c ∈ GSm,ωρ satisfying (4.45) (replacing b by b̃),

where
∑
cj is as in (3.5) (replacing b by b̃). Since b̃(z) = 0 for every z ∈ Γ,

|z| ≥ 1, we have that c(z) vanishes for all z ∈ Γ, |z| ≥ 1, and the Weyl symbol

of aw(x,D)b̃w(x,D) satisfies, similarly as (4.47),

aw(x,D)b̃w(x,D)u = cw(x,D)u+Ru,
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for some ω-regularizing operator R. Therefore, from (4.48), we obtain by
Lemma 4.26 and Proposition 4.27,

WFωρ (aw(x,D)u) = WFωρ (cw(x,D)u) ⊂ conesupp (c).

Since z0 ∈ Γ we have that z0 /∈ conesupp(c) and then z0 /∈ WFωρ (aw(x,D)u).

We have the following result as in [61, Proposition 2.11].

Corollary 4.30. Let ω be a ρ-regular weight function for some 0 < ρ ≤ 1.
Let m ∈ R and a ∈ GSm,ωρ . If

conesupp (a) ∩WFωρ (u) = ∅, u ∈ S ′ω(Rd),

then aw(x,D)u ∈ Sω(Rd).

Proof. By Propositions 4.27 and 4.29 we obtain WFωρ (aw(x,D)u) = ∅. The
result then follows by Lemma 4.24.

By Propositions 4.25, 4.27, and 4.29 we have

Theorem 4.31. Let ω be a ρ-regular weight function for some 0 < ρ ≤ 1. Let
m ∈ R and a ∈ GSm,ωρ . Then

WFωρ (aw(x,D)u) ⊂WFωρ (u) ∩ conesupp(a)

⊂WFωρ (u) ⊂WFωρ (aw(x,D)u) ∪ char(a)

for all u ∈ S ′ω(Rd).

Furthermore, by Corollary 4.21,

Corollary 4.32. Let ω be a ρ-regular weight function for some 0 < ρ ≤ 1
which satisfies (4.39) for two weight functions σ and γ as in Theorem 4.19.
Let m ∈ R and a ∈ GSm,ωρ . Then

WF′ω(aw(x,D)u) ⊂WF′ω(u) ∩ conesupp(a)

⊂WF′ω(u) ⊂WF′ω(aw(x,D)u) ∪ char(a)

for all u ∈ S ′ω(Rd).
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Remark 4.33. Let ω be a ρ-regular weight function for some 0 < ρ ≤ 1.
Then, for all m ∈ R there exists p ∈ GSm,ωρ such that z is non-characteristic

for p for all z ∈ R2d \ {0}. Hence char (p) = ∅ and by Theorem 4.31,

WFωρ (pw(x,D)u) = WFωρ (u), u ∈ S ′ω(Rd). (4.49)

Example 4.34. Let ω(t) = ta be a Gevrey weight function, 0 < a < 1/2.
From Example 4.14, ω is (1− a)-regular. Take p as in (3.11). From (3.15) we
deduce that every z ∈ R2d \ {0} is non-characteristic for p, and therefore the
associated Weyl operator satisfies (4.49). Furthermore, if 0 < a < (5−

√
17)/2,

then by Corollary 4.21,

WF′ω(pw(x,D)u) = WF′ω(u), u ∈ S ′ω(Rd).
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G(D), see ultradifferential operator
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ρ , see amplitude
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G̃S
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ρ , 128
Sm,ωρ , see symbol
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F̃GS
m,ω

ρ , 129
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ρ , 127
∆r, 80
P (x, ξ), 11
∂P (x, ξ), 11

Vψ, 24
V ∗ψ , 25
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Mξ, 24
Π(z), 24
TG, 16
S2d−1, 139
ω, see weight function
bw(x,D), 106
Wig, 27
ϕ∗ω, see Young conjugate
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char(a), 159
conesupp (u), 137
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#, 122
| · |λ, 15
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pw, 105
WF′ω(u), 137
WFωρ (u), 160
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global, 31
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of Beurling type, 12
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operator
global pseudodifferential, 35
ω-regular, 116
kernel of, 43

modulation, 24
phase-shift, 24
regularizing, 52
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ultradifferential, 16
Weyl, 106

parametrix, 116
point

characteristic, 159
non-characteristic, 159

quantization
τ , 106, 130
composition, 108
transpose, 108

support
conic, 137
distributions, 13

symbol

ω-hypoelliptic, 127
τ , 105, 130
global, 31

mixed, 128
of finite order, 31

Weyl, 105

transform
Fourier, 13
short-time Fourier, 24
Wigner, 27

ultradistribution
ω-temperate, 16
of Beurling type, 12
of Roumieu type, 12
with compact support

of Beurling type, 13
of Roumieu type, 13

wave front set
ω, 137
Weyl, 160

Young conjugate, 9
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[25] M. Cappiello, S. Pilipović, and B. Prangoski, Parametrices and hypoellip-
ticity for pseudodifferential operators on spaces of tempered ultradistribu-
tions, J. Pseudo-Differ. Oper. Appl. 5 (2014), no. 4, 491–506.

[26] M. Cappiello and R. Schulz, Microlocal analysis of quasianalytic Gelfand-
Shilov type ultradistributions, Complex Var. Elliptic Equ. 61 (2016), no. 4,
538–561.

[27] M. Cappiello and J. Toft, Pseudo-differential operators in a Gelfand-
Shilov setting, Math. Nachr. 290 (2017), no. 5-6, 738–755.

[28] J. Chazarain and A. Piriou, Introduction to the theory of linear partial dif-
ferential equations, Studies in Mathematics and its Applications, vol. 14,
North-Holland Publishing Co., Amsterdam-New York, 1982.
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